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ABSTRACT

Since its discovery, cAMP has been proposed as one of the most versatile second

messengers. The remarkable feature of cAMP to tightly control highly diverse

physiological processes, including metabolism, homeostasis, secretion, muscle con-

traction, cell proliferation and migration, immune response, and gene transcrip-

tion, is reflected by millions of different articles worldwide. Compartmentalization

of cAMP in space and time, maintained by mainly phosphodiesterases, contributes

to the maintenance of equilibrium inside the cell where one signal can trigger

many different events. Novel cAMP sensors seem to carry out certain unexpected

signaling properties of cAMP and thereby to permit delicate adaptations of biologic

responses. Measuring space and time events with biosensors will increase our cur-

rent knowledge on the pathophysiology of diseases, such as chronic obstructive

pulmonary disease, asthma, cognitive impairment, cancer, and renal and heart

failure. Further insights into the cAMP dynamics will help to optimize the pharma-

cological treatment for these diseases.

INTRODUCT ION

The spatial organization and temporal regulation of

intracellular signaling pathways have emerged as a

key issue in normal physiology and pathology. One

example is the cyclic adenosine 30,50-monophosphate

(cAMP) signaling pathway, which is now recognized to

transduce signals in a compartmentalized way such

that individual stimuli only engage a subset of the

whole pathway physically constrained within defined

subcellular locations, leading to a precise functional

outcome. Thus, local manipulation of cAMP signals

may offer a different approach to treat specific diseases.

cAMP is one of the most known second messenger

systems involved in several cellular processes. Memory

formation [1–3], metabolism [4], immune reactions

[5], insulin secretion [6,7], gene expression [8,9], and

regulation of heart rate [10,11] are some of the critical

physiological events where cAMP is involved. High

level of complexity in this signaling pathway leads to

diverse pleiotropic effects when cAMP signaling is de-

regulated [12,13]. Therefore, the cAMP homeostasis

directly dependent on its spatiotemporal dynamics

plays a critical role in coordinating the signals provided

by the different physiological events [14,15]. The

so-called cAMP microdomains may explain how the

spatiotemporal dynamics organize this complex

communication [16].

cAMP is synthesized by adenylyl cyclases (ACs) from

adenosine triphosphate (ATP). Most ACs are activated

downstream of G-protein-coupled receptors (GPCRs),

when specific hormones or neurotransmitters bind
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their GPCR and activate the a-subunit of the heterodi-

meric Gs protein [17,18].

Once produced inside the cell, cAMP exerts its action

on a limited number of effectors: cAMP-gated ion chan-

nels, exchange protein directly activated by cAMP

(EPAC), and protein kinase A (PKA) [19,20]. Moreover,

the intracellular cAMP levels are regulated by cyclic

nucleotide phosphodiesterases (PDEs), a group of

specific cyclic-nucleotide-degrading enzymes involved

in control of homeostasis [21–23]. It is recognized that

the action of phosphodiesterases is essential for the spa-

tiotemporal regulation of cAMP levels [24].

PHOSPHODIESTERASES

Since the discovery of cAMP [25], research has been

absorbed by cAMP-hydrolyzing PDEs. Analysis of the

human genome has identified 21 genes for cyclic

nucleotide PDEs, and structural and regulatory proper-

ties of these proteins have been described [26–28].
Based on their molecular sequence, regulation, and

pharmacological properties, mammalian PDEs have

been classified into 11 families, denoted by an Arabic

numeral 1–11. Some of these families have more than

one member each encoded by different genes, and these

are denoted by a capital letter after the numeral, for

example, PDE4A, PDE4B, PDE4C, and PDE4D. In

addition, several genes encoding PDEs have multiple

promoters, and the transcripts are subject to alternative

splicing, resulting in nearly one hundred PDE messen-

ger RNAs [29].

All PDEs contain three functional domains: a C-ter-

minal domain [29–31], a conserved catalytic core, and

a regulatory N-terminal domain. The C-terminal is sim-

ilar in all the PDE families except PDE6, with 18%–
46% sequence identity overall. Although there is some

evidence that the C-terminal region of PDE4 may be

involved in dimerization [32] and may also be a target

for regulatory phosphorylation [33], its physiological

function remains unclear.

The catalytic domain containing about 270 amino

acids shows a high degree of amino acid conservation

between the 11 PDE families (25%–49%). However, the

families themselves and the isoforms within the respec-

tive family possess varying substrate preferences for

cAMP and cGMP. In mammals, PDE4, PDE7, and PDE8

hydrolyze cAMP selectively; PDE5, PDE6, and PDE9

hydrolyze cGMP; and the remaining five PDEs (PDE1, 2,

3, 10, and 11) hydrolyze both cAMP and cGMP. Current

evidence suggests that substrate specificity is conferred

by the orientation of a single glutamine residue within

the catalytic site, which can form hydrogen bonds with

cAMP, cGMP, or both depending on its fixed orientation

or ability to rotate [34].

The N-terminal region shows high diversity between

PDE families, and the differences in this region are cru-

cial to understand the regulation and subcellular locali-

zation of different PDEs. Within this region, there are

essential domains that are essential for ligand binding,

oligomerization, kinase recognition, and phosphoryla-

tion that regulate PDE function. The regulatory

domains include the calmodulin-binding domain found

in PDE1; the cGMP-binding (GAF) domains found in

PDE2, 5, 6, 10, and 11; and the so-called upstream

conserved regions 1 and 2 (UCR1 and UCR2) found in

PDE4. Regarding dimerization, it appears likely that

PDEs function as dimers or oligomers in several cells,

where dimerization is an essential structural element

that determines the regulatory properties and inhibitor

sensitivities, that is, PDE4 [35]. In addition, the spatial

location of PDEs within cells is crucial to define their

intracellular effects. This appears to be partially deter-

mined by the presence of different targeting domains in

the N-terminal domain [36]. One explanation for the

existence of multiple isoforms is their targeting to

different subcellular locations.

Scaffolding molecules such as A-kinase anchoring

proteins (AKAPs) dynamically assemble cAMP effector

molecules, such as PKA, EPAC, and PDEs, into signal-

ing complexes, which regulate the temporal and spatial

effects of cAMP [37]. In particular, PDE4D3 and PKA

are related to muscle mAKAP, where phosphorylation

of PDE4D3 by PKA in these complexes enhances its

PDE activity, thus forming a negative feedback control

system to limit the activation of PKA and regulate local

cAMP levels [38]. Under resting conditions, PDE4D3

maintains local cAMP levels below the threshold

required for PKA activation, and when cAMP levels

rise following receptor stimulation, phosphorylation of

PDE4D3 by activated PKA increases its activity, return-

ing cAMP levels to baseline [39]. Additionally, PDEs

themselves may function as scaffolding for the assem-

bly of macromolecular complexes, which compartmen-

talize the effects of cAMP. PDE4D3 interacts with

EPAC, a guanine nucleotide exchange factor for the

Ras-like small GTPases Rap1 and Rap2 [40], and

ERK5, an extracellular-signal-regulated kinase [41].

These intermolecular interactions facilitate the dissemi-

nation of distinct cAMP signals through each effector

protein. ERK phosphorylation of PDE4D3 decreases the
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phosphodiesterase activity, thereby favoring local accu-

mulation of cAMP and subsequent EPAC activation

[39]. PDE4 also forms another macromolecular signal-

ing complex with b-arrestin to regulate cAMP diffusion

from activated receptors. Arrestins bind specifically to

active (phosphorylated) G-protein-coupled receptors

(GPCRs) and arrest or reduce signaling by these recep-

tors. Specifically, b-arrestin binds to the b-adrenergic

receptor and recruits PDE4. This results in the local

regulation of cAMP levels and PKA activity, which

phosphorylates the b-receptor switching its predomi-

nant coupling from stimulatory guanine nucleotide

regulatory protein (Gs) to inhibitory guanine nucleotide

regulatory protein (Gi) [42]. A summary of different

PDE families is given in Table I, which is discussed in

more detail below.

Table I Phosphodiesterases enzymatic properties, inhibitors and tissue distribution.

PDE family Genes Subfamilies Substrate specificity Inhibitor Tissue distribution References

PDE1 PDE1A, PDE1B,

PDE1C

PDE1A

PDE1B

PDE1C

cAMP < cGMP

cAMP < cGMP

cAMP = cGMP

Nimodipine

Vinpocetine

IC224

SCH51866

Heart, kidney, lung, smooth muscle,

sperm, olfactory epithelium,

lymphocytes, brain – such as

hippocampus and cerebral

cortex – and also in male and

female urogenital tract

[165–176]

PDE2 PDE2A PDE2A cAMP = cGMP EHNA

BAY 60-7550

PDP

IC933

Adrenal medulla, brain, heart, platelet,

brown adipose tissue, liver, olfactory

epithelium

[51,175,177–184]

PDE3 PDE3A, PDE3B PDE3A cAMP > cGMP

PDE3B

Cilostamide

Milrinone

Trequinsin

Cilostazol

OPC-33540

Heart, platelet, vascular smooth

muscle, cardiovascular tissues, kidney,

oocytes, adipocytes, hepatocytes,

spermatocytes, T lymphocytes, and

macrophages

[185–191]

PDE4 PDE4A, PDE4B,

PDE4C, PDE4D

PDE4A

PDE4B

PDE4C

PDE4D

cAMP Rolipram

Ro 20-1724

Roflumilast

Cilomilast

AWD 12-281

SCH351591

V-11294A

Brain, lung, testis, and immune cells

such as neutrophils, eosinophils,

dendritic cells, macrophages, CD8+

lymphocytes

[192–205]

PDE5 PDE5A PDE5A cGMP Zaprinast

DMPPO

E4021

Sildenafil

Vardenafil

Tadalafil

DA-8159

Platelets, vascular and visceral smooth

muscle, skeletal muscle, placenta,

brain, liver, pancreas, lung, heart,

kidney, and cerebellum

[71,72,74–79,

206–214]

PDE6 PDE6A, PDE6B,

PDE6C, PDE6D

PDE6A/B

PDE6C

PDE6D

cGMP Zaprinast

DMPPO

E4021

Sildenafil

Pineal gland and in the outer segments

of the retinal photoreceptor neurons

[84–86,215–217]

PDE7 PDE7A, PDE7B PDE7A

PDE7B

cAMP BRL 50481

IC242

Lung, spleen, brain, thymus, and

immune cells

[89–92,218–223]

PDE8 PDE8A, PDE8B PDE8A

PDE8B

cAMP Dipyridamole Brain, thyroid, pancreas, and adrenal

cortex

[98,99,224,225]

PDE9 PDE9A PDE9A cGMP BAY 73-6691

PF-04447943

Brain, prostate, kidney, spleen, and

gastrointestinal tissues

[105,226–229]

PDE10 PDE10A PDE10A cAMP < cGMP Papaverine Brain, testis, heart, and thyroid [230–232]

PDE11 PDE11A PDE11A cAMP = cGMP BC11-38 Liver, prostate, testis, skeletal muscle,

thyroid, and salivary gland

[109,233,234]

ª2014 Soci�et�e Franc�aise de Pharmacologie et de Th�erapeutique
Fundamental & Clinical Pharmacology 28 (2014) 593–607

Regulation of cAMP signaling 595



PDE FAMIL IES

One of the first families identified was the Ca2+/calmod-

ulin-dependent PDE, now known as phosphodiesterase

1 family (PDE1) [43]. This family comprises three

isoforms, PDE1A, PDE1B, and PDE1C, which are

expressed in different cell types and specific tissues. In

early studies, a postsynaptic localization of PDE1 in

diverse brain areas was proposed [44]. Currently, PDE1

has been also described in the heart and in blood

vessels, macrophages, T lymphocytes [45], testis, and

spermatozoa [46]. These enzymes are mainly found in

the cytosol, but are also located in specific subcellular

regions such as the spermatozoon tail [47].

The PDE2 family includes a dual-substrate enzyme,

which hydrolyzes both cAMP and cGMP. A key fea-

ture of this family is its allosteric activation by cGMP,

which stimulates cAMP degradation [48,49].

Although only one gene has been described (PDE2A),

three splice variants are known, cytosolic and

membrane-bound forms [50]. The protein was firstly

purified from bovine and calf tissues, such as heart,

liver adrenal gland, and platelets [51,52]; moreover, it

has been found in endothelial cells, macrophages, and

brain [53,54]. Platelet aggregation [55], aldosterone

secretion [56], and regulation of calcium channels

[57] are processes that require cAMP hydrolysis by

PDE2. Recently, a particular variant of PDE2A with a

mitochondrial targeting sequence has been reported

[58]. This variant seems to regulate the respiratory

chain, which opens the possibility of using specific

PDE-targeting drugs to regulate mitochondrial func-

tion.

The PDE3 family also hydrolyzes cAMP and cGMP,

having a relatively high affinity for cGMP, and is often

referred to as cGMP-inhibited PDE. Two isoforms have

been described, PDE3A and PDE3B. PDE3A is highly

expressed in cardiomyocytes, oocytes, vascular smooth

muscle, and platelets. PDE3B is found in pancreas,

liver, and adipose tissue [59]. PDE3A regulates

myocardial contractility through interaction with the

sarcoplasmic reticulum Ca++ ATPase (SERCA2a pump)

[60]; thus, PDE3A inhibitors have been used to treat

heart failures in spite of chronic use leading to adverse

effects [18,61]. PDE3B seems to be involved in energy

metabolism; thus, it is an interesting target to treat

metabolic disorders, but the interplay between the dif-

ferent tissues that express this isoform must be taken

into account to develop novel therapeutic strategies

[62,63].

PDE4 is one of the best-studied phosphodiesterase

families. It has a low Km and cAMP-specific PDE activ-

ity. This activity was initially characterized by the fact

that it can be selectively inhibited by the drug rolip-

ram, and the enzymes were once named RoI-PDEs (ro-

lipram-inhibited PDEs) based on this property. One

consequence of the early discovery of PDE4 is that its

biochemistry, genetics, and physiological functions

have been extensively described. This family is

expressed in many different tissues and cell types, play-

ing a role in a large number of physiological processes

[35,64]. There are four isoforms (PDE4A–PDE4D), each
with multiple variants. Diverse variants may be gener-

ated by alternative splicing, such as ‘long’, ‘short’, and

‘super-short’ variants [23,65]. Currently, at least 25

splice variants have been described [66]. In this family

of phosphodiesterases, a conserved module termed

upstream conserved region (UCR) has been described

in the region N-terminal to the catalytic core, which

has been associated with several processes including

subcellular localization and catalytic activity as previ-

ously mentioned [23,67,68]. Interactions between

UCRs and several proteins can confer PDE4 precise

subcellular locations. For instance, interactions

between one of the UCRs of PDE4D3 with myomegalin

[69] and AKAP450 [70] confer this isoform a Golgi/

centrosomal location. For PDE4A5, perinuclear loca-

tion is also mediated by the UCR domain while target-

ing to membrane ruffles and cell periphery is mediated

by a discrete sequence in the N-terminal region that

possesses an SH3 interaction site [36].

The PDE5 family is known as cGMP-specific phos-

phodiesterase based on their substrate specificity. It

was initially isolated and characterized from platelets

and lung [71,72]. PDE5A is the only isoform described;

however, three variants have been identified [73–75].
It is located in vascular and visceral smooth muscle,

skeletal muscle, placenta, brain, liver, and greatly in

pancreas, kidney, heart, lung, and cerebellum [76–79].
PDE5 inhibitors such as sildenafil are currently used

to treat erectile dysfunctions [80] and have also shown

effects in treating pulmonary hypertension [81]. In

both cases, the mechanism involves the cGMP-medi-

ated relaxation of the vascular smooth muscle cells

[82].

The PDE6 family, also called photoreceptor PDE, is

composed of three isoforms, PDE6A, PDE6B, and

PDE6C, plus two regulatory subunits (PDE6c and

PDE6d) [83]. They are mainly expressed in the outer

segments of the retinal photoreceptor neurons, where
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they are key participants in the visual response to light

[84–86]. Some forms of retinitis pigmentosa and sta-

tionary night blindness are related to genetic mutations

affecting the protein subunits of the PDE6 complex

[87,88].

The PDE7 family, such as PDE4, has high selectivity

for cAMP as substrate. It was described by a genetic

screening in yeast [89]. This family is composed of two

isoforms, PDE7A and PDE7B. For PDE7A, A1, A2, and

A3 variants have been described [90]. PDE7 has been

detected in lung, spleen, brain, thymus, and immune

cells [90–93] where it participates in T-lymphocyte

activation [94–96] through the Golgi apparatus [97].

PDE8 family is cAMP specific and shows great affin-

ity by their substrate. This family is composed of two

isoforms, PDE8A and PDE8B [98,99], and it has been

associated with T-cell adhesion [100] and lymphocyte

chemotaxis [101]. In addition, PDE8A has a role in

cardiac muscle where it is implicated in the regulation

of Ca++ movement in the cardiomyocyte [102]. PDE8B

mutations have been found in patients with adrenocor-

tical hyperplasia [103].

PDE9 family has only one gene product identified,

PDEA9A; however, there are at least 20 splice variants

of this isoform [104]. This isoform possesses the highest

affinity for cGMP [105]. Splice variants have been

found in different intracellular localization, such as

cytosol and nucleus [106].

The PDE10 family is composed of only one member,

PDE10A, although four variants (PDE10A1–4) have

been described. These phosphodiesterases possess a

domain, which has higher specificity for cAMP than

for cGMP [107]. The gene product is mainly expressed

in the striatal medium spiny neuron, and at low levels

in the brain and other tissues [108].

PDE11 family was the last family discovered. Like

PDE10 family, only one gene product has been identi-

fied, PDE11A, and four splicing variants have been

described (PDE11A1–4). This family regulates both

cGMP and cAMP [109]. The function of this family has

not yet been described; however, its activity has been

associated with adrenal and testicular tumorigenesis

[110,111].

COMPARTMENTAL IZED CAMP
S IGNAL ING AND DISEASES

Extensive studies of the role of cAMP signaling in

many diseases have been performed, reporting the

involvement of up/downregulated genes, genetic

mutations, and changes in AC and PDE activity. Addi-

tionally, the current evidence strongly supports that

compartmentalized and anchored PDE pools are also

required for spatiotemporal regulation of cAMP

signaling in both physiological and disease conditions

[112–115].
Accordingly, the role of cAMP-degrading PDE iso-

forms 3 and 4 in several diseases, including certain

types of heart diseases, has been extensively studied by

use of ‘cAMP sensors’ based on fluorescence resonance

energy transfer (FRET) [23,112,113,116]. In cardio-

myocytes, PDE3 and PDE4 variants account for the

majority of cAMP degradation [83,117]. Both PDEs

also are localized to distinct compartments of cardio-

myocytes and also regulate distinct pools of cAMP

[117]. However, their role in heart diseases (hypertro-

phy and heart failure) and the underlying mechanisms

are slightly different. While heart disease is associated

with downregulation of PDE3 gene expression by ICERs

(inducible cAMP early repressors) [118–120], PDE4D

isoforms have been reported in the rat ventricular myo-

cytes to be involved in altered cAMP-compartmented

signaling and heart failure [113,121]. In the case of

PDE4D3, this isoform binds to the muscle A-kinase

anchoring protein mAKAP, a scaffold protein that also

binds to the protein kinase A (PKA) and EPAC1 [39].

Some AKAPs are also induced in hypertrophic cardio-

myocytes, which leads to redistribution of PDE4D3

from the cytosol to a perinuclear compartment by an

unknown mechanism, thereby alters the cAMP signal-

ing for cardiac contractility [38,122].

It has been reported that during cardiac hypertrophy

there is a downregulation of PDE3A, PDE4A, and

PDE4B, which in the short term can compensate a

decrease in cAMP synthesis, but in the long term may

cause a loss of compartmentalized cAMP signaling and

chronic activation of downstream effectors (PKA,

EPAC) that are involved in pathological hypertrophy

[123].

Recently, also a role for PDE2 has been suggested

during heart failure. In this condition, PDE2 is upregu-

lated and protects against hypertrophic stimuli,

suggesting that PDE2 activation can be used as a

therapy for heart failure [124].

Glomerular diseases are also associated with changes

in PDE localization and thus altered cAMP-compart-

mented signaling [125]. The main feature of glomeru-

lar failure (acute and chronic glomerulonephritis) is

the excessive proliferation of mesangial cells, a special-

ized type of smooth muscle cell localized at the center
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of glomerulus with a critical role in glomerular patho-

physiology [126,127]. In the mesangium, PDE3 and

PDE4 are both involved in compartmentalized intracel-

lular pools of cAMP with different effects in mesangial

cells: While the PDE3-linked cAMP-PKA pathway

accounts for mitogenesis, the PDE4-linked cAMP-PKA

pathway modulates generation of reactive oxygen spe-

cies (ROS) [128–130]. Modified mesangial mitogenesis

has been associated with changes in cAMP pools due

to an altered PDE3 interaction with Raf-1 kinase and

ERK, which belong to the MAPK signaling pathway

[131–134]. Moreover, ROS generation has been widely

described in development of glomerulonephritis

pathology [135], and they can be suppressed by use of

PDE4 inhibitors [134–137], which might be correlated

with modification in PDE4 activity and subcellular

localization and thus compartmentalized cAMP.

Deregulated cAMP signaling by PDE4 isoform may

also play an important role in mental disorders such as

depression [138] and schizophrenia [139]. Recently, it

has been reported that DISC1, a genetic susceptibility

factor for schizophrenia and related severe psychiatric

conditions that acts as multifunctional scaffold protein,

directly interacts with PDE4B isoform through its

UCR2 domain in the human neuroblastoma cell line

SH-SY5Y [140,141]. This interaction leads to a subse-

quent dissociation of PDE4B from DISC1 and increased

cAMP levels, which is involved in neuronal migration

and brain development [140,142,143]. Deregulation of

cAMP levels by disruptions in the DISC1-PDE4B inter-

action has been involved in brain alteration, affect, and

cognition. However, deciphering the DISC1–PDE4
interactions and how it can regulate cAMP signaling is

a complex task. DISC1 contains five PDE4D binding

sites acting as a multifunctional scaffold protein, but

the specificity of each binding site remains to be clear

[141]. In addition, studying deregulated DISC1–PDE4
interaction in patients is complicated by factors includ-

ing tissue availability, drug therapy, and others

[138,143]. Therefore, mouse models will be useful to

reveal the role of DISC1–PDE4 interaction and cAMP

signaling in psychiatric disorders.

The concept of cAMP compartmentalization involved

in disease also includes other cAMP-processing proteins

such as soluble adenylyl cyclase (sAC), which is

responsible for cAMP synthesis. This protein is highly

expressed in testis [144] and diffusely expressed in epi-

dermal cells (keratinocytes and melanocytes) and other

cell types (eccrine ductal cells, mononuclear cells, and

cutaneous nerves) [145,146]. Inside cells, sAC is found

in the cytoplasm, plasma membrane, mitochondria,

centriole, and nucleus [130]. However, in certain hy-

perproliferative disorders of the skin, including psoria-

sis, sAC in keratinocytes is predominately found at the

nucleus of differentiated cells induced to reenter to the

cell cycle [145]. In the nucleus, sAC activates the

cAMP-response-element-binding (CREB) transcription

factor [130,145], which increased activity has been

previously reported in psoriasis pathogenesis [147].

The fact that the keratocyte cAMP signaling is involved

in this disease by modulating nuclear gene expression

highlights the importance of a proper cAMP compart-

mentalization and localization of cAMP-modulating

enzymes in health and disease.

CANCER AND PDE

Targeting tumor cells with chemotherapy agents is, so

far, the gold standard in cancer treatment. Phospho-

diesterases (PDEs) are activated by different signaling

pathways disrupted in numerous types of tumors and

might play an important role not only in the pathogen-

esis but also in the development of novel drugs target-

ing cell cycle.

Gastrointestinal tumors, such as colorectal cancer,

are the fourth leading cause of cancer and cancer-

related mortality in the world, primarily affecting

patients in developed countries [148,149]. Although

the epidemiology of this disease remains poorly under-

stood, there is an inverse relationship between the inci-

dence of colorectal cancer and enterotoxigenic

Escherichia coli (ETEC) infections [150]. ETEC produce

heat-stable enterotoxins (STs), a principle cause of

secretory diarrhea in endemic populations, travelers,

and agriculturally important animal herds. STs are

plasmid-encoded small peptides that bind to guanylyl

cyclase C (GC-C), specifically expressed in intestinal

epithelial cells [150]. STs inhibit DNA synthesis in

human colon cancer cells expressing GC-C but not in

GC-C-deficient tumor cells. This inhibition on cell

proliferation is due to the accumulation of intracellular

cGMP. Yet, selective inhibitors of PKG, which disrupt

ST induction of intestinal secretion, do not prevent the

antiproliferative action of the enterotoxins. Moreover,

inhibitors of cAMP-dependent protein kinase or cGMP-

regulated PDE3 do not influence inhibition of

proliferation by ST [151]. Thus, the antiproliferative

effects of ST on human colon carcinoma cells are not

mediated by classical downstream effectors of cGMP

[152,153].
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According to public datasets of gene expression analy-

sis, PDE4B expression levels are higher in clinical tumor

samples from patients with colorectal cancer (CLC) in

comparison with those from healthy control [153].

PDE4B is specifically upregulated among other PDE4

isoforms, and re-expression of oncogenic KRAS in HKe3

cells (isogenic human colon cancer cells that lack the

mutant KRASG13D allele) [154] induces PDE4B overex-

pression [153]. In addition, increased expression of

PDE4B mRNA is correlated with relapsed CRC, which

suggests PDE4B as a promising candidate for a thera-

peutic target and as prognostic molecular marker in

CRC [153]. As reported for patients with colon cancer,

PDE4D is overexpressed in human prostate cancer,

showing variations in isoform expression. In fact,

PDE4D knockdown reduces the growth and proliferation

rate of prostate cancer xenografts in vivo [155].

Chronic obstructive pulmonary disease (COPD) is an

inflammatory lung disease associated with decreased

expiration of CO2 and upregulation of the nicotinic

receptor A7nAChR. Although the tobacco carcinogen

NNK normally binds to B-adrenergic receptors in the

healthy lung, it binds preferentially to the sensitized

A7nAChR in the COPD lung. In addition, the COPD

lung typically overexpresses PDE4, leading to a

deficiency of intracellular cAMP, thus deprives lung

cells of their defense against hyperactive RAF1-medi-

ated signaling [156,157]. Therefore, PDE4 may be an

attractive therapeutic target.

As PDE4, PDE5 displays a role in cancer. In mela-

noma cells, oncogenic BRAF induces invasion through

downregulation of PDE5A [158,159]. Nevertheless,

PDE5 inhibition is responsible for the breast tumor cell

growth inhibitory activity in addition to apoptosis,

suggesting that PDE5 is another promising therapeutic

target in this type of cancer [160].

Concerning specific mutations on PDE genes, several

mutations have been described as predisposing to bilat-

eral adrenal hyperplasia and other adrenal tumors

[161]. PDE11A and PDE8B mutations have been found

in patients with this type of cancer. In these studies, it

has been defined that PKA and/or cAMP acts as a

coordinator of growth and proliferation in the adrenal

cortex. Mouse models where the respective genes have

been knocked out support this notion [162].

These evidences confirm that dysregulation of cAMP

homeostasis can be linked to tumorigenesis, both

directly and indirectly [163]. Impaired cAMP (and/or

cGMP) generation upon overexpression of PDE isoforms

has been described in several cancer pathologies.

Inhibition of specific PDE isoforms may induce apopto-

sis and cell cycle arrest in a broad spectrum of tumor

cells. Hence, the development and clinical application

of specific PDE isoenzyme inhibitors may selectively

restore normal intracellular signaling, providing an

antitumor therapy with reduced adverse effects [164].

Due to complex cross talk among signaling pathways,

predicting the impact and efficacy of signaling inhibitors

is difficult because they produce a weak growth inhibi-

tion. Thus, inhibition of multiple pathways will be cer-

tainly required to substantially affect tumor cell growth.

Compartmentalization, which is the spatial confinement

of multiple elements of the cAMP-signaling pathway,

might be the answer. Spatial and time control involves

not only the protein components of the pathway but also

the cAMP molecule. The best example is cardiomyocytes

where spatially segregated signaling domains are the

key to regulate the specificity of response. Given the

large number of potential targets in cancer therapy, an

urgent task is to further investigate the previously iden-

tified candidates, which inhibition/activation might pro-

vide alternative therapeutic treatment in combination

with other targeted therapies.

In summary, involvement of cAMP-processing

enzymes in spatial and temporal regulation of cAMP sig-

nal propagation is critical. Experimental evidence

strongly supports that any perturbation in the tight con-

trol of cAMP signaling may lead to altered cAMP

response and pathological conditions. Future perspec-

tives of cAMP compartmentalization include not only

identification of other pathological disorders associated

with the spatiotemporal tuning of cAMP regulators (ACs

and PDEs), but also synthesis and characterization of

novel PDE inhibitors to contribute to the development of

alternative drug therapy. Considerable attention has

been given to the development of selective PDE inhibi-

tors, especially after the therapeutic success of PDE5

inhibitors in the treatment of erectile dysfunction. Thus,

understanding the molecular basis of cAMP signaling

can provide new insights for improved pharmaceutical

targeting of cancer cells and other pathologies.
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