3D free-breathing cardiac magnetic resonance fingerprinting

Gastão Cruz ${ }^{1}$ © | Olivier Jaubert ${ }^{1}$ | Haikun Qi ${ }^{1}$ | Aurélien Bustin ${ }^{1}$ Giorgia Milotta ${ }^{1}$ | Torben Schneider ${ }^{2}$ | Peter Koken ${ }^{3}$ | Mariya Doneva ${ }^{3}$ | René M. Botnar ${ }^{1,4}$ | Claudia Prieto ${ }^{1,4}$

${ }^{1}$ School of Biomedical Engineering and Imaging Sciences, King's College London, London, UK
${ }^{2}$ Philips Healthcare, Guilford, UK
${ }^{3}$ Philips Research Europe, Hamburg, Germany
${ }^{4}$ Escuela de Ingeniería, Pontificia Universidad Católica de Chile, Santiago, Chile

Correspondence

Gastao Cruz, PhD, School of Biomedical Engineering and Imaging Sciences, 3rd Floor, Lambeth Wing, St Thomas' Hospital, London SE1 7EH, UK.
Email: gastao.cruz@kcl.ac.uk

Funding information

Engineering and Physical Sciences Research Council, Grant/Award Numbers: EP/O001009/1, EP/P032311/1; National Institute for Health Research; Wellcome Trust, Grant/Award Number: NS/A000049/1

Abstract

Purpose: To develop a novel respiratory motion compensated three-dimensional (3D) cardiac magnetic resonance fingerprinting (cMRF) approach for whole-heart myocardial T_{1} and T_{2} mapping from a free-breathing scan. Methods: Two-dimensional (2D) cMRF has been recently proposed for simultaneous, co-registered T_{1} and T_{2} mapping from a breath-hold scan; however, coverage is limited. Here we propose a novel respiratory motion compensated 3D cMRF approach for whole-heart myocardial T_{1} and T_{2} tissue characterization from a free-breathing scan. Variable inversion recovery and T_{2} preparation modules are used for parametric encoding, respiratory bellows driven localized autofocus is proposed for beat-to-beat translation motion correction and a subspace regularized reconstruction is employed to accelerate the scan. The proposed 3D cMRF approach was evaluated in a standardized T_{1} / T_{2} phantom in comparison with reference spin echo values and in 10 healthy subjects in comparison with standard 2D MOLLI, SASHA and T_{2}-GraSE mapping techniques at 1.5 T . Results: 3D cMRF T_{1} and T_{2} measurements were generally in good agreement with reference spin echo values in the phantom experiments, with relative errors of 2.9% and 3.8% for T_{1} and $T_{2}\left(T_{2}<100 \mathrm{~ms}\right)$, respectively. in vivo left ventricle (LV) myocardial T_{1} values were $1054 \pm 19 \mathrm{~ms}$ for MOLLI, $1146 \pm 20 \mathrm{~ms}$ for SASHA and $1093 \pm 24 \mathrm{~ms}$ for the proposed 3D cMRF; corresponding T_{2} values were $51.8 \pm 1.6 \mathrm{~ms}$ for T2-GraSE and $44.6 \pm 2.0 \mathrm{~ms}$ for 3D cMRF. LV coefficients of variation were $7.6 \pm 1.6 \%$ for MOLLI, $12.1 \pm 2.7 \%$ for SASHA and $5.8 \pm 0.8 \%$ for 3D cMRF T_{1}, and $10.5 \pm 1.4 \%$ for T2-GraSE and $11.7 \pm 1.6 \%$ for 3D cMRF T_{2}. Conclusion: The proposed 3D CMRF can provide whole-heart, simultaneous and coregistered T_{1} and T_{2} maps with accuracy and precision comparable to those of clinical standards in a single free-breathing scan of about 7 min .

keywords

3D whole heart, low rank, MR fingerprinting, myocardial tissue characterization, quantitative cardiac MRI, T_{1} map, T_{2} map

[^0]© 2020 The Authors. NMR in Biomedicine published by John Wiley \& Sons Ltd

1 | INTRODUCTION

Quantitative myocardial tissue characterization has emerged as an important tool for the diagnosis of cardiovascular disease. Tissue parameters such as $T_{1}, T_{2}, T_{2}{ }^{*}$ relaxation times and extracellular volume (ECV) have demonstrated sensitivity to several diseases. ${ }^{1}$ These parameters detect underlying mechanisms of disease such as necrosis (T_{1}), edema (T_{2}), iron overload ($T_{2}{ }^{*}$) or fibrosis (ECV), allowing disease progression to be monitored. Conventional myocardial mapping techniques map a single parameter per acquisition using two-dimensional (2D) breath-hold sequences such as modified Look-Locker inversion recovery (MOLLI) $)^{2}$ and saturation recovery single-shot acquisition (SASHA) ${ }^{3}$ for T_{1}, or T_{2} prepared balanced steady-state free precession (T2prep-bSFFP) ${ }^{4}$ and T_{2} gradient and spin echo (T_{2}-GraSE) ${ }^{5}$ for T_{2}. Multiple tissue parameters are generally sensitive to a given disease, and recently it has been suggested that simultaneous multi-parametric mapping could improve tissue characterization, as recommended in the updated diagnostic criteria for myocardial inflammation. ${ }^{6}$ For example, simultaneous T_{1} and T_{2} can lead to improved characterization of myocardial infarction, ${ }^{7,8}$ help distinguish between acute and chronic myocarditis (leading to improved diagnostic specificity) ${ }^{6,9}$ and potentially improve the understanding of the underlying disease. ${ }^{10}$ With conventional approaches, multi-parametric mapping requires sequential acquisitions under several breath-holds, often leading to non-registered maps as well as potential patient discomfort. Moreover, conventional mapping techniques provide limited coverage of the heart, and different methods have different confounding factors, including crossover dependencies between T_{1} and T_{2} if the two parameters are not simultaneously included in the model. ${ }^{4,11-13}$

Due to T_{1} 's and T_{2} 's complementary diagnostic information and co-dependences in the signal model, joint parametric mapping methods have become of interest. An interleaved 2D T_{1} / T_{2} encoding strategy based on inversion recovery (IR) and T_{2} preparation (T2prep) pulses in freebreathing has been developed. ${ }^{14}$ Most cardiac mapping methods acquire data in a small cardiac acquisition window; however, 2D joint T_{1} / T_{2} mapping has been achieved using IR interrupted b-SSFP readouts in CABIRIA. ${ }^{15}$ A combination of T2prep and saturation recovery pulses have also been employed for 2D joint T_{1} / T_{2} mapping. ${ }^{16}$ Similarly, T2preps together with IR pulses have also been developed for this purpose. ${ }^{17,18} \mathrm{~A}$ hybrid T2prep-IR pulse is employed in MR multitasking for motion resolved simultaneous T_{1} / T_{2} mapping. ${ }^{19}$ Extension to three dimensions for wholeheart coverage T_{1} / T_{2} mapping has been considered using T2prep and IR pulses in three-dimensional (3D-)QALAS in a breath-hold; however, breath-hold duration can impose a limit on spatial resolution and/or coverage. ${ }^{20}$ More recently, 3D free-breathing T_{1} / T_{2} mapping has been achieved using T2prep, saturation recovery pulses and respiratory diaphragmatic navigators; however, this can lead to long and unpredictable scan times. ${ }^{21}$ All of the above are steady-state approaches, often sampling discrete points along the relaxation curves and relying on simplified exponential models.

Magnetic resonance fingerprinting (MRF) ${ }^{22}$ is an established research technique for simultaneous and multi-parametric quantitative MR where system parameters (such as flip angle and repetition time) vary in time to sensitize the sequence to tissue parameters of interest (such as T_{1} and T_{2}). MRF attempts to capture the parametric encoding within the transient state using directly the Bloch equations and can be extended to include not only additional parameters of interest (eg flow, ${ }^{23}$ chemical exchange saturation transfer (CEST) ${ }^{24}$), but also additional model corrections (eg $B_{1},{ }^{25}$ slice profile ${ }^{26}$). Initially proposed for brain acquisitions, MRF has since been extended to 2D cardiac imaging (cMRF) ${ }^{27}$ for simultaneous, co-registered T_{1} and T_{2} myocardial mapping in a single breath-hold. 2D breath-hold cMRF produces simultaneous and co-registered T_{1} / T_{2} maps comparable to conventional methods, albeit in reduced scan time. Model corrections such as B_{1} and slice profile for 2D cMRF have also been evaluated, ${ }^{28}$ leading to reduced bias in the estimated parameters. Simultaneous multi-slice imaging has been combined with 2D cMRF ${ }^{29}$ to increase the coverage of the heart; however, this is still limited to three slices and is sensitive to through-plane motion.

In this work we develop a novel respiratory motion compensated 3D cMRF approach for whole-heart coverage of T_{1} / T_{2} myocardial mapping in a single free-breathing scan. Similarly to 2D cMRF, parametric encoding is primarily achieved with IR and T2prep pulses. The extension to three dimensions increases the scan time beyond a common breath-hold duration and free-breathing acquisitions are required. In-plane translational motion due to breathing is corrected with respiratory bellows driven localized autofocus ${ }^{30,31}$, and a patch-based low-rank tensor regularized reconstruction ${ }^{32}$ is employed to accelerate the 3D cMRF scan. The proposed 3D CMRF was evaluated in a standardized phantom and in 10 healthy subjects, in comparison with gold standard spin echo measurements (phantom) and conventional MOLLI, SASHA and T_{2}-GraSE mapping techniques (in vivo).

2 | EXPERIMENTS

2.1 | Acquisition

The proposed 3D cMRF uses a free-breathing, ECG-triggered acquisition with a variable density stack of spirals, where a different preparation pulse is applied in each heartbeat (Figure 1A). The preparation scheme was chosen heuristically, inspired by recent works in 2D cMRF. ${ }^{27,28}$ The acquisition is divided into blocks of 18 heartbeats with the following preparation scheme: IR15, NP, NP, NP, NP, IR150, NP, NP, NP, NP, IR300, NP, T2prep20, T2prep30, T2prep40, T2prep50, T2prep60, T2prep80, where NP denotes "no preparation pulse" and the numerical values after IR or T2prep denote the corresponding IR time delay (T_{I}) or T2prep echo time ($T_{\text {ET2p }}$), respectively. One block was used per slice encoding (with linear

ordering) and a minimum of a 4 s recovery period was employed between blocks to recover longitudinal magnetization (after 4 s the sequence resumed when the subsequent R wave was detected). A spectral presaturation with inversion recovery (SPIR) ${ }^{33}$ pulse is used before data acquisition to suppress aliasing artefacts originating from the fat signal. The effective flip angle of the SPIR (which determines the zero crossing of the fat) was varied to account for the preparation pulse employed in each heartbeat. For IR delay < 200 ms , no SPIR pulse was employed, as the longitudinal fat magnetization is still negative. Otherwise, the SPIR flip angle θ at each heartbeat was given by

$$
\begin{equation*}
\theta=\cos ^{-1}\left[\frac{\mathrm{e}^{-T_{\mathrm{lf}} / T_{1 \mathrm{f}}}-1}{\mathrm{e}^{-T_{2 \text { prep }} / T_{2 f}}\left[\mathrm{e}^{-T_{\text {lf }} / T_{1 f}}\left(1-\mathrm{e}^{-\mathrm{HR} / T_{1 \mathrm{f}}}\right)\right]}\right] \tag{1}
\end{equation*}
$$

where $T_{1 \mathrm{f}}$ and $T_{2 f}$ are the T_{1} and T_{2} relaxation times of fat, $T_{2 \text { prep }}$ denotes the echo time of the T_{2} preparation employed, $T_{\text {If }}$ is the inversion time delay of the SPIR and HR is the nominal heartrate for a given subject. Adiabatic pulses were used for all 180° pulses in IR and T2prep modules to reduce sensitivity to potential B_{1} errors ${ }^{34,35}$ and subsequent errors in the parametric maps. ${ }^{28}$ In addition to ECG, respiratory bellows were used to record respiratory motion. The one-dimensional (1D) respiratory signal obtained from the bellows was later used for respiratory motion correction.

2.2 | Motion correction and reconstruction

The proposed 3D cMRF respiratory motion correction and reconstruction is summarized in Figure 1B. Respiratory motion of the heart is commonly monitored with diaphragmatic navigators ${ }^{36}$ or self-navigation ${ }^{37}$; however, these methods have generally been validated in steady-state imaging applications. Diaphragmatic navigator gating can lead to long and unpredictable scan time, since data is acquired only within a giving gating window. Moreover, the parametric encoding can deviate from the prescribed non-gated sequence (particularly for IR based sequences where T_{1} is encoded across multiple shots), as data outside the gating window is rejected and re-acquired. Here, respiratory bellows are employed to be less sensitive to the variable contrasts employed in 3D cMRF, which could otherwise affect motion estimation. Respiratory bellows provide only a relative 1D signal of motion in arbitrary units, $r(t)$. In order to correct for translational respiratory motion this signal is used to drive a localized autofocus algorithm, ${ }^{30}$ similar to previous work in abdominal ${ }^{31}$ and cardiac ${ }^{38}$ imaging. This approach reconstructs a set of 3D images \mathbf{x}_{α} from all the acquired data and evaluates an image quality metric on these images to determine the optimal motion correction. To simplify the autofocus search space, we assume a linear relationship between the bellows signal and the respiratory motion of the heart, similar to previous works. ${ }^{31,38}$ Motion estimation is performed for each spatial dimension sequentially. Initially a set of $\alpha r(t)$ scaled respiratory bellows signals are considered. A corresponding bank of translationally corrected images \mathbf{x}_{α} is obtained by reconstructing k-space translationally corrected with $\alpha r(t)$ (using the inverse non-uniform Fourier transform). Following, the optimal scaling $\hat{\alpha}$ (which determines the estimated respiratory translational motion in millimeters) is obtained by solving $\hat{\alpha}=\operatorname{argmin}_{\alpha} H\left(\mathbf{x}_{\alpha}\right)$. The localized gradient entropy $H\left(\mathbf{x}_{\alpha}\right)$ is given by $H\left(\mathbf{x}_{\alpha}\right)=-\sum_{i} h_{\alpha}\left(\mathbf{x}_{\alpha}(i)\right) \log h_{\alpha}\left(\mathbf{x}_{\alpha}(i)\right)$, where h_{α} is the normalized spatial gradient and $\mathbf{x}_{\alpha}(i)$ is the ith pixel intensity. ${ }^{31}$ The local gradient entropy is computed around a small region of interest, manually selected around the heart for each subject. The resulting optimal scaling for each dimension is used for global translation motion correction (ie corresponding phase shifts in k-space) prior to MRF reconstruction.

Although MRF initially used zero-filled reconstructions, ${ }^{22}$ it has been shown that some aliasing artefacts can propagate into the parametric maps for highly accelerated acquisitions such as those required in cMRF. More recently it has been shown that advanced reconstructions of the MRF time-series can improve the resulting T_{1} / T_{2} estimates. ${ }^{32,39-43}$ In addition to parallel imaging, ${ }^{44,45}$ subspace modelled reconstructions ${ }^{41,42}$ and compressed sensing regularization ${ }^{32,43,46}$ have been applied to MRF reconstruction, improving accuracy and precision. For 3D cMRF, we use a low-rank inversion ${ }^{41}$ (LRI) regularized with a high-dimensionality undersampled patch based reconstruction ${ }^{32}$ (HDPROST). The LRI-HDPROST reconstruction solves the following problem:

$$
\begin{equation*}
\mathcal{L}\left(\hat{\mathbf{x}}, \hat{\mathcal{T}}_{b}\right):=\underset{\mathbf{x}, \mathcal{T}_{b}}{\operatorname{argmin}} \frac{1}{2}\left\|\mathbf{A} U_{R} \mathrm{FC} \mathbf{x}-\mathbf{k}^{\prime}\right\|_{2}^{2}+\lambda \sum_{b}\left\|\mathcal{T}_{b}\right\|_{*} \text { s.t. } \mathcal{T}_{b}=\mathbf{P}_{b}(\mathbf{x}) \tag{2}
\end{equation*}
$$

where $\mathbf{A}, \mathbf{U}_{R}, \mathbf{F}$ and \mathbf{C} are sampling, temporal compression (obtained from a truncated singular value decomposition of the MRF dictionary), nonuniform fast Fourier transform and coil sensitivity operators; \mathbf{P}_{b} constructs a 3D local tensor \mathcal{T}_{b} around voxel b by concatenating local (within a patch), non-local (between similar patches) and contrast (in the singular value domain) voxels along each dimension; \mathbf{x} are the singular images reconstructed and \mathbf{k}^{\prime} is the translationally corrected k-space. The problem above was solved via the alternating direction method of multipliers (ADMM) ${ }^{47}$; additional details can be found in Reference 32.

2.3 | Simulations

The sensitivity of the proposed sequence to variable heart rates was investigated in simulations. Extended phase graphs (EPGs) ${ }^{48,49}$ were employed to simulate the response of the magnetization to a sequence of 18 heartbeats, corresponding to a slice encoding (as depicted in Figure 1A). Four RR intervals were considered for the simulations: $R R=[1500,1000,750,600] m s$ (corresponding to [40, 60, 80, 100] beats per minute (bpm)). In each case, the RR intervals were further perturbed by random RR variations drawn for a Gaussian distribution of zero mean and standard deviation of $[50,300] \mathrm{ms}$. Finally, each simulated fingerprint was corrupted by Gaussian noise of zero mean and standard deviation of $[0.05,0.10,0.20,0.30] \times D_{m}$, where D_{m} is the maximum absolute value of the dictionary. The simulated dictionary focused on tissues around the myocardium, considering the following values: $T_{1}=[700: 5: 1500] \mathrm{ms}$ and $T_{2}=[5: 0.5: 90] \mathrm{ms}$, resulting in 27531 fingerprints in total and a simulation time of approximately 5 h .

The signal-to-noise ratio (SNR) sensitivity of the proposed flip angle pattern was preliminarily investigated in a small simulation based on one representative subject. Ground-truth T_{1}, T_{2} and M_{0} maps (obtained from in vivo 3D cMRF) were used to simulate cMRF acquisitions with three different flip angle patterns: (1) fixed flip angle of 5°, (2) variable flip angle in the range 5-10 (as used for phantom and in vivo data acquisition) and (3) fixed flip angle of 10°. Simulated acquisition parameters were the same as described in the following sections for phantom and data acquisition. The simulated MRF time-point images were undersampled with the same spiral trajectory and coil sensitivities as obtained from in vivo data. Zero-mean white Gaussian noise was added with a standard deviation of 2% of the maximum absolute dictionary value. This simulated MRF k-space was reconstructed without regularization (ie LRI reconstruction).

2.4 | Phantom acquisition

The proposed 3D cMRF was evaluated in a standardized phantom and in 10 healthy subjects (five males, age 30 ± 2 years) on a 1.5 T Ingenia MR system (Philips, Best, The Netherlands) using a 28 -channel cardiac coil. The study was approved by the institutional review board and written informed consent was obtained from all subjects according to institutional guidelines.

A standardized T_{1} / T_{2} phantom (T1MES) ${ }^{50}$ was scanned with 3D CMRF with the following parameters: field of view (FOV) $=352 \times$ $352 \times 120 \mathrm{~mm}^{3}$; resolution $=2 \times 2 \times 8 \mathrm{~mm}^{3}$; 19 acquired slices (including slice oversampling of $\sim 25 \%$); echo time (T_{E})/repetition time $\left(T_{\mathrm{R}}\right)=1.25 / 6.80 \mathrm{~ms}$; sinusoidal flip angle in the range $5-10^{\circ}$; gradient echo readout (gradient spoiling, ie FFE/FISP); variable density spiral sampling, ${ }^{51} \sim 35 \times$ undersampled in the periphery of k-space ($\sim 18 \times$ undersampled in the central 10% radius of k-space); spiral acquisition window $=3.6 \mathrm{~ms} ; 30$ spirals per shot; cardiac acquisition window $=204 \mathrm{~ms} ; 540$ time-points per slice encoding; acquisition time $=7 \mathrm{~min}$. ECG information obtained from a healthy subject inside the scanner room was used to simulate heart rate variations during the phantom scan. Five 3D cMRF phantom acquisitions were performed in different sessions to investigate repeatability. 2D MOLLI, SASHA and $T_{2}-$ GraSE (parameters described below) were acquired in five transversal slice locations in a separate session. 3D cMRF was compared against 2D reference inversion recovery spin echo (IRSE) and spin echo for T_{1} and T_{2}, respectively. Key parameters for the IRSE included $T_{\mathrm{E}} /$ $T_{R}=15 / 15000 \mathrm{~ms}$ and $15 T_{\mathrm{I}}$ values in the range of 50 to 5000 ms ; key parameters for spin echo included eight echo times in the range of 10 to 640 ms .

2.5 | In vivo acquisition

Ten healthy subjects were scanned with the same 3D cMRF protocol as used in the phantom, in short axis orientation and with subject specific mid-diastolic triggering (determined by preceding CINE imaging). ECG and respiratory bellows signals were recorded for dictionary simulation and translational motion correction, respectively. Conventional 2D MOLLI, SASHA and T_{2}-GraSE acquisitions were performed in basal, mid- and apical slices (for a total of nine breath-holds). All conventional mapping methods used FOV $=300 \times 300 \mathrm{~mm}^{2}$, resolution $=2 \times 2 \mathrm{~mm}^{2}$ and slice thickness $=8 \mathrm{~mm}$. MOLLI (5(3)3 variant with beat intervals) parameters used were $T_{\mathrm{E}} / T_{\mathrm{R}}=1.19 / 2.40 \mathrm{~ms}$, SENSE factor $=1.8, \mathrm{FA}=35^{\circ}$ and acquisition window $=244 \mathrm{~ms}$. SASHA used one infinity image and nine saturation prepared images with the following parameters: $T_{\mathrm{E}} / T_{\mathrm{R}}=1.19 / 2.40 \mathrm{~ms}$; SENSE factor 1.8; $\mathrm{FA}=70^{\circ}$; acquisition window $=244 \mathrm{~ms} . T_{2}$-GraSE used a double IR (for blood nulling) and nine echo times with the following parameters: $T_{\mathrm{E}}=8.3: 8.3: 74.7 \mathrm{~ms} ; \mathrm{EPI}$ factor $=7 ;$ SENSE factor $=2.8 ; \mathrm{FA}=90^{\circ}$; acquisition window $=75 \mathrm{~ms}$.

2.6 | Motion correction and reconstruction

Motion estimation was performed in vivo via respiratory bellows driven autofocus, as described above. The bellows signal $(r(t))$ was normalized to unity and a set of trial motion signals $\alpha r(t)$ was obtained using $\alpha=[0: 0.1: 1] \beta$; consequently, the target motion state for correction was end-
expiration. The value of β represents the maximum expected physiological motion along a given dimension and was set to 8 mm based on a preliminary evaluation (not shown) of the data acquired in this study. Localized gradient entropy was evaluated on the data subset with T2prep for improved contrast. Preliminary results (Supporting Material Figure S6) estimated negligible motion along the slice dimension (presumably due to the 8 mm acquired resolution), and thus only in-plane motion correction was considered in this study.

All acquired data was reconstructed with LRI-HDPROST and solved with ADMM, ${ }^{47}$ which requires three steps (iteratively): a Tikhonov regularized problem (solved via conjugate gradient (CG)), tensor denoising (via high-order singular value thresholding) and update of Lagrangian multipliers. Tensor denoising was performed slice by slice due to the anisotropy of the resolution ($2 \times 2 \times 8 \mathrm{~mm}^{3}$). LRI-HDPROST used the following parameters: LRI rank $R=6$, patch size $=4 \times 4$, five CG iterations, six ADMM iterations, 20 similar patches, window size $=41$ pixels and $\lambda=3 \times 10^{-3}$. Coil sensitivity maps were derived from ESPIRiT ${ }^{52}$ using all the acquired data and density compensation functions obtained via Voronoi diagrams. Reconstruction parameters were determined experimentally by inspecting preliminary reconstructions in one subject (results not shown) and following parameters suggested in Reference ${ }^{32}$. Parametric maps were obtained via template matching in the singular value domain using a subject specific dictionary. Dictionaries were computed using $\mathrm{EPG}^{48,49}$ for each acquired dataset based on the implementation by Weigel. ${ }^{48}$ The following values were considered: $T_{1}=[200: 30: 900,900: 20: 1200,1200: 30: 1400,1400: 50: 2000]$ ms and $T_{2}=[20: 1: 60,60: 5: 100,100: 20: 300] \mathrm{ms}$. No slice profile, B_{1} imperfections, magnetization transfer (MT) or $T_{1 \rho} / T_{2 \rho}$ effects were considered in the dictionary generation. Standardized phantom reference T_{1} and T_{2} values were also included in the phantom dictionary. Full 3D cMRF reconstruction took approximately 10 h , including 3 h for dictionary generation, 20 min for motion estimation and 6.5 h for LRI-HDPROST reconstruction on a Linux workstation with 12 Intel Xeon X5675 processors (3.07 GHz) and 200 GB RAM.

2.7 | Image analysis

Left ventricular myocardial T_{1} and T_{2} values were evaluated in regions of interest defined by the American Heart Association's (AHA's) 16-segment model. ${ }^{53} 3 \mathrm{D}$ cMRF parametric maps were interpolated to $1 \times 1 \times 4 \mathrm{~mm}^{3}$, for a total of 38 slices (2D reference methods were correspondingly interpolated to $1 \times 1 \mathrm{~mm}^{2}$) using cubic interpolation. 3D cMRF slices corresponding to the basal, mid- and apical slices in the conventional 2D acquisitions were manually selected for analysis and comparison. The mean and coefficient of variation (CoV) over all subjects were evaluated for each of these slice positions, for T_{1} and T_{2}. Segments where the myocardium was not well depicted (eg due to remaining cardiac motion, respiratory motion or field inhomogeneities) were excluded from analysis. These included three segments for MOLLI and 20 segments for SASHA (out of 160 segments), primarily in apical and/or inferior regions. No segments were excluded for the proposed 3D cMRF.

3 | RESULTS

3.1 | Simulations

No significant variations of the (absolute) error in T_{1} and T_{2} were found when comparing RR intervals between 600 and 1500 ms (T_{1} error increased by approximately 4.5 ms and T_{2} error decreased by approximately 0.7 ms). No consistent bias was observed (average T_{1} bias $=-0.5 \mathrm{~ms}$, average T_{2} bias $=-0.04 \mathrm{~ms}$). The largest effect on the measured T_{1} and T_{2} error was due to the fingerprint noise considered (ranging from 5 to 30% of the maximum signal value), causing error variations of about 10-55 ms in T_{1} and about 1.0-5.5 ms in T_{2}. Plots showing the T_{1} and T_{2} errors as a function of heartrate are depicted in Supporting Material Figure S1. Simulated experiments on the choice of flip angle are shown in Supporting Material Figure S7. While all three flip angle patterns presented similar accuracy, an increase in standard deviation was observed for a fixed flip angle of 5°.

3.2 | Phantom

T_{1} and T_{2} values for the proposed 3D CMRF in the phantom were found to be in agreement with reference spin echo values. A slight negative bias in short $T_{2}(<100 \mathrm{~ms})$ and a considerable negative bias for long $T_{2}(>100)$ was observed (Figure 2). Normalized errors in the phantom vials (in the format [minimum, mean, maximum]) were [0.2, 2.9, 5.1]\%, [2.6, 3.8, 5.1]\% and [22.1, 27.5, 31.6]\% for (all) T_{1}, short T_{2} (<100 ms) and long T_{2}, respectively. Normalized errors for MOLLI, SASHA and T_{2}-GraSE were $5.5 \%, 2.3 \%$ and 1.8%, respectively. The CoV over five repeated phantom experiments (as a surrogate for repeatability) was 0.9% and 1.9% for T_{1} and short T_{2}, respectively. Slice variability was investigated in the phantom, resulting in an inter-slice CoV of 1.7% and 2.5% for T_{1} and short T_{2}, respectively. Larger CoVs were generally observed in edge slices,

FIGURE $2 T_{1}$ and T_{2} maps for the T1MES phantom using 3D cMRF over five scan sessions. A, One representative slice of the 3D cMRF T_{1} map for the phantom. B, T_{1} phantom values in comparison with reference IRSE. C, One representative slice of the 3 D cMRF T_{2} map for the phantom. $\mathrm{D}, \mathrm{T}_{2}$ phantom values in comparison with reference spin echo. Linear fit coefficients, adjusted coefficients of determination $\left(R^{2}\right)$ and intra-class correlation coefficients (ICCs) are shown in the corresponding plots (computed with all vials for T_{1}; computed with only vials where $T_{2}<100 \mathrm{~ms}$ for T_{2}). Error bars denote the standard deviation of the measurements over five scan sessions

particularly for T_{2}. Corresponding slice variabilities for 2D MOLLI, SASHA and T_{2}-GraSE were $0.6 \%, 0.7 \%$ and 2.2%, respectively. Plots showing repeatability and slice variability for phantom vials with short T_{2} are shown in Supporting Material Figures S 2 and S 3 for T_{1} and T_{2}, respectively. Representative T_{1} and T_{2} maps obtained with 3D CMRF, 2D MOLLI, 2D SASHA and 2D T_{2}-GraSE are depicted in Supporting Material Figure S4, revealing comparable quality between 3D cMRF and corresponding conventional methods.

3.3 | In vivo

3D cMRF was successfully acquired and reconstructed in all healthy subjects; the cohort's average heartrate was $61 \pm 10 \mathrm{bpm}$; the cohort's acquisition time was $6.9 \pm 1.1 \mathrm{~min}$. The proposed 3D cMRF produced maps comparable to those of conventional 2D MOLLI, SASHA and T_{2}-GraSE, as seen in representative subject A (Figure 3). Myocardium depiction is similar across different maps, except in apical slices, where MOLLI and especially SASHA present more artefacts (primarily at the inferolateral segment). Whole-heart T_{1} and T_{2} maps were obtained with 3D cMRF as seen in representative subject B (Figures 4 and 5, respectively). Myocardium and papillary muscles are well defined for all slices in the co-registered T_{1} and T_{2} maps obtained with 3D cMRF. T_{1} measurements with the proposed 3D cMRF were generally higher than those with MOLLI and slightly lower than those with SASHA; 3D cMRF T_{2} measurements were generally lower than those with T_{2}-GraSE. The mean \pm standard deviation of the mean over the subject cohort is depicted in the AHA 16 -segment model shown in Figure 6A (as a surrogate for accuracy). 2D MOLLI, 2D SASHA and 3D CMRF T_{1} values (mean \pm standard deviation over all segments) were $1054 \pm 19 \mathrm{~ms}, 1146 \pm 20 \mathrm{~ms}$ and $1093 \pm 24 \mathrm{~ms}$, respectively. Corresponding $2 \mathrm{D} T_{2}$-GraSE and $3 \mathrm{D} \mathrm{cMRF} T_{2}$ values were $51.8 \pm 1.6 \mathrm{~ms}$ and $44.6 \pm 2.0 \mathrm{~ms}$, respectively. Parametric values generally decreased from the septal to the lateral segments, with higher variations observed in 3D cMRF. In the format [mean septal, mean left ventricle (LV), mean lateral] the values for MOLLI, SASHA, 3D cMRF T_{1}, T_{2}-GraSE and 3D cMRF T_{2} were [1065, 1054, 1040] ms, [1140, 1146, 1144] $\mathrm{ms},[1113,1093,1068] \mathrm{ms},[52.3,51.8,50.7] \mathrm{ms}$ and [46.5, 44.6, 42.7] ms, respectively. The CoV \pm standard deviation of CoV over the subject cohort is shown in the AHA 16 segment model in Figure 6B (as a surrogate for precision). Corresponding measured CoVS for MOLLI, SASHA and 3D CMRF T_{1} values were $7.6 \pm 1.6 \%$, $12.1 \pm 2.7 \%$ and $5.8 \pm 0.8 \%$, respectively. For T_{2}-GraSE and 3 D cMRF the measured T_{2} values were $10.5 \pm 1.4 \%$ and $11.7 \pm 1.6 \%$, respectively. Septal T_{1} and T_{2} values over basal, mid- and apical slices revealed slightly higher slice variations for 3D cMRF relative to MOLLI and T_{2}-GraSE (Figure 7). Specifically, the septal slice standard deviation was $34.8 \mathrm{~ms}, 44.3 \mathrm{~ms}$ and 35.1 ms for MOLLI, SASHA and 3D cMRF T_{1}, respectively, and 2.53 ms and 3.01 ms for T_{2}-GraSE and $3 \mathrm{D} \mathrm{CMRF} T_{2}$, respectively. Corresponding analysis in the lateral wall revealed standard deviations of $27.2 \mathrm{~ms}, 51.9 \mathrm{~ms}$ and 40.1 ms for MOLLI, SASHA and 3D CMRF T_{1}, respectively, and 2.62 ms and 2.95 ms for $T_{2^{-}}$ GraSE and 3D cMRF T_{2}, respectively (Supporting Material Figure S5). Bland-Altman analysis was performed, where all measurements were within the 95% limits of agreement, with the exception of two cases in 3 D cMRF versus MOLLI and one case for 3 D cMRF T_{2} versus T_{2} GraSE (Figure 8). When compared with MOLLI, 3D cMRF T_{1} had a mean bias of 38.2 ms with 95% confidence interval (CI) of [$-4.6,81.1$] ms ; compared with SASHA, 3D cMRF T_{1} results in a mean bias of -54.5 ms and Cl of $[-119.8,10.9] \mathrm{ms}$. Comparing 3 D cMRF T_{2} with $T_{2}{ }^{-}$

FIGURE 3 3D cMRF T_{1}, 2D MOLLI, 2D
SASHA, 3D cMRF T_{2} and 2D T_{2}-GraSE in three slices for representative subject A (RR interval $=930 \pm 49 \mathrm{~ms}$)

FIGURE 4 A, Whole-heart T_{1} mapping
(20 short-axis slices) produced with 3D cMRF for representative subject B
(RR interval $=1069 \pm 62 \mathrm{~ms}$). B, C,
Corresponding basal, mid- and apical slices for MOLLI (B) and SASHA (C)
(A)

characterization, potentially improving the experience of the radiographer (fewer scans to plan, higher throughput), the patient (fewer breathholds, greater comfort) and the cardiologist (co-registered whole-heart maps, facilitated and comprehensive analysis).

3D cMRF T_{1} values were generally higher than those of MOLLI (mean bias of +38 ms) and lower than those of SASHA (mean bias of -55 ms), which has also been observed in previous 2D cMRF studies. ${ }^{27,54}$ There are several confounding factors that may account for these differences,

FIGURE 5 A, Whole-heart T_{2} mapping (20 short-axis slices) produced with 3D cMRF for representative subject B
(RR interval $=1069 \pm 62 \mathrm{~ms})$. ,
Corresponding basal, mid- and apical slices for T_{2}-GraSE

FIGURE 6 16-segment AHA bull'seye plot for the mean and the CoV for 2D MOLLI, 2D SASHA, 2D T_{2}-GraSE and 3D cMRF T_{1} and T_{2}

FIGURE 7 A, T_{1} values in the septum in each healthy subject (labelled from S1 to S10) for MOLLI, SASHA and 3D cMRF T_{1}. B, Corresponding T_{2} values for T_{2}-GraSE and 3D cMRF T_{2}. Reported values are averaged over basal, mid- and apical slices; error bars correspond to inter-slice standard deviations

(B)

Preliminary simulations in this work suggest that the flip angle pattern could affect precision at low flip angles and/or low SNR; however, further studies comparing variable and fixed flip angle patterns should be investigated. The proposed sequence differs from previous cMRF^{61} by separating IR and T2prep pulses (instead of interleaving them). This approach is expected to improve the dynamic range of the T_{1} encoding at the expense of some SNR in T_{2} encoding; however, it remains a heuristic solution. Comprehensive analysis on optimal sequence design for conventional (nontriggered) MRF has been developed previously. ${ }^{62-64}$ A similar analysis for (triggered) CMRF, possibly considering B_{0} / B_{1} sensitivities, would be of interest and will be investigated in future studies. Optimal sequences would be expected to lead to reduced scan times and/or improved parametric maps. Fat signal can create strong undersampling artefacts and has been shown to bias T_{1} estimation, ${ }^{65}$ in addition to introducing blurring artefacts due to spiral readouts (no spiral blurring was considered in the proposed framework). Moreover, translational motion correction can introduce artefacts originating from (incorrectly motion corrected) static fat tissue. ${ }^{66}$ A SPIR pulse is used in this framework for fat suppression, but alternative approaches such as water selective excitations ${ }^{67}$ could be considered for similar effect. Corrections using more complex respiratory motion models can also help in this regard. ${ }^{66}$

This study has several limitations. 3D cMRF has a predictable scan time of $\sim 7 \mathrm{~min}$, and, while adequate for clinical deployment, future work should consider additional strategies to reduce scan time. Higher resolution will also be desirable in the future and alternative 3D non-Cartesian trajectories could be considered, as recently proposed for T_{1} / T_{2} mapping. ${ }^{68}$ Although 3D cMRF was compared against three conventional approaches, it was not compared against T2prep-bSSFP at this time, due to unavailability on our system. As a proof of concept, no patients were included in this study, but should be considered in future studies. No in vivo repeatability was investigated in this study, primarily due to the long scan times associated with the experiment. Some residual blurring was observed with 3D cMRF, which could be primarily due to spiral (off-resonant) blurring and residual respiratory or cardiac (due to acquisition window or mistriggering) motion. Residual cardiac motion within the acquisition window of 204 ms could potentially lead to artificially enlarged wall thickness or reduced T_{2} values ${ }^{69}$; residual respiratory motion could occur due to errors in the bellows measurements (eg drift). ${ }^{70}$ Minor blurring can also arise as an artefact of the undersampled reconstructions performed. SPIR modules will likely decrease the method's sensitivity to detect fat infiltration; however, 3D cMRF could potentially be combined with Dixon based readouts for simultaneous T_{1}, T_{2} and fat fraction estimation. ${ }^{56}$ The proposed approach relies on a respiratory bellows driven autofocus algorithm to estimate the beat-to-beat translational motion of the heart. However, residual motion artefacts could also occur due to

FIGURE 8 Bland-Altman plots comparing 3D cMRF T_{1} versus MOLLI (A), 3D

cMRF T_{1} versus SASHA (B) and 3D cMRF T_{2} versus T_{2}-GRASE (C). ICCs are shown in each plot
the simplified (translational) motion model. Moreover, as the slice thickness is reduced, through-plane motion correction will increasingly be more important to avoid errors in T_{1} and $T_{2}{ }^{71,72}$ Future work will consider generalized elastic motion compensated reconstructions to correct the remaining non-rigid components of motion. ${ }^{73}$ A major limitation of the current approach, however, is the reconstruction time of approximately 10 h .3 D cMRF requires subject specific dictionaries and long iterative reconstructions. While patient tailored dictionaries are expected to grant higher heart rate insensitivity, they are also associated with long computation times ($\sim 3 \mathrm{~h}$ in this study) which can impose limitations on dictionary resolution. A GPU implementation of the method will considerably cut computational times. ${ }^{74}$ In addition, recent developments in deep learning indicate that dictionary computation, ${ }^{75}$ image reconstruction ${ }^{76}$ and template matching ${ }^{77}$ computational demands could be reduced by orders of magnitude, all of which could be combined with 3D cMRF to considerably reduce computational times. With the current approach, 3D cMRF is limited to simultaneous T_{1} / T_{2} and has some residual biases in these measurements. CMRF can potentially be extended to map any combination of parameters and consider any combination of model corrections; however, dictionaries increase exponentially (in addition to increased acquisition and reconstruction times). ${ }^{78}$ Deep learning solutions could also play a role in enabling acceptable computational times for truly multi-parametric fingerprinting (eg $T_{1}, T_{1 \rho}, T_{2}, T_{2}{ }^{*}, B_{0}, B_{1}$, MT and diffusion) from a single scan and should be investigated as future work.

FIGURE 9 3D cMRF T_{1} and T_{2} parameter maps with no motion correction (NMC) and the proposed translation correction (TC), along with 2D MOLLI, SASHA and T_{2}-GRASE for representative subject C (RR interval $=870 \pm 55 \mathrm{~ms}$). Blurring and ghosting motion artefacts in T_{1} and T_{2} maps are reduced after translation correction (arrows)

TABLE 1 Summary of the main statistical results. NRMSE, normalized root mean square error

Phantom	NRMSE (\%)	Inter-scan repeatability CoV (\%)	Inter-slice variability CoV (\%)
3D cMRF T_{1}	2.9	0.9	1.7
MOLLI	5.5	$\mathrm{~N} / \mathrm{A}$	0.6
SASHA	2.3	$\mathrm{~N} / \mathrm{A}$	0.7
3D cMRF T_{2}	3.8	1.9	2.5
T_{2}-GraSE	1.8	$\mathrm{~N} / \mathrm{A}$	2.2
In vivo	LV value (ms)	LV spatial variability CoV (\%)	Inter-slice septal variability (ms)
3D cMRF T_{1}	$1,093 \pm 24$	5.8 ± 0.8	35.1
MOLLI	$1,054 \pm 19$	7.6 ± 1.6	34.8
SASHA	$1,146 \pm 20$	12.1 ± 2.7	44.3
3D cMRF T_{2}	44.6 ± 2.0	11.7 ± 1.6	3.01
$T_{2}-G r a S E$	10.5 ± 1.4	2.53	

5 | CONCLUSION

A novel approach for 3D free-breathing respiratory motion compensated cMRF was proposed and validated in healthy subjects. The proposed method produces co-registered T_{1} and T_{2} maps with whole-heart coverage in a predictable scan time of ~ 7 min. Free-breathing 3D cMRF showed similar accuracy and precision to conventional 2D breath-hold methods; however, a slight underestimation of T_{1} and T_{2} values with cMRF was observed when compared with 2D SASHA and T2-GraSE, respectively.

ACKNOWLEDGEMENTS

The authors acknowledge financial support from (1) EPSRC EP/P001009/1, (2) EPSRC EP/P032311/1, (3) Wellcome EPSRC Centre for Medical Engineering (NS/A000049/1) and (4) the Department of Health via the National Institute for Health Research (NIHR) comprehensive Biomedical Research Centre award to Guy's \& St Thomas' NHS Foundation Trust in partnership with King's College London and King's College Hospital NHS Foundation Trust. The views expressed are those of the authors and not necessarily those of the NHS, the NIHR or the Department of Health.

ABBREVIATIONS

1D, one dimensional; 2D, two dimensional; 3D, three dimensional; ADMM, alternating direction method of multipliers; AHA, American Heart Association; bpm, beats per minute; bSSFP, balanced steady-state free precession; CG, conjugate gradient; cMRF, cardiac magnetic resonance fingerprinting; CoV, coefficient of variation; ECV, extracellular volume; EPG, extended phase graph; FOV, field of view; GraSE, gradient and spin echo; HDPROST, high-dimensionality patch based reconstruction; ICC, intra-class correlation coefficient; IR, inversion recovery; IRSE, inversion recovery spin echo; LRI, low-rank inversion; LV, left ventricle; MOLLI, modified Look-Locker inversion recovery; MRF, magnetic resonance fingerprinting; NP, no preparation pulse; SASHA, saturation recovery single-shot acquisition; SNR, signal-to-noise ratio; SPIR, spectral presaturation with inversion recovery; T2prep, T_{2} preparation; T_{E}, echo time; T_{R}, repetition time.

ORCID

Gastão Cruz (D) https://orcid.org/0000-0002-7397-9104

REFERENCES

1. Messroghli DR, Moon JC, Ferreira VM, et al. Clinical recommendations for cardiovascular magnetic resonance mapping of T1, T2, T2 and extracellular volume: a consensus statement by the Society for Cardiovascular Magnetic Resonance (SCMR) endorsed by the European Association for Cardiovascular Imaging. J Cardiovasc Magn Reson. 2017;19(1):75-99. https://doi.org/10.1186/s12968-017-0389-8
2. Messroghli DR, Radjenovic A, Kozerke S, Higgins DM, Sivananthan MU, Ridgway JP. Modified Look-locker inversion recovery (MOLLI) for highresolution T_{1} mapping of the heart. Magn Reson Med. 2004;52(1):141-146. https://doi.org/10.1002/mrm. 20110
3. Chow K, Flewitt JA, Green JD, Pagano JJ, Friedrich MG, Thompson RB. Saturation recovery single-shot acquisition (SASHA) for myocardial T_{1} mapping. Magn Reson Med. 2014;71(6):2082-2095. https://doi.org/10.1002/mrm. 24878
4. Giri S, Chung YC, Merchant A, et al. T2 quantification for improved detection of myocardial edema. J Cardiovasc Magn Reson. 2009;11(1):56-69. https://doi.org/10.1186/1532-429X-11-56
5. Sprinkart AM, Luetkens JA, Träber F, et al. Gradient Spin Echo (GraSE) imaging for fast myocardial T2 mapping. J Cardiovasc Magn Reson. 2015;17(1): 12-21. https://doi.org/10.1186/s12968-015-0127-z
6. Ferreira VM, Schulz-Menger J, Holmvang G, et al. Cardiovascular magnetic resonance in nonischemic myocardial inflammation: expert recommendations. J Am Coll Cardiol. 2018;72(24):3158-3176. https://doi.org/10.1016/j.jacc.2018.09.072
7. Tahir E, Sinn M, Bohnen S, et al. Acute versus chronic myocardial infarction: diagnostic accuracy of quantitative native T1 and T2 mapping versus assessment of edema on standard T2-weighted cardiovascular MR images for differentiation. Radiology. 2017;285(1):83-91. https://doi.org/10.1148/ radiol. 2017162338
8. Ibanez B, Aletras AH, Arai AE, et al. Cardiac MRI endpoints in myocardial infarction experimental and clinical trials: JACC Scientific Expert Panel. J Am Coll Cardiol. 2019;74(2):238-256. https://doi.org/10.1016/j.jacc.2019.05.024
9. Lurz P, Luecke C, Eitel I, et al. Comprehensive cardiac magnetic resonance imaging in patients with suspected myocarditis: the MyoRacer-Trial. J Am Coll Cardiol. 2016;67(15):1800-1811. https://doi.org/10.1016/j.jacc.2016.02.013
10. Patel AR, Kramer CM. Role of cardiac magnetic resonance in the diagnosis and prognosis of nonischemic cardiomyopathy. JACC Cardiovasc Imaging. 2017;10:1180-1193. https://doi.org/10.1016/j.jcmg.2017.08.005
11. Gai ND, Stehning C, Nacif M, Bluemke DA. Modified Look-Locker T_{1} evaluation using Bloch simulations: human and phantom validation. Magn Reson Med. 2013;69:329-336. https://doi.org/10.1002/mrm. 24251
12. Kellman P, Hansen MS. T1-mapping in the heart: accuracy and precision. J Cardiovasc Magn Reson. 2014;16:2-22. https://doi.org/10.1186/1532-429X-16-2
13. Van Heeswijk RB, Piccini D, Feliciano H, Hullin R, Schwitter J, Stuber M. Self-navigated isotropic three-dimensional cardiac T_{2} mapping. Magn Reson Med. 2015;73:1549-1554. https://doi.org/10.1002/mrm. 25258
14. Blume U, Lockie T, Stehning C, et al. Interleaved T_{1} and T_{2} relaxation time mapping for cardiac applications. J Magn Reson Imaging. 2009;29(2):480487. https://doi.org/10.1002/jmri. 21652
15. Santini F, Kawel-Boehm N, Greiser A, Bremerich J, Bieri O. Simultaneous T_{1} and T_{2} quantification of the myocardium using cardiac balanced-SSFP inversion recovery with interleaved sampling acquisition (CABIRIA). Magn Reson Med. 2015;74:365-371. https://doi.org/10.1002/mrm.25402
16. Akçakaya M, Weingärtner S, Basha TA, Roujol S, Bellm S, Nezafat R. Joint myocardial T_{1} and T_{2} mapping using a combination of saturation recovery and T_{2}-preparation. Magn Reson Med. 2016;76:888-896. https://doi.org/10.1002/mrm. 25975
17. Xanthis CG, Bidhult S, Greiser A, et al. Simulation-based quantification of native T1 and T2 of the myocardium using a modified MOLLI scheme and the importance of Magnetization Transfer. Magn Reson Imaging. 2018;48:96-106. https://doi.org/10.1016/j.mri.2017.12.020
18. Shao J, Zhou Z, Nguyen KL, Finn JP, Hu P. Accurate, precise, simultaneous myocardial T1 and T2 mapping using a radial sequence with inversion recovery and T2 preparation. NMR Biomed. 2019;32:1-12. https://doi.org/10.1002/nbm. 4165
19. Christodoulou AG, Shaw JL, Nguyen C, et al. Magnetic resonance multitasking for motion-resolved quantitative cardiovascular imaging. Nat Biomed Eng. 2018;2(4):215-226. https://doi.org/10.1038/s41551-018-0217-y
20. Kvernby S, Warntjes M, Haraldsson H, Carlhall C-J, Engvall J, Ebbers T. Simultaneous three-dimensional myocardial T1 and T2 mapping in one breath hold with 3D-QALAS. J Cardiovasc Magn Reson. 2014;16:102-116. https://doi.org/10.1186/s12968-014-0102-0
21. Guo R, Chen Z, Herzka DA, Luo J, Ding H. A three-dimensional free-breathing sequence for simultaneous myocardial T_{1} and T_{2} mapping. Magn Reson Med. 2019;81:1031-1043. https://doi.org/10.1002/mrm. 27466
22. Ma D, Gulani V, Seiberlich N, et al. Magnetic resonance fingerprinting. Nature. 2013;495:187-192. https://doi.org/10.1038/nature11971
23. Flassbeck S, Schmitter S, Schmidt S, Bachert P, Ladd ME. Flow MR fingerprinting. Magn Reson Med. 2019;81(4):2536-2550. https://doi.org/10.1002/ mrm. 27588
24. Cohen O, Huang S, Mcmahon MT, Rosen MS, Farrar CT. Rapid and quantitative chemical exchange saturation transfer (CEST) imaging with magnetic resonance fingerprinting (MRF). Magn Reson Med. 2018;2449-2463. https://doi.org/10.1002/mrm. 27221
25. Buonincontri G, Sawiak SJ. MR fingerprinting with simultaneous B1 estimation. Magn Reson Med. 2016;76:1127-1135. https://doi.org/10.1002/mrm. 26009
26. Ma D, Coppo S, Chen Y, et al. Slice profile and B_{1} corrections in 2D magnetic resonance fingerprinting. Magn Reson Med. 2017;78:1781-1789. https:// doi.org/10.1002/mrm. 26580
27. Hamilton JI, Jiang Y, Chen Y, et al. MR fingerprinting for rapid quantification of myocardial T_{1}, T_{2}, and proton spin density. Magn Reson Med. 2017;77: 1446-1458. https://doi.org/10.1002/mrm. 26216
28. Hamilton JI, Jiang Y, Ma D, et al. Investigating and reducing the effects of confounding factors for robust T_{1} and T_{2} mapping with cardiac MR fingerprinting. Magn Reson Imaging. 2018;53:40-51. https://doi.org/10.1016/j.mri.2018.06.018
29. Hamilton JI, Ma D, Chen Y, Seiberlich N. Simultaneous multislice cardiac magnetic resonance fingerprinting using low rank reconstruction. NMR Biomed. 2019;32(2):1-12. https://doi.org/10.1002/nbm. 4041
30. Atkinson D, Hill DLG, Stoyle PNR, Summers PE, Keevil SF. Automatic correction of motion artifacts in magnetic resonance images using an entropy focus criterion. IEEE Trans Med Imaging. 1997;16:903-910. https://doi.org/10.1109/42.650886
31. Cheng JY, Alley MT, Cunningham CH, Vasanawala SS, Pauly JM, Lustig M. Nonrigid motion correction in 3D using autofocusing with localized linear translations. Magn Reson Med. 2012;68:1785-1797. https://doi.org/10.1002/mrm. 24189
32. Bustin A, Cruz G, Jaubert O, Lopez K, Botnar RM, Prieto C. High-dimensionality undersampled patch-based reconstruction (HD-PROST) for accelerated multi-contrast MRI. Magn Reson Med. 2019;3705-3719. https://doi.org/10.1002/mrm. 27694
33. Oh C, Hilal S, Cho Z. Selective partial inversion recovery (SPIR) in steady state for selective saturation magnetic resonance imaging (MRI). Proc Int Soc Magn Reson Med. 1988;1988(S2):1042.
34. Kellman P, Herzka DA, Hansen MS. Adiabatic inversion pulses for myocardial T1 mapping. Magn Reson Med. 2014;71:1428-1434. https://doi.org/10. 1002/mrm. 24793
35. Jenista ER, Rehwald WG, Chen EL, et al. Motion and flow insensitive adiabatic T_{2}-preparation module for cardiac MR imaging at 3 tesla. Magn Reson Med. 2013;70:1360-1368. https://doi.org/10.1002/mrm. 24564
36. Wang Y, Riederer SJ, Ehman RL. Respiratory motion of the heart: kinematics and the implications for the spatial resolution in coronary imaging. Magn Reson Med. 1995;33:713-719. https://doi.org/10.1002/mrm. 1910330517
37. Stehning C, Börnert P, Nehrke K, Eggers H, Stuber M. Free-breathing whole-heart coronary MRA with 3D radial SSFP and self-navigated image reconstruction. Magn Reson Med. 2005;54:476-480. https://doi.org/10.1002/mrm. 20557
38. Ingle RR, Wu HH, Addy NO, et al. Nonrigid autofocus motion correction for coronary MR angiography with a 3D cones trajectory. Magn Reson Med. 2014;72:347-361. https://doi.org/10.1002/mrm. 24924
39. McGivney DF, Pierre E, Ma D, et al. SVD compression for magnetic resonance fingerprinting in the time domain. IEEE Trans Med Imaging. 2014;33: 2311-2322. https://doi.org/10.1109/TMI.2014.2337321
40. Doneva M, Amthor T, Koken P, Sommer K, Börnert P. Matrix completion-based reconstruction for undersampled magnetic resonance fingerprinting data. Magn Reson Imaging. 2017;41:41-52. https://doi.org/10.1016/j.mri.2017.02.007
41. Assländer J, Cloos MA, Knoll F, Sodickson DK, Hennig J, Lattanzi R. Low rank alternating direction method of multipliers reconstruction for MR fingerprinting. Magn Reson Med. 2018;79:83-96. https://doi.org/10.1002/mrm. 26639
42. Zhao B, Setsompop K, Adalsteinsson E, et al. Improved magnetic resonance fingerprinting reconstruction with low-rank and subspace modeling. Magn Reson Med. 2018;79:933-942. https://doi.org/10.1002/mrm. 26701
43. Lima da Cruz G, Bustin A, Jaubert O, Schneider T, Botnar RM, Prieto C. Sparsity and locally low rank regularization for MR fingerprinting. Magn Reson Med. 2019;81:3530-3543. https://doi.org/10.1002/mrm. 27665
44. Pruessmann KP, Weiger M, Scheidegger MB, Boesiger P. SENSE: sensitivity encoding for fast MRI. Magn Reson Med. 1999;42:952-962 https://doi. org/10.1002/(SICI)1522-2594(199911)42:5\%3c952::AID-MRM16\%3e3.0.CO;2-S
45. Griswold MA, Jakob PM, Heidemann RM, et al. Generalized autocalibrating partially parallel acquisitions (GRAPPA). Magn Reson Med. 2002;1210: 1202-1210. https://doi.org/10.1002/mrm. 10171
46. Davies M, Puy G, Vandergheynst P, Wiaux Y. A compressed sensing framework for magnetic resonance fingerprinting. SIAM J Imaging Sci. 2014:7(4): 2623-2656.
47. Boyd S. Distributed optimization and statistical learning via the alternating direction method of multipliers. Found Trends Mach Learn. 2010;3:1-122. https://doi.org/10.1561/2200000016
48. Weigel M. Extended phase graphs: dephasing, RF pulses, and echoes-pure and simple. J Magn Reson Imaging. 2015;41:266-295. https://doi.org/10. 1002/jmri. 24619
49. Jaynes E. Matrix treatment of nuclear induction. Phys Rev. 1955;98:1099-1105.
50. Captur G, Gatehouse P, Kellman P, et al. A T1 and ECV phantom for global T1 mapping quality assurance: the T1 mapping and ECV standardisation in CMR (T1MES) program. J Cardiovasc Magn Reson. 2016;18:4-6. https://doi.org/10.1186/1532-429x-18-s1-w14
51. Schröder C, Börnert P, Aldefeld B. Spatial excitation using variable-density spiral trajectories. J Magn Reson Imaging. 2003;18:136-141. https://doi. org/10.1002/jmri. 10334
52. Uecker M, Lai P, Murphy MJ, et al. ESPIRiT-an eigenvalue approach to autocalibrating parallel MRI: where SENSE meets GRAPPA. Magn Reson Med. 2014;71:990-1001. https://doi.org/10.1002/mrm. 24751
53. Cerqueira MD, Weissman NJ, Dilsizian V, et al. Standardized myocardial segmentation and nomenclature for tomographic imaging of the heart. Circulation. 2002;105:539-542. https://doi.org/10.1161/hc0402.102975
54. Jaubert O, Cruz G, Bustin A, et al. Water-fat Dixon cardiac magnetic resonance fingerprinting. Magn Reson Med. 2020;83(6):2107-2123. https://doi. org/10.1002/mrm. 28070
55. Hilbert T, Kober T, Zhao T, et al. Mitigating the effect of magnetization transfer in magnetic resonance fingerprinting. Paper presented at: International Society for Magnetic Resonance in Medicine 25th Annual Meeting and Exhibition; April 22-27, 2017; Honolulu, HI; 0074.
56. Jaubert O, Cruz G, Bustin A, Schneider T, Botnar RM, Prieto C. Dixon-cMRF: cardiac tissue characterization using three-point Dixon MR fingerprinting. Paper presented at: ISMRM 27th Annual Meeting and Exhibition; May 11-16, 2019; Montreal, Canada; 1100. https://doi.org/10.1002/mrm.26216.2
57. Baeßler B, Schaarschmidt F, Stehning C, Schnackenburg B, Maintz D, Bunck AC. A systematic evaluation of three different cardiac T2-mapping sequences at 1.5 and 3T in healthy volunteers. Eur J Radiol. 2015;84:2161-2170. https://doi.org/10.1016/j.ejrad.2015.08.002
58. Körzdörfer G, Kirsch R, Liu K, et al. Reproducibility and repeatability of MR fingerprinting relaxometry in the human brain. Radiology. 2019;292:429437. https://doi.org/10.1148/radiol. 2019182360
59. Chen Y, Jiang Y, Pahwa S, et al. MR fingerprinting for rapid quantitative abdominal imaging. Radiology. 2016;279:278-286. https://doi.org/10.1148/ radiol. 2016152037
60. Cruz G, Jaubert O, Botnar RM, Prieto C. Cardiac magnetic resonance fingerprinting: technical developments and initial clinical validation. Curr Cardiol Rep. 2019;21(9):91-101. https://doi.org/10.1007/s11886-019-1181-1
61. Hamilton JI, Jiang Y, Chen Y , et al. MR fingerprinting for rapid quantification of myocardial $\mathrm{T}_{1}, \mathrm{~T}_{2}$, and proton spin density. Magn Reson Med. 2017;77: 1446-1458. https://doi.org/10.1002/mrm. 26216
62. Zhao B, Haldar JP, Liao C, et al. Optimal experiment design for magnetic resonance fingerprinting: Cramér-Rao bound meets spin dynamics. IEEE Trans Med Imaging. 2019;38(3):844-861. https://doi.org/10.1109/TMI.2018.2873704
63. Asslander J, Novikov DS, Lattanzi R, Sodickson DK, Cloos MA. Hybrid-state free precession in nuclear magnetic resonance. Commun Phys. 2019;2 61: 73. https://doi.org/10.1103/PhysRev.112.1693
64. Leitao D, Hajnal J V, Teixeira RP, Malik S. Parameter encoding efficiency in transient and steady-state quantitative MRI methods. Paper presented at: ISMRM 27th Annual Meeting and Exhibition; May 11-16, 2019; Montreal, Canada; 0813.
65. Kellman P, Bandettini WP, Mancini C, Hammer-Hansen S, Hansen MS, Arai AE. Characterization of myocardial T1-mapping bias caused by intramyocardial fat in inversion recovery and saturation recovery techniques. J Cardiovasc Magn Reson. 2015;17:33-44. https://doi.org/10.1186/ s12968-015-0136-y
66. Munoz C, Cruz G, Neji R, Botnar RM, Prieto C. Motion corrected water/fat whole-heart coronary MR angiography with 100% respiratory efficiency. Magn Reson Med. 2019;82(2):732-742. https://doi.org/10.1002/mrm. 27732
67. Qi H, Jaubert O, Bustin A, et al. Free-running 3D whole heart myocardial T_{1} mapping with isotropic spatial resolution. Magn Reson Med. 2019;82(4): 1331-1342. https://doi.org/10.1002/mrm. 27811
68. Qi H, Bustin A, Cruz G, et al. Free-running simultaneous myocardial T1/T2 mapping and cine imaging with 3D whole-heart coverage and isotropic spatial resolution. Magn Reson Imaging. 2019;63:159-169. https://doi.org/10.1016/j.mri.2019.08.008
69. Eck B, Seiberlich N, Liu Y, Hamilton J. Influence of scan window duration on parameter maps from cardiac magnetic resonance fingerprinting. Paper presented at: SCMR 22nd Annual Scientific Sessions; February 9, 2019; Bellevue, WA; P325.
70. Santelli C, Nezafat R, Goddu B, et al. Respiratory bellows revisited for motion compensation: preliminary experience for cardiovascular MR. Magn Reson Med. 2011;65(4):1097-1102. https://doi.org/10.1002/mrm. 22687
71. Yu Z, Zhao T, Cloos MA, Assländer J, Lattanzi R, Sodickson DK. Exploring the sensitivity of magnetic resonance fingerprinting to motion. Magn Reson Imaging. 2018;54:241-248. https://doi.org/10.1016/j.mri.2018.09.002
72. Cruz G, Jaubert O, Schneider T, Botnar RM, Prieto C. Rigid motion-corrected magnetic resonance fingerprinting. Magn Reson Med. 2018;81(2):947961. https://doi.org/10.1002/mrm. 27448
73. Batchelor PG, Atkinson D, Irarrazaval P, Hill DLG, Hajnal J, Larkman D. Matrix description of general motion correction applied to multishot images. Magn Reson Med. 2005;54:1273-1280. https://doi.org/10.1002/mrm. 20656
74. Roujol S, De Senneville BD, Vahala E, Sørensen TS, Moonen C, Ries M. Online real-time reconstruction of adaptive TSENSE with commodity CPU/GPU hardware. Magn Reson Med. 2009;62:1658-1664. https://doi.org/10.1002/mrm. 22112
75. Hamilton JI, Currey D, Griswold M, Seiberlich N. A neural network for rapid generation of cardiac MR fingeprinting dictionaries with arbitrary heart rhythms. Paper presented at: ISMRM 27th Annual Meeting and Exhibition; May 11-16, 2019; Montreal, Canada; 2421.
76. Hammernik K, Klatzer T, Kobler E, et al. Learning a variational network for reconstruction of accelerated MRI data. Magn Reson Med. 2018;79(6): 3055-3071. https://doi.org/10.1002/mrm. 26977
77. Cohen O, Zhu B, Rosen MS. MR fingerprinting Deep RecOnstruction NEtwork (DRONE). Magn Reson Med. 2018;80(3):885-894. https://doi.org/10. 1002/mrm. 27198
78. Liu Y, Hamilton J, Rajagopalan S, Seiberlich N. Cardiac magnetic resonance fingerprinting: technical overview and initial results. JACC Cardiovasc Imaging. 2018;11(12):1837-1853. https://doi.org/10.1016/j.jcmg.2018.08.028

SUPPORTING INFORMATION

Additional supporting information may be found online in the Supporting Information section at the end of this article.

How to cite this article: Cruz G, Jaubert O, Qi H, et al. 3D free-breathing cardiac magnetic resonance fingerprinting. NMR in Biomedicine.
2020;33:e4370. https://doi.org/10.1002/nbm. 4370

[^0]: This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.

