
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

WEIGHTED REAL-TIME HEURISTIC

SEARCH

NICOLÁS RIVERA ABURTO

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JORGE A. BAIER A.

Santiago de Chile, August, 2013

c© MMXIII, Nicolás Rivera Aburto



c© MMXIII, Nicolás Rivera Aburto

Se autoriza la reproducción total o parcial, con fines académicos, por cualquier

medio o procedimiento, incluyendo la cita bibliográfica que acredita al trabajo y a su

autor.



PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

WEIGHTED REAL-TIME HEURISTIC

SEARCH

NICOLÁS RIVERA ABURTO

Members of the Committee:

JORGE A. BAIER A.

MARCELO ARENAS S.

CARLOS HERNÁNDEZ U.

PABLO PASTÉN G.

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, August, 2013

c© MMXIII, Nicolás Rivera Aburto



To my parents.



ACKNOWLEDGEMENTS

First and foremost I wish to acknowledge my supervisor, Jorge Baier. His help,

patience and knowledge was fundamental for the development of this work. Without

him, this thesis would have not been finished.

I wish to express my gratitude to the member of my thesis committee: Carlos

Hernández by his helpfull ideas (one of these is the core of the thesis), to Marcelo

because he rocks, and specially to Pablo Pastén for making the process of defense

extreme fast and smooth.

Also I wish to thank my friends at DCC: Gabo, Gonzalo, León, Lete, Mart́ın and

Pame. Without them my thesis would have been completed in three months.

I would like to express my gratitude to my girlfriend Tamara and our endless-work

afternoons and finally I wish to thank my parents and my brother who always believe

in me.

v



Contents

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

RESUMEN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter 1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1. State Space Search Problems . . . . . . . . . . . . . . . . . . . . . . 2

1.1.2. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.1.3. Exploiting the heuristic function: The A* Algorithm . . . . . . . . 4

1.1.4. Real-Time Heuristic Search . . . . . . . . . . . . . . . . . . . . . . 7

1.2. Thesis work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.1. Objetives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.2.2. Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.3. Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.2.4. Conclusion and Future Work . . . . . . . . . . . . . . . . . . . . . . 11

Chapter 2. Article Submitted to Artificial Intelligence . . . . . . . . . . . . . . 13

2.1. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2. Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1. Real-Time Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. Weighted Real-Time Heuristic Search . . . . . . . . . . . . . . . . . . . 19

2.3.1. Weighted Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. Weighted Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.4. Theoretical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.4.1. Properties for a Single Run . . . . . . . . . . . . . . . . . . . . . . 21

vi



2.4.2. Properties for Multiple-Trial Runs . . . . . . . . . . . . . . . . . . . 27

2.5. Empirical Evaluation of wLSS-LRTA* and LSS-LRTwA* . . . . . . . . 38

2.5.1. Weighted Lookahead . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.2. Weighted Update . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.5.3. Convergence Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6. Incorpoating Weighted Update into Other Real-Time Heuristic Search

Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1. LRTA*-LS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.6.2. daLSS-LRTA* . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.7. Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

2.7.1. Weighted A* in Real-Time Heuristic Search . . . . . . . . . . . . . 48

2.7.2. wLRTA*-LS for Low Values of k . . . . . . . . . . . . . . . . . . . . 50

2.8. Conclusions and Future Work . . . . . . . . . . . . . . . . . . . . . . . 52

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

vii



List of Figures

2.1 A graph in which the arcs connecting ACEF is a straight path. . . . . . . . 32

2.2 If the costs of the graph satisfy the triangle inequality c(tk, t) ≤ c(tn, t) +∑n−1
i=k c(ti, ti+1). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.3 LSS-LRTwA* and Shimbo and Ishida’s Approach. . . . . . . . . . . . . . . 40

2.4 Solution cost versus lookahead parameter (k) obtained by wLSS-LRTA* in

game maps and mazes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.5 Total Time versus lookahead parameter (k) obtained by wLSS-LRTA* in game

maps and mazes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Solution cost versus lookahead parameter (k) obtained by wLSS-LRTA* mazes

of different width. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.7 Number of trials and total time versus lookahead parameter (k) obtained by

wLSS-LRTA* in a game maps to convergence to a w-optimal path . . . . . 42

2.8 Solution cost versus lookahead parameter (k) obtained by wLRTA*-LS in

game maps and mazes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.9 Solution cost versus lookahead parameter (k) obtained by wdaLSS-LRTA* in

game maps and mazes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.10 First three iterations of two runs of wLRTA*-LS with w = 2 (left) and w = 4

(right) with parameter k = 4 in a 4× 4 grid. The grid is 8-connected,

horizontal moves have cost 10, and diagonal movements have cost 14. Each

cell shows the h-value before the update step in the lower-left corner, and

the h-value after update in the upper right corner. The black dot shows the

current position of the agent and the arrow shows the next cell chosen by

the algorithm. We assume that states are added to the queue Q in clockwise

order starting at 6 o’clock. The goal state is the state with heuristic value 0.

We observe that when w = 2 it takes 2 movements to reach the goal. On the

viii



other hand, we observe that when w = 4 the agent moves away from the goal.

In fact, when w = 4 it takes the agent 7 moves to reach goal. . . . . . . . 51

ix



ABSTRACT

Multiplying the heuristic function by a weight greater than one is a well-known tech-

nique in Heuristic Search. When applied to A* with an admissible heuristic it yields

substantial runtime savings, at the expense of sacrificing solution optimality. Only a few

works have studied the applicability of this technique to Real-Time Heuristic Search, a

search approach that builds upon Heuristic Search. In this thesis we present two novel

approaches to using weights in Real-Time Heuristic Search. The first one, weighted

lookahead, is a variant of an existing approach by Shimbo and Ishida. It incorporates

weights to the lookahead search phase of the Real-Time Heuristic Search algorithm.

The second one, weighted update, incorporates the weight to the edges of the search

graph during the learning phase. Both techniques are applicable to a wide class of

Real-Time Heuristic Search algorithms. Here we implement them within LSS-LRTA*,

obtaining two new algorithms. We evaluate them in path-planning benchmarks and

show that weighted lookahead yields poor results but nevertheless outperforms Shimbo

and Ishida’s approach. Weighted update, on the other hand, yields performance im-

provements of up to one order of magnitude both in solution cost and total search

time. To illustrate further the generality of weighted update, we incorporate the tech-

nique in two other well-known Real-Time Heuristic Search algorithms: LRTA*-LS and

daLSS-LRTA*, and we empirically show significant improvements for LRTA*-LS and

modest but still important improvements for daLSS-LRTA*. Furthermore, we prove

that wLSS-LRTA* terminates finding a solution if one exists, and we analyze the con-

vergence behavior of wLSS-LRTA*, proving w-optimality as well as other bounds that,

in practice, are much tighter than w-optimality.

Keywords: Heuristic Search, A*, Weighted A*, Learning Real-Time A*, Dijk-

stra’s Algorithm, Real-Time Heuristic Search

x



RESUMEN

Multiplicar la función heuŕıstica por un peso mayor que uno es una conocida técnica

en Búsqueda Heuristica. Cuando se aplica a A* con una heuŕıstica admissible ella

produce considerables ahorros de tiempo, a costo de sacrificar optimilidad de la solución.

Pocos trabajos han estudiado la aplicabilidad de esta técnica a Búsqueda Heuŕıstica en

Tiempo Real, un enfoque de búsqueda basado búsqueda heuŕıstica.

En este tesis, presentamos dos nuevas enfoques para usar pesos en Búsqueda Heuŕıstica

en Tiempo Real. El primero, weighted lookahead, es una variante del existente enfoque

de Shimbo e Ishida. Él incorpora pesos a la fase de lookahead del algoritmo de Búsqueda

en Tiempo Real. El segundo, weighted update, incorpora los pesos en las aristas del

grafo de búsqueda durante la fase de learning. Ambas técnicas son aplicables a una

amplia clase de algoritmos de Búsqueda en Tiempo Real. Acá las implementamos a

LSS-LRTA*, obteniendo dos nuevos algoritmos. Las evaluamos en benchmarks de pan-

ificación de caminos y mostramos que weighted lookahead produce malos resultados

pero sin embargo supera el enfoque de Shimbo e Ishida. Weighted update, en la otra

mano, produce mejoras de rendimiento de hasta un orden de magnitud tanto en costo

de solución como tiempo total de búsqueda. Para ilustrar aún más la generalidad de

weighted update, incorporamos la técnica a otros dos conocidos algoritmos de Búsqueda

en Tiempo Real: LRTA*-LS y daLSS-LRTA* y empiricamente mostramos mejoras sig-

nificativas para LRTA*-LS y modestas, pero aún importantes mejores para daLSS-

LRTA*. Además, mostramos que wLSS-LRTA* termina encontrando una solución si

es que una existe, y analizamos el comportamiento a convergencia de wLSS-LRTA*,

probando tanto w-optimalidad como otras cotas que, en practica, son mucho más es-

trechas que w-optimalidad

xi



Palabras Claves: Búsqueda Heuŕısica, A*, Weighted A*, Learning Real-

Time A*, Algoritmo de Dijkstra, Búsqueda en Tiempo

Real.

xii



Chapter 1. INTRODUCTION

1.1. Introduction

The term search is related to the process of finding solutions to incomplete tasks.

Human beings solve many search problems daily: for example, we search for our keys,

we search for a good time to schedule a date, etc. In Computer Science, search is a

fundamental task, indeed, many of the problems in the area can be stated as a search

problem. For instance, given a graph, finding a shortest path between two nodes or a

cycle of maximum length in the space of all possible cycles (i.e. a Hamiltonian cycle)

involve search.

Artificial Intelligence researchers focused on search since the beginning of the dis-

cipline. This is because many problems in Artificial intelligence can be modeled as a

search problem. For example motion planning, robot navigation or theorem proving.

Furthermore, some other disciplines have problems for which Artificial Intelligence’s

search techniques have been applied, for example Combinatorial Optimization, Soft-

ware Verification, and Computational Biology.

Many Artificial Intelligence and computer science search problems can be cast as

state space search problems. In this setting, there is a search space which consists of

states and rules to move from one state to another. Starting from an initial state, the

problem is to find the rules to be used over and over in order to reach a goal state. The

succession of rules applied form a path. Usually the aim is to find a path of minimum

cost, i.e. a shortest path.

There exist generic algorithms for solving state space search problems. However,

in many Artificial Intelligence applications, state spaces are huge, and generic search

algorithms would be too inefficient; indeed, slower than most humans. Heuristic Search

is an area of Artificial Intelligence that studies how to exploit domain-specific informa-

tion in order to guide search allowing solutions to be found faster. The main tool used

1



in the area are heuristic functions, which, informally, allow to discriminate between

states that “look closer” to the solution between others that “look farther” from the

solution. Heuristic functions can be related to the mechanism used by humans to solve

large search problems in a reasonable time.

In many applications of Artificial Intelligence it is convenient to consider that an

agent (which represents a robot, a videogame character, or the like) actually moves

through the states of the search space. This is useful when states correspond to physical

locations. In this thesis we adopt this view.

1.1.1. State Space Search Problems

A Search Space is a digraph (S,A) where S represents the states of the problem

and A is the set of possible transitions between states (usually called agent actions or

rules), such that if (s, t) ∈ A then the agent may perform an action in order to move

from state s to state t. A state space search problem or simply a search problem is

defined by a tuple P = (S,A, c, s0, G) where the digraph (S,A) represents the Search

Space, s0 ∈ S is the initial state and G ⊆ S is a set of goal states. Finally c : A→ R+

is a function that specifies the cost that the agent have to incur to use some transition

of A.

A solution to a search problem is a path that starts in s0 and ends in a state in G,

using the transitions given by A. The optimization problem consists of minimizing the

sum of the costs of the transitions made by the agent, i.e. to find the shortest path from

s0 to a state in G (the shortest path over all elements in G). Sometimes, this problem

is referred to the Path-Finding Problem.

Search Problems can be solved, in general, using Dijkstra’s Algorithm inO(|S| log |S|+

|A|) (Cormen, Leiserson, Rivest, & Stein, 2001). However, in most real-world search

problems the number of states (|S|) is very large and it is necessary to use other tools

to solve those problems more efficiently. To solve search problems problems faster,

research in Artificial Intelligence studied ways to exploit domain-specific information.

2



A well-studied source of domain-specific information are so-called Heuristics. A

heuristic h is a function that maps S to R+
0 . A heuristic is admissible if and only if

h(s) ≤ h∗(s), where h∗(s) is the cost of the shortest path from s to G. In other words

h is admissible if and only if it underestimates h∗. Finally, we say that a heuristic is

consistent if h(s) = 0 for all s ∈ G and for all s, t ∈ S with (s, t) ∈ A we have that

h(s) ≤ c(s, t) +h(t). It is simple to prove that consistent heuristics are also admissible.

The next section shows examples of Search Problems and heuristics for them. Then

we show an algorithm that utilizes heuristics to obtain solutions faster.

1.1.2. Examples

1.1.2.1. TSP

A classic problem in Combinatorial Optimization is the well-known Traveling Sales-

man Problem (TSP). In this problem we have n cities and a distance matrix d in which

entry d(i, j) denotes the distance between the cities i and j. We assume that d(i, j) ≥ 0

and that d(i, j) = 0 if and only if i = j. The problem is to find a tour with minimum

length that visits each city exactly once, returning to the first city. To formalize TSP

as a search problem we use S as the set of incomplete and complete tours starting at an

arbitrary city. An action is to add a new city to the incomplete tour and the cost of the

action is the distance between the last city of the tour and the city added. The initial

state is the tour with the initial city while the set G ⊆ S is the set of complete tours.

Given a partial tour s ∈ S we can compute a heuristic noticing that the cities that

are not in the incomplete tour have to be connected by a tour. Then we connect them

using the Minimum Spanning Tree (MST), instead completing the tour. Of course this

is an underestimation of the distance to G because to complete the tour we have to

add a path through those cities, but a path is a tree and then the MST is an admisible

heuristic. Notice that obtaining such a heuristic has a complexity of O(n2) while the

TSP is known to be an NP-complete problem in its decision version, and thus there is

no known algorithm that solves this problem in polynomial time.

3



1.1.2.2. Path-Finding in grids

Consider an n ×m grid. Let V be the cells of the grid and F ⊆ V be the set of

obstacles. The problem is defined by an initial state s0 and a goal state sg, actions

(or transitions) move the agent from a cell to one of its neighborting cells that are not

obstacles. The cost of the actions is uniform at 1 but they could be different according

to the application. For the uniform case a classic heuristic is the so-called Manhattan

distance which is defined for a state (i, j) as:

h(i, j) = |sxg − i|+ |syg − j|,

where sg = (sxg , s
y
g).

Note this heuristic is the distance from (i, j) to sg when F = ∅. Clearly this

understimates the actual distance, and thus it is an admissible heuristic, when F 6= ∅.

1.1.3. Exploiting the heuristic function: The A* Algorithm

The most well-known algorithm in Heuristic Search (i.e., search using heuristics)

is A* (Hart, Nilsson, & Raphael, 1968). Like the Dijkstra algorithm, and many other

algorithms, A* works using the Principle of Suboptimality (Cormen et al., 2001), which

states that the shortest path from s0 to G is equal to the minimum of the sum of the

distance from s0 to a state t, plus the distance from t to G. An alternative phrasing of

this principle is that any subpath of the optimal one is itself optimal. The A* algorithm

maintains a tentative cost of the shortest path and, in every step, A* attemps to prove

that this is the actual cost of the shortest path. Also, in each state s it maintains the

following estimation of the optimal distance from s0 to G through s. That estimation

is:

f(s) = g(s) + h(s),

in which g(s) is the cost of the cheapest known path from s0 to s and h(s) is the

heuristic, which represents an estimate of the shortest distance to G from s. Initially

g(s) =∞ for all s ∈ S, except for s0, for which g(s0) = 0.

4



A* uses two lists during search: the Open list O and the Closed list C. Intuitively, a

state s is in C if the algorithm believes it has found the shortest path from s0 to s while

the Open list contains states which potentially could be closed, that is, the current

information about them would be enough to close (i.e., add to C) such states. When

one of the goal states is closed the execution ends. In each iteration, the algorithm

closes the state with minimum f -value. When the algorithm closes a state it is deleted

from the Open list, added to the Closed list and then expanded (i.e. generating its

neighbors). g-values and f -values of those neighbors is updated and, if it is necessary,

they are added to the Open list. The pseudocode for A* is shown in Algorithm 1.

Notice that this implementation of A* returns a state in G. If we look at the g-value

of such state we obtain the cost of the shortest path from s0 to G and if we want to

know such path we could use recursively the function parent(·). Lines 1 to 6 initialize

the algorithm, Lines 7 t o 17 are the main loop. Lines 13 to 15 are the expansion

procedure. Line 14 executes InsertInIpen(s, t) which decides if it is necesary to insert

t in the Open list and changes its current information if necessary. InsertInOpen(s, t)

Pseudo-Code is showed in Algorithm 2

Now we list a number of interesting properties of A*

(i) If h is admisible then A* finds a optimal solution. (Hart et al., 1968)

(ii) If h is consistent then A* needs to expand at most one time each node. (Hart

et al., 1968)

(iii) If h = 0 then A* is the Dijkstra’s Algorithm (by inspection).

(iv) If h∗(s0) is the optimal solution cost and h is consistent, then A* will expand

all states s with g∗(s)+h(s) < h∗(s0), with g∗(s) the minimum length between

s0 and s. (Hart et al., 1968)

(v) Corollary of the last point is that if h1(s) ≥ h2(s) for all s ∈ S and h1, h2 are

consistent, then A* using h1 expand fewer states than A* using h2. (Edelkamp

& Schrödl, 2011)

5



Input: A search problem P and a heuristic function h
1 C := ∅
2 O := {s0}
3 g(s0) := 0, f(s0) := h(s0)
4 for all s ∈ S \ {s0} do
5 g(s) :=∞
6 end
7 while O 6= ∅ do
8 Remove s with minimum f(s) from O and insert it on C.
9 if s ∈ G then

10 return s

11 end
12 else
13 for each t ∈ Succ(s) do
14 InsertInOpen(s, t)
15 end
16 end
17 end

Algorithm 1: A*

Input: States s, t
1 costt = g(s) + c(s, t)
2 if costt > g(t) then
3 return
4 end
5 parent(t) := s
6 g(t) := costt
7 f(t) := g(t) + h(t)
8 if t ∈ C then
9 Remove t from C and insert t in O

10 end
11 else
12 if t 6∈ O then
13 Insert t in O
14 end
15 end

Algorithm 2: InsertInOpen

(vi) As corollary of the last point A* is faster than Dijkstra if the heuristic is

consistent.

6



Note that those properties are useful to understand the difference between A* and

Dijkstra’s Algorithm. For instance, in our example of Path-Finding in Grids if we take

F = ∅, s0 = (sx0 , s
y
0) and sg = (sxg , s

y
g) then Dijkstra’s algorithm will expand all states

(i, j) of S that satiesfy:

|i− sx0 |+ |j − s
y
0| < |sxg − sx0 |+ |syg − s

y
0|,

and depending on the tie-braking, it might expand several states that satisfy |i− sx0 |+

|j − sy0| = |sxg − sx0 | + |syg − s
y
0| while A* with expand a subset of states that satisfies

|i − sx0 | + |j − s
y
0| = |sxg − sx0 | + |syg − s

y
0|, depending on the tie-breaking. Well-known

practical results state that tie-breaking in favor of states with higher g-values reduce

the number of expansions (Edelkamp & Schrödl, 2011). In general, using consistent

heuristics, A* expands exactly once all states with g∗(s) + h(s) < h∗(s0).

Even though A* is a very efficient algorithm, real-world problems have very large

Search Spaces, which is a problem to A* in term of time and memory. Variants of A*

have been proposed to tackle this problem. One of the most well-known techniques is

to add a weight w > 1 to the heuristic h in the estimation, ie: instead using f(s) =

g(s) + h(s) we use

f(s) = g(s) + wh(s),

The resulting algorithm is known as weighted A* (wA*) (Pohl, 1970).This algorithm is

often used in practice because it used to reduce the number of expansion done by A*

at expense of optimality. Indeed, the solution found by wA* are w-optimal; i.e., if the

cost of the solution is S, then

h∗(s0) ≤ S ≤ wh∗(s0),

in practice, the quality of solutions are better than the wh∗(s0) upper bound.

7



1.1.4. Real-Time Heuristic Search

Real-Time Search (Korf, 1990) is a different Search paradigm. While in classic

Search we assume a complete knowledge of the search graph (S,A), here we don’t

assume prior knowledge of it (partial knowledge of the graph), but we provide the

agent some range of vision that allows the agent to observe the information of the

enviroment (commonly the neighborhood of the current state of the agent). In this

problem the agent has to explore the graph while it tries to reach G. Usually the

agent computes the following three steps until it finds a goal state1. First the agent

search for a partial path using its current knowledge (lookahead step) then it performs

a movement phase (movement step), in which the agent adds new knowledge while it

moves in the Seach Space usign such path, and finally it processes the new information

(update or learning step). In addition, we incorporate the Real-Time property: the

computation that the agent can do in the lookahead and update steps is bounded by

a constant (which could be measure in number of operations, time, etc.). Finally if we

allow the use of a heuristic we call this problem a Real-Time Heuristic Search Problem.

During the learning step the heuristic h is updated to reflect the new knowledge of the

agent.

For this class of problems there are two different intesting subjects of study. The

first subject is the Single Trial, which is study the performance of the algorithm until it

reaches the goal, in particular the First Trial is very important for practical applications.

The second subject is the Multiple Trial Run, in which we study of multiple trials: each

time the agent reaches the goal state it is moved to the initial state and the trial starts

again. In this case, we are interested in the convergence of the heuristic: i.e., h does

not change during the execution of a trial and thus the solution does not change either.

A multiple-trial run is usually stopped when h converges.

Among the applications of Real-Time Heuristic Search is navigation in video games,

in which computer characters are expected to find their path in partially known terrain.

1Not necessarily in the presented order.

8



Game-developing companies impose a constant time limit on the amount of computation

per move close to one millisecond for all simultaneously moving characters(Bulitko,

Björnsson, Sturtevant, & Lawrence, 2010). Another application is highly dynamic

robotics in which the agents move too fast and cannot stay in a position for a long time

thinking about the next movement. As a way of example, an automatic aircraft has to

stay in continuous movement and cannot stop in the air computing the next movement

steps, it has to compute movement and learn the enviroment in real-time.

Learning real-time A* (LRTA*)(Korf, 1990), showed in Algorithm 3, is the simplest

algorithm for Real-Time Heuristic Search and is the base of almost all other Real-Time

Heuristic Search Algorithms. This algorithm works by iteration of the three steps

mentioned above. In Line 4, it searches for the best neighbor to move to (lookahead

step), in Lines 5,6 the agent updates the value of h(s) (update step), in Line 8 the agent

is moved and in Line 2 the agent observes the enviroment (movement step).

Input: A search problem P and a heuristic function h
1 while The agent has not reached the goal do
2 Observe the enviroment and update the knowledge of the search graph (arcs

and states)
3 s := current state
4 next := arg mint:(s,t)∈A[c(s, t) + h(t)]
5 if h(s) < c(s, next) + h(next) then
6 h(s) := c(s, next) + h(next)
7 end
8 Move the agent to next.
9 end

Algorithm 3: LRTA*

1.2. Thesis work

1.2.1. Objetives

In the previous sections we reviewed briefly the basic framework of Heuristic Search

and Real-Time Heuristic Search, and we showed the basic algorithms. Also we showed

weighted A* which is used to find solutions faster at the expense of optimality. The

9



research question that we address in this thesis is: how can weights be incorporated into

Real-Time Heuristic Search algorithms to improve search performance. Even though

weighted A* is well understood, and does improve time performance in Heuristic Search

applications, rather surprisingly, current proposals for integrating weights into Real-

Time Heuristic Search do not have a positive impact on time or solution quality of the

first solution returned. Shimbo and Ishida (Shimbo & Ishida, 2003), to our knowledge

the only work that has attempted to answer this question earlier, introduced Weighted

LRTA* which multiplies the initial heuristic by a weight w > 1 and then run LRTA*. In

their paper, they show that their technique has modest to poor performance in the first

trial but the convergence is faster than the classical LRTA* but w-optimal. Related,

but not specifically answering the question, Bulitko (Bulitko, 2004) uses lower-than-one

weights applied to the costs of the arcs, thus indirectly giving more importance to the

heuristic. He shows the cost of the first solution increases as more importance is given

to h but obtain faster convergence than weighted LRTA* and he propides a bound

which in proportional to the inverse of the weight.

1.2.2. Approach

In this thesis we propose two new approaches to incorporating weights in Real-Time

Heuristic Search. Both approaches are applicable to a variety of Real-Time Heuristic

Search algorithms. The first approach, weighted lookahead, uses weights in the looka-

head step of the algorithm. It can be seen as a slight variant of Shimbo and Ishida’s

approach but, as we see later, outperforms it in practice. The second approach, weighted

update, achieves the effect of incorporating w in h by using a different learning rule in

which, the higher the w, the higher the amount by which the heuristic may be raised

in every update (learning) step. Both approaches are very simple to implement in

standard Real-Time Heuristic Search algorithms. We incorporate these techniques to

LSS-LRTA*, which is a state-of-the-art variant of LRTA* and one of the best algorithm

for Real-Time Heuristic Search, to evaluate these approaches.

10



1.2.3. Results

Our first technique does not provide good results for the first trial while the second

technique has very good results for the first trial. We concentrate in theoretical results

for the second technique. We prove that the technique applied to LSS-LRTA* has the

desirable properties of a good Real-Time Heuristic Search algorithm. We also prove

results on convergence. We prove that if the algorithm is run to convergence, then

the solution converges in finite time and that the cost of the converged solution is w-

optimal, futhermore, we prove that under suitable conditions on the graph, the bound

of the solution does not depend on w but on the graph.

Futhermore we apply the second technique to two other Real-Time Heuristic Search

algorithms, LRTA*-LS and daLSS-LRTA*, and we show the application of the tech-

nique in videogame maps and mazes. We show that for LSS-LRTA* our technique has

excellent results finding solution one order of magnitude better than the classic approach

and modest to good results for LRTA*-LS and modest results for daLSS-LRTA*.

Finally, we evaluated the performance of the second technique on LSS-LRTA* under

multiple trial runs in practice and we show that the convergence is slower than the

classical approach.

1.2.4. Conclusion and Future Work

We proposed two approaches that allow exploiting weights in Real-Time Heuris-

tic Search algorithms: weighted lookahead and weighted update. We incorporated

weighted update to LSS-LRTA*, a standard Real-Time Heuristic Search algorithm,

and showed it does not yield performance improvements. On the other hand, we incor-

porated weighted update to LSS-LRTA* and showed it may yield superior performance

of up to one order of magnitude in some path-finding benchmarks. Performance gains

were also observed when incorporating the technique to other algorithms like LRTA*-LS

and daLSS-LRTA*, although improvements on the latter algorithm are less impressive.

11



In addition we thoroughly analyzed some desirable properties of wLSS-LRTA*. In

particular, we prove that it terminates when a solution exists. Furthermore we prove

wLSS-LRTA* finds w-optimal solutions on convergence, but we also found bounds that

can be much tighter, and, indeed, under certain conditions, we found a bound on

solution quality that does not depend on w but only on features of the search graph.

Future work includes the incorporation of these techniques to other Real-Time

Heristic Search algorithms that use other kind of learning rule, like, for example,

RTAA*. Another line of research has to do with how to determine good values of

w and whether or not good policies for adjusting the weight dynamically can be de-

vised. Regarding convergence behavior, it seems necessary to study whether or not

using dynamic weights will produce faster convergence results at the expense of sacri-

ficing solution quality.

12



Chapter 2. ARTICLE SUBMITTED TO ARTIFICIAL INTELLIGENCE

2.1. Introduction

Weighted A* (Pohl, 1970) is a well-known search algorithm for solving single-agent,

deterministic search problems. Based on A* (Hart et al., 1968), it uses an evaluation

function f(s) = g(s) + wh(s) to rank a state s in the search frontier, where g(s)

represents the cost incurred to reach s, h(s), is a (heuristic) estimate of the true cost

to reach a solution from s, and the weight w is a real value greater or equal to one.

It can find a solution substantially faster than A* as the weight is increased over 1.

However, the cost of returned solutions may increase as w is increased. If the heuristic

h is admissible then the cost of the solutions found can be at most a factor w away

from optimal.

Weighting the heuristic is a simple but powerful technique that is widely used in

state-of-the-art Heuristic Search algorithms. For example, ARA* (Likhachev, Gordon,

& Thrun, 2003), an algorithm used in outdoor rover applications, and RWA* (Richter,

Thayer, & Ruml, 2010), the search engine underlying LAMA 2011 (Richter, Helmert,

& Westphal, 2008)—among the best-performing satisficing automated planners rely on

this technique to obtain superior performance.

Real-Time Heuristic Search (Korf, 1990) is an approach to solving search problems

under tight computational time constraints. It has applications ranging from video

games to highly dynamic robotics. Many Real-Time Heuristic Search algorithms build

on Heuristic Search. Indeed, most popular algorithms use A* as a subroutine.

The research question that we address in this article is: how can weights be incorpo-

rated into Real-Time Heuristic Search algorithms to improve search performance. Even

though weighted A* is well understood, and does improve time performance in Heuristic

Search applications, rather surprisingly, current proposals for integrating weights into

Real-Time Heuristic Search do not have a positive impact on time or solution quality

13



of the first solution returned. The approach proposed by Shimbo and Ishida (Shimbo

& Ishida, 2003)—to our knowledge, the only one that has attempted to answer this

question earlier—consists of multiplying the heuristic function by a weight w at the

outset of search. Then the problem is solved using LRTA* (Korf, 1990), a standard

Real-Time Heuristic Search algorithm. Shimbo and Ishida’s empirical evaluation shows

poor performance at finding a first solution. Related, but not specifically answering

the question, Bulitko (Bulitko, 2004) proposed an approach that uses lower-than-one

weights applied to the costs of the graph, thus indirectly giving more importance to the

heuristic h in its evaluation function. He shows the cost of the first solution increases

as more “importance” is given to h.

In this article we propose two new approaches to incorporating weights in Real-

Time Heuristic Search. Both approaches are applicable to a wide range of Real-Time

Heuristic Search algorithms. The first approach, weighted lookahead, uses Weighted A*

in the lookahead step of the Real-Time Heuristic Search algorithm. It can be seen as a

slight variant of Shimbo and Ishida’s approach but, as we see later, outperforms it in

practice. The second approach, weighted update, achieves the effect of incorporating w

in h by using a different learning rule in which, the higher the w, the higher the amount

by which the heuristic may be raised in every update (learning) step. Both approaches

are very simple to implement in standard Real-Time Heuristic Search algorithms.

We implement both approaches on top of the state-of-the-art algorithm LSS-LRTA*

(Koenig & Sun, 2009), producing two new algorithms. We evaluate the algorithms over

standard videogame path-finding tasks. We show that the weighed lookahead approach,

like Shimbo and Ishida’s approach, yields both worse solutions and worse running times

as w increases. On the other hand, we show that weighted update does yield benefits in

both solution quality and runtime. Improvements are up to one order of magnitude when

the algorithm parameter (a measure of the search effort per iteration) is small. The

fact that improvements are observed in both solution quality and search time is rather

interesting, since weights usually increase solution cost obtained by Heuristic Search

14



algorithms. Furthermore, we evaluate our best-performing technique theoretically, and

(1) show that algorithms that use weighted update, under certain conditions, will always

find a solution if one exists, along with other relevant properties, and (2) show that

wLSS-LRTA* converges to a w-optimal solution, and provide tighter bounds.

To illustrate the wider applicability of weighted update we also incorporated the

technique into LRTA*-LS (Hernández & Meseguer, 2007) and daLSS-LRTA* (Hernández

& Baier, 2012). In path-finding tasks we show that weights produce performance gains

in these algorithms too. We leave, however, out of the scope of this article a detailed

theoretical analysis of these algorithms.

This article significantly extends a previous conference publication (Rivera, Baier,

& Hernández, 2013). Among the material not included in the previous publication is

what follows.

• An analysis of properties of wLSS-LRTA* at convergence. Specifically, we

prove w-optimality, and bounds that can possibly be tighter (Theorems 2.5

and 2.6). One of these results, proves a bound that is independent of the

value of the weight used, which, nevertheless, is tighter than w-optimality in

practice.

• An empirical evaluation of wLSS-LRTA* at convergence in a game map.

• An extension of the existing empirical evaluation by incorporating results

over mazes, and by including a new algorithm: wdaLSS-LRTA*.

The remainder of the article is organized as follows. The next section introduces

background on Real-Time Heuristic Search, LSS-LRTA*, and notation that will be

used in the remainder of the article. Then we describe the two proposed approaches

to incorporating weights and how they can be implemented within LSS-LRTA*. We

continue with a thorough theoretical evaluation the weighted update approach both

for the first solution and for convergence. Then we evaluate wLSS-LRTA* empirically

and show how weighted update can be incorporated into LRTA*-LS and daLSS-LRTA*

and show the impact on their performance. We then discuss relevant aspects on the

15



performance of the algorithms we analyze. The paper finishes with a summary and

conclusions.

2.2. Background

A search problem P is a tuple (S,A, c, s0, G), where (S,A) is a digraph that rep-

resents the search space. The set S represents the states and the arcs in A represent

all available actions. We assume that S is finite, that A does not contain elements of

form (s, s), and that (S,A) is a strongly connected graph. In addition, we have a cost

function c : A 7→ R+ which associates a cost with each of the available actions. For all

s ∈ S we define Succ(s) = {t ∈ S : (s, t) ∈ A}. Finally G ⊆ S is a set of goal states.

We define a path π as a sequence of vertices t1t2 . . . tn such that (ti, ti+1) ∈ A for all

i ∈ {1, .., n − 1}. A simple path is a path with no repeated vertices. In this paper we

assume every path to be a simple path. We use V (π) to refer to the vertices of a path

π and we define the length of a path π as |V (π)|.

The cost of a path π = t1t2 . . . tn is
∑n−1

i=1 c(ti, ti+1). We denote by d the shortest-

path distance in S induced by cost function c. Given a subset T of S we define the

frontier of T as ∂T = {s ∈ S \ T : ∃t ∈ T such that (t, s) ∈ A}. Furthermore, we

define dT as the shortest-path distance restricted to paths of the form t0 . . . tn, where

t0, . . . , tn−1 ∈ T and tn ∈ T ∪ ∂T .

A heuristic function h : S 7→ [0,∞) associates to each state s an approximation

h(s) of the cost of a path from s to a goal state. We denote by h∗(s) the minimum

distance from s to a goal state. A heuristic h is consistent if and only if h(sg) = 0 for

every sg ∈ G and for any s ∈ S it holds that h(s) ≤ c(s, t) + h(t) for every t ∈ Succ(s).

If h is consistent then h(s) ≤ d(s, t)+h(t) for all s, t ∈ S. Furthermore, if h is consistent

it is easy to prove that it is also admissible; i.e., h(s) underestimates h∗(s). We say

that a state t justifies the h-value of state s if h(s) = c(s, t) + h(t).

We assume familiarity with the A* algorithm (Hart et al., 1968): g(s) denotes the

cost of the path from the start state to s, and f(s) is defined as g(s)+h(s). The f -value,

16



g-value and h-value of s refer to f(s), g(s), and h(s) respectively. Furthermore, the

variable Closed contains a set of nodes that have been expanded, and Open contains

the set of nodes generated by the algorithm that are not in Closed. We also use the fact

that, after A* expands a node, Open = ∂Closed, which is simple to prove by induction

on the number of A* iterations.

Finally, given a function f : A ⊆ S → R, we denote by arg mins∈A[f(s)] the

subset of elements of A that minimize f over A. Sometimes, abusing notation, we write

t = arg mins∈A[f(s)] instead of t ∈ arg mins∈A[f(s)].

2.2.1. Real-Time Search

In Real-Time Heuristic Search, the objective is to move an agent from an initial

state to a goal state. Between each movement, the computation carried out by the

algorithm should be bounded by a constant. An example situation is path-finding in a

priori unknown grid-like environments. In this situation, we assume the agent knows

the dimensions of the grid but not the location of the obstacles before the search is

started.

Most Real-Time Heuristic Search algorithms iterate three steps until they find the

solution. In the lookahead step, the agent runs a heuristic search algorithm to search

for a next move. In the movement step, the agents moves to a different position. If

the environment is initially unknown, in the movement step the agent also updates its

knowledge about the search graph. Finally, in the update step, the agent will update the

h-value of some of the states in the search space. The update step is usually necessary

to guarantee that the algorithm will find a solution. The performance of Real-Time

Heuristic Search algorithms is sensitive to the way in which the heuristic is updated

(see e.g., (Koenig & Likhachev, 2006)). Finally, we remark the order in which the three

steps are carried out depends on the particular algorithm.

17



Our experimental evaluation focuses on path-finding in grid-like, a priori unknown

terrain. Real-Time Heuristic Search algorithms in a priori unknown environments as-

sume that prior to search the agent knows the structure of the graph but does not know

the cost function c. While moving through the environment, however, the agent can ob-

serve that some arcs in the graph have a cost that is greater than the cost it currently

knows. In our experiments we undertake the free-space assumption (Zelinsky, 1992;

Koenig, Tovey, & Smirnov, 2003), a standard assumption about the initial knowledge

of the agent, whereby the terrain is initially assumed obstacle-free. The agent, on the

other hand, can observe obstacles in the immediate neighborhood of the current cell.

When obstacles are detected, the agent updates its cost function accordingly, by setting

the cost of reaching a previously unknown obstacle cell to infinity.

Even though our experimental evaluation focuses on path finding, our techniques

are implemented over general Real-Time Search algorithms. To use these algorithms in

partially known environments, one can a generalized free-space assumption for arbitrary

graphs (Rivera, Illanes, Baier, & Hernández, 2013).

LSS-LRTA* (Algorithm 4) is a generalization of the well-known LRTA* algorithm

(Korf, 1990). Its lookahead procedure invokes a bounded A* algorithm which expands

at most k nodes. At the end of A* the states in Closed are usually referred to as

the local search space. After lookahead, the h-values of the states in the interior of

the local search space are updated. The update formula (Eq. 2.1; Alg. 4) is such that

the resulting h-value of s is the maximum possible value that still preserves consistency

(Koenig & Sun, 2009). Finally, in the movement step, the algorithm moves the agent as

far as possible towards the best state in Open, observing the environment, and removing

those arcs that lead in or out of states that have been newly observed as obstacles.1

A modified version of Dijkstra’s algorithm (Algorithm 5) is invoked by LSS-LRTA*

in the update step (Line 3). It receives a region of nodes I as input and recomputes

1LSS-LRTA*, as described by Koenig and Sun (Koenig & Sun, 2009), modifies the search graph in a
different but procedurally equivalent way when observing new obstacles, setting some of the arcs in
the graph to infinity. Here we adopt disconnection of such cells to simplify our theoretical analysis.

18



Input: A search problem P , a heuristic function h, and a lookahead parameter
k

1 while the agent has not reached a goal state do
2 Lookahead: Perform an A* search rooted at the current state. Stop as

soon as k nodes have been expanded and added to Closed. Furthermore, if
just before extracting a node from Open a goal state sg has minimum
f -value in Open, stop A* before extracting sg from Open.

3 Update: Update the h-values of each state s in Closed such that

h(s) := min
t∈Open

dClosed(s, t) + h(t). (2.1)

4 Movement: Let next be the state with lowest f -value in Open. Move
towards next along the path identified by A*. While moving, observe the
environment and update the cost function when new obstacles are found.
Stop as soon as next is reached or when an obstacle blocks the next state in
the path to next.

5 end
Algorithm 4: LSS-LRTA*

the h-values of states in I by interpreting the h function as the cost of a shortest path

between the frontier ∂I and I. As a result, the algorithm sets h-values of states in I

according to Equation 2.1 in Algorithm 4. It can be formally shown that this algorithm

actually sets the h values according to the update equation (see e.g. (Koenig & Sun,

2009; Hernández & Baier, 2012)).

Input: A region of states I
Effect: If s ∈ I, h(s) is set to mint∈∂I dI(s, t) + h(t)

1 R := I ∪ ∂I
2 for each s ∈ I do h(s) :=∞
3 while R 6= ∅ do
4 Let t be the state with lowest h-value in R
5 for each s ∈ I such that t ∈ Succ(s) do
6 if h(s) > c(s, t) + h(t) then
7 h(s) := c(s, t) + h(t)
8 end
9 end

10 remove t from R
11 end

Algorithm 5: Modified Dijkstra’s Algorithm

19



2.3. Weighted Real-Time Heuristic Search

Now we describe two approaches to incorporating weights into the heuristic function

of Real-Time Heuristic Search algorithms. As we show later, the weighted lookahead

approach does not produce good results in our benchmark problems. We think how-

ever that it deserves to be discussed here because it is the obvious way in which the

idea of Weighted A* can be adapted to Real-Time Heuristic Search, and thus relevant

conclusions can be obtained by analyzing it theoretically and empirically.

2.3.1. Weighted Lookahead

The weighted lookahead approach consists of using Weighted A* in the lookahead

phase of the Real-Time Heuristic Search algorithm. It is directly applicable to any

Real-Time Heuristic Search algorithm that uses A* in its lookahead phase, but may

also be applied to algorithms that use different lookahead procedures.

In this paper we consider incorporating it into LSS-LRTA* and we call the resulting

algorithms LSS-LRTwA*. Straightforwardly, LSS-LRTwA* differs from LSS-LRTA* in

that Weighted A* instead of A* is called in Line 2 of Alg. 4, with the stop condition

left intact.

2.3.2. Weighted Update

A possible reason that explains why Weighted A* finds solutions more quickly

than regular A* is that in multiplying the heuristic by a factor w ≥ 1, the heuristic

becomes more accurate, in a significant portion of the search space. This is sensible

since in many search problems heuristics sometimes grossly underestimate the true cost

to reach a solution ((Wilt & Ruml, 2012) provides a good, up-to-date analysis). Real-

Time Heuristic Search problems are no different from Heuristic problems in that respect

as usually inaccurate heuristics are available. Thus by multiplying the heuristic by a

factor greater than 1 one would expect the heuristic to become more accurate in many

parts of the search space. Unfortunately, as we show later, incorporating weights in the

20



lookahead, as done by the previous approach, does not work well in practice. Here we

consider incorporating weights to h in an alternative way.

The main idea underlying weighted update is to make h increase by a factor of w

using the update procedure of the Real-Time Heuristic Search algorithm. To accomplish

this, in the update phase we run the standard update algorithm (i.e., Dijkstra) but in a

modified region I, in which the cost of the arcs between states in I is multiplied by w.

As a consequence, for each state s in the interior of the update region I, the heuristic

is updated using the following rule:

h(s) := min
t∈∂I

wdI(s, t) + h(t). (2.2)

To produce wLSS-LRTA*, we simply change the implementation of Dijkstra’s al-

gorithm to consider a weighted cost function.

2.4. Theoretical Analysis

In the previous section we proposed two techniques for real-time heuristic search

using a heuristic h multiplied by a factor w greater than 1. Now we focus on the

properties of the resulting algorithms. There are a number of properties that real-

time search algorithms usually satisfy. Among the most important are termination and

convergence after multiple trials. The proofs for these theorems usually rely on the fact

that the heuristics are either consistent or admissible. In our techniques however, the

heuristic function does not remain consistent and thus one cannot use the same proofs

for these results.

In the remainder of the section is divided in two parts. In the first we show an

analyze the behavior of the algorithm when the problem is to find a solution after a

single run of the algorithm. In the second, we analyze convergence properties, which are

interesting when the objective is to find improved solutions by running the algorithm

multiple times. Our analysis is focused on the weighted update technique because this

is the one that we observed provides good results.

21



2.4.1. Properties for a Single Run

Here we analyze to what extent some important properties, like finding a solution

when one exists, are preserved by our approaches even when the effective heuristic used

during search may become inconsistent and hence inadmissible.

As mentioned above, we cannot ensure that the heuristic remains consistent, but

we can prove that it remains w-consistent. Furthermore, we can guarantee that the

heuristic will remain w-admissible if it is initially inadmissible. The definitions for

w-consistency and w-admissibility follow.

Definition 2.1. Given w ≥ 1, we say h is w-consistent iff for each pair s, t of connected

states h(s) ≤ h(t) + wc(s, t), and, for every goal state sg, h(sg) = 0.

Definition 2.2. Given w ≥ 1, we say h is w-admissible iff for each s ∈ S we have

h(s) ≤ wh∗(s).

Analogous to the case of regular consistency, given that h is w-consistent we can

prove h is w-admissible. Henceforth, we assume, without loss of generality, that there

is a single goal sg.

Theorem 2.1. If h is w-consistent then h is w-admissible.

Proof. Let s ∈ S, and let π = t1t2 . . . tn, with t1 = s and tn = sg, be the shortest

path from s to sg. Since tn is the goal state h(tn) = 0. Because h is w-consistent, it

holds that

h(ti)− h(ti+1) ≤ wc(ti, ti+1), for every i ∈ {1, . . . , n− 1}.

Summing up all of the inequations defined above, we obtain:

h(s) = h(t1)− h(tn) =
n−1∑
i=1

h(ti+1)− h(ti)

≤ w
n−1∑
i=1

c(ti, ti+1) = wc(π) = wh∗(s).

22



�

We now turn our attention to prove that any algorithm that can (correctly) incor-

porate our weighted update will terminate. First we prove the following intermediate

result.

Lemma 2.1. Let h be a w-consistent heuristic. If we apply Modified Dijkstra’s Algo-

rithm using wc as the graph’s cost function in a set of states L, then the value of h will

not decrease.

Proof. Let us denote by h′ the new heuristic function after running the weighted

update Djikstra Algorithm on region L. Note that h = h′ in S \ L. Let L̄ be the set

of all states in L whose h-value has decreased. We prove that L̄ = ∅ by contradiction.

Assume L̄ 6= ∅ and let l ∈ L̄ be a state with minimum h′ value in L. By correction

of Dijkstra’s Algorithm any vertex s ∈ L satisfies h′(s) = mint∈Succ(s)[h
′(t) + wc(s, t)].

Now let u = arg mint∈Succ(l)[h
′(t) + wc(l, t)] then:

h′(l) = h′(u) + wc(l, u), (2.3)

and because c > 0, from Equation (2.3) we obtain:

h′(l) > h′(u).

Now because l has the lowest h′-value of all states in L̄, we conclude that u 6∈ L̄. By

definition of L̄ it must be the case that h′(u) ≥ h(u). Using that h′(u) ≥ h(u) and that

h is w-consistent we write:

h′(l) = h′(u) + wc(l, u) ≥ h(u) + wc(l, u), (2.4)

but because h is w-consistent, h(u) + wc(l, u) ≥ h(l), so using Inequation (2.4) we

conclude h′(l) ≥ h(l), which contradicts the fact that h′(l) < h(l). We conclude that L̄

is empty and that no state in L decreases its h-value. �

23



Now we establish that the property of w-consistency is preserved by the algorithm.

The proof follows from the two following Lemmas.

Lemma 2.2. If h is a w-consistent heuristic then h remains w-consistent after running

a w-weighted update.

Proof. As in the proof above, let h′ denote the updated heuristic. We want to

establish h′(s) ≤ h′(t) +wc(s, t), for all (s, t) ∈ A. Let s ∈ S. We divide the proof in 3

cases:

Case 1: If s ∈ I then

h′(s) = min
t∈Succ(s)

h′(t) + wc(s, t)

then for all t such that (s, t) ∈ A we have that h′(s) ≤ h′(t) + wc(s, t).

Case 2: If s 6∈ I and s 6= sg and (s, t) ∈ A. Since h is not updated outside of I,

h′(s) = h(s). Because h is consistent and h(t) ≤ h′(t) (by Theorem 2.1), the following

inequality holds:

h′(s) = h(s) ≤ h(t) + wc(s, t) ≤ h′(t) + wc(s, t).

Case 3: if s 6∈ I and s = sg then h′(s) = h(s) = 0. Then, since c ≥ 0, it trivially holds

that h′(s) ≤ h′(t) + wc(s, t), for all (s, t) ∈ A. �

When the domain is partially known an LSS-LRTA* agent may discover that the

search graph is different from what it initially thought as it moves through the environ-

ment. We assumed in the Section 2.2 that in pathfinding applications states that are

blocked (i.e., obstacles) are disconnected from the search graph in the movement phase

as soon as they are discovered. When removing arcs of the search space, consistency

and w-consistency are trivially preserved. In more general setting, consistency is also

preserved if in the movement phase the costs of the arcs are increased by the algorithm.

This could happen because the agent had, at the outset of search, an optimistic estimate

24



of arc costs instead of the true arc costs. In such cases, consistency is also preserved by

the algorithm, as the next Lemma proves.

Lemma 2.3. If the movement phase of a Real-Time Heuristic Search algorithm may

only increase costs in the search graph, then w-consistency is preserved by the movement

phase.

Proof. Let c′ denote the cost function after the movement phase. Since costs may

only increase, c ≤ c′. If (s, t) ∈ A and h is w-consistent then h(s) ≤ wc(s, t) + h(t),

which implies h(s) ≤ wc′(s, t) + h(t). �

Theorem 2.2. If h is initially w-consistent, then it remains w-consistent along the

execution of a Real-Time Heuristic Search algorithm that uses a w-weighted update and

whose movement phase may only increase the costs of arcs in the search graph, and

whose lookahead phase does not change h or c.

Proof. Straightforward from Lemmas 2.2 and 2.3, and the fact that the lookahead

phase does not change h or c. �

Now we focus on our termination result, and assume we are dealing with a Real-

Time Heuristic Search algorithm that satisfies the conditions of Theorem 2.2. For

notational convenience, let hn denote the heuristic function at the beginning of the

n-th iteration of the algorithm. An important intermediate result is that eventually h

converges.

Lemma 2.4. h eventually converges; that is, there exists an N ∈ N such that hn+1 = hn

for all n ≥ N .

Proof. Let c∗ denote the minimum cost arc in (S,A). hn is a bounded non

decreasing series, thus by elementary calculus the series converges pointwise, that is,

hn(s) converges for all s ∈ S. Moreover, if the h(s) increased in some iteration n, then

hn+1(s)−hn(s) > wc∗ and hence the h-value of s cannot increase more than h∗(s)
c∗

times.

Convergence therefore is reached for a finite number N . �

25



Now, we stablish the main result of this subsection:

Theorem 2.3. wLSS-LRTA* reaches sg if the heuristic is initially w-consistent.

Proof. Suppose the assertion is false. Since by Lemma 2.4 {hn} converges, at

some iteration h = hn does not change anymore and the agent enters a loop. Assume

π = t1t2 . . . tnt1 is such a loop, and let π′ = t′1t
′
2 . . . t

′
m, t

′
1 be the states at which the agent

runs a lookahead step. Without loss of generality, assume t′1 is one of the states of π′

with smallest heuristic value. Let L be the local search space of the algorithms. Since

h does not change, there exists a state t ∈ ∂L and such that h(t′1) = h(t) + wdL(t′1, t),

otherwise h would be updated.

Since wLSS-LRTA* decides to move to the best state in ∂L, and that such a state

is t′2, we know that

h(t) + dL(t′1, t) ≥ h(t′2) + dL(t′1, t
′
2), (2.5)

But we have that h(t′1) = h(t)+wdL(t′1, t). Substituting in h(t) in Inequation (2.5),

we obtain:

h(t′1)− wdL(t′1, t) + dL(t′1, t) ≥ h(t′2) + dL(t′1, t
′
2)

Finally, because t′1 has a lowest h-value in π′, we have that h(t′1) ≤ h(t′2) and thus:

h(t′2)− wdL(t′1, t) + dL(t′1, t) ≥ h(t′2) + dL(t′1, t
′
2).

Then,

−wdL(t′1, t) + dL(t′1, t) ≥ dL(t′1, t
′
2),

and, rearranging, we obtain:

w ≤ 1− dL(t′1, t
′
2)

dL(t′1, t)
< 1,

which is a contradiction with the fact that w ≥ 1. Thus, the agent cannot enter an

infinite loop. �

26



Remark 2.1. The proof of Theorem 2.3 applies to any algorithm whose movement

phase moves the agent to the state with lowest f -value of the frontier of the local search

space.

2.4.2. Properties for Multiple-Trial Runs

In this section we analyze properties of our algorithms when running multiple search

trials. In this mode, each time the agent reaches the goal, it is moved back to the initial

state and the search algorithm is invoked again, without resetting the heuristic function

h. Each run of the algorithm that moves the agent from the initial state to a goal state

is called a trial. A multiple-trial run is said to converge iff the heuristic h converges,

i.e., h does not change during the execution of a trial. A multiple-trial run is usually

stopped when h converges.

Multiple-trial runs of LSS-LRTA* are known to converge if the initial heuristic is

consistent. Furthermore, they converge to an optimal solution since the agent traverses

an optimal path in the last trial (Korf, 1990; Koenig & Sun, 2009).

In this section we analyze multiple-trial properties of wLSS-LRTA*. Specifically,

we prove that multiple-trial runs of wLSS-LRTA* also converge. We prove that if w > 1

our algorithms find a w-optimal solution (i.e., a solution that can exceed the optimal by

at most a factor of w). Furthermore we provide bounds for the cost of the solution at

convergence that can be in practice much tighter than w-optimality. Indeed in Theorem

2.5 we prove that the solution cost at convergence exceeds the optimal cost by a factor

that can be computed from h during runtime. In grids, we have observed that such a

value is low even when the algorithm is run with a high value for w. In addition, when

the search graph satisfies the triangle inequality, we prove a bound on solution cost at

convergence that depends on the ratio between the highest-cost and the lowest-cost arc

in the graph but not on w. As a corollary, we obtain that in graphs with uniform costs,

an optimal solution is returned at convergence, independent of the value of w.

27



In the following, we assume s0, ..., sN are the states at which the agent performs a

lookahead step in a run after convergence has been reached, that starts in the initial

state and reaches the goal. In addition, for every i ∈ {0, ..., N−1}, we denote by Ci the

set of states in the A*’s Closed list after the search started from si finishes. To simplify

notation, we write di instead of dCi
. Finally, we assume that the initial heuristic is

w-consistent, which implies that the converged heuristic also is w-consistent.

Our first result is w-optimality. We need the following intermediate result.

Lemma 2.5. In a run of wLSS-LRTA* at convergence, for each i ∈ {0, ..., N − 1}, it

holds that:

h(si) ≥ h(si+1) + di(si, si+1).

Proof. Note that for each i there is some ti ∈ ∂Ci such that

h(si) = h(ti) + wdi(si, ti)

but since A* chooses to move to si+1 instead ti we have:

h(si+1) + di(si, si+1) ≤ h(ti) + di(si, ti) ≤ h(ti) + wdi(si, ti) = h(si),

which finishes the proof. �

Theorem 2.4. The cost of the solution found by wLSS-LRTA* at convergence is w-

optimal.

Proof. Note that the cost of the path found by wLSS-LRTA* is:

N−1∑
i=0

di(si, si+1),

and by Lemma 2.5:

N−1∑
i=0

di(si, si+1) ≤
N−1∑
i=0

h(si)− h(si+1) ≤ h(s0)− h(sg) = h(s0).

28



However h is w-consistent and thus w-admissible, hence:

N−1∑
i=0

di(si, si+1) ≤ wh∗(s0),

which means the solution found is w-optimal. �

The argument used to prove Theorem 2.4 is generic since it does not depend on the

cost structure of the graph. Below we present two possibly tighter bounds for the cost

of the solutions found by wLSS-LRTA* at convergence. One bound can be computed as

soon as wLSS-LRTA* has converged (Theorem 2.5), and the other can be determined

from the cost structure of the graph (Theorem 2.6).

Henceforth, we use Ci with the meaning defined above and we denote by ti the

state of ∂Ci such that:

h(si) = wdi(si, ti) + h(ti). (2.6)

I.e., ti is the state whose h-value determines the h-value of si after the weighted up-

date; therefore, ti always exists. Finally, the following results use the following two

inequalities:

h(si+1) + di(si, si+1) ≤ h(ti) + di(si, ti) (2.7)

h(si+1) + wdi(si, si+1) ≥ h(ti) + wdi(si, ti) (2.8)

Inequality (2.7) holds because in each A* run, si+1 is preferred over ti for expansion.

Moreover, Inequality (2.8) holds because of the update algorithm.

To prove our first bound we need two intermediate results that are proven below.

Lemma 2.6. For all i ∈ {0, ..., N − 1} it holds that di(si, si+1) ≥ di(si, ti) and h(ti) ≥

h(si+1). Moreover di(si, si+1) = di(si, ti) if and only if h(si+1) = h(ti).

Proof. Inequality (2.8) can be rewritten as:

h(ti) + wdi(si, ti) ≤ h(si+1) + di(si, si+1) + (w − 1)di(si, si+1), (2.9)

29



but using Inequality (2.7) in the right-hand side of Inequality (2.9) we obtain:

h(ti) + wdi(si, ti) ≤ h(ti) + di(si, ti) + (w − 1)di(si, si+1).

Subtracting h(ti) + di(si, ti) we obtain:

(w − 1)di(si, ti) ≤ (w − 1)di(si, si+1),

and using w > 1 we obtain

di(si, ti) ≤ di(si, si+1) (2.10)

Now we add Inequalities (2.10) and (2.7), and we obtain h(ti) ≥ h(si+1). The same

applies for the if and only if part, we substitute the equations in both Inequalities (2.7)

and (2.8) to obtain the desired result. �

In the remainder of the section we define Di = h(ti)− h(si+1), and D =
∑N−1

i=0 Di.

The value Di represents the difference between the h-value of the state that updates

the value of si and the h-value of the state at which the agent actually moves to. D,

on the other hand, is simply the sum of those differences throughout the path from the

initial state to the goal.

Lemma 2.7. In a run of wLSS-LRTA* at convergence, it holds that:

N−1∑
i=0

di(si, ti) ≤ h∗(s0)− D

w
.

Proof. Using the definition for D, we rewrite Equation (2.6) as:

h(si)− h(si+1) = wdi(si, ti) +Di,

and given that sN = sg and that h(sg) = 0, we obtain:

h(s0) = w
N−1∑
i=0

di(si, ti) +D.

30



Finally, by Lemma 2.6, Di ≥ 0, and thus D ≥ 0. Finally, because h is w-admissible,

h(s0) ≤ wh∗(s0), we conclude that:

w

N−1∑
i=0

di(si, ti) +D ≤ wh∗(s0),

from where it is straightforward to obtain the desired inequality. �

Now we establish a bound on the solution that depends on both D and w.

Theorem 2.5 (D-Bound). Let C be the cost of a solution found by a run of wLSS-

LRTA* at convergence. Then,

C ≤ h∗(s0) +
w − 1

w
D

Proof. Using Equation (2.7) and the definition of Di we obtain:

di(si, si+1) ≤ h(ti)− h(si+1) + di(si, ti) = di(si, ti) +Di

and then:

C =
N−1∑
i=0

di(si, si+1) ≤
N−1∑
i=0

(di(si, ti) +Di),

given that
∑N−1

i=0 Di = D, we write:

C ≤
N−1∑
i=0

di(si, ti) +D (2.11)

By adding up Inequality (2.11) with the inequality of Lemma 2.7, we obtain the desired

inequality. �

Note that the last bound is not uniquely defined, because each Di depends on the

election of ti and, algorithmically, we can optimize this bound by letting the update

algorithm choose a ti that minimizes h(ti). In addition, note that D = 0 implies that

the solution found by the algorithm is optimal.

31



A

B

C

D

E F

Figure 2.1. A graph in which the arcs connecting ACEF is a straight path.

For the next result, it is useful to have the following definitions. In particular a

straight paths is, intuitively, a path that does not allow shortcuts. Formally,

Definition 2.3. We say that a path π = t1t2 . . . tn in a graph (V,A) is a straight path

iff (ti, tk) /∈ A for all k > i+ 1.

As an example, consider Figure 2.1, in which ACEF is a straight path while ACDEF

is not.

Definition 2.4. We say a graph G = (V,A, c) satisfies the triangle inequality iff for all

(s, t) ∈ A, it holds that d(s, t) = c(s, t).

Thus, the triangle inequality is satisfied if and only the shortest path between two

adjacent nodes is always given by the arc that connects them. As a way of example,

4-connected and 8-connected grids with
√

2 as diagonal cost are graphs that satisfy the

triangle inequality.

The following result proves that if the sequence of nodes expanded by A* is a

straight path in a graph that satisfies the triangle inequality then the f -value of a node

in the Open list cannot decrease.

Lemma 2.8. Let π = t0t1 . . . tn be a straight path of a graph, and assume that when

A* is run with t0 as a start node it eventually has exactly the nodes in π in its Closed

list. Let O denote the set of states in the Open list just before tn is expanded. After

expanding tn the f -values of the states in O do not decrease.

Proof. Assume the contrary, and let u be a node in O whose f -value has decreased

after expanding tn. Note that since the h-value does not change through execution, this

32



t0 t1 ... tk

t

... tn

Figure 2.2. If the costs of the graph satisfy the triangle inequality c(tk, t) ≤
c(tn, t) +

∑n−1
i=k c(ti, ti+1).

means the g-value has decreased after expanding tn. Because the nodes that have been

expanded form a straight path, just before expanding tn, the g-value of u—which we

denote by g+(u)—is the cost of a path from t0 to u which has to be of the form

t0t1 . . . tku, for some k < n. Thus,

g+(u) = c(tk, u) +
k−1∑
i=0

c(ti, ti+1). (2.12)

After expanding tn, the new g-value of u—which we denote by g−(u)—must correspond

to the cost of a path reaching u through tn. Thus,

g−(u) = c(tn, y) +
n−1∑
i=0

c(ti, ti+1). (2.13)

However the g-value has decreased, therefore g−(u) < g+(u), which implies that

c(tn, u) +
n−1∑
i=k

c(ti, ti+1) < c(tk, u),

which violates the triangle inequality. See Figure 2.2 for a depiction. �

The following Lemma implies that when the heuristic has converged, each A* run

indeed expands nodes along a straight path in the search graph.

Lemma 2.9. Consider a run of A* at convergence and let L = (t0, t1, ..., tn+1) be such

that ti is the i-th state expanded by A*. If the search graph (S,A, c) satisfies the triangle

inequality then

(i) t0t1 . . . tn+1 is a straight path in (S,A, c), and

(ii) ti+1 = arg mint∈Succ(ti)[h(t) + c(ti, t)] for all i ∈ {0, . . . , n}.

33



Proof. The proof is by induction on the length of L. For the base case, if n = 0,

the list has only one element and thus satisfies trivially the conditions of the lemma.

For the induction, we assume t0t1 . . . tn is a straight path in the search graph.

Furthermore, we assume tn+1 is the next state selected for expansion.

Because the elements of L induce a path in the search graph, it holds that g(tn) =∑n−1
i=0 c(ti, ti+1), and thus:

f(tn) = h(tn) +
n−1∑
i=0

c(ti, ti+1) (2.14)

Since the h-value of tn does not change after the update, it holds that:

h(tn) = min
t∈Succ(tn)

[wc(tn, t) + h(t)]. (2.15)

Now we define

u = arg min
t∈Succ(tn)

[c(tn, t) + h(t)]. (2.16)

The rest of the proof is divided in four steps.

Step 1 Our first step is to prove that f(u) < f(tn). Because w > 1, it holds that

h(tn) > c(tn, u) + h(u) (2.17)

And, moreover, since costs are positive we have that:

h(tn) > h(u) (2.18)

Since after expanding tn, state u is in A*’s Open list we know that its f -value is at

most the one that would result by considering that the cheapest path towards u goes

through tn. This allows us to write:

f(u) ≤ g(tn) + c(tn, u) + h(u) = c(tn, u) + h(u) +
n−1∑
i=0

c(ti, ti+1) (2.19)

34



But because of Inequation (2.17), we can substitute c(tn, u)+h(u) by h(tn) in Inequation

(2.19), obtaining:

f(u) < h(tn) +
n−1∑
i=0

c(ti, ti+1) = f(tn) (2.20)

This finishes the first step. Before continuing with the next step, let On denote the

contents of A*’s Open list just before expanding tn.

Step 2 In the second step, we prove that u 6∈ {t1, . . . , tn}. Clearly, u 6= tn. For each

i ∈ {1, . . . , n− 1} we have that the h value of ti does not change in the update process

and thus satisfies:

h(ti) = min
t∈Succ(tn)

[wc(ti, t) + h(t)] > min
t∈Succ(tn)

[c(ti, t) + h(t)],

but using the induction hipotesis in the second part of the lemma:

min
t∈Succ(tn)

[c(ti, t) + h(t)] = c(ti, ti+1) + h(ti+1).

then h(ti) > h(ti+1). Finally, if u = ti for some i ∈ {1, . . . , n− 1} by using Inequation

(2.18) we obtain that:

h(u) > h(tn) > h(u),

which is a contradiction and thus u 6= ti for all i ∈ {1, . . . , n}.

Step 3 In the third step, we prove that u 6∈ On. Note that since tn is chosen for

expansion in On, then

f(s) ≥ f(tn), for all s ∈ On (2.21)

Assume u ∈ On. Then, by Lemma 2.8 the f -value of u does not decrease once we expand

tn, so we have that Inequation (2.21) applies and we can write that f(u) ≥ f(tn), which,

together with Inequation (2.20) implies that f(u) = f(tn). Since f(u) has not changed

after expanding tn, then just before expanding tn it was also the case that f(u) = f(tn).

Furthermore, since A* breaks ties in favor of states with greater g-value, it must have

been that g(u) ≤ g(tn). But, since f(u) = f(tn), this implies that h(u) ≥ h(tn), which

contradicts Inequation (2.18). We conclude that it cannot be the case that u ∈ On.

35



Step 4 Now we prove that the state to be expanded after tn, tn+1, was not generated

by A* before u; i.e., tn+1 6∈ On. Indeed, assume tn+1 ∈ On. Note that this implies

u 6= tn+1. Further, note that Lemma 2.8 and Inequation (2.21) imply that after and

before expanding tn, it holds that f(tn+1) = f(tn). Since after expanding tn, tn+1

is preferred for expansion over u, then f(tn+1) ≤ f(u). But since f(u) ≤ f(tn), we

conclude

f(tn+1) = f(u). (2.22)

On the other hand, just before expanding tn both tn and tn+1 are in the Open list and tn

is preferred by A* for expansion; thus, it must be the case that g(tn) ≥ g(tn+1). On the

other hand, u is expanded via tn and therefore g(u) > g(tn), from where we conclude

that g(u) > g(tn+1). Thus, right after expanding tn, both u and tn+1 are in the Open

list, with the same f -value (Equation 2.22) and thus u, rather than tn+1, should be

preferred for expansion. This contradicts the fact that A* chooses tn+1 for expansion.

Step 4 concludes the proof for Condition 1 of this lemma since it holds that tn+1 6∈

On, which means that tn+1 is a state that is a successor of tn which is not a successor

of any other ti, for every i < n. This ensures that t0t1 . . . tntn+1 is a straight path.

To prove Condition 2 of the lemma, observe that since tn+1 is the next state to be

expanded and that is on a straight path, then:

f(tn+1) = h(tn+1) +
n∑

i=0

c(ti, ti+1) ≤ h(u) + c(tn, u) +
n−1∑
i=0

c(ti, ti+1) = f(u), (2.23)

which simplifies to:

h(tn+1) + c(tn, tn+1) ≤ h(u) + c(tn, u).

Given the definition of u (Equation 2.16), we conclude that:

tn+1 = arg min
t∈Succ(tn)

[c(tn, t) + h(t)],

which concludes the proof for the lemma. �

36



Lemma 2.10 (Simulation Lemma). Let π = s0s1 . . . sN with sN = sg be the path

traversed by wLSS-LRTA* run with lookahead parameter equal to k > 1, and with

a version of A* that breaks ties towards states with greater g-values. Let π′ be the

path traversed by wLSS-LRTA* run with lookahead parameter equal to 1, breaking ties

towards states in π. If the search graph (S,A, c) satisfies the triangle inequality then

π = π′.

Proof. The proof is by induction onN . Let π′ = t0t1 . . . tM .The base case (M = 0)

is trivial since s0 = t0. Suppose that s0 . . . sn = t0 . . . tn. We prove that sn+1 = tn+1.

State sn was expanded by some iteration of A* in a wLSS-LRTA* run using with

lookahead parameter k. Then, by Condition 2 of Lemma 2.9, the next state sn+1 is

arg mins∈Succ(tn)[h(s) + c(tn, s)]. Moreover, wLSS-LRTA* with lookahead parameter

equal to 1 will indeed prefer some of arg mins∈Succ(tn)[h(s) + c(tn, s)] and because the

tie-breaking of wLSS-LRTA* with lookahead parameter equal to 1 is the path π we

prefer to move to sn+1, therefore tn+1 = sn+1. �

Theorem 2.6. Let P be a search problem whose search graph satisfies the triangle

inequality. Let C be the cost of a solution found by wLSS-LRTA* at convergence when

run with lookahead value k, on a search graph that satisfies the triangle inequality. Then

C ≤ c∗

c∗
h∗(s0).

Proof. By Lemma 2.10, we consider a simulation of wLSS-LRTA* by a run of

wLSS-LRTA* with lookahead 1 and we apply our analysis to the simulation. Notice that

for all i, (si, ti) ∈ A and (si, si+1) ∈ A because k = 1. Moreover d(si, si+1) = c(si, si+1)

and the same holds for (si, ti). Finally, since c∗ ≤ d(si, ti) and d(si, si+1) ≤ c∗, it holds

that:

d(si, si+1) ≤ c∗

c∗
d(si, ti),

which allows us to write

C =
N−1∑
i=1

d(si, si+1) ≤ c∗

c∗

N−1∑
i=1

d(si, ti) (2.24)

37



Substituting the Inequation of Lemma 2.7, we obtain

C ≤ c∗

c∗

(
h∗(s0)− D

w

)
, (2.25)

which implies the desired inequality because D/w ≥ 0 (cf. Lemma 2.6). Finally using

that S is the same for wLSS-LRTA* with lookahead k and for the simulation we conclude

the proof. �

Corollary 2.1. Let P be a search problem whose search graph has unit costs. Then the

solution found by wLSS-LRTA* is optimal, independent of w.

Proof. Straightforward from Theorem 2.6. �

The previous theorems provide tighter convergence bounds for wLSS-LRTA* than

w-optimality. Note that when it is possible to compute D, one should use Inequa-

tion 2.25 in order to compute a bound instead of that given by Theorem 2.6.

2.5. Empirical Evaluation of wLSS-LRTA* and LSS-LRTwA*

We evaluate our algorithms in the context of goal-directed navigation in a priori

unknown grids (Zelinsky, 1992; Koenig et al., 2003). The agent always senses the

blockage status of its eight neighboring cells and can then move to any one of the

unblocked neighboring cells. We use eight-neighbor grids in the experiments since

they are often preferred in practice, for example in video games (Bulitko, Björnsson,

Sturtevant, & Lawrence, 2011).The cost for horizontal or vertical moves is one, and

cost for diagonal moves is
√

2. The user-given h-values are the octile distances (Bulitko

& Lee, 2006).

We used twelve maps from deployed video games and 3 acyclic mazes with corridors

of varying width to carry out the experiments. The first six game maps are taken

from the game Dragon Age, and the remaining six are taken from the game StarCraft.

The game maps and mazes maps were retrieved from Nathan Sturtevant’s pathfnding

38



repository.2 We average our experimental results over 200 test cases with a reachable

goal cell for each map. For each test case, the start and goal cells are chosen randomly.

All the experiments were run in a 2.00GHz QuadCore Intel Xeon machine running

Linux. Time is measured in milliseconds.

2.5.1. Weighted Lookahead

We start by discussing results obtained by LSS-LRTwA* and Shimbo and Ishida’s

approach. To that end, we refer the results presented by us in an earlier publication

(Rivera, Baier, & Hernández, 2013). We do not extend such an evaluation since results

shown therein (1) can be considered poor and thus we did not think an extended evalu-

ation of such algorithms would be ofq1 value to this extended article, and furthermore

(2) results obtained by wLSS-LRTA* are significantly improve upon those obtained

by LSS-LRTwA* and Shimbo and Ishida’s approach. LSS-LRTwA* and Shimbo and

Ishida’s approach were evaluated for three weight values {1, 2, 4} and six values for

the lookahead parameter {1, 2, 4, 8, 16, 32, 64}. Both algorithms were implemented in a

similar way, using the same, standard binary heap for the Open list, and breaking ties

among states with the same f -value in favor of larger g-values. Figure 2.3 shows a plot

of solution cost versus lookahead parameter. We concluded that as w increases, the

solution cost obtained by LSS-LRTwA* also increases. Larger differences are observed

when the lookahead parameter increases. On the other hand, for Shimbo and Ishida’s

approach the solution cost increases more significantly when w is increased (e.g., more

than twice as expensive when w = 2). In summary, the performance of both algorithms

degrade as w increases but Shimbo and Ishida’s approach is the one the exhibits a

greater performance degradation.

2http://www.movingai.com/. For Dragon Age we used the maps brc202d, orz702d, orz900d,
ost000a, ost000t and ost100d of size 481× 530, 939× 718, 656× 1491, 969× 487, 971× 487,
and 1025 × 1024 cells respectively. For StarCraft, we used the maps ArcticStation, Enigma,
Inferno JungleSiege, Ramparts and WheelofWar of size 768 × 768, 768 × 768, 768 × 768,
768× 768, 512× 512 and 768× 768 cells respectively. For Maze maps, we used maze512-8-0,
maze512-4-0, maze512-2-0 of size 512× 512.

39

http://www.movingai.com/


100,000

500,000

1,200,000

2,600,000

8,000,000

 1  2  4  8  16  32

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

k

LSS-LRTwA* w=1
LSS-LRTwA* w=2
LSS-LRTwA* w=4

S&I w=2
S&I w=4

Figure 2.3. LSS-LRTwA* and Shimbo and Ishida’s Approach.

10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

50,000

100,000

260,000

500,000

1,200,000

3,000,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

(a) Game Maps (b) Mazes

Figure 2.4. Solution cost versus lookahead parameter (k) obtained by wLSS-
LRTA* in game maps and mazes.

2.5.2. Weighted Update

We evaluated wLSS-LRTA* with six weight values {1, 2, 4, 8, 16, 32} and nine looka-

head values {1, 2, 4, 8, 16, 32, 64, 128, 256}. We report the solution cost and the total

time per test case obtained by the algorithm for different weight and lookahead values.

Regarding the time per search episode, it is known that the time per search episode

increases when the lookahead increases (Hernández & Meseguer, 2007; Koenig & Sun,

2009). On the other hand, when different weights are used for a fixed lookahead value,

the time per search episode does not increase.

40



100

500

1,000

2,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 t

im
e
 (

lo
g

-s
ca

le
)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

500

1,000

2,000

5,000

10,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 t

im
e
 (

lo
g

-s
ca

le
)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

(a) Game Maps (b) Mazes

Figure 2.5. Total Time versus lookahead parameter (k) obtained by wLSS-
LRTA* in game maps and mazes.

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

(a) 2-pixel-wide corridors (b) 8-pixel-wide corridors

Figure 2.6. Solution cost versus lookahead parameter (k) obtained by wLSS-
LRTA* mazes of different width.

Figures 2.4 and 2.5 show the results for wLSS-LRTA*. The following can be ob-

served in the plots.

• In Game maps we observe that when the weight value increases the solution

cost decreases, for all tested lookahead values, except for w = 32 and looka-

head equal to 256. In Maze maps we observe a similar behavior for smaller

lookahead values, but for larger lookahead values the solution cost increases

as the value of w is increased. This behavior can be explained by the fact

that wLSS-LRTA* may increase the h-values of an entire region of states

41



that is limited by the walls of a corridor. This in practice produce a block-

age in the corridor, which we refer to as an h-blockage. Once the h-blockage

has been established, regions outside the blockage become more attractive

(due to its lower h-value). In addition, since these maze maps are acyclic,

when an h-blockage in a corridor may indeed “cut” all paths to the goal.

h-blockages are created more easily when the corridors are narrower. This is

shown in Figure 2.6, in which the phenomenon is clearly observed in mazes

with 2-pixel-wide corridors while in mazes with 8-pixel-wide corridors curves

resemble more those of game maps. Hernández and Baier (Hernández &

Baier, 2012) show a similar effect on the performance of depression-avoiding

Real-Time Search algorithms, and analyze in more detail how narrow corri-

dors may become blocked during search.

• When the lookahead value increases the solution cost decreases for all weight

values tested.

• For all weight values tested the total search time behaves similar to the origi-

nal LSS-LRTA* algorithm (Koenig & Likhachev, 2006; Koenig & Sun, 2009):

first total search time decreases when the lookahead value increases and until

a minimum is reached. From then on total search time increases as the looka-

head value increases. On the other hand, in Game maps when the weight

value increases, total search time decreases. In Maze maps such a behavior

is similar to those observed in maps but for larger lookahead values total

search time is higher for higher weights. This can be also explained by the

h-blockage phenomenon described above.

The results show that the use of weights in wLSS-LRTA* have very positive conse-

quences. The solution cost and the total search time are improved sometimes by orders

of magnitude without consuming adding additional per search per episodes.

42



100

500

1,000

2,000

 1  2  4  8  16  32  64

A
v
e
ra

g
e
 t

ri
a
ls

(l
o
g

-s
ca

le
)

Lookahead

w=1
w=2
w=4
w=8

w=16

 10000

 100000

 1  2  4  8  16  32  64

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 t

im
e
 (

lo
g

-s
ca

le
)

Lookahead

w=1
w=2
w=4
w=8

w=16

(a) Number of Trials to Convergence (b) Total Time to Convergence

Figure 2.7. Number of trials and total time versus lookahead parameter (k)
obtained by wLSS-LRTA* in a game maps to convergence to a w-optimal path

2.5.3. Convergence Evaluation

We evaluated wLSS-LRTA* run to convergence on 200 random problems on one

Game map (brc202d). We report the number of trials and the total time to convergence

per test case obtained by the algorithm for different weight and lookahead values.

Figure 2.7 shows the results. The following can be observed in the plots.

• When the weight value increases the number of trials and the total time

increases for all lookahead values tested.

• When the lookahead value increases the number of trials decreases for all

weight values tested.

• When the lookahead value increases the total time decreases for all weight

values tested.

In practice most solutions returned are optimal. In only two problems the total cost

differs from optimal by cost at most 1.

The results show that the use of weights in wLSS-LRTA* may have negative con-

cecuences in the performance. The number of trials and the total search time obtained

43



by the original algorithm (w = 1) are better than the results obtained by the algo-

rithm with w greater than one. Due to this, in the following sections we focus the

experimental evaluation in the first trial only.

2.6. Incorpoating Weighted Update into Other Real-Time Heuristic Search

Algorithms

Weighted update, the technique that was just shown in the previous section as

yielding best results when incorporated to LSS-LRTA*, is applicable to any algorithm

that updates the h-values using the equation:

h(s) := min
t∈∂L

dL(s, t) + h(t), for every s ∈ L

where L is a set of states. We now briefly describe two algorithms proposed in the

literature that use this equation for its learning phase, and describe the empirical results

obtained on the same experimental setting we described in the previous section.

2.6.1. LRTA*-LS

LRTA*-LS (Hernández & Meseguer, 2007)—shown in Algorithm 6—is a real-time

heuristic search algorithm that differs from LSS-LRTA* mainly in how it builds the

region of states for the update. In each iteration, LRTA*-LS builds a learning space,

denoted by I in Alg. 6. It does so by running a breadth-first search from the current

state, which will add a state s to I if h(s) is not justified by any of its successor states

outside of I. Just like LSS-LRTA*, LRTA*-LS updates the h-values of states in I to

the maximum possible value that preserves consistency (Eq. 2.1; Alg. 4). Finally, in

the movement step, like LRTA*, it moves the agent to the best neighbor.

Note that both LSS-LRTA* and LRTA*-LS update equations are exactly the same

and as such the same algorithm (Modified Dijkstra’s Algorithm) is used to update the

region. To implement lookahead update in LRTA*-LS we simply modify the Dijkstra’s

algorithm to multiply arc costs by w. In addition, we modify the way states are added

44



Input: A search problem P , a heuristic function h, and a parameter k
1 while the agent has not reached a goal state do
2 Update: Build a set of states I as follows. Initialize a queue Q as

containing the current state. Let I := ∅. Now, until |I| = k or Q is empty,
pop an element s from Q, and if h(s) < c(s, t) + h(t) for every
t ∈ Succ(s) \ I, then (1) add s to I, and (2) push to Q all successors of s not
in I. Finally, update the h-values of every state s ∈ I such that

h(s) := min
t∈∂I

dI(s, t) + h(t). (2.26)

3 Lookahead: Let the current state be s. Set next to
arg mint∈Succ(s) c(s, t) + h(t).

4 Movement: Move the agent to next, observe the environment and update
the costs of the search graph when new obstacles are found.

5 end
Algorithm 6: LRTA*-LS

to the learning space accordingly, by considering wc instead of c in the inequality used

as a condition in the update step. We call the resulting algorithm wLRTA*-LS. Notice

that Theorem 2.3 applies directly to wLRTA*-LS.

2.6.1.1. Empirical Evaluation of wLRTA*-LS

We use the same experimental setting used in the wLSS-LRTA* evaluation. Figure

2.8 shows the results for wLRTA*-LS. The following can be observed in the plots:

• In Game maps when the weight value increases from 1 to 4 average solution

cost decreases (except for lookahead equal to 4 where improves only until

lookahead = 2). When the weight increases over 4 the solution cost increases.

This is due to the fact that wLRTA*-LS does not move always to the best

state in the learning space. Section 2.7 discusses this in more detail.

• When the lookahead value increases the solution cost tends to decrease for

almost all weight values tested. There are a few exceptions; for example, when

the lookahead parameter is equal to 4. Such a behavior will be discussed in

detail in Section 2.7.

45



10,000

50,000

100,000

260,000

500,000

1,200,000

3,000,000

 1  2  4  8  16  32  64  128  256  512

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128  256  512

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

(a) Game Maps (b) Mazes

Figure 2.8. Solution cost versus lookahead parameter (k) obtained by
wLRTA*-LS in game maps and mazes.

• We do not include plots for total time since the total search time behaves

similar to LRTA*-LS (Hernández & Meseguer, 2007): the total search time

first decreases when the lookahead value increases (except for some small

lookahead values where total search time increases, for instance lookahead

value equal to 4) and from certain lookahead values the total search time

smoothly increases when the lookahead value increases. When the weight

value increases the total search time decreases for small weight values, and

from greater weight values, the total search time increases.

The results show that the use of weights in wLRTA*-LS could have positive con-

sequences. The solution cost and the total search time are improved for some weight

values.

2.6.2. daLSS-LRTA*

Depression-Avoiding LSS-LRTA* (Hernández & Baier, 2012), daLSS-LRTA*, is

variant of LSS-LRTA* which, in each movement step, instead of moving the agent to

the state of lowest f value in Open, it moves it to the state of lowest f -value among

those whose h value has changed the least. More specifically, after the A* lookahead

46



10,000

50,000

100,000

260,000

500,000

1,200,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

50,000

100,000

260,000

500,000

1,200,000

2,000,000

 1  2  4  8  16  32  64  128  256

A
v
e
ra

g
e
 S

o
lu

ti
o
n
 C

o
st

 (
lo

g
-s

ca
le

)

Lookahead

w=1
w=2
w=4
w=8

w=16
w=32

(a) Game Maps (b) Mazes

Figure 2.9. Solution cost versus lookahead parameter (k) obtained by
wdaLSS-LRTA* in game maps and mazes.

returns, the state chosen to move to, next, is given by:

next := arg min
t∈Γ

dClosed(scurrent, t) + h(t),

where Γ = {s ∈ Open | ∆(s) ≤ ∆(t), for all t ∈ Open}, and ∆(s) denotes h(s)− h0(s),

where h0(s) is the initial h-value of s. daLSS-LRTA* has been shown to have good

performance compared to LSS-LRTA* in path-finding tasks (Hernández & Baier, 2012),

close to one order of magnitude when time constraints are tight. As such we considered

interesting to see whether incorporating weights could improve this algorithm.

As is the case with all other algorithms, wdaLSS-LRTA* is obtained from daLSS-

LRTA* by simply multiplying the costs of the graph by w while running the Modified

Dijkstra’s algorithm. Notice that Theorem 2.3 does not apply directly to wdaLSS-

LRTA*. We left a formal proof out of the scope of this paper. In our experiment the

agent always found the solution and thus we conjeture that wdaLSS-LRTA* always

terminate.

2.6.2.1. Empirical Evaluation of wdaLSS-LRTA*

We use the same experimental setting used in the evaluation of wLSS-LRTA*.

Figure 2.8 shows the results for wdaLSS-LRTA*. The following can be observed in the

plots:

47



• In game maps the use of weights improves performance in up to about 50%

depending on the lookahead value used except when the lookahead value

is greater than 64. Unlike in the previous algorithms, we do not observe

significant benefit or disadvantage of using a weight value greater than 2 over

using w = 2.

• In maze maps we only observe a minor improvement for lookahead value

equal to 1, for most weight values. For higher lookahead values we observe

a decrease in performance. This may be explained, again, by the weighted

update’s tendency to create blockages.

• We do not include total time plots because for all weight values tested the

total search time behaves similar to the original algorithm (daLSS-LRTA*

weight = 1)(Hernández & Baier, 2012): the total search time first decreases

when the lookahead value increases and from a certain lookahead values the

total search time increases when the lookahead value increases.

In summary, the results show that the use of weights in wdaLSS-LRTA* have

positive consequences in Game maps only. The solution cost and the total search time

are improved for most of the weight and lookahead values tested.

2.7. Discussion

Two of the results shown in the previous section could be seen as rather surprising.

First and foremost is the fact that plugging Weighted A*—an algorithm that yields

good results in Heuristic Search—into Real-Time Heuristic Search algorithms yields

poor results. The second is the anomalous behavior exhibited by LRTA*-LS for some

values of the k parameter. We analyze both of these issues below.

48



2.7.1. Weighted A* in Real-Time Heuristic Search

As seen in the last section, LSS-LRTwA* has very poor performance as w increases.

Such finding is interesting, as it shows that the benefits of weighted A* cannot be

immediately leveraged into Real-Time Heuristic Search.

Even though we do not have formal proofs that show why this happens we think two

factors may play an important role. The first factor comes from a known property of

Weighted A*: the solution cost typically increases as w increases. As such, it should not

be surprising that worse intermediate solutions are returned by each of the calls in the

lookahead step, which could explain why more costly solutions are found. Furthermore,

since the number of expanded nodes in each search episode is constant (it is equal to the

k parameter), using Weighted A* does not yield any time benefits either per lookahead

step. Since the solution found is longer, more iterations of the algorithm are needed,

which explains the increase in total time.

The poor performance of LSS-LRTwA* may also be explained by the quality of

learning, which, at least in some parts of the learning space, is worse than when using

LSS-LRTA*. In fact, assume the agent is in state s and that we want to construct a

learning space of size k around s. The next theorem states that the region built by

expanding k nodes using A* is the one that maximizes the increase of the h-value of s.

In other words, such a region maximizes learning in s.

Theorem 2.7. Let k be a natural number, h be a consistent heuristic, and s ∈ S be

such that sg is at least at k edges away from s. Furthermore, let ∆h(s, L) denote the

amount by which the h-value of s increases after learning (i.e. ∆h(s, L) = mint∈∂L[h(t)+

dL(s, t)]− h(s)). Consider the following optimization problem:

max
s∈L

∆h(s, L), subject to s ∈ L and |L| = k.

Then the maximum is attained when L is the Closed list of an A* search just after

Closed reaches size k.

49



Proof. Let L be set of states in the Closed list of an A* started at state s when

Closed reaches size k. Notice that Closed actually reaches size k because sg more than k

steps aways and thus sg cannot be in Closed. Recall that A* with consistent heuristics

does not reopen states thus after k iterations of A*’s main loop the Closed list indeed

has size k.

We now prove that if we chose a region of states different from L then the amount

of learning given by such a region is not greater than the amount obtained given by

L. Indeed, let I be such that I 6= L, such that s ∈ I, and such that |I| = k. Let

t1 = s, t2, ..., tk be the order in which the elements were inserted in L by A*. Let t be

the element of {t1, .., tk} with lowest index such that t 6∈ I. By definition, t ∈ ∂I. Let

f ∗ be the f -value of state that would have been expanded in the (k+ 1)-th iteration of

the A* run. Note that since h is consistent,

f ∗ = min
u∈∂L

h(u) + dL(s, u),

Also due to the fact that h is consistent, we have that

f(t) ≤ f ∗, (2.27)

because the f -values of expanded states cannot decrease through execution using con-

sistent heuristics.

On the other hand, since t ∈ ∂I,

min
u∈∂I

[h(u) + dI(s, u)] ≤ h(t) + dI(s, t) (2.28)

In addition, dL(s, t) = dI(s, t) because t was expanded via an optimal path (because h

is consistent) and I contains such a path. Then we have f(t) = h(t) + dI(s, t), which

allows us to write, using Inequation (2.28), that:

min
u∈∂I

[h(u) + dI(s, u)] ≤ f(t) (2.29)

50



30 34 38 42 30 34 38 42 30 34 38 42

20 24 28 38 20 24 28 38 20 24 28 38

28 48

10 14 24 34 10 28 48 34 10 28 48 34

20 40

0 10 20 30 0 20 40 30 0 20 40 30

74

30 34 38 42 30 34 38 42 74 34 38 42

80 68 96 78

20 24 28 38 20 24 28 38 80 68 28 38

50 68 40 56 96

10 14 24 34 10 50 68 34 40 50 68 34

40 50

0 10 20 30 0 40 50 30 0 40 50 30

Figure 2.10. First three iterations of two runs of wLRTA*-LS with w = 2
(left) and w = 4 (right) with parameter k = 4 in a 4× 4 grid. The grid is
8-connected, horizontal moves have cost 10, and diagonal movements have cost
14. Each cell shows the h-value before the update step in the lower-left corner,
and the h-value after update in the upper right corner. The black dot shows
the current position of the agent and the arrow shows the next cell chosen by
the algorithm. We assume that states are added to the queue Q in clockwise
order starting at 6 o’clock. The goal state is the state with heuristic value 0.
We observe that when w = 2 it takes 2 movements to reach the goal. On the
other hand, we observe that when w = 4 the agent moves away from the goal.
In fact, when w = 4 it takes the agent 7 moves to reach goal.

Adding Inequations (2.27) and (2.29), substituting f ∗ and f(t) and subtracting h(s)

we obtain:

∆h(s, I) = min
u∈∂I

[h(u) + dI(s, u)]− h(s) ≤ min
u∈∂L

[h(u) + dL(s, u)]− h(s) = ∆h(s, L),

which is what we wanted to establish. �

Since Weighted A*, given a bound of k expansions, generates a region different from

A*, we can infer that in some cases the learning performed in the current state is of

inferior quality. This suggests that part of the poor performance of LSS-LRTwA* may

be explained by its poor learning, since it is known that stronger learning yields better

performance in Real-Time Heuristic Search (see e.g., (Koenig & Likhachev, 2006)).

2.7.2. wLRTA*-LS for Low Values of k

Interestingly the decrease in the performance of wLRTA*-LS for k = 2 and k = 4,

in Game maps, can be explained in very simple terms. Such a bad behavior should be

expected whenever k is lower than the branching factor of the search problem. Indeed

when that is the case, wLRTA*-LS will update the heuristic value of only some of

51



the neighbors of the current state. Since in the movement phase wLRTA*-LS chooses

the position to move to from its immediate neighbors it could be the case that the

h-values of those neighbors are quite incomparable, because only some of them have

been updated using w. In these situations it could be that the algorithm chooses to

move away from the goal. Figure 2.10 illustrates how this phenomenon may affect

performance in 8-connected grid navigation.

wLSS-LRTA* does not have this problem, because it always chooses to move to

the best state in Open. Since the h-values of those states is not updated, they are

comparable. This observation suggests that wLRTA*-LS movement step could me

modified in order to move to the state from ∂I that justifies the h-value of the current

state. We decided to leave the implementation of such an algorithm out of the scope

of this paper. We conjecture that it will not exhibit performance degradation for low

values of k.

2.8. Conclusions and Future Work

We proposed two approaches that allow exploiting weights in Real-Time Heuris-

tic Search algorithms: weighted lookahead and weighted update. We incorporated

weighted update to LSS-LRTA*, a standard Real-Time Heuristic Search algorithm,

and showed it does not yield performance improvements. On the other hand, we incor-

porated weighted update to LSS-LRTA* and showed it may yield superior performance

of up to one order of magnitude in some path-finding benchmarks. Performance gains

were also observed when incorporating the technique to other algorithms like LRTA*-LS

and daLSS-LRTA*, although improvements on the latter algorithm are less impressive.

In addition we thoroughly analyzed some desirable properties of wLSS-LRTA*. In

particular, we prove that it terminates when a solution exists. Furthermore we prove

wLSS-LRTA* finds w-optimal solutions on convergence, but we also found bounds that

can be much tighter, and, indeed, under certain conditions, we found a bound on

solution quality that does not depend on w but only on features of the search graph.

52



Future work includes the incorporation of this techniques to other Real-Time Heris-

tic Search algorithms that do not use the Modified Dijkstra algorithm, like, for example,

RTAA* (Koenig & Likhachev, 2006). Another line of research has to do with how to

determine good values of w and whether or not good policies for adjusting the weight

dynamically can be devised. Regarding convergence behavior, it seems necessary to

study whether or not using dynamic weights will produce faster convergence results at

the expense of sacrificing solution quality.

53



References

Bulitko, V. (2004). Learning for adaptive real-time search. Computing Re-

search Repository , cs.AI/0407016 . Available from http://arxiv.org/abs/cs

.AI/0407016

Bulitko, V., Björnsson, Y., Sturtevant, N., & Lawrence, R. (2010). Real-time

heuristic search for game pathfinding. in book: Applied research in artificial in-

telligence for computer games. Springer USA.

Bulitko, V., Björnsson, Y., Sturtevant, N., & Lawrence, R. (2011). Real-time

heuristic search for game pathfinding. Springer.

Bulitko, V., & Lee, G. (2006). Learning in real time search: a unifying framework.

Journal of Artificial Intelligence Research, 25 , 119-157.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C. (2001). Introduction to

algorithms, second edition. The MIT Press and McGraw-Hill Book Company.

Edelkamp, S., & Schrödl, S. (2011). Heuristic search: Theory and applications.

Morgan Kaufmann.

Hart, P. E., Nilsson, N., & Raphael, B. (1968). A formal basis for the heuristic

determination of minimal cost paths. IEEE Transactions on Systems Science and

Cybernetics , 4 (2).

Hernández, C., & Baier, J. A. (2012). Avoiding and escaping depressions in real-

time heuristic search. Journal of Artificial Intelligence Research, 43 , 523-570.

Hernández, C., & Meseguer, P. (2007). Improving LRTA*(k). In Proceedings of the

20th International joint Conference on Artificial Intelligence (IJCAI) (p. 2312-

2317).

54

http://arxiv.org/abs/cs.AI/0407016
http://arxiv.org/abs/cs.AI/0407016


Koenig, S., & Likhachev, M. (2006). Real-time adaptive A*. In Proceedings of the

5th International joint Conference on autonomous agents and multi agent systems

(AAMAS) (pp. 281–288).

Koenig, S., & Sun, X. (2009). Comparing real-time and incremental heuristic search

for real-time situated agents. Autonomous Agents and Multi-Agent Systems , 18 (3),

313-341.

Koenig, S., Tovey, C. A., & Smirnov, Y. V. (2003). Performance bounds for plan-

ning in unknown terrain. Artificial Intelligence, 147 (1-2), 253-279.

Korf, R. E. (1990). Real-time heuristic search. Artificial Intelligence, 42 (2-3), 189–

211.

Likhachev, M., Gordon, G. J., & Thrun, S. (2003). ARA*: Anytime A* with

Provable Bounds on Sub-Optimality. In Proceedings of the 16th Conference on

advances in neural information processing systems (NIPS). Vancouver, Canada.

Pohl, I. (1970). Heuristic search viewed as path finding in a graph. Artificial Intel-

ligence, 1 (3), 193-204.

Richter, S., Helmert, M., & Westphal, M. (2008). Landmarks revisited. In Proceed-

ings of the 23rd aaai Conference on Artificial Intelligence (AAAI) (p. 975-982).

Chicago, IL.

Richter, S., Thayer, J. T., & Ruml, W. (2010). The joy of forgetting: Faster

anytime search via restarting. In Proceedings of the 20th International Conference

on automated planning and Scheduling (ICAPS) (p. 137-144).

Rivera, N., Baier, J. A., & Hernández, C. (2013). Weighted real-time heuristic

search. In Proceedings of the 10th International joint Conference on autonomous

agents and multi agent systems (AAMAS). St. Paul, MN.

Rivera, N., Illanes, L., Baier, J. A., & Hernández, C. (2013). Reconnecting with the

ideal tree: An alternative to heuristic learning in real-time search. In Proceedings

of the 6th symposium on combinatorial search (SoCS).

55



Shimbo, M., & Ishida, T. (2003). Controlling the learning process of real-time

heuristic search. Artificial Intelligence, 146 (1), 1-41.

Wilt, C. M., & Ruml, W. (2012). When does weighted a* fail? In Proceedings of

the 5th symposium on combinatorial search (SoCS).

Zelinsky, A. (1992). A mobile robot exploration algorithm. IEEE Transactions on

Robotics and Automation, 8 (6), 707-717.

56


	ACKNOWLEDGEMENTS
	List of Figures
	ABSTRACT
	RESUMEN
	Chapter 1. INTRODUCTION
	1.1. Introduction
	1.1.1. State Space Search Problems
	1.1.2. Examples
	1.1.3. Exploiting the heuristic function: The A* Algorithm
	1.1.4. Real-Time Heuristic Search

	1.2. Thesis work
	1.2.1. Objetives
	1.2.2. Approach
	1.2.3. Results
	1.2.4. Conclusion and Future Work


	Chapter 2. Article Submitted to Artificial Intelligence
	2.1. Introduction
	2.2. Background
	2.2.1. Real-Time Search

	2.3. Weighted Real-Time Heuristic Search
	2.3.1. Weighted Lookahead
	2.3.2. Weighted Update

	2.4. Theoretical Analysis
	2.4.1. Properties for a Single Run
	2.4.2. Properties for Multiple-Trial Runs

	2.5. Empirical Evaluation of wLSS-LRTA* and LSS-LRTwA*
	2.5.1. Weighted Lookahead
	2.5.2. Weighted Update
	2.5.3. Convergence Evaluation

	2.6. Incorpoating Weighted Update into Other Real-Time Heuristic Search Algorithms
	2.6.1. LRTA*-LS
	2.6.2. daLSS-LRTA*

	2.7. Discussion
	2.7.1. Weighted A* in Real-Time Heuristic Search
	2.7.2. wLRTA*-LS for Low Values of k

	2.8. Conclusions and Future Work

	References

