
This content has been downloaded from IOPscience. Please scroll down to see the full text.

Download details:

IP Address: 146.155.94.33

This content was downloaded on 17/05/2016 at 22:37

Please note that terms and conditions apply.

Propagation and distribution of quantum correlations in a cavity QED network

View the table of contents for this issue, or go to the journal homepage for more

2013 J. Phys. B: At. Mol. Opt. Phys. 46 175503

(http://iopscience.iop.org/0953-4075/46/17/175503)

Home Search Collections Journals About Contact us My IOPscience

iopscience.iop.org/page/terms
http://iopscience.iop.org/0953-4075/46/17
http://iopscience.iop.org/0953-4075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


IOP PUBLISHING JOURNAL OF PHYSICS B: ATOMIC, MOLECULAR AND OPTICAL PHYSICS

J. Phys. B: At. Mol. Opt. Phys. 46 (2013) 175503 (7pp) doi:10.1088/0953-4075/46/17/175503

Propagation and distribution of quantum
correlations in a cavity QED network
Raul Coto and Miguel Orszag

Departamento de Fı́sica, Pontificia Universidad Católica de Chile, Casilla 306, Santiago, Chile
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Abstract
We study the propagation and distribution of quantum correlations through two chains of
atoms inside cavities joined by optical fibres. This system is interesting because it can be used
as a channel for quantum communication or as a network for quantum computation. In order to
quantify those correlations, we used two different measurements: entanglement and quantum
discord. We also use tangle for multipartite entanglement. We consider an effective
Hamiltonian for the system and cavity losses, in the dressed atom picture, using the
generalized master equation. We found a case where the quantum discord and the classical
correlation are almost constant, and we also found multipartite entanglement, starting with
only one excitation per chain. Finally, we propose a way to select the initial condition so that
we can optimize the results for different purposes.

(Some figures may appear in colour only in the online journal)

1. Introduction

Quantum correlations rank amongst the most striking features
of quantum many-body systems. Entanglement is one kind of
quantum correlation, which has been extensively researched,
especially for a two-body system, leading to powerful
applications [1].

Over the past few years, the manipulation and generation
of bi-partite entangled states [2, 3], have been widely
investigated in various quantum systems such as cavity
quantum electrodynamics (QED) [4, 5], trapped ions [6],
the Hubbard model [7] and so on (for a general review see
[8]). However, there are other kinds of quantum correlations,
such as quantum discord [9], which can also be responsible
for computational speed-up for certain quantum tasks [10].
Quantum discord has been defined as a mismatch between
two quantum analogues of classically equivalent expressions
of mutual information. This notion of quantum discord
goes beyond entanglement. For example, separable states
can have non-zero discord. Any realistic quantum system
will inevitably interact with the surrounding environment
causing the rapid destruction of quantum properties. It has
been observed that quantum discord is more robust against
decoherence than entanglement [11–13]. Even in the cases
where entanglement suddenly disappears, quantum discord
decays only asymptotically in time [14].

Recently, there has been a growing interest in studying
atomic systems in cavity QED, as well as cavity–atom
polaritonic excitations [15, 16]. Furthermore, much attention
has been paid to the possibility of quantum information
processing realized via optical fibres and more generally
in schemes which allow for reliable transfer of quantum
information between two atoms in distant coupled cavities
[17–21]. In the present work, we study the propagation and
distribution of quantum correlations in a cavity array. We
model the losses of our system with individual reservoirs
at zero temperature and use the generalized master equation
for the time evolution [17, 22]. We think it is important to
find which are the most convenient initial states to achieve
the best propagation or the best distribution of the quantum
correlations. We found that if one has one excitation in the
cavity array, this is best suited for the transmission of quantum
correlations. In contrast, if one has more than one excitation in
the system, there will be a greater entanglement distribution,
or tangle, and the system can be used as a network for quantum
computation.

2. The model

We have two identical chains of three cavities joined by optical
fibres as shown in figure 1, where each cavity interacts with a
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Figure 1. Array of two rows of three cavity–atom systems.

single atom and its own reservoir. A similar model was used
by Zhang et al [23] but without losses. We model our system
in the short fibre limit 2lμ/2πc � 1, where l is the length
of the fibre and μ is the decay rate of the cavity fields into a
continuum of fibre modes [24].

2.1. The effective Hamiltonian

The Hamiltonian of an N-atom–cavity system in the rotating
wave approximation is given by

H = Hfree + Hint (1)

where

Hfree =
N∑

i=1

ωa
i |e〉i〈e| +

N∑
i=1

ωc
i a†

i ai +
N−1∑
i=1

ω
f
i b†

i bi (2)

and

Hint =
N∑

i=1

νi(a
†
i |g〉i〈e| + ai|e〉i〈g|)

+
N−1∑
i=1

Ji[(a
†
i + a†

i+1)bi + (ai + ai+1)b
†
i ] (3)

where |g〉i and |e〉i are the ground and excited states of the
two-level atom with transition frequency ωa, and a†

i (ai) and
b†

i (bi) are the creation (annihilation) operators of the cavity
and fibre mode, respectively. The first, second and third terms
in Hfree are the free Hamiltonian of the atom, cavity field and
fibre field, respectively. In addition, the first term in the Hint

describes the interaction between the cavity mode and the atom
inside the cavity with the coupling strength νi, and the second
term is the interaction between the cavity and the fibre modes
with the coupling strength Ji.

The first two terms of Hfree and the first term of Hint

can be jointly diagonalized in the basis of polaritons. For
simplicity we consider the resonance between atom and cavity
ωa = ωc = ω, and also that the cavities and the fibres are
identical. The total Hamiltonian is now given by

H =
N∑

i=1

(ω − ν)|E〉i〈E| +
N−1∑
i=1

ω
f
i b†

i bi

+
N−1∑
i=1

J√
2

[(L†
i + L†

i+1)bi + (L−
i + L−

i+1)b
†
i ] (4)

where |Ei〉 = 1√
2
(|1, g〉i − |0, e〉i) and |Gi〉 = |0, g〉i are the

polaritonic states, corresponding to excited and ground states,
respectively. The other operators L†

i = |Ei〉〈Gi| and L−
i =

|Gi〉〈Ei| are to create or destroy those states. So we can consider
polaritons as a two-level system. We can only have one photon,
at most, because due to photon blockade, double or higher
occupancy of the polaritonic states is prohibited [25, 26].

In the case of a three atom–cavity system, we use
perturbation theory [27] to find an effective Hamiltonian,
supposing that the total detuning δ = (ω − ν) − ω f � J.
Finally, we projected the fibre state into the zero photon mode,
so we end up with a reduced Hamiltonian given by

Hs = λ(|E1〉〈E1| + 2|E2〉〈E2| + |E3〉〈E3|)
+λ(L†

1L−
2 + L−

1 L†
2 + L†

2L−
3 + L−

2 L†
3) (5)

where λ = J2

2δ
.

2.2. The master equation

Until now, we have not considered losses. The main source of
dissipation originates from the leakage of the cavity photons
due to imperfect reflectivity of the cavity mirrors. A second
source of dissipation corresponds to atomic spontaneous
emission, that we will neglect assuming long atomic lifetimes.

An approach to model the above mentioned losses, in the
presence of single-mode-quantized cavity fields, is using the
microscopic master equation, which goes back to the ideas of
Davies on how to describe the system–reservoir interactions in
a Markovian master equation [28]. For a three-cavity system
at zero temperature, the master equation is [19, 24]

ρ̇(t) = −i[Hs, ρ(t)] +
3∑

n=1

∞∑
ω>0

γn(ω)

× (
An(ω)ρ(t)A†

n(ω) − 1
2 {A†

n(ω)An(ω), ρ(t)}) (6)

where An correspond to the Davies operators. The sum on n
is over all the dissipation channels and the decay rate γn(ω)

is the Fourier transform of the correlation functions of the
environment [22].

The An operators are calculated as follows:

An(ωαβ ) = |φ〉α〈φ|an|φ〉β〈φ|. (7)

3. Numerical results

We consider the six-cavity system of figure 1 and use the
following notation, |�〉 = |X1X1′X2X2′X3X3′ 〉, where X could
be G or E. We studied two different initial conditions with
only excitations in cavities 1 and 1′:

|�〉a = sin(θ )|GEGGGG〉 + cos(θ )|EGGGGG〉
|�〉b = sin(θ )|GGGGGG〉 + cos(θ )|EEGGGG〉. (8)

In the present work we use three bi-partite correlations,
namely concurrence (C), entanglement of formation (E) and
quantum discord (Q). Entanglement and concurrence are
conceptually equivalent definitions basically related to the
separability of the two parts of our system, while quantum
discord is the discrepancy between quantum versions of two
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Figure 2. Concurrence (C) for the initial condition |�〉a; θ = π/4
(solid); θ = π/3 (red-dotted); θ = π/8 (blue-dashed); γ = 0.01;
for the cavities 33′.

classically equivalent expressions of the mutual information
from the quantum measurement perspective. Until now,
there has been no analytic relation between entanglement of
formation and discord. We also use the concept of tangle to
quantify the multipartite correlations.

3.1. Propagation of entanglement

We studied the evolution of the concurrence [29], in time, its
distribution over the system, and the way it propagates.

If we set ρAB to be the density matrix of a two-qubit system
A and B, then, we define the ‘spin-flipped’ density matrix

ρ̃AB = (σy ⊗ σy)ρ
∗
AB(σy ⊗ σy) (9)

where σy is the usual Pauli matrix. Then the concurrence of
the density matrix ρAB is defined as

CAB = max {0, α1 − α2 − α3 − α4} (10)

where the α1, α2, α3, α4 are the square root of the eigenvalues
of ρABρ̃AB in decreasing order.

We now turn to our first problem, the propagation, with
the following parameters, J = 2π ·30 GHz, δ = 2π ·300 GHz
and γ = 0.01 GHz.

We found that the transmission properties of the
entanglement depend strongly on the initial conditions. For
example, we observed that for the initial state |�〉a, 74.2%
of the concurrence in the cavity pair 11′ is transmitted to the
33′ pair, the ratio of the output and input concurrences being
independent of the angle θ . On the other hand, for |�〉b the
transmission depends strongly on θ . For example, for θ = π/3
we get 63% and for θ = π/8, 28%.

The final concurrence 33′ is shown in figure 2, for the
initial state |�〉a.

According to Wootters et al [33], for pure states, one
can define C2

i( jk...) = 4 det ρi, where ρi is the reduced
density matrix, which represents the square of the concurrence
between the cavity ‘i’ and the rest. Therefore, rather than
plotting the time behaviour of the concurrences of all the
possible combinations of the six cavities, we prefer to study
the time evolution of C2

i( jk...).
In figure 3 we show such a behaviour. For example, we
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Figure 3. Square of the concurrence between one cavity and the
rest, for the initial condition |�〉a; C2

1(231′2′3′ ) = 4 det ρ1 (solid);
C2

2(131′2′3′ ) = 4 det ρ2 (red-dotted); C2
3(121′2′3′ ) = 4 det ρ3

(blue-dashed); θ = π/4; γ = 0.

Figure 4. Scheme of the time evolution of the maxima of the
concurrence.

notice that at a particular time, 4 det ρ2 = 0, implying that all
the concurrences involving cavity 2 vanish.

An alternative way of describing the propagation of
the entanglement is shown in figure 4, where we follow
the appearance of the maximum values of the concurrences
between the cavities 11′, 22′ and 33′.

The main idea behind this scheme is that we can
picture the propagation of the concurrence for any initial Bell
state between the cavities 11′, 13′ or any of the equivalent
combinations. That is because we can rotate the second chain
and still have the same problem, without actually solving
the master equation in each case. For example, if we start
with the 11′ combination, the dynamics will follow the
sequence in figure 4, excluding the terms in parenthesis; and
the points that show two pairs of numbers imply that we
have two simultaneous and in general different maxima in
the concurrence. On the other hand, if we switch to the initial
condition for the 22′ pair, we observe the same time sequence
as in the previous case, except for the terms in parenthesis, that
indicate simultaneous maxima in 11′ and 33′. Furthermore, for
that initial condition (22′), we always have C11′ = C33′ .

3.2. Propagation of quantum discord

In this subsection we investigate the dynamics of the quantum
discord, which is the difference between the quantum mutual
information and the classical correlation.

Q(ρAB) = I(ρAB) − CC(ρAB). (11)

The mutual information I(ρAB) of two subsystems can be
expressed as

I(ρAB) = S(ρA) + S(ρB) − S(ρAB) (12)

3
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Figure 5. Quantum discord (Q) and entanglement of formation (E)
for the initial condition |�〉b; Q (blue-dotted), E (black-dashed); for
γ = 0.05; θ = π/4; for the cavities 33′.

where S(ρ) = −tr(ρ log2 ρ) is the von Neumann entropy, and
ρA(ρB) is the reduced density matrix of subsystem A(B).

The classical correlation CC(ρAB) is defined as the
maximum information that one can obtain from A by
performing a measurement on B, and in general this definition
is not symmetric.

CC(ρAB) = max
{Bk}

[S(ρA) − S(ρAB|{Bk})] (13)

where {Bk} is a complete set of projectors performed on
subsystem B and S(ρAB|{Bk}) = ∑

k pkS(ρk
A). The reduced

density operator ρk associated with the measurement result k
is

ρk = 1

pk
(I ⊗ Bk)ρ(I ⊗ Bk). (14)

Notice that the probability pk can be easily obtained by
taking the trace over the last equation. Instead of finding the
maximum in (13), we will minimize the second term in the
same equation, which is equivalent. There are different ways
of doing that [13, 30, 31], and for simplicity we will follow
the one in [31].

In some of the following calculations, when comparing the
various measures of correlations, it will be more convenient
to calculate the entanglement of formation (E), rather than the
concurrence. The connection between the two is given by a
simple formula [29]

E(C) = h

(
1 + √

1 − C2

2

)

h(x) = −x log2(x) − (1 − x) log2(1 − x). (15)

Next, we plot both the quantum discord and the
entanglement of formation for the cavities 3 and 3′, and we
study the time evolution of the system.

From figures 5 and 6 we can see that the quantum discord
remains bigger than the entanglement of formation. Notice
that Q shows up first and it holds different from zero for a
longer time than E. Asymptotically, for all γ , Q tends to be
above E, even when the latter vanishes, which is in agreement
with previous work in cavity QED [32]. On the other hand, we
observe twin peaks that appear periodically with decreasing
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0.15

λt
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,E

Figure 6. Quantum discord (Q) and entanglement of formation (E)
for the initial condition |�〉b; Q (blue-dotted), E (black-dashed); for
γ = 0.5; θ = π/4; for the cavities 33′.
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Figure 7. Quantum discord (Q), classical correlation (CC) and
entanglement of formation (E) for the initial condition ρ(0); CC
(red-dotted); Q (blue-dashed); E (solid); γ = 0.01; for the cavities
21′. Inset: a zoom of the quantum discord and classical correlation
in the region λt : 2.4–3.8.

amplitudes. This behaviour is consistent with the curve for
4 det ρ3 shown in the figure 3.

We are also interested in the classical correlations. If
we take the initial condition |�b〉, the quantum and classical
correlations between the cavity pairs 11′, 22′ and 33′ are
identical for all times. However, for any other initial condition
for the 11′ pair, such as the mixed state ρ(0)

ρ(0) = 1
2 |EE〉〈EE| + 1

2 |GG〉〈GG|
+ 1

2 (|EE〉〈GG| + |GG〉〈EE|), (16)

the various measures of quantum correlations are all different,
as shown in figure 7, when taking, for example, the time
evolution of the correlations between the 21′ pair of cavities.
Furthermore, for relatively small damping constants, we
observe for some time intervals, that both the quantum
and classical correlations remain approximately constant (see
figure 7).

3.3. Distribution of entanglement

Coffman et al [33] discuss distributed entanglement [34, 35].
They argue that unlike classical correlations, quantum
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Figure 8. Tangle for the initial condition |�〉b; θ = π/4 (solid);
θ = π/3( red-dotted); θ = π/8 (blue-dashed); γ = 0.

entanglement cannot be freely shared among many objects.
In the case of a three-partite system, S1, S2 and S3; the amount
of entanglement that S1 can share with S2 and S3, must satisfy
an inequality

C2
12 + C2

13 � 4 det ρ1 (17)

with ρ1 = tr23ρ123.
More recently, the trade off between entanglement and

classical correlation has been investigated and a conservation
law for the distributed entanglement of formation and quantum
discord has been found [9, 36, 37]. In the present problem, we
choose cavity 1 as the reference, meaning the tangle between
cavity 1 and the rest. We consider initially a pure entangled
state between cavities 1 and 1′.

It is interesting to notice that for the initial conditions |�〉a,
we get higher values of concurrence than for |�〉b, which is in
agreement with previous work. For example, Rafiee et al [20],
observed that in a qubit network with quasi local dissipation,
the maximum stationary concurrence that can be achieved with
an initial state containing one excitation over m qubits is always
higher than the state containing N excitations (N � m), based
on numerical results. So, in our multi atom–cavity system, we
define S ≡ C2

12 + C2
13 + C2

11′ + C2
12′ + C2

13′ , and observed that
S is bigger for the initial state |�〉a, with one excitation, than
for |�〉b, that contains two excitations.

Now, we turn to the next question: is there a global
entanglement between all the subsystems, beyond the two-
partite entanglement? To answer this question, we use the
tangle ‘τ ′ [33] defined as

τ = C2
1(23...) − C2

12 − C2
13 − C2

11′ − C2
12′ − C2

13′ , (18)

which represents the multipartite correlations (beyond bi-
partite) of the system. We can express the first term of the
right-hand side in an alternative way: C2

1(23...) = 2(1− tr
[
ρ2

1

]
)

[38].
In figure 8 we show the evolution of τ for the initial state

|�〉b and various values of (θ ). In all cases, the initial tangle
is zero, since we start with a bi-partite entanglement between
the first pair of cavities and therefore there are no higher-order
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Figure 9. Tangle for the initial condition |�〉b; upper bound (UB)
(solid); lower bound (LB) (red-dotted); θ = π/4;γ = 0.01.
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Figure 10. |�〉1 (red-dashed); |�〉2 (blue-dotted); γ = 0.01.

correlations. We also found that for the initial state |�〉a, the
tangle is zero at all times. A possible reason for this is that
tangle is a collective effect and thus it requires more than one
excitation in the system.

To date, our system had no losses, so the states are pure
at all times. But what happens if we turn on the interaction
with the reservoirs? First, the system becomes mixed, and
equation (18) is no longer correct, and we need a convex
roof optimization of C2

i( jk...), considering all possible pure state
decompositions of ρ = ∑

i pi|φ〉i〈φ|, which is given by

C2
i( jk...)(ρ) = inf

{pi,|φi〉}

∑
i

piC
2
i( jk...)(|φi〉). (19)

The solution of (19) is a complicated task [39]. But there
are some good approximations [40–43]. The upper bound [41]
for this equation is taking just a pure state and the lower bound
[42] is taking the expression C2

i( jk...)(ρ) = 2
(
Tr[ρ2]−Tr

[
ρ2

i

])
,

where Tr[ρ2] is the purity of the total system. Next, we study
the time evolution of both bounds.

In figure 9 we observe the upper and lower bounds
of the tangle. In the lower bound approximation, we need

5
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to guarantee that the system is weakly mixed and strongly
entangled. In particular for λt ≈ 9, the lower bound becomes
negative. On the other hand, from the figure 3, we notice that
in this region, C2

1(23...) is comparatively small, thus violating
the assumptions made by the lower bound approximation,
and therefore the results are unreliable. Nevertheless, for
λt ∈ {0, 6}, the area between the upper and lower bound is
rather small, giving us a good estimation of the tangle.

4. Summary and conclusions

In the present work we studied a cavity QED system with
six cavities, and their corresponding atoms inside, in a
configuration shown in figure 1. This type of system can be
easily realized experimentally. It can also be used for various
purposes, such as a channel for the propagation of quantum
correlations or a network to distribute entanglement.

If the system is used as a channel, our best option is to use
states like |�〉a as the initial condition, since the distribution
or multipartite entanglement vanishes, finding only bi-partite
quantum correlations and as a consequence we get higher
values of the concurrence at the extreme of the chains. For
low losses, the entanglement of formation is a good measure
of the quantum correlations. However, as previously shown,
the quantum discord is more robust against decoherence, thus
is a better measure for higher loss rates. Next, we focus on the
quantum correlations between the cavities 21′, finding time
intervals where the classical and quantum correlations become
approximately constants.

On the other hand, for pure states, if our purpose is
to distribute the quantum correlations among the various
elements of our system, we choose |�〉b as our initial condition,
since we have a considerable multipartite entanglement or
tangle. Furthermore, we observe from figure 8 that the tangle
deteriorates rapidly, as we depart from the Bell states (θ =
π/4).

If we now turn on the interaction with the individual
reservoirs, the situation becomes more involved, and in
principle it would require a complex convex roof optimization
procedure. Nevertheless, when the system experiences losses,
if these are moderate, we can still estimate lower and upper
bounds to the tangle, in the case where the mixedness of the
system, measured through Tr[ρ2], varies slowly between 1
and 0.89 for γ = 0.01. For higher losses, like γ = 0.5, the
gap between the bounds is significantly bigger and the above
approximations fail.

Finally, we compare these results with Fanchini et al [37],
where the authors analyse a conservation law involving both
entanglement of formation and quantum discord. They find,
in a three-partite system, a stronger version of the ‘strong
subadditivity of entropy inequality’ S2 + S3 � S12 + S13(SS)
[44], that reads:

S2 + S3 + � � S12 + S13, (20)

where � = E12 + E13 − Q12 − Q13. Of course, the
inequality (20) is stronger than (SS) provided � > 0. In
the present cavity QED system, and taking only a single
chain, in figure 10 we plot � versus time for two different

initial conditions |�〉1 = 1/
√

2(|EGG〉+|GGE〉) and |�〉2 =
|EGG〉 and we clearly see that we have the stronger inequality
(20), as compared to the inequality (SS) only during short time
intervals corresponding to the sharp positive peaks. However,
as time goes on, it tends to drop to the negative side. So, the
stronger inequality (20) is valid for short times and, in general,
weak interaction of the system with the environment.

The theoretical model presented here can be realized
experimentally as an extension of the experiments already
reported [45] about an elementary quantum network of single
atoms in optical cavities.

A possible application could be a C-NOT gate, which has
already been performed in a similar system of two neutral
atoms held in separated optical traps [46].

Finally, one could in principle use, for example, the first
chain as a control of the information arriving in the second
one. Furthermore, for different initial conditions, one could
either have propagation with no tangle or distribution to the
various nodes with a finite tangle.
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