

FACULTAD DE HISTORIA, GEOGRAFÍA Y CIENCIAS POLÍTICAS INSTITUTO DE GEOGRAFÍA

DINÁMICAS ESPACIALES Y TEMPORALES DE LA VEGETACIÓN ZONAL EN LA REGIÓN ALTIPLANO ANDINO, HOTSPOT DE BIODIVERSIDAD ANDES TROPICALES (2000 – 2020)

POR

MARITZA ALEJANDRA PAICHO HIDALGO

Tesis presentada al Instituto de Geografía de la Pontificia Universidad Católica de Chile, para optar al grado académico de Magíster en Geografía y Geomática

Profesor Guía: Patricio Pliscoff Varas Comisión Examinadora: Camilo del Río López Mónica Meza Aliaga

Marzo, 2022

Santiago, Chile ©2022, Maritza Alejandra Paicho Hidalgo ©2022, Maritza Paicho Hidalgo. Se autoriza la reproducción total o parcial, con fines académicos, por cualquier medio o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su autora.

DEDICATORIA

A la luz de todos mis días, mi Cataleya, por existir y regalarme tantos momentos de alegría y felicidad.

A mi linaje femenino: mi madre Estela, mis abuelitas, mis bisabuelas y todas esas mujeres valientes de mi familia que estuvieron antes de mí, por labrar un mejor futuro para nosotras, y por regalarme la vida y este destello de creatividad que llevo en mí.

A esta hermosa naturaleza que me rodea: la tierra que sostiene firmemente mis pies e ideas; el mar inmenso que me acompaña a diario y calma mis emociones; la pequeña

fracción del reino plantae que cuido a diario y que crece al mismo ritmo de mis proyectos; y la hermosa bóveda celeste y sus astros que han alumbrado mis noches y han sido testigos de tantas enseñanzas.

A todas ellas dedico este proceso y proyecto.

AGRADECIMIENTOS

Inicio agradeciendo a mi persona, por la perseverancia que poseo, por mantenerme firme en el horizonte del proyecto, por haber sabido manejar la paciencia para aprender a programar, y por el ímpetu que me permitió en un momento dado tomar el proyecto en mis manos, desarrollarlo y lograr finalizarlo, a pesar de las complejidades que se presentaron durante los últimos años.

Agradezco a mis padres, Estela y Orlando. A mi madre porque no importa que tan lejos esté o que tan complejas se presenten las circunstancias de la vida, sé que puedo volver a mi hogar, a mi equilibrio. Y a mi padre que, a pesar de que ya no está en este plano físico, me ha acompañado en este proceso de aprendizaje.

También agradezco a mis hermanos: Natalie, Estela, Constanza, Jhoel y Natasha, por su apoyo incondicional, por creer siempre en mis capacidades y con ello nutrir mi seguridad e ímpetu en mis proyectos.

No puedo dejar de agradecer a mi compañero de vida por estos días, Mauricio, por su apoyo día a día y por todas las enseñanzas que me ha proporcionado.

Por otro lado, agradezco al profesor guía, Patricio Pliscoff, por la confianza en mi propuesta de investigación, y por su apoyo en el proceso de publicación de resultados, que se está llevando a cabo actualmente.

Además, agradezco al programa de Magíster en Geografía y Geomática por el apoyo financiero brindado, a través de su beca interna, durante los años 2019 y 2020.

Y finalmente, agradezco a ANID (ex CONICYT) por financiar, a través de la beca "CONICYT-PFCHA/MagísterNacional/2019 – 22190799", los estudios de magíster que dieron origen a la presente investigación.

ÍNDICE DE CONTENIDO

DEDICATORIAi							
AGRADECIMIENTOS ii							
ÍNDICE	ÍNDICE DE TABLASv						
INDICE	INDICE DE FIGURASv						
RESUM	RESUMEN						
ABSTR	ABSTRACTix						
I. INTRODUCCIÓN							
1.1.	Planteamiento del problema de investigación1						
1.2.	Preguntas de investigación						
1.3.	Hipótesis						
1.4.	Objetivos						
1.4	.1. Objetivo general						
1.4	.2. Objetivos específicos7						
II FS'	TADO DEL ARTE 8						
	$\mathbf{A}\mathbf{P}\mathbf{C}\mathbf{O} = \mathbf{T}\mathbf{F}\mathbf{O}\mathbf{P}\mathbf{I}\mathbf{C}\mathbf{O} $						
3.1	Variabilidad y cambio climático: efectos sobre las dinámicas de la vegetación 14						
3.1.	Variables y proceso del clima en el Altiplano						
3.2.	Dinámicas de la vegetación zonal						
3.4	Hotspots de Biodiversidad						
3.5	Sansoras Ramotos Índicas Espectralas y productos de detos espectralas; NDVI						
5.5.	I ST FT v CHIRPS 28						
IV MF	TODOLOGÍA 36						
4 1	Área de Estudio 36						
4.2	Datos 39						
4.3	Estadística descriptiva de variables 42						
44	Mátricas Fonológicas						
4.5	Prueba estadística de tendencia 47						
4.6	Correlación de variables ambientales						
	Conclusion de variables ambientales						

V. RES	SULTADOS	51			
5.1.	Estadística Descriptiva	51			
5.1.	.1. Estadística descriptiva de las series temporales completas	51			
5.1.	.2. Estadística descriptiva por estaciones del año	55			
5.1.	.3. Estadística descriptiva de las series temporales por clúster	57			
5.2.	Fenología de la vegetación	61			
5.2.	.1. Series temporales de valores NDVI	61			
5.2.2	2.2. Ciclos fenológicos de la vegetación	63			
5.2.	.3. Métricas fenológicas de la vegetación	65			
5.3.	Tendencias de la vegetación	70			
5.4.	Relación entre vegetación y variables ambientales	77			
5.4.	.1. Vegetación y precipitación	77			
5.4.2	.2. Vegetación y evapotranspiración	81			
5.4.	.3. Vegetación y temperatura diurna de la superficie terrestre	86			
VI. DIS	SCUSIONES Y CONCLUSIONES	91			
REFERE	ENCIAS	101			
ANEXO I. Códigos desarrollados en la plataforma Google Earth Engine					
ANEXO II. Códigos desarrollados en R139					
ANEXO	O III. Estadística descriptiva de las variables precipitación (C	HIRPS),			
	evapotranspiración (ET), temperatura diurna de la superficie terrestre	e (LST) y			
NDVI					
ANEXO IV. Pendientes de las series temporales NDVI y de las métricas fenológicas 169					

ÍNDICE DE TABLAS

Tabla 2-1. Impactos brutos del cambio climático 1990-2100 sobre la rae (sin tomar en
cuenta la deforestación y la fertilización de co2), por eco-región, bajo e
escenario A2 en Bolivia (cambio porcentual en el número de especies po
píxel)
Tabla 3-1. Puntos críticos de biodiversidad
Tabla 3-2. Diversidad de especies, endemismo y estado global de amenaza en el hotspo
de los Andes Tropicales260
Tabla 3-3. Especies globalmente amenazadas en el hotspot Andes Tropicales, según
criterio UICN28
Tabla 4-1. Características productos: NDVI, ET, LST y CHIRPS 40

ÍNDICE DE FIGURAS

Figura 3-1. Porcentaje de cambio en los puntos críticos de biodiversidad al 2050,
producto del cambio climático y las actividades agroeconómicas en estas
zonas. Colores rojos indican cambios profundos y colores azulen señalan
cambios leves
Figura 4-1. Área de estudio
Figura 4-2. Ecorregiones del área de estudio
Figura 5-1. Estadística descriptiva de las variables precipitación (a), evapotranspiración
(b), temperatura diurna de la superficie terrestre (c) y NDVI (d)55
Figura 5-2. Coeficiente de variación (CV), por estaciones, de las variables precipitación
(a), evapotranspiración (b), temperatura diurna de la superficie terrestre (c) y
NDVI (d)57
Figura 5-3. Estadística descriptiva, por clúster, de las variables precipitación (a),
evapotranspiración (b), temperatura diurna de la superficie terrestre (c) y
NDVI (d)60

Figura	5-4.	Prueba	de	normalidad	de	Lilliefors	(D)	por	clúster	estadísticamente
	si	gnificati	vos	(α< 0.05)	•••••		•••••			61

- Figura 5-5. Series temporales NDVI y sus respectivas tendencias con puntos de cambios estructurales significativos, por clúster, entre los años 2001 y 2020......62
- **Figura 5-7.** Variabilidad interanual de las métricas fenológicas SOS, POP y EOS, de la vegetación en el Altiplano, por clúster, entre los años 2001 y 2020......69
- Figura 5-8. Tendencia estadísticamente significativa (a) y pendiente de las áreas con tendencia estadísticamente significativa de los valores NDVI (b), en el Altiplano, entre los años 2000 y 2020......71

- Figura 5-11. Pendiente de las áreas con tendencia estadísticamente significativa de los valores NDVI, en el Altiplano, por meses del año entre los años 2000 y 2020.

- **Figura 5-14.** Correlación significativa (p-value < 0.05) entre series temporales NDVI y precipitación por meses (01-01-2001 al 02-02-2020)......80

Figura 5-16. Correlación significativa (p-value < 0.05) entre series temporales NDVI y evapotranspiración por estaciones del año (01-01-2001 al 02-02-2020).....83

- Figura 5-19. Correlación significativa (p-value < 0.05) entre series temporales NDVI y temperatura de la superficie terrestre por estaciones del año (01-01-2001 al 02-02-2020).</p>
- Figura 5-20. Correlación significativa (p-value < 0.05) entre series temporales NDVI y temperatura de la superficie terrestre por meses (01-01-2001 al 02-02-2020).

RESUMEN

Las dinámicas de la vegetación zonal son una respuesta, entre otros factores, al comportamiento del clima, existiendo un fuerte acoplamiento clima-biosfera. En el marco de esta premisa, se planteó el objetivo_de analizar las dinámicas de la vegetación zonal y su relación con las variables ambientales, en la región Altiplano andino, parte del hotspot de biodiversidad Andes Tropicales, entre los años 2000 y 2020; con el propósito de identificar perturbaciones y/o tendencias en las dinámicas de la vegetación. Considerando los cambios registrados en la variabilidad climática propia del Altiplano en las últimas décadas, particularmente en la precipitación y la temperatura, variables que tienen una gran injerencia en el comportamiento de la vegetación en los diferentes territorios. Investigación que se abordó a través del cálculo de métricas fenológicas de vegetación; aplicación de pruebas de tendencias no paramétricas y estimación de pendientes de las series temporales de valores NDVI; y por último se determinó la correlación entre la vegetación (NDVI) y las variables precipitación (CHIRPS), temperatura diurna de la superficie terrestre (LST) y evapotranspiración (ET). Los resultados indicaron i) una gran variabilidad en los días del año (DOY) de las métricas inicio, punto máximo y fin de la temporada de crecimiento (SOS, POP y EOS), y a su vez no se identificaron tendencias o cambios estadísticamente significativos en estas métricas; ii) tendencias principalmente positivas y leves en la vegetación del Altiplano, entre 2000 y 2020, con una magnitud de cambio menor o igual a 0.023 NDVI por década, en la mayor parte del área de estudio, tasa de cambio que se incrementa en la primavera austral; y iii) una correlación positiva estadísticamente significativa entre la vegetación y evapotranspiración, una correlación negativa con la variable temperatura diurna de la superficie terrestre, y una correlación positiva relativamente alta entre la vegetación y precipitación, principalmente en la zona centro-norte del Altiplano. Por lo tanto, los leves incrementos en la vigorosidad de la vegetación podrían estar explicados, en parte, por el comportamiento de las precipitaciones en esta zona en las últimas décadas.

Palabras claves: vegetación zonal, Altiplano, hotspot de biodiversidad Andes Tropicales.

ABSTRACT

The dynamics of the zonal vegetation are a response to, among other factors, to weather behavior, there is a strong coupling climate - biosphere. Within the framework of this premise, the objective of analyzing the dynamics of the zonal vegetation and its relationship with the environmental variables was raised, in the andean Altiplano region, part of the Tropical Andes biodiversity hotspot, between the years 2000 and 2022; with the purpose of identifying disturbances and/or tendencies in the dynamics of the vegetation. Considering the changes registered in the climatic variability typical of the Altiplano in recent decades, especially in precipitation and temperature, variables that have a great influence on vegetation behavior in different zones. Research that was carried out through the calculation of phenological metrics of vegetations; application of nonparametric trend tests and estimation of slopes of the time series of NDVI values; and finally, the correlation between the vegetation (NVDI) and the variables of precipitation (CHIRPS), diurnal temperature of the earth's surface (LST) and evapotranspiration (ET) was determined. The results indicated: i) A great variability in the days of the year (DOY) of the metrics, beginning, peak and end of the growing season (SOS, POP AND EOS), and at the same time, no statistically significant trends or changes in these metrics were identified; ii) mainly positive and slight trends in the vegetations of the Altiplano, between 2000 and 2020, with a magnitude of change less than or equal to 0.023 NDVI per decade, in most of the study area, rate change that increases in the austral spring; iii) a statistically significant positive correlation between vegetation and evapotranspiration, a negative correlation with the variable diurnal temperature of the land surface, and relatively high positive correlation between vegetation and precipitation, mainly in the central-northern zone of the Altiplano. Hence, the slight increase in the vigor of the vegetation could be explained, in part, by the behavior of rainfall in this area in recent decades.

Key words: Zonal vegetation, Altiplano, Tropical Andes biodiversity hotspot.

I. INTRODUCCIÓN

1.1. Planteamiento del problema de investigación

En los diferentes territorios, la temperatura y precipitación son los principales controladores de las dinámicas de la vegetación; siendo esta última, los ecosistemas y su biodiversidad una respuesta a las interacciones entre los componentes del clima y la superficie terrestre. De esta forma la variabilidad climática interanual e interdecadal, propia de algunas zonas geográficas, influye en el comportamiento de la vegetación zonal¹; y a su vez, los cambios o tendencias en la variabilidad climática natural, implican perturbaciones en las dinámicas de la vegetación, en los ecosistemas y en la biodiversidad que sustentan, principalmente en las regiones áridas y semiáridas (Lotsch et al., 2003).

El comportamiento de la temperatura y precipitación a lo largo de las diferentes estaciones del año tienen importantes injerencias en las dinámicas de la vegetación, regulando su fenología (Van Schaik et al., 1993). Esta última, definida como las fases observables en el ciclo estacional de los diferentes tipos de vegetación, tales como el inicio de la temporada de crecimiento, duración de este periodo, fase de senescencia, entre otras (Lieth, 1974). Es por ello que, las modificaciones en los patrones de las fases de crecimiento de la vegetación, así como incrementos o reducciones de la vegetación, es una respuesta, entre otros factores, a cambios en el comportamiento habitual del clima, y principalmente de la temperatura y precipitación.

Estas variaciones en la temperatura y precipitación, en algunos casos están estrechamente vinculadas al cambio climático, y en otras asociadas a procesos indirectos y/o naturales (erupciones volcánicas, fluctuaciones climáticas, entre otros) (Workie & Debella, 2018). Existiendo registros de estos cambios a escala global y evidencias de sus efectos en la vegetación y consecuentemente en la biodiversidad (Grupo Intergubernamental de

¹ Vegetación de amplia distribución espacial que está condicionada principalmente por los factores macro climáticos propios de la región (Stupar & Carni, 2017).

Expertos sobre el Cambio Climático - IPCC, 2014). Siendo la fenología de la vegetación un indicador del cambio climático (IPCC, 2007; Adole et al., 2016) y de los cambios en los ecosistemas y su composición de especies.

En este contexto, la reducción o incremento de la vegetación, y las alteraciones en el ciclo fenológico como por ejemplo la reducción del periodo de verdor de la vegetación, el retraso en la fecha de inicio de la temporada de crecimiento, el aumento o disminución del punto máximo de verdor de la vegetación, entre otras posibles variaciones, significan una modificación del hábitat de diversas especies e impactos significativos en la biodiversidad que sustentan, principalmente en las regiones que poseen una gran biodiversidad, y que a su vez albergan especies con altos niveles de endemismo, como los hotspots de biodiversidad.

A escala global, fluctuaciones en las condiciones climáticas normales, cambios en la variabilidad climática propia de algunas zonas y el cambio climático, se han venido registrando en diferentes regiones, y ejerciendo una importante influencia en la vegetación, alterando su fenología y causando variaciones en la cantidad y/o vigorosidad de la vegetación natural. Es así como, en las últimas décadas se ha observado, a través de valores de reflectancia capturada por los sensores remotos, una tendencia media creciente de la vegetación global (~0.00474 unidades de NDVI de la temporada de crecimiento por década) (Zhao et al., 2018; Wu et al., 2020), a pesar de la pérdida de vegetación en algunas regiones por cambio de uso de suelo (Amaral e Silva et al., 2020), fenómenos naturales (erupciones volcánicas, aluviones, entre otros) y variaciones climáticas (Fiore et al., 2020).

En este contexto, Europa y Eurasia han registrado un enverdecimiento de la vegetación (Zhao et al., 2018), al igual que India (De Jong et al., 2012), China (K. Yang et al., 2021; Wang et al., 2020), Etiopía (Workie & Debella, 2018) y el Sahel (Y. Yang et al., 2019), entre otras regiones; y a su vez se ha identificado un pardeamiento en África Oriental (Ghebrezgabher et al., 2020; Measho et al., 2019), sudeste de Asia (Yuan Zhang et al.,

2016), zonas australes de América del Sur, Canadá, África y Asia Central (Y. Yang et al., 2019), entre otras zonas. Sin embargo, es preciso señalar que, en cada uno de los continentes y países mencionados existen matices temporales y espaciales en estos registros.

Si bajamos de escala, abordando los efectos de los cambios en las variables climáticas sobre la vegetación, particularmente en los hotspots de biodiversidad, el panorama es preocupante; considerando a) la importancia que tienen los hotspots de biodiversidad en cuanto a la riqueza y la cantidad de especies endémicas que albergan, y el estado de vulnerabilidad de estos ecosistemas; y b) se ha estimado que hacia el año 2050, en los diferentes escenarios RCP, la vegetación natural original de estas zonas se reducirá en un rango de un 5 a un 87% producto de cambios en el clima, específicamente de la temperatura y precipitación; además de la pérdida de numerosas plantas endémicas en las diferentes zonas (Habel et al., 2019).

Así en el hotspot de biodiversidad Andes Tropicales, se ha estimado que la vegetación natural original se reducirá entre un 7 y 9% producto de cambios en el clima hacia el año 2050 (Habel et al., 2019). Esta reducción de la vegetación indudablemente comprimirá el hábitat de cuantiosas especies endémicas y en diferentes estados de conservación, implicando importantes pérdidas.

A escala del Altiplano andino, la variabilidad climática propia de esta zona se caracteriza estacionalmente por una alta oscilación térmica diaria y una alta variabilidad espacial, diaria, intranual, interanual, e interdecadal de las precipitaciones (Sarricolea & Aravena, 2015). Influyendo en este escenario la Alta de Bolivia, el aporte de humedad desde la cuenca del Amazonas, el Monzón Sudamericano, El Niño Oscilación del Sur (ENSO), la oscilación decadal del Pacifico, la circulación meridional entre el Atlántico norte tropical y América del Sur tropical occidental, y la orografía, entre otros factores (J. C. Espinoza et al., 2020; Arias et al., 2021). Componentes y procesos que condicionan, a escala intranual, la distribución de las precipitaciones principalmente durante los meses estivales

(diciembre, enero, febrero y eventualmente marzo), y a su vez el desarrollo de días de verano completamente secos en alternancia a días con altos registros de precipitaciones, las cuales se desarrollan habitualmente en horarios de la tarde-noche. A escala interanual e interdecadal las precipitaciones del verano austral presentan una alternancia de periodos secos y húmedos mayor a 8 años (Segura et al., 2016). Y en cuanto a la distribución espacial, en términos generales existe una gradiente descendente de norte a sur; no obstante, la compleja orografía posibilita el desarrollo de precipitaciones intensas y muy localizadas espacialmente.

En este complejo clima del Altiplano, en las últimas décadas, se ha observado un cambio en el comportamiento de las temperaturas y en la variabilidad de las precipitaciones. Así se han registrado aumentos en las temperaturas de la superficie terrestre (LST) en los Andes, entre los años 2000 y 2017. Específicamente se identificó una tendencia promedio creciente de 1°C por década de la LST diurna en la época invernal, la cual está directamente relacionada con la elevación, estimándose incrementos de 1.7°C por década en las zonas ubicadas por encima de los 5000 msnm (Aguilar-Lome et al., 2019). En cuanto a las precipitaciones registradas sobre los Andes Tropicales del sur (12°S – 20°S y >3000 msnm) durante los meses estivales, desde la década de los 80, permitieron estimar una tendencia creciente significativa. Específicamente durante este periodo se identificó una reducción de los años extremadamente secos y un aumento de las precipitaciones tanto en las zonas del norte (1982-2018) como en el sur (1987-2018), según la ventana de años utilizada para su estimación (Segura et al., 2020).

Considerando los cambios registrados en la variabilidad climática propia del Altiplano andino, especialmente de la precipitación y la temperatura, variables que tienen una gran injerencia en el comportamiento de la vegetación en los diferentes territorios; surgen preguntas de investigación tales como: ¿Cómo ha sido el comportamiento de las dinámicas de la vegetación zonal en la región Altiplano Andino, parte del hotspot de biodiversidad Andes Tropicales, entre los años 2000 y 2020? Y ¿Cómo se relaciona con el comportamiento de las variables ambientales (temperatura, precipitación y evapotranspiración)? Las cuales han registrado cambios en sus valores durante este periodo. En específico, se busca investigar sobre los posibles cambios o tendencias temporales y espaciales en los procesos fenológicos y en la vigorosidad de la vegetación zonal, entre los años 2000 y 2020, en el Altiplano; y, si el comportamiento de la vegetación en este periodo de tiempo se relaciona con el comportamiento de las variables ambientales: temperatura, precipitación y evapotranspiración.

En este escenario, la relevancia de investigar los cambios en las dinámicas de la vegetación, en el Altiplano Andino, radica principalmente en dos factores: i) la vegetación es un elemento clave en los diversos ecosistemas, ya que proporciona refugio, alimento y en términos generales un sustento a la biodiversidad, entre otros soportes; es por ello que también se considera un indicador del estado ambiental del ecosistema (Gilabert Navarro et al., 1999). Y ii) las características del área de estudio, es decir, forma parte del hotspot de biodiversidad Andes Tropicales; región biogeográfica que alberga la mayor riqueza y diversidad de especies en todo el planeta, además de importantes porcentajes de especies endémicas (Myers et al., 2000; Fondo de Alianzas para los Ecosistemas Críticos [CEPF], 2021). Jugando un papel clave en esta cualidad la heterogeneidad orográfica y la amplia gama de climas presentes (Sanín et al., 2016; Trew & Maclean, 2021). Sin embargo, este hotspot también posee la mayor cantidad de especies con algún estado amenaza.

Por lo tanto, resulta clave la conservación de la vegetación natural original para proporcionar hábitats a numerosas especies; sobre todo considerando que la biodiversidad disminuye drástica y progresivamente con la pérdida de hábitat (Rybicki & Hanski, 2013; Storch et al., 2012), y que los Andes Tropicales al igual que los otros hotspots albergan una biodiversidad única. Por esta razón, conocer los posibles cambios en las dinámicas de la vegetación proporciona información que permite inferir impactos en la biodiversidad y a su vez definir políticas de conservación adecuadas al contexto actual.

1.2. Preguntas de Investigación

¿Cómo ha sido el comportamiento de las dinámicas de la vegetación zonal en la región Altiplano Andino, parte del hotspot de biodiversidad Andes Tropicales, entre los años 2000 y 2020? Y ¿Cómo se relaciona con el comportamiento de las variables ambientales (temperatura, precipitación y evapotranspiración)? Principalmente con la precipitación, que ha registrado tendencias crecientes estadísticamente significativas durante este periodo.

1.3. Hipótesis

Si las dinámicas de la vegetación son una respuesta, entre otros factores, al comportamiento del clima, entonces los cambios registrados en las últimas décadas de las variables temperatura y precipitación en el Altiplano Andino, se reflejará en alteraciones de los procesos fenológicos y/o en la vigorosidad de la vegetación.

1.4. Objetivos

1.4.1. Objetivo general

Analizar las dinámicas de la vegetación zonal y su relación con las variables ambientales, en la región Altiplano Andino, parte del hotspot de biodiversidad Andes Tropicales, entre los años 2000 y 2020; con el propósito de identificar perturbaciones y tendencias en las dinámicas de la vegetación, las cuales podrían tener injerencia en los ecosistemas y su biodiversidad asociada.

1.4.2. Objetivos específicos

- Determinar el comportamiento de los procesos fenológicos, en la región Altiplano andino, entre los años 2001 y 2020; a través del cálculo y análisis de métricas fenológicas de valores NDVI.
- 2) Determinar posibles tendencias temporales (interanual y estacional) de la vegetación zonal, en la región Altiplano andino, entre los años 2000 y 2020, mediante la aplicación de pruebas estadísticas no paramétricas a series de tiempo de valores NDVI.
- 3) Analizar la relación entre el comportamiento de la vegetación zonal y las variables ambientales (temperatura, precipitación y evapotranspiración), en la región Altiplano andino, entre los años 2001 y 2020; a través un análisis exploratorio de variables y el cálculo de coeficientes de correlación.

II. ESTADO DEL ARTE

En el clima del Altiplano, un factor común es la alta variabilidad temporal y espacial; y, por otro lado, el cambio climático tiene y tendrá injerencia a escala global e indudablemente afectará el clima de esta zona. Estas condiciones innegablemente tienen implicancias en los ecosistemas y en la vegetación zonal del Altiplano, ya que esta se encuentra adaptada a los contextos actuales de este entorno. Además, la vegetación presente en los diferentes ecosistemas es resultado de interacciones que se dan entre los componentes bióticos y abióticos en una determinada región (Santibañez-Andrade et al., 2015).

Por otro lado, el índice de diferencia normalizada de vegetación (NDVI), es un indicador ampliamente utilizado para conocer la cantidad, el estado o dinámicas de la vegetación, ya que este índice se construye con los valores de reflectancia de las bandas roja e infrarroja capturados por los sensores remotos, los cuales van a estar determinados por las características fisicoquímicas de la vegetación. De tal forma el índice NDVI se considera un proxy de la productividad de la vegetación (Santin-Janin et al., 2009; Zhang et al., 2019).

Por lo cual considerando que el objetivo de este trabajo es analizar las dinámicas espaciales y temporales de la vegetación, a través de valores NDVI, y su vínculo con variables ambientales en la región de Altiplano andino, se consideró relevante incluir apartados sobre investigaciones que aborden estas temáticas en la cordillera de los Andes y particularmente sobre el Altiplano.

Locatelli et al. (2009) señala que, los efectos del cambio climático en los ecosistemas y su vegetación dependen en parte de la exposición a factores como: aumento de temperatura, cambio de precipitación, cambios en los patrones de las estaciones, incrementos de los niveles de CO2, además de otros factores impulsores como el cambio de uso de suelo, la fragmentación del paisaje, la explotación de recursos y la contaminación, entre otros.

Así, en la porción boliviana del Altiplano se proyecta un importante incremento de las temperaturas entre el periodo de referencia (1971 - 1990) y el periodo futuro (2071-2100), bajo el escenario más extremo de cambio climático, A2, oscilando entre 3,7° y 5°C. Por otro lado, el escenario moderado, B2, arroja incrementos no menores que fluctúan entre 2,78° y 3,7°C. Y en cuanto a las precipitaciones, las proyecciones en ambos escenarios indican una gran variabilidad espacial, es decir, en algunas zonas del Altiplano aumentarán los montos de precipitación y en otras disminuirán (Andersen, 2017).

En este contexto, el ecosistema de Puna y vegetación altoandina, específicamente la porción perteneciente al Estado Plurinacional de Bolivia presenta una gran vulnerabilidad; y precisamente se espera que sea fuertemente impactada la riqueza de especies por el cambio climático, según las proyecciones en el escenario A2 hacia el año 2100 (tabla 2-1).

Tabla 2-1. Impactos brutos del cambio climático 1990-2100 sobre la riqueza absoluta de especies (sin tomar en cuenta la deforestación y la fertilización de CO₂), por eco-región, bajo el escenario A2 en Bolivia (cambio porcentual en el número de especies por píxel)

Departamento	Riqueza de especies inicial	Impacto del cambio climático		
	(número de especies por píxel)	previsto hasta 2100 (cambio		
		porcentual en número de especies		
		por píxel)		
Puna y vegetación altoandina	209	-43%		
Bosque montañoso	1194	-9%		
Chaco y Chiquitano	513	+41%		
Sabanas	1178	-4%		
Bosque inundable	1229	-11%		
Bosque amazónico	1112	-1%		
Bolivia	814	-1%		

Fuente: Andersen (2017).

En el caso de la región de Altiplano, ubicada en Perú, las proyecciones del cambio climático bajo escenarios de emisión RCP 4.5 y 8.5 señalan importantes incrementos de temperaturas mínimas y máximas, entre el periodo de referencia (1971-2000) y el futuro (2036-2065). En cuanto a las proyecciones de precipitación en ambos escenarios de emisión, muestran una variabilidad temporal y espacial (Ministerio del Ambiente, 2016).

En cuanto a los cambios en las dinámicas de la vegetación en la región de Altiplano peruano, entre los años 2000 y 2017, hay que destacar que se ha registrado un enverdecemiento del 15,1% y un pardeamiento que bordea el 4% de las tierras altas; estimaciones que presentan gran variabilidad espacial. Así entre los 4200 y 5200 m.s.n.m. se produce principalmente un pardeamiento de la vegetación, y por encima de los 5000-5200 m.s.n.m. predomina el enverdecimiento, que podría estar explicado por procesos de sucesión ecológica en paisajes postglaciares (Polk et al., 2020).

Y en la porción chilena del Altiplano andino, se identificó un aumento importante en la productividad de la vegetación azonal, asociada a turberas, entre los años 2013 y 2015, a través de la evaluación de valores NDVI. Dinámica que estaría directamente relacionada al aumento de las precipitaciones en los años previos y a la acumulación de nieve en años consecutivos; en tanto las temperaturas mínimas al inicio del verano solo constituirían una influencia secundaria en la productividad de la vegetación (Anderson et al., 2021).

En una escala más local, Torres-Batlló et al. (2020) desarrollaron un trabajo investigativo con el objetivo de indagar las posibles causas que originaron modificaciones en el nivel del agua del lago Poopó, ubicado en el Altiplano boliviano. Para lograrlo realizaron un análisis de las dinámicas de la precipitación, evapotranspiración y vegetación como indicadores de las condiciones ambientales que dan cuenta de posibles cambios. Los resultados indicaron que las tres variables presentan un claro gradiente espacial decreciente desde el noreste hacia el suroeste, la tendencia de las precipitaciones advierte un leve incremento, y los valores NDVI muestran dos zonas con leves tendencias opuestas, lo cual en términos globales implicó un aumento del NDVI de 0.013 durante los 13 años analizados, resultado que tendría una probable explicación por el aumento de las precipitaciones y el desarrollo de actividades agrícolas en la zona. Además, al momento de identificar tendencias por estaciones se evidenció que las tres variables no muestran mayores cambios en la estación seca; sin embargo, en la estación húmeda presentan tendencias positivas estadísticamente significativas.

A escala de los Andes Tropicales, se prevé que las temperaturas aumenten en toda esta región con un ritmo más lento que el promedio global, aunque en las zonas de mayor altitud los incrementos de temperatura serán más importantes. En cuanto a las precipitaciones se proyecta un incremento del 70% de las precipitaciones en la vertiente occidental y oriental de los Andes Tropicales; sin embargo, la zona del Altiplano percibirá una reducción del 10% de las precipitaciones; cambios que provocaran modificaciones evidentes en la vegetación (Marengo et al., 2011).

Si bien aún existe una incertidumbre sobre cambios en las temperaturas y precipitación debido a la completa orografía y los múltiples fenómenos que configuran el clima del Altiplano (p.e. ENOS). Las proyecciones concuerdan en indicar cambios en el clima de esta zona; y, algunas de las consecuencias son la reducción de hábitat propicio y el riesgo de extinción de especies; principalmente si pensamos en las especies que ocupan las franjas más altas de los Andes, quienes no tendrán otro hábitat con clima adecuado para desplazarse (Colwell et al., 2008; Lenoir et al., 2008). Y, por otro lado, es importante considerar que las especies tropicales poseen una baja capacidad de adaptación a nuevas condiciones climáticas debido a su baja tolerancia fisiológica y a las distribuciones reducidas altitudinalmente (Janzen, 1967; (Ghalambor et al., 2006).

A nivel de Sudamérica, Van Leeuwen et al. (2013) desarrollaron una investigación que buscó determinar tendencias espaciales y temporales en la vegetación de todo el subcontinente y con especial énfasis en zonas críticas como la región natural de matorral mediterráneo, entre los años 1982 y 2011; concluyendo que cada tipo de vegetación presenta patrones estacionales diferentes, que las zonas áridas presentan una leve tendencia a la disminución en los valores NDVI durante los 30 años analizados, la distribución espacial de los valores NDVI más bajos se emplaza en forma diagonal a lo largo de la cordillera de los Andes, y la temporada de inicio de crecimiento de la vegetación presenta una gran variabilidad entre los años 1982 y 2011.

A escala global destacar el estudio elaborado por Yang et al. (2019), quienes determinaron un enverdecimiento del 34% de las áreas continentales del mundo, a través de la evaluación de valores NDVI, entre los años 1982 y 2015. Este resultado estaría explicado en un 63,1% por la precipitación líquida, en un 15% por la temperatura, en un 8,6% por el cambio de cobertura del suelo, en un 6,5% por la población, en un 6,4% por la elevación y en un 0,4% por la luz nocturna. Este estudio concluye que, los factores que más influyen en el enverdecimiento de la vegetación, y que se correlacionan de forma estadísticamente significativa son la precipitación (13%) y temperatura (27%).

En otra línea de antecedentes, es importante mencionar investigaciones que se vinculen con la temática propuesta a través del enfoque teórico-metodológico, ya que constituyen un ejercicio en el cual se da cuenta de la utilidad de los métodos para identificar dinámicas de la vegetación. En este contexto, es posible señalar un estudio sobre las dinámicas espaciales y temporales que se presentan en las praderas húmedas de la Patagonia, en el cual se determinaron patrones de distribución de los valores NDVI que estaban definidos por la disponibilidad de agua y las temperaturas; además los valores NDVI calculados a partir de datos satelitales, se correlacionaron estrechamente con la productividad primaria neta aérea medida en campo, por lo cual se manifestó la idoneidad de los datos satelitales (Buono et al., 2010).

Otro estudio que es relevante mencionar es el desarrollado por Bianchi et al. (2020), el cual se enfocó en la Patagonia norte y planteó como objetivo identificar patrones espaciotemporales de los valores NDVI bajo diferentes escalas de tiempo, concluyendo que las variaciones en las condiciones climáticas se reflejan en la distribución de los valores NDVI, de tal forma que la distribución espacial de la precipitación y los valores NDVI muestran una relación; además se identificó que, entre los años 2001 y 2010 si bien la precipitaciones y los valores NDVI no presentan un ciclo anual constante de todas formas se evidencia una relación estadísticamente significativa, conclusión que se torna más robusta al comparar estaciones desfasadas (primavera/verano y otoño/invierno). Profundizando en las líneas de investigación que buscan corroborar metodologías e insumos, se debe señalar que los datos proporcionados por los sensores remotos e índices espectrales, que en definitiva corresponden a los valores de radiación electromagnética o firma espectral de los objetos, permiten evaluar y analizar diversos fenómenos y en diferentes escalas, precisamente por su amplia disponibilidad y cobertura en las diferentes zonas de la tierra, constituyendo en muchos casos un reemplazo de los datos de campo que en ocasiones son poco factibles de recoger. Sin embargo, numerosos trabajos científicos abordan la representatividad, precisión y confiabilidad de los datos satelitales, desarrollando ejercicios para validar o corroborar su ajuste para representar fenómenos en los diferentes ámbitos (meteorológicos, vegetación, elevación, entre otros). Constituyendo información de base relevante para seleccionar datos satelitales e índices, o bien utilizarlos y analizar sus resultados con cierta precaución.

En este contexto, destaca el trabajo desarrollado por Hmimina et al. (2013), quienes buscaban evaluar el potencial de los datos de los productos del sensor MODIS para monitorear diferentes tipos de vegetación en algunas áreas de los principales biomas terrestres; concluyendo en sus resultados que los productos de MODIS no proporcionan patrones fenológicos consistentes para todos los procesos fenológicos, por lo cual en los bosques tropicales los datos de MODIS deben analizarse con precaución. Sin embargo, estas inconsistencias podrían deberse a la saturación que sufre el índice NDVI en zonas de mayor actividad fotosintética o alta biomasa como el Amazonas; por lo cual el NDVI sería más apropiado para evaluar vegetación escasa y EVI para evaluar zonas con vegetación más densa ya que este índice percibe las variaciones del dosel sin saturarse (Huete et al., 2002).

III. MARCO TEÓRICO

3.1. Variabilidad y cambio climático: efectos sobre las dinámicas de la vegetación

Es fundamental diferenciar el concepto de variabilidad climática, y, cambio climático. El primero hace referencia a las fluctuaciones en las condiciones de un espacio por cortos periodos de tiempo, mientras que la segunda hace mención a las modificaciones de las condiciones que determinan las características climáticas de una zona (Luo et al., 2020).

El Panel Intergubernamental del Cambio Climático (IPCC; Planton et al., 2013), define la variabilidad del clima como "las variaciones del estado medio y otras características estadísticas (desviación típica, sucesos extremos, etc.) del clima en todas las escalas espaciales y temporales más amplias que las de los fenómenos meteorológicos. La variabilidad puede deberse a procesos internos naturales del sistema climático (variabilidad interna) o a variaciones del forzamiento externo natural o antropógeno (variabilidad externa)" (pág. 202). De esta forma la variabilidad climática natural ha estado presente siempre en las dinámicas del clima, el cual no es constante sino más bien posee fluctuaciones naturales en torno a sus valores promedios a escala diaria, estacional, interanual e interdecadal, es decir, escalas de tiempo relativamente cortas.

Mientras que, el cambio climático corresponde a procesos mucho más lentos, largos y complejos, en los cuales la actividad humada directa o indirectamente es la principal causa. En esta misma línea, el IPCC (2019), define el cambio climático como "una variación del estado del clima identificable (p. ej., mediante pruebas estadísticas) en las variaciones del valor medio o en la variabilidad de sus propiedades, que persiste durante períodos prolongados, generalmente décadas o períodos más largos. El cambio climático puede deberse a procesos internos naturales o a forzamientos externos, tales como modulaciones de los ciclos solares, erupciones volcánicas y cambios antropógenos persistentes de la composición de la atmósfera o del uso de la tierra" (pág. 75).

El cambio climático, debido a la acción del hombre, implica un proceso de cambio mucho más significativo, impactando en el bienestar de la sociedad y principalmente a los ecosistemas, algunos de estos efectos según Jarma & Cardona (2012) son: fuertes y constantes alteraciones en la variabilidad climática a ritmos sin precedentes, que no permitan la adaptación de las especies; amenaza de la supervivencia de diversas especies; cambios en las propiedades de los suelos; alteraciones en la frecuencia de las precipitaciones con su respectivo efecto sobre los ecosistemas y la vegetación, entre otros.

En este sentido, ha habido un importante esfuerzo por comprender los efectos del cambio climático sobre los factores que condicionan los ecosistemas y su vegetación, sobre todo considerando que clima y vegetación conforman interacciones reciprocas entre sí. De esta forma fluctuaciones en la temperatura y precipitación, ya sea por variabilidad o cambio climático, tienen efectos sobre la vegetación (Cuenca & Pacheco, 2021).

Dentro de los componentes del clima que más influyen en la vegetación, condicionando su crecimiento y estado, es posible mencionar las condiciones térmicas, hídricas, la duración del día y la intensidad lumínica, es decir, la cantidad de luz que recibe la vegetación (Duval et al., 2015).

La distribución espacial diversa de la vegetación en las diferentes zonas geográficas se asocia con los procesos de adaptación a las condiciones ambientales predominantes de cada región, es decir, es una respuesta a la variabilidad (espacial y temporal) natural del clima. Sin embargo, cambios persistentes y/o significativos en las condiciones del clima no siempre posibilitan el desarrollo de procesos de adaptación de las especies, propiciando la reducción, desplazamiento o compresión del hábitat y la perdida de especies, ya que la vegetación es su principal soporte (Paula et al., 2018).

En este contexto, existen plantas que se han adaptado a las bajas condiciones de iluminación y a pesar de ello florecen, sin embargo, otras podrían no adaptarse a los cambios abruptos de las nuevas condiciones climáticas sufriendo alteraciones en sus procesos fenológicos.

Así mismo, periodos de sequías prologadas y precitaciones más abundantes e intensas de lo normal, podrían generar un estrés y una alteración en los procesos de crecimiento de la vegetación respectivamente. Dinámicas que, de ser persistentes y abruptas imposibilitan la adaptación de las especies de flora y fauna que, por lo general suelen ser procesos lentos.

3.2. Variables y proceso del clima en el Altiplano

El clima del Altiplano se ha estudiado ampliamente, siendo una de las dificultades más comunes en torno a esta zona la complejidad de los factores que interactúan, los que a su vez le otorgan una gran variabilidad climática temporal y espacial. Por esta razón, en los siguientes párrafos se abordan los factores y procesos que confluyen para conformar el clima del Altiplano, a través de las investigaciones de diferentes autores (Falvey & Garreaud, 2005; R. Garreaud et al., 2003; R. D. Garreaud, 2009 y 2011).

La región del Altiplano se caracteriza por un clima que está regulado a gran escala por la circulación general de la atmosfera y los océanos, e interfieren en estas dinámicas El Niño Oscilación del Sur (ENSO), la oscilación decadal del Pacifico, la compleja orografía de la zona y los procesos que se dan entre el amazonas y la zona andina, tales como: la Alta de Bolivia, el aporte de humedad desde la cuenca del Amazonas, el Monzón Sudamericano, la circulación meridional entre el Atlántico norte tropical y América, entre otros factores (Espinoza et al., 2020).

En este contexto, un factor relevante que también condiciona el clima del Altiplano es la latitud, ubicándose en una franja intertropical sujeta a los procesos atmosféricos que ocurren en esta zona, como la corriente de chorro subtropical, que corresponde a un flujo atmosférico de altura que durante el invierno austral posibilita una circulación en sentido oeste-este en esta zona, la cual se debilita al desplazarse esta corriente hacia el sur durante el periodo estival (Mendonça, 2017).

Este desplazamiento hacia el sur de la corriente de chorro y de la convergencia intertropical, además de la convección en la Amazonía influyen en la formación de la Alta de Bolivia durante el verano austral (Romero et al., 2013). Sistema atmosférico que corresponde a una circulación anticiclónica cuasi estacionaria de los niveles altos de la troposfera, que se posiciona sobre el Altiplano, Bolivia y Brasil durante el periodo estival, posibilitando la formación de nubosidad con desarrollo vertical, y a su vez tormentas y precipitaciones en esta zona (Aceituno, 1996).

En cuanto al componente humedad, necesario para el desarrollo de estos fenómenos es aportado por el océano Atlántico y la evapotranspiración de la cuenca del Amazonas. El primer aporte se vincula con el Monzón Sudamericano, que tiene su origen en la circulación general de la atmósfera, el desplazamiento en algunos grados en latitud sur del cinturón ecuatorial y el cambio en el sentido de los flujos con predominancia desde el este durante el verano austral (Mendonça, 2017). Específicamente durante este periodo desde el centro de alta presión superficial o Anticiclón del Atlántico, se inician vientos alisios que se nutren de humedad en el océano Atlántico y avanzan hacia las zonas continentales de baja presión, es decir, hacia la cuenca del Amazonas.

El segundo aporte de humedad, ha sido abordado por diferentes investigaciones recopiladas por Espinoza et al. (2020), las cuales señalan la importancia que tendría la evapotranspiración de la cuenca del Amazonas sobre las masas de aire húmedo que se generan en el verano austral en esta región, que luego se traducen en grandes montos de precipitación en la zona occidental de esta cuenca, y, con una influencia hacia otras regiones como en la cuenca de La Plata y en la Cordillera de los Andes (Zemp et al., 2014).

Por otro lado la altitud y compleja orografía de la Cordillera de los Andes, que influyen en el régimen de vientos locales y en el desarrollo y distribución de las precipitaciones, son factores que se han estudiado tanto para caracterizar el clima de la cordillera de los Andes y del Altiplano, como también para identificar una tendencia en función a los registros de las estaciones meteorológicas, siendo realmente un desafío al momento de proyectar estas tendencias y enmarcarlas en escenarios de cambios climáticos futuro.

Así, en el año 1996 Aceituno señala, en su trabajo sobre los componentes del clima en el Altiplano, que la gran altura y su ubicación en la franja tropical implicaba efectos en los regímenes de radiación solar con una amplitud moderada en su oscilación anual, bajos contenidos de vapor de agua en la troposfera principalmente en invierno, que en parte producen bajas temperaturas y una gran oscilación diaria de las mismas. Además, los vientos superficiales que se desarrollan en las cuencas que albergan lagos y salares y en los elevados relieves que las delimitan, generan un sistema de circulación de masas de aire local.

Y a una escala mayor la elevación de los cordones montañosos en los Andes constituyen una barrera en los sistemas que se desarrollan en el lado occidental y oriental de la cordillera, de tal forma que durante el periodo estival las masas de aire cargadas de humedad provenientes del Amazonas con dirección este-oeste no logran desplazarse libremente hacia el oeste, sino que más bien son interceptadas por la cordillera de los Andes, por lo cual ascienden produciendo lluvias orográficas las cuales tienen lugar de forma decreciente al este de la cordillera de los Andes (Eghdami & Barros, 2019), sobre esta misma cadena montañosa y en el Altiplano, llegando incluso en algunos años hasta la precordillera (Méndez et al., 2013).

Otro factor importante para considerar en esta zona es la alta variabilidad climática, que se refleja en la alta oscilación diaria, intranual, interanual, e interdecadal de las precipitaciones (Sarricolea & Aravena, 2015), entre otras implicancias. Variabilidad climática abordada ampliamente en investigaciones multiescalares, precisamente por su vínculo con fenómenos que se presentan en diferentes escalas. En este contexto, uno de los fenómenos que influye en la variabilidad climática, que ha sido estudiado considerablemente, es El Niño Oscilación del Sur (ENSO), el cual en su fase cálida se relaciona significativamente con periodos estivales más secos en el Altiplano y en su fase

fría (La Niña) se asocia a periodos de mayor humedad en la misma estación, es decir, precipitaciones sobre el promedio (Sarricolea & Aravena, 2015). Garreaud (2009) señala que, una cualidad propia de este fenómeno es la irregularidad en los periodos (años) de desarrollo de sus fases, por lo cual desencadena consecutivamente una irregularidad en los montos de precipitaciones en el Altiplano.

A escala decadal, interfiere la Oscilación Decadal del Pacífico, la cual corresponde a un patrón en las fluctuaciones de las temperaturas del Océano Pacífico, en una ventana de tiempo de décadas, con fase fría y cálida. Anomalías que tienen influencia en el clima de los Andes, así en la fase cálida se intensifican los vientos del oeste en los niveles altos de la troposfera, generando un déficit de precipitaciones sobre el Altiplano. Y en la fase fría dominan los vientos del este, en los niveles altos de la troposfera, posibilitando anomalías positivas de precipitación de esta misma zona (Segura et al., 2016).

Todas las contribuciones científicas que se han señalado en los párrafos anteriores han tenido, en parte, como objetivo identificar ciertos procesos para conocer mejor las dinámicas climáticas y/o atmosféricas que se desarrollan sobre la cordillera de los Andes, las regiones naturales aledañas, y en particularmente sobre el Altiplano. Paralelamente también se han desarrollado investigaciones en torno a la identificación de una tendencia en el clima del Altiplano y en el comportamiento de sus variables, es así como Sarricolea y Romero (2015) plantean la interrogante sobre la posible existencia de una tendencia en la variabilidad climática del Altiplano en su fracción chilena, y de patrones espaciales de precipitación y temperatura; y para dar respuesta a esta interrogante analizan datos de estaciones meteorológicas desde 1984 al 2010, distribuidas a lo largo del Altiplano chileno, identificando que a escala interanual los ciclos secos perduran 5 años aproximadamente en alternancia con periodos húmedos que alcanzan una longitud de 3 años, y a escala intranual se advierten durante la estación húmeda rachas de días secos mayores a un mes. Además, se identifica una gradiente norte-sur descendente de las precipitaciones, así como también matices interesantes dentro de una misma cuenca y subcuenca del segmento norte. Posteriormente Sarricolea et al. (2017) analizan para esta misma zona series de datos temporal (1972-2013) y espacialmente (regiones: XV, I y II) más amplias, identificando en once estaciones meteorológicas una tendencia a una reducción de las precipitaciones que oscilarían entre -44,0 y -7,95 milímetros por década, en paralelo con tendencias al incremento solo en dos estaciones, pero con valores menores.

Recientemente Segura et al. (2020) concluyó que, en las últimas dos décadas se ha observado un aumento de las precipitaciones estivales (diciembre, enero y febrero) en los Andes, tanto en los registros "*in situ*" de estaciones meteorológicas como en PC1-Andes (primer componente principal de la precipitación de diciembre a febrero sobre los Andes tropicales del sur). Tendencia en las precipitaciones que estaría dada por el fortalecimiento de la circulación meridional y a su vez por un incremento en el transporte de humedad desde el Atlántico norte tropical hacia América del sur tropical occidental, proceso que intensifica el movimiento ascendente sobre el Amazonas occidental, posibilitando el transporte de humedad desde los niveles inferiores de la troposfera hacia los medios, y generando una inestabilidad y una convección profunda sobre el oeste de América del Sur tropical y particularmente sobre el Altiplano.

En el marco de este mismo desafío por identificar una tendencia de las variables climáticas, Bennett et al. (2016) analizan la zona de punca seca, es decir, el segmento más austral del Altiplano, entre los años 1980 y 2010, identificado que no existe una tendencia de las temperaturas consistente u homogénea en la zona, más bien se observan calentamientos en paralelo a enfriamientos en las diferentes estaciones meteorológicas. En cuanto a las precipitaciones existe una amplitud importante en las oscilaciones de las lluvias durante el periodo húmedo variando entre 1.2 y 267.2 milímetros, lluvias que espacialmente se incrementan hacia el noreste y en las zonas más altas, y temporalmente presentan un incremento significativo durante periodos La Niña. Sin embargo, la tendencia decreciente de las precipitaciones solo se evidenció en 15 estaciones ubicadas principalmente hacia el suroeste, en cambio en otras 11 estaciones ubicadas hacia el noreste se observó un incremento.

En este mismo contexto Vuille et al. (2015) identifican que en las latitudes tropicales de la cordillera de los Andes el calentamiento se ha detenido, con ciertas particularidades en las zonas más altas, en las cuales continúan elevándose las temperaturas; por lo tanto, concluyen que el incremento de las temperaturas a mayor altura es muy probable a futuro.

Así mismo, Aguilar-Lome et al. (2019) en su estudio analizan los datos del producto temperatura superficial terrestre de MODIS para la región andina y el Altiplano sudamericano, identificando un aumento de temperaturas en el Lago Titicaca, una tendencia al incremento de las temperaturas diurnas en invierno que en promedio sería 1°C por década según la elevación, por lo cual la tendencia al calentamiento incrementaría con la altitud llegando hasta los 1.7°C por década en las zonas más altas, es decir, sobre los 5000 msnm. Tendencias que podrían traducirse en importantes consecuencias para los ecosistemas altoandinos. A su vez los autores corroboran que la cobertura del suelo influye en la temperatura superficial terrestre.

3.3. Dinámicas de la vegetación zonal

La vegetación natural de acuerdo con las condiciones bióticas, climáticas y del suelo se divide en tres tipos: zonal, extrazonal y azonal. La vegetación zonal es una expresión a gran escala del clima que domina un área en particular, mientras que no se limita a las condiciones específicas del suelo, es decir, refleja con mayor precisión las condiciones macroclimáticas de regiones particulares; así mismo, la vegetación zonal puede representar una gama de comunidades vegetacionales similares y/o con algunas diferencias sutiles (Stupar & Carni, 2017).

La diferencia entre estos tipos de vegetación radica en la predominancia de los factores climáticos en los sistemas zonales, en cambio en los sistemas azonales los factores ecológicos locales como microclima, geomorfología, litología, edafología, entre otros, son más prioritarios para el desarrollo de la vegetación (Sainz & Sanchez, 2011).

La vegetación zonal característica del Altiplano corresponde a diferentes comunidades vegetaciones de pajonales compuestos por *Festuca spp.* y *Stipa spp.*; comunidades de tolares compuestos por especies de los géneros *Parastrephia* y *Baccharis*; comunidades de tipo matorral compuestas por especies de los géneros *Maihueniopsis*, *Fabiana ramulosa, Fabiana denudata, Baccharis tola, Baccharis boliviensis, Chuquiraga atacamensis, Chuquiraga spinosa subsp. rotundifolia, Junellia seriphioides, Parastrephia teretiuscula, Lampayo medicinalis y Fabiana squamata*; además de llaretales y queñoales, entre otras (Trivelli & Valdivia, 2009; Trivelli & Huerta, 2014).

Como se indicó anteriormente, la vegetación zonal responde directamente a las condiciones macroclimáticas de la región donde se desarrolla, por lo tanto en los ciclos fenológicos de esta vegetación influyen principalmente la temperatura y precipitación (Dabermire, 1972).

La fenología de la vegetación se define como el estudio de los patrones de crecimiento y desarrollo que se repiten anual o periódicamente en el comportamiento o ciclo de vida de las plantas, el cual está directamente asociado con las condiciones externas (Lieth, 1974).

Así, las fluctuaciones propias del clima determinan la estacionalidad de los procesos fenológicos de la vegetación, es decir, condicionan el inicio, la intensidad, duración y término de los periodos de crecimiento y floración; dentro del rango de la capacidad ecofisiológica de cada especie (Bateman et al., 2018). Por lo tanto, la fenología de la vegetación refleja las interacciones entre los elementos y factores del clima con los ecosistemas, catalogándose como un indicador directo del cambio climático (IPCC, 2007). Razón por la cual el estudio de la fenología de la vegetación es sumamente relevante para identificar y entender las respuestas de los ecosistemas a la variabilidad y cambio climático (Jiao et al., 2020; Lara et al., 2021).

Las fases de la fenología de la vegetación se denominan fenofases, y corresponden habitualmente al inicio de la floración o crecimiento, duración de este periodo, punto de máximo verdor y fase de senescencia y/o dormancia.

La vigorosidad de la vegetación zonal año a año puede cambiar leve y persistentemente en el tiempo, sin la intervención directa del ser humano, producto de las condiciones ambientales y particularmente de la variabilidad y cambio climático. Así mismo, las fases fenológicas pueden modificarse y visibilizar tendencias en la vegetación.

Tal es el caso de las modificaciones registradas en las fenofases de la vegetación en China entre los años 1981 y 2016, las cuales permitieron estimar un retraso en el fin de la fase de crecimiento, una prolongación del periodo de crecimiento y un adelanto en la fecha de inicio del crecimiento (Jiao et al., 2020). En este mismo contexto, se estimaron modificaciones en las fases fenológicas de algunas regiones de Sudamérica, como por ejemplo una reducción en la duración de la fase de crecimiento en el Centro de Argentina y por el contrario una temporada más larga en el bosque subantártico de Chile, mientras que el inicio de la temporada de crecimiento mostró una tardanza en diversas regiones entre los años 1982 y 2011 (Van Leeuwen et al., 2013).

3.4. Hotspots de Biodiversidad

Los Hotspots de biodiversidad se pueden definir como regiones biogeográficas con más de 1500 especies de plantas vasculares endémicas, y que a su vez conservan solo alrededor del 30% de su hábitat primario original, es decir, han perdido cerca de un 70% de su espacio natural (Myers et al., 2000). Siendo el endemismo un factor clave en los criterios de definición del concepto y en la delimitación de estas áreas.

El objetivo de la identificación y delimitación de los puntos críticos de biodiversidad es contar con información de base (métricas) para priorizar, ejecutar acciones y focalizar financiamiento para la conservación global en determinadas áreas prioritarias por su condición de endemismo y vulnerabilidad (Sloan et al., 2014).

La gran biodiversidad y el alto número de especies endémicas presentes en los hotspots de biodiversidad, las cuales han logrado adaptarse a las particularidades de los diferentes

ambientes, producidos por procesos naturales, se explica por i) las gradientes latitudinales, ii) la disponibilidad de energía en las latitudes más bajas, que implica una mayor productividad, y iii) las condiciones climáticas o más bien la gran variabilidad espacial y temporal del clima. Así los hotspots que se ubican en áreas montañosas poseen una gran heterogeneidad de elevaciones y a su vez una amplia gama de clima, condición que propicia altas concentraciones de especies endémicas, ya que las diferencias climáticas en la gradiente altitudinal de las zonas montañosas genera barreras ambientales a la dispersión de especies (Trew & Maclean, 2021).

La vulnerabilidad de estas áreas se asocia principalmente con la reducción de hábitat original y la consecuente pérdida de especies, a causa de actividades humanas y el cambio climático. Entre las acciones del ser humano destacan la deforestación para el desarrollo de actividades económicas (agricultura, ganadería e industrias varias), los procesos de urbanización y el crecimiento demográfico exponencial en todo el mundo. Estos últimos factores se reflejan en un crecimiento desorganizado de las ciudades, desigualdades sociales, construcciones en espacios poco aptos, como zonas de riesgos socio-naturales o bien con importantes costos sobre los recursos naturales y la biodiversidad, mayor demanda de alimento y a su vez de tierras para cultivo y crianza (Habel et al., 2019).

El cambio climático indudablemente afecta en diferentes grados a los hotspots de biodiversidad, producto de las variaciones en las temperatura y precipitaciones, lo cual dificulta aún más la conservación de la biodiversidad. Es por ello que la aceleración en los procesos de reducción de la vegetación es una preocupación relevante en la actualidad (Jarma Orozco & Cardona Ayala, 2012). Estimando que, producto del cambio climático y las actividades agroeconómicas, la vegetación natural original que sustenta la biodiversidad en estas áreas se reducirá en rango de 0 y 597% hacia el año 2050 en los diferentes escenarios RCP. Así en promedio en cada escenario RCP se reducirá la vegetación original en un 55% en RCP 2.6; 54% en RCP 4.5; 59% en RCP 6.0; y 63% en RCP 8.5. Impactando fuertemente algunos de los puntos críticos de biodiversidad con mayor cantidad de especies endémicas como: Filipinas, Las islas del Caribe, la cuenca del

Mediterráneo, Madagascar y las islas del océano Índico y el bosque Atlántico (figura 3-1).

Figura 3-1. Porcentaje de cambio en los puntos críticos de biodiversidad al 2050, producto del cambio climático y las actividades agroeconómicas en estas zonas. Colores rojos indican cambios profundos y colores azulen señalan cambios leves Fuente: (Habel et al., 2019).

En este contexto desde su definición a la fecha se han venido realizando diferentes esfuerzos para conservar la biodiversidad y frenar la reducción de hábitat, a través de iniciativas financiadas internacionalmente y ejecutadas en las regiones prioritarias, como los proyectos del Hotspot de Biodiversidad de los Andes Tropicales, en desarrollo actualmente por el Fondo de Alianzas para los Ecosistemas Críticos (Critical Ecosystem Partnership Fund – CEPF en inglés).

En la actualidad existen 36 hotspots de biodiversidad en el mundo (tabla 3-1), los cuales se ubican en diferentes regiones biogeográficas (figura 3-1). Entre ellos destaca el hotspot Andes tropicales, por ser unos de los más diversos en todo el mundo, albergar una sexta parte de toda la vida vegetal del planeta, y poseer la mayor diversidad de especies de
anfibios, aves y mamíferos; y a su vez presentar elevados porcentajes de reptiles amenazados, entre otros grupos de taxonómicos (tabla 3-2).

N°	Nombre	N°	Nombre
1	Atlantic Forest	19	Madrean Pine-Oak Woodlands
2	California Floristic Province	20	Maputaland-Pondoland-Albany
3	Cape Floristic Region	21	Mediterranean Basin
4	Caribbean Islands	22	Mesoamerica
5	Caucasus	23	Mountains of Central Asia
6	Caucasus	24	Mountains of Southwest China
7	Chilean Winter Rainfall-Valdivian Forests	25	New Caledonia
8	Coastal Forests of Eastern Africa	26	New Zealand
9	East Melanesian Islands	27	Philippines
10	Eastern Afromontane	28	Polynesia-Micronesia
11	Forests of Eastern Australia	29	Southwest Australia
12	Guinean Forests of West Africa	30	Succulent Karoo
13	Himalaya	31	Sundaland
14	Horn of Africa	32	Tropical Andes
15	Indo-Burma	33	Tumbes-Chocó-Magdalena
16	Irano-Anatolian	34	Wallacea
17	Japan	35	Western Ghats and Sri Lanka
18	Madagascar and the Indian Ocean Islands		

Tabla 3-1. Puntos críticos de biodiversidad

Fuente: Habel et al. (2019).

 Tabla 3-2. Diversidad de Especies, Endemismo y Estado Global de Amenaza en el

Hotspot de los Andes Tropicales

Grupo taxonómico	Especies	Especies endémicas	Porcentaje de endemismo	Especies amenazadas
Plantas vasculares	~30.000	~15.000	~50,0	330
Peces	~900	666	~74,0	79
Anfibios	~1.120	800	~71,4	558
Reptiles	~700	275	~40,0	125
Aves	~2.000	600	~30,0	214
Mamíferos	~600	80	~13,3	88
Invertebrados	Sin datos	Sin datos	-	56
Hongos	Sin datos	Sin datos	-	1
Total	~35.320	~17.421	~49.3	1.451

Fuente: Pronaturaleza – Fundación Peruana por la Conservación de la Naturaleza et al.

(2021).

Estas cualidades de los hotspots se actualizan periódicamente para determinar si efectivamente las medidas llevadas a cabo por las diferentes iniciativas han conseguido lograr la conservación de la biodiversidad, o, por el contrario, si ha aumentado el riesgo y las amenazas a las especies de los diferentes hábitats.

La amenaza de las especies, según los criterios de la Unión Internacional para la Conservación de la Naturaleza (UICN), se evalúa en función al grado de riesgo de extinción que está enfrentando debido a diferentes factores; existiendo 3 categorías principales: En peligro crítico, en peligro y vulnerable. Según esta categorización se define si es necesario implementar medidas urgentes, inmediatas o solo acciones preventivas para la conservación de las especies.

Si bien, histórica y naturalmente las especies se han extinguido por diferentes factores, entre ellos la baja capacidad de adaptación a las nuevas condiciones ambientales, hoy los peligros de extinción se deben a procesos antrópicos como el cambio climático, la deforestación, las actividades económicas, el aumento de la población, entre otros (Jarma Orozco & Cardona Ayala, 2012).

Por otro lado, este proceso no tiene un impacto homogéneo en todas las especies, por ejemplo, los anfibios por sus cualidades fisiológicas poseen una mayor vulnerabilidad y se han visto fuertemente afectados por el desplazamiento y la pérdida de hábitat natural. En este contexto, la identificación de especies amenazadas en el hotspot de biodiversidad Andes Tropicales, la zona de mayor endemismo en todo el planeta, resulta sumamente clave para implementar acciones que propicien la conservación del hábitat y de la biodiversidad. Es por tal razón que, periódicamente se evalúan los estados de conservación de las especies, así los últimos reportes indican que el 16.5% de las especies se encuentra en peligro crítico, 43% en peligro y un 40,5% en la categoría vulnerable (tabla 3-3).

Grupo	En peligro crítico	En peligro	Vulnerable	Total
taxonómico				
Peces	11	31	37	79
Anfibios	102	277	179	558
Aves	19	74	121	214
Mamíferos	8	25	55	88
Reptiles	19	48	58	125
Invertebrados	9	23	24	56
Hongos	1	-	-	1
Plantas	70	147	113	330
Total	239	625	587	1451
Porcentaje	16,5%	43%	40,5%	-

 Tabla 3-3. Especies globalmente amenazadas en el hotspot Andes Tropicales, según

 criterio UICN

Fuente: Pronaturaleza – Fundación Peruana por la Conservación de la Naturaleza et al.

(2021).

3.5. Sensores Remotos, Índices Espectrales y productos de datos espectrales: NDVI, LST, ET y CHIRPS

Las imágenes satelitales son una matriz numérica de datos capturados a través de sensores remotos instalados en satelitales que orbitan alrededor de la tierra. La información que recogen corresponde a los valores de radiación reflejada o emitida por los objetos presentes en la superficie de la tierra, dentro de la extensión de captura que posee cada sensor, los cuales posibilitan el monitoreo y evaluación de diversos fenómenos de forma remota, permitiendo reemplazar, o complementar datos de campo, lo cual facilita o enriquece el desarrollo de estudios. Según las características de los sensores es posible monitorear cuerpos de agua, glaciares, la vegetación a través del análisis de curvas e índices espectrales, entre otros.

Los sensores remotos son instrumentos instalados sobre plataformas satelitales que orbitan la tierra, según sus características, con diferentes frecuencias y altitudes. Estos instrumentos son un simulador mejorado del ojo humano, ya que detectan el voltaje de

energía radiante que es reflejada o emitida por los elementos de la superficie terrestre en distintas longitudes de onda del espectro electromagnético, para luego traducirla en impulsos eléctricos que se transforman en imágenes. De esta forma los sensores remotos capturan información adicional al espectro visible, y con niveles de luminosidad mayores a los que puede discriminar el ojo humano (Qihao Weng, 2012).

En la comprensión del funcionamiento de captura de información de la superficie terrestre desde sensores remotos, es imprescindible considerar la energía y su forma de interacción con los elementos de la superficie terrestre, así como las características del sensor que finalmente proporcionan imágenes satelitales con determinadas resoluciones radiométricas, espectrales, temporales y espaciales, además de otras propiedades (Khorram et al., 2012).

Antes de profundizar sobre la radiación electromagnética, es preciso señalar que existen diversos tipos de sensores remotos, los cuales en función de sus propiedades poseen diferentes aplicaciones. De tal forma existen sensores pasivos y activos; estos últimos emiten energía, por ejemplo, en el rango de longitudes de ondas de radio, hacia los objetos en observación, y luego registran la cantidad de energía que es devuelta por los objetos en las mismas longitudes de onda (Khorram et al., 2012), por ejemplo, los sensores de radar mediante este proceso pueden detectar la altitud y generar modelos digitales de elevación. En cambio, los sensores remotos pasivos, en los cuales se centrará el presente texto e investigación, no emiten energía, solo se restringen a registrar la energía que es reflejada o emitida por la superficie terrestre y que tiene su origen principalmente en el sol (Qihao Weng, 2012).

En cuanto a las resoluciones de los sensores, que implican el nivel de detalle con que se registra y proporciona información, en sus propiedades espectrales, radiométricas, espaciales y temporales, es apropiado explicarlas partiendo por la resolución espacial, que corresponde al tamaño de la unidad mínima de información en una imagen (pixel), y en el caso de los sensores óptico-electrónicos depende de factores como la altitud del sensor

con respecto a la tierra y el campo de visión del mismo (Chuvieco, 2010). En este sentido, existen sensores a gran altitud, con baja resolución espacial con aplicaciones globales como los sensores meteorológicos, y en el lado opuesto sensores de alta resolución espacial con aplicaciones en fenómenos naturales locales.

La resolución espectral corresponde a la cantidad, ancho y continuidad de bandas del espectro electromagnético que el sensor puede registrar, es decir, la capacidad que tiene un sensor para registrar la energía reflejada o emitida por los objetos en las diferentes longitudes de onda, con un ancho de banda y continuidad que permita conocer en detalle la curva espectral y la discriminación de objetos o coberturas (Qihao Weng, 2012). De tal forma existen sensores remotos con propósitos geológicos y prospección minera por lo tanto se enfocan en una alta resolución espectral en la dimensión del infrarrojo.

La resolución radiométrica correspondiente a los niveles de luminosidad que posee la imagen en función de las propiedades del sensor, siendo más nítida una imagen si posee mayores niveles de luminosidad o bits, permite una mayor precisión en el registro de reflectancia de las diferentes longitudes de ondas para un determinado objeto, traduciéndose en una mejor representación de su curva espectral ya que detecta con mayor detalle las variaciones de la reflectancia de los objetos. Por lo tanto, una alta radiometría permite la discriminación de elementos de una misma clase (tipos de vegetación) que poseen valores de reflectancia similares (Chuvieco, 2010), por ello actualmente la mayoría de los sensores cuentan con una alta radiometría.

La resolución temporal es la frecuencia con la cual un sensor revisita una determinada zona de la tierra para registrar información, la cual se vincula con las propiedades del sensor como su órbita y sus aplicaciones, por ejemplo, los sensores meteorológicos poseen una extensión espacial de captura mayor y una baja resolución espacial, pero a su vez requieren de un monitoreo frecuente por lo cual algunos poseen frecuencias de revisita de 15 minutos (Lillesand et al., 2004). En cuanto a la radiación electromagnética, correspondiente a ondas electromagnéticas que transportan energía, según sus longitudes de ondas, frecuencia, velocidad o intensidad se clasifican en determinadas bandas o regiones del espectro electromagnético. Y si bien este último es infinito, convencionalmente parte en longitudes de ondas pequeñas o cortas, específicamente en la banda de rayos gamma (< 10pm), hasta llegar a longitudes de ondas más largas y con menor cantidad de energía como las de radio (>10 km); siendo de mayor interés para la teledetección las ondas electromagnéticas correspondiente a la dimensión del visible, el infrarrojo y las micro-ondas (Chuvieco, 2010).

El flujo de energía radiante proveniente principalmente del sol, antes de incidir sobre un objeto en la superficie de la tierra tendrá variaciones en función al ángulo cenital solar y la composición atmosférica en determinados periodos y zonas de la tierra. Y luego al interactuar con los objetos de la superficie terrestre, se descompone en tres tipos de energía: reflejada, absorbida y transmitida; siendo la proporción de cada energía dependiente de las características de los diferentes objetos sobre los cuales incide el flujo de energía radiante (Kulkarni, 1986). De tal forma los sensores pasivos que registran en el rango del espectro solar, que incluye las regiones del visible, infrarrojo cercano e infrarrojo de onda corta, detectan la energía que es reflejada por los objetos; siendo este comportamiento reflectivo, en las diferentes longitudes de onda del espectro electromagnético, el que permite conocer las características de los objetos que se observan y su distinción o discriminación. Por esta razón la espectroscopía, enfocada en la interacción entre la radiación electromagnética y la materia, es utilizada ampliamente en diferentes campos de la ciencia para conocer las características de los objetos que se busca observar.

Cada elemento sobre la superficie de la tierra posee un comportamiento espectral típico, denominado firma o patrón espectral, que corresponde a valores de reflectancia típicos graficados a lo largo de un rango del espectro electromagnético (Kulkarni, 1986). Particularmente en el caso de la vegetación, su comportamiento espectral en el espectro óptico está dado por sus características físico-químicas; sin embargo, estas características pueden variar dependiendo de las cualidades de cada especie y su estado como pigmentos, estructura celular, el contenido de humedad y la geometría de la especie (área foliar, geometría del dosel, forma de la hoja, entre otras), además de las implicancias de factores de contexto como la condiciones geográficas del área donde se circunscribe la vegetación (pendiente, orientación, características de suelo, homogeneidad o asociación de especies, entre otras) y los factores externos como el ángulo del observador (sensor remoto) con respecto a la superficie observada, el ángulo de iluminación, el relieve y la atmósfera (Colwell, 1974; Schweiger et al., 2017).

A pesar de ello, el patrón espectral típico de la vegetación implica una baja reflectividad en el visible, con un pequeño "*peak*" en la longitud de onda verde; y alta y baja reflectividad en las bandas NIR y SWIR respectivamente (Chuvievo, 2010).

Este patrón espectral típico de la vegetación se fundamenta en la alta absorción en la región del visible de los pigmentos de las hojas (clorofila, xantofila y caroteno), la cual es relativamente menor en torno a los 0,55 μ m. Esta menor absorción en torno a esta última longitud de onda permite al ojo humano percibir la vegetación de color verde. En tanto, en la región del infrarrojo cercano (NIR) generalmente la vegetación presenta una baja absorción y alta reflectividad de energía, observándose una meseta en la curva espectral de imágenes hiperespectrales o ultraespectrales, o bien un "*peak*" en imágenes multiespectrales, lo cual se debe a la estructura de las hojas, específicamente a su capa exterior (mesófilo esponjoso) que posee cavidades de aire que dispersan la radiación. Y en la dimensión infrarrojo de onda corta (SWIR), la curva espectral de la vegetación desciende evidenciando una alta absorción y baja reflectividad, con leves depresiones a lo largo de esta región espectral (1,4 μ m y 1,9 μ m); comportamiento que se vinculan con la disponibilidad de agua foliar, existiendo una relación inversa entre la energía reflejada y la cantidad de agua en la hoja (De Santis et al., 2006).

Los índices espectrales son un indicador numérico producto de una operación matemática basada en los valores de reflectancia de determinadas bandas del espectro

electromagnético; su finalidad es vincular la relación entre bandas espectrales con características o variables de la vegetación como disponibilidad de agua foliar, vigorosidad de la vegetación, entre otros.

Los índices espectrales de vegetación se basan principalmente en la diferencia de reflectividad que existen entre las dimensiones del espectro visible e infrarrojo cercano, ya que a mayor contraste mayor es la cobertura vegetal y/o vigor de la vegetación, y en un sentido opuesto un menor contraste indicaría una vegetación enferma o bajo algún grado de estrés. Por tal razón diversos índices espectrales que exponen características de la vegetación se basan en las diferencias entre las bandas infrarrojo cercano y rojo (Bannari et al., 1995), como el índice de diferencia normalizada de vegetación (NDVI) desarrollado por Rouse et al. (1974), ampliamente utilizado, el cual oscila entre valores - 1 y 1. Y si bien estos valores no se entienden por si solos, su discretización o categorización basada en investigaciones han permitido comprobar la atribución de valores NDVI a determinadas coberturas; de tal forma, los valores NDVI entre -1 y 0.1 se atribuyen a agua y suelo desnudo, y valores NDVI mayores a 0.2 se atribuyen a coberturas de vegetación gradualmente más densas hasta llegar a 1 (Holben, 1986).

Algunas variables de la vegetación que son bien representadas por el índice NDVI son el contenido de clorofila en la hoja, la actividad fotosintética y la productividad neta de la vegetación. El alto contenido de clorofila está estrechamente vinculado a altos valores de energía absorbida en longitudes de ondas de la banda roja. La actividad fotosintética de la vegetación se vincula con la cantidad integrada de radiación, con diferentes longitudes de ondas del espectro visible, que es absorbida y que permiten desarrollar procesos de fotosíntesis, también denominada radiación fotosintética activa (Asrar et al., 1984; Carrasco-Ríos, 2009; Goetz & Prince, 1996).

En cuanto a la productividad de un ecosistema, esta corresponde a la cantidad de energía que los elementos (vegetación) son capaces de incorporar al sistema, por ejemplo, absorber la energía radiante del sol, y utilizarla en procesos como la fotosíntesis para

transformar la materia inorgánica (CO2 y H2O) en orgánica y producir biomasa (tallo, hojas y raíces); proceso en el cual la energía radiante se transforma en energía química (biomasa) (Cabrera & Montecino, 1987). Por otro lado, la productividad primaria neta considera este mismo proceso de absorber y fijar energía lumínica, pero resta la energía empleada en los procesos de respiración de la planta, es decir, cuando no se está absorbiendo energía ni desarrollando procesos de fotosíntesis y se requieren mantener procesos vitales (Salas & Infante, 2006). Esta productividad primaria neta se mide a través del incremento o disminución de la biomasa vegetal, producto del intercambio de carbono, por unidad de tiempo y área. Y como este proceso deriva de la absorción de la radiación fotosintética activa (espectro visible) existe una relación directa con el Índice de Diferencia Normalizado de vegetación (Asrar et al., 1984; Goetz & Prince, 1996; Song et al., 2013), que justamente utiliza la banda roja del espectro visible y la banda infrarroja para su cálculo, permitiendo utilizarlo como un indicador de la productividad de la vegetación. De tal forma se ha utilizado este índice para evaluar el cambio estacional del vigor de la cobertura de vegetación a escala continental y mundial mediante imágenes NOAA y MODIS (Chuvieco, 2010).

Así mismo las fases fenológicas de la vegetación, es decir, las etapas de desarrollo de esta como inicio, duración y termino de la estación de crecimiento, es posible evaluarlas o más bien modelarlas a través de índices de vegetación como NDVI en determinados periodos de tiempo (Peter et al., 2018), tal en reemplazo de los monitoreos directos de la vegetación.

Por otro lado, los datos espectrales proporcionados por los sensores remotos permiten generar productos como la temperatura de la superficie terrestre (LST). La LST es calculada a partir del algoritmo de ventana dividida generalizada, que utiliza como insumo principal las bandas 31 y 32 del espectrorradiómetro de imágenes de resolución moderada (MODIS) y a su vez la información de referencia sobre las emisividades de las bandas 31 y 32 para las diferentes superficies de la tierra (Z. Wan, 1999). Así mismo, los valores LST han sido validados a partir de mediciones "*in situ*" en rangos de temperaturas amplios y considerando el vapor de agua (Wan, 2013). En cuanto a las aplicaciones de este

producto, es posible destacar la estimación de la temperatura del aire (Rosales y Tapia, 2011).

Además, existen productos que se generan a partir de datos espectrales y registros "*in situ*" de variables atmosféricas, tal es el caso de los productos "MOD16A2" y "CHIRPS". Los datos de evapotranspiración proporcionados por el producto MOD16A2 son un resultado de la aplicación de un algoritmo que tiene como entrada registros meteorológicos diarios de torres de flujo y datos de detección remota del sensor MODIS (Running et al., 2017). Este producto proporciona información para gestionar los recursos hídricos, estimar los efectos de los cambios en el clima e identificar alteraciones en los ecosistemas, y en términos prácticos se ha utilizado en la planificación de la irrigación de cultivos, en el monitoreo de sequías y en la estimación sobre la recarga de acuíferos, entre otros usos.

En cuanto al producto "CHIRPS", corresponde a un conjunto de datos de precipitación infrarroja con estaciones, y precisamente es el resultado de estimaciones de precipitación a partir de datos espectrales y registros "*in situ*" de estaciones meteorológicas. Datos validados que, permiten reconstruir espacial (50° S - 50° N) y temporalmente (> 35 años) el registro de precipitaciones incluso en zonas sin observaciones; y a su vez posibilitan el análisis de tendencias o anomalías climáticas, seguimiento de sequías y el cambio ambiental global sobre la tierra (Funk et al., 2015).

IV. METODOLOGÍA

4.1. Área de Estudio

El área de estudio corresponde a la región Altiplano andino, la cual es una meseta en altura rodeada por cordones montañosos, que en el lado oeste y este está delimitada por el flanco occidental y oriental respectivamente de la cordillera de los Andes. Se circunscribe en una serie de cuencas endorreicas sedimentarias, que se emplazan en promedio sobre los 3500 m.s.n.m., entre los 14° y 22° de latitud sur, y entre los 71° y 66° de longitud oeste aproximadamente. Así mismo, es parte del hotspot de biodiversidad Andes Tropicales (figura 4-1).

El Altiplano andino presenta límites políticos-administrativos establecidos por los países que poseen porciones de territorio en esta zona, los cuales se evidencian en la delimitación de cuencas hidrográficas propuesta por cada país. Por esta razón, para la presente investigación la delimitación del área de estudio estará dada por el producto cuencas hidrográficas de Sudamérica en el nivel 2, confeccionado por el programa GeoSUR mediante la metodología Pfafstetter (1989), de tal forma de obtener una delimitación bajo los mismos criterios metodológicos. Esta gran área incluye las cuencas del lago Titicaca, Desaguadero-Poopó-Coipasa, Salar de Uyuni (FAO, 1997) y parte de la cuenca altiplánica delimitada por la DGA (1997) para Chile; circunscribiendo territorio peruano, boliviano y chileno.

La amplia extensión del área de estudio definida se justifica en el objetivo de investigación, que en resumen busca evaluar las dinámicas de la vegetación en toda la región natural del Altiplano andino, de tal forma de reducir posibles sesgos en los resultados producto de los límites internacionales.

Figura 4-1. Área de estudio: Región Altiplano Andino Fuente: Elaboración propia.

El área de estudio es parte del bioma "pradera y matorral de montaña", y a su vez incluye las ecorregiones terrestres: "Puna de los Andes Centrales", "Puna Húmeda de los Andes Centrales", "Puna Seca de los Andes centrales", y una pequeña fracción de la ecorregión "Bosques secos montanos de Bolivia" (Dinerstein et al., 2017).

La ecorregión de Puna Andina Central, o también llamada "pradera de puna semihúmeda", se emplaza al suroeste de Perú y suroeste de Bolivia (figura 4-2). Posee un clima con temperaturas promedio entre <0 y 15°C, y precipitaciones anuales que oscilan entre 250

y 500mm. La vegetación se compone principalmente por pastizales formados por especies de los géneros *Calamagrostis, Agrostis y Festuca*; tolares compuestos principalmente por *Parasthrephia lepidophylla*; yaretales; queñoas (*Polylepis spp.*) y chachacoma (*Escallonia sp.*) (Riveros, 2022).

La ecorregión Puna Seca corresponde a la parte más austral del área de estudio, donde destacan volcanes, cimas nevadas, lagunas y salares, emplazándose en los países de Bolivia y Chile (figura 4-2). La temperatura se presenta como una gradiente decreciente hacia el sur, oscilando entre los 8 y 11°C en la sección norte; y las precitaciones anuales varían entre los 51 y 406mm, con una gradiente decreciente hacia el sur. La vegetación también se caracteriza por presentar una gradiente que va de estepa de matorral con arbustos xerófilos en el este a estepa herbosa con pastos hacia el oeste. Algunos de los géneros presentes en esta ecorregión son *Adesmia, Baccharis, Calamogrostis, Fabiana, Festuca, Senecio, y Stipa*; y, especies tales como *Baccharis incarum, B. boliviensis, Festuca orthophylla, Lampaya sp, Parastrephila lepidophylla, Parastrephila lepidophylla* y diferentes especies de queñoas (Locklin, 2022).

La ecorregión Puna Húmeda, se extiende por la cordillera de los Andes de Perú y el flanco oriental de la cordillera en Bolivia (figura 4-2), compuesta por cumbres nevadas, lagos y ríos, que nacen en la misma cordillera. Las precipitaciones anuales oscilan entre los 500 y 700mm, siendo la zona más húmeda del área de estudio. La vegetación se compone de los géneros *Agrostis, Azorella, Baccharis, Chusquea, Daucus, Echinopsis, Cortaderia, Festuca, Stipa*, entre otras (Riveros & Locklin, 2022).

Figura 4-2. Ecorregiones del área de estudio Fuente: Elaboración propia.

4.2. Datos

Las variables que se utilizaron para el desarrollo de la presente investigación fueron: vegetación, evapotranspiración, temperatura y precipitación, las cuales a su vez se evaluaron a partir de índices y/o productos de sensores remotos, en conjunto con datos "*in situ*" tales como: NDVI, evapotranspiración (ET), temperatura diurna de la superficie

terrestre (LST) y precipitación (CHIRPS) respectivamente. Datos que se caracterizan en detalle en la tabla 4-1.

Característica	Vegetación	Evapotranspiración	Temperatura	Precipitación
Producto	MOD13A2	MOD16A2 versión 6	MOD11A1 versión	CHIRPS
	versión 6		6	(precipitación
				infrarroja con
				estación)
Sensor (origen	MODIS (Terra)	MODIS (Terra)	MODIS (Terra)	CHPclim,
datos)				sensores
				infrarrojos
				geoestacionari
				os, NOAA, y
				estaciones "in
Dondo	NDVI	ET	LCT Dov. 11mm	SITU
Danua	NDVI	El (Evenetrenenireción	LSI_Day_IKIII	(Dreainitación)
seleccioliada		(Evapouranspiración	diurno do lo	(Frecipitacion)
		(otal)	superficie terrestre)	
Unidad Medida	_	kg/m²/8day	Kelvin	mm/día
Factor escala	0.0001	0.1	0.02	-
Resolución	1000 metros	500 metros	1000 metros	5566 metros
espacial				
Extensión	1200km x	1200km x 1200km	1200km x 1200km	7200 x 2000
escena	1200km			píxeles
Resolución	16 días	8 días	Diaria	Diaria
temporal				
Extensión	2000-02-18 al	2001-01-01 al	2000-02-24 al	1981 al
temporal	presente	presente	presente	presente
Radiometría	16 bits	16 bits	16 bits	-
Detalles banda	Valor mínimo: -	Valor mínimo: -	Valor mínimo: 7500	Valor mínimo:
seleccionada	2000	32767	Valor máximo:	0
	Valor máximo:	Valor máximo: 32700	65535	Valor máximo:
	10000			1444,34
Fuente	https://lpdaac.usgs	https://lpdaac.usgs.go	https://lpdaac.usgs.g	https://chc.ucs
	.gov/products/mo	v/products/mod16a2v	ov/products/mod11	b.edu/data/chir
	d13a2v006/	006/	a1v006/	ps

Tabla 4-1. Características productos: NDVI, ET, LST y CHIRPS

Fuente: Elaboración propia.

El preprocesamiento de los datos asociados a cada variable se realizó en la plataforma Google Earth Engine, específicamente en el editor de código. Y consistió en i) definir el rango de fechas de los datos, en función a la disponibilidad de los diferentes productos y su aplicación en los objetivos específicos. Así los productos ET, LST y CHIRPS se utilizaron en un rango temporal que abarca desde 01-01-2001 hasta el 02-02-2020; y el producto NDVI se utilizó desde el 01-01-2001 hasta el 18-12-2020 para dar respuesta al objetivo 1, desde el 18-02-2000 hasta el 02-02-2020 en el objetivo 2; y desde el 01-01-2001 hasta el 02-02-2020 en el objetivo 3, ya que este último requería estandarizarse con las restantes variables y/o productos.

ii) La frecuencia temporal de los productos se estandarizó en 16 día y/o 23 observaciones por cada año, las cuales parten regularmente el primero de enero de cada año y terminan irregularmente dependiendo de los años bisiestos. Obteniendo la estandarización de la resolución temporal, a partir del cálculo de las medias de los datos disponibles cada 16 días en los diferentes productos, excepto CHIRPS, el cual se sumó cada 16 días.

 iii) Espacialmente se estandarizaron y/o reproyectaron todos los datos de los productos al sistema de coordenadas geográficas WGS84 (EPSG:4326), con una resolución de 1000 metros; y finalmente se recortaron las imágenes según el shapefile del área de estudio.

iv) La revisión y limpieza de los datos consistió en identificar los valores nulos o fuera del rango de valores mínimos y máximos de los respectivos productos, según la información de referencia (tabla 4-1), para luego eliminarlos a través de la aplicación de máscaras.

No se realizó la transformación de datos según los factores de escala, para conservar el tamaño de la base de datos; y por otro lado sus valores originales no afectaban los siguientes procesos e interpretación de resultados.

La compilación de los sets de datos por productos se realizó a través del formato "ImageCollection" e "Image" con múltiples bandas, para su posterior aplicación en los procesos estadísticos.

El presente preprocesamiento de datos se encuentra disponible en el anexo I.

4.3. Estadística descriptiva de variables

La descripción y/o caracterización de los datos de las 4 variables se realizó a través del cálculo de medidas estadísticas de tendencia central (mediana, media y moda), dispersión (varianza, desviación estándar y coeficiente de variación) y forma (curtosis y asimetría) (Ebdon, 1982).

Las medidas de tendencia central corresponden a los diferentes valores promedios de los datos; las medidas de dispersión proporcionan información sobre cuán diseminados están los datos o en otras palabras la anchura de su distribución de frecuencia. Así la varianza que mide la dispersión de los datos respecto a la media se calcula:

$$\sigma^{2} = \frac{\sum_{1}^{N} (x_{i} + \bar{x})^{2}}{N}$$
(1)

La desviación estándar también permite conocer la dispersión de los datos en torno a la media, es decir, mientras más alto su valor mayor dispersión; y se calcula:

$$\sigma = \sqrt{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^2}$$
(2)

El coeficiente de variación proporciona información sobre la dispersión relativa de los datos, adquiriendo valores que van de 0 a 1, entendiendo que mientras más bajo su valor indicará una muestra compacta y por el contrario valores altos permite inferir una gran amplitud en la variación de los valores de los datos. Así mismo, puede adquirir valores en porcentaje entre 0 y 100%, los cuales se interpretan de la misma forma.

Además, es importante aclarar que existen algunas consideraciones como: valores atípicos mayores a 1 o a 100% de Cv, los cuales se asocian a una alta varianza; los valores de media cercanos a cero impiden la utilidad de este coeficiente (Spiegel & Stephens, 2009);

y los valores de la muestra deben ser positivos. Por estas razones, en la variable NDVI se eliminaron los valores negativos (-2000 a 0) para el cálculo del Cv.

$$Cv = \frac{\sigma}{\bar{x}} \tag{3}$$

Las medidas de forma de la distribución de frecuencia como la Curtosis, que mide el grado de concentración de los valores en la distribución de frecuencia (Ebdon, 1982), así una alta concentración de datos se reflejará en una curva apuntada o *leptocúrtica* con valores elevados de curtosis sobre 0, una concentración o distribución normal de los datos se reflejará en una curva *mesocúrtica* con valores próximos a 0, y una baja concentración de datos se reflejará en una curva aplanada o *platicúrtica* con valores inferiores a 0.

$$g_2 = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \bar{x})^4}{S_x^4} - 3 \qquad (4)$$

También se calculó la asimetría o sesgo, que mide el grado de simetría de la distribución de los datos con respecto a la media. Así, si una alta masa de datos se ubica hacia la izquierda de la media indica una distribución asimétrica positiva, reflejándose en una curva inclinada hacia la izquierda y valores mayores a 0; si la gran mayoría de los datos se ubica en torno a la media indica una distribución simétrica, reflejándose en una curva normal o con ambos lados simétricos y valores próximos a 0; y por último si una alta masa de datos de ubica hacia la derecha de la media indica una distribución asimétrica negativa, reflejándose en una curva inclinada hacia la derecha de la media indica una distribución asimétrica negativa, reflejándose en una curva inclinada hacia la derecha y con valores menores a 0 (Ebdon, 1982).

$$Sesgo = \frac{\sum (X - \bar{X})^3}{n\sigma^3}$$
(5)

El cálculo de medidas estadísticas se aplicó a la serie de datos completa por píxel y por clúster; proceso realizado principalmente en Google Earth Engine, utilizando como insumo la serie de datos completa previamente procesada. Para la estadística por clúster,

se determinaron primero los clúster a través del siguiente proceso: calculó de la media, aplicación del algoritmo k-means para entrenar los datos a través de la función ee.Clusterer() y wekaMeans(), definiendo 10 centros de conglomerados aleatorios y las distancias de tipo euclidiana; y finalmente se clasificaron los pixeles en 10 grupos o clúster. Y posteriormente se transformaron a formato vector a través de la función reduceToVectors(), se extrajeron los datos de la serie de tiempo por clúster mediante la función reduceRegions(), y se exportaron en formato .shp y .csv para ser procesadas en R. En este último lenguaje de programación se calcularon las estadísticas básicas mencionadas en los párrafos anteriores (anexo II).

Adicionalmente se generaron histogramas y se aplicó la prueba de normalidad de Lilliefors (Kolmogorov-Smirnov) a cada uno de los clúster para evaluar la normalidad de los datos, utilizando la función lillie.test() del paquete nortest. La evaluación de normalidad se realizó solo por clúster y no por píxel principalmente por el volumen de datos, es decir, la cantidad de pixeles y de observaciones temporales disponibles en el área de estudio, y a su vez la limitada capacidad de procesamiento del dispositivo físico.

La prueba de normalidad de Lilliefors (Kolmogorov-Smirnov), corresponde a una modificación de la prueba de Kolmogorov-Smirnov, y tiene como objetivo evaluar la normalidad de distribuciones de datos desconocidas.

Lilliefors (Kolmogorov-Smirnov) es una de las pruebas no paramétricas que se basan en la función de distribución empírica (EDF), ya que para evaluar la normalidad de los datos estas pruebas comparan la función de distribución empírica, estimada en base a los datos con la función de distribución acumulada (CDF) de distribución normal (Razali & Wah, 2011). Así la estadística de prueba es la diferencia absoluta máxima entre la función de distribución acumulada (Gross & Ligges, 2015), y se calcula:

$$D = max_{x}|F^{*}(X) - S_{n}(X)|$$
(6)

Donde $F^*(X)$ es la función de distribución acumulada de la muestra, y $S_n(X)$ es la función de distribución normal acumulada (Razali & Wah, 2011).

La función lillie.tets() nos arroja dos resultados, el valor D y p-value, los cuales se interpretan de la siguiente forma:

Según la tabla de valores críticos ODF (Lilliefors, 1967), para un nivel de significancia de 0.05 y una muestra sobre 30 observaciones, el valor crítico para D es de $0.886/\sqrt{N}$ (α). Por lo tanto, se evalúa la normalidad con los parámetros definidos a continuación:

Hipótesis nula: los datos provienen de una población con distribución normal (H₀).

Hipótesis alternativa: los datos no provienen de una población con distribución normal (H₁).

- Se acepta H₀ si D < $0.886/\sqrt{N}$
- ♦ Se rechaza H_0 si $D \ge 0.886/\sqrt{N}$

Y el valor de p – value, que se relaciona con el nivel de significancia que se utilizará para evaluar la prueba, definido en este caso en 0.05 (α). Por lo tanto, considerando el valor de α y el valor que arroja p-value se evalúa la hipótesis de normalidad según las siguientes premisas:

- Se acepta H_0 si p-value ≥ 0.05
- Se rechaza H_0 si p-value < 0.05

El cálculo de medidas estadísticas también se aplicó a las series de datos divididas por estaciones: verano (diciembre, enero y febrero), otoño (marzo, abril y mayo), invierno (junio, julio y agosto) y primavera (septiembre, octubre y noviembre). Cálculo realizado por pixeles y por clústeres. En el caso del cálculo de estadísticas por clústeres, se determinaron 10 cluster en Google Earth Engine, se extrajeron los datos por clúster y se exportaron en formato .csv y .shp para ser procesados en R (anexo I y II).

4.4. Métricas Fenológicas

Las métricas fenológicas son una cuantificación en el tiempo de valores que aluden a la vegetación (por ejemplo, índice NDVI o EVI), que permiten identificar los hitos fenológicos de la vegetación, como la determinación del día en el cual ocurre el inicio de la temporada de crecimiento o el punto máximo ("*peak*") de verdor de la vegetación, entre otros eventos del ciclo de la vegetación.

Previo al cálculo de las métricas fenológicas se extrajo la serie temporal de los valores NDVI por clúster, determinados en el paso anterior. Datos que fueron transformados en forma (formato largo), en escala (rango de valores de 0 a 1) y en formato (objetos time series), para posteriormente interpolar sus valores y obtener la serie temporal completa diaria desde 01-01-2001 hasta 18-12-2020.

Se calcularon las métricas fenológicas en R, con la función Phenology() del paquete greenbrown. Esta función realiza el cálculo de métricas en 3 grandes pasos: a) rellena vacíos de información permanentes de las series temporales, b) suaviza e interpola las series temporales, y c) detecta los eventos fenológicos; basándose este proceso en la propuesta realiza por Forkel et al. (2015).

Los argumentos definidos para su cálculo fueron la serie temporal de 20 años de valores NDVI por clúster; tsgf="TSGFspline", este argumento suaviza y rellena la serie temporal usando splines; approach="Deriv", este argumento define el enfoque que se utilizará para calcular las métricas de fenología a partir de series temporales suavizadas, precisando que se utilizará la derivada de la función suavizada (Forkel et al., 2015).

La función Phenology() proporciona un objeto tipo "Phenology" con las métricas anuales de la fenología de la vegetación, tales como: inicio de la temporada (SOS), final de la temporada (EOS), duración de la temporada (LOS), día del punto máximo ("*peak*") de crecimiento o verdor (POP), día del valor mínimo (POT), valor del punto máximo (PEAK), valor mínimo (TROUGH), valor medio de la primavera (MSP), valor medio de

otoño (MAU), tasas de reverdecimiento de primavera (RSP) y tasas de senescencia de otoño (RAU) (Forkel et al., 2015).

Se utilizaron las métricas: inicio de la temporada, final de la temporada, día del punto máximo ("*peak*") y duración de la temporada de crecimiento para identificar tendencias en las dinámicas de la vegetación, aplicando la función Trend() del paquete greenbrown.

Así mismo se aplicó esta última función en las series temporales completas de los 10 cluster, y se incorporó el argumento mosum.pval = 0.05 para que la prueba de OLS-MOSUM identificara cambios estructurales significativos en las series temporales. Y por último se aplicó la función TrendSeasonalAdjusted() para considerar la estacionalidad de las series temporales e identificar cambios o tendencias (Forkel et al., 2013).

En cuanto al ciclo fenológico de referencia y sus respectivas probabilidades se determinaron a través de la función PhenKplot() del paquete npphen (Chávez et al., 2017).

Se debe señalar que, los procesos descritos anteriormente se desarrollaron en la plataforma Rstudio (anexo II).

4.5. Prueba estadística de tendencia

Para evaluar la tendencia de la serie temporal de valores NDVI, completa (18-02-2000 al 02-02-2020), dividida por estaciones: verano (diciembre, enero y febrero), otoño (marzo, abril y mayo), invierno (junio, julio y agosto) y primavera (septiembre, octubre y noviembre), y por meses del año, se aplicó la prueba estadística no paramétrica tau de Kendall; se calculó la pendiente para determinar la magnitud de la tendencia; y por último se calculó p-value para evaluar su significancia.

$$tau = \frac{C_n - NC_n}{C_n + NC_n} \tag{7}$$

Donde C_n es el número total de pares concordantes, y N C_n es el número total de pares discordantes.

El estadístico tau de Kendall se calcula primero ordenando de forma ascendente las observaciones, luego se identifica el número total de pares concordantes y discordantes, y finalmente se aplica la formula antes señalada.

Tau de Kendall es un coeficiente de correlación que determina si existe independencia/relación entre dos variables, X e Y. Sin embargo, cuando se aplica a series de tiempo, la variable X representa el momento monótono en el cual se registra la observación de la variable Y, en este caso los valores NDVI. Siendo esta prueba de independencia/correlación, en este caso, equivalente a una prueba de tendencia monótona.

Tau adquiere valores que oscilan entre -1 y 1, de esta forma:

- Si tau = 0, no existe tendencia en la serie temporal \bullet
- Si tau = -1, tendencia negativa perfecta \bullet
- \bullet Si tau = 1, tendencia positiva perfecta

La evaluación del nivel de significancia sobre tau de Kendall consideró un valor α de 0.05, por lo tanto:

Si p-value > 0.05, se acepta la hipótesis nula, es decir, no existiría tendencia, o bien la tendencia arrojada por tau no es estadísticamente significativa.

Si p-value < 0.05, se acepta la hipótesis alternativa, es decir, existiría una tendencia significativa ya sea negativa o positiva en la serie temporal de valores NDVI.

La magnitud de la tendencia se determinó con el cálculo de la pendiente, a través de método de Theil (1950) y Sen (1968). El estimador no paramétrico de Theil-Sen se basa en el cálculo de una regresión lineal simple, la cual corresponde a la mediana espacial de todas las pendientes generadas por la unión de pares de puntos (datos), es decir, a) primero se determina el número total de pendientes a generar, equivalente al total de

combinaciones posibles de pares de datos de acuerdo con el número de observaciones; b) luego se calcula la pendiente para cada par de datos; c) se ordenan de forma ascendente los valores de todas las pendientes calculadas; y d) finalmente se calcula la mediana de todos estos valores, y, si es un número par la cantidad de pendientes, se calcula la media de los dos valores centrales.

$$S_{ij} = \frac{\left(Y_j - Y_i\right)}{\left(X_j - X_i\right)} \tag{8}$$

Siendo i < j; y S_{ij} el cálculo de cada pendiente.

El cálculo del estadístico tau de Kendall, p- value y la pendiente se calcularon en R utilizando la función raster.kendall() del paquete spatialEco (Evans, 2015). Los argumentos definidos para la ejecución de la función fueron: a) la serie temporal de valores NDVI previamente procesada y obtenida desde Google Earth Engine; b) intercept = TRUE para obtener los valores de la intercepción de la regresión lineal; c) p.value = TRUE; d) z.value = TRUE; e) confidence = TRUE para obtener un raster con los niveles de confianza al 95%; y f) tau = TRUE.

Este proceso arrojó un raster brick de 7 capas, correspondientes a la pendiente (slope), pvalue, z-value, nivel de confianza bajo el 95% (LCI), nivel de confianza sobre 95% (UCI), la intercepción de la recta (intercept) y tau de Kendall (tau). Datos que fueron evaluados y procesados en R para su posterior visualización espacial (anexo II).

4.6. Correlación de variables ambientales

La evaluación de correlación entre la variable NDVI y las variables evapotranspiración (ET), precipitación (PP) y temperatura diurna de la superficie terrestre (LST), se realizó a través de una prueba estadística no paramétrica, ello considerando los resultados arrojados

en la sección estadística descriptiva. De esta forma se utilizó el coeficiente de correlación tau de Kendall, descrito en la sección pruebas estadísticas de tendencia (ecuación 7). Sin embargo, en esta ocasión se utilizó para evaluar la relación entre 2 variables (NDVI-LST, NDVI-ET, NDVI-CHIRPP); por lo tanto, la hipótesis nula se relaciona con la independencia de cada par de variables, así:

- \clubsuit Si tau = 0, existe independencia de las variables
- Si tau = 1, existe una relación positiva perfecta entre las variables
- Si tau = -1, existe una relación negativa perfecta entre las variables \bullet

La significancia de los resultados de tau de Kendall se determinó con los valores de pvalue, considerando un nivel de significancia de 0.05 (α).

El cálculo de tau de Kendall y p-value se realizó a través de la función corLocal() del paquete raster (Hijmans et al., 2020). Esta función utiliza como insumos y argumentos: 2 objetos raster, en este caso dos pilas de raster correspondiente a las series temporales de cada par de variables; el método de correlación "kendall"; y por último se establece el argumento test = TRUE para calcular p-value (Hijmans et al., 2020).

El resultado fue un objeto raster brick con las capas "tau" y "p-value". Esta última se utilizó para aplicar una máscara a la capa tau, de tal forma de mantener y visualizar solo los pixeles correlacionados y a su vez estadísticamente significativos (anexo II).

El cálculo de tau de Kendall y p-value, se aplicó a las series temporales completas de las variables NDVI, LST, ET y CHIRPS, es decir, a las 440 observaciones distribuidas entre las fechas 01-01-2001 y 02-02-2020. Así mismo, se aplicó a las series temporales segregadas por estaciones (verano, otoño, invierno y primavera), y por meses del año.

V. RESULTADOS

5.1. Estadística Descriptiva

5.1.1. Estadística descriptiva de las series temporales completas

El resultado del cálculo de medidas estadísticas de las variables precipitación (CHIRPS), evapotranspiración (ET), temperatura diurna de la superficie terrestre (LST) y vegetación (NDVI), se visualizan en la figura 5-1.

Las precipitaciones mínimas entre 2001 y 2020, en el área de estudio, se aproximaron mayoritariamente a los 0 mm, a excepción del extremo noreste donde se incrementaron levemente hacia los 4 y 6 mm totales cada 16 días. Por el contrario, las precipitaciones máximas bordearon los 150 mm en esta región. En cuanto a la media estadística, esta mostró una zona norte con valores que oscilan entre 50 y 80 mm totales cada 16 días, y luego una zona centro-sur donde las precipitaciones se redujeron gradualmente hacia los 20 mm (figura 5-1a).

El coeficiente de variación indica una dispersión de la precipitación que oscila entre 0.5 y 1.4. Esta información permite inferir que hubo una gran variabilidad temporal en la precipitación entre el 01-01-2001 y 02-02 2020, en toda la región Altiplano andino. Espacialmente se distinguen 3 grandes zonas relativamente homogéneas en su coeficiente de variación: la zona norte con una amplitud de variación de precipitación entre 0.5 y 1, menor a la zona centro y sur del Altiplano, que adquirió valores entre 1 y 1.4 representados con tonalidades azul oscuro y morado en la figura 5-1a.

Las medidas estadísticas de forma, específicamente la asimetría y curtosis indican que, no hubo simetría en la distribución de los valores observados de precipitación con respecto a la media de esta, sino más bien una distribución asimétrica positiva (valores mayores a 0); y a su vez hubo una importante concentración en la frecuencia de los valores de precipitación, es decir una curva *leptocúrtica* (curtosis > 0). Estos resultados permiten inferir que los datos de precipitación no poseen una distribución temporal normal.

La evapotranspiración mínima osciló entre 0 y 142 kg/m²(x10) en promedio cada 16 día, entre 01-01-2001 y 02-02-2020, en el área de estudio; distinguiéndose un borde en el extremo noreste con valores entre 50 y 142 kg/m²(x10), y luego una gran zona hacia el sur con una evapotranspiración menor entre 0 y 49 kg/m2(x10). La máxima osciló entre 0 y 382 kg/m2(x10) en promedio cada 16 días. La media muestra una gradiente decreciente de evapotranspiración de norte a sur, que parte en 228 kg/m2(x10) y termina en 0 kg/m2(x10) (figura 5-1b).

El coeficiente de variación adquirió valores entre 0.5 y 0 en la zona centro-norte, lo cual indica que una variabilidad baja y media en la evapotranspiración de ambas zonas (figura 5-1b). Y por el contrario en la zona sur se incrementó el CV hacia 1, indicando una gran variabilidad de la evapotranspiración al sur del Altiplano.

La asimetría arrojó valores próximos a 0 (-1 a 1) en la zona centro-norte del área de estudio, indicando una relativa simetría en la distribución temporal de los valores de evapotranspiración con respecto a su media; y en la zona sur los valores de asimetría se incrementan alcanzado los 2.7 (figura 5-1b). Por otro lado, la curtosis adquirió valores próximos a 0 en la mayoría del área de estudio, reflejando una concentración normal en la distribución de los valores de evapotranspiración.

Las mínimas de la temperatura diurna de la superficie terrestre (LST) oscilaron entre 13500 y 14800 Kelvin (x200), en gran parte del área de estudio, equivalente a -3.15 y 22.85°C, respectivamente. Por otro lado, las LST máximas oscilaron principalmente entre 15500 y 16500 Kelvin (x200), equivalente a 36.85 y 56.85°C, a excepción de las zonas lacustres y de salares donde las temperaturas máximas fueron menores, mientras que la LST media adquirió valores entre 14700 y 15400 Kelvin (x200) en la mayoría del Altiplano, equivalente a 20.85 y 34.85°C (figura 5-1c).

El coeficiente de variación muy cercano a 0 en toda el área de estudio (entre 0.003136146 y 0.04032339) indica que las temperaturas diurnas de la superficie terrestre presentaron una baja variabilidad entre 01-01-2001 y 02-02-2020 (figura 5-1c).

La asimetría en la mayoría de la región arrojó valores entre -0.5 y 0.5, con excepción de las grandes zonas lacustres, lo cual indica una relativa simetría de la distribución de valores de LST con respecto a su media. Y a su vez la curtosis arrojó valores que oscilaron principalmente entre -1.4 y 0.4, por lo cual se infiere una concentración levemente baja (curva aplanada) en la distribución de valores LST (figura 5-1c).

La mínima de valores NDVI en el área de estudio osciló mayoritariamente entre 0 y 1800 (x10000). Los resultados de los valores NDVI máximos, permitieron distinguir 3 zonas: una norte con valores sobre 5000, un centro con valores entre 3000 y 5000 con tonalidades de amarillo, y una zona sur con valores NDVI inferiores a 3000. La media también mostró una gradiente decreciente de valores NDVI de norte a sur, los cuales parten en 6685 hasta llegar a 0 (figura 5-1d).

El coeficiente de variación osciló entre 0 y 0.5 en la mayor parte del Altiplano (figura 5-1d), con excepción de las zonas lacustres y de salares; datos que permiten inferir una baja variabilidad de los valores NDVI entre los años 2000 y 2020.

La asimetría presentó principalmente valores positivos en torno a 2 (figura 5-1d), lo cual indica una distribución asimétrica positiva, es decir, una mayor cantidad de valores hacia la izquierda de la media. La curtosis en tanto arrojó valores próximos a 0 en la zona norte, mientras que hacia el sur se incrementaron hasta llegar mayoritariamente en torno a los 4 (figura 5-1d), lo cual indica que esta última zona posee una alta concentración en la distribución de valores NDVI.

Figura 5-1. Estadística descriptiva de las variables precipitación (a), evapotranspiración (b), temperatura diurna de la superficie terrestre (c) y NDVI (d) Fuente: Elaboración propia.

5.1.2. Estadística descriptiva por estaciones del año

El resultado del coeficiente de variación por estaciones del año de las diferentes variables arrojó que, las precipitaciones en verano y primavera presentaron una menor amplitud en la variación con valores entre 0.2 y 0.8 en la gran mayoría de la región de Altiplano, y específicamente una menor variabilidad en la zona norte donde destacan las tonalidades celestes. En cambio, en otoño la región casi en su totalidad presentó valores en torno a 1; datos que permite inferir una gran variabilidad de las precipitaciones en esta estación. Y en invierno se identificó una zona centro con valores ente 0.3 y 1 y luego una zona norte y extremo sur con valores mayores a 1 que llegan a 2 (figura 5-2a).

El coeficiente de variación de la evapotranspiración arrojó una gradiente creciente de norte a sur, que parte alrededor de los 0.1 y aumenta gradualmente hasta llegar a 0.7 en el extremo sur, en las 4 estaciones. Datos que permiten inferir una mayor variabilidad de la evapotranspiración en la zona sur, la cual disminuye hacia el norte (figura 5-2b). El coeficiente de variación de la LST arrojó valores muy bajos, menores a 0.3 en todas las estaciones del año; y, específicamente en primavera muestra una gran homogeneidad del CV en toda la región. Estos datos permiten concluir que la LST no presentó una gran variabilidad intraestacional entre los años 2001 y 2020.

Y, por último, el coeficiente de variación del NDVI arrojó valores menores a 0.5 en la mayor parte de la región de Altiplano, con excepción de las zonas lacustres y de salares, en las 4 estaciones del año. CV que adquiere valores aún más bajos en invierno. Estos datos permiten inferir una baja variabilidad intraestacional de valores NDVI.

Figura 5-2. Coeficiente de variación (CV), por estaciones, de las variables precipitación (a), evapotranspiración (b), temperatura diurna de la superficie terrestre (c) y NDVI (d) Fuente: Elaboración propia.

5.1.3. Estadística descriptiva de las series temporales por clúster

Las medidas estadísticas por clúster indican que, las medias no se aproximaron a las medianas a excepción de la precipitación, así mismo esta última variable presentó numerosos valores atípicos y a su vez valores de precipitación muy compactos entre los

percentiles 25 y 75, particularmente en los clústeres 5, 7, 8, 9 y 10 (figura 5-3a). Estos datos son coherentes con altos valores de los coeficientes de variación calculados a partir de las series temporales de precipitaciones, y por otro lado con los histogramas de esta variable graficados por clústeres, que muestran una alta concentración de valores en los clústeres 5, 7, 8, 9 y 10 (anexo III, figura 5).

La evapotranspiración mostró un amplio rango intercuartil y de valores mínimos y máximos; y, numerosos valores atípicos en los clústeres 5, 9 y 10, los cuales también tienen el rango intercuartil más estrecho (figura 5-3b). Esta distribución quedó reflejada en una curva asimétrica y apuntada en los histogramas de los clústeres 5, 9 y 10; y, en el resto de los clústeres, una curva con una distribución relativamente simétrica y una concentración normal (anexo III, figura 6).

Los valores LST por clúster mostraron un amplio rango tanto intercuartil como de los valores mínimos y máximos de esta variable, a excepción del clúster 2, y por otro lado ausencia de valores atípicos (figura 5-3c). Estos datos son afines con los valores de curtosis y con los histogramas de LST, que grafican una curva levemente aplanada en la mayoría de los clústeres, a excepción del 2 (anexo III, figura 7)

Los clústeres 1, 2, 4 y 5 mostraron una mayor amplitud en la distribución de valores NDVI por percentiles, en cambio los clústeres 3, 6, 7, 8, 9 y 10 mostraron una distribución muy compacta tanto de los valores que se ubican entre los percentiles 25 y 75, como en los valores mínimos (Q1-1.5IQR) y máximos (Q3-1.5IQR) (figura 5-3d). Datos que son coherentes con la gran concentración de valores que muestran los histogramas de NDVI por clúster (anexo III, figura 8).

Figura 5-3. Estadística descriptiva, por clúster, de las variables precipitación (a), evapotranspiración (b), temperatura diurna de la superficie terrestre (c) y NDVI (d) Fuente: Elaboración propia.

La prueba de normalidad de Lilliefors indica que, no existe normalidad en la distribución de los datos, en los diferentes clústeres de las 4 variables, ya que los valores del estadístico de prueba D son todos mayores al valor crítico 0.04224 (figura 5-4); por lo cual se rechaza la hipótesis nula que asumía una normalidad en la distribución de los datos. Así mismo, los valores del estadístico D y de p-value (α < 0.05) arrojados por los clústeres de las diferentes variables por estaciones del año (anexo III, tablas 5 a la 20), permiten rechazar la hipótesis nula sobre normalidad en la distribución de los datos, a excepción de los clústeres 1 y 2 de la variable precipitación en primavera.

Figura 5-4. Prueba de normalidad de Lilliefors (D) por clúster estadísticamente significativos (α< 0.05)</p>
Fuente: Elaboración propia.

5.2. Fenología de la vegetación

5.2.1. Series temporales de valores NDVI

Las series temporales de valores NDVI por clúster mostraron ciclos de crecimientos y senescencia de la vegetación bien definidos desde el clúster 1 al 8, y moderadamente definido en el clúster 10 (figura 5-5). Este último se situó en áreas próximas a salares, zonas lacustres y sin vegetación o muy escasa; y el clúster 9 correspondió principalmente a salares y en menor medida a zonas lacustres.

Las líneas de tendencia con puntos de cambios estructurales en las series temporales de valores NDVI por clúster, arrojó tendencias muy bajas y a su vez estadísticamente no significativas en la mayoría de los segmentos de tendencia (anexo IV, tabla 1). A excepción de las pendientes 2 (2012 a 2016) del clúster 3; 2 (2012 a 2016) del clúster 5; 3 (2012 a 2016) del clúster 6; pendientes 2 (2016 a 2018), 4 (2012 a 2015) y 5 (2016 a 2020) del clúster 7; y 4 (2012 a 2016) del clúster 8, las cuales obtuvieron valores
significativos en el estadístico de prueba y pendientes de -0.0087, -0.0093, -0.0070, -0.0037, -0.0023, 0.0014 y -0.0042 respectivamente.

Figura 5-5. Series temporales NDVI y sus respectivas tendencias con puntos de cambios estructurales significativos, por clúster, entre los años 2001 y 2020 Fuente: Elaboración propia.

5.2.2. Ciclos fenológicos de la vegetación

En cuanto a los ciclos fenológicos señalar que, en los clústeres 1 al 8 (figura 5-6, a-h) los valores NDVI observados (puntos negros) se concentraron principalmente dentro de un margen de 75% de probabilidad de valores esperados de cada ciclo y casi ninguna observación NDVI fuera del margen de probabilidad del 95%, a excepción de las 12 observaciones atípicas (puntos negros fuera de las franjas de colores) en los clústeres 2, 3, 5, 6, 7 y 8. Así mismo los rangos de variabilidad NDVI por un mismo día del año (DOY) alcanzaron los 0.2.

Estos datos indican que las observaciones NDVI no presentaron valores atípicos numerosos o anomalías con respecto al ciclo fenológico de referencia para los clústeres 1 al 8; y por otro lado las oscilaciones de los valores NDVI observados en un mismo DOY fueron relativamente altas entre los años 2001 y 2020.

En cuanto a los clústeres 9 y 10 (figura 5-6, i-j), se identificaron cuantiosos valores NDVI observados fuera del margen de probabilidad del 95% de los valores esperados y no se pudo determinar un ciclo fenológico claro, sino más se observó una franja de valores esperados plana sin mayores oscilaciones.

Figura 5-6. Ciclos fenológicos de la vegetación en el Altiplano, por clúster, entre los años 2001 y 2020. Línea roja oscura: ciclo fenológico de referencia (más probable); franjas beige, amarilla, anaranjada y roja: probabilidad (0.95, 0.9, 0.75 y 0.5) de los valores NDVI por DOY. Puntos negros: valores NDVI observados cada 16 día por año. Fuente: Elaboración propia.

5.2.3. Métricas fenológicas de la vegetación

Las métricas fenológicas indican que, los clústeres con mayor variabilidad DOY de inicio de la temporada de crecimiento (SOS), entre los años 2001 y 2020, fueron el 1, 2, 4, 5 y 7. Así el SOS del clúster 1 osciló entre los días 307 y 27 (figura 5-7), es decir, entre los meses de primavera y verano para el hemisferio sur; y, si bien fluctuó en un margen de 85 días, la tendencia con una pendiente de 0.2519 no fue estadísticamente significativa (anexo IV, tabla 2). El clúster 2 varió 55 días, entre el día 342 en el 2009 y el día 32 en el año 2002; arrojando una pendiente de la tendencia de -0.4624, pero sin significancia estadística. El clúster 4 tuvo un margen de variación de 61 días, siendo el SOS más temprano el día 335 y el más tardío el día 31; resultando en una pendiente de -0.734096, pero que no alcanzó un p-value menor a 0.05. El clúster 5 osciló en un margen de 41 días, siendo el SOS más temprano el día 355 en el año 2009 y el más tardío el día 31 del año 2002. Y el clúster 7 tuvo un margen de variación de 45 días, siendo el SOS más temprano el día 344 del año 2013 y el más tardío el día 24 del año 2012.

Los clústeres con una menor variabilidad DOY de inicio de la temporada de crecimiento, entre los años 2001 y 2020, fueron el 3, 6 y 8. Así el SOS del clúster 3 varió en un margen de 23 días, siendo el SOS más temprano el día 362 del año 2009 y el más tardío el día 21 del año 2015. El clúster 6 solo tuvo un margen de variación de 21 días, siendo el SOS más temprano el día 363 de los años 2012 y 2018, y el más tardío el día 19 del año 2017. Y por último el clúster 8 que osciló en 32 días, siendo el SOS más temprano el día 364 de los años 2002 y 2015 y el más tardío el día 31 del año 2018.

Por otro lado, los días del punto máximo de crecimiento o verdor (POP) por clúster indican que, en promedio se presentaron durante el mes de marzo de cada año, a finales de la temporada de verano para el hemisferio sur, específicamente en torno al día 66. Así en los clústeres 1 al 8, los días promedio de POP entre 2001 y 2020 fueron los días 70, 67, 63, 68, 66, 63, 69 y 66 respectivamente (figura 5-7).

Entre estos clústeres, el día del punto máximo de crecimiento más temprano fue el día 42 en el año 2014 y se presentó en el clúster 6. Por el contrario, el día más tardío fue el 89 en el año 2017, específicamente en el clúster 4 (figura 5-7).

Los clústeres con menor variabilidad en los días del punto máximo de crecimiento de la vegetación, entre los años 2001 y 2020, fueron el 2, 3, 4, 5, 6 y 8 con un promedio de 31 días. Así el clúster 2 tuvo una oscilación de 31 días, siendo el más temprano el día 52 de los años 2010 y 2014 y el más tardío el día 83 en el año 2017. El clúster 3 también osciló en un margen de 31 días, entre el día 45 en el año 2014 y el día 76 en el año 2017. El clúster 4 igualmente tuvo una variación de 31 días, presentando el día más temprano (53) en los años 2010 y 2014 y los días más tardíos (83 y 84) en los años 2017 y 2019. El clúster 5 osciló en un margen de 30 días, siendo el más temprano el día 50 en los años 2013 y 2014 y los más tardíos los días 79 y 80 en los años 2017 y 2002. El clúster 6 tuvo una variación de 33 días, siendo el día más temprano el 42 en el año 2014 y los días más tardíos el 74 y 75 en los años 2017 y 2002. Y por último el clúster 8 que tuvo una oscilación de 32 días, entre el día más temprano (48) en el año 2014 y el día más tardío (80) en el año 2009.

Los clústeres con mayor variabilidad en los días del punto máximo de crecimiento de la vegetación fueron el 1 y 7 con un promedio de 36.5 días. Así el clúster 1 tuvo una oscilación de 36 días, siendo su día más temprano el 53 en el año 2014 y el más tardío el 89 en el año 2017. Y el clúster 7 osciló en un margen de 37 días, siendo el más temprano el día 51 en el año 2013 y el más tardío el día 88 en el año 2011.

Destacar que, los años más frecuentes entre los días más tempranos del punto máximo de crecimiento fueron los años 2010 y 2014 y por el contrario los años con días más tardíos del punto máximo de crecimiento fueron el 2002 y 2017. Así mismo, el patrón de variabilidad interanual del día del punto máximo de crecimiento fue bastante similar entre los clústeres 1, 2, 3, 5, 6, 7 y 8. Y, si bien se observa una gran variabilidad en los días del

punto máximo entre los años 2001 y 2020, las pendientes de las tendencias de los clústeres adquieren valores bajos y no son estadísticamente significativas (anexo IV, tabla 2).

Y por último la métrica final de la temporada de crecimiento (EOS) por clúster indica que, los días EOS en los diferentes clústeres se presentaron en promedio en torno al día 125, es decir entre los meses de abril y junio, en la estación de otoño para el hemisferio sur. De esta forma, en los clústeres 1 al 8, los días promedio de fin de la temporada de crecimiento entre los años 2001 y 2020 fueron el 137, 129, 119, 133, 124, 117, 125 y 118 respectivamente (figura 5-7).

Entre los clústeres 1 al 8, la variación promedio de los días de fin de temporada de crecimiento por clúster fue de 45 días. Así el EOS más temprano fue el día 92 en el año 2013 y se presentó en los clústeres 6 y 8. Y, por el contrario, el día más tardío fue el 159 en el año 2017, específicamente en el clúster 1 (figura 5-7).

Los clústeres con una variabilidad de días EOS similar fueron el 1, 2, 3, 4, 6 y 8, con una variabilidad promedio de 45 días. El clúster 1 tuvo una oscilación de 47 días, siendo el más temprano el día 112 en el año 2008 y el más tardío el día 159 en el año 2017. El clúster 2 también osciló en un margen de 47 días, entre el día 108 en el año 2013 y el día 155 en el año 2017. El clúster 3 tuvo una variación de 45 días, presentando el día más temprano (94) en el año 2013 y el día más tardío (139) en el año 2017. El clúster 4 osciló en un margen de 46 días, siendo el más temprano el día 110 en el año 2008 y el más tardío el día 156 en el año 2017. El clúster 6 tuvo una variación de 44 días, siendo el día más temprano el 92 en el año 2013 y el día más tardío el 136 en el año 2007. Y, por último, el clúster 8 que tuvo una oscilación de 45 días, entre el día más temprano (92) en el año 2013 y el día más tardío (137) en el año 2007. Termino.

En cuanto al clúster 5, este presentó una variación de tan solo 32 días entre el día de término de la temporada de crecimiento más temprano (107) en los años 2008 y 2014 y el más tardío (139) en el año 2007. Por el contrario, el clúster 7 tuvo una variación de 60

días entre el EOS más temprano (94) en el mes de abril de 2013 y el más tardío (154) en el mes de junio de 2011.

Los años más frecuentes entre los días más tempranos de fin de la temporada de crecimiento fueron el 2008 y 2013; y, por el contario los años con los días más tardíos de fin de temporada de crecimiento fueron el 2007 y 2017. Estas variaciones en el día EOS arrojaron pendientes con valores muy bajos y sin significancia estadística (anexo IV, tabla 2).

El cuanto al clúster 9, no se pudo determinar un ciclo fenológico probablemente porque el área correspondía principalmente a salares. Y el clúster 10, si bien se calculó el ciclo fenológico y sus respectivas métricas, sus valores son bastante inusuales y poco definidos posiblemente porque corresponde a zonas lacustres y sin vegetación o muy escasa.

Figura 5-7. Variabilidad interanual de las métricas fenológicas SOS, POP y EOS, de la vegetación en el Altiplano, por clúster, entre los años 2001 y 2020 Fuente: Elaboración propia.

5.3. Tendencias de la vegetación

El estadístico tau de Kendall aplicado a la serie temporal completa (18-02-2000 al 02-02-2020) de valores NDVI indica que, entre las áreas con tendencia estadísticamente significativa (p-value < 0.05), 1384km² del Altiplano tuvieron una tendencia negativa entre -0.72 y -0.2; áreas muy pequeñas que se visualizan en tonalidades marrones en la figura 5-8a, y, que se emplazan en forma dispersa entre las ecorregiones Puna húmeda, Puna seca y Puna de los Andes centrales. Así mismo, un área de 13277km² obtuvo una tendencia negativa, pero mucho más baja entre -0.2 y -0.01, y, que se visualiza en tonalidades amarillas en la figura 5-8a. Por el contrario, los pixeles con tendencias positivas entre 0.2 y 0.68 sumaron 6765km², se ubicaron principalmente en la ecorregión Puna seca de los Andes centrales y se visualizan con tonalidades de verde oscuro. Y, por último, las áreas con tendencias positivas menores a 0.2 alcanzaron los 80867km²; rango de tendencia que abarcó la mayor superficie en la región de Altiplano, pero a su vez es el más bajo, emplazándose en las ecorregiones de Puna seca, húmeda y puna central; y se visualiza en tonalidades de verde claro en la figura 5-8a.

En cuanto a la magnitud de las tendencias de las series temporales de valores NDVI, es posible señalar que, en las mismas áreas donde se identificó tendencia estadísticamente significativa, 1207 km² alcanzaron una pendiente entre -10.19 y -1, pequeñas zonas que se distinguen con tonalidades marrones en la figura 5-8b. Un segundo rango de áreas con pendientes negativas entre -1 y -0.1 sumó un total de 11983km², y se visualiza con tonalidades amarillo oscuro en la figura 5-8b. Por el contrario, las áreas con pendientes positivas entre 1 y 14.27 sumaron 6402km^2 y se ubicaron principalmente en la zona noreste de la región de Altiplano. Y el rango de pendientes positivas más bajas, entre 1 y 0.1, abarcó la mayor superficie (70963km²) y se distingue con tonalidades de amarillo en la figura 5-8b.

Figura 5-8. Tendencia estadísticamente significativa (a) y pendiente de las áreas con tendencia estadísticamente significativa de los valores NDVI (b), en el Altiplano, entre los años 2000 y 2020 Fuente: Elaboración propia.

El estadístico tau de Kendall calculado a partir de las series temporales NDVI por estaciones del año arrojó que, la estación de primavera es la que presentó una mayor superficie con tendencia estadísticamente significativa (115663km²), de la cual 77979km² se concentraron particularmente entre un rango de 0.01 y 0.29, correspondientes a los pixeles en tonalidades verde claro en la figura 5-9a; y, un área menor de 28793km² alcanzó una tendencia positiva entre 0.29 y 0.82, la cual se presentó en forma dispersa por el centro-sur del Altiplano, y, en el borde centro-este mostró una concentración de pixeles que se visualizan con tonalidades verde oscuro en la figura 5-9a.

En invierno los pixeles con tendencia negativa entre -0.93 y -0.29 sumaron 1772km², por el contrario, los pixeles con tendencia entre 0.29 y 1 alcanzaron 4791km², y los pixeles con tendencia entre -0.29 y 0.29 sumaron 64,864km². En otoño los pixeles con tendencias significativas menores a -0.29 y mayores a 0.29 sumaron 5450km², de una superficie total con tendencia de 63840km², y se visualizan en tonalidades marrones y verde oscuro respectivamente. En verano los pixeles con tendencia negativa entre -0.7 y -0.29 sumaron solo 322km², los pixeles con tendencia positiva entre 0.29 y 0.7 alcanzaron 1390km², mientras que los pixeles con tendencias menores a 0.29 y mayor a -0.29 sumaron 50888km², y se visualizan en tonalidades verdes claros y amarillos.

En resumen, las zonas con tendencias menores a -0.29 y mayores 0.29 corresponden a pequeñas áreas dispersas en la región de Altiplano andino, mientras que las superficies con tendencias positivas entre 0.29 y 0.01 fueron las que abarcaron una mayor cantidad de km² en las 4 estaciones del año.

Las zonas con un tau de Kendall estadísticamente significativo, en verano obtuvieron una pendiente muy baja, la cual si bien varió en un rango de -43 y 60, la mayor superficie se concentró entre 0.01-5 (35437km²) y 5-10 (10722km²). Así mismo en otoño las superficies alcanzaron pendientes bajas (entre -50 y 57), las cuales se concentraron entre 0.01 y 10 (50196km²). En invierno los pixeles adquirieron pendientes que oscilaron entre -123 y 91; sin embargo, la mayor cantidad de pixeles alcanzó pendientes entre 0.01 y 10, sumando 59155km². En primavera las pendientes de los pixeles oscilaron entre -113 y 149, concentrándose también en su mayoría entre el rango 0.01 y 10, y sumando 105081km², los cuales se visualizan en tonalidades amarillas en la figura 5-9b.

Figura 5-9. Tendencia estadísticamente significativa (a) y pendiente de las áreas con tendencia estadísticamente significativa de los valores NDVI (b), en el Altiplano, por estaciones del año entre los años 2000 y 2020 Fuente: Elaboración propia.

Los resultados del estadístico tau de Kendall de las series temporales NDVI (2000 y 2020) por meses del año indicó que, en el mes de enero la mayor cantidad de pixeles alcanzó una tendencia positiva en un rango de 0.2 y 0.75, abarcando una superficie de 34271km², las cuales se puede distinguir en la figura 5-10 con tonalidades de verdes. En febrero una superficie menor (23940km²) adquirió tendencias positivas relativamente altas entre 0.2 y

0.71. En marzo los pixeles con tonalidades de verde en la figura 5-10 sumaron 36234km² y correspondieron a zonas con pendientes entre 0.2 y 0.71. En estos tres primeros meses las grandes zonas con tendencias positivas mayores a 0.2 se ubicaron principalmente en una franja diagonal entre los 16 y 18° de latitud sur en el área de estudio.

En el mes de abril las tendencias estadísticamente significativas oscilaron entre -0.86 y 0.77; sin embargo, estas se concentraron entre los valores 0.2 y 0.77 sumando 29443km². En el mes de mayo el área total que adquirió tendencias entre 0.2 y 0.75 sumó 35432km². En cuanto a los meses de junio y julio la distribución espacial de las tendencias fue bastante similar, de tal forma que los valores mayores a 0.2 sumaron 44569km² y 47669km² en los respectivos meses. En el mes de agosto las zonas con tendencias negativas entre -0.86 y -0.2 alcanzaron 15269km², en cambio las áreas con tendencias positivas abarcaron una superficie de 38191km², las cuales se distingue con tonalidades marrones y verdes en la figura 5-10. Así mismo, en el mes de septiembre también se distinguen zonas no menores con tendencias negativas entre -0.86 y -0.2, las cuales suman 10629km², y, en el otro extremo los pixeles con tendencias positivas entre 0.2 y 0.75 suman 48776km². En el mes de octubre los pixeles adquirieron principalmente tendencias positivas entre 0.2 y 0.78 sumando un área de 37456km². El mes de noviembre se distingue por al abarcar la mayor cantidad de superficie con tendencias positivas mayores a 0.2; pixeles que suman 51566 km^2 , y que se concentran principalmente en el borde este entre los 16 y 18°LS en la región de Altiplano. Por el contrario, en el mes de diciembre se presentaron las menores cantidades de pixeles con tendencia estadísticamente significativa, las cuales si bien oscilaron entre -0.77 y 0.73, se agruparon entre los valores $0.2 \text{ y} 0.73 \text{ sumando un área de } 24996 \text{km}^2$.

Si bien el estadístico tau de Kendall arrojó tendencias significativas en los diferentes meses del año, principalmente con valores mayores 0.2, la pendiente calculada indicó que la magnitud de estos cambios es considerablemente baja en términos generales, oscilando principalmente entre -100 y 100 (figura 5-11). Y solo se observan tendencias más

considerables (>100 o <-100) en pequeñas zonas del Altiplano, en los meses de marzo, abril, octubre y noviembre.

Figura 5-10. Tendencia estadísticamente significativa de los valores NDVI, en el Altiplano, por meses entre los años 2000 y 2020

Fuente: Elaboración propia.

Figura 5-11. Pendiente de las áreas con tendencia estadísticamente significativa de los valores NDVI, en el Altiplano, por meses del año entre los años 2000 y 2020 Fuente: Elaboración propia.

5.4. Relación entre vegetación y variables ambientales

5.4.1. Vegetación y precipitación

En la región de Altiplano, 171348 km² obtuvieron valores tau de Kendall estadísticamente significativos ($\alpha < 0.05$), lo cual indica que en tales superficies existe una correlación significativa entre las series temporales NDVI y CHIRPS (01-01-2001 al 02-02-2020). La correlación positiva más alta (0.3 - 0.52) sumó 23638km², superficies que se emplazaron principalmente en el borde oeste entre los 14 y 19°LS, y se distinguen en la figura 5-12 con tonos azules oscuros. En tanto las otras áreas con correlación positiva entre 0.3 y 0.2 sumaron 74027km², se situaron en forma dispersa en la zona centro-norte del Altiplano y se visualizan con tonalidades de azul claro. Y la correlación positiva menor a 0.2 se concentró en la zona sur del Altiplano. Por el contrario, las superficies con correlación negativa sumaron solo 13343km², se concentraron en el rango -0.2 y -0.01, y se ubicaron principalmente en el Salar de Uyuni y en el borde suroeste del Altiplano.

Figura 5-12. Correlación significativa (p-value < 0.05) entre series temporales NDVI y precipitación (01-01-2001 al 02-02-2020) Fuente: Elaboración propia

Los valores del estadístico tau de Kendall por estaciones del año indica que, 124573km² del Altiplano alcanzaron una correlación NDVI y CHIRPS estadísticamente significativa en los meses de verano. Estas superficies se presentaron principalmente en la zona centrosur del área de estudio y se concentraron entre los rangos 0.01 a 0.2 y 0.2 a 0.3, con superficies que sumaron 54558km² y 44655km² respectivamente. En cuanto a las áreas con correlación positiva mayor a 0.3 (7327km²), se agruparon en el borde centro oeste del Altiplano, y se visualiza con tonalidades de azul oscuro en la figura 5-13. Mientras que las correlaciones negativas suman áreas mucho menores (18033km²) y se distinguen con tonalidades de violeta en la figura 5-13. Estos datos permiten inferir que, durante la estación de verano, en la zona centro-sur del Altiplano las precipitaciones y la vegetación se correlacionan positivamente, pero con valores bajos.

En otoño, la correlación entre NDVI y CHIRPS presentó la mayor superficie de valores tau de Kendall estadísticamente significativos. Así, una superficie de 90709km² alcanzan una correlación entre 0.3 y 1, y se extiende diagonalmente desde el noreste hasta el suroeste del Altiplano (tonos azul oscuro, figura 5-13). Mientras que las superficies con correlaciones positivas menor a 0.2 suman 54181km², se ubican en forma dispersa por toda la región del Altiplano y se distinguen con tonalidades de azul claro en la figura 5-13. En cuanto a las superficies con correlación negativa, estas oscilaron entre -0.87 y - 0.01, y sumaron 3752km². De esta forma, la vegetación y la precipitación presentaron una relación directa y alta, en la mayor parte del Altiplano durante los meses de otoño.

En invierno, la mayor cantidad de pixeles adquirieron una correlación negativa entre las series temporales NDVI y CHIRPS, oscilando entre los rangos -1 a -0.3 y -0.3 a -0.2, sumando superficies de 18587km² y 27859km² respectivamente; lo cual permite inferir que la vegetación y la precipitación presentan una relación inversa y relativamente alta en los meses de invierno, en diferentes zonas del Altiplano.

En primavera, los pixeles con correlación estadísticamente significativa entre NDVI y CHIRPS se presentaron mayoritariamente en la zona centro-norte del Altiplano, con valores positivos que oscilaron principalmente entre los rangos 0.01 a 0.2 y 0.2 a 0.3 (33969km² y 22338km²). Esta información permite deducir que, en primavera se presentó la menor relación directa entre la vegetación y la precipitación, en la zona centro-norte del Altiplano, mientras que en la zona sur casi no existe relación significativa entre estas variables.

Figura 5-13. Correlación significativa (p-value < 0.05) entre series temporales NDVI y CHIRPS por estaciones del año (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

El cálculo de correlación de tau de Kendall sobre las series temporales NDVI y CHIRPS por meses del año arrojó que, en enero los pixeles con correlación estadísticamente significativa se presentan de forma dispersa alcanzando una superficie de 30845km². De esta forma las correlaciones positivas entre 0.2 y 0.5 se distribuyen en el centro-sur del Altiplano. En febrero, los pixeles también se presentan en forma dispersa en el área de estudio, adquirieron principalmente valores negativos entre -0.5 y -0.2 (15950km²), a excepción de una pequeña agrupación de pixeles con valores positivos entre 0.2 y 0.5, los cuales se ubicaron en el borde centro-oeste del Altiplano (figura 5-14).

Figura 5-14. Correlación significativa (p-value < 0.05) entre series temporales NDVI y precipitación por meses (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

En cuanto a los meses de marzo, abril y mayo, los pixeles con valores tau de Kendall estadísticamente significativo si bien se presentaron dispersos en toda la región, en marzo se agrupó una gran cantidad con valores entre 0.2 y 0.5 en la zona centro-oeste; en abril estos se concentran en la zona noroeste y alcanzan principalmente valores entre 0.2 y 0.5; y en mayo se agrupan en la zona noreste (tonalidades de azules, figura 5-14).

En los meses de junio, julio, agosto, septiembre y octubre es posible distinguir muy pocos pixeles con correlación positiva o negativa estadísticamente significativa; y a su vez estos se presentan espacialmente dispersos a lo largo de la región de Altiplano. En específico, junio obtuvo correlaciones positivas y negativas solo en 2618km² y 4685km² respectivamente; julio sumó un área de 2409km² con correlación negativa y 5241km² con correlación positiva; en agosto las superficies en el rango -1 y -0.2 sumaron 5219km², y en el rango 0.2 y 1 alcanzaron 4551km²; en septiembre los pixeles con valores positivos sumaron 9954km², y los negativos 1684km²; y en octubre los pixeles con correlaciones negativas solo sumaron 2412km² y 5705km² respectivamente.

En noviembre, los pixeles con valores tau estadísticamente significativos se agruparon principalmente en una franja diagonal en la zona norte del Altiplano, y adquirieron valores entre 0.2 y 0.5. Y en diciembre la mayor cantidad de pixeles presentó correlaciones positivas entre 0.2 y 0.5, sumando 50392km², y distribuyéndose principalmente en una franja diagonal que se extendió desde el noroeste hasta el sureste del Altiplano.

5.4.2. Vegetación y evapotranspiración

El estadístico tau de Kendall indica que, una importante superficie (169250km²) en la región de Altiplano presentó una correlación significativa entre las series temporales NDVI y la evapotranspiración (01-01-2001 al 02-02-2020). De esta forma, los altos valores positivos de tau de Kendall (0.3 a 0.63), en pixeles que suman 109871km², permiten inferir que, la vegetación y la evapotranspiración presentaron una relación directa y alta entre los años 2001 y 2020. Estos valores se visualizan con tonalidades de verde oscuro en la figura 5-15.

Por otro lado, los pixeles con correlación positiva entre 0.2 y 0.3 suman 34071km² y se visualizan en tonos verde claro; y, los pixeles con una baja correlación positiva (0.01 y 0.2) alcanzan los 24154km² y se visualizan con tonos amarillos. En cambios las pequeñas zonas con correlación negativa solo suman 1154km².

Figura 5-15. Correlación significativa (p-value < 0.05) entre series temporales NDVI y evapotranspiración (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

El cálculo del estadístico tau de Kendall entre las series temporales NDVI y ET por estaciones del año arrojó que, en el verano austral se presentó una correlación mayoritariamente positiva en la región de Altiplano, a excepción de la zona noreste que no alcanzó valores estadísticamente significativos. De esta forma, tau osciló principalmente entre los rangos: 0.3 a 0.65 abarcando una superficie de 59209km²; 0.2 a 0.3 sumando 50136km²; y 0.01 a 0.2 abarcando 26122km².

En otoño, es posible distinguir que se presentó una correlación positiva y alta en prácticamente todo el Altiplano (figura 5-16). En particular, una superficie de 139863km²

adquirió valores tau entre 0.3 y 0.77 (tonos verdes oscuros en la figura 5-16), una superficie menor (19540km²) alcanzó valores entre 0.2 y 0.3, y solo una superficie de 8764km² obtuvo valores entre 0.01 y 0.2.

En invierno se distinguen 2 áreas con valores tau opuestos, una pequeña zona restringida hacia el noreste que se visualiza en tonos marrones y beige, y que alcanzaron correlaciones negativas entre -0.73 y -0.01. Y luego se presentó una gran zona en el centro-sur del Altiplano con correlaciones positivas que oscilaron principalmente entre los rangos 0.01 a $0.2 (44364 \text{km}^2)$ y $0.2 \text{ a } 0.3 (35542 \text{km}^2)$.

En primavera la región de Altiplano presentó principalmente correlaciones positivas bajas. Así los pixeles con valores tau entre 0.01 y 0.2 se visualizan con tonos amarillos en la figura 5-13 y suman 42259km²; mientras que una superficie mayor de pixeles (59138km²) alcanzó valores entre 0.2 y 0.3 y se visualiza en tonos verde claro; y una menor superficie (17725km²) obtuvo valores entre 0.3 y 0.58, y se distingue con tono verde oscuro.

Figura 5-16. Correlación significativa (p-value < 0.05) entre series temporales NDVI y evapotranspiración por estaciones del año (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

Figura 5-17. Correlación significativa (p-value < 0.05) entre series temporales NDVI y evapotranspiración por meses (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

El estadístico tau de Kendall calculado por meses del año indica que, la vegetación y evapotranspiración presentaron una correlación principalmente positiva a lo largo del año; sin embargo, dependiendo el mes se identificaron relaciones directas más altas, abarcando una mayor o menor extensión de superficie y en diferentes zonas del Altiplano. De esta forma, en el mes de enero los pixeles que se distinguen con tonalidades de verde claro y oscuro (figura 5-17), alcanzaron valores entre 0.2 a 0.3 y 0.3 a 0.63 respectivamente, y se concentraron hacia el centro-sur del Altiplano. En cambio, en febrero no se observó una concentración mayor de pixeles en una determinada zona, sino más bien se distribuyeron en forma dispersa por el Altiplano, y en su mayoría adquirieron valores tau entre 0.2 y 0.3 (19482km²). Y en marzo los pixeles estadísticamente significativos y con correlación positiva se concentraron en el centro-sur del Altiplano, los cuales se pueden visualizar con tonalidades de verde en la figura 5-17, y alcanzaron valores tau entre 0.2 a 0.3 (30119 km²) y 0.3 a 0.65 (25857km²).

Por otro lado, los meses de abril y mayo fueron los que abarcaron una mayor superficie con pixeles estadísticamente significativos, y a su vez correlaciones positivas relativamente altas. Así en el mes de abril una superficie no menor (69130km²) alcanzó valores tau entre 0.3 a 0.75, y otra de 40182km² alcanzó valores entre 0.2 y 0.3. Y en mayo también fue posible distinguir grandes áreas con correlaciones positivas, con tonalidades de verde en la figura 5-17, las cuales sumaron 44456km² en el rango 0.2 a 0.3 y 55262km² en el rango 0.3 a 0.69.

Los meses de junio y julio presentaron una distribución espacial similar entre los pixeles significativos y con correlación positiva, abarcando superficies de 31025km² y 27592km² con valores tau entre 0.2 a 0.3, y superficies de 23572km² y 14736km² con valores entre 0.3 y 0.78 respectivamente.

En agosto los pixeles también adquirieron principalmente valores tau entre 0.2 a 0.3 y 0.3 a 0.83 y sumaron 39956km² y 27577km² de superficie respectivamente.

En septiembre se presentaron 2 agrupaciones de pixeles con correlaciones positivas entre 0.2 y 1, el primero en la zona norte y el segundo en el borde centro-este del Altiplano.

En octubre se presentó una menor cantidad de pixeles estadísticamente significativos, pero a pesar de ello la gran mayoría alcanzó valores tau de Kendall entre 0.3 y 0.68 sumando una superficie de 31005km², la cual se emplazó principalmente en la zona centro y se visualiza tonalidades de verde en la figura 5-17.

En tanto los meses de noviembre y diciembre, se caracterizaron por concentrar los pixeles significativos y con correlaciones positivas en la zona centro y centro-sur del Altiplano. En noviembre la mayor cantidad de pixeles adquirió valores entre los rangos 0.2 a 0.3 (27752km²) y 0.3 a 0.71 (45226km²); y en diciembre la mayoría de los pixeles adquirieron valores en rangos similares 0.2 a 0.3 (33550km²) y 0.3 a 1 (42083km²).

5.4.3. Vegetación y temperatura diurna de la superficie terrestre

Los resultados del estadístico tau de Kendall calculado entre las series temporales NDVI y LST, que contemplaron datos desde el año 2001 al 2020, indican que, la gran mayoría de las superficies del Altiplano presentaron correlaciones negativas y significativas entre estas variables; valores que oscilaron en un rango de -0.66 a -0.01. En particular, la zona norte del Altiplano que, destaca por sus tonalidades morado y azul oscuro en la figura 5-18 adquirió valores tau de Kendall negativos principalmente entre -0.66 y -0.3. La zona sur del Altiplano también obtuvo valores negativos entre -0.66 y -0.3, pero en menor medida, además de valores tau entre 0.3 y 0.2. Y los valores tau entre -0.2 y 0.01 se presentaron en forma dispersa a lo largo de todo el Altiplano.

Por el contrario, las pocas áreas con valores tau de Kendall positivos se restringieron a pequeñas zonas alrededor de lagos y salares, las cuales se distinguen con tonos verde agua en la figura 5-18.

Figura 5-18. Correlación significativa (p-value < 0.05) entre series temporales NDVI y temperatura de la superficie terrestre (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

El cálculo de correlación por estaciones del año arrojó que, en verano la gran mayoría de las superficies a lo largo del Altiplano obtuvieron una correlación negativa y alta entre NDVI y LST, las cuales son visibles en tonalidades azules en la figura 5-19. De esta forma, 116305km² adquirieron valores tau entre -0.66 y -0.3; 32086km² alcanzaron valores tau entre -0.3 y -0.2; y solo 16648km² adquirieron valores bajos entre -0.2 y -0.01. Por el contrario, superficies menores correspondientes principalmente a zonas lacustres y salares obtuvieron una correlación positiva entre 0.2 y 0.74, y sumaron 18478km².

En otoño se distinguieron 3 sectores con valores tau de Kendall opuestos (figura 5-19): un sector de salar en el sur y una gran zona norte con valores negativos entre los rangos -1 a -0.3 (36373km²), -0.3 a -0.2 (18895km²), y -0.2 a -0.01 (11178km²); y luego una gran zona centro-sur con valores positivos entre los rangos 0.01 a 0.2 (27472km²), 0.2 a 0.3 (27536km²), y 0.3 a 0.87 (21506km²), que se visualiza en tonos verde agua (figura 5-19).

En invierno se presentó una correlación negativa y alta (-1 a -0.5) en el extremo norte, y luego esta decrece gradualmente hacia el sur del Altiplano (165428km²); exceptuando a las zonas lacustres y salares que presentaron una correlación positiva, las cuales se distinguen del resto de la región por sus tonalidades de verde agua en la figura 5-19.

En primavera la mayor parte de los pixeles estadísticamente significativos y a su vez con valores tau negativos se concentraron en la zona norte, y luego se dispersaron gradualmente hacia el sur del Altiplano, sumando una superficie de 98769km². Y los pixeles con valores tau positivos se restringieron principalmente a zonas lacustres y salares, los cuales sumaron 25342km² (figura 5-19).

Figura 5-19. Correlación significativa (p-value < 0.05) entre series temporales NDVI y temperatura de la superficie terrestre por estaciones del año (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

Los valores tau de Kendall por meses del año indican que, en los diferentes meses se presentaron superficies que en gran parte aluden a una correlación negativa relativamente alta (-1 a -0.3) entre la vegetación y la temperatura diurna de la superficie terrestre, en la mayoría de la región de Altiplano, a excepción de los salares y zonas lacustres donde las

correlaciones presentaron valores positivos o bien no fueron significativos estadísticamente (figura 5-20). De esta forma, en enero los pixeles con valores estadísticamente significativos y correlación negativa alta entre -0.93 y -0.3 sumaron 41807km² y se concentraron principalmente en el centro-sur del Altiplano.

En febrero los pixeles estadísticamente significativos se distribuyeron en forma dispersa por la región, presentando mayoritariamente valores tau negativos (-0.87 a -0.2), los cuales se distinguen con tonalidades azules en la figura 5-20.

En marzo gran parte de los pixeles con correlación negativa y estadísticamente significativos se extendieron por la zona centro-sur del Altiplano, sumando 89672km².

En los meses de abril, julio, agosto, septiembre, octubre y noviembre, los valores tau de Kendall negativos se presentaron con diferentes grados de concentración principalmente en la zona centro-norte del Altiplano. Siendo el mes de noviembre el que sumó la mayor superficie (52328km²) con correlaciones negativas y altas entre -1 y -0.3, y julio el menor.

Los meses de mayo y junio concentraron los pixeles con valores tau de Kendall negativos en la zona norte del Altiplano, mientras que en el resto de la región se observaron pixeles muy dispersos con correlaciones tanto positivas como negativas.

En cuanto a los pixeles con correlación positiva, estos muestran una concentración importante en las zonas lacustres y salares, durante los meses de enero, agosto, septiembre, octubre, noviembre y diciembre. Mientras que, en los meses de febrero a julio estas superficies no obtuvieron una cantidad importante de pixeles estadísticamente significativos (tonos verde agua en la figura 5-20).

En el mes de diciembre los pixeles estadísticamente significativos se extienden abarcando casi toda la superficie del Altiplano, mostrando una correlación negativa en esta región entre los rangos -0.74 a -0.3 (94482km²) y -0.3 a -0.2 (32457km²), a excepción de las zonas lacustres y salares que presentaron correlaciones positivas entre 0.2 y 0.87, sumando 17513km².

Figura 5-20. Correlación significativa (p-value < 0.05) entre series temporales NDVI y temperatura de la superficie terrestre por meses (01-01-2001 al 02-02-2020) Fuente: Elaboración propia.

VI. DISCUSIONES Y CONCLUSIONES

La presente investigación tuvo como propósito identificar posibles cambios en las dinámicas de la vegetación zonal del Altiplano, entre los años 2000 y 2020, de tal forma que, el primer objetivo se centró en la determinación de cambios en las métricas fenológicas en el área de estudio, por clúster.

En este contexto, las tendencias con puntos de cambios estructurales de la serie temporal de valores NDVI de cada clúster (1 al 8), entre los años 2001 y 2020, indica que, la gran mayoría de las líneas de tendencia presentó una tendencia sin significancia estadística, y sus pendientes fueron bajas y negativas. En tanto, las líneas de tendencia estadísticamente significativas se presentaron principalmente entre el periodo 2012 y 2016.

En cuanto al ciclo fenológico de los clústeres asociados a superficies con vegetación (1 al 8), fue posible determinar que, no existieron cuantiosos valores atípicos fuera del ciclo fenológico de referencia y de sus respectivas probabilidades. Sin embargo, fue posible identificar una gran variabilidad entre el ciclo fenológico de referencia y las observaciones registradas de valores NDVI. Esto último, se evidenció en observaciones NDVI que, en un mismo DOY de los diferentes años (2001 a 2020) alcanzó amplitudes de variación de 0.2. Alto margen de variabilidad de valores NDVI que se presentó principalmente entre los DOY de inicio y fin de la temporada de crecimiento, mientras que el resto del ciclo presentó una variabilidad más estrecha.

Los clústeres 1 al 8 presentaron tendencias sin significancia estadística en las métricas SOS, POP y EOS; y a su vez arrojaron valores de pendientes que indican una magnitud de cambio muy baja. De tal forma que, la magnitud de cambio del día del año de inicio de la temporada de crecimiento osciló entre -13 minutos y -17 horas entre un año y otro, en los diferentes clústeres. Sin embargo, estas bajas pendientes no se deben a valores DOY estables de SOS, sino más bien a la gran variabilidad que este presentó entre los años 2001 y 2020; lo cual se refleja en años con días de inicio de la temporada de crecimiento muy

tempranos o bien muy tardíos, amplitudes que por ejemplo alcanzan los 61 días en el clúster 4.

En la métrica doy del punto máximo de crecimiento, las pendientes de las tendencias indicaron una magnitud de cambio de solo 1 hora o 7.3 horas como máximo por año. Esta situación en parte se explica por los valores DOY sobre los cuales se calcularon las pendientes en los diferentes clústeres, ya que estos presentaron una amplitud de 33 días en promedio entre el día más temprano y el más tardío del punto máximo de crecimiento, llegando hasta los 37 días en el clúster 7, es decir, los días del punto máximo se registraron entre mediados o fines de febrero y fines de marzo.

Se destaca que, la mayor frecuencia de los días más tempranos del punto máximo de crecimiento fue en el año 2014 y por el contrario los días del punto máximo más tardíos fueron en el 2017. Mientras que en la métrica EOS, los días más tardíos también se presentaron en el año 2017, mientras que los días más tempranos de EOS fueron en el año 2013.

En la métrica fin de la temporada de crecimiento, las pendientes también evidencian una magnitud de tendencia baja que oscila entre 2.7 (clúster 6) y 19.7 horas aproximadamente (clúster 7) por año. Y, otra característica a enfatizar es la gran variabilidad de los valores DOY por año, los cuales alcanzaron una amplitud de 60 días en el clúster 7.

Los resultados de las métricas fenológicas de la vegetación reflejaron la gran variabilidad climática propia del Altiplano; sin embargo, no fue posible establecer tendencias de las series temporales de valores NDVI o cambios significativos en el ciclo fenológico de la vegetación, ya sea positivos o negativos, asociados a los posibles efectos del cambio climático o bien a los cambios en la variabilidad climática de esta zona.

Si bien Aguilar-Lome et al. (2019) determinó una tendencia creciente de las temperaturas diurnas (LST) en invierno (1°C por década) entre los años 2000 y 2017; y, por otro lado, Segura et al. (2020) identificaron una reducción de los años extremadamente secos y un

aumento de las precipitaciones en los Andes durante los meses del verano austral en las últimas dos décadas; estas tendencias y/o cambios en el comportamiento de las temperaturas y precipitaciones no se reflejaron en cambios en la fenología de la vegetación del Altiplano entre los años 2001 y 2020, sino más bien se identificó una gran variabilidad en los días de inicio, punto máximo y fin de la temporada de crecimiento. Resultados que son bastante coherentes con los hallazgos de Van Leeuwen et al. (2013), quienes reportaron una gran variabilidad en el inicio de la temporada de crecimiento a los largo de la cordillera de los Andes, entre los años 1982 y 2011.

El segundo y tercer objetivo de esta investigación se enfocaron en la determinación de tendencias de la vegetación, y su relación con las variables ambientales: precipitación, temperaturas y evapotranspiración.

En cuanto a la determinación de tendencias en la vegetación de la extensa región Altiplano andino fue posible determinar tendencias estadísticamente significativas, entre los años 2000 y 2020, en una superficie de 102293km², las cuales adquirieron mayoritariamente valores entre los 0.2 y 0.01 (80867km²) tau de Kendall; lo cual permite inferir que, si bien se identifica una tendencia principalmente positiva, esta es más bien baja en la mayoría de las superficies del Altiplano, existiendo solo algunas zonas, más acotadas, con tendencias mayores a 0.2 (6765km²) y menores a -0.2 (1384km²). En tanto la pendiente también indicó una magnitud de cambio baja, la cual alcanzó principalmente una tasa igual o menor a 230 NDVI por década (0.023 NDVI por década).

Estas tendencias principalmente positivas fueron más evidentes durante la primavera austral, periodo en el cual alcanzaron las mayores superficies y tendencias, de esta forma, la pendiente indicó tasas de cambio en su mayoría menor a 500 NDVI por década. En tanto las tendencias significativas por meses del año fueron mayores, obteniendo principalmente valores tau sobre 0.2, en diferentes zonas del Altiplano dependiendo del mes, mientras que las pendientes en su mayoría fueron bajas con tasas de cambio iguales o menores a 200 NDVI por década.

Con respecto a la relación entre la vegetación y las variables ambientes, es posible señalar que, importantes superficies del Altiplano, específicamente las zonas centro-norte, obtuvieron correlaciones positivas (principalmente 0.2 a 0.52) entre la vegetación (NDVI) y la precipitación (CHIRPS), en el periodo 18-02-2000 al 02-02-2020. Áreas donde también se presentan los mayores montos de precipitación y una mayor vegetación.

Esta correlación positiva fue más evidente en superficie (90.709km²) y en valores tau de Kendall (0.3 a 1), durante el otoño austral. Por el contrario presentó una correlación negativa (-0.3 a -0.2) durante el periodo invernal, mientras que en verano y primavera la correlación presentó valores bajos, menores a 0.3.

Durante los meses de junio a octubre no se identificaron grandes superficies del Altiplano con correlación alta y estadísticamente significativa, sino más bien pixeles dispersos; mientras que los meses que obtuvieron una mayor correlación positiva fueron en marzo, abril, mayo, noviembre y diciembre; sin embargo, se presentaron principalmente en la zona centro-norte.

En tanto la correlación entre la vegetación (NDVI) y la evapotranspiración fue positiva y alta (0.3 a 0.63) casi en la totalidad de la región de Altiplano, entre los años 2000 y 2020, es decir, a mayor vegetación mayor evapotranspiración. Esta correlación fue más indiscutible durante el otoño austral, periodo en el cual se obtuvo una correlación positiva y alta (0.3 a 0.77) en una importante superficie (139863km²), mientras que los meses donde se identificaron correlaciones positivas sobre 0.3 y que abarcan mayores superficies fueron los meses de abril (69130km²) y mayo (55.262km²).

Por último, la correlación estadísticamente significativa entre la vegetación y la temperatura diurna de la superficie terrestre (LST), fue negativa y principalmente alta (-0.66 a -0.3) en la zona norte del Altiplano, y alcanzó valores negativos decrecientes hacia el sur. Esta misma distribución se presentó en el invierno austral, aunque las correlaciones fueron mayores (-1 a -0.5) en importantes superficies (165428km²), mientras en la estación de verano, donde se presentan habitualmente los "*peak*" de vegetación, la

correlación también fue negativa y alta (-0.3 a -0.66). Este comportamiento se mantuvo en los diversos meses del año, abarcando diferentes sectores del Altiplano según el mes, siendo el mes de diciembre el que comprendió casi toda la región.

En este contexto, es posible señalar que, Lotsch et al. (2003) concluyó que la vegetación se encuentra estrechamente asociada al comportamiento de las precipitaciones, principalmente en las regiones áridas y semiáridas a escala global, lo cual sugiere un fuerte acoplamiento clima-biosfera. De tal forma que, la precipitación, temperatura y la intensidad lumínica son algunos de los factores que más influyen en el comportamiento de la vegetación (Duval et al., 2015).

En este sentido, el comportamiento de las temperaturas en el Altiplano entre 2000 y 2017 ha registrado un aumento; lo cual se profundiza a mayor altitud, llegando a los 1.7°C por década en las zonas sobre los 5000 m.s.n.m. (Aguilar-Lome et al., 2019). Por otro lado, las precipitaciones han presentado un panorama poco concluyente, ya que las estimaciones sobre las tendencias de las precipitaciones actuales y futuras en el Altiplano no son unánimes en sus resultados. Al respecto, Minvielle & Garreaud (2011) concluyeron que la proyección de aumento de los flujos del oeste sobre los Andes centrales dificultaría el aumento de humedad y en consecuencia reduciría las precipitaciones sobre el Altiplano hacia finales del siglo XXI.

Así mismo, Thibeault et al. (2012) concluyeron que los modelos proyectan para el periodo 2050–2099, un aumento de los vientos del oeste de 200 hPa, los cuales reducen el desarrollo de precipitaciones en el Altiplano. Igualmente, investigaciones que consideraron ventanas de tiempo más amplias prevén para el periodo 2071-2100 una reducción de las precipitaciones en los Andes Centrales que, se escapa de la variabilidad natural preindustrial, incluso bajo el escenario RCP 2.6, y que se presentan ya desde principios del siglo XXI (Neukom et al., 2015). En este mismo contexto, la reconstrucción de las precipitaciones anuales desde 1300 a 2006, realizada por Morales et al. (2012), a partir del crecimiento de anillos de árboles en el Altiplano occidental, muestra una

tendencia negativa desde la segunda mitad del siglo XX; sin embargo, las estimaciones a partir de registros "*in situ*" de precipitaciones no determina una tendencia estadísticamente significativa.

Por el contrario, Segura et al. (2020) estimaron un aumento de las precipitaciones estivales en los Andes Tropicales del Sur entre 1982 y 2018, producto del aumento del transporte de humedad desde el Atlántico norte tropical, flujos que generan una mayor inestabilidad atmosférica y una convección profunda sobre el Amazonas occidental. En este mismo sentido, Espinoza et al. (2019) y Wang et al. (2018) concluyeron que, el aumento de las precipitaciones sobre la cuenca del Amazonas (norte y noroeste) se debe al aumento del flujo de humedad desde el Atlántico norte tropical.

Considerando la estrecha relación que se ha documentado entre la vegetación zonal y las precipitaciones en los diferentes ambientes; y a su vez los últimos estudios sobre precipitaciones en el Altiplano, los cuales son los más recientes, contemplan gran parte del periodo de estudio, y sobre todo atribuyen las precipitaciones del Altiplano no solo a los vientos del este en los altos niveles de la troposfera (debilitamiento de los vientos del oeste) en el verano austral, sino también al transporte de humedad desde el Atlántico norte tropical, el cual ha experimentado un cambio positivo en estas últimas décadas.

Es posible señalar que, estas mayores precipitaciones registradas en el Altiplano deberían haberse reflejado en tendencias positivas o cambios significativos en la vegetación zonal. Sin embargo, en el periodo 2001 a 2020 la fenología de la vegetación evidenció principalmente una gran variabilidad en los días de inicio, punto máximo y fin de la temporada de crecimiento en los diferentes años de este periodo de estudio. Mientras que las tendencias de estas métricas fenológicas no fueron estadísticamente significativas y las pendientes indicaron una magnitud de cambio que alcanzó solo horas en el DOY de inicio, punto máximo y fin de la temporada de crecimiento.

Así mismo, estos cambios positivos en las precipitaciones entre 1982 y 2018, no se refleja en una tendencia positiva significativa y alta de la vegetación, sino más bien en una tendencia positiva que en la mayor parte del Altiplano no superó los 0.2 tau de Kendall, entre los años 2000 y 2020; y a su vez la tasa de incremento de la vigorosidad de la vegetación solo alcanzó los 230 NDVI por década. Situación que cambió levemente durante la primavera austral y en la serie temporales NDVI segmentada por meses del año, obteniendo tendencias positivas mayores a 0.2, y tasas de cambios aun así bajas.

Considerando estos antecedentes, se concluye que los cambios positivos registrados en las precipitaciones no tuvieron una injerencia significativa sobre la vigorosidad de la vegetación, sino más bien se determinó una leve tendencia al aumento de la vegetación. Sin embargo, es importante ser cautos en este análisis, ya que la ventana de tiempo utilizada para estimar tendencias ya sea positivas o negativas, posiblemente no es lo suficientemente amplia para detectar los cambios en la fenología o altas tasas de tendencias en la vegetación. Así mismo, es relevante destacar que se desconoce si estos cambios en las dinámicas de la vegetación corresponden a un episodio puntual, que obedece a la variabilidad climática propia de esta zona, o bien si estos cambios son persistentes en el tiempo, lo cual podría llegar a implicar cambios significativos en la vigorosidad de la vegetación del Altiplano.

La leve tendencia y magnitud de cambio positiva de la vegetación del Altiplano (0.023 NDVI por década) es bastante coherente con las tendencias medias crecientes de la vegetación global, la cual alcanzó los ~0.00474 unidades de NDVI por década en la temporada de crecimiento, entre los años 1982 y 2013 (Zhao et al., 2018). Así mismo, Y. Yang et al. (2019) reportó un enverdecimiento del 34% de las áreas continentales a escala global entre 1982 y 2015.

En este contexto, resulta relevante mencionar los hallazgos de Polk et al. (2020), quienes identificaron una gran variabilidad espacial en la tendencia de la vigorosidad de la vegetación del Altiplano peruano, entre 2000 y 2017; de tal forma que, determinaron un enverdecimiento del 15% y un pardeamiento de 4% aproximadamente. Igualmente, en la cuenca Altoandina del lago Poopó se identificó un aumento leve de los valores NDVI
(0.013) en los últimos 13 años; atribuibles, en parte, al incremento de las precipitaciones en esta zona (Torres-Batlló et al., 2020). Mientras que en un escenario de mayor escala temporal (1990 a 2100), las proyecciones indican una aumento de las temperaturas, una gran variabilidad espacial de las precipitaciones y a su vez impactos negativos en la riqueza de especies en la región natural puna y vegetación altoandina del Bolivia (Andersen, 2017).

En cuanto a la relación que se determinó entre el comportamiento de la vegetación y las variables ambientales, entre 2000 y 2020, es posible señalar que, considerando: a) que las temperaturas diurnas de la superficie terrestre (LST) representan bien las temperaturas del aire (Aguilar-Lome et al., 2019); b) que según los resultados obtenidos la vegetación se relaciona de forma alta e inversa con la temperatura (LST); y c) que se ha estimado unánimemente un aumento de las temperaturas en el Altiplano y/o en la parte austral de los Andes Centrales, en el periodo actual y futuro (Aguilar-Lome et al., 2019; Andersen, 2017; Habel et al., 2019; Marengo et al., 2011; Ministerio del Ambiente, 2016); es posible inferir que, la vegetación del Altiplano se podría ver afectada negativamente por estos incrementos de temperaturas, viendo afectada no solo su superficie y vigorosidad sino también la riqueza de especies (Andersen, 2017).

Bajo este mismo enfoque es preciso destacar que, si bien los registros de precipitación han indicado un incremento sobre los Andes tropicales del sur en las últimas décadas, y, por otro lado, los resultados de esta investigación determinaron una relación directa entre la vegetación y las precipitaciones en el Altiplano, lo cual es respaldado por estudios realizados en diferentes ambientes que atribuyen a las precipitaciones un papel fundamental sobre las dinámicas de la vegetación. Estos incrementos de precipitación y su relación directa con la vegetación, no se han reflejado en tendencias altas, positivas y estadísticamente significativas sobre la vegetación. Situación que tendría una explicación posiblemente en los aumentos de temperaturas registradas y estimadas para el periodo actual, y que a su vez implican un pardeamiento de la vegetación, contrarrestando los efectos positivos de la precipitación sobre la vegetación.

En cuanto a la relación entre vegetación y evapotranspiración, los resultados concluyeron una relación directa y alta, lo cual está estrechamente relacionado con los elementos que confluyen en el comportamiento de la evapotranspiración, siendo la temperatura, estado de la vegetación y humedad ambiental algunos de los factores claves. Así, la mayor vigorosidad de la vegetación (altos valores NDVI) indican una mayor disponibilidad de agua en la vegetación (De Santis et al., 2006). De tal forma que, durante el otoño austral se presentan habitualmente altos montos de radiación, es posible el desarrollo de precipitaciones intensas y ocasionales que portan humedad ambiental, y a su vez quedan aún los remanentes de los "*peak*" del ciclo fenológico de la vegetación; antecedentes que permiten explicar las máximas correlaciones positivas entre la vegetación y la evapotranspiración que se presentaron en este periodo en el Altiplano.

En este contexto, es preciso destacar que las leves tendencias positivas en la vegetación, si bien se correlacionan con las precipitaciones, posiblemente no son atribuibles por completo a esta variable o al clima, sino también al desarrollo de actividades humanas como la agricultura altoandina, la restauración ecológica (de yaretales y humedales altoandinos) y la reforestación (de queñoales), razón por la cual resulta relevante en una futura investigación identificar la injerencia de estas últimas actividades en el Altiplano, las cuales ya han reportado implicancias en las tendencias de la vegetación en la cuenca del lago Poopó (Torres-Batlló et al., 2020).

Por otro lado, las magnitudes de cambio estimadas entre 2000 y 2020 (0.023 NDVI por década), si se sostienen en las próximas décadas, podrían suponer cambios en el hábitat del Altiplano, región que es parte del hotspot de biodiversidad Andes Tropicales; y a su vez esta última es el área que alberga la mayor riqueza y biodiversidad de especies del planeta, un alto número de especies endémicas y en estados de amenaza global según los criterios UICN, razón por la cual resulta importante en futuras investigaciones proyectar los cambios en la vigorosidad de la vegetación en una ventana de tiempo mayor, modelar posibles cambios en el hábitat asociados a los cambios en la vegetación, y evaluar las implicancias del enverdecimiento del Altiplano para la biodiversidad de esta zona, ya que

la teoría indica que, en la medida que cambia un hábitat es posible el cambio progresivo y/o drástico de la biodiversidad (Rybicki & Hanski, 2013), ya sea por el desplazamiento de especies o por cambios en los estados de conservación de estas. Situación que se agudiza en las franjas de mayor altitud en los Andes Tropicales y/o particularmente en el Altiplano, las cuales son más susceptibles a cambios de temperatura (Aguilar-Lome et al., 2019; Vuille et al., 2015); y por lo tanto están más expuestas a un desplazamiento de hábitats (Colwell et al., 2008), lo cual podría implicar pérdida de hábitat para diversas especies y consecuentemente efectos negativos en la biodiversidad, riqueza, endemismo y estados de conservación de las mismas.

REFERENCIAS

- Aceituno, P. (1996). Elementos del clima en el Altiplano Sudamericano. Rev. Geofísica-IPGH, Nº 44, p. 37-55.
- Adole, T., Dash, J., & Atkinson, P. M. (2016). A systematic review of vegetation phenology in Africa. In *Ecological Informatics* (Vol. 34). https://doi.org/10.1016/j.ecoinf.2016.05.004
- Aguilar-Lome, J., Espinoza-Villar, R., Espinoza, J. C., Rojas-Acuña, J., Willems, B. L., & Leyva-Molina, W. M. (2019). Elevation-dependent warming of land surface temperatures in the Andes assessed using MODIS LST time series (2000–2017). *International Journal of Applied Earth Observation and Geoinformation*, 77, 119–128. https://doi.org/10.1016/j.jag.2018.12.013
- Amaral e Silva, A., Braga, M. Q., Ferreira, J., Juste dos Santos, V., do Carmo Alves, S., de Oliveira, J. C., & Calijuri, M. L. (2020). Anthropic activities and the Legal Amazon: Estimative of impacts on forest and regional climate for 2030. *Remote Sensing Applications: Society and Environment*, 18. https://doi.org/10.1016/j.rsase.2020.100304
- Andersen, L. (2017). La economía del cambio climático en Bolivia: Impactos sobre la biodiversidad (C. E. Ludeña & L. Sanchez-Aragon (eds.)). Banco Interamericano de Desarrollo, Monografía No. 192.
- Anderson, T. G., Christie, D. A., Chávez, R. O., Olea, M., & Anchukaitis, K. J. (2021).
 Spatiotemporal Peatland Productivity and Climate Relationships Across the
 Western South American Altiplano. *Journal of Geophysical Research: Biogeosciences*, 126(6). https://doi.org/10.1029/2020JG005994
- Arias, P. A., Garreaud, R., Poveda, G., Espinoza, J. C., Molina-Carpio, J., Masiokas, M., Viale, M., Scaff, L., & van Oevelen, P. J. (2021). Hydroclimate of the Andes Part

II: Hydroclimate Variability and Sub-Continental Patterns. In *Frontiers in Earth Science* (Vol. 8). https://doi.org/10.3389/feart.2020.505467

- Asrar, G., Fuchs, M., Kanemasu, E. T., & Hatfield, J. L. (1984). Estimating Absorbed Photosynthetic Radiation and Leaf Area Index from Spectral Reflectance in Wheat 1. Agronomy Journal, 76(2). https://doi.org/10.2134/agronj1984.00021962007600020029x
- Bannari, A., Morin, D., Bonn, F., & Huete, A. R. (1995). A review of vegetation indices. *Remote Sensing Reviews*, 13(1–2). https://doi.org/10.1080/02757259509532298
- Bateman, A., Lewandrowski, W., Stevens, J. C., & Muñoz-Rojas, M. (2018).
 Ecophysiological Indicators to Assess Drought Responses of Arid Zone Native Seedlings in Reconstructed Soils. *Land Degradation and Development*, 29(4).
 https://doi.org/10.1002/ldr.2660
- Bennett, M., New, M., Marino, J., & Sillero-Zubiri, C. (2016). Climate complexity in the Central Andes: A study case on empirically-based local variations in the Dry Puna. *Journal of Arid Environments*, 128, 40–49. https://doi.org/10.1016/j.jaridenv.2016.01.004
- Bianchi, E., Villalba, R., & Solarte, A. (2020). NDVI Spatio-temporal Patterns and Climatic Controls Over Northern Patagonia. *Ecosystems*, 23(1). https://doi.org/10.1007/s10021-019-00389-3
- Buono, G., Oesterheld, M., Nakamatsu, V., & Paruelo, J. M. (2010). Spatial and temporal variation of primary production of Patagonian wet meadows. *Journal of Arid Environments*, 74(10), 1257–1261. https://doi.org/10.1016/j.jaridenv.2010.05.026
- Cabrera, S., & Montecino, V. (1987). Productividad primaria en ecosistemas limnicos* Primary Productivity in Limnic Ecosystems. In *Arch. Biol. Med. Exp* (Vol. 20).

- Carrasco-Ríos, L. (2009). Efecto De La Radiación Ultravioleta-B En Plantas Effect of Ultraviolet-B Radiation in Plants. *IDESIA*, 27(3). https://doi.org/10.4067/S0718-34292009000300009
- Chávez, R. O., Estay, S. A., & Riquelme, C. G. (2017). *npphen: Vegetation Phenological Cycle and Anomaly Detection using Remote Sensing Data* (1.1-0; pp. 1–13). https://cran.r-project.org/web/packages/npphen/index.html
- Chuvieco Salinero, E. (2010). Teledetección ambiental: La observación de la Tierra desde el espacio (Nueva ed. Actualizada ed., Ariel ciencia). Barcelona: Ariel.
- Colwell, J. E. (1974). Vegetation canopy reflectance. *Remote Sensing of Environment*, 3(3), 175–183. https://doi.org/10.1016/0034-4257(74)90003-0
- Colwell, R. K., Brehm, G., Cardelús, C. L., Gilman, A. C., & Longino, J. T. (2008). Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics. *Science*, 322(5899). https://doi.org/10.1126/science.1162547
- Cuenca, K. K., & Pacheco, H. (2021). do rio Portoviejo. 38.
- Dabermire, R. (1972). *Phenology and other characteristics of tropical semideciduous* forests in the North-western Costa Rica (pp. 147–170).
- De Jong, R., Verbesselt, J., Schaepman, M. E., & de Bruin, S. (2012). Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. *Global Change Biology*, 18(2). https://doi.org/10.1111/j.1365-2486.2011.02578.x
- De Santis, A., Vaughan, P., & Chuvieco, E. (2006). Foliage moisture content estimation from one-dimensional and two-dimensional spectroradiometry for fire danger assessment. *Journal of Geophysical Research: Biogeosciences*, 111(4). https://doi.org/10.1029/2005JG000149

- Dinerstein, E., Olson, D., Joshi, A., Vynne, C., Burgess, N. D., Wikramanayake, E.,
 Hahn, N., Palminteri, S., Hedao, P., Noss, R., Hansen, M., Locke, H., Ellis, E. C.,
 Jones, B., Barber, C. V., Hayes, R., Kormos, C., Martin, V., Crist, E., ... Saleem,
 M. (2017). An Ecoregion-Based Approach to Protecting Half the Terrestrial Realm.
 In *BioScience* (Vol. 67, Issue 6). https://doi.org/10.1093/biosci/bix014
- Duval, S., Benedetti, M. G., & Campo, M. A. (2015). Relación clima-vegetación: adaptaciones de la comunidad del jarillal al clima semiárido, Parque Nacional Lihué Calel, provincia de La Pampa, Argentina. *Investigaciones Geograficas*, 2015(88). https://doi.org/10.14350/rig.48033
- Ebdon, D. (1982). Estadística para geógrafos. Oikos-tau.
- Eghdami, M., & Barros, A. P. (2019). Extreme orographic rainfall in the eastern Andes tied to cold air intrusions. *Frontiers in Environmental Science*, 7(JUL). https://doi.org/10.3389/fenvs.2019.00101
- Espinoza, J. C., Garreaud, R., Poveda, G., Arias, P. A., Molina-Carpio, J., Masiokas, M., Viale, M., & Scaff, L. (2020). Hydroclimate of the Andes Part I: Main Climatic Features. In *Frontiers in Earth Science* (Vol. 8). Frontiers Media S.A. https://doi.org/10.3389/feart.2020.00064
- Espinoza, J. C., Ronchail, J., Marengo, J. A., & Segura, H. (2019). Contrasting North– South changes in Amazon wet-day and dry-day frequency and related atmospheric features (1981–2017). *Climate Dynamics*, 52(9–10). https://doi.org/10.1007/s00382-018-4462-2
- Evans, J. S. (2015). Package "spatialEco". Spatial Analysis and Modelling Utilities. *R Package*.
- Falvey, M., & Garreaud, R. D. (2005). Moisture variability over the South American Altiplano during the South American low level jet experiment (SALLJEX)

observing season. *Journal of Geophysical Research Atmospheres*, *110*(22), 1–12. https://doi.org/10.1029/2005JD006152

- FAO/MDSMA Programa de Naciones Unidas para la Agricultura y la
 Alimentación/Ministerio de Desarrollo Sostenible y Medio Ambiente (1997). Plan
 de Manejos de Cuencas Hidrográficas de Bolivia. La Paz, Bolivia.
- Fiore, N. M., Goulden, M. L., Czimczik, C. I., Pedron, S. A., & Tayo, M. A. (2020). Do recent NDVI trends demonstrate boreal forest decline in Alaska? *Environmental Research Letters*, 15(9). https://doi.org/10.1088/1748-9326/ab9c4c
- Forkel, M., Carvalhais, N., Verbesselt, J., Mahecha, M. D., Neigh, C. S. R., & Reichstein, M. (2013). Trend Change detection in NDVI time series: Effects of inter-annual variability and methodology. *Remote Sensing*, 5(5). https://doi.org/10.3390/rs5052113
- Forkel, M., Migliavacca, M., Thonicke, K., Reichstein, M., Schaphoff, S., Weber, U., & Carvalhais, N. (2015). Codominant water control on global interannual variability and trends in land surface phenology and greenness. *Global Change Biology*, 21(9). https://doi.org/10.1111/gcb.12950
- Funk, C., Peterson, P., Landsfeld, M., Pedreros, D., Verdin, J., Shukla, S., Husak, G., Rowland, J., Harrison, L., Hoell, A., & Michaelsen, J. (2015). The climate hazards infrared precipitation with stations - A new environmental record for monitoring extremes. *Scientific Data*, 2. https://doi.org/10.1038/sdata.2015.66
- Garreaud, R. D. (2009). The Andes climate and weather. *Advances in Geosciences*, 22, 3–11. https://doi.org/10.5194/adgeo-22-3-2009
- Garreaud, R. D. (2011). The climate of northern Chile: Mean state, variability and trends. *Revista Mexicana de Astronomia y Astrofisica: Serie de Conferencias*, 41, 5–11.

- Garreaud, R., Vuille, M., & Clement, A. C. (2003). The climate of the Altiplano: Observed current conditions and mechanisms of past changes. *Palaeogeography*, *Palaeoclimatology*, *Palaeoecology*, 194(1–3), 5–22. https://doi.org/10.1016/S0031-0182(03)00269-4
- Ghalambor, C. K., Huey, R. B., Martin, P. R., Tewksbury, J. J., & Wang, G. (2006). Are mountain passes higher in the tropics? janzen's hypothesis revisited. *Integrative* and Comparative Biology, 46(1). https://doi.org/10.1093/icb/icj003
- Ghebrezgabher, M. G., Yang, T., Yang, X., & Eyassu Sereke, T. (2020). Assessment of NDVI variations in responses to climate change in the Horn of Africa. *Egyptian Journal of Remote Sensing and Space Science*, 23(3). https://doi.org/10.1016/j.ejrs.2020.08.003
- Gilabert Navarro, M., Meliá, J., & Younis, M. (1999). La dinámica de la vegetación como indicador de la desertificación en la cuenca del Guadalentín, SE España. *Revista de Teledetección: Revista de La Asociación Española de Teledetección*, 12, 1.
- Goetz, S. J., & Prince, S. D. (1996). Remote sensing of net primary production in boreal forest stands. *Agricultural and Forest Meteorology*, 78(3–4), 149–179. https://doi.org/10.1016/0168-1923(95)02268-6
- Gross, J., & Ligges, U. (2015). Nortest: tests for normality. R package version 1.0-4. URL: Http://CRAN. R-Project. Org/Package= Nortest.
- Grupo Inntergubernamental de Expertos sobre el Cambio Climático (IPCC). (2007).
 Climate Change 2007: impacts, adaptation and vulnerability: contribution of
 Working Group II to the fourth assessment report of the Intergovernmental Panel.
 In *Cambridge University Press*.

Grupo Inntergubernamental de Expertos sobre el Cambio Climático (IPCC). (2019).

Calentamienot Global de 1.5 °C. In *Grupo Intergubernamental de Expertos sobre el Cambio Climático*. https://www.ipcc.ch/site/assets/uploads/sites/2/2019/09/SR15_Summary_Volume_s panish.pdf

- Grupo Intergubernamental de Expertos sobre el Cambio Climático (IPCC). (2014). Grupo intergubernamental de expertos sobre el cambio climatico. Cambio climático 2014: Informe de síntesis. http://www.ipcc.ch/report/ar5/syr/index.shtml
- Habel, J. C., Rasche, L., Schneider, U. A., Engler, J. O., Schmid, E., Rödder, D., Meyer, S. T., Trapp, N., Sos del Diego, R., Eggermont, H., Lens, L., & Stork, N. E. (2019).
 Final countdown for biodiversity hotspots. In *Conservation Letters* (Vol. 12, Issue 6). https://doi.org/10.1111/conl.12668
- Hijmans, R. J., Etten, J. van, Sumner, M., Cheng, J., Bevan, A., Bevan, R., Busetto, L., Canty, M., Forrest, D., Ghosh, A., Golicher, D., Gray, J., & Greenberg, J. A. (2020). Package "raster." *Cran*.
- Hmimina, G., Dufrêne, E., Pontailler, J. Y., Delpierre, N., Aubinet, M., Caquet, B., de Grandcourt, A., Burban, B., Flechard, C., Granier, A., Gross, P., Heinesch, B., Longdoz, B., Moureaux, C., Ourcival, J. M., Rambal, S., Saint André, L., & Soudani, K. (2013). Evaluation of the potential of MODIS satellite data to predict vegetation phenology in different biomes: An investigation using ground-based NDVI measurements. *Remote Sensing of Environment*, *132*, 145–158. https://doi.org/10.1016/j.rse.2013.01.010
- Holben, B. N. (1986). Characteristics of maximum-value composite images from temporal AVHRR data. *International Journal of Remote Sensing*, 7(11). https://doi.org/10.1080/01431168608948945
- Huete, A., Didan, K., Miura, T., Rodriguez, E. P., Gao, X., & Ferreira, L. G. (2002). Overview of the radiometric and biophysical performance of the MODIS

vegetation indices. *Remote Sensing of Environment*, 83(1–2), 195–213. https://doi.org/10.1016/S0034-4257(02)00096-2

- Janzen, D. H. (1967). Why Mountain Passes are Higher in the Tropics. *The American Naturalist*, *101*(919). https://doi.org/10.1086/282487
- Jarma Orozco, A., & Cardona Ayala, C. (2012). Efecto Del Cambio Climático Sobre La Fisiología De Las Plantas Cultivadas: Una Revisión Effect of Climate Change on the Physiology of Crop Plants: a Review. *Revista U.D.C.A Actualidad & Divulgación Científica*, 15(1).
- Jiao, F., Liu, H., Xu, X., Gong, H., & Lin, Z. (2020). Trend evolution of vegetation phenology in China during the period of 1981-2016. *Remote Sensing*, 12(3). https://doi.org/10.3390/rs12030572
- Khorram, S., H. Koch, F., F. van der Wiele, C., & A.C. Nelson, S. (2012). SpringerBriefs in Space Development. In *Remote sensing*. https://doi.org/10.1007/978-1-4614-3103-9
- Kulkarni, A. D. (1986). Digital Processing of Remotely Sensed Data. Advances in Electronics and Electron Physics, 66(C), 309–368. https://doi.org/10.1016/S0065-2539(08)60925-7
- Lara, C., Saldías, G. S., Cazelles, B., Rivadeneira, M. M., Muñoz, R., Galán, A., Paredes, Á. L., Fierro, P., & Broitman, B. R. (2021). Climatic regulation of vegetation phenology in protected areas along western south america. *Remote Sensing*, 13(13). https://doi.org/10.3390/rs13132590
- Lenoir, J., Gégout, J. C., Marquet, P. A., De Ruffray, P., & Brisse, H. (2008). A significant upward shift in plant species optimum elevation during the 20th century. *Science*, 320(5884). https://doi.org/10.1126/science.1156831

Lieth, H. (1974). Phenology and Seasonal Modeling; Springer: Heidelberg, Germany.

- Lillesand, T. M., Kiefer, R. W., & Chipman, J. (2004). Remote sensing and image interpretation. In *Remote sensing and image interpretation*. https://doi.org/10.2307/634969
- Lilliefors, H. W. (1967). On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown. *Journal of the American Statistical Association*, 62(318). https://doi.org/10.1080/01621459.1967.10482916
- Locatelli, B., Kanninen, M., Brockhaus, M., Colfer, C. J. P., Murdiyarso, D., & Santoso, H. (2009). Ante un futuro incierto: Cómo se pueden adaptar los bosques y las comunidades al cambio climático. In *Ante un futuro incierto: Cómo se pueden adaptar los bosques y las comunidades al cambio climático*. Perspectivas forestales No. 5. CIFOR. https://doi.org/10.17528/cifor/002842
- Locklin, C. (2022). South America: Argentina, Bolivia, and Chile / Ecoregions / WWF. https://www.worldwildlife.org/ecoregions/nt1001
- Lotsch, A., Friedl, M. A., Anderson, B. T., & Tucker, C. J. (2003). Coupled vegetationprecipitation variability observed from satellite and climate records. *Geophysical Research Letters*, 30(14). https://doi.org/10.1029/2003GL017506
- Luo, N., Mao, D., Wen, B., & Liu, X. (2020). Climate change affected vegetation dynamics in the northern Xinjiang of China: Evaluation by SPEI and NDVI. *Land*, 9(3). https://doi.org/10.3390/land9030090

Marengo, J. A., Pabón, J. D., Díaz, A., Rosas, G., Montealegre, E., Villacis, M., Solman, S., & Rojas, M. (2011). Climate Change : Evidence and Future Scenarios for the Andean Region. In S. Herzog, R. Martínez, P. Jørgensen, & H. Tiessen (Eds.), *Climate Change and Biodiversity in the Tropical Andes* (pp. 110–127). Inter-American Institute for Global Change Research (IAI) and Scientific Committee on Problems of the Environment (SCOPE). http://www.iai.int/files/communications/publications/scientific/Climate_Change_an

d_Biodiversity_in_the_Tropical_Andes/chapter7.pdf

- Measho, S., Chen, B., Trisurat, Y., Pellikka, P., Guo, L., Arunyawat, S., Tuankrua, V., Ogbazghi, W., & Yemane, T. (2019). Spatio-temporal analysis of vegetation dynamics as a response to climate variability and drought patterns in the Semiarid Region, Eritrea. *Remote Sensing*, 11(6). https://doi.org/10.3390/RS11060724
- Mendonça, M. (2017). Monzón Sudamericano: La integración de la circulación amazónica y altiplánica y las variabilidades climáticas del Altiplano Andino Chileno. *Dialogo Andino*, 54, 21–30. https://doi.org/10.4067/S0719-26812017000300021
- Ministerio del Ambiente. (2016). *Tercera Comunicación Nacional del Perú a la Convención Marco de las Naciones Unidas sobre el Cambio Climático* (Ministerio del Ambiente (ed.)).
- Minvielle, M., & Garreaud, R. D. (2011). Projecting rainfall changes over the South American Altiplano. *Journal of Climate*, 24(17), 4577–4583. https://doi.org/10.1175/JCLI-D-11-00051.1
- Morales, M. S., Christie, D. A., Villalba, R., Argollo, J., Pacajes, J., Silva, J. S., Alvarez, C. A., Llancabure, J. C., & Gamboa, C. C. S. (2012). Precipitation changes in the South American Altiplano since 1300 AD reconstructed by tree-rings. *Climate of the Past*, 8(2). https://doi.org/10.5194/cp-8-653-2012
- Myers, N., Mittermeler, R. A., Mittermeler, C. G., Da Fonseca, G. A. B., & Kent, J. (2000). Biodiversity hotspots for conservation priorities. *Nature*, 403(6772). https://doi.org/10.1038/35002501
- Neukom, R., Rohrer, M., Calanca, P., Salzmann, N., Huggel, C., Acuña, D., Christie, D.
 A., & Morales, M. S. (2015). Facing unprecedented drying of the Central Andes?
 Precipitation variability over the period AD 1000-2100. *Environmental Research*

Letters, 10(8). https://doi.org/10.1088/1748-9326/10/8/084017

- Paula, P. A., Zambrano, L., & Paula, P. (2018). Análisis Multitemporal de los cambios de la vegetación, en la Reserva de Producción de Fauna Chimborazo como consecuencia del cambio climático. *Enfoque UTE*, 9(2), 125–137. https://doi.org/10.29019/enfoqueute.v9n2.252
- Peter, J. S., Hogland, J., Hebblewhite, M., Hurley, M. A., Hupp, N., & Proffitt, K. (2018). Linking phenological indices from digital cameras in Idaho and Montana to MODIS NDVI. *Remote Sensing*, *10*(10). https://doi.org/10.3390/rs10101612
- Pfafstetter, O. (1989). Classification of hydrographic basins: coding methodology. unpublished manuscript (August 18, 1989), Departamento Nacional de Obras de Saneamento (DNOS). Rio de Janeiro, Brasil.
- Planton, S., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). *Glosario IPCC*.
- Polk, M. H., Mishra, N. B., Young, K. R., & Mainali, K. (2020). Greening and browning trends across Peru's diverse environments. *Remote Sensing*, 12(15). https://doi.org/10.3390/RS12152418
- Pronaturaleza Fundación Peruana por la Conservación de la Naturaleza, Colombiana,
 P., Arcoiris, P. A., International, F. E., Fund, B., & Partnership, C. E. (2021). *Hotspot de Biodiversidad de los Andes Tropicales -Perfil del ecosistema*. 491.

Qihao Weng. (2012). An Introduction to Contemporary Remote Sensing.

Razali, N. M., & Wah, Y. B. (2011). Power comparisons of Shapiro-Wilk ,
Kolmogorov-Smirnov, Lilliefors and Anderson-Darling tests. *Journal of Statistical Modeling and Analytics*, 2(1), 21–33. https://doi.org/doi:10.1515/bile-2015-0008

Riveros, J. C. (2022). South America: Argentina, Bolivia, and Peru / Ecoregions / WWF.

https://www.worldwildlife.org/ecoregions/nt1002

- Riveros, J. C., & Locklin, C. (2022). Western South America: Peru and Bolivia / Ecoregions / WWF. https://www.worldwildlife.org/ecoregions/nt1003
- Romero, H., Smith, P., Mendonça, M., & Méndez, M. (2013). Macro y mesoclimas del altiplano andino y desierto de Atacama: Desafíos y estrategias de adaptación social ante su variabilidad. *Revista de Geografia Norte Grande*, 41(55), 19–41. https://doi.org/10.4067/s0718-34022013000200003
- Rosales, E., & Tapia-Silva, F. O. (2011). Efectos de la agregación espacial en la estimación de temperatura del aire mediante imágenes MODIS. Aplicaciones del Sensor MODIS para el monitoreo del territorio.
- Rouse, J. W., Hass, R. H., Schell, J. A., Deering, D. W., & Harlan, J. C. (1974).
 Monitoring the vernal advancement and retrogradation (green wave effect) of natural vegetation. *Final Report, RSC 1978-4, Texas A & M University, College Station, Texas.*
- Running, S. W., Mu, Q., Zhao, M., & Moreno, A. (2017). User's Guide MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) NASA Earth Observing System MODIS Land Algorithm.
- Rybicki, J., & Hanski, I. (2013). Species-area relationships and extinctions caused by habitat loss and fragmentation. *Ecology Letters*, 16(SUPPL.1). https://doi.org/10.1111/ele.12065
- Sainz, H., & Sanchez, R. (2011). La gran diversidad de los paisajes españoles. Biodiversidad Aproximación a La Diversidad Botánica y Zoológica de España, 109–155.
- Salas, J., & Infante, A. (2006). Producción primaria neta aérea en algunos ecosistemas y estimaciones de biomasa en plantaciones forestales. *Revista Forestal*

Latinoamericana, Rev. For.(40), 47–70. http://search.ebscohost.com/login.aspx?direct=true&db=lah&AN=20073297511&s ite=ehost-live

- Sanín, M. J., Kissling, W. D., Bacon, C. D., Borchsenius, F., Galeano, G., Svenning, J. C., Olivera, J., Ramírez, R., Trénel, P., & Pintaud, J. C. (2016). The Neogene rise of the tropical Andes facilitated diversification of wax palms (Ceroxylon: Arecaceae) through geographical colonization and climatic niche separation. *Botanical Journal of the Linnean Society*, *182*(2). https://doi.org/10.1111/boj.12419
- Santibañez-Andrade, G., Castillo-Argüero, S., & Martínez-Orea, Y. (2015). Evaluación del estado de conservación de la vegetación de los bosques de una cuenca heterogénea del Valle de México. *Bosque*, *36*(2), 299–313. https://doi.org/10.4067/S0717-92002015000200015
- Santin-Janin, H., Garel, M., Chapuis, J. L., & Pontier, D. (2009). Assessing the performance of NDVI as a proxy for plant biomass using non-linear models: A case study on the kerguelen archipelago. *Polar Biology*, *32*(6). https://doi.org/10.1007/s00300-009-0586-5
- Sarricolea, P., & Romero, H. (2015). Variabilidad y cambios climáticos observados y esperados en el altiplano del norte de Chile. *Revista de Geografia Norte Grande*, 62, 169–183. https://doi.org/10.4067/s0718-34022015000300010
- Sarricolea, P., Ruiz, Ó. M., & Aravena, H. R. (2017). Tendencias de la precipitación en el norte grande de Chile y su relación con las proyecciones de cambio climático. *Dialogo Andino*, 54, 41–50. https://doi.org/10.4067/S0719-26812017000300041
- Schweiger, A. K., Schütz, M., Risch, A. C., Kneubühler, M., Haller, R., & Schaepman, M. E. (2017). How to predict plant functional types using imaging spectroscopy: linking vegetation community traits, plant functional types and spectral response. *Methods in Ecology and Evolution*, 8(1), 86–95. https://doi.org/10.1111/2041-

- Segura, H., Espinoza, J. C., Junquas, C., Lebel, T., Vuille, M., & Garreaud, R. (2020).
 Recent changes in the precipitation-driving processes over the southern tropical Andes/western Amazon. *Climate Dynamics*, 54(5–6), 2613–2631.
 https://doi.org/10.1007/s00382-020-05132-6
- Segura, H., Espinoza, J. C., Junquas, C., & Takahashi, K. (2016). Evidencing decadal and interdecadal hydroclimatic variability over the Central Andes. *Environmental Research Letters*, 11(9). https://doi.org/10.1088/1748-9326/11/9/094016
- Sen, P. K. (1968). Estimates of the Regression Coefficient Based on Kendall's Tau. Journal of the American Statistical Association, 63(324). https://doi.org/10.1080/01621459.1968.10480934
- Sloan, S., Jenkins, C. N., Joppa, L. N., Gaveau, D. L. A., & Laurance, W. F. (2014). Remaining natural vegetation in the global biodiversity hotspots. *Biological Conservation*, 177. https://doi.org/10.1016/j.biocon.2014.05.027
- Song, C., Dannenberg, M. P., & Hwang, T. (2013). Optical remote sensing of terrestrial ecosystem primary productivity. *Progress in Physical Geography*, 37(6), 834–854. https://doi.org/10.1177/0309133313507944
- Spiegel, M., & Stephens, L. (2009). Estadística (4a. ed.). México, D.F: McGraw-Hill.
- Storch, D., Keil, P., & Jetz, W. (2012). Universal species–area and endemics–area relationships at continental scales. *Nature*, 488(7409). https://doi.org/10.1038/nature11226
- Stupar, V., & Carni, A. (2017). Ecological, floristic and functional analysis of zonal forest vegetation in Bosnia and Herzegovina. *Acta Botanica Croatica*, 76(1). https://doi.org/10.1515/botcro-2016-0041

- Theil, H. (1950). A rank-invariant method of linear and polynomial regression analysis, Part I. In *Proceedings of the Royal Netherlands Academy of Sciences* (Vol. 53).
- Thibeault, J., Seth, A., & Wang, G. (2012). Mechanisms of summertime precipitation variability in the bolivian altiplano: Present and future. *International Journal of Climatology*, 32(13). https://doi.org/10.1002/joc.2424
- Torres-Batlló, J., Martí-Cardona, B., & Pillco-Zolá, R. (2020). Mapping evapotranspiration, vegetation and precipitation trends in the catchment of the shrinking lake poopo. *Remote Sensing*, 12(1). https://doi.org/10.3390/RS12010073
- Trew, B. T., & Maclean, I. M. D. (2021). Vulnerability of global biodiversity hotspots to climate change. In *Global Ecology and Biogeography* (Vol. 30, Issue 4). https://doi.org/10.1111/geb.13272
- Trivelli, M., & Huerta, J. (2014). Alcances sobre Flora y Vegetación de la Cordillera de Los Andes. Región de Antofagasta. Primera Edición. Ministerio de Agricultura. Servicio Agrícola y Ganadero. 319.
- Trivelli, M., & Valdivia, V. (2009). Alcances sobre Flora y Vegetación de la Cordillera de Los Andes. Región de Arica y Parinacota y Región de Tarapacá. Segunda Edición Ministerio de Agricultura. Servicio Agrícola y Ganadero. 180.
- Van Leeuwen, W. J. D., Hartfield, K., Miranda, M., & Meza, F. J. (2013). Trends and ENSO/AAO Driven Variability in NDVI Derived Productivity and Phenology alongside the Andes Mountains. *Remote Sensing*, 5(3), 1177–1203. https://doi.org/10.3390/rs5031177
- Van Schaik, C. P., Terborgh, J. W., & Wright, S. J. (1993). The phenology of tropical forests: Adaptive significance and consequences for primary consumers. *Annual Review of Ecology and Systematics*, 24(1). https://doi.org/10.1146/annurev.es.24.110193.002033

- Vuille, M., Franquist, E., Garreaud, R., Lavado Casimiro, W. S., & Cáceres, B. (2015). Impact of the global warming hiatus on Andean temperature. *Journal of Geophysical Research*, 120(9), 3745–3757. https://doi.org/10.1002/2015JD023126
- Wan, Z. (1999). MODIS land-surface temperature algorithm theoretical basis document (LST ATBD). Institute for Computational Earth System Science, Santa Barbara. In *Institute for Computational Earth System Science University of California* (Issue April).
- Wan, Zhengming. (2013). Collection-5 MODIS land surface temperature products users' guide. In *Quality Assurance*.
- Wang, X. Y., Li, X., Zhu, J., & Tanajura, C. A. S. (2018). The strengthening of Amazonian precipitation during the wet season driven by tropical sea surface temperature forcing. *Environmental Research Letters*, 13(9). https://doi.org/10.1088/1748-9326/aadbb9
- Wang, Z., Lu, Z., & Cui, G. (2020). Spatiotemporal variation of land surface temperature and vegetation in response to climate change based on NOAA-AVHRR data over China. *Sustainability (Switzerland)*, *12*(9). https://doi.org/10.3390/SU12093601
- Workie, T. G., & Debella, H. J. (2018). Climate change and its effects on vegetation phenology across ecoregions of Ethiopia. *Global Ecology and Conservation*, 13. https://doi.org/10.1016/j.gecco.2017.e00366
- Wu, X., Sun, X., Wang, Z., Zhang, Y., Liu, Q., Zhang, B., Paudel, B., & Xie, F. (2020).
 Vegetation changes and their response to global change based on NDVI in the
 Koshi river Basin of central Himalayas since 2000. *Sustainability (Switzerland)*, 12(16). https://doi.org/10.3390/su12166644

Yang, K., Sun, W., Luo, Y., & Zhao, L. (2021). Impact of urban expansion on

vegetation: The case of China (2000–2018). *Journal of Environmental Management*, 291. https://doi.org/10.1016/j.jenvman.2021.112598

- Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L., Tian, S., Hu, Z., Li, C., & Deng, Y. (2019). Factors affecting long-term trends in global NDVI. *Forests*, 10(5). https://doi.org/10.3390/f10050372
- Zemp, D. C., Schleussner, C. F., Barbosa, H. M. J., Van Der Ent, R. J., Donges, J. F., Heinke, J., Sampaio, G., & Rammig, A. (2014). On the importance of cascading moisture recycling in South America. *Atmospheric Chemistry and Physics*, 14(23), 13337–13359. https://doi.org/10.5194/acp-14-13337-2014
- Zhang, Yao, Zhou, S., Gentine, P., & Xiao, X. (2019). Can vegetation optical depth reflect changes in leaf water potential during soil moisture dry-down events? *Remote Sensing of Environment*, 234. https://doi.org/10.1016/j.rse.2019.111451
- Zhang, Yuan, Zhu, Z., Liu, Z., Zeng, Z., Ciais, P., Huang, M., Liu, Y., & Piao, S. (2016). Seasonal and interannual changes in vegetation activity of tropical forests in Southeast Asia. *Agricultural and Forest Meteorology*, 224. https://doi.org/10.1016/j.agrformet.2016.04.009
- Zhao, L., Dai, A., & Dong, B. (2018). Changes in global vegetation activity and its driving factors during 1982–2013. Agricultural and Forest Meteorology, 249. https://doi.org/10.1016/j.agrformet.2017.11.013

ANEXO I. Códigos desarrollados en la plataforma Google Earth Engine

1. Preprocesamiento de las series temporales: CHIRPS, ET, LST y NDVI

1.1. Preprocesamiento serie temporal CHIRPS

/// Input
var AE = table.geometry();

//NDVI

var MOD13A2 = ee.ImageCollection("MODIS/006/MOD13A2")
 .select("NDVI")
 .filter(ee.Filter.date('2001-01-01', '2020-02-18'));

var MOD13A2_4326 = MOD13A2
 .map(function(image) {return image.reproject("EPSG:4326", null, 1000)});

var MOD13A2_4326_AE = MOD13A2_4326 .map(function(image){return(image.clip(AE))});

var NDVI = MOD13A2_4326_AE.map(function(image){
 return(image.set("system:time_start", image.date().format('YYYY-MM-dd')))})

//precipitation

var CHIRPS = ee.ImageCollection("UCSB-CHG/CHIRPS/DAILY")
 .select("precipitation")
 .filter(ee.Filter.date('2001-01-01', '2020-02-18'));

var CHIRPS_4326 = CHIRPS
.map(function(image) {return image.reproject("EPSG:4326", null, 1000)});

var CHIRPS_4326_AE = CHIRPS_4326
.map(function(image){return(image.clip(AE))});

///data cleaning - mask

var maskedPP = CHIRPS_4326_AE.map(function(image){
 return(image.updateMask(image.gt(0)) /// valor min (0)
 .updateMask(image.lt(1444)))}); //valor max 1444

///sum each 16 days
var temporalCollection = function(collection, start, count, interval, units) {
 var sequence = ee.List.sequence(0, ee.Number(count).subtract(1));

```
var originalStartDate = ee.Date(start);
 return ee.ImageCollection(sequence.map(function(i) {
  var startDate = originalStartDate.advance(ee.Number(interval).multiply(i), units);
  var endDate = originalStartDate.advance(
  ee.Number(interval).multiply(ee.Number(i).add(1)), units);
  return collection.filterDate(startDate, endDate).sum()
     .set('system:time_start', startDate.millis())
     .set('system:time_end', endDate.format("yyyy-MM-dd"));
 }));
};
//2001
var PP2001 = temporalCollection(maskedPP, '2001-01-01', 23, 16, "day");
//2002
var PP2002 = temporalCollection(maskedPP, '2002-01-01', 23, 16, "day");
//2003
var PP2003 = temporalCollection(maskedPP, '2003-01-01', 23, 16, "day");
//2004
var PP2004 = temporalCollection(maskedPP, '2004-01-01', 23, 16, "day");
//2005
var PP2005 = temporalCollection(maskedPP, '2005-01-01', 23, 16, "day");
//2006
var PP2006 = temporalCollection(maskedPP, '2006-01-01', 23, 16, "day");
//2007
var PP2007 = temporalCollection(maskedPP, '2007-01-01', 23, 16, "day");
//2008
var PP2008 = temporalCollection(maskedPP, '2008-01-01', 23, 16, "day");
//2009
var PP2009 = temporalCollection(maskedPP, '2009-01-01', 23, 16, "day");
//2010
var PP2010 = temporalCollection(maskedPP, '2010-01-01', 23, 16, "day");
//2011
var PP2011 = temporalCollection(maskedPP, '2011-01-01', 23, 16, "day");
//2012
var PP2012 = temporalCollection(maskedPP, '2012-01-01', 23, 16, "day");
//2013
var PP2013 = temporalCollection(maskedPP, '2013-01-01', 23, 16, "day");
//2014
var PP2014 = temporalCollection(maskedPP, '2014-01-01', 23, 16, "day");
//2015
var PP2015 = temporalCollection(maskedPP, '2015-01-01', 23, 16, "day");
//2016
var PP2016 = temporalCollection(maskedPP, '2016-01-01', 23, 16, "day");
//2017
var PP2017 = temporalCollection(maskedPP, '2017-01-01', 23, 16, "day");
```

//2018

var PP2018 = temporalCollection(maskedPP, '2018-01-01', 23, 16, "day"); //2019

var PP2019 = temporalCollection(maskedPP, '2019-01-01', 23, 16, "day"); //2020

var PP2020 = temporalCollection(maskedPP, '2020-01-01', 3, 16, "day");
print(PP2001)

//merge

 $\label{eq:product} \begin{array}{l} var PP = ee.ImageCollection(PP2001.merge(PP2002.merge(PP2003 .merge(PP2004.merge(PP2005.merge(PP2006.merge(PP2007.merge(PP2008 .merge(PP2009.merge(PP2010.merge(PP2011.merge(PP2012.merge(PP2013 .merge(PP2014.merge(PP2015.merge(PP2016.merge(PP2017.merge(PP2018 .merge(PP2019.merge(PP2020)))))))))))))))))))))))$

/// Copy properties: 'system:index'
function copyProps(index){
 var source = ee.Image(NDVI.toList(NDVI.size()).get(index))
 var dest = ee.Image(PP.toList(PP.size()).get(index))
 var image1 = ee.Image(dest.copyProperties(source, ['system:index']))

return image1}

```
var seq = ee.List.sequence(0, PP.size().subtract(1))
```

var PP1 = ee.ImageCollection(seq.map(copyProps))

```
var PP2 = PP1.toBands()
```

/// Download images Export.image.toDrive({ image: PP2, description: 'chirps', scale: 1000, region: AE });

1.2. Preprocesamiento serie temporal ET

Disponible en la URL:

 $https://code.earthengine.google.com/?scriptPath=users\%2Fmapaicho\%2Fthesis_data\%3\,AET$

1.3. Preprocesamiento serie temporal LST

Disponible en la URL:

 $https://code.earthengine.google.com/?scriptPath=users\%2Fmapaicho\%2Fthesis_data\%3ALST$

1.4. Preprocesamiento serie temporal NDVI

Disponible en la URL:

 $https://code.earthengine.google.com/?scriptPath=users\%2Fmapaicho\%2Fthesis_data\%3~ANDVI$

2. Determinación de clústeres por variables: CHIRPS, ET, LST y NDVI

2.1. Clústeres CHIRPS

var PP3 = PP1.mean()

/// kmeans - cluster

```
// Make the training dataset.
var training = PP3.sample({
  region: AE,
  scale: 1000
});
```

var clusterer = ee.Clusterer.wekaKMeans(10).train(training);

var result = PP3.cluster(clusterer);

```
// Convert to vectors.
var vectors = result.reduceToVectors({
  geometry: AE,
  crs: "EPSG:4326",
  scale: 1000,
  geometryType: 'polygon',
  labelProperty: 'cluster',
  maxPixels: 10000000,
  reducer: ee.Reducer.countEvery()
 });
```

// Export the FeatureCollection to a SHP file.
Export.table.toDrive({

collection: vectors, folder: 'cluster_CHIRPS', description:'cluster_CHIRPS', fileFormat: 'SHP' });

///read cluster (dissolved polygons)
var cluster = ee.FeatureCollection("users/mapaicho/cluster_CHIRPS")

```
/// value extract for cluster (10)
var extract = PP2.reduceRegions({
    collection: cluster,
    reducer: ee.Reducer.mean(),
    scale:1000
})
```

//export value .csv
Export.table.toDrive({
 collection: extract,
 folder: 'cluster_CHIRPS',
 fileNamePrefix: 'cluster_CHIRPS',
 fileFormat: 'CSV'});

2.2. Clústeres ET

Disponible en la URL: https://code.earthengine.google.com/?scriptPath=users%2Fmapaicho%2Fthesis_statistic %3Acluster_ET

2.3. Clústeres LST

Disponible en la URL: https://code.earthengine.google.com/?scriptPath=users%2Fmapaicho%2Fthesis_statistic %3Acluster_LST

2.4. Clústeres NDVI

Disponible en la URL: https://code.earthengine.google.com/?scriptPath=users%2Fmapaicho%2Fthesis_statistic %3Acluster_NDVI

3. Estadística por pixeles de las series temporales: CHIRPS, ET, LST y NDVI

3.1. Estadística CHIRPS

```
//Function
```

```
var combinedReducer = ee.Reducer.mean()
.combine({reducer2: ee.Reducer.median(), sharedInputs: true})
.combine({reducer2: ee.Reducer.mode(),sharedInputs: true})
.combine({reducer2: ee.Reducer.variance(),sharedInputs: true})
.combine({reducer2: ee.Reducer.min(),sharedInputs: true})
.combine({reducer2: ee.Reducer.max(),sharedInputs: true})
.combine({reducer2: ee.Reducer.kurtosis(),sharedInputs: true})
.combine({reducer2: ee.Reducer.stdDev(),sharedInputs: true})
.combine({reducer2: ee.Reducer.stew(),sharedInputs: true})
```

//Map

```
var PPstat = PP1.reduce(combinedReducer);
var PP_cv =
PPstat.select("precipitation_stdDev").divide(PPstat.select("precipitation_mean"))
```

```
//Download
Export.image.toDrive({
    image: PPstat,
    description: 'PP_stat',
    scale: 1000,
    region: AE
  });
Export.image.toDrive({
    image: PP_cv,
    description: 'PP_cv',
```

```
region: AE
});
```

scale: 1000,

3.2. Estadística ET

Disponible en la URL:

 $https://code.earthengine.google.com/?scriptPath=users\%2Fmapaicho\%2Fthesis_statistic\%3Astat_ET$

3.3. Estadística LST

Disponible en la URL:

 $https://code.earthengine.google.com/?scriptPath=users\%2Fmapaicho\%2Fthesis_statistic\%3Astat_LST$

3.4. NDVI

Disponible en la URL:

https://code.earthengine.google.com/?scriptPath=users%2Fmapaicho%2Fthesis_statistic %3Astat_NDVI

ANEXO II. Códigos desarrollados en R

1. Estadística por clústeres: CHIRPS, ET, LST y NDVI

```
# 0. Install and load packages ------
library(tidyverse)
library(nortest) #lillie.test
library(car)
             #qqplot
library(psych) #kurtosi and
library(modeest) #mode
library(Kendall)
library(raster)
library(sf)
library(broom) #tidy htest
library(dplyr)
library(tmap)
library(leaflet)
library(patchwork)
# 1. study area ------
AE <- st_read("input/Cuenca_Altiplano4.shp")
cluster_chirps <- st_read("input/cluster/cluster_CHIRPS.shp")</pre>
cluster_et <- st_read("input/cluster/cluster_ET.shp")</pre>
cluster_lst <- st_read("input/cluster/cluster_LST.shp")</pre>
cluster_NDVI <- st_read("input/cluster/cluster_NDVI.shp")
# 2. Data input: time series full ------
chirps_csv <- read_csv("input/cluster/cluster_CHIRPS/cluster_CHIRPS.csv",
             col_types = cols(
                  .default = col_double(),
                 cluster = col_integer(),
                  "system:index" = col_skip(),
                  ".geo" = col skip()
             ))
et_csv <- read_csv("input/cluster/cluster_ET/cluster_ET.csv",
```

```
col_types = cols(
```

```
.default = col_double(),
                   cluster = col_integer(),
                   "system:index" = col_skip(),
                   ".geo" = col skip()
              ))
lst_csv <- read_csv("input/cluster/cluster_LST/cluster_LST.csv",
           col_types = cols(
                .default = col_double(),
                cluster = col integer(),
                "system:index" = col_skip(),
                ".geo" = col skip()
           ))
ndvi_csv <- read_csv("input/cluster/cluster_NDVI/cluster_NDVI.csv",
            col_types = cols(
                 .default = col_double(),
                 cluster = col_integer(),
                 "system:index" = col_skip(),
                 ".geo" = col_skip()
            ))
# 3. Review and transform: time series full ------
## CHIRPS
chirps_csv_long0 <- chirps_csv %>%
    pivot_longer(cols = c(1:440),
             names to = "date",
             values_to = "chirps"
             ) %>%
     mutate(cluster = c(str_c("cluster", cluster, sep = "_")),
         date = str_sub(date, 1, 10)
     )
chirps_csv_long <- chirps_csv_long0 %>%
     pivot_wider(names_from = 1,
            values_from = 3) \% > \%
     mutate(date = as.Date(str_replace_all(date, "_", "-")))
## ET
et_csv_long0 <- et_csv %>%
     pivot_longer(cols = c(1:440)),
             names_to = "date",
             values to = "et"
     ) %>%
```

```
mutate(cluster = c(str_c("cluster", cluster, sep = "_")),
         date = str_sub(date, 1, 10)
     )
et_csv_long <- et_csv_long0 %>%
     pivot_wider(names_from = 1,
            values_from = 3) \% > \%
     mutate(date = as.Date(str_replace_all(date, "_", "-")))
## LST
lst_csv_long0 <- lst_csv %>%
     pivot_longer(cols = c(1:440),
            names_to = "date",
            values_to = "lst"
     ) %>%
     mutate(cluster = c(str_c("cluster", cluster, sep = "_")),
         date = str_sub(date, 1, 10)
     )
lst_csv_long <- lst_csv_long0 %>%
     pivot_wider(names_from = 1,
            values_from = 3) \% > \%
     mutate(date = as.Date(str_replace_all(date, "_", "-")))
## NDVI
ndvi_csv_long0 <- ndvi_csv %>%
     pivot_longer(cols = c(1:440),
            names_to = "date",
            values to = "ndvi"
     )%>%
     mutate(cluster = c(str_c("cluster", cluster, sep = "_")),
         date = str_sub(date, 1, 10)
     )
ndvi_csv_long <- ndvi_csv_long0 %>%
     pivot_wider(names_from = 1,
            values from = 3) \% > \%
     mutate(date = as.Date(str_replace_all(date, "_", "-")))
# 4. Statistics cluster: time series full ------
fMode <- function(x) {
     ux <- unique(x)
     ux[which.max(tabulate(match(x, ux)))]
}
```

CHIRPS

```
chirps std <- data.frame("Mean" = apply(na.omit(chirps csv long[,c(2:11)]), 2, mean),
               "Median" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, median),
               "Mode" = apply(na.omit(chirps csv long[,c(2:11)]), 2, fMode),
               "Min" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, min),
               Max'' = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, max),
               "Variance" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, var),
               "StdDev" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, sd),
               "Cv" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, cv),
               "Kurtosis" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, kurtosi),
               "Skew" = apply(na.omit(chirps_csv_long[,c(2:11)]), 2, skew),
               "Cluster" = str_sub(c(names(chirps_csv_long[2:11])), 9, 9)
)
## ET
et_std <- data.frame("Mean" = apply(na.omit(et_csv_long[,c(2:11)]), 2, mean),
             "Median" = apply(na.omit(et_csv_long[,c(2:11)]), 2, median),
             "Mode" = apply(na.omit(et_csv_long[,c(2:11)]), 2, fMode),
             "Min" = apply(na.omit(et csv long[,c(2:11)]), 2, min),
             "Max" = apply(na.omit(et_csv_long[,c(2:11)]), 2, max),
```

"Variance" = apply(na.omit(et_csv_long[,c(2:11)]), 2, var),

"StdDev" = apply(na.omit(et_csv_long[,c(2:11)]), 2, sd),

 $"Cv" = apply(na.omit(et_csv_long[,c(2:11)]), 2, cv),$

"Kurtosis" = apply(na.omit(et_csv_long[,c(2:11)]), 2, kurtosi),

```
"Skew" = apply(na.omit(et_csv_long[,c(2:11)]), 2, skew),
"Cluster" = str_sub(c(names(et_csv_long[2:11])), 9, 9)
```

```
)
```

```
## LST
```

ndvi_std <- data.frame("Mean" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, mean), "Median" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, median),

"Mode" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, fMode), "Min" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, min), "Max" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, max), "Variance" = apply(na.omit(ndvi csv long[,c(2:11)]), 2, var), "StdDev" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, sd), $"Cv" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, cv),$ "Kurtosis" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, kurtosi), "Skew" = apply(na.omit(ndvi_csv_long[,c(2:11)]), 2, skew), "Cluster" = str_sub(c(names(ndvi_csv_long[2:11])), 9, 9)) # 5. Statistics test: time series full ------### CHIRPS chirps lf <- apply(X = chirps csv long[,c(2:11)], MARGIN = 2, FUN = lillie.test) chirps_lf_1 <- data.frame("D" = c(1:10), "p-value" = c(1:10)) for(i in 1:20){chirps lf 1[i] <- tidy(chirps lf[[i]])} chirps_lf_1 <- data.frame(chirps_lf_1, "Cluster" = as.character(c(0:9)))chirps_std1 <- left_join(chirps_std, chirps lf 1, by = "Cluster") %>% rename("cluster" = Cluster) %>% mutate(cluster = as.integer(cluster)) chirps_std_shp <- left_join(cluster_chirps, chirps std1, by = "cluster") ### ET et_lf <- apply(X = et_csv_long[,c(2:11)], MARGIN = 2, FUN = lillie.test) $et_lf_1 <- data.frame("D" = c(1:10),$ "p-value" = c(1:10)) $for(i in 1:20) \{et_lf_1[i] < -tidy(et_lf[[i]])\}$ et_lf_1 <- data.frame(et_lf_1, "Cluster" = as.character(c(0:9)))

et_std1 <- left_join(et_std, et lf 1, by = "Cluster")%>% rename("cluster" = Cluster) %>% mutate(cluster = as.integer(cluster)) et_std_shp <- left_join(cluster_et, et_std1, by = "cluster") ### LST $lst_lf \le apply(X = lst_csv_long[,c(2:11)], MARGIN = 2, FUN = lillie.test)$ $lst_lf_1 <- data.frame("D" = c(1:10),$ "p-value" = c(1:10)) for(i in 1:20){lst_lf_1[i,] <- tidy(lst_lf[[i]])} lst_lf_1 <- data.frame(lst_lf_1,</pre> "Cluster" = as.character(c(0:9)))lst_std1 <- left_join(lst_std,</pre> lst_lf_1, by = "Cluster")%>% rename("cluster" = Cluster) %>% mutate(cluster = as.integer(cluster)) lst_std_shp <- left_join(cluster_et,</pre> lst std1, by = "cluster") ### NDVI $ndvi_lf <- apply(X = ndvi_csv_long[,c(2:11)], MARGIN = 2, FUN = lillie.test)$ $ndvi_lf_1 <- data.frame("D" = c(1:10),$ "p-value" = c(1:10)) for(i in 1:20){ndvi_lf_1[i,] <- tidy(ndvi_lf[[i]])} ndvi_lf_1 <- data.frame(ndvi_lf_1, "Cluster" = as.character(c(0:9)))

2. Fenología de la vegetación

```
# 1. Load & install package ------
library(qpcR)
library(tidyverse)
library(zoo)
library(greenbrown)
library(TSstudio)
library(ggfortify)
library(npphen)
library(ks)
# 2. Data: clusters ------
cluster_NDVI <- read.csv("input/cluster_NDVI2.csv")
# 3. Data transform ------
#To long
ndvi <- cluster_NDVI[,c(2:461)]
ndvi_cluster <- pivot_longer(data = ndvi,
              cols = c(1:460),
              names to = "Date",
              values_to = "NDVI")
## Date
ndvi_cluster <- ndvi_cluster %>%
    dplyr::mutate(Date = substring(Date, 2, 11)) %>%
    dplyr::mutate(Date = chartr("_", "-", Date)) %>%
    dplyr::mutate(Date = as.Date(Date))
## Cluster 1
cluster1 ndvi <- ndvi cluster %>%
    dplyr::filter(NDVI == NDVI[1:460]) %>%
```

dplyr::mutate(NDVI = NDVI * 0.0001)

```
# 4. Time series ------
## ts 461 obs
cluster1_ndvi_ts <- ts(cluster1_ndviNDVI, freq = 23, start = c(2001, 1),
           end = c(2021, 1))
##value NA
cluster1_ndvi_ts[461] <- NA
## TS 7301 days - 461 obs
cluster1_ndvi_tsf <- zoo(cluster1_ndvi$NDVI, cluster1_ndvi$Date) %>%
    as.ts(cluster1_ndvi_tsf) %>%
    ts(cluster1 ndvi tsf, start = c(2001, 1),
    end = c(2021, 1), frequency = 365)
## NA 7293
cluster1_ndvi_tsf[7293] <- NA
## Interpolate time series
c1_ndvi_ts_full <- na.approx(cluster1_ndvi_tsf, na.rm = FALSE)
# 5. Automatic calculation of phenology ------
phen_c1 <- Phenology(cluster1_ndvi_ts, tsgf="TSGFspline",
# 6. Trend of the complete time serie -----
trd.1C.ts <- Trend(c1 ndvi ts full, mosum.pval=0.05)
trd.ssa.1C.ts <- TrendSeasonalAdjusted(cluster1_ndvi_ts,
                   mosum.pval = 0.05,
                   funSeasonalCycle = MeanSeasonalCycle)
# 7. Trend phenologys metrics ------
## Trend SOS
trd.SOS.1C.ts <- Trend(phen_c1$sos)
## Trend EOS
trd.EOS.1C.ts <- Trend(phen_c1$eos)
## Trend POP
trd.POP.1C.ts <- Trend(phen_c1$pop)</pre>
# 8. Ciclo fenológico -----
## To vector
c1_vector <- as.vector(cluster1_ndvi_ts[1:460])
```

Dates and obs
dates <- as.Date(ndvi_cluster\$Date[c(1:460)])
DOY <- strftime(dates, format = "%j")
c1_doy <- cbind(DOY, c1_vector)</pre>

3. Prueba de tendencia

```
# 1. Load packages ------
library(raster)
library(tidyverse)
library(spatialEco) #test tau kendall and slope
library(EnvStats)
library(broom)
library(sf)
# 2. Inputs ------
## AE
AE <- st_read(dsn = "input/Cuenca_Altiplano4.shp"
## Brick spring
names ndvi spring <- read.csv("input/bands ndvi 460 spring.csv")[,2]
ndvi_spring_list <- paste0("input/", list.files(path = "input/",
                         pattern= "spring.*.TIF$",
                         all.files=TRUE,
                         full.names=FALSE))
ndvi_spring <- lapply(ndvi_spring_list, brick)</pre>
# 3. Transform seasons -----
## spring
for (i in 1:25) {ndvi_spring[[i]] <- raster::clamp(ndvi_spring[[i]],
                          lower = -2000,
                          upper = 10000,
                          useValues=FALSE)
}
```
for (i in 1:25) {values(ndvi_spring[[i]])[values(ndvi_spring[[i]]) == 0] = NA
}

4. Test Mann Kendall: raster.kendall() - ndvi spring -----## kendall

kendall_ndvi_spring <- lapply(ndvi_spring,

mosaic

mosaico_kendall_spring <- do.call(raster::merge, kendall_ndvi_spring)</pre>

names(mosaico_kendall_spring) <- names_test_kendall

ndvi_spring_slope_sig <- mask(mosaico_kendall_spring [[1]], mosaico_kendall_spring [[2]] < 0.05, maskvalue = FALSE)

4. Correlación de variables

```
# 1. Load packages ------
library(raster)
library(sp)
# 2. Input ------
## NDVI
ndvi <- raster::stack("input/ndvi.tif")</pre>
```

CHIRPS

chirps <- raster::stack("input/chirps.tif")</pre>

```
# 3. Processes ------
for (i in 1:440) {ndvi[[i]] <- clamp(ndvi[[i]],
                  lower = -2000,
                  upper = 10000,
                  useValues = TRUE)
}
for (i in 1:440) {values(ndvi[[i]])[values(ndvi[[i]]) == 0] = NA
}
# 4. NDVI - CHIRPS: tau kendall ------
ndvi_chirps_kendall <- raster::corLocal(
    x = ndvi, y = chirps,
    method = "kendall",
    test = TRUE
)
ndvi_chirps_sig <- mask(ndvi_chirps_kendall[[1]],
            ndvi_chirps_kendall[[2]] < 0.05,
            maskvalue = FALSE)
## Save NDVI - CHIRPS
writeRaster(ndvi_chirps_sig,
      filename = "output/ndvi_chirps_sig.tif",
      format="GTiff",
      bylayer = FALSE,
      overwrite = TRUE)
```

ANEXO III. Estadística descriptiva de las variables precipitación (CHIRPS), evapotranspiración (ET), temperatura diurna de la superficie terrestre (LST) y NDVI

Figura 1. Estadística descriptiva de la variable precipitaciones (CHIRPS), por estaciones del año: verano (a), otoño (b), invierno (c) y primavera (d) Fuente: Elaboración propia.

Figura 2. Estadística descriptiva de la variable evapotranspiración (ET), por estaciones del año: verano (a), otoño (b), invierno (c) y primavera (d) Fuente: Elaboración propia.

Figura 3. Estadística descriptiva de la variable temperatura diurna de la superficie terrestre (LST), por estaciones del año: verano (a), otoño (b), invierno (c) y primavera

Figura 4. Estadística descriptiva de la variable NDVI, por estaciones del año: verano

(a), otoño (b), invierno (c) y primavera (d)

Figura 5. Histogramas de precipitaciones por clúster

Figura 6. Histogramas de evapotranspiración por clúster

Fuente: Elaboración propia.

Figura 7. Histogramas de temperatura diurna de la superficie terrestre por clúster Fuente: Elaboración propia.

Figura 8. Histogramas de NDVI por clúster

Fuente: Elaboración propia.

							Desv.				D^*	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	42.6434	35.0898	122.6505	4.3258	149.2259	979.3469	31.2945	73.3865	-0.0263	0.8179	0.1175	0.0000
2	55.2001	53.6590	126.7551	4.2427	210.3717	1139.5645	33.7574	61.1546	0.7115	0.7256	0.0743	0.0000
3	24.9375	12.7047	150.0820	0.1569	150.0820	768.2656	27.7176	111.1485	2.1065	1.5868	0.2030	0.0000
4	30.5924	18.3767	152.8926	0.9710	152.8926	870.0636	29.4968	96.4189	1.2864	1.3619	0.1732	0.0000
5	20.7496	8.6138	110.7940	0.3153	119.0683	620.8169	24.9162	120.0807	2.3210	1.7261	0.2297	0.0000
6	35.2192	23.5307	128.6928	2.2241	155.3270	983.0332	31.3534	89.0235	0.4800	1.0885	0.1551	0.0000
7	9.6628	3.8509	39.3769	0.0000	77.3177	197.8654	14.0665	145.5731	5.3583	2.3692	0.2806	0.0000
8	15.1919	6.2142	75.2989	0.6915	93.8663	385.5179	19.6346	129.2436	3.6409	2.0740	0.2764	0.0000
9	10.8990	4.1205	50.6982	0.0050	88.3880	250.7468	15.8350	145.2886	4.8745	2.2982	0.2821	0.0000
10	17.8805	7.8917	88.1141	0.6403	106.4812	462.6039	21.5082	120.2884	2.9113	1.8811	0.2393	0.0000

Tabla 1. Estadística descriptiva de la variable precipitación, por clúster

Tabla 2. Estadística descriptiva de la variable evapotranspiración, por clúster

							Desv.				D*	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	75.3262	67.3605	144.0261	16.7184	175.7467	1324.7572	36.3972	48.3195	-0.4652	0.6632	0.1008	0.0000
2	191.3783	193.8314	201.6854	92.2952	270.5833	1271.0651	35.6520	18.6291	-0.6454	-0.1860	0.0501	0.0102
3	90.2055	81.7808	165.3128	24.4933	191.6844	1524.8959	39.0499	43.2899	-0.6977	0.5263	0.0867	0.0000
4	166.7125	172.3836	211.4633	74.8054	238.3493	1236.8403	35.1687	21.0954	-0.6805	-0.3619	0.0720	0.0000
5	35.2661	26.0964	134.6783	5.2780	136.9474	680.2940	26.0824	73.9589	1.6314	1.4221	0.1570	0.0000
6	103.5499	100.5600	172.4621	34.2418	196.0229	1305.7170	36.1347	34.8959	-0.9261	0.1974	0.0695	0.0000
7	143.7213	147.5476	205.3765	58.6432	218.0245	1361.0291	36.8921	25.6692	-0.9772	-0.2641	0.0936	0.0000
8	117.8945	115.3865	88.7227	40.3554	204.9602	1416.6247	37.6381	31.9252	-1.0124	0.0770	0.0650	0.0001
9	57.9621	44.9238	159.3744	11.7644	187.8281	1418.7384	37.6661	64.9841	0.3111	1.0681	0.1507	0.0000
10	46.6861	35.0612	144.8284	8.3807	162.5521	984.1592	31.3713	67.1963	0.9183	1.2418	0.1477	0.0000

Fuente: Elaboración propia.

											D*	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asímetria	(Lilliefors)	p-value
1	14778.4444	14698.5699	14348.5572	14278.0008	15427.9751	71324.7664	267.0670	1.8071	-0.7041	0.5161	0.1210	0.0000
2	14316.8362	14321.0140	14264.6680	14123.9900	14573.3295	9596.3293	97.9609	0.6842	-0.8743	0.1533	0.0768	0.0000
3	15052.0030	15012.3392	14671.2893	14405.4781	15688.4837	111540.1950	333.9763	2.2188	-1.0386	0.3113	0.0743	0.0000
4	15132.9385	15098.6984	14748.1433	14442.5175	15779.2629	125577.9748	354.3698	2.3417	-1.0906	0.2247	0.0735	0.0000
5	15218.5423	15204.2937	14837.0739	14491.7623	15887.1550	140163.0055	374.3835	2.4600	-1.1421	0.1535	0.0715	0.0000
6	14644.1466	14584.1292	14343.1165	14211.4606	15244.1075	53033.1859	230.2894	1.5726	-0.5849	0.5761	0.1115	0.0000
7	15350.0008	15354.2738	15071.6851	14564.8876	16012.2985	153083.6455	391.2591	2.5489	-1.1948	0.0133	0.0691	0.0000
8	14428.3999	14444.8925	14635.5123	14055.9322	15039.6490	50119.5536	223.8740	1.5516	-0.8526	0.2106	0.0878	0.0000
9	14966.8694	14898.8864	14562.9042	14398.7415	15605.6450	91542.2020	302.5594	2.0215	-0.9227	0.4513	0.0940	0.0000
10	14878.3018	14802.4856	14447.3829	14342.4843	15527.2017	79442.6696	281.8558	1.8944	-0.7977	0.5145	0.1230	0.0000

Tabla 3. Estadística descriptiva de la variable temperatura diurna de la superficie terrestre, por clúster

Tabla 4.	Estadística	descriptiva	de la v	variable	NDVI,	por clúster
----------	-------------	-------------	---------	----------	-------	-------------

											D*	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asímetria	(Lilliefors)	p-value
1	4584.8645	4328.7210	4328.7888	2880.6750	6688.4235	1288028.9630	1134.9136	24.7535	-1.3872	0.2536	0.1236	0.0000
2	3235.9420	2939.4765	2727.9114	2120.9831	5202.1668	722276.7212	849.8686	26.2634	-1.1927	0.4838	0.1474	0.0000
3	2198.5482	2018.5691	1834.2339	1624.8135	3420.0232	213079.5658	461.6054	20.9959	-0.6922	0.7595	0.1612	0.0000
4	3766.6574	3429.9543	3315.4088	2354.3413	5932.6118	1096769.8581	1047.2678	27.8036	-1.2993	0.4031	0.1397	0.0000
5	2727.8554	2489.7752	2257.5785	1881.0452	4364.2534	432666.7192	657.7741	24.1132	-1.0166	0.5989	0.1603	0.0000
6	1752.5782	1657.6857	1582.2943	1397.3559	2566.6314	77170.2684	277.7954	15.8507	-0.4903	0.8023	0.1439	0.0000
7	1023.9646	1004.8935	982.9128	855.0462	1293.0998	7020.3825	83.7877	8.1827	-0.0541	0.7462	0.1003	0.0000
8	1355.7871	1315.3941	1306.4673	1140.6915	1820.5047	21345.9825	146.1026	10.7762	-0.2139	0.8062	0.1163	0.0000
9	-39.0634	14.3816	-538.3778	-729.8651	404.9038	62245.0411	249.4896	-638.6779	-0.0775	-0.7426	0.1044	0.0000
10	607.3996	607.8612	503.3111	334.2014	814.8283	4046.0647	63.6087	10.4723	1.3232	-0.2017	0.0409	0.0756

Fuente: Elaboración propia. *Valor crítico 0.04224

	Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
	1	77.1055	71.2564	122.6505	34.9468	149.2259	595.3511	24.3998	31.6447	-0.2574	0.5450	0.0990	0.0067
	2	81.9421	79.4360	126.7551	33.6368	135.3757	537.7455	23.1893	28.2997	-0.7662	0.2585	0.0899	0.0211
	3	60.2329	59.0107	150.0820	17.2972	150.0820	729.5234	27.0097	44.8421	0.1561	0.6926	0.0942	0.0125
	4	66.3321	62.1033	152.8926	20.9494	152.8926	779.8564	27.9259	42.1002	-0.2902	0.5440	0.1024	0.0042
	5	51.5012	45.7988	110.7940	8.0268	119.0683	696.9882	26.4005	51.2620	-0.6185	0.5519	0.0957	0.0104
	6	72.4648	66.5485	128.6928	26.8482	155.3270	680.3725	26.0840	35.9953	-0.2481	0.5737	0.1223	0.0002
	7	25.7961	21.3689	39.3769	2.7870	77.3177	334.5414	18.2905	70.9041	-0.3137	0.7460	0.1128	0.0009
	8	38.0767	33.3546	75.2989	2.8588	93.8663	588.5976	24.2610	63.7162	-0.8277	0.5206	0.1229	0.0002
	9	29.1921	23.7992	50.6982	3.0374	88.3880	415.8487	20.3924	69.8558	-0.4978	0.6660	0.1269	0.0001
	10	43.8567	38.8296	88.1141	5.2095	106.4812	599.4290	24.4832	55.8255	-0.7153	0.5368	0.1069	0.0022
j						Fuente I	Elaboraci	ón propi	<u>a</u>				

Tabla 5. Estadística descriptiva de la variable precipitación, por clúster, durante la estación de verano

Tabla 6. Estadística descriptiva de la variable precipitación, por clúster, durante la estación de otoño

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	38.8593	33.0872	92.5979	6.6622	127.6255	686.0764	26.1931	67.4049	0.6613	0.9992	0.1517	0.0000
2	58.7219	54.2354	91.2551	9.4796	210.3717	1349.4676	36.7351	62.5578	2.7689	1.4307	0.0909	0.0215
3	16.5575	10.0591	51.8526	1.7176	69.6665	228.1527	15.1047	91.2258	1.7459	1.5169	0.1794	0.0000
4	24.5665	17.2503	70.5991	1.8671	104.3325	389.9577	19.7473	80.3832	1.3799	1.2530	0.1541	0.0000
5	12.7957	6.6235	57.8034	1.3420	60.1286	196.7556	14.0270	109.6228	2.5835	1.8294	0.2267	0.0000
6	29.9701	21.9456	90.7609	4.4861	125.4823	586.9519	24.2271	80.8376	1.2687	1.2021	0.1546	0.0000
7	4.3520	2.6637	23.9828	0.4199	23.9828	18.9555	4.3538	100.0409	5.0822	2.2021	0.2320	0.0000
8	8.3274	4.6697	40.5675	0.7142	40.5675	74.6982	8.6428	103.7870	3.3062	1.9944	0.2650	0.0000
9	4.8661	2.7454	26.3840	0.6482	26.3840	26.9352	5.1899	106.6542	4.2698	2.1090	0.2539	0.0000
10	10.5734	5.6469	47.3037	0.7365	48.0071	118.8946	10.9039	103.1252	2.8376	1.8779	0.2313	0.0000

Fuente: Elaboración propia.

	Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
	1	12.5393	9.5200	9.8296	4.3258	66.4593	101.5470	10.0771	80.3639	10.3742	2.9126	0.2266	0.0000
	2	20.6756	16.4362	19.7953	4.2427	91.1582	219.3327	14.8099	71.6298	5.6843	2.1216	0.1892	0.0000
	3	4.7432	3.7378	2.1082	0.1569	28.4597	20.4663	4.5240	95.3777	10.2551	2.8883	0.2146	0.0000
	4	7.5084	5.7781	4.4611	0.9710	42.3676	40.1453	6.3360	84.3863	12.7048	3.2237	0.2127	0.0000
	5	4.2897	3.4267	1.7730	0.3153	21.0227	11.2401	3.3526	78.1554	8.0963	2.4447	0.1564	0.0000
	6	7.3901	5.7080	5.8856	2.2241	42.6688	34.6766	5.8887	79.6837	13.7811	3.2829	0.2391	0.0000
	7	2.0743	1.6042	1.0286	0.0000	6.8703	2.7756	1.6660	80.3180	-0.0767	0.8976	0.1351	0.0001
	8	4.2297	3.8536	3.1197	0.6915	12.5013	5.4272	2.3296	55.0773	2.1227	1.2928	0.0885	0.0297
	9	2.3073	1.7800	1.6993	0.0050	6.8657	2.8635	1.6922	73.3402	-0.0953	0.8924	0.1444	0.0000
	10	4.7046	4.1553	2.4916	0.6403	17.6222	9.5943	3.0975	65.8390	5.3627	2.0987	0.1570	0.0000
j					F	uente F	laboració	ón propis					

Tabla 7. Estadística descriptiva de la variable precipitación, por clúster, durante la estación de invierno

Tabla 8. Estadística descriptiva de la variable precipitación, por clúster, durante la estación de primavera

											D****	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	36.3904	32.9007	30.3674	11.6709	104.9801	259.3283	16.1037	44.2526	2.3291	1.1751	0.0910	0.0502
2	54.4179	51.0644	49.3473	16.3262	110.0405	464.0196	21.5411	39.5846	-0.5129	0.4265	0.0902	0.0542
3	12.6932	10.5458	8.9038	1.9937	41.5119	51.3520	7.1660	56.4558	2.3280	1.3719	0.1264	0.0007
4	18.0427	15.3013	13.1772	3.2963	48.4526	95.6850	9.7819	54.2152	0.8763	1.1360	0.1274	0.0006
5	9.6636	8.2574	6.3609	2.0260	29.6233	28.3703	5.3264	55.1179	2.1315	1.3949	0.1513	0.0000
6	24.8858	21.7743	17.9311	6.2849	77.8564	167.0339	12.9242	51.9339	2.4375	1.4108	0.1447	0.0000
7	4.0985	3.7262	2.5484	1.3167	11.5291	3.7264	1.9304	47.1003	2.0595	1.1833	0.1148	0.0036
8	6.7118	5.9638	4.6648	1.7011	17.5576	8.8401	2.9732	44.2986	1.2146	1.0478	0.1346	0.0002
9	4.5894	4.2160	2.6641	1.3587	10.9521	3.7110	1.9264	41.9753	0.9356	0.9796	0.1147	0.0036
10	8.4499	7.4152	5.5892	2.0900	23.0782	16.5322	4.0660	48.1189	1.8061	1.2309	0.1414	0.0001
				_								

Fuente: Elaboración propia.

						D**						
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	111.8876	112.1385	144.0261	49.5386	175.7467	991.1202	31.4821	28.1372	-0.9509	-0.0511	0.0537	0.5583
2	203.5099	203.7232	201.6854	155.2101	253.6373	607.2787	24.6430	12.1090	-0.9064	0.0436	0.0530	0.5820
3	132.0974	134.4664	165.3128	74.6103	191.6844	838.7226	28.9607	21.9238	-0.8579	-0.0481	0.0601	0.3762
4	190.1161	189.6571	211.4633	151.3642	238.0067	347.2302	18.6341	9.8014	-0.7285	0.0229	0.0761	0.0928
5	57.5152	50.7753	134.6783	12.2486	136.9474	916.1753	30.2684	52.6268	-0.5963	0.5416	0.1007	0.0053
6	142.0611	142.0449	172.4621	96.2525	196.0229	465.8384	21.5833	15.1930	-0.6080	0.0561	0.0490	0.7009
7	178.6403	179.1195	205.3765	140.9734	218.0245	254.0578	15.9392	8.9225	0.0622	-0.0855	0.0589	0.4084
8	158.3432	159.8051	194.6141	109.7700	204.9602	404.8681	20.1213	12.7074	-0.4115	-0.1125	0.0548	0.5258
9	94.4008	95.8049	159.3744	22.8587	187.8281	1553.9210	39.4198	41.7579	-0.9515	0.1019	0.0913	0.0180
10	73.9847	69.2118	144.8284	16.4076	162.5521	1250.8784	35.3678	47.8042	-0.8497	0.3581	0.0873	0.0288
					Fuenter	Flaboraci	ón propi					

Tabla 9. Estadística descriptiva de la variable evapotranspiración, por clúster, durante la estación de verano

Tabla 10. Estadística descriptiva de la variable evapotranspiración, por clúster, durante la estación de otoño

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	79.9620	74.2909	131.4778	27.4170	153.7405	940.6474	30.6700	38.3557	-0.7075	0.4478	0.1155	0.0007
2	178.1499	181.6639	176.7563	100.6962	238.4227	771.7413	27.7802	15.5937	0.0126	-0.4569	0.0705	0.1784
3	92.0155	88.6577	147.0762	30.6261	167.5173	1241.1152	35.2295	38.2865	-0.8923	0.2678	0.0841	0.0461
4	155.2742	159.0110	170.7607	78.5861	211.3279	878.5431	29.6402	19.0890	-0.4777	-0.4608	0.0700	0.1851
5	40.4955	34.6787	132.0640	9.7739	132.0640	496.8607	22.2904	55.0441	1.5015	1.1426	0.1178	0.0005
6	99.9760	97.4283	145.2818	37.5992	163.5058	1148.0600	33.8830	33.8912	-0.9798	0.0940	0.0668	0.2422
7	133.8291	133.1489	155.8237	61.5966	201.9793	1098.4781	33.1433	24.7654	-0.8770	-0.1874	0.0601	0.3965
8	111.5837	109.2278	149.9029	41.7401	179.6434	1189.4165	34.4879	30.9077	-0.9531	0.0692	0.0600	0.4010
9	66.1420	60.4455	160.5660	17.4265	160.5660	902.9417	30.0490	45.4310	-0.0563	0.6967	0.1008	0.0063
10	54.3100	50.2500	147.0198	13.8366	147.0198	686.4603	26.2004	48.2423	0.4373	0.8628	0.1132	0.0011
					-							

Fuente: Elaboración propia.

D***													
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value	
1	54.3518	53.8184	31.5330	20.3081	135.6476	448.4696	21.1771	38.9630	1.8889	1.1648	0.1085	0.0022	
2	161.5852	155.9344	92.2952	92.2952	247.4167	880.0420	29.6655	18.3591	0.1484	0.6268	0.1127	0.0011	
3	61.8672	59.0189	37.0557	27.1555	130.4267	437.6260	20.9195	33.8136	0.5896	0.8547	0.0972	0.0100	
4	132.2576	129.5379	74.8054	74.8054	213.9357	682.3239	26.1213	19.7503	0.4788	0.6653	0.1017	0.0056	
5	22.9372	18.8118	16.9409	6.2218	75.5606	174.8032	13.2213	57.6412	2.8960	1.5843	0.1473	0.0000	
6	74.5955	70.7108	44.4560	37.3149	135.9911	480.8947	21.9293	29.3976	-0.0528	0.6492	0.1127	0.0011	
7	106.8713	103.6240	60.5218	58.6432	175.6341	530.8494	23.0402	21.5588	0.3872	0.5890	0.0799	0.0703	
8	86.4620	81.2291	51.6557	44.3913	154.9074	550.7624	23.4683	27.1430	-0.0124	0.6293	0.1103	0.0016	
9	37.1351	34.0202	26.0401	14.2976	106.9584	284.1787	16.8576	45.3953	2.5001	1.4045	0.1103	0.0017	
10	31.4278	27.8126	23.5147	11.0600	91.8497	227.5931	15.0862	48.0028	2.4124	1.4112	0.1209	0.0003	
]	Fuente: E	Elaboracio	ón propia	•					

Tabla 11. Estadística descriptiva de la variable evapotranspiración, por clúster, durante la estación de invierno

Tabla 12. Estadística descriptiva de la variable evapotranspiración, por clúster, durante la estación de primavera

											D****	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	49.9041	44.7464	26.9402	16.7184	100.0809	417.3608	20.4294	40.9373	-0.4310	0.6164	0.1059	0.0105
2	228.0631	229.2134	233.5939	152.9928	270.5833	369.0907	19.2117	8.4239	1.3584	-0.2767	0.0625	0.4793
3	70.4463	67.5426	45.5252	24.4933	122.4628	511.7034	22.6209	32.1108	-0.6928	0.4461	0.0934	0.0401
4	192.9608	192.0707	183.8407	106.5230	238.3493	495.0078	22.2488	11.5302	1.0856	-0.4095	0.0596	0.5560
5	16.3841	14.1983	9.0631	5.2780	36.3441	45.1213	6.7172	40.9984	0.6932	1.0566	0.1430	0.0001
6	95.1544	92.8253	69.8109	34.2418	147.4465	615.4411	24.8081	26.0714	-0.6761	0.2111	0.0703	0.2950
7	156.8065	156.3769	134.9329	73.7385	205.4714	627.8745	25.0574	15.9798	-0.0432	-0.2050	0.0523	0.7531
8	113.3707	111.9065	90.6783	40.3554	172.1765	720.7787	26.8473	23.6810	-0.5410	0.0712	0.0636	0.4517
9	28.2614	27.0123	14.8851	11.7644	66.0839	129.7629	11.3914	40.3071	0.7475	1.0086	0.0992	0.0220
10	22.2269	20.6702	12.6472	8.3807	47.4482	68.7753	8.2931	37.3110	0.5936	0.9783	0.1172	0.0026

Fuente: Elaboración propia.

											D**	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	14692.8860	14651.8078	14348.5572	14278.0008	15343.7947	61545.9678	248.0846	1.6885	-0.4341	0.5378	0.0983	0.0074
2	14390.8091	14381.5408	14264.6680	14230.0109	14573.3295	4796.7493	69.2586	0.4813	-0.0725	0.2656	0.0575	0.4479
3	15112.5951	15099.3087	14671.2893	14473.7892	15676.6863	94106.4719	306.7678	2.0299	-0.9290	0.0693	0.0594	0.3969
4	15222.4595	15215.4440	14748.1433	14530.2300	15779.1829	102138.6842	319.5914	2.0995	-0.9330	-0.0438	0.0743	0.1168
5	15333.9426	15331.0398	14837.0739	14610.3359	15887.1550	109418.7619	330.7851	2.1572	-0.8939	-0.1831	0.0787	0.0716
6	14602.9385	14582.9887	14343.1165	14247.9488	15191.2376	44032.2192	209.8386	1.4370	-0.3364	0.4966	0.0775	0.0807
7	15520.8087	15542.0109	15071.6851	14846.2137	16012.2985	99959.6470	316.1640	2.0370	-0.8088	-0.3840	0.0774	0.0818
8	14634.8549	14610.5616	14635.5123	14414.3427	15039.6490	17220.5968	131.2273	0.8967	0.3304	0.9382	0.1270	0.0001
9	14968.3166	14948.9569	14562.9042	14412.7281	15582.5323	81824.4234	286.0497	1.9110	-0.8273	0.2566	0.0699	0.1735
10	14814.7884	14784.3615	14447.3829	14342.4843	15469.0606	72225.1287	268.7473	1.8140	-0.6206	0.4583	0.0951	0.0112
				Б	Juanta, El	aharaaián	nronio					

Tabla 13. Estadística descriptiva de la variable LST, por clúster, durante la estación de verano

Tabla 14. Estadística descriptiva de la variable LST, por clúster, durante la estación de otoño

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	14618.5425	14616.3763	14301.7756	14301.7756	14947.1942	11993.5893	109.5152	0.7492	0.3310	-0.1659	0.0573	0.4750
1	14300.6690	14304.4461	14296.8104	14183.3192	14465.9542	3852.5828	62.0692	0.4340	-0.5654	0.2036	0.0643	0.2938
:	14896.1152	14906.2227	14529.9914	14524.4796	15303.3779	25262.2535	158.9410	1.0670	-0.4985	0.0763	0.0667	0.2446
4	14980.9371	15000.4937	14593.4078	14579.3834	15401.0637	33653.1425	183.4479	1.2245	-0.7523	0.0108	0.0648	0.2838
4	15063.8422	15076.8054	14635.3085	14635.3085	15497.6253	41866.3486	204.6127	1.3583	-0.8962	0.0101	0.0694	0.1951
(14501.9109	14494.4884	14262.4591	14262.4591	14815.2422	9368.1043	96.7890	0.6674	0.4061	0.2831	0.0480	0.7493
	15195.1598	15206.8654	14776.5014	14762.5301	15673.0910	54584.2552	233.6327	1.5375	-1.0322	-0.0080	0.0740	0.1305
5	14339.2569	14354.1979	14474.5291	14071.3245	14662.3229	17978.4765	134.0838	0.9351	-0.9775	-0.0022	0.0786	0.0799
ç	14805.3545	14806.8503	14450.5351	14450.5351	15189.1100	15432.0880	124.2260	0.8391	0.3803	0.1241	0.0511	0.6583
1(14715.6709	14709.8358	14372.9415	14372.9415	15072.0845	12254.9092	110.7019	0.7523	0.8050	-0.0752	0.0562	0.5070

Fuente: Elaboración propia.

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	14717.0131	14691.6755	14629.0966	14332.8741	15111.0767	31617.4702	177.8130	1.2082	-0.6098	0.2812	0.0877	0.0310
2	14201.5079	14198.0699	14217.3317	14123.9900	14302.3815	1217.7532	34.8963	0.2457	0.1926	0.5642	0.0611	0.3712
3	14788.0292	14718.4294	14749.2831	14405.4781	15224.3592	40270.9506	200.6762	1.3570	-0.9292	0.4292	0.1543	0.0000
4	14828.3802	14749.3176	14774.5167	14442.5175	15281.1552	43414.3957	208.3612	1.4052	-0.9266	0.4696	0.1536	0.0000
5	14881.1958	14803.5545	14802.7826	14491.7623	15355.4030	47164.2455	217.1733	1.4594	-0.8956	0.5045	0.1523	0.0000
6	14570.1094	14546.4056	14463.8173	14211.4606	14919.5376	26580.1861	163.0343	1.1190	-0.4818	0.3263	0.0859	0.0380
7	14966.1834	14889.7112	14908.9611	14564.8876	15466.0017	51301.3181	226.4979	1.5134	-0.8587	0.5075	0.1408	0.0000
8	14185.3506	14174.3383	14204.2208	14055.9322	14450.4641	7497.5812	86.5886	0.6104	0.6951	0.9379	0.1044	0.0039
9	14782.0368	14718.2607	14744.0400	14398.7415	15198.2505	36200.3367	190.2639	1.2871	-0.8696	0.3652	0.1424	0.0000
10	14775.7365	14729.8607	14717.1916	14392.6698	15175.1663	33115.0831	181.9755	1.2316	-0.7490	0.3128	0.1130	0.0011

 Tabla 15. Estadística descriptiva de la variable LST, por clúster, durante la estación de invierno

Tabla 16. Estadística descriptiva de la variable LST, por clúster, durante la estación de primavera

											D****	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	15149.4160	15174.9165	15037.4368	14793.9189	15427.9751	20944.5546	144.7223	0.9553	-0.4184	-0.4336	0.0943	0.0365
2	14383.5275	14387.8574	14267.8834	14231.8036	14539.0590	5048.8599	71.0553	0.4940	-0.7835	-0.1501	0.0658	0.3964
3	15481.2129	15505.4541	15201.6933	15025.5520	15688.4837	21275.5436	145.8614	0.9422	-0.1434	-0.6522	0.0934	0.0398
4	15570.5581	15593.2622	15265.3818	15086.9376	15779.2629	23752.9089	154.1198	0.9898	-0.1868	-0.7099	0.0946	0.0354
5	15666.8738	15711.5642	15339.5008	15178.1661	15885.7614	25782.3400	160.5688	1.0249	-0.2860	-0.7275	0.1209	0.0016
6	14954.4250	14971.7472	14802.0740	14603.1587	15244.1075	19530.5384	139.7517	0.9345	-0.6167	-0.1759	0.0698	0.3048
7	15786.0273	15837.8482	15444.2425	15306.8415	16002.2175	28098.6107	167.6264	1.0619	-0.4112	-0.7488	0.1372	0.0001
8	14572.7649	14576.3284	14386.3123	14200.2660	14912.6312	26797.8352	163.7004	1.1233	-0.5857	-0.1016	0.0330	0.9985
9	15380.7040	15387.8857	15164.7865	14993.6323	15605.6450	18325.0573	135.3701	0.8801	-0.2720	-0.4938	0.1005	0.0192
10	15274.7591	15291.0672	15135.8315	14900.4700	15527.2017	18639.2099	136.5255	0.8938	-0.3491	-0.4646	0.1009	0.0184

											D**	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	5300.6881	5401.3963	4328.7888	3325.6230	6648.3509	491872.9726	701.3366	13.2310	-0.5882	-0.4421	0.0905	0.0199
2	3725.4736	3764.8416	2727.9114	2292.1451	4991.8222	392151.9169	626.2203	16.8091	-0.7959	-0.2253	0.0637	0.2894
3	2447.7586	2461.3669	1834.2339	1685.8181	3246.1248	166011.5108	407.4451	16.6456	-0.9934	0.0936	0.0782	0.0759
4	4394.7691	4470.5788	3315.4088	2655.7898	5827.9514	530637.5370	728.4487	16.5754	-0.7503	-0.3066	0.0843	0.0399
5	3090.9600	3134.6649	2257.5785	2075.5218	4157.6365	273413.0625	522.8891	16.9167	-0.9327	-0.1093	0.0686	0.1946
6	1887.6706	1901.8298	1582.2943	1423.4671	2426.8842	64584.8812	254.1356	13.4629	-0.9431	0.1966	0.1006	0.0054
7	1042.6503	1046.2099	982.9128	917.2533	1232.0405	5347.7953	73.1286	7.0137	-0.5852	0.4065	0.0858	0.0339
8	1403.4513	1398.0675	1306.4673	1171.4281	1748.0887	18936.9915	137.6117	9.8052	-0.8153	0.3416	0.1093	0.0016
9	-155.9474	-142.6016	-538.3778	-729.8651	404.9038	90708.0209	301.1777	-193.1278	-1.0634	-0.0517	0.0797	0.0648
10	608.0768	613.1275	503.3111	423.5608	769.6368	4519.2187	67.2251	11.0554	0.0054	-0.1723	0.0447	0.8209
				Б	luonto, El	horadián	nronio					

Tabla 17. Estadística descriptiva de la variable NDVI, por clúster, durante la estación de verano

Tabla 18. Estadística descriptiva de la variable NDVI, por clúster, durante la estación de otoño

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	5703.9315	5982.0641	5729.4420	3832.5713	6688.4235	515607.4432	718.0581	12.5888	-0.6474	-0.7328	0.1596	0.0000
2	4069.7234	4256.3651	4184.6951	2696.1415	5202.1668	371928.9977	609.8598	14.9853	-0.9795	-0.4321	0.1280	0.0001
3	2617.7764	2620.4663	2918.4647	1939.2655	3420.0232	142256.2418	377.1687	14.4080	-1.1455	0.0696	0.0938	0.0152
4	4800.2485	5008.0454	4928.2681	3106.9973	5932.6118	510342.3574	714.3825	14.8822	-0.8536	-0.5732	0.1370	0.0000
5	3359.9869	3484.4721	3500.6215	2331.6537	4364.2534	253537.1110	503.5247	14.9859	-1.1451	-0.2177	0.1064	0.0029
6	2008.3734	1989.2812	2322.1019	1617.7453	2566.6314	51696.6327	227.3689	11.3210	-0.9844	0.2427	0.1102	0.0017
7	1111.9453	1102.8236	1232.6184	994.7454	1293.0998	4480.1664	66.9340	6.0195	-0.1656	0.5814	0.0814	0.0608
8	1500.8407	1483.3899	1727.3033	1296.2830	1820.5047	13555.7858	116.4293	7.7576	-0.4249	0.5004	0.0868	0.0345
9	-134.1215	-87.3786	-387.4230	-684.8191	299.4834	45992.7919	214.4593	-159.8992	-0.4268	-0.7061	0.1280	0.0001
10	651.3661	648.1153	548.1451	513.8712	793.0146	2712.5495	52.0821	7.9958	0.3099	0.1293	0.0565	0.4977

Fuente: Elaboración propia.

											D***	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	3525.2538	3455.9824	4333.3153	2941.3601	4562.2366	132639.1341	364.1966	10.3311	0.2262	0.7663	0.1027	0.0048
2	2526.9369	2477.8799	2995.6873	2148.4940	3193.3010	52145.3730	228.3536	9.0368	0.1405	0.7844	0.1047	0.0037
3	1861.4803	1842.7001	2081.6509	1654.9785	2153.3562	12073.0237	109.8773	5.9027	-0.1853	0.5371	0.1287	0.0001
4	2857.4682	2801.9402	3466.0720	2392.7158	3736.7550	86055.7060	293.3525	10.2662	0.2848	0.8247	0.1051	0.0035
5	2207.3683	2161.1875	2538.9468	1915.5747	2634.3991	27741.1894	166.5569	7.5455	-0.1674	0.6525	0.1186	0.0005
6	1569.1133	1552.9944	1718.1516	1432.1670	1812.6594	5771.0809	75.9676	4.8414	0.1481	0.5673	0.0945	0.0140
7	985.7453	985.9505	1017.9649	855.0462	1104.2473	1394.3614	37.3411	3.7881	1.0527	-0.0265	0.0497	0.7011
8	1281.1258	1274.9363	1357.1499	1184.2912	1449.3850	2506.2780	50.0627	3.9077	0.1640	0.5409	0.0800	0.0700
9	36.6457	53.0672	-663.1438	-663.1438	379.3085	34622.7612	186.0719	507.7593	1.9272	-1.0580	0.1118	0.0013
10	585.3715	591.1367	489.6706	334.2014	814.8283	3506.6152	59.2167	10.1161	5.0014	-0.9374	0.1283	0.0001
				E	vanta. Ela	honorión m	monio					

Tabla 19. Estadística descriptiva de la variable NDVI, por clúster, durante la estación de invierno

Tabla 20. Estadística descriptiva de la variable NDVI, por clúster, durante la estación de primavera

											D****	
Clúster	Media	Mediana	Moda	Min	Max	Varianza	Desv. Est.	CV	Curtosis	Asimetría	(Lilliefors)	p-value
1	3631.9237	3614.7606	3522.0009	2880.6750	4927.9461	193143.3869	439.4808	12.1005	-0.1046	0.5270	0.0717	0.2676
2	2483.3134	2438.6847	2365.0204	2120.9831	3283.3255	55962.0434	236.5630	9.5261	0.5616	0.8489	0.1156	0.0032
3	1793.0333	1786.0300	1786.9641	1624.8135	2114.3624	10309.8863	101.5376	5.6629	-0.0702	0.5640	0.0967	0.0286
4	2843.8057	2806.1830	2700.4221	2354.3413	3874.8515	100487.0459	316.9969	11.1469	0.3495	0.7799	0.0877	0.0685
5	2146.6902	2102.7548	2082.3781	1881.0452	2666.6123	26502.7932	162.7968	7.5836	0.5050	0.8021	0.1291	0.0005
6	1499.4047	1495.6474	1512.6220	1397.3559	1661.0700	3949.8438	62.8478	4.1915	-0.6351	0.3292	0.0640	0.4415
7	941.2381	937.9526	932.8022	892.0651	1019.2472	615.2331	24.8039	2.6352	-0.2895	0.3999	0.0709	0.2839
8	1212.6140	1215.1783	1219.7788	1140.6915	1305.8135	1190.6230	34.5054	2.8455	-0.5998	0.2227	0.0758	0.1967
9	128.1071	142.2494	-223.1454	-223.1454	330.5116	18691.8885	136.7183	106.7219	-0.1594	-0.5949	0.0725	0.2530
10	580.2394	584.4681	471.5035	471.5035	687.1060	2163.9305	46.5181	8.0170	0.0107	-0.1994	0.0696	0.3102

Valores críticos: **verano 0.082; ***otoño e invierno 0.083; ****primavera 0.091

	clú	ister 1	clú	ster 2	clú	ister 3	clú	ster 4	clú	ster 5	clú	ister 6	clú	ister 7	clí	ister 8	clú	ster 9	clús	ter 10
	p-	pendient	p-	pendient																
	value	e	value	е																
Pendiente	0.142		0.290		0.202		0.278		0.229		0.645		0.171		0.744		0.174			
1	5	-0.0013	6	-0.0007	6	-0.0004	2	-0.0009	3	-0.0006	7	-0.0001	3	-0.0001	2	0.0000	1	-0.0001	0.9558	0.0000
Pendiente	0.392		0.524		0.003		0.432		0.027		0.865		0.000		0.752		0.210			
2	2	-0.0023	2	-0.0013	9	-0.0087	1	-0.0020	6	-0.0093	9	-0.0004	1	-0.0037	7	0.0005	0	0.0005	0.0000	0.0006
Pendiente					0.462				0.366		0.000		0.926		0.380		0.000			
3	NA	NA	NA	NA	0	-0.0034	NA	NA	6	-0.0059	1	-0.0070	8	-0.0001	0	-0.0011	0	-0.0045	0.0000	0.0027
Pendiente											0.293		0.013		0.000		0.239			
4	NA	NA	7	-0.0030	7	-0.0023	0	-0.0042	1	0.0005	NA	NA								
Pendiente													0.006		0.243					
5	NA	NA	4	0.0014	0	-0.0017	NA	NA	NA	NA										

ANEXO IV. Pendientes de las series temporales NDVI y de las métricas fenológicas

Tabla 1. Pendientes y p-value de las series temporales de valores NDVI por clúster, en el Altiplano, entre 2001 y 2020

Fuente: Elaboración propia.

Tabla 2. Pendientes y p-value de las métricas fenológicas SOS, EOS, POP y LOS de los valores NDVI, por clúster en el

Altiplano, entre 2001 y 2020

	SC	S	EC	S	PC	P	LC	S
	pendiente	p-value	pendiente	p-value	pendiente	p-value	pendiente	p-value
clúster 1	0.251880	0.788454	0.196241	0.660911	0.150376	0.708338	-0.055639	0.959217
clúster 2	-0.462406	0.367161	0.248872	0.603026	0.118045	0.765345	0.711278	0.301410
clúster 3	0.290261	0.307386	0.182707	0.705111	-0.242105	0.510136	-0.121805	0.836033
clúster 4	-0.734096	0.228756	0.180451	0.696690	0.155639	0.695967	0.627820	0.447078
clúster 5	-0.201504	0.648045	0.114379	0.766677	-0.043609	0.905029	0.461654	0.462400
clúster 6	0.157163	0.505486	-0.110526	0.817663	-0.304511	0.445149	-0.134586	0.819098
clúster 7	0.078336	0.849003	0.446002	0.448280	0.178947	0.646860	0.457895	0.643618
clúster 8	0.009023	0.983241	-0.127820	0.794039	-0.133835	0.745835	-0.136842	0.821234
clúster 9	NA	NA	NA	NA	NA	NA	NA	NA
clúster 10	1.894737	0.019160	0.196491	0.851715	1.429323	0.121114	0.919481	0.638796