
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

TOWARDS AUTOMATIC QOS AWARE

RESTFUL SERVICE COMPOSITION:

SECURITY DOMAIN

CRISTIÁN MATÍAS SEPÚLVEDA OLLIER

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

ROSA ALARCÓN C.

Santiago de Chile, November 2012

c⃝ MMXII, CRISTIÁN MATÍAS SEPÚLVEDA OLLIER

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

TOWARDS AUTOMATIC QOS AWARE

RESTFUL SERVICE COMPOSITION:

SECURITY DOMAIN

CRISTIÁN MATÍAS SEPÚLVEDA OLLIER

Members of the Committee:

ROSA ALARCÓN C.

VALERIA HERSKOVIC M.

MARÍA CECILIA BASTARRICA P.

CHRISTIAN OBERLI G.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, November 2012

c⃝ MMXII, CRISTIÁN MATÍAS SEPÚLVEDA OLLIER

To my family, for their support and

patience and to my wife, my

eternal companion of adventures

ACKNOWLEDGEMENTS

At the end of this long journey I would like to thank Rosa, my advisor, for all her

trust in me, her understanding and all the collaboration to accomplish this work. It has

been a long process during which we have been widely separated most of the time and

without her willingness to support me, this could not have been possible. This enriching

experience has yield significant learnings on the Computer Science field which has been

as valuable as the chance of sharing and knowing such a nice and admirable person. I

could not be more thankful and glad of working with her on this.

This thesis marks the end of my student life which has been fully supported by my

family in many ways but particularly in an emotional one. Thanks for all the values

granted, your continuous and wise advice and for your patience and love. In every goal

I manage to achieve your effort is present and remembered.

Nothing of this would have been possible with all the support of my wife. This

started as another project, between many things we have started together, but we didn’t

expect how many changes in our personal lives were going to happen along with it. It has

been tough and challenging to go through it, but tremendously rewarding to accomplish

this stage, relying on our love. Thank you for being with me even from a distance and

specially in the toughest moments.

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS . iv

LIST OF FIGURES . vii

ABSTRACT . viii

RESUMEN . ix

1. INTRODUCTION . 1

1.1. Problem context . 1

1.1.1. Service composition . 2

1.1.2. RESTful Service Composition . 3

1.1.3. Refining service composition with QoS 8

1.2. Objectives . 12

1.2.1. Modeling a security ontology . 12

1.2.2. Defining a security constraints description, ReLL-S 12

1.2.3. Implementation as an extension of RESTler, a machine-client 12

1.3. Methodology . 13

1.3.1. State of art revision . 13

1.3.2. Services security understanding and analysis 13

1.3.3. Bottom-up iterative definition and implementation process 13

1.3.4. Validation, refinement and generalization 14

1.4. Thesis structure . 15

2. TOWARDS AUTOMATIC QOS AWARE RESTFUL SERVICE COMPOSITION:

SECURITY DOMAIN . 16

Abstract . 16

2.1. Introduction . 16

2.2. Security aware RESTful Service Composition: ReLL-S 18

v

2.2.1. Security Ontology . 18

2.2.2. ReLL: Resource Linking Language 22

2.2.3. Security Constraints Model: ReLL-S 24

2.3. Supporting current security mechanisms on the Web 26

2.3.1. API Keys. 26

2.3.2. Username and Password. 27

2.3.3. HTTP Basic Authentication. 27

2.3.4. HTTP Digest Authentication. 29

2.3.5. OpenID. 32

2.3.6. OAuth. 34

2.4. Implementation and Case Study: RESTler and Flickr 38

2.4.1. ReLL-S extensions for Restler . 38

2.4.2. OAuth for Flickr . 40

2.5. Conclusions . 45

Acknowledgment . 47

3. FURTHER RESULTS . 48

3.1. Security Ontology . 48

3.2. Security Constraints Set format . 49

3.3. Publications . 50

4. CONCLUSIONS . 51

5. FUTURE WORK . 53

References . 55

vi

LIST OF FIGURES

2.1 Security ontology . 20

2.2 ReLL-S a security extension for Security aware service composition 23

2.3 OAuth interaction . 35

2.4 RESTler architectural components . 39

2.5 RESTler Sequence Diagram for crawling restricted resources 40

2.6 Flickr OAuth sequence diagram . 42

vii

ABSTRACT

Web services have evolved to become a widely used architectural style for both

enterprises and independent software development. REST, the architectural style that

underlies the Web, is one of the most influencing and followed architectural style in the

recent years and is recently provoking research efforts to exploit and extend their func-

tionality while maintaining the non functional properties it is preferred for (e.g. mas-

sive scalability, high performance, high evolvability). One of current research topics on

REST is automatic service composition. It requires enabling automatic resource discov-

ery and retrieval, which can be achieved trough a machine readable service description

such as ReLL. ReLL responsibility is to expose a service description that follows REST

architectural constraints. In this work we extend ReLL in order to enrich such descrip-

tions including QoS constraints, particularly security constraints.

Services usually restrict the access to their resources with different kind of security

standards and protocols that need to be described in a machine readable format. Existing

descriptions focus on traditional, and centralized Web services and result in cumbersome

formats. In this work we start with a semantic analysis of security concepts in order to

define a security ontology that serves as the basis for the definition of a minimal secu-

rity constraints format (ReLL-S) for machine-clients consumption that supports Confi-

dentiality, Integrity, Authentication and Authorization security goals. We illustrate our

approach through six security approaches widely used on the Web, including the OAuth

and OpenId protocols. ReLL-S has been implemented as an extension for RESTler (a

ReLL based machine-client) and a full example of Flickr ad-hoc OAuth has been used

as a proof of concept, without requiring extra integration effort. This work represents a

step forward towards automatic RESTful service composition.

Keywords: Service composition, security, REST, choreographies

viii

RESUMEN

Los servicios web han evolucionado hasta transformarse en un estilo arquitectónico

ampliamente usado tanto en software corporativo como independiente. REST, es el estilo

arquitectónico que subyace a la Web, es uno de los estilos más influyentes y seguido

en los último años, ocasionando investigación que explota y extiende su funcionalidad,

manteniendo sus propiedades no funcionales (ej. escalabilidad masiva, alto desempeño,

alta evolución). Un tema de investigación actual en REST es la composición automática

de servicios, que requiere el descubrimiento y acceso automático a recursos, lo que se

puede lograr con descripciones de servicios legibles por máquinas, tales como ReLL,

que expone una descripción de servicio que sigue las restricciones arquitectónicas de

REST. En este trabajo se extiende ReLL para enriquecer tales descripciones incluyendo

restricciones de calidad de servicio (QoS), particularmente en seguridad.

Los servicios restringen el acceso a recursos mediante estándares y protocolos de-

scritos en un lenguaje legible por máquinas. Las descripciones existentes se enfocan

en servicios Web tradicionales, centralizados, y son altamente complejas y engorrosas.

En esta investigación se parte con un análisis semántico de conceptos de seguridad (on-

tologı́a) como base de un formato de restricciones de seguridad minimalista (ReLL-S),

que guı́a el consumo de servicios por parte de clientes de máquina, proveyendo las metas

de seguridad de Confidencialidad, Integridad, Autenticación, y Autorización. Se ilustra

el enfoque mediante seis estrategias de seguridad ampliamente usadas en la Web. ReLL-

S ha sido implementado como una extensión de RESTler (un cliente de máquina basado

en ReLL). Un ejemplo completo del protocolo OAuth adaptado por Flickr ha sido usado

como prueba de concepto, sin requerir ningún esfuerzo extra de integración. Esta inves-

tigación representa un avance hacia la composición automática de servicios RESTful.

Palabras Claves: Composición de servicios, seguridad, REST, coreografias.

ix

1. INTRODUCTION

1.1. Problem context

A Web service implements and exposes specific functionality (e.g. search capabili-

ties, rendering videos, allowing to buy a product, etc.) on the Web, that assist a user in

the accomplishment of certain tasks and needs.

Traditional Web services, based on WSDL/SOAP protocol, evolved within the cor-

porative world where specific, structured and complex standards were developed. Large

companies, with the support of standards bodies such as the W3C (World Wide Web

Consortium) and OASIS (Organization for the Advancement of Structured Information

Standards), have gathered shared efforts to design artifacts defining the behavior and

interaction between Web services like WS-Security, WS-Policy and the entire WS-*

standards suite.

On the other hand, REST (Representational State Transfer) (Fielding, 2000) the un-

derlying architectural style of the Web has attracted attention due to its non-functional

properties such as massive scalability, high performance and high evolvability of the

components. Naturally, REST based services have gained attention as a technology that

may overcome traditional Web service’s complexity and limited scalability, performance

and evolvability. REST based services started to be widely used by independent de-

velopers and emerging companies, without a regulation similar to the one existing for

traditional Web services. Although they have proved organically, under highly demand-

ing platforms (e.g. Twitter API, Amazon services API, etc.) the benefits of its design

choices. The lack of complex standards to describe REST based services facilitate them

to thrive fast, becoming the most popular services style as reported by Programmable

Web, and major players in the industry.

Regardless a service is REST based or traditional, it can be used with other services

to fulfil a need otherwise not possible. Combining services data and functionalities can

1

provide new solutions those services could not provide independently. The process of

combining services is know as service composition and is discussed in the next section.

1.1.1. Service composition

Is not rare that for most of the common needs of a client, more than one service is

required. Web service composition is the process of combining services functionality

into a new composed service. Service composition has flourished mainly in enterprise

business processes, where reusability of existing functionality and reliability were key

elements that drove such interest. Based on traditional Web service description stan-

dards, such as WSDL, complimentary standards addressing service composition, such

as BPEL4WS (BPEL for short), were developed.

BPEL is an executable language that enables the execution of automated flows im-

plementing business logic processes described through control elements (e.g. condi-

tional, loops, etc) and data flow (i.e. value passing and transformations). BPEL is widely

known and represents a centralized, stateful approach that differs from the decentralized,

distributed, stateless approach existing in REST.

So called RESTful services are mainly focused on providing access to Web re-

sources,we could say that they are still in a early stage of development, and the efforts

have been focused on enabling first a way to have machine clients discovering and con-

suming services, whereas, complex tasks that are common in the traditional Web services

field (e.g. service composition) are not yet addressed, and it is not clear due to REST

nature (i.e. decentralized, stateless, hypermedia-driven, etc) whether such approaches

can be straightforwardly applied.

A major difference between traditional Web services and RESTful services is the

lack of a standard service description. This issue raises big concerns among the REST

community since it leads to a loss of independence between client and servers if such de-

scription becomes a tight contract. Automatic composition, or even automatic discovery

2

and consumption of RESTful services from machine-client seems unfeasible without the

existence of such service description.

1.1.2. RESTful Service Composition

According to Alonso et al. (2003) service composition includes six dimensions:

component model, a data access model, a service selection model, an orchestration

model, transactions, exception handling. The component model defines explicitly the

assumptions about the components being part of the composition, the fewer the assump-

tions the more flexible but also the more heterogeneous components are allowed. The

data access model defines how data is specified and exchanged between components

(Dustdar & Schreiner, 2005). The service selection model determines how a service is

selected as a component for the composition either in a static (at design-time) or dy-

namic (at run-time) way. The orchestration model defines the mechanisms to determine

the order, and conditions, of service components invocation, when invocation control

is centralized the style is properly called orchestration, but when such responsibility

is delegated to each component in a distributed fashion it is called choreography and

the overall activity is performed as peer-to-peer interaction. Transactions defines which

transactional semantics can be associated to the composition and how they are guaran-

teed. Exception handling defines how to handle exceptional states during the execution

of the composite service without failing altogether.

1.1.2.1. RESTful Services Composition Dimensions

Resources or collections of resources can be considered as the components in a

RESTful services scenario (Pautasso, 2009a), (Pautasso., 2009). Unlike WSDL-based

services, REST resources have standardized, few and very well known assumptions at

the application level (i.e. the Web) instead of the domain level. For instance, resources

must be identified with a URI, and must be manipulated through links and controls (e.g.

an HTML form that can issue a POST message) embedded in resource’s representations

(e.g. HTML page), which allow service consumers to change resource’s state (hyperme-

dia constraint).

3

The data access model is fundamental in REST, but unlike WSDL-based services,

representations standardized data models do not refer to domain specific information.

In the REST case standardization efforts focus on generic models, or media types (e.g.

text/html, etc), that can be interpreted by generic clients (e.g. Web browsers). State

information is interchanged between clients and servers following the rules of a network

protocol (e.g. HTTP). Messages exchanged must include all the required information so

that the server can process the request (stateless principle). Application state (i.e. the

collection of state information exchanged during client-server interaction) is stored on

the client-side.

Regarding service component selection, the hypermedia constraint (Hypermedia As

The Engine Of Application State) indicates that since servers embed controls and related

resource URIs into resource representations, such URIs allow servers to explicitly steer

clients across a path of resources and state transitions. Given that, clients must inspect

representations for such hints (dynamic late binding (Pautasso, 2009b)) in order to dis-

cover service component URIs. In addition, it is possible to generate a URI from the

information conveyed in the representation and ad-hoc rules, or even to choose a partic-

ular URI among a predefined set previously registered. Dynamic late binding, however,

decouples clients from servers and allows servers to evolve independently (i.e. change

the host name or the URI structure at run-time) without breaking the clients, provided

the client can retrieve the URI from the representation. This condition can be hard or im-

possible to do for some media types, or for representations whose structure has changed

(i.e. the links are misplaced). This is not a problem if the URI discovery is performed by

humans (e.g. browsing the representation and click on the links), but for machine-clients

it poses a huge challenge since they must make sense of the representations and current

media-types (e.g. HTML, XML).

There have been efforts to implement transactions in REST, for instance, RETRO

(Marinos et al., 2009) supports transactions through locking mechanisms associated to

GET and PUT operations. Exception handling is implemented in a standardized way

4

though HTTP codes that define a policy to propagate or mask errors (Pautasso, 2009b).

The REST orchestration model is discussed further in the following subsections.

1.1.2.2. Service orchestrations

The state of an orchestration is controlled locally (Mendling & Hafner, 2008) by a

coordinator through actions including data transformations, and component invocation.

Communication actions can be unavailable to external parties. Coordinator activities

can be implemented as executable processes specified in particular languages such as

the Web Services Business Process Execution Language (WS-BPEL) and executed by

an orchestration engine.

Because of the hypermedia constraint, REST came up as a navigational style that

naturally supports a workflow style of interaction between components. Interaction is

decentralized and may represent long-running processes, components are loosely cou-

pled and can mutate at any time. This characteristic is very important since it allows the

independent evolution of clients and servers which have been a fundamental property for

the evolution of the Web, it also poses a challenge to service composition since compo-

nents (resources) may change unexpectedly. To cope with this uncertainty clients must

have few assumptions about resources and must delay the binding with actual resources

(Pautasso, 2009a).

Research related to REST composition has focused on orchestration, being JOpera

(Pautasso, 2009a) the most mature framework. In this case, control and data flow are vi-

sually modeled and there is an engine that executes the composed resource. The control

flow centralizes the communication with components and such communication is imple-

mented by two components: tasks that are dynamically bound to adapters which perform

the communication themselves. Adapters associate tasks with local UNIX programs, re-

mote SSH commands, remote WSDL services invocation, and REST invocation over

HTTP. In addition, “glue” adapters perform local computations (e.g. XPath queries,

XSLT transformations, Java snippets, and local Java methods). Tasks and adapters

5

have input and output parameters, for instance, HTTP adapters support four parame-

ters: Method, URI, Body and request headers (headin). Adapter invocation order

is regulated by control tasks that define conditional synchronization points, conditional

loops, and forks. The composition is written as a BPEL extension for REST (Pautasso.,

2009).

In Alarcón et al. (2010), control and data flow is modeled and implemented using

a Petri Net whereas interaction and communication with the resources themselves (dy-

namic late binding) is mediated by ReLL descriptions (Alarcón & Wilde, 2010b). ReLL

provides a declarative meta-model for RESTful services including mechanisms for URI

generation, extraction, parsing, and dynamic late binding, so that a machine client can

traverse the graph of resources that underlies a RESTful service. The meta-model intro-

duces also an arbitrary set of types for resources and links at the domain level so that

operations such as obtaining a semantic equivalent for the service while traversing its

resources is also possible (Alarcón & Wilde, 2010a)

1.1.2.3. Service choreographies

Choreographies refer to the messages exchanged between parties that may belong to

different organizations and can be described from a global and local perspective, where

the former specifies the message exchanges from an overall point of view and the lat-

ter defines it from the perspective of one party. A choreography also captures the de-

pendencies between the interactions, including causal and/or control-flow dependencies

(preconditions and order of interactions), exclusion dependencies (a given interaction

excludes or replaces another one) data-flow dependencies, interaction correlation, time

constraints, transactional dependencies, security constraints, etc. (Barros et al., 2005).

The Web Services Choreography Description Language (WS-CDL) is a W3C candi-

date recommendation that describes how peer-to-peer participants collaborate regardless

of the supporting platform or programming model. Participants are referenced through a

WSDL-based service description, which is not executable, it just defines collaborations

between participants described in terms of types of roles, relationships, and channels.

6

While WS-CDL provides a definition of the information formats being exchanged by all

the participants, BPEL provides the information formats exchanged from the orchestra-

tor point of view. WS-CDL defines reactive rules, used by each participant to compute

the state of the choreography and determine which message exchange will or can hap-

pen next. BPEL specifies active rules that are executed to determine what to do once the

rule is computed. Stakeholders in a choreography need a global picture of the service

interaction, but none of them sees all the messages being exchanged even though such

interaction has an impact on related parties (Decker, 2006).

In Muehlen et al. (2005), choreography standards evolution corresponding to RPC

SOAP-based and REST-based services, as well as some advantages and disadvantages,

is presented. The paper proposes that business processes implemented as choreographies

can be represented also as single resources, separating the model in two levels; the higher

level corresponds to the choreography or process factory and the lower level corresponds

to the resources themselves or process instances. It is not clear though whether the

higher level resource’s logic implements only an orchestration or is a partial view of

the choreography and, other that process state visibility, does not address decentralized

choreographies.

In addition, the synchronous messaging nature of the HTTP protocol causes a client

to wait for a server response, which may be delayed or even lost if the invoked services

invoke as well additional third party services either in a choreography or an orchestra-

tion paradigm. Asynchronous interaction may alleviate this problem by allowing the

server to notify events to clients when the response is available, which is particularly

useful when implementing complex business processes, however, this task is far from

trivial. For instance, in Bellido et al. (2011) the OAuth protocol is analyzed as a Web

choreography case. They found that one of the main issues relates to the loss of context

during the interaction. That is, REST requires that all the information that is required by

a server to process a message is sent in the message itself instead of being kept on the

server-side (stateless). The problem is that clients initiate the interaction, but servers can

also redirect clients to different services where a conversation between the client and the

7

new service occurs out of the interaction band between the client and the former service.

Hence clients are forced to provide a callback URL in order to receive an asynchronous

update from the server and later regain control of the interaction, and additional param-

eters that serve as state information that is passed among services offered by diverse

servers, must be provided.

In a REST implementation of a choreography (e.g. the OAuth protocol), all the

required information for servers to process a request and provide a response must be

included in the request message, and also, responses must include all the controls and

links required to steer clients towards the next interaction steps. Current implementations

of the OAuth protocol do not provide such guidance and forces developers to hardcode

URLs and interaction steps into the clients. Furthermore, the lack of a machine-readable

service description force developers to hardcode their understanding of the service’s Web

API (usually documented in natural language), that is, content and format of parameters

and payload, as well as certain assumptions, such as invocation order, or information

transformation. These characteristics are particularly limiting for supporting automatic

service composition, either under the choreography or orchestration paradigms, and even

worse if composition criteria is enriched with additional concerns such as quality of

service, also known as QoS.

1.1.3. Refining service composition with QoS

In Beek et al. (2007) a review of various approaches for automatic dynamic (us-

ing OWL-S for semantic annotations) and static (using BPEL) Web service composi-

tion are presented. Composition itself is implemented using various techniques such as

automatas, Petri nets, and process algebras, without considering non-functional proper-

ties and focusing on orchestration instead of choreographies. Non-functional properties,

commonly referred to as quality of service (QoS), are used to refine the suitability of a

candidate service as a component. They include domain-independent categories such as

performance, dependability, security, transactions integrity, network and infrastructure,

costs, etc.

8

In Kritikos & Plexousakis (2009), a framework matches users’ QoS requirements

with the appropriate services that are described at a functional (WSDL) and QoS (OWL-

Q) levels. OWL-Q is an ontology that models non-functional properties at a high level of

abstraction through concepts such as service, QoS attribute, measurement, metric, scale,

time, unit, etc. QoS attributes are narrowed down to specific concepts, for instance, re-

sponse time is a performance attribute measured in time units (e.g. seconds); flexiblity is

a dependability attribute measured as inflexible, flexible, or very-flexible values, whereas

security attributes are mostly defined as boolean values that indicate the presence of some

security vulnerability. Such measures are normalized by assigning arbitrary numeric val-

ues in order to define a QoS vector (e.g. flexibility could be 0, 1 or 2). Matchmaking is

performed using a constraint programming approach, that is, global constraint sets (e.g.

range values) are defined in addition to the QoS attributes and values associated to Web

services. A user request is evaluated against such constraint set, so that a solution space

(i.e. a set of Web services) that satisfies the constraints is found.

In WSDL/SOAP based services, non-functional properties are represented by a set

of standards collectively known as WS-*. WS-Policy Attachment makes possible to an-

notate WSDL descriptions with additional non-functional information so that the service

interface can explicitly declare its requirements to be consumed. WSDL descriptions can

be also extended to include Semantic annotations (SAWSDL), by means of URIs that re-

late various aspects of the description (e.g. data types, operations, etc.) to a semantic

model (e.g. an ontology) that provides additional information, at the semantic level.

Both, semantic and non-functional annotations enrich the service interface so that tasks

such as automatic discovery and service composition can be facilitated. In Medjahed

& Atif (2007) WS-Policy standard is extended in order to include semantic capabilities,

modeled in a separated ontology, so that composite services that consider QoS proper-

ties can be automatically generated from high-level user specifications. Non-functional

properties are treated in a very generic way, for instance, security is modeled as a simple

boolean value indicating whether certain security support is provided (e.g. the service

supports an specific encryption algorithm), and matchmaking is implemented through

9

specific rules. In the remainder of this work we will focus on security as a complex

example of QoS constraints for REST services composition.

1.1.3.1. Security aware Web service composition

Determining whether a service offers a more secure interaction than others requires

more than just defining a scalar metric as could happen with other QoS features. Security

is basically defined in three dimensions, confidentiality, integrity and identity. When two

services exchange messages where the content is secured in such a way that a third actor

intercepting the message cannot read and understand the message, we can say that the

interaction guarantees confidentiality. If the received message was not altered by a third

party, the interaction guarantees message integrity. If the receiver can check that the

sender is really who the message says it is, the interaction guarantees identity.

The need for keeping interactions secure has grown in the case of composed re-

sources in the Web and so has the need of describing security capabilities of services.

On the one hand, for WSDL-based services, these needs pushed the creation of industry

standards that allowed web services to describe and advertise their constraint policies

regarding security (e.g. WS-Security, WS-Policy). Security constraints have been also

modeled as an OWL vocabulary whith SAML assertions (included in WSDL documents)

that specify services’ security capabilities (Carminati et al., 2007). SAML assertions are

the basis for security constraints modeled as boolean formulas while composed services

(i.e. BPEL choregraphies) are also annotated with specific WS-Agreement tags to include

creation constraints. Other approaches, such as Souza et al. (2009), consider the design,

implementation and enforcement of services security provision. Under this approach,

security requirements are modeled as BPMN annotations (business level), that are trans-

lated to BPEL composition annotations (implementation). An engine executes BPEL

compositions and translatess BPEL annotations into the corresponding WS-* specifica-

tion and module configuration in order to enforce the security mechanisms.

For the case of REST, research initiatives on service composition are fairly recent

and interest on non-functional attributes has focused mainly on security. For instance, in

10

Kübert et al. (2011) a RESTful service API is defined to support service level agreements

based on the WS-Agreement standard. Agreements (and templates) are REST resources

encoded in the application/xml media-type whose life cycle and state is handled

by means of HTTP verbs. Graf et. al present a server-side authorization framework

based on rules that limit access to the resources served to users according to HTTP

operations (Graf et al., 2011). In Field et al. (2011) a server-side obligation framework is

proposed; the framework allows designers to extend existent policies with rules that may

prevent users to access information and may trigger additional transaction (e.g. sending

a confirmation e-mail, register the information access attempt in a log), or may even

modify the content of a response or the communication protocol (e.g. require HTTPS).

These initiatives contribute to bring closer the traditional research and techniques of

WSDL-based services with the REST perspective, however, their approach focuses on

hiding on the server-side the logic related with non-functional attributes, in a way that

clients cannot make informed decisions regarding how to proceed, which contravenes

the REST principle of visibility. That is, by making relevant information visible to Web

components (e.g. through metadata, status codes, etc.), such as proxies or clients, it

is possible for them to adjust their behavior and achieve some desired properties (e.g.

scalability) or recover from a failed interaction (e.g. following a retry link in case of

a failed authentication), for the case of service composition this introduces constraints

that are not explicitly declared resulting in unstable composed resources. This principle

known also as serendipity (Vinoski, 2008) allows unanticipated interoperability without

requiring rigid and complex service interfaces (or contracts), but depends on human

intelligence to repair a failed interaction.

In addition, the complexity of WS-* standards has resulted in a cumbersome ap-

proach that can be dealt only with the appropriate set of middleware tools and infrastruc-

ture. There is no such standardization effort in the RESTful services domain, instead.

Web security approaches have evolved organically in order to deal with technological

and user requirements, resulting into lightweight and decentralized approaches.

11

1.2. Objectives

Taking ReLL, the general objective of this work is to continue the challenge of

enabling automatic composition for RESTful services by extending ReLL descriptions

with security constraints. Such extension must be optional, minimalistic, and modify

ReLL the least possible. Specific objectives are detailed below:

1.2.1. Modeling a security ontology

In order to be able to describe security constraints, it is necessary to know what kind

of security properties shall be considered. This requires a deep understanding of the con-

cepts involved in the services security scope and how they are related to each other. This

objective is to semantically describe the concepts involved in RESTful services security,

and produce an ontology written in OWL for future references.

1.2.2. Defining a security constraints description, ReLL-S

The concepts defined in the ontology must be used to design an extension to ReLL at

a conceptual level, that is, at a meta-model level, and to produce a data model that allows

to specify security constraints, either using a format similar to ReLL (XML) or an entire

new one. The chosen format must be machine readable and must include support for

current Web services security approaches that can be distilled from the previous semantic

analysis.

1.2.3. Implementation as an extension of RESTler, a machine-client

RESTler has to be extended in order to read and process the security constraints

description defined in the previous objective. RESTler should be able to understand the

constraints and execute the flows they define. Any new module or component necessary

to be able to consume restricted resources has to be implemented and integrated with the

already existing functionality.

12

1.3. Methodology

For accomplishing the objectives, the process is broken down into four different

stages. These are described in the next four subsections.

1.3.1. State of art revision

An exhaustive revision of what has been done in the field of service composition

will be performed. Special care has to be taken regarding the kind of services studied

as composition since most of them correspond to traditional Web services rather than

RESTful ones. Also, the revision has to look for QoS aware composition specially the

ones considering security, in order to establish the current state towards fully automatic

composition.

1.3.2. Services security understanding and analysis

Security is a very broad concept so it has to be scoped and understood in the right

context. Based on the work done for the WS-Security standard and taking into consid-

eration that REST have explored and opened new security concerns for Web services, a

semantic analysis has to be done for clarifying the concepts involved and how they are re-

lated to each other. WS-Security specification is taken as a base to start the work towards

a semantic representation of security concepts that must result into a conceptualization

in the shape of an ontology.

1.3.3. Bottom-up iterative definition and implementation process

A specific case study is used as the basis for an iterative an incremental definition

and implementation of both security constraint description format, and RESTler exten-

sions. The case has to be a RESTful services supporting constraints to restrict the access

to some or all of its resources. The implementation of the case’s constraints defines

the important constructs that need to be present on the constraints description while it

defines the necessary extensions on RESTler to interpret and execute the constraints re-

quirements.

13

1.3.4. Validation, refinement and generalization

ReLL-S and the RESTler extension must be validated according to widely used Web

security approaches which may introduce other important security constraints not pre-

sented in the case study. If limitations and conflicts arise, we will go back to the previous

stage until achieving a stable solution. The final implementation is used as the base for

a generalization of the work in order to make it applicable for as many relevant security

constraints as possible. To determine which are the most relevant security constraints

nowadays, a revision on services repositories has to be done looking for the most used

security protocols and standards. Finally the stable version must be validated as well

through an ad-hoc approach supported by a major player in the industry in order to eval-

uate the format flexibility and expressiveness.

14

1.4. Thesis structure

This document is divided in five chapters. The first one is an overview of all the work

accomplished during this research. The main results of the research work is presented

as an article in the second chapter which has been submitted to the World Wide Web-

Internet and Web Information Systems journal. The third chapter enumerates all the

assets elaborated during the research. Overall conclusions are presented in the fourth

chapter and finally some options for future research work are detailed on the fifth chapter.

15

2. TOWARDS AUTOMATIC QOS AWARE RESTFUL SERVICE COMPOSI-

TION: SECURITY DOMAIN

Abstract

Current research on QoS aware service composition focuses on a centralized, syn-

chronous and static setting where quality attributes are modeled through simple metrics.

In this research we explore RESTful services composition which is characterized by a

decentralized, stateless and hypermedia-driven environment. Our approach focuses on

the security domain and consists on a ReLL (a REST service description) extension

(ReLL-S) that can be processed by machine-clients in order to interact with secured ser-

vices. An ontology provides a model for the security domain, and our approach supports

simple and complex security approaches on the Web.

2.1. Introduction

A Web service exposes data and functionality that can be consumed by humans or

other services. Traditional Web services provide a WSDL document as a description of

its interface and conditions to be consumed. The process of combining the functional-

ity of two or more services (components) into a new service (composite) that provides

aggregated value is called service composition. The selection of suitable components

may be manual or automatic (i.e. determined by an algorithm), and the composite be-

havior (i.e. the services invocation order, as well as the required data transformations)

can be determined also in a manual or automatic fashion, either at design-time (static) or

run-time (dynamic) (Alonso et al., 2003).

To refine the suitability of a service as part of a composite, additional information

such as non functional properties, usually regarded as QoS (Quality of Service), can be

considered (Kritikos & Plexousakis, 2009). Most research efforts on QoS aware service

composition are focused on traditional Web services which are characterized by a cen-

tralized model (orchestration), whereas other paradigms such as RESTful services are

characterized by a decentralized, stateless and hypermedia-based approach (Fielding,

16

2000). REST (Representational State Transfer) is the architectural style that underlies

the Web and provides it with high scalability, performance, and evolvability properties

that are desirable also for Web services. RESTful services are gaining momentum, but it

is no clear if traditional research on QoS aware service composition can be straightfor-

wardly applied to RESTful services.

One of the quality attributes that has become highly relevant for Web services (and

service composition) is security. The security domain, in addition, becomes an inter-

esting case study because it can be hardly measured by a single unit since it addresses

various dimensions (e.g. confidentiality, authorization, etc.) whose provision can deter-

mined statically (e.g. must be encrypted) but also may require a dynamic support (e.g.

authentication protocols).

In this research we explore security aware service composition for RESTful services.

Section 2.2 presents our approach, called ReLL-S, as an extension of ReLL, which is

a RESTful service description (Alarcón & Wilde, 2010b), that allows machine-clients

(e.g. other Web services, intelligent user agents, etc.) to process and understand a set

of security constraints in order to interact with a secured service. Security domain is

modeled through an ontology (section 2.2.1) and we illustrate our proposal with a set of

widely used security approaches for the Web (e.g. HTTP Basic Authentication, OAuth)

(section 2.3). Section 2.4 presents implementation details and a case study based on

Flickr authentication mechanism. Finally section 2.5 presents our conclusions.

Our research serves as a basis to illustrate the differences between traditional QoS

aware service composition (mainly centralized and synchronous) and a decentralized,

choreography-based approach where parties engage in a complex conversation that re-

quires asynchronous interaction and where parties may change dynamically and require

complex handling of the data passed along services.

17

2.2. Security aware RESTful Service Composition: ReLL-S

Due to the complexity of the concepts, standards and techniques in the field of secu-

rity, various attempts have been made to provide conceptual frameworks for services se-

curity using for instance ontologies as a formalism (Blanco et al., 2008; Garcia & Toledo,

2008; Carminati et al., 2006). Most security ontologies explain security concepts either

at a very high level of abstraction (Maleshkova et al., 2010) requiring machine-clients

to encapsulate knowledge regarding the implementation of each security strategy (e.g.

encoding schemes, cryptographic techniques, server URIs, etc.), hiding information that

may be necessary to determine whether an API can be used or not (i.e. whether the

service is suitable for a composition), or considering specific security domains in detail

(Blanco et al., 2008), or providing a vocabulary of unrelated concepts where responsi-

bilities of future components are unclear (Carminati et al., 2006).

Based on the work of Garcia & Toledo (2008) and the WS-Security standard, we

provide an OWL-based ontology comprising around 30 main concepts, classified into

three core concepts: Security goals, Security tokens and Protocols (Fig-

ure 2.1). The ontology is later used to define a security constraints description called

ReLL-S.

2.2.1. Security Ontology

The proposed ontology is an extension to previous works. It aims to include seman-

tics and concepts introduced by modern RESTful services. As discussed before, we iden-

tify three security goals, Confidentiality,

Integrity, Authentication (identity) and we add Authorization, under-

stood as the mechanism that assigns specific access rights to resources. Encryption

mechanisms provide cryptographic transformations that make messages unreadable by

a third party (enabling Confidentiality). Integrity is usually enabled by dif-

ferent Signature algorithms which are Encryption mechanisms that produce a

18

digital signature from the message content in such a way that the recipient can verify

that the message has not been modified (Figure 2.1).

19

e
n
a
b
le
s
In
te
g
ri
ty u
s
e
s

in
v
o
lv
e
s
A
u
th
o
ri
z
a
ti
o
n
A
c
to
rs

a
u
th
o
ri
z
e
s

e
n
a
b
le
s
A
u
th
o
ri
z
a
ti
o
n

in
v
o
lv
e
s
A
u
th
o
ri
z
a
ti
o
n
A
c
to
rs

g
e
n
e
ra
te
s

e
n
a
b
le
s
C
o
n
fi
d
e
n
ti
a
lit
y

in
v
o
lv
e
s
A
u
th
e
n
ti
c
a
ti
o
n
A
c
to
rs

a
u
th
e
n
ti
c
a
te
s

c
o
n
s
u
m
e
s

o
w
n
s

s
e
rv
e
s

im
p
le
m
e
n
ts
S
ig
n
a
tu
re

im
p
le
m
e
n
ts
E
n
c
ry
p
ti
o
n

R
e
s
o
u
rc
e

A
u
th
o
ri
z
a
ti
o
n
P
ro
to
c
o
l

S
e
c
u
ri
ty
G
o
a
l

K
e
y
B
e
a
ri
n
g

C
o
n
s
u
m
e
r

In
te
g
ri
ty

B
in
a
ry
S
e
c
u
ri
ty
T
o
k
e
n

C
e
rt
ifi
c
a
te

P
ro
v
id
e
r

R
e
s
o
u
rc
e
S
e
rv
e
r

D
ig
e
s
t

S
H
A
2
5
6

S
ig
n
a
tu
re

A
u
th
e
n
ti
c
a
ti
o
n

S
e
c
u
ri
ty
T
o
k
e
n

E
n
c
ry
p
ti
o
n

D
a
ta
E
n
c
ry
p
ti
o
n

A
E
S
1
2
8

H
T
T
P
D
ig
e
s
tA
u
th

U
s
e
r

A
p
p
lic
a
ti
o
n

Id
e
n
ti
fi
e
r

C
lie
n
tI
d

C
re
d
e
n
ti
a
ls

S
y
m
e
tr
ic
K
e
y
W
ra
p

A
E
S
K
e
y
W
ra
p

T
ri
p
le
D
E
S

L
D
A
P

P
a
s
s
w
o
rd

K
e
y
E
n
c
ry
p
ti
o
n

T
ra
n
s
fo
rm

X
P
a
th

G
ra
n
tT
o
k
e
n

S
ig
n
a
tu
re
A
lg
o
ri
th
m
T
y
p
e

C
o
n
fi
d
e
n
ti
a
lit
y

T
ic
k
e
t

A
E
S
2
5
6

K
e
y
T
ra
n
s
p
o
rt

A
u
th
o
ri
z
a
ti
o
n

T
ri
p
le
D
E
S
K
e
y
W
ra
p

U
s
e
rn
a
m
e

W
R
A
P

C
a
n
o
n
ic
a
liz
a
ti
o
n

P
a
s
s
w
o
rd
D
ig
e
s
t

A
c
c
e
s
s
T
o
k
e
n

X
5
0
9
C
e
rt
ifi
c
a
te

R
S
A

E
n
c
ry
p
ti
o
n
M
e
c
h
a
n
is
m

O
A
u
th

K
e
rb
e
ro
s O
p
e
n
ID

M
D
5

P
a
s
s
w
o
rd
T
e
x
t

K
e
rb
e
ro
s
T
ic
k
e
t

H
T
T
P
B
a
s
ic
A
u
th

A
u
th
T
o
k
e
n

S
T
R
T
ra
n
s
fo
rm

S
H
A
1

A
u
th
e
n
ti
c
a
ti
o
n
P
ro
to
c
o
l

P
ro
to
c
o
l

e
n
a
b
le
s
A
u
th
e
n
ti
c
a
ti
o
n

Fi
gu

re
2.

1.
Se

cu
ri

ty
on

to
lo

gy

20

The identity of a service Consumer that could be a User or an Application is

proved through Authentication mechanisms, such as Authentication

Protocols, and the Consumer access rights over functionality and content is ver-

ified through Authorization Protocols. In order to present the appropriate

keys to these protocols Consumers play the role of a Key bearer of a Security

Tokens. The token type depends on the Consumer purpose and the token format.

The most common use is to represent Credentials for authentication such as an

Identifier and a Password. In other cases, tokens are used to grant access rights

during an authorization process (Grant Token). Binary tokens are specific and

complex formats that used in particular security strategies.

Tokens are interpreted and exchanged in the context of security Protocols, for

instance, in a SOAP services context, Kerberos and X.509 are examples of authen-

tication protocols. OAuth, on the other hand, is a popular authorization protocol widely

used in REST implementations. Unlike previously mentioned protocols, OAuth requires

the interaction of three parties, Providers, resource Consumers and Users. A

User that owns a resource grants access rights to a third party Application (a

Consumer proxy). In order to do so, the Application must provide the proper

credentials, such as a ClientId (API key), to a ResourceServer (origin service

provider) and engage in the authorization protocol that produces the proper grant

tokens (AuthToken).

Other protocols may behave differently, but the basics concepts remain, a resource

server must serve private resources to authenticated consumers that have the proper cre-

dentials and access rights. The Security Ontology serves as a basis to determine funda-

mentals concepts in the realm of security but are insufficient to fully support a secured

interaction between REST services since it is necessary to have a similar high level un-

derstanding of the service interface in order to allow a machine-client to interact in an

automatic fashion. The lack of relevant information (i.e. configuration, initialization,

assumptions, asynchronous operations, legal invocation, state or operation mode, or side

21

effects) of Web APIs for REST services increase the complexity of the client applica-

tion(Taylor et al., 2009). Furthermore, for the case of REST, interfaces are documented

in an ad-hoc way generally in natural language, so that, engineers derive the consumption

rules and barcode them in specific clients. In order to facilitate to machine-clients the

consumption of RESTful services, in Alarcón & Wilde (2010b), ReLL (Resource Link-

ing Language) is proposed. In the remaining of this section ReLL is briefly introduced,

as well as ReLL-S an extension supporting security constraints.

2.2.2. ReLL: Resource Linking Language

ReLL is a lightweight description for RESTful services that allows a generic machine-

client to retrieve REST resources and either traverse the hypermedia that underlies a

RESTful service or change the state of some of the resources. ReLL offers a simple way

to describe RESTful services considering resource identification, linking, and a uniform

interface (e.g. a network protocol such as HTTP is used to issue request messages and

receive response messages) through which linked resources can be accessed (see upper

box in Figure 2.2). ReLL design is based on the hypermedia constraint, which means

that service interactions that in non-REST approaches result in server state, are actually

implemented as clients following links to resources representing that state, resulting in

services that are resource- and link-centric.

ReLL metamodel (Figure 2.2) is the basis of an XML Schema (Third Workshop on

Linked Data on the Web, 2010) used to write ReLL XML descriptions. A resource may

have multiple representations, which are the serialization of the resource in some syntax

or media type. Representations can be associated to schemas for possible input data

validation. A representation can contain any number of links, which can be retrieved

through selectors expressed in a language (selector type) that suits the representation

media type. For instance, for XML-based representations an XPath expression allowing

selection within XML document trees, becomes a proper language. A selector refers to

a location (representation’s content or its metadata such as HTTP headers) where the

expression is applied. Links define an association between a resource’s representation

22

and a resource type (instead of a resource URI) as indicated by the target, in order to

avoid coupling with the resources’ naming scheme (since the actual resource URI can be

discovered only at run-time).

id
name
description
schema
mediaType

Representation

id
type
name
description
location
minOccurs
maxOccurs

Link

target 1

0..*

id
type
version
name
description
URIpattern

Resource

0..*

name
expression
type

Selector

0..*

type
Protocol

1..*

0..*

schema
meta

Response

method
schema
meta

Request

0..*

0..*

id
description

ConstraintSet

id
type
description

Constraint

0..*

 id
Authentication

 id
 URI
 location

Confidentiality

 id
Authorization id

 URI
 location

Integrity

<<extends>>

name

Interaction
Protocol

<<implements>>

preconditions
params

Invoke

0..*

id
description

Scope

0..*
1..*

0..*

1..*

1

1..* 1..*

1

ReLL

ReLL-S

params
selector
variable

SecurityToken

0..*

1..*

0..*

1..*

 base
location
description

Encryption
 signed
 location
 description

Signature

Figure 2.2. ReLL-S a security extension for Security aware service com-
position

A link has a link type which represents the semantics of the link, but their semantics

are outside of the scope of the description language. A link can also contain a protocol

description which specify the rules that govern the interaction with the linked resource.

This is important because links in RESTful services not only have application-specific

semantics, following the links also may require different ways of using the uniform inter-

face provided by a certain protocol. It is possible that a links must be actually computed

23

so that a link can be generated by executing an expression such as a concatenation, ex-

pressions depend on a language (e.g. the concatenation could be written in XPath).

2.2.3. Security Constraints Model: ReLL-S

ReLL descriptions focus on the services’ underlying hypermedia as well as the rules

to traverse it. QoS are not part of such responsibility and in order to foster modularity,

it must be kept as a separate extension component where relationships between basic

descriptions and QoS constraints remain as less intrusive as possible. In addition, the

risk of over engineering the description, and hence tightening up the contract between

servers and clients, must be also considered.

The lower box in figure 2.2 (ReLL-S) depicts our proposal. A Constraints

Set comprehends a set of Scopes which refer to a single or many Resources or

Constraints. Constraints can be reused by different scopes, and related constraints

sets can define a rich, specific interaction Protocol which may require Encryption

or Signature mechanisms, or Security Tokens. Protocols, however, must pro-

vide enough detail for machine-clients to resolve the interaction but must not include

specific implementation details (e.g how to produce a message) in order to foster flex-

ibility, reuse and avoid strong coupling with any implementation. Each element in the

extension module must be identified. Protocols may require to invoke specific resources

concerning the security domain under certain preconditions, in order to encapsulate se-

curity responsibilities within the security module.

Based on the security goals described in section 2.2.1, security constraints can be

one of confidentiality, integrity, authentication and authorization and are briefly detailed

here.

• Confidentiality: Is the simplest security constraint and refers to the mecha-

nisms that enable confidential communication such as encryption (e.g. MD5,

SHA1, SHA256). This constraint implicitly refers to the mechanism (stan-

dard or ad-hoc) to be used, but does not explicitly bind the description with a

24

message encryption implementation, it is the client responsibility to provide

such binding.

• Integrity: Similarly to confidentiality, it is used to provide message integrity

through digital signature mechanisms. Many services implement their own

signature mechanism that are applied to a signed string to generate a signature.

As with confidentiality, the specific steps about how to build the signed string

(e.g. sort the data, apply a digest algorithm, and concatenate the resulting

key to the original content) are not specified by the constraint, but an implicit

reference to the implementation must be provided. The constraint must also

provide the mechanisms to refer to information across a constraint set (i.e.

variables and request pattern) that may be required during a signature process.

• Authentication: Refers to the protocols used to prove clients identity. These

include HTTP Basic and Digest authentication, OpenID, username and pass-

word, application token, etc. All of them rely on tokens representing the client

identity. The constraint must describe the tokens needed during the protocol,

as well as the mechanisms required to identify and provide required informa-

tion (i.e. variables and request pattern).

• Authorization: Refers to the mechanisms used to grant access rights over re-

stricted access resources, such as the OAuth protocol. It defines the mecha-

nism name and the authorization grant (token) as well as the information to

be retrieved and passed along during the interaction (i.e. variables and re-

quest pattern). If authorization algorithms require a sequence of steps to be

followed, these steps must be represented as intermediary resources in order

to cope with the stateless REST architectural constraint. Hence, the protocol

must bind dynamically such resources by using hypermedia constraint (i.e.

the URLs must be provided by the servers in the representations). Current im-

plementations of the OAuth protocol sadly ignore this architectural constraint

and force clients to hardcode relevant URIs hampering server-side evolution

and fostering brittle clients.

25

These constraints are defined in an XML schema as simple as possible, adding just

the minimal elements to be readable by a client machine, but avoiding the complex for-

mat of WS-Security. When possible, we use the same nomenclature in order to clarify

the element intended use (e.g. security tokens, encryption and digital signature mecha-

nisms). Element identifiers are used to match constraints in the model. The following

section provides examples where our proposal is used to describe widely used security

strategies.

2.3. Supporting current security mechanisms on the Web

Compared to traditional services, security is addressed in a different way on the

Web. In Maleshkova et al. (2010) a review of 18% of the self declared REST Web APIs

corresponding to the ProgrammableWeb site 1 were analyzed regarding their support of

security mechanisms. They found diverse strategies ranging from API Keys (38%), to

the OAuth protocol (6%). In this section we present ReLL-S descriptions supporting

each of the security mechanisms identified in Maleshkova et al. survey.

2.3.1. API Keys.

This is an instance of a simple Authentication protocol where the consumer creden-

tials for retrieving a restricted resource are directly passed to the provider within the

request. In this case the credential is the API key, an instance of a clientId. Given

the key doesn’t need to be encrypted or signed, there is no confidentiality nor integrity

constraint involved. The key value is passed as a query parameter (named client id

in the example) and its value must be provided to the client at run-time through a local

variable (e.g. $client id).

1http://www.programmableweb.com

26

Listing 2.1. A simple authentication constraint specification (Api Key)

<constraint id="apiKeyAuth" type="Authentication">

<APIKey>

<query_param select="$client_id" name="client_id"/>

</APIKey>

</constraint>

2.3.2. Username and Password.

This is another instance of a simple Authentication protocol where the credentials

are directly sent from consumer to provider, but in this case both Identifier and

Password credentials are required. The username and the password do not need to be

encrypted or signed and the message content is specified similarly to the listing 2.1.

Listing 2.2. A simple authentication constraint specification (Username/-

Password)

<constraint id="userPwdAuth" type="Authentication">

<usernamePassword>

<query_param select="$username" name="username"/>

<query_param select="$password" name="password"/>

</usernamePassword>

</constraint>

2.3.3. HTTP Basic Authentication.

This is a more complex protocol for Authentication. HTTP Basic Authentication

(Franks et al., 1999) is a standard supported by most web browsers, it aims to provide

27

a little more security than sending authentication information in plain text. This pro-

tocol requires sharing the consumer credentials in an opaque string sent in the HTTP

request header, following a well known encryption mechanism, such as Base64encode,

and a simple signature algorithm where the signed string is a concatenation of username,

colon, and password. In this authentication protocol, the confidentiality goal is also sup-

ported, however, the confidentiality constraint has a different scope because it applies on

a specific piece of information and not to the entire signed string.

Listing 2.3. An authentication and confidentiality constraint specification

(HTTP Basic Auth)

<scope resource="type1">

<constraint id="httpBasicAuth" type="Authentication">

<var name="encoded" type="credentials"/>

<header_param name="Authorization" select="concat(’Basic

’,$encoded)" />

</constraint>

</scope>

<scope token="credentials">

<constraint id="httpBasicCon" type="Confidentiality">

<value-of select="BASIC_AUTH"/>

</constraint>

</scope>

<encryption id="BASIC_AUTH" name="wl:base64encode>

<location url="http://tools.ietf.org/html/rfc2617"/>

<description>Concat userid a semicolon and password to

generate base string. The base string has to encrypted

with base64encode.

28

</description>

<value-of select="concat($userid,’:’,$password)"/>

</encryption>

This flow starts with the authentication constraint that specifies how to build the re-

quired HTT header request using a credentials variable. Notice that it affects (scope) a

set of resources corresponding to a resource type as described in the ReLL description,

at a domain level. The variable used to generate the HTTP header in the request message

is affected by another scope corresponding to a security token that provides confiden-

tiality using a BASIC AUTH encryption mechanism. In order to foster modularity, the

encryption mechanism is defined as a separate element.

The encryption module implements a Base64 encoding whose specification can be

located at a specific URL; a description is also provided and the mechanism uses as base

string a concatenation of a userid and a password. The values of such variables

must be provided at run-time to the machine-client consuming the secured resource. The

resulting encoded value is passed to the credentials scope and then to the encoded

variable to form the HTTP request header.

2.3.4. HTTP Digest Authentication.

HTTP Basic Auth is not a very secure protocol for user authentication because the

encoded entity is transmitted as cleartext that can be easily decoded. The HTTP Digest

Web standard provides a stronger, and more complex support for confidentiality and

integrity. Username and password credentials need to be signed with a realm and a

nonce attributes (in the simplest case), provided by the secured server. The signature is

usually generated with the MD5 encryption mechanism.

This protocol is implemented in two phases, first, when a client attempts to retrieve

a resource protected with HTTP Digest, a (401 Unauthorized) message is sent

by the server including sensible information in the HTTP headers. This representation

can be interpreted by a machine-client through a ReLL description as shown in listing

29

2.4. A WWW-Authenticate response header includes the variables realm

and nonce. If the client does not have this information, it will not be able to build the

authentication parameters correctly for the second request. Since this information is part

of the client state, it is the RESTful client responsibility to save such information.

Listing 2.4. A ReLL description of an unauthorized HTTP Digest message

<service xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"

xsi:noNamespaceSchemaLocation="rell.xsd"

targetNamespace="http://example.org/some_service/"

xml:base="http://example.org/some_service/">

<name>Some Service</name>

<resources>

<resource id="sampleResource" type="anyResource">

<uri match="http://www.example.com/resources/.*"

type="regex"/>

<representation id="restricted-resource"

type="http://www.iana.org/assignments/media-types

/text/xml">

<name>Restricted Resource</name>

<selector name="realm" select="realm=(\w*)"

type="regex" location="header"/>

<selector name="nonce" select="nonce=(\w*)"

type="regex" location="header"/>

</representation>

</resource>

</resources>

</service>

30

After storing the nonce and realm values locally, the client is able to build the re-

quest message for the second interaction. Such message includes a set of variables to be

included as headers. The format and value for each of these variables are specified using

concatenation functions (a la XPath), where some values must be passed to the client at

run-time, that is, the userid, the nonce and realm variables previously obtained, the

URI of the protected resource ($REQUESTED URI), and the HTTP method ($METHOD)

to be used.

The user’s password must be provided within the scope of credentials supporting a

confidentiality constraint. This constraint describes how to build the credentials value

using encryption mechanisms defined within the constraints set document, which in this

case are the checksum algorithm and the digest algorithm. Unlike the case of HTTP

Basic Auth, confidentiality provision is more complex since it requires to concatenate

some values (stored in variables A1 and A2), that are later encrypted using the checksum

algorithm. A concatenation of the resulting values must be encrypted again using the

checksum algorithm.

Listing 2.5. An authentication and confidentiality constraint specification

(HTTP Digest Authentication)

<scope resource="type1">

<constraint id="digestAuth" type="Authentication">

<var name="user" select="concat(’username=’,$userid)"/>

<var name="_realm" select="concat(’realm=’,$realm)"/>

<var name="_nonce" select="concat(’nonce=’,$nonce)"/>

<var name="_uri" select="concat(’uri=’,$REQUESTED_URI)"/>

<var name="request-digest" type="credentials"/>

<var name="response"

select="concat(’response=’,$request-digest)"/>

31

<header_param name="Authorization" select="concat(’Digest’,

concat(($user, $_realm, $_nonce, $_uri, $response),’,

’))" />

</constraint>

</scope>

<scope token="credentials">

<constraint id="constraintConf" type="Confidentiality">

<var name="A1"

select="concat($userid,’:’,$realm,’:’,$password)"/>

<var name="A2" select="concat($METHOD,’:’,$REQUESTED_URI)"/>

<value-of select="digest(checksum($A1), concat($nonce, ’:’,

checksum($A2)))"/>

</constraint>

</scope>

<encryption name="checksum">

<param name="string1"/>

<value-of select="MD5($string1)"/>

</encryption>

<encryption name="digest">

<param name="string1"/>

<param name="string2"/>

<value-of select="checksum(concat($string1, ’:’, $string2))"/>

</encryption>

32

2.3.5. OpenID.

The OpenID protocol is significantly different from the others because it requires an

interaction with a third party that validates the identity proof. This party is the OpenID

provider. A consumer (user) can authenticate itself against a service by presenting a to-

ken generated by an identity provider where the consumer has been previously registered

and which is trusted by the service.

Listing 2.6. An authentication constraint specification (OpenID)

<scope resource="restrictedResources">

<constraint id="openIdAuth" type="Authentication">

<appToken>

<query_param name="userLoginToken"

select="userLoginToken|wl:OpenID"/>

</appToken>

</constraint>

</scope>

<protocol name="wl:OpenID">

<invoke url="http://www.identityprovider.com/open_id"

pre="not($userLoginToken)">

<query_param select="$callback" name="callback"/>

</invoke>

</protocol>

The interaction with the third party is defined as a protocol element specifying

the identity provider location that will be invoked if a precondition is satisfied. The

precondition evaluates the client state asking whether certain information is not available,

in this case, and if satisfied, a message to the identity provider will be issued including

probably some query parameters. Since OpenID is a third party protocol, interaction

33

between the user and the identity provider occurs out of the interaction band between

the user and the machine-client to guarantee the privacy of user sensitive information.

In order to regain control of the conversation, the machine-client must provide a way

to receive the validation information from the third party. This feature is accomplished

in this case, through a callback connector whose address could be accorded between

service and client at setup time or passed as a parameter to the provider under the callback

query param element, as shown in the example. The interaction implies that the client

will not have the required token until it is received through the callback, which is not

described by the constraints set and it can be implemented in anyway the client prefers.

Once the client has the token, it can be passed it as a query param to satisfy the

authentication constraint.

2.3.6. OAuth.

OAuth (Hammer-Lahav, 2010) is an Open Authorization protocol that allows a

third party application -a client application- to access resources provided by a service

-resource server- and owned by a user. The user has to authorize the third party ap-

plication to access the resources stored by the resource server, without exposing his or

her authentication credentials to the third party application. The authorization grant is

represented as a token.

OAuth defines four grant types: authorization code, implicit, resource owner pass-

word credentials, and client credentials; and provides an extension mechanism for defin-

ing additional grant types. The protocol flow is flexible and depends on the type of

authorization that is going to be granted. So in this flow up to four parties could be in-

volved: the resource owner, the resource server, the authorization server and the client.

The result of the protocol is an access token that represents the authorization granted by

the resource owner and that is sent later by the client to the resource server to access the

restricted resources.

34

What is interesting about this protocol is that involves more than two entities that

can communicate using a protocol that has being designed for client-server communica-

tion, as it is HTTP, in a stateless one-to-one conversation. Although, this characteristic

presents particular issues to deal with, which makes it really interesting to be described

in more detail.

Resource

Server
Client Auth

Server

(A)

GET http://[AuthServer]

Payload: Credentials, requestToken, callback

POST http://[AuthServer]]

200 Ok

Payload: access_token

(B)

GET http://[callback]/?authorization_code

Resource

Owner

grant access

Payload: Credentials, authorization_code

(F)

(G)

GET http://[ResourceServerUri]/[resource]

20X Ok

Payload: representation of resource

 302 Redirect [Location]

GET http://[Location]

(D)

(E)

(C)

Figure 2.3. OAuth interaction

Once the client has required the access grant, the authorization server starts a con-

versation with the resource owner that, from the client perspective, occurs completely

out of its control. This conversation has the goal of asking the user if he or she is giv-

ing authorization to access the resources, but it could be implemented many ways, the

authorization server could send an email to the user, an SMS or any other kind of conver-

sation. In most implementations the conversation occurs synchronously by redirecting

35

the user-agent from the client domain to the authorization server domain. So that, to re-

store the interaction between user and client, the authorization server must also redirect

the user-agent to the client. If the user grants access rights to the client, such redirection

message will contain an authorization grant. This conversation implements an asynchro-

nous conversation through a callback connector provided by the client which becomes

the target of the redirection.

Once the client has the authorization grant, it can use it to retrieve an access token

from the server. The client sends its credentials and the authorization grant, representing

the permissions granted by the user, to the server which, after verifying the permission,

generates a final token (access token, or oath token) that can be used in future calls to the

resource server to access to restricted user resources. It could have an expiration time

and some authorization servers provide the feature to refresh or renew the token.

Listing 2.7. An authorization constraint specification (OAuth)

<scope resource="restrictedResources">

<constraint id="oauthAuth" type="Authorization">

<accessToken>

<query_param name="auth_token"

select="$auth_token||wl:OAuth"/>

</accessToken>

</constraint>

</scope>

<protocol name="wl:OAuth">

<invoke url="http://www.authorizationserver.com/oauth"

pre="not($auth_code)">

<query_param select="$state" name="extra"/>

<query_param select="$callback" name="callback"/>

36

</invoke>

<invoke url="http://api.service.com/getToken"

pre="$auth_code">

<query_param select="$auth_code" name="auth_code"/>

<store selector="token" persist="auth_token"/>

</invoke>

</protocol>

In this case two calls must be done by the client to get authorization to the user’s

restricted resources. The first one could include the callback address and also a parameter

named state that must be sent back by the authorization server in the callback call

so the client can use it to keep the flow state. The callback call will include also the

authorization code which is used by the client to get the final authorization token during

a second call. The order of both calls is basically defined by their preconditions, in this

protocol it implies the client will invoke the first call initially because it doesn’t have the

auth code variable and then it will be able to preform the second call to finally resolve

the authorization constraint.

2.4. Implementation and Case Study: RESTler and Flickr

RESTler (Alarcón & Wilde, 2010b) is a machine-client that can consume services

and its resources following links in their representations. In order to accomplish this

task, it uses information about the available resources described in ReLL file. So far

RESTler has just been used to crawl all the resources available using a ReLL descrip-

tion but we want to constraint such feature by introducing security constraints that may

force RESTler to engage in security protocols in order to proceed with access to certain

resources.

2.4.1. ReLL-S extensions for Restler

RESTler is implemented in Java and was extended with various modules (Figure2.5).

37

Restler

Constraints
Set

ReLL

«use»

Engine

«use»

Constraints Reader

«component»

ReLL Reader

«component»

Callback Processor

«component»

HTTP Client

«component»

Constraints Resolver

«component»

State

Figure 2.4. RESTler architectural components

A constraints (ReLL-S) reader and parser has been added to the ReLL reader and

parser which was slightly modified. A constraints resolver component has been added

along with improvements to the HTTP client. As some of the security protocols that

RESTler needs to support involve asynchronous interactions, a callback connector has

been added as a generic endpoint to receive HTTP requests.

A detail of RESTler logics for interacting with secured resources can be seen in

Figure 2.5. Upon need, the RESTler engine fetches a RESTful service ReLL descrip-

tion and processes it. If running in crawler mode, the engine will try to retrieve all the

resources (i.e. in a loop) it can reach from a provided seed using the ReLL description

to derive some meaning regarding how to interact with such seed and the retrieved rep-

resentations. Currently, the engine performs a recursive execution in order to implement

an in-depth crawling. Resources URIs are retrieved dynamically by inspecting received

representations and the HTTP client is used to fetch the next resource representation.

38

HTTP

Client
Engine

ReLL

Reader

load_resources()

Constraints

Resolver

Constraints

Reader

load_constraints(constraints_set)

resolve_constraints(constraints)

request(GET,constraints_set_url)

resolved_request

get_representation(request)

ref resolve nested
constraints and

protocols (e.g. OAuth)

break resources.empty?

get_representation(request)

representation or error with contraints_set url

alt constraints_set_url.changed?

alt get representation failed?

loop

Figure 2.5. RESTler Sequence Diagram for crawling restricted resources

If a resource is protected, the representation will include metadata (an HTTP header)

indicating the causes. A (404 Unauthorized) code may indicate the cause of the

failure. Under a hypermedia driven approach, the message shall include all the informa-

tion required so that the user-agent can reach its goal. Such information shall include

39

the address of the security constraints set so that the user-agent can fetch (GET) the

description and proceed accordingly.

The obtained description is parsed by a reader and processed by the constraints

resolver that will execute the corresponding instructions. As a result state information

must be produced so it can be used by the user-agent to retry its initial goal, that is, to

fetch the protected resource. A complex example of one of such security constraints for

consuming protected resources provided by the Flickr service is illustrated below.

2.4.2. OAuth for Flickr

OAuth does not dictate how it must be implemented and has some room for cus-

tomization, so implementations can vary from a service to other. There are four different

types of authorization grant, there are different ways to require the user authorization and

authentication, the authorization server could be service independent from the resource

server or they could be integrated, etc. Due to this flexibility it is worth to analyze one

specific implementation of the protocol. Figure 2.6 depicts the steps followed by the

engine when resolving the constraint set description for Flickr.

The constraint resolver initiates by processing and following the instructions of a

constraint set description, as is the case of Listing 2.8. As indicated, the first constraint

to be resolved is an authorization one (flickrAuth), since the scope of the constraint

affects the resource that the engine is trying to retrieve (flickr:members).

Flickr implements its own application authentication API. It has to be called to ob-

tain an access token necessary for many of the service API methods that an external

application could want to invoke. So the security constraint over those methods is an

authorization constraint that specifies a protocol. That protocol is an implementation

of OAuth specifying two calls that must be invoked in order to get an access token

that allows to retrieve restricted resources from the service. The first one in this case is

http://www.flickr.com/

services/auth/ that receives the permissions that will be requested to the resource owner,

40

these could be read, write or delete. This call is an asynchronous one, which triggers a

special behavior detailed below.

EngineCallBack

Processor

Constraints

Resolver

HTTP

Client

resolveAuthorization()

resolveIntegrity()

request(auth_code_url)

callback(authCode,extra)

resolveAuthorization()
resolveAuthentication()

request(access_token_url)

restore(authCode,extra)
store(authCode)

access_token_representation
access_token

request(resolved_resource_url)

restricted_resource_representation

resolveAuthentication()

resolveIntegrity()

Figure 2.6. Flickr OAuth sequence diagram

The call has constraints itself that RESTler has to inspect too, in this case there are

two: authentication and integrity. Both of them require including elements to the request,

the former needs the application key, that must be previously obtained from the service in

design time, and the latter needs a digital signature built under the service specifications.

In order to sign the message RESTler must have a library to implement this custom

41

signature because it is not a standard mechanism. The Flickr signature is built calculating

the md5 hash (an implicit confidentiality constraint) over the string composed by the

application secret token - that is also registered in design time - concatenated with request

parameter values in alphabetic order according to its keys.

Once the authentication and integrity constraints are resolved, finally the first call

needed for authorization is invoked including the resource currently being retrieved as

the extra parameter. Given this is an asynchronous call it does not return the expected

authorization code in the response of the request which makes the current resource re-

trieval flow to be terminated because it doesn’t have the preconditions for the next call,

then RESTler could continue with another resource or just finish its execution depending

on the mode it is running on.

Listing 2.8. An authorization constraint specification (OAuth) for Flickr

<constraintSet xmlns:wl="http://www.example.com/wl-security/">

<scope resource="flickr:members">

<constraint id="flickrAuth" type="Authorization">

<accessToken>

<query_param name="auth_token"

select="$auth_token||wl:OAuth"/>

</accessToken>

</constraint>

<constraint id="appAuth" type="Authentication">

<appToken>

<query_param select="$api_key" name="api_key"/>

</appToken>

</constraint>

<constraint id="md5Sign" type="Integrity">

<query_param select="FLICKR_MD5" name="api_sig"/>

42

</constraint>

<constraint id="md5Conf" type="Confidentiality">

<mechanism name="wl:MD5"/>

</constraint>

</scope>

<scope resource="securityToken">

<constraint ref="appAuthenticationConstraint"/>

<constraint ref="signatureConstraint"/>

<constraint ref="confidentialityConstraint"/>

</scope>

<protocol name="wl:OAuth">

<invoke

url="http://www.flickr.com/services/auth/?perms=read"

pre="not($auth_code)">

<query_param select="$state" name="extra"/>

<query_param select="$callback" name="callback"/>

</invoke>

<invoke url="http://api.flickr.com/services/rest/?method=

flickr.auth.getToken" pre="$auth_code">

<query_param select="$auth_code" name="auth_code"/>

<store selector="token" persist="auth_token"/>

</invoke>

</protocol>

<digitalSignature name="FLICKR_MD5">

<signed input="api_secret"/>

43

<location

url="http://www.flickr.com/services/api/auth.spec.html"/>

<description>Sort parameters value alphabetically based on

parameter name and concat this to your SECRET

</description>

</digitalSignature>

</constraintSet>

Some time later, depending on the outbound process where the user eventually

grants the access, the resource server requests an endpoint in the callback connector

of RESTler, that is registered with the resource server during design time. The callback

request contains the authorization code and the extra parameter that RESTler included

in the asynchronous call, both as URL parameters. At this time RESTler stores the auth

code in its local variables and uses the extra parameter as the seed to restore the resource

retrieval. With this, RESTler retries to resolve the authorization constraints but this time

it will be able to invoke the second step in the authorization protocol that is getting the

access token. That call also has constraints: integrity and authentication, so the same

process of the previous step has to be done including the authorization code as a param-

eter and finally RESTler gets the access token, it stores it in a cookie collection to use it

the next time without following the whole protocol and send it along other parameters to

retrieve the restricted resource.

2.5. Conclusions

Considering the complexity of nowadays technology, composition of Web services

in the industry domain is hardly feasible if we just consider functional properties. Even

though servers may steer clients in their interaction, it may be the case of a machine-

client traversing unexpected (from a server perspective) paths, and executing unexpected

controls in order to implement a new business process. Such task will fall under the

44

choreography category and even though considering the understanding of RESTful ser-

vice interfaces (as supported by ReLL) or even its related semantics (as proposed by

the Linked Data initiative), fundamental consideration such as QoS must be taken into

account for the case of RESTful service composition.

QoS attributes, particularly security are playing a major role in the current Web

due to the massive scale, performance, availability and evolvability requirements that

pervade modern Web applications. In the absence of a security description, a machine

client is simply not able to retrieve restricted resources, the understanding of the service

interface (protocol, method, parameters) and the knowledge of the resource URL is not

enough.

Unlike WSDL, SOAP-based service composition, REST architectural constraints

requires loosely coupling of the components in order to foster independent evolvability

(i.e. a service provider can change its interface unexpectedly), hence service descrip-

tions including functional and non-functional properties should not tighten such cou-

pling. WSDL descriptions including QoS requirements become a strong contract that

increases the coupling between clients and servers. ReLL provides the means for a client

to interpret a RESTful service interface, but many interpretation may hold and ReLL do

not guarantee the consistency or completeness of its description with the corresponding

service, it may inform however, where and why such description does not hold anymore.

Considering this scenario and the dynamic late binding requirement, RESTful ser-

vice composition must take into account the dynamic nature of RESTful services, hence

automatic approaches must also include automatic and dynamic recovery mechanisms.

For a machine-client to determine whether it may or not interact with a service under

security constraints, it may consider whether it supports the required encryption mech-

anisms and signature algorithms, and also whether it can be engaged into a series of in-

teractions (e.g. simple request-response or a protocol) in order to satisfy the constraint.

Following that path may also have an impact on availability, performance of the machine-

client (i.e. latency induced by the unexpected interaction), unexpected complexity, and

45

risks since it may interact (e.g. due to redirections) with unexpected services. Security

models then cannot be reduced to boolean values or integers since it requires to deter-

mine to which extent the machine-client is willing to distract its goal in order to satisfy a

constraint. Our approach serves as the basis for the machine-client to determine the space

of new services (URLs) to visit, the number of interactions (steps, or calls) to expect, and

the complexity of the required algorithms beforehand, so based on a multidimensional

metric, derived from the ReLL-S metamodel, it may asses the suitability of a service

component. Since the constraint sets documents are discovered on run time, changes on

the security approach must be reflected on the the security constraint document.

ReLL-S sits in between a flexible service documentation, which for RESTful ser-

vices usually ends up in an ad-hoc HTML document of the service’s API specification,

and a highly structured format that describes services, like WS-Security, and becomes

such a strong contract that can serve as stub. While the machine client needs to access

restricted resources, the description must also leave to the client the responsibility of

implementing specific mechanisms for encryption, canonicalization and others security

task, that can be identified but not described to the detail by ReLL-S. Finally, RESTful

service interaction greatly benefits from hypermedia, since it allows servers to change

its interfaces dynamically and since the proper URLs (and hopefully the links to the up-

dated ReLL and ReLL-S descriptions) are embedded in the response messages (e.g. a

404 Unauthorized), clients may recover dynamically while allowing the required decou-

pling. A fundamental task then, for RESTful services automatic composition focuses

on generating the proper messages which requires a series of state transformation on the

client-side as well as lightweight, loosely coupled, machine readable service interfaces.

Acknowledgment

Research supported by the Center for Research on Educational Policy and Practice

(CONICYT), Grant 11080143.

46

3. FURTHER RESULTS

3.1. Security Ontology

The WS-Security standard has defined a semantic base of security concepts. Using

Protege software, an open source ontology editor and knowledge-base framework, a

security ontology has been built to describe how this different concepts are related to

each other. The ontology has been written in OWL language and it has turned to be an

almost hierarchical model with three root concepts: Protocol, Security Goal and Security

Token and a Figure depicting its fundamental concepts can be seen in Figure 2.2.

Traditionally, security has three different goals: Integrity, Confidentiality and Iden-

tity. After analyzing the current service security requirements, the last goal has been

split into two different and more specific ones: Authentication and Authorization. This

is intended to meet the needs that RESTful services have raised around allowing third

party services to access resources owned by a service, a process that requires resource

owners (i.e. users) authorization in a secured fashion.

The goals can be reached using standard mechanisms and protocols specifically de-

fined for it. The latter ones are actually protocols defining the interaction between differ-

ent clients and services in a composition. For this reason, they have been differentiated

in the ontology. Protocols as well as some mechanisms, use different kind of tokens

during the communication between the actors involved in their execution, which leads to

the third root concept: Security Tokens.

The security ontology aims at identifying important concepts used so far in tradi-

tional services with those introduced by new technologies. Also it has been a necessary

step towards the definition of security constraints and a helpful exercise in order to define

the format to be used for describing them.

47

3.2. Security Constraints Set format

This is the main result of this work and it has concentrated most of the efforts.

Using XML, the constraints set document has been defined to support the description of

different kind of security constraints a service can have. The constraints types are based

on the different security goals defined on the ontology: Authorization, Authentication,

Integrity and Confidentiality. As resources of a certain type can have multiple constraints

applying on them, scopes that associate all the constraints applied on a resource type have

been defined as the highest level element in the constraints set. On the other hand, the

same constraint could be applied on multiple resource types, so in order to support that

feature, scopes can include references to previously defined constraints.

Just like the ontology defines it, goals can be reached using different protocols and

mechanisms, so in the constraints set both of these are independent nodes that can be

referred by constraints. This establishes how and when the protocols and mechanisms

have to be executed and what constraints they are solving. Due to the fact they have

been defined independently of the constraints, a protocol can be used by more than one

constraint.

This format has proved to be able to fully describe services using the following

security mechanisms: API Tokens, username and password, HTTP Basic, and HTTP

Digest Auth, OpenID and OAuth. The last two have presented the most different efforts

as they require to implement interaction protocols which have been successfully modeled

and described.

The constraints set format has been implemented as a RESTler extension module,

and validated to consume a restricted resource from the Flickr service. In order to do this,

the machine-client (RESTler) has been extended to understand and execute the format

and also to support the interaction protocol flows. This updated version of RESTler is a

secondary result that can be used for further work on service composition.

48

3.3. Publications

As for publications, a workshop paper (Bellido et al., 2011) exploring choreogra-

phies for REST and extending the OAuth messages with semantics using the Web Link-

ing protocol has been published. This paper has served as the basis for understanding

relevant characteristics of REST choreographies, namely, statelessness and asynchro-

nous communication and its consequences, such as the loss of context when out-of-band

interaction occurs. The content of Chapter 2 is part of a paper under submission to the

World Wide Web-Internet and Web Information Systems, Springer and reports the core

of this research work.

49

4. CONCLUSIONS

This work started with a semantic analysis of security concepts organized in an on-

tology representing them as well as their relationships. This task raised the differences

of security between traditional and RESTful services, as the latter require different inter-

action protocols that behave under the choreography, decentralized paradigm instead of

a centralized orchestration as is usual in traditional Web services. Then, my efforts were

focused on designing and implementing a security constraints description format fol-

lowing an iterative and incremental process which included continuous validation using

RESTler as the machine-client. As the constraints set were something new for RESTler,

it had to be extended and keep pace with the changes the constraints set document were

experiencing as it evolved leading to a stable functional implementation.

It is expected that the results of this work contribute to shed light to QoS handling

and become a step towards automatic RESTful service composition, considering security

constraints. In the case study presented, the extension implemented for RESTler made

possible to define a constraints set for Flickr service authentication, written as a ReLL-

S document, and execute a machine-client interaction to consume restricted resources

without additional intervention. This is interesting since Flickr OAuth implements more

complex and ad-hoc data handling than a simple, standards-base OAuth. ReLL-S has

proved to be flexible enough to support the description of other widely used security

approaches.

Even though it requires an extra effort compared to generate a human readable

HTML version of the services, that is a natural language description, as it is the cur-

rent practice, describing security capabilities of RESTful services in a machine readable

way has proved to be useful. It makes possible to have machine clients crawling and

consuming resources even when these are restricted by security mechanisms. It also al-

lows the service and the client to evolve independently as long as the security constraints

set keeps updated. If that is not the case, it serves as a medium to identify such points of

change and may facilitate developers to fix the clients easier rather than reading a new

50

specification written in natural language to find such changes. Finally, the constraints set

can be served as another resource of the service so this can be updated, cached, and scale

for its consumption. Clients able to consuming this kind of resources (*.rells) may adapt

themselves to changes on the service interface as well as to better manage the caching of

sensitive information with its own replacement rules. Standards such as HTML 5’s Web

Storage may become an improvement towards a more sensitive and secure client-side

data handling.

51

5. FUTURE WORK

At the end of this work is clear that there is still a lot of work to do in order to

fully support automatic RESTful service composition. The constraints set format is a

step towards understanding QoS constraints in composition. It is clear that complex

QoS properties such as security cannot be reduce to simple metrics such as booleans

indicating whether some security mechanism is supported or not. The provided ontology

serves also as a classification of such mechanisms and may facilitate such decision. The

question however shall be posed in the other direction, that is, as a client, am I able to

engage in an interaction where the server demands from me to support certain security

mechanisms? In addition, the very nature of REST does not provide any guarantee that

such properties will remain stable during the interaction, servers may change arbitrarily

their interfaces and if proper linking guiding is provided (hypermedia) clients shall be

able to recover dynamically of such failures. Clients, however, must be prepared with a

repertoire of mechanisms to adapt to such changes. Again, an ontology, understood as an

agreed description of mechanisms relevant in a domain, may assist clients in preparing

their capabilities. A limit however can be reached, and ReLL-S provides the medium

(i.e. location) to indicate clients how to be prepared for future interaction even though

the current may fail.

The constraints set format itself has still plenty of room for improvement. The

current implementation is supported by the extended version of RESTler, but it must

be tested to support a wider variety of security mechanisms in order to guarantee its

flexibility. Some elements defined on the constraints set, like the store node and the

pre and persist attributes, require refinement in the behavior of the machine client that

RESTler includes, but a more generic standard-base approach is necessary and probably

Web Storage may become such improvement.

Constraints set can be either extended or integrated with mechanisms description

languages like XML Signature, although supporting custom signature methods, would

52

still become a challenge. Constraints set could be integrated with more standard au-

tomation languages so other kinds of machine-clients could understand and support the

format. Another strong dependency of the extended RESTler is the capability to support

interaction protocols with asynchronous flows, in this case implemented by a Callback

connector. Having a way to describe different ways to support the asynchronous flow

(e.g. Web sockets) would be another valuable improvement to the portability of the

format.

One important aspect that should be considered in a fully automatic composition

implementation is the transactional support. Even though there have been efforts on sup-

porting transactional recovery from functional failure states, supporting recovery from

security interaction protocols failure states is not considered at all, setting limitations on

the ability of the client to continue its resource retrieval task within a service composition

context. For example, both OpenID and OAuth protocols involve out-of-bound flows of

interaction where the resource owner, usually a human user, authenticates and/or autho-

rizes a third party application, but it may be the case that either the step is not successful

or it never even begins, hence, the protocol cannot be completed and this could raise an

exception to recover to a previous state.

53

References

Alarcón, R., & Wilde, E. (2010a, June). From restful services to rdf: Connecting the

web and the semantic web (Tech. Rep. No. 2010-041). Berkeley, California: School of

Information, UC Berkeley.

Alarcon, R., & Wilde, E. (2010, April). Linking data from restful services. In Third

workshop on linked data on the web. Raleigh, North Carolina.

Alarcón, R., & Wilde, E. (2010b). Restler: Crawling restful services. In 19th interna-

tional world wide web conference (p. 1051-1052).

Alarcón, R., Wilde, E., & Bellido, J. (2010). Hypermedia-driven restful service compo-

sition. In 6th workshop on engineering service-oriented applications (wesoa 2010).

Alonso, G., Casati, F., Kuno, H., & Machiraju, V. (2003). Web services: Concepts,

architectures and applications. Berlin, Germany: Springer-Verlag.

Barros, A. P., Dumas, M., & Oaks, P. (2005). Standards for web service choreography

and orchestration: Status and perspectives. In C. Bussler & A. Haller (Eds.), Business

process management workshops (Vol. 3812, p. 61-74).

Beek, M. H. ter, Bucchiarone, A., & Gnesi, S. (2007). Web service composition

approaches: From industrial standards to formal methods. In Iciw (p. 15). IEEE

Computer Society. Available from http://doi.ieeecomputersociety.org/

10.1109/ICIW.2007.71

Bellido, J., Alarcon, R., & Sepulveda, C. (2011). Web linking-based protocols for

guiding restful m2m interaction. In Lecture notes in computer science. Springer.

Blanco, C., Lasheras, J., Valencia-Garcı́a, R., Fernández-Medina, E., Álvarez, J. A. T.,

& Piattini, M. (2008). A systematic review and comparison of security ontologies. In

Ares (p. 813-820).

Carminati, B., Ferrari, E., Bishop, R., & Hung, P. C. K. (2007). Security conscious

web service composition with semantic web support. In Icde workshops (pp. 695–704).

IEEE Computer Society. Available from http://dx.doi.org/10.1109/ICDEW

54

.2007.4401057

Carminati, B., Ferrari, E., & Hung, P. C. K. (2006). Security conscious web service

composition. In Icws (pp. 489–496). IEEE Computer Society. Available from http://

doi.ieeecomputersociety.org/10.1109/ICWS.2006.115

Decker, G. (2006). Process choreographies in service-oriented environments. Unpub-

lished master’s thesis.

Dustdar, S., & Schreiner, W. (2005). A survey on web services composition.

IJWGS, 1(1), 1–30. Available from http://dx.doi.org/10.1504/IJWGS

.2005.007545

Field, J. P., Graham, S. G., & Maguire, T. (2011). A framework for obligation fulfillment

in rest services. In Second international workshop on restful design (ws-rest 2011) (p. 59-

66).

Fielding, R. T. (2000). Architectural styles and the design of network-based software

architectures. Unpublished doctoral dissertation, University of California, Irvine, Irvine,

California.

Franks, J., Hallam-Baker, P. M., Hostetler, J. L., Lawrence, S. D., Leach, P. J., Luotonen,

A., et al. (1999, June). Http authentication: Basic and digest access authentication.

Internet RFC 2617.

Garcia, D. Z. G., & Toledo, M. B. F. de. (2008). Web service security management using

semantic web techniques. In Sac (p. 2256-2260).

Graf, S., Zholudev, V., Lewandowski, L., & Waldvogel, M. (2011). Hecate, managing

authorization with restful xml. In Second international workshop on restful design (ws-

rest 2011) (p. 51-58).

Hammer-Lahav, E. (2010, April). The oauth 1.0 protocol. Internet RFC 5849.

Kritikos, K., & Plexousakis, D. (2009). Requirements for qoS-based web service de-

scription and discovery. IEEE T. Services Computing, 2(4), 320–337. Available from

http://doi.ieeecomputersociety.org/10.1109/TSC.2009.26

Kübert, R., Katsaros, G., & Wang, T. (2011). A restful implementation of the ws-

agreement specification. In Second international workshop on restful design (ws-rest

55

2011) (p. 67-72).

Maleshkova, M., Pedrinaci, C., Domingue, J., Rey, G. A., & Martinez, I. (2010). Using

semantics for automating the authentication of web APIs. In P. F. Patel-Schneider et al.

(Eds.), International semantic web conference (1) (Vol. 6496, pp. 534–549). Springer.

Available from http://dx.doi.org/10.1007/978-3-642-17746-0

Marinos, A., Razavi, A. R., Moschoyiannis, S., & Krause, P. J. (2009, July). Retro:

A consistent and recoverable restful transaction model. In E. Damiani, R. Chang, &

J. Zhang (Eds.), 2009 ieee international conference on web services (p. 181-188). Los

Angeles, California: IEEE Computer Society Press.

Medjahed, B., & Atif, Y. (2007). Context-based matching for web service com-

position. Distributed and Parallel Databases, 21, 5-37. Available from http://

dx.doi.org/10.1007/s10619-006-7003-7 (10.1007/s10619-006-7003-7)

Mendling, J., & Hafner, M. (2008). From WS-CDL choreography to BPEL process

orchestration. Available from http://citeseerx.ist.psu.edu/viewdoc/

summary?doi=10.1.1.141.6099;http://wi.wu-wien.ac.at/home/

mendling/publications/TR06-CDL.pdf

Muehlen, M. zur, Nickerson, J. V., & Swenson, K. D. (2005). Developing web services

choreography standards - the case of REST vs. SOAP. Decision Support Systems, 40(1),

9–29. Available from http://dx.doi.org/10.1016/j.dss.2004.04.008

Papazoglou, M. P., Traverso, P., Dustdar, S., & Leymann, F. (2007). Service-

oriented computing: State of the art and research challenges. IEEE Computer, 40(11),

38–45. Available from http://doi.ieeecomputersociety.org/10.1109/

MC.2007.400

Pautasso, C. (2009a, July). Composing restful services with jopera. In A. Bergel

& J. Fabry (Eds.), International conference on software composition 2009 (Vol. 5634,

p. 142-159). Zürich, Switzerland: Springer-Verlag.

Pautasso, C. (2009b). On composing RESTful services. In F. Leymann, T. Shan, W.-

J. van den Heuvel, & O. Zimmermann (Eds.), Software service engineering. Dagstuhl,

Germany: Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, Germany. Available

56

from http://drops.dagstuhl.de/opus/volltexte/2009/2043

Pautasso., C. (2009). RESTful web service composition with BPEL for REST. Data

Knowl. Eng., 68(9), 851-866.

Souza, A. R. R., Silva, B. L. B., Lins, F. A. A., Damasceno, J. C., Rosa, N. S., Maciel,

P. R. M., et al. (2009). Incorporating security requirements into service composition:

From modelling to execution. In L. Baresi, C.-H. Chi, & J. Suzuki (Eds.), Icsoc/service-

wave (Vol. 5900, pp. 373–388). Available from http://dx.doi.org/10.1007/

978-3-642-10383-4

Sun, J., Liu, Y., Dong, J. S., Pu, G., & Tan, T. H. (2010). Model-based methods for

linking web service choreography and orchestration. In J. Han & T. D. Thu (Eds.), Apsec

(pp. 166–175). IEEE Computer Society. Available from http://dx.doi.org/

10.1109/APSEC.2010.28

Taylor, R. N., Medvidovic, N., & Dashofy, E. M. (2009). Software architecture: Foun-

dations, theory, and practice. Wiley.

Vinoski, S. (2008, January). Serendipitous reuse. IEEE Internet Computing, 12(1),

84-87.

Zeng, L., Benatallah, B., Ngu, A. H. H., Dumas, M., Kalagnanam, J., & Chang, H.

(2004). QoS-aware middleware for web services composition. IEEE Trans. Soft-

ware Eng, 30(5), 311–327. Available from http://doi.ieeecomputersociety

.org/10.1109/TSE.2004.11

57

