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Católica de Chile, Alameda 340, Santiago, Chile

(RECEIVED January 13, 2006; FINAL REVISION March 20, 2006; ACCEPTED March 30, 2006)

Abstract

Reliable prediction of model accuracy is an important unsolved problem in protein structure modeling. To
address this problem, we studied 24 individual assessment scores, including physics-based energy functions,
statistical potentials, and machine learning–based scoring functions. Individual scores were also used to
construct ;85,000 composite scoring functions using support vector machine (SVM) regression. The scores
were tested for their abilities to identify the most native-like models from a set of 6000 comparative models of
20 representative protein structures. Each of the 20 targets was modeled using a template of <30% sequence
identity, corresponding to challenging comparative modeling cases. The best SVM score outperformed all
individual scores by decreasing the average RMSD difference between the model identified as the best of the
set and the model with the lowest RMSD (DRMSD) from 0.63 Å to 0.45 Å, while having a higher Pearson
correlation coefficient to RMSD (r ¼ 0.87) than any other tested score. The most accurate score is based on
a combination of the DOPE non-hydrogen atom statistical potential; surface, contact, and combined statistical
potentials from MODPIPE; and two PSIPRED/DSSP scores. It was implemented in the SVMod program,
which can now be applied to select the final model in various modeling problems, including fold assignment,
target–template alignment, and loop modeling.

Keywords: model assessment; comparative modeling; fold assignment; statistical potentials; support
vector machine; protein structure prediction
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Genomics efforts are providing researchers with the
genomes of many species, including Homo sapiens. More
difficult tasks lie ahead in annotating, understanding, and
modifying the functions of the proteins encoded by these

genomes. The structures of proteins aid in these efforts, as
the biochemical function of a protein is determined by its
structure and dynamics. Atomic structures can be de-
termined for a small subset of proteins by X-ray crystal-
lography and nuclear magnetic resonance (NMR)
spectroscopy. However, for many proteins of interest,
such methods are often costly, time-consuming, and
challenging. In the absence of an experimentally de-
termined structure, structure models are often valuable
for rationalizing existing evidence and guiding new
experiments (Baker and Sali 2001).
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The accuracy of a model determines its utility, making
a means of reliably determining the accuracy of a model
an important problem in protein structure prediction
(Baker and Sali 2001; Ginalski et al. 2005). Model
assessment has been previously applied to (1) determine
whether or not a model has the correct fold (Miyazawa
and Jernigan 1996; Domingues et al. 1999; Melo et al.
2002; McGuffin and Jones 2003), (2) discriminate be-
tween the native and near-native states (Lazaridis and
Karplus 1999a; Gatchell et al. 2000; Vorobjev and
Hermans 2001; Seok et al. 2003; Tsai et al. 2003; Zhu
et al. 2003), and (3) select the most native-like model in
a set of decoys that does not contain the native structure
(Shortle et al. 1998; Wallner and Elofsson 2003). Several
scoring schemes have been developed for these tasks,
including (1) physics-based energies, (2) statistical poten-
tials, and (3) machine-learning-based scores. Molecular
mechanics energy functions with solvation models are the
usual components of physics-based energies, examples of
which include Effective Energy Function 1 (EEF1)
(Lazaridis and Karplus 1999a) and Generalized Born
(GB) potentials (Still et al. 1990). In contrast, statistical
potentials are derived from known protein structures and
quantify the observed conformational preferences of
residue or atom types in proteins (Sippl 1995). Examples
of statistical potentials include ProsaII (Sippl 1993a, b),
ANOLEA (Melo and Feytmans 1997, 1998), and DFIRE
(Zhou and Zhou 2002; Zhang et al. 2004). Finally,
machine learning–based methods combine scores from
physics-based energies and statistical potentials, includ-
ing the GA341 score obtained with a genetic algorithm
(F. Melo and A. Sali, in prep.), and the ProQ (Wallner and
Elofsson 2003) and GenThreader (Jones 1999a) scores
derived with neural networks.

In this paper, we aim to select the most accurate protein
structure model from among a set of alternate conforma-
tions or decoys. To achieve this goal, we adopted 24
individual assessment scores, including physics-based
energy functions, statistical potentials, and machine
learning–based scoring functions. Because the combina-
tion of assessment scores has been shown to increase the
ability to discriminate incorrect models from correct
models (Melo et al. 2002; Wallner and Elofsson 2003),
we combined the individual scores into a composite score
using a support vector machine (SVM) algorithm and a
training set of models.

Support vector machines are universal approximators
that learn a variety of representations from training
samples, and as such, are applicable to classification
and regression tasks (Vapnik 1995). SVMs have been
used in biological problems including fold recognition
(Ding and Dubchak 2001), functional annotation of single
nucleotide polymorphisms (Karchin et al. 2005), pre-
diction of b-turns (Cai et al. 2003b), protein function

classification (Cai et al. 2003a), prediction of central
nervous system permeability to drug molecules (Doniger
et al. 2002), analysis of pharmaceutical quantitative
structure–activity relationships (Burbidge et al. 2001),
identification of protein–protein interactions (Bock and
Gough 2001), and protein secondary structure prediction
(Ward et al. 2003). In this work, several SVMs were
trained in the regression mode with individual scores
from physics-based energies, statistical potentials, and
machine-learning-based scoring functions as inputs. The
output of the SVMs is a score that predicts the actual
RMSD between the model and its native structure. A
jackknife protocol was used to identify the best combi-
nation of the individual scores and training parameters,
which were then implemented in the SVMod program.

We begin by assessing the accuracy of each individual
scoring method as applied to our testing set and the
comparative performance gain by the SVM-derived score
(Results). Then we discuss the implications of the results
for protein structure prediction (Discussion). Details de-
scribing the training and testing sets used, the individual
evaluated scoring functions, the testing criteria, and the
generation of the SVMs are provided (Materials and
Methods).

Results

Testing of 24 assessment scores with the
MOULDER decoys

The 24 individual assessment scores were tested for how
many times each score obtains the best or equal to the
best Dnative overlap (DNO) and DRMSD (see Materials
and Methods). The DFIRE and DOPEAA scores were
most frequently the best single scores at discriminating
the most native-like models from others as judged by
DRMSD, obtaining the best or equal to the best DRMSD
;25% of the time (Table 1). PROSACOMB, PSIPREDWEIGHT,
MODPIPECOMB, and MODCHECK obtained the best
DRMSD 23%, 23%, 21%, and 20% of the time, respectively.
The PSIPREDWEIGHT score at 0.63 Å obtained the absolute
lowest average DRMSD. Similar results were obtained by
ROSETTA at 0.71 Å, PSIPREDPERCENT at 0.75 Å, DOPEAA

at 0.77 Å, MODCHECK at 0.83 Å, and MODPIPECOMB at
0.87 Å. Of the 24 scores, a total of 11 had an average
accuracy under 1.0 Å DRMSD (Table 1; Supplemental Table
S1a).

Using as a criterion the DNO, the PSIPREDWEIGHT,
DOPEAA, and DFIRE scores were the most accurate
assessment scores, obtaining the best or equal to the best
DNO 28%, 27%, and 26% of the time, respectively (Table 1).
PROSACOMB, MODPIPECOMB, ROSETTA, PSIPREDPERCENT,
and MODCHECK obtained the best DNO 25%, 25%, 25%,
23%, and 22% of the time, respectively. The PSIPREDWEIGHT
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and ROSETTA scores at 6.7% obtained the absolute lowest
average DNO. Similar results were obtained by DOPEAA

at 6.9%, DFIRE at 7.1%, MODPIPECOMB at 7.4%, and
GA341 at 7.5%. Of the 24 scores, a total of 12 had an
average accuracy <10.0% DNO (Table 1; Supplemental
Table S1b).

The ability of the tested methods to identify native-like
models greatly varied across different targets (Supple-
mental Table S1). Thus, the particularities of the
MOULDER test set, and not only the assessment scores,
may have contributed to some of the observed high
DRMSD and DNO values. In particular, all assessment
methods averaged worse than 1.25 Å DRMSD in the
assessment of the 1cewI models. Most of the models for
this relatively short, monomeric target (108 residues)
contain a poorly modeled long loop region (;17 residues)
that largely contributed to the overall global RMSD
value. Therefore, models with similarly accurate cores
may differ solely in this loop. Another example in which
most methods underperformed is the target 1lgaA (aver-
age DRMSD > 0.5 Å), which exists as a homodimer in the
crystal structure. The single chain crystal structure con-
tains a loop of ;11 residues that points directly into the
solvent. In comparison to 1cewI, the overall contribution
of this loop to the global RMSD of a model is reduced

because of the larger size of the protein (279 residues). In
contrast, sets 1bbhA and 1eaf_ had at least one score with
high accuracy, resulting in an average DRMSD value of
<0.1 Å.

Despite the differences in performance for each target,
an average DRMSD under 0.05 Å and an average DNO
score of 0.4% can be achieved by selecting the model
based on the most accurate method for each target. This
result indicates that at least one of the 24 tested scoring
methods was able to identify a model close to the best
model for all targets in the set (Supplemental Table S1).

A Student’s t-test to assess the significance of the
difference between two methods (Marti-Renom et al. 2002)
indicates that nine assessment scores (PSIPREDWEIGHT,
ROSETTA, PSIPREDPERCENT, DOPEAA, DFIRE, MOD-
CHECK, MODPIPEGA, MODPIPECOMB, and PROSACOMB)
outperformed all other methods with statistical significance
at the 95% confidence level (Fig. 1). Despite being ranked
lower than 17 other scores, the Xd score was not shown to be
statistically worse or better than the other assessment scores
due to a very high standard deviation of the DRMSD.

Testing of the composite SVM score with the
MOULDER decoys

Eleven scores (PSIPREDWEIGHT, ROSETTA,
PSIPREDPERCENT, DOPEAA, DFIRE, MODCHECK,
GA341, MODPIPECOMB, MODPIPEPAIR, MODPIPESURF,
and Xd) were used as inputs to train SVMs using the
jackknife protocol (see Materials and Methods). Though
the list was biased to include the best scores, we did not
simply select the top 11 ranked individual scores. Some
scores were omitted because their performances correlated
with other scores (e.g., PROSACOMB and MODPIPECOMB,
and DOPEAA and DOPEBB have correlation coefficients of
0.95 and 0.90, respectively) (Fig. 2; Supplemental Table S3).
However, DOPEAA and DFIRE were both included, in spite
of a very high correlation coefficient (0.98), as they were
among the very best individual scores tested. It was our hope
that the combination of these two scores, which use different
reference states and were trained using different decoy sets
and parameters, could have a synergistic effect. The
CHARMM EEF1 and GB scores were omitted due to their
sensitivity on the model coordinates (Lazaridis and Karplus
2000) and the corresponding strong dependence on the
model minimization protocol preceding the assessment
(Discussion). Finally, despite being ranked lower than FRST,
Xd was selected because it could not be statistically
distinguished from the best-performing methods (Fig. 1).

Of the ;85,000 SVMs tested with different fea-
ture inputs, kernel types, and training values, the best
performing class combined PSIPREDPERCENT, DOPEAA,
MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and
PSIPREDWEIGHT as feature inputs with a linear kernel,

Table 1. Accuracy of the individual assessment scores on the
MOULDER testing set

Score
DRMSD

(Å)
Best RMSD

(%)
DNO
(%)

Best NO
(%)

SVMod 0.45 29.6 4.5 33.1

PSIPREDWEIGHT 0.63 23.4 6.7 27.7

ROSETTA 0.71 19.4 6.7 24.5

PSIPREDPERCENT 0.75 20.0 8.3 23.2

DOPEAA 0.77 24.7 6.9 25.7

DFIRE 0.82 25.4 7.1 26.8

MODCHECK 0.83 20.0 7.6 22.4

GA341 0.83 16.2 7.5 19.9

MODPIPECOMB 0.87 21.1 7.4 24.8

PROSACOMB 0.88 23.1 7.7 25.1

DOPEBB 0.96 17.2 9.1 20.8

PROSASURF 0.97 19.7 9.0 20.7

GB 1.05 13.9 10.2 14.3

EEF1 1.06 16.9 9.7 20.6

MODPIPEPAIR 1.21 18.2 10.9 17.8

PROSAPAIR 1.34 16.8 11.7 20.0

MODPIPESURF 1.35 16.9 11.3 20.0

FRST 1.54 19.3 13.2 19.2

Xd 1.67 19.0 13.4 21.0

SOLVX 1.74 12.3 15.1 14.4

ANOLEAZPE 1.92 8.2 16.9 9.6

ANOLEAPUC 2.26 7.1 19.8 7.4

SIFT 5.45 2.4 39.7 3.0

ANOLEAPE 9.03 0.0 60.2 0.1

The percent best is the frequency of selecting the best (or equivalent to the
best) model in the test set. The entries are sorted by the DRMSD.
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default C-value, and a W-value of 0.1. The SVM method
searches for a linear combination of the individual scores
by optimizing the approximation of the RMSD error of
the model:

SVMod ¼ 0:22 PSIPRED
0

WEIGHT

� �

+ 0:000045 DOPE
0

AA

� �
+ 0:23 MODPIPE

0

COMB

� �

� 0:0036 MODPIPE
0

PAIR

� �
+ 0:1 MODPIPE

0

SURF

� �

+ 1:35 PSIPRED
0

PERCENT

� �
+ 4:13

where primes indicate the normalization of the input
PSIPREDWEIGHT, DOPEAA, MODPIPECOMB, MODPIPEPAIR,
MODPIPESURF, and PSIPREDPERCENT scores by dividing the
raw values by 10, 10,000, 1, 100, 10, and 1, respectively, prior
to SVM training. Given the weights of the normalized scores
and the typical magnitudes of each of the individual scores,
the relative contributions of PSIPREDWEIGHT, DOPEAA,
MODPIPECOMB, MODPIPEPAIR, MODPIPESURF, and
PSIPREDPERCENT in SVMod are ;39%, 8%, 4%, 7%,
18%, and 24%, respectively.

The jackknife test confirmed that these inputs and
parameters produced an SVM composite score that

consistently outperformed any of the 24 individual scores.
Using the DRMSD criterion, the composite score was the
best assessment score in ;30% of the 40,000 testing
subsets (Table 1). The next-best scores were DFIRE and
DOPEAA, which obtained the lowest average DRMSD for
;25% of the time. The average DRMSD for the com-
posite score was 0.45 Å, outperforming by 0.18 Å the
absolute best individual method, PSIPREDWEIGHT

(Fig. 3; Supplemental Table S1a).
Using DNO as an accuracy criterion, the jackknife

composite score was best in 33% of the subsets, out-
performing next-best scores PSIPREDWEIGHT, DFIRE,
and DOPEAA, which obtained the lowest average DNO
for 28%, 27%, and 26% of the time, respectively
(Table 1). The composite score was also the best method
assessed by the DNO criterion. The average DNO for the
composite score was 4.5%, outperforming the best in-
dividual scores, PSIPREDWEIGHT and ROSETTA, by
2.2% (Table 1; Supplemental Table S1b). Thus, though
the composite score was trained to predict an RMSD
value, it was still able to outperform each individual
method at identifying the best models of a set by the
native overlap criterion.

The average correlation coefficient between the com-
posite score and the actual RMSD for all 20-target sets

Figure 1. Comparison of accuracies (DRMSD) of the individual assessment scores. (Upper diagonal) Gray and white squares indicate

pairs of methods whose performance are and are not statistically significantly different at the confidence level of 95%, respectively.

(Lower diagonal) The intensity of gray is proportional to the DRMSD between the compared methods.
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of 300 models was 0.87, ranging from 0.75 to 0.93
(Fig. 4; Supplemental Table S3). The averages for all
24 individual scores ranged between 0.23 and 0.87
(Supplemental Table S2a). Despite resulting in a similar
average correlation coefficient, SVMod selected better
models with higher frequency than DOPEAA alone.

The SVMod composite score resulted in an enrichment
factor 10% higher than any of the other tested methods
when selecting the top 20 ranked models. SVMod found
the most accurate model within the top 20 ranked models
for 75% of the targets, while DOPEAA, DFIRE,
ROSETTA, and PSIPREDPERCENT selected the best
model for 65% of the targets (Fig. 5).

Testing of the SVMod composite score with the
MODPIPE decoys

The MODPIPE test set was generated to assess the
performance of SVMod in the context of large-scale
comparative modeling. In particular, the set was designed
to test how well SVMod could predict the absolute
accuracy of a model, rather than its accuracy relative to

other models. This led to fundamental differences be-
tween the MODPIPE and MOULDER decoy sets. Be-
cause the MOULDER decoy set was established to
evaluate the ability of each score to assess the relative
accuracy of a model, each of the models for a given target
were of the same sequence and length. This made the
determination of the ‘‘best model’’ a straightforward task.
In contrast, the models in the MODPIPE decoy set greatly
varied in sequence and length. For a given target se-
quence, MODPIPE produced models for all aligned
templates with a significant alignment score; if these
templates partly covered the target sequence, only that
region of the sequence was modeled. Thus, identification
of the ‘‘best model’’ is a rather difficult task in the
MODPIPE decoys set, because one must arbitrarily de-
cide the way to balance coverage and accuracy. While not
a good test for assessing the relative accuracy of a method,
the MODPIPE set serves as an important large-scale test
for how well SVMod predicts the absolute accuracy of
a model, a feature unique to SVMod. Of the very good
models (see Materials and Methods), SVMod predicted
53% to have an RMSD within 1 Å and 93% within 2 Å.

Figure 2. Weighted pair-group average clustering based on a pairwise correlation distance matrix. The image was generated by the

Phylodendron Web server (http://iubio.bio.indiana.edu/treeapp/). Their physical distance represents the difference in the pairwise

correlation between any two methods, with one distance unit corresponding to a difference of 0.1 from perfect correlation (r ¼ 1.0).

Predicting errors in comparative models
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Only 14% of the good models were predicted by SVMod
to have an RMSD >3 Å. For the acceptable models (3–
5 Å), 46% were predicted in the correct range, with 51%
being predicted with smaller values of RMSD; 32% were
predicted to be in the range of 2–3 Å. Finally, 85% of the
bad models were predicted by SVMod to have an RMSD
>3 Å. Thus, 15% of the bad models were predicted as
good (RMSD within 3 Å) by SVMod and could be
considered false positives (Fig. 6). The correlation
coefficient between the actual RMSD and the SVMod
score for the MODPIPE test set is 0.68.

Discussion

Summary

Most protein structure prediction programs generate
a large number of models, making the ability to select
the model closest to the native structure essential for
increasing the accuracy and utility of prediction methods
(Baker and Sali 2001; Marti-Renom et al. 2003). To
address the problem of error assessment, we studied 24
individual assessment scores, including physics-based
energy functions, statistical potentials, and machine-
learning-based scoring functions. We then derived a com-
posite score from a subset of individual scores. More
specifically, SVMod, a fully automated method, linearly

combines six individual scores that depend on the input
model only: the DOPE all heavy-atom statistical poten-
tial; surface, contact, and combined statistical potentials
from MODPIPE; and two PSIPRED/DSSP secondary
structure agreement scores. The output of SVMod is
a single score that predicts the accuracy of the model.
SVMod outperforms all individual tested scores in iden-
tifying the best models in the decoy set (Table 1; Fig. 3),
and has an equivalent or higher correlation coefficient
with the actual Ca RMSD and NO (Fig. 4; Supplemental
Table S3) than any of the individual scores. Thus, SVMod
is expected to be generally more useful for predicting
errors in protein structure models than any of the tested
individual scores.

Decoys

To test the ability of SVMod to predict model errors, we
have used two different test sets: (1) 300 models from
each of 20 target/template pairs sharing low sequence
identity (MOULDER test set) and (2) 80,593 models of
4011 different target sequences from a large-scale com-
parative modeling exercise (MODPIPE test set). Thus, the
ranges for the RMSD and NO measures are similar to that
of difficult comparative modeling cases (Supplemental
Fig. S1). The average size of a model in our decoy sets
(;175 residues) (Table 2) is close to the average size of

Figure 3. Comparison of accuracies (DRMSD) of the assessment scores used to develop the SVMod score. (Upper diagonal) Gray and

white squares indicate pairs of methods whose performance are and are not statistically significantly different at the confidence level of

95%, respectively. (Lower diagonal) The intensity of gray in each box is proportional to the pairwise DRMSD between the scores listed

on the axes (absolute differences indicated).
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a protein domain (Pearl et al. 2005), unlike other decoy
sets that contain primarily small models (Samudrala and
Levitt 2000; Tsai et al. 2003). The differences between
our sets and those of other studies reflect their different
aims: whereas many model assessment methods try to
identify the native structure from among a set of decoys
(Park and Levitt 1996; Tsai et al. 2003), we attempted to
select the model closest to the native structure, which
may not necessarily have native-like characteristics. To
discriminate native from non-native structures, an optimal
decoy set should (1) contain conformations for a wide
variety of different proteins, (2) contain conformations
relatively close to the native structure (i.e., within 4 Å),
(3) consist of conformations that are not trivially exclud-

able based on obvious non-protein-like features, and (4)
be produced by an unbiased procedure that does not use
information from the native structure (Park and Levitt
1996; Park et al. 1997). In contrast, for the purpose of
selecting the best model from among a set of similar
models, criterion 1 does not always reflect actual con-
ditions in which a model assessment score is used, as
even the best model generated by a prediction method—
particularly in de novo predictions or comparative mod-
eling based on template proteins with a low sequence
identity to the target—may often result in RMSDs >4 Å.

Criteria

The individual and composite assessment scores were
assessed by their abilities to minimize the DRMSD and
DNO measures. In essence, this choice of measures is
equivalent to minimizing the RMSD (or maximizing the
NO) to the native conformation, yet allows for a compar-
ison of the accuracy of a method across different test sets
(Supplemental Fig. S1). We chose not to use the rank
order, a common accuracy measure, because it neglects
the fact that models can be considered identical at small
differences in DRMSD and because the distribution of
RMSD and NO was not uniform within a set. For
example, the DRMSD difference between the first and
the 25th models across the 20 MOULDER sets varies
from 0.27 to 5.7 Å, making the DRMSD a more in-
formative measure than rank order.

Scores

Some trends could be observed from the testing of the
24 individual scores. For example, atomic statistical
potentials (i.e., DOPE and DFIRE) were most frequently
the best performing individual scores (Table 1; Figs. 1, 3).
PSIPREDWEIGHT and PSIPREDPERCENT, two scores based
on the percent agreement between the predicted and
actual secondary structure of a model, were the best and
third-best scores by the DRMSD criterion, respectively;
PSIPREDWEIGHT was also the best score by the DNO
criterion. The ROSETTA score, a combination of atomic
statistical potentials and solvation terms, was the second-
best score by DRMSD and equivalent to PSIPREDWEIGHT

as the most accurate score by the DNO criterion. In
general, statistical potentials outperformed energies from
physics-based force fields. This observation is in agree-
ment with the suggestion that the statistical potentials are
less sensitive to small structural displacements, making
them more suitable for assessing models with larger
errors (Lazaridis and Karplus 2000). However, not all
statistical potentials are necessarily better suited for
selecting the best model from among a set of similar
models: EEF1 and GB were more accurate than many of

Figure 4. Ca RMSD correlation with the SVMod score for 300 models for

the targets with the best (1dxtB, upper panel) and worst (1cewI, lower

panel) correlations, at r ¼ 0.93 and 0.75, respectively.
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the statistical potentials tested (Table 1; Supplemental
Table S1). It is also possible that the way in which we
relaxed the structures prior to evaluation by EEF1 and GB
might have been suboptimal, and that different relaxation
schemes would have produced more accurate results.
Furthermore, increasing the coarseness of a statistical
potential did not improve its performance, as all heavy-
atom potentials (e.g., DOPEAA) performed better than
their coarser counterparts (e.g., DOPEBB), and very
coarse potentials such as Xd did not outperform the more
fine-grained surface and contact potentials tested. The

relative orientation between side-chain atoms is better
encoded by all non-hydrogen statistical potentials (e.g.,
DOPEAA) than by a residue-based potential (e.g., DOPEBB).
This feature could explain the differences observed between
the all non-hydrogen and residue-based potentials.

Solvation scores assume that protein chains are isolated in
an infinitely large continuum dielectric medium (water),
an assumption that is violated at least to some degree in
crystal structures. This assumption, together with the
characteristics of the MOULDER decoy set, may have
contributed to the relatively poor performance of those
potentials (e.g., surface statistical potential, EEF1, and
GB scores). Of the 20 targets of the MOULDER test set,
12 were either solved experimentally as part of an
oligomeric structure (nine cases) or were presumed to
be oligomeric (three cases). In these cases, models of
single subunits are presumably harder to evaluate than the
models of subunits that exist as monomers, particularly
for those scores that would penalize for artificially exposed
binding regions. However, the inclusion of this type of
target in our test sets represents an additional level of
realism in the testing of comparative modeling, where it is
often unknown whether the target sequence is part of
a larger biological complex.

Although many of the 24 tested individual scores per-
formed similarly, the average correlation coefficients be-
tween them showed that similar performance could not be
attributed to particular similarities between the scores (Table
1; Figs. 2 and 3; Supplemental Table S3). For example,
DOPEAA, ROSETTA, and the PSIPRED scores performed
similarly well, yet the four scores do not form a cluster.
However, scores based on similar principles (see Materials

Figure 5. Enrichment factor defined as the fraction of the 20 targets for which a method was able to select the best model within the N

best-ranked models.

Figure 6. Histogram of the Ca RMSD and SVMod score (predicted

RMSD) distributions for the MODPIPE set of 80,593 models. RMSD

measures were grouped in bins of 1 Å, with the size of each bin indicated

by both the intensity and the area of the circle.
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and Methods) were shown to cluster, including (1) DOPEAA

and DFIRE (both heavy atom distance-dependent statistical
potentials); (2) PSIPREDPERCENT, PSIPREDWEIGHT, and
SVMod (PSIPRED scores are similar and have large weights
in the SVMod score); (3) pair statistical potential scores and
their corresponding combined scores; (4) GB and EEF1
(both physics-based solvation energies); and (5) PROSA-

SURF, MODPIPESURF, and Solvx (three statistical potential
scores that describe solvation) (Fig. 2).

The jackknife test showed that the ability of SVMod to
select the best model is independent of the SCOP fold
type of the native structure, the accuracy of the closest
model to the native conformation (correlation coefficient
of r ¼ 0.41 between best RMSD and composite score
average DRMSD), median RMSD value of the decoy set
(r ¼ 0.50), and fraction of models structurally similar to
the best model of the decoys set (r ¼ 0.57). Finally,
despite the inclusion of PSIPRED-based scores in
SVMod, its performance showed little correlation to the
PSIPRED Q3 accuracy (r ¼ 0.28). To assess the accuracy
of the PSIPRED scores based on a perfect secondary
structure prediction, we calculated a PSIPRED score that
solely relies on the DSSP-based secondary structure
assignment. A perfect secondary structure prediction
would, presumably, not only be 100% correct but also
have confidence values of 9 for each residue, making

this score equivalent to a perfect PSIPREDWEIGHT with
confidence value of 9 for each of the residues (see
Materials and Methods). The perfect PSIPRED score
would improve the DRMSD and DNO measures with
respect to PSIPREDPERCENT by 0.12 Å and 2.4%,
respectively. While individually the correlation between
the SVMod accuracy and a given measure is small, our
best composite score has a tendency to correctly select
the most native-like models on sets of globular proteins
ranging from 100 to 250 residues, for which there are
several close-to-native models, and from sequences that
result in an accurate PSIPRED prediction.

Composite score

The composite score implemented in SVMod is a weighted
sum of PSIPREDWEIGHT, DOPEAA, MODPIPECOMB,
MODPIPEPAIR, MODPIPESURF, and PSIPREDPERCENT with
relative weighs of ;39%, 8%, 4%, 7%, 18%, and 24%,
respectively. These six individual scores were selected from
a set of 11 different individual scores because of their
optimal performance when combined by the SVM. Other
individual scores were not included in the SVMod optimi-
zation for several reasons: (1) The ANOLEA, SIFT, and
Solvx scores resulted in significantly lower accuracy when
compared against all other methods (Fig. 1); although the
three methods use different properties to evaluate the
accuracy of a model, their statistical potentials are sensitive
to small changes in the atomic coordinates of individual
atoms. (2) The physics-based scores (i.e., EEF1 and GB)
require larger calculation time, which make them prohibitive
for large-scale applications. (3) The PROSA scores were not
included due to their similarity to the MODPIPE scores
(Melo et al. 2002) as well as DOPEBB, which is a derivation
of the DOPEAA score (Fig. 2).

As was previously shown (Jones 1999a; Melo et al.
2002; Wallner and Elofsson 2003), we demonstrated that
combining disparate assessment scores in a composite
score results in a more successful method than any of the
individual scores for identifying the most accurate model
within a decoy set. The SVMod test using the MODPIPE
decoy set indicates that a composite score trained on
a small number of models from a limited number of
targets is general enough to be applied to models having
hundreds of different folds. In other words, the SVMod
score is able to capture subtle properties of individual
scores that generalize to many different sequences and
folds, capturing nonobvious relationships between the
input scores and the RMSD and NO errors.

Implications for large-scale comparative modeling

SVMod is useful for protein structure prediction methods
in which a key step is the detection of the model closest to

Table 2. MOULDER testing set properties

Length
SCOP
Class

RMSD
range
(Å)

Median
RMSD (Å)

NO
Range (%)

Median
NO (%)

1bbhA 127 a 2.5–20.8 6.5 0–91 33

1c2rA 115 a 3.4–16.4 10.5 0–84 29

1cauB 178 b 3.4–29.0 11.9 0–83 14

1cewI 108 a + b 5.0–19.7 14.7 0–45 3

1cid_ 109 b 3.3–19.6 11.2 0–73 12

1dxtB 143 a 2.0–34.1 7.2 0–94 38

1eaf_ 201 a/b 3.4–16.8 12.6 1–74 17

1gky_ 186 a/b 6.2–20.8 11.6 0–64 15

1lgaA 279 a 3.2–18.7 8.2 1–86 35

1mdc_ 130 b 1.9–16.4 9.3 0–95 37

1mup_ 152 b 3.3–20.8 8.2 0–76 38

1onc_ 101 a + b 2.2–22.8 10.5 0–92 18

2afnA 289 b 3.8–18.8 8.5 1–77 40

2cmd_ 310 a + b 2.5–20.2 5.8 0–86 48

2fbjL 210 b 2.4–22.5 8.8 0–88 31

2mtaC 81 a 2.2–42.7 6.7 0–88 41

2pna_ 100 a+b 3.2–15.5 7.3 0–81 30

2sim_ 340 b 4.7–44.9 11.0 0–66 34

4sbvA 193 b 4.9–20.9 17.4 0–79 3

8i1b_ 144 b 3.0–17.5 8.3 0–78 35

Maximum and minimum values for each of the target properties are
underlined. RMSD values are for all Ca atoms; the all-atom RMSD is
typically 1.5 times as large. The native overlap (NO) was defined as the
percentage of Ca atoms in the model that are within 3.5 Å of the
corresponding atoms in the superimposed native structure.
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the native structure from a set of decoys. Although the
absolute gains in terms of the DRMSD and DNO appear
to be small, the benefits telescope in a large-scale
application, such as our comprehensive MODBASE
database (Pieper et al. 2004). MODBASE stores compar-
ative models generated by MODPIPE (Eswar et al. 2003)
for domains in 1.1 million of the 1.8 million unique
sequences in UniProt (May 2005) (Bairoch et al. 2005).
Most of the models in MODBASE (2.15 million of
2.97 million models) are based on an alignment of the
target and the template of <30% sequence identity. Those
alignments likely contain significant errors that result in
inaccurate models. Therefore, the ability of SVMod to
detect the best model in a set of decoys more often than
the present score in MODPIPE (GA341) is likely to
translate to a significant number of more accurate models.
We have shown that the SVMod score results in a 10%
higher enrichment factor compared to the GA341 score
for selecting the closest model to the native structure (Fig.
5). Thus, by using SVMod, we can expect to correctly
select the most accurate model for ;110,000 more
sequences than with the current MODPIPE.

Although we showed that SVMod outperformed all
tested individual scores, its current implementation is
limited by (1) particular properties of the training set,
(2) the potential suboptimality of the parameters used for
the SVM training, and (3) incorrect assessments by the
underlying individual input scores. First, the training set
is limited primarily in its size: The use of a larger set
would allow for multiple SVMs to be trained on more
specific or tailored decoy sets and would reduce the
relative contributions of poorly assessed targets, such as
1cewI and 1lga_ (see Results). Second, while the options
used in SVM training were extensive, they were by no
means exhaustive. Custom kernels have not been tested at
this time; however, they may find a better global fit on
inputs that vary so widely in value and are dependent on
other factors (i.e., protein length) that are not easily
normalized. Third, as inaccurate input assessment scores
hamper the overall accuracy of SVMod, improvements in
individual scores would also improve the performance of
future versions of SVMod. Moreover, we are poised to
include additional information in model assessment, such
as protein size, length, and fold type. As these additions
are incorporated, the performance of the composite score
is likely to improve further.

Materials and methods

Decoy set

Twenty target/template pairs of protein sequences with known
structures ranging from 81 to 340 residues in length (Table 2)
were randomly selected from the Fischer set of remotely related

homologs (Fischer et al. 1996; John and Sali 2003). The Fischer set
was devised to test fold assignment methods in the most difficult
regime of no statistically significant sequence similarity. The
percentages of the pairs in the a, b, a/b, and a + b SCOP classes
(Andreeva et al. 2004) were 25%, 45%, 10%, and 20%, respec-
tively. The 20 targets do not share significant structural similarity to
each other. For each of the 20 targets, the structural template
specified by the Fischer set was used as the template. The target–
template alignments were obtained using MOULDER (John and
Sali 2003) with MODELLER (Sali and Blundell 1993) to create
300 different target–template alignments. The 300 alignments
uniformly ranged from ;0% to 100% of both the native overlap
(below) and the correctly aligned positions with respect to the CE
structure-based alignment (Shindyalov and Bourne 1998). No two
alignments of a given target shared >95% of identically aligned
positions or had fewer than five different alignment positions. A
comparative model was built from each target–template alignment
using the default parameters for the model routine in MODEL-
LER. Thus, the final decoy set consisted of a total of 300 models
for each of the 20 targets. The accuracy of each model was
measured by the Ca RMSD and the native overlap after rigid-body
superposition to the native structure as calculated by the superpose
command in MODELLER. The native overlap (NO) was defined
as the percentage of Ca atoms in the model that are within 3.5 Å of
the corresponding atoms in the superposed native structure. The
distribution of RMSD and native overlap varied greatly between
the 20 sets (Supplemental Fig. S1). Roughly 4% of the models are
within 1–3 Å RMSD (good models; NO > 80%), ;15% are
between 3 and 5 Å RMSD (acceptable models; NO from 60% to
80%), and ;81% superpose to the native structure with an RMSD
> 5 Å (bad models; NO smaller than 60%). This test set was
previously used in the development of the MOULDER protocol
for iterative alignment and comparative model building (John and
Sali 2003), as well as the Mod-EM method for combined
comparative modeling and fitting into a mass density map from
electron cryomicroscopy (Topf et al. 2005).

In addition, to measure the ability of SVMod in predicting the
absolute accuracy (i.e., the actual RMSD value) of a model,
a total of 168,632 comparative models were calculated by our
automated comparative modeling protocol MODPIPE (Eswar et al.
2003) for the PDB-select40 list (6877 sequences as of March
2005). For each target sequence, MODPIPE builds a sequence
profile using the profile.build method in the MODELLER pro-
gram by iteratively searching the UniProt database (Apweiler
et al. 2004). Profile.build relies on local dynamic programming
and a robust method of estimation of alignment significance.
Sequence–structure matches are established by aligning the target
sequence profile against the template profiles, using local dynamic
programming implemented in the profile.scan method of the
MODELLER program. Significant alignments covering distinct
regions of the target sequence are chosen for modeling using the
default model building procedure of MODELLER. All models
<100 residues or >250 residues were removed from the testing set.
This length restriction reduced the set size to 80,593 models for
4011 different sequences. The RMSD binning of the models in the
MODPIPE set shows that ;5% of models are within 1 Å RMSD
to the native structure (very good models), ;13% are within 1–
3 Å RMSD (good models), ;20% are within the RMSD range 3–
5 Å (acceptable models), and ;62% superimpose to the native
structure with an RMSD > 5 Å (bad models).

The entire MOULDER and MODPIPE testing sets, including
all 86,593 models and the assessment scores calculated for each
model, are available for download at http://salilab.org/our_
resources.shtml.
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Model accuracy measures

The choice of metric to quantify the accuracy of a model, given
the native structure, is difficult (Cristobal et al. 2001; Eyrich et al.
2001; Marti-Renom et al. 2002; Moult et al. 2003; Rychlewski and
Fischer 2005). While there are several measures that have been
used to quantify model accuracy, such as LGScore (Cristobal et al.
2001) and MaxSub (Siew et al. 2000), we evaluated all models
using the Ca RMSD and NO measures after rigid body superpo-
sition of the compared structures. All accuracy prediction methods
were tested for their ability to minimize the DRMSD and DNO
scores, which are defined as the absolute differences in RMSD and
NO, respectively, between the selected model (i.e., best scored
model) and the actual best model (i.e., structurally closest to the
native structure). Thus, a value of 0.0 for either measure indicates
that the closest model to the native conformation in the decoy set
was identified.

Model assessment scores

A total of 24 scores for predicting model accuracy were
calculated for each of the 6000 models in the MOULDER test
set. As our main goal was to develop a score that combines the
most successful individual assessment scores, we selected a di-
verse array of established methods that were readily available,
easy to implement, work by accepting the three-dimensional
coordinates of a protein structure model to produce a single
assessment score, and could be incorporated in a composite
score. This last requirement caused us to focus on methods that
could either be redistributed as part of our SVMod code, or
accessed by a Web server. Additionally, we attempted to select
representative methods for different types of scores (e.g.,
distance-dependent scores, surface-dependent scores). Next,
we briefly describe these scores.

CHARMM EEF1

The Effective Energy Function 1 in the CHARMM program
(Brooks et al. 1983) depends on a modified CHARMM-19 force
field and a Gaussian solvent exclusion model (Lazaridis and
Karplus 1997, 1999b, 2000). CHARMM v.28a3 was used to
minimize the potential energy of the models by 50 steps of
conjugate gradients minimization followed by 300 steps of
Adopted Basis Newton-Raphson minimization. The EEF1 en-
ergy (EEF1) was then calculated for the minimized models.

CHARMM Generalized Born

The CHARMM GB potential includes the Generalized Born
solvation model (Still et al. 1990; Qiu et al. 1997) into the
CHARMM force field to account for the solvation contribution
to the free energy. The implementation of GB in CHARMM
v.28a3 was used to calculate the GB potential energy (GB),
using the same minimization protocol as that of EEF1.

ROSETTA

The Rosetta scoring function is an all-atom force field that
focuses on short-range interactions (i.e., van der Waals packing,
hydrogen bonding, and desolvation) while neglecting long-
range electrostatics (Kuhlman et al. 2003; Bradley et al.
2005). It was run with default values ‘‘-score’’ option to produce
the Rosetta score (ROSETTA).

ANOLEA

The Atomic Non-Local Environment Assessment program
(Melo and Feytmans 1997, 1998; Melo et al. 1997) relies on
atomic distance-dependent and solvent accessibility-dependent
statistical potentials (Melo and Feytmans 1998). It was run with
the default values, producing three scores: the ANOLEA
pseudo-energy (ANOLEAPE), percent of residues in the struc-
ture that make unfavorable contacts (ANOLEAPUC), and a
Z-score of the ANOLEA pseudoenergy (ANOLEAZPE).

DFIRE

The DFIRE score (Zhou and Zhou 2002) is a statistical potential
summed over all pairs of non-hydrogen atoms. DFIRE uses
a distance-scaled finite ideal gas as reference state. The DFIRE
program was used with default parameters to calculate the score
(DFIRE) for each model in the test set.

DOPE

The Discrete Optimized Protein Energy program (M.-Y. Shen
and A. Sali, in prep.) is a distance-dependant statistical potential
based on a physical reference state that accounts for the finite
size and spherical shape of proteins. The reference state assumes
a protein chain consists of noninteracting atoms in a homoge-
neous sphere of equivalent radius to that of the corresponding
protein. The DOPE potential was derived by comparing the
distance statistics from a nonredundant PDB subset of 1472
high-resolution protein structures with the distance distribution
function of the reference state. Two versions of DOPE were
used: one that assigns a score for a protein by considering the
positions of all non-hydrogen atoms (DOPEAA), and one that
only considers the positions of the backbone atoms (DOPEBB).

Harmonic average distance score

The weighted harmonic average difference score (Xd) assumes
that conserved hydrophobic positions in the core are clustered
more tightly in an accurate model than in an inaccurate model
(Pazos et al. 1997). The calculation relies on an alignment of the
tested model with homologous sequences and compares the
Euclidean distance distribution for pairs of the conserved
hydrophobic positions against the reference distribution for
pairs of all positions.

Modcheck

The Modcheck program relies on the Cb ! Cb, Cb ! N, N !
Cb, Cb ! O, and O ! Cb distance-based statistical potential
implemented in the GenTHREADER program (Jones 1999a)
and incorporates an estimate of the initial alignment accuracy
based on a randomly shuffled set of alignments. The Modcheck
program was used with default parameters (MODCHECK).

MODPIPE assessment scores

Several model assessment scores are calculated by MODPIPE:
a distance-dependent statistical potential score (MODPIPEPAIR)
(Melo et al. 2002), an accessible surface statistical potential
score (MODPIPESURF) (Melo et al. 2002), a distance and

Predicting errors in comparative models

www.proteinscience.org 1663

JOBNAME: PROSCI 15#7 2006 PAGE: 11 OUTPUT: Thursday June 8 14:01:07 2006

csh/PROSCI/118156/ps0620958



surface combined potential score (MODPIPECOMB) (Melo et al.
2002), a structural compactness score (MODPIPECOMP) (F. Melo
and A. Sali, in prep.), the target–template sequence identity (Si)
implied by the target–template alignment, and a machine-learning-
based potential derived by a genetic algorithm protocol (GA341)
(F. Melo and A. Sali, in prep.):

GA341 ¼ 1 �
�

cos Sið Þ
��ðSi + MODPIPECOMPÞ=expðZsÞ

�

where the Z-score is calculated for the combined statistical
potential score of the model using the mean and standard
deviation of the statistical potential score of 200 random
sequences with the same amino acid residue-type composition
and structure as the model. All of the MODPIPE scores were
developed and implemented as described elsewhere (Melo et al.
2002; Eswar et al. 2003; John and Sali 2003; F. Melo and
A. Sali, in prep.).

ProsaII

The ProsaII program (Sippl 1993a, 1995) uses distance- and
surface-dependent statistical potentials for Cb atoms of all
residues in the model. The original ProsaII program was used
with default parameters to obtain three different scores: a dis-
tance-dependent pair score (PROSAPAIR), an accessible surface
score (PROSASURF), and a combined score (PROSACOMB).

Sift

Sift (Adamczak et al. 2004) is a statistical potential-based
program that calculates the shape of the inter-residue radial
distribution function (RDF) for a given model. The RDF shape
function is compared to an averaged (i.e., independent of the
amino acid residue type) RDF to discriminate properly packed
models from misfolded ones. Sift was used with default
parameters (SIFT).

Solvx

The Solvx program (Holm and Sander 1992) implements
a statistical potential that evaluates the solvent contacts made
by a model with respect to atomic solvation preferences derived
from a database of known structures. Solvx was used with
default parameters (SOLVX).

Victor/FRST

The Victor/FRST program (Tosatto 2005) depends on a weighted
linear combination of three statistical potentials (an atomic
distance potential, a solvation potential, and a torsion angle
potential) for estimating the accuracy of a protein model. The
program was used with default parameters (FRST).

Predicted secondary structure

The DSSP program (Kabsch and Sander 1983) was used to
assign a secondary structure state to each residue in a model.
The eight-state DSSP assignments were translated to the three-
state Q3 format following the conventions of EVA (Eyrich et al.

2001). The PSIPRED program (Jones 1999b) was used to
predict a secondary structure state for each residue of the 20
target sequences. Finally, we calculated the percentage of amino
acid residues that had different Q3 states for both the model and
the target sequence (PSIPREDPERCENT). A weighted score that
takes into account the PSIPRED prediction confidence was also
calculated (PSIPREDWEIGHT) as follows:

PSIPREDWEIGHT ¼
+
n

i¼1

C2
i

r

where the sum runs only over the n residue positions that have
different Q3 states in the sequence (PSIPRED) and the model
(DSSP), Ci is the confidence value (0–9) for prediction of the
state of residue i, and r is the total number of residues in the
sequence.

Comparing assessment scores

All 24 assessment scores were compared to each other by the
average Pearson correlation coefficient for the 6000 model
scores in the testing set. The average correlation coefficient
between every pair of assessment scores was calculated as the
average of the pairwise correlation coefficients for each of the
20 templates. A matrix containing the correlation coefficients
for all comparisons was input into the FITCH program of
the PHYLIP Package (Felsenstein 1985) to generate a tree
representation of the relationships between the different scores
(Fig. 2).

Testing of the assessment scores

To determine the accuracy of a score for identifying the most
native-like model from a set, each of the 20 sets of 300 models
was split into 2000 randomly populated smaller sets of 75
models. This split reduced the impact of individual target sets on
the final ranking of the scores and increased the robustness of
our benchmark. For each 75-model set, the model with the
lowest Ca RMSD after rigid-body superposition to the native
structure was used as the reference to calculate the DRMSD
measure; for the DNO measure, the model with the highest
native overlap was used as the reference. The DRMSD and DNO
measures were averaged for the 24 scoring methods over all
40,000 (20 by 2000) subsets. The frequency with which
a particular score produced the best (or equivalent to the best)
DRMSD and DNO was also calculated, as was an enrichment
factor defined by the fraction of the 20 targets for which
a method was able to select the best model within the top
N ranked models. Finally, the statistical significance of the
difference in performance of any two scores was assessed by the
parametric Student’s t-test at the 95% confidence value (Marti-
Renom et al. 2002).

Support vector machine (SVM) composite score

Ten of the best performing individual scoring methods provided
input into the SVM software SVMlight (Joachims 1988). The
regression mode of SVMlight was used so that several input
features are mapped to an output value. The SVMs were trained
to predict the RMSD value of a model given a number of input
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scores. A leave-one-out heterogeneous jackknife approach was
applied to train all SVMs. For each sequence, an SVM was
trained by using the remaining 19 sequences as training input
(5700 possible models), and its models (300 in total) as the
testing set. To avoid noise in the SVM training, all models at
least 15 Å Ca RMSD from the native structure were removed
from the training sets. The native structures were not included in
the training sets. To accelerate the training process, all input
scores were normalized to values between �1 and 1. This
normalization had no effect on the accuracy of the predicted
classifiers, yet it increased the training speed by an order of
magnitude (data not shown).

Four different SVM standard kernel types were tested: a linear
kernel, a polynomial kernel, a radial basis function kernel, and
a sigmoid kernel. C-values between 0 and 10 were tested in
increments of 1, and W-values between 0 and 1 in increments of
0.1. In excess of 4000 different training parameters and inputs
were tried and assessed; with the jackknife protocol, this
training resulted in ;85,000 SVMs. The relative weights for
each input score in a trained SVM were calculated by computing
the normalized weighted sum of the support vectors, using an
SVMlight script. Once the best input features and parameters
were identified through the jackknife protocol, the composite
score underlying SVMod was derived by using all models <15 Å
Ca RMSD from all 20 MOULDER sets.

Electronic supplemental material

The Supplemental Material contains RMSD histograms for the
20 targets in the MOULDER decoy set; average DRMSDs for
each of the 20 targets in the MOULDER decoy set; average
DNOs for each of the 20 targets in the MOULDER decoy set;
average RMSDs for each of the 20 targets in the MOULDER
decoy set; average NOs for each of the 20 targets in the
MOULDER decoy set; correlation coefficients between the
assessment scores and DRMSDs for each of the 20 targets in
the MOULDER decoy set; correlation coefficients between the
assessment scores and DNOs for each of the 20 targets in the
MOULDER decoy set; and average pairwise correlation coef-
ficients between the assessment scores and the accuracy mea-
sures.
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