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ABSTRACT

The healthcare system is a service industry that requires quality planning due to the

relevance in its operations. In particular, public hospitals face constant pressure to be

cost-efficient. A central process to help manages the hospital’s operations is admission

planning, which aims to ensure timely access and efficient use of resources. However,

several sources of uncertainty and resource limitations challenge the accomplishment of

those objectives. Besides, similar to many industries, the hospital’s long-term decisions

are based on aggregated plans, which should be fulfilled in the short term, subject

to uncertainty. Since no coordination between temporal levels is guaranteed, several

inconsistencies may arise, such as unnecessary waiting times, rejections, and even early

death of patients.

This thesis focuses on assessing the problem of temporal consistency in the admission

planning problem, which is subject to uncertainty and constrained for bed capacity. The

problem dwells on how to develop a tactical plan that considers the impact of operational

decisions while guaranteeing feasibility. The main objective is to model and solve a

hierarchical decision-making process that integrates the tactical and operational levels of

planning to enhance service quality and efficient use of resources.
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The research conducted in this thesis contributes to providing efficient decision

frameworks to solve the admission planning problem. We consider optimization methods

under uncertainty in a multi-stage fashion to improve consistency and coordination of

planning. A bi-objective two-stage stochastic approach is developed to study allocation

decisions under demand and bed availability uncertainty and assess the trade-off between

patient and hospital perspectives. Since the access to complete information is often

limited, an adaptive distributionally robust optimization approach is proposed to study

allocation and scheduling decisions. Partial distributional information of the patient length

of stay is considered and modeled through an enhanced formulation for service-time-

type constraints. The approach allows evaluating the balance between robustness and

consistency.

Through extensive numerical studies and validation using real data, we show that

efficient planning is obtained by adopting a hierarchical stochastic framework of decision.

The framework minimizes the substantial inconsistencies involved in admission planning.

Managerial insights are provided for tactical-operational planning.

Keywords: hierarchical planning, intertemporal planning, admission planning,

uncertainty, robustness, healthcare, capacity planning.
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PLANIFICACIÓN DE ADMISIÓN EN SALUD:
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ANA BATISTA GERMÁN

RESUMEN

El sistema de salud es una industria de servicios que requiere planificación de calidad

debido a la relevancia en sus operaciones. En particular, los hospitales públicos enfrentan

presión constante para ser eficientes. Un proceso clave que gestiona las operaciones

hospitalarias es la planificación de admisiones, que tiene como objetivo garantizar acceso

oportuno y uso eficiente de los recursos. Sin embargo, varias fuentes de incertidumbre y

limitaciones de recursos desafían el logro de esos objetivos. Además, similar a muchas

industrias, las decisiones de largo plazo del hospital se basan en planes agregados que

deben cumplirse en el corto plazo, el cual está sujeto a incertidumbre. Dado que no se

garantiza coordinación temporal, pueden surgir varias inconsistencias, como tiempos de

espera innecesarios, rechazos e incluso muerte prematura de los pacientes.

Esta tesis evalúa el problema de consistencia temporal en el problema de planificación

de admisiones, el cual está sujeto a incertidumbre y limitado por la capacidad de camas.

El problema radica en cómo desarrollar un plan táctico que considere el impacto de

las decisiones operativas mientras que garantice su viabilidad. El objetivo principal es

modelar y resolver un proceso jerárquico de toma de decisiones que integre los niveles

táctico y operativo para mejorar la calidad del servicio y el uso eficiente de los recursos.

xviii



La investigación contribuye a proporcionar marcos de decisión efectivos para resolver

el problema de planificación de admisiones. Consideramos métodos de optimización

bajo incertidumbre en múltiples etapas para mejorar la consistencia y coordinación de la

planificación. Se desarrolla un enfoque bi-objetivo estocástico en dos etapas para estudiar

las decisiones de asignación, considerando incertidumbre de la demanda y disponibilidad

de camas y evaluar el trade-off entre la perspectiva del paciente y la del hospital. Dado

que el acceso a información es limitado, también se propone un enfoque de optimización

robusta distribucional adaptativa para estudiar decisiones de asignación y programación.

Se considera información parcial distribucional del tiempo de estadía, modelado a través

de una formulación mejorada para restricciones de tipo de tiempo de servicio. El enfoque

permite evaluar la relación entre robustez y consistencia.

Mediante extensos estudios numéricos y validaciones con datos reales, demostramos

que se obtiene una planificación eficiente adoptando un marco de decisión estocástico

jerárquico. El marco es capaz de minimizar las inconsistencias implicadas en la

planificación de admisión. Se proporcionan lineamientos de gestión para planificación

táctica-operativa.

Palabras Claves: planeación jerárquica, planeación intertemporal, planeación de ad-

misión, incertidumbre, robustez, salud, planeación de capacidad.
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Chapter 1. INTRODUCTION

This thesis’s primary purpose is to study the problem of temporal consistency in

decision-making for admission planning under bed capacity limitations. We aim to

model and solve a hierarchical decision-making process at the tactical-operational levels

to guarantee the expected levels of service and resource utilization.

Section 1.1 provides an overview of the healthcare system, its main characteristics,

and its concepts. This section also introduces the admission planning problem within

healthcare capacity planning, which is the focus of this thesis. Section 1.2 describes

intertemporal planning decisions. Section 1.4 presents the thesis motivation and scope

of study. Section 1.5 provides state of the art. Section 1.6 states the thesis hypothesis and

objectives. Finally, Section 1.7 presents the structure of the thesis, a summary of each

chapter’s content, and the contributions.

1.1. Healthcare system: Overview

The healthcare system is a socioeconomic service industry that comprises complex

and costly operations. During the past decades, health care providers have faced

government pressure to improve efficiency and quality of care due to the rising

expenditures. In Chile, for instance, health costs accounted for 6.7% of the Gross

Domestic Product (GDP) in 2010; in 2018, it increased to 8.9%. In the United States,

the increase has been even more relevant; It accounted for over 14% of the GDP in 2018

compared to 8% in 2010 (OECD, 2020), and it is expected that these rates continue to

boost. The aging population, the increase of chronic care demand, and the gap between

technology development and efficiency improvement are the leading causes of the rising

expenditures, in a system with limited resources and uncertainty (Reid & Grossman,
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2005). In addition, as mentioned in Brailsford and Vissers (2011) the service concept in

healthcare has changed from focusing only on productivity improvement to find a balance

between service quality and efficiency. Thus, it is crucial to ensure the quality of care

achieved through efficient planning and control of resources.

The structure of the healthcare system varies among countries according to particular

needs and provision of resources. For instance, countries with market competition such as

the United States are focused on service improvement; on the contrary, countries based on

budgeting seek to improve resource efficiencies, such as most European countries, Chile,

Canada, and Australia (Brailsford & Vissers, 2011).

Independently of its structure, according to Fanjiang et al. (2005), the healthcare

system is composed of four interrelated elements:

(i) the patient,

(ii) the care team (e.g., care providers, physicians, family),

(iii) the organization (e.g., hospitals, clinics, nursing homes), and,

(iv) the environment (e.g., regulators, insurers).

The improvements implemented in each element will have a significant impact on the

service level offered to patients, and the efficiency in the use of resources. In particular,

hospitals are a critical area because it is where the highest healthcare system expenses are

generated.

The hospitals provide the infrastructure for healthcare delivery. It comprises the

decision-making systems, information systems, operating systems, and processes needed

to provide quality care (Reid & Grossman, 2005). Depending on the source of funding,

hospitals can be classified into public and private institutions; the former is publicly funded

by the government, while the second recovers its costs through service-based payments

schemes such as private insurance companies and self-pay (Vijayakumar et al., 2013).



3

Thus, public hospitals have to manage the system operations depending on the annual

budget limits determined by the government.

The management of hospital operations comprises several managerial areas: medical

planning, materials planning, financial planning, and resource capacity planning (Hans et

al., 2012). Medical planning is related to decisions taken by clinicians, such as medical

protocols and diagnosis planning. Material planning refers to the acquisition of goods

needed to perform health care. Financial planning addresses the management of costs and

revenues, from investment decisions to the billing process. Finally, resource capacity

planning concerns decisions from capacity dimensioning to resource scheduling, e.g.,

workforce, equipment, and facilities.

From the capacity planning perspective, a hospital can be thought of as a network

of interrelated processes and services whose capacity is finite, and patients are the main

flow and source of resource consumption. The authors in Gemmel and Van Dierdonck

(1999) compare a hospital to a manufacturing system that is conformed by heterogeneous

jobs, processes that are initiated by the customer and, the throughput times are short.

Additionally, the demand (i.e., the patient) is time-dependent, the production and

consumption have to be performed simultaneously, and the unit to be produced is

decomposable. Despite the similarities with other industries or commercial services,

hospital management is different because human beings are the dominant factor of

improvement. The care is the product of the system, and the health professionals are

the producers (Rauner & Vissers, 2003). Unlike manufacturing industries, care is not a

commodity that can be stored. The mismatch between capacity and demand can only be

managed with the use of slack capacities or buffers of patients before being admitted to

the hospital (i.e., waiting lists) or after being admitted (i.e., waiting times) (J. M. Vissers

et al., 2001).
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The resource capacity planning in hospitals implies several processes, including staff

planning, equipment dimensioning, and admission control. Of particular importance is

the admission control process as it is a central process that impacts hospital operations

and, therefore, costs and profit. As stated in the taxonomy of Hulshof et al. (2012),

the admission control process tackles decisions at different care services and planning

levels. In the next section, we describe the admission process as a dependency of capacity

planning.

1.1.1. Admission control in healthcare systems

The admission control is a critical process within healthcare capacity planning that

aims to ensure timely access and efficient use of resources. The Admission Planning

Problem (APP) is a subtask of the admission control process, that seeks to smooth the

workflow of patients and to reduce waiting times, delays, and cancellations. Coping with

variability in patient arrival, patient’s stay, and resource utilization is the main challenge.

Three main concepts drive the admission decisions in hospitals:

(i) the type of care: it accounts for the classification of care services, mainly

subdivided into outpatient and inpatient. The former is related to services

that do not require hospitalization but medical attention or treatment, such as

ambulatory care, home care and, residential care. On the other hand, the latter

accounts for services in which the patient needs hospitalization and will stay on

a bed for a period according to their clinical condition, for instance, emergency

care, surgical care, inpatient care,

(ii) the level of care: it defines the patient’s acuteness, that is subdivided into

primary, secondary, and tertiary. Primary care is the lowest level of acuity and

is usually served in the outpatient service. The secondary and tertiary levels
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of planning are for patients with pathologies that require hospitalization, and it

concerns services in inpatient care, and finally,

(iii) the available resources: it varies regarding the type of care, for instance, doctor,

nurses, specialized equipment (e.g., MRI, X-ray, scanner), facilities, operating

rooms and, beds.

According to the type of care (i.e., outpatient, inpatient), the admission process

accounts for different requirements. In the outpatient setting (i.e., primary care), the

resources are mainly physicians and medical equipment. Also, most of the patients require

fixed time length of services; thus, the care is divided into time slots of the same length. On

the contrary, in the inpatient service (i.e., secondary and tertiary care), the patient service

time, commonly known as the Length of Stay (LoS), tends to be random according to the

patient’s diagnosis and, therefore it affects the use of resources by causing fluctuations

of capacity availability. For the inpatient service, the primary resources are bed capacity,

medical staff, and operating room. Traditionally, bed capacity has been the main unit of

planning in a hospital since it affects spending, quality of care, and patient accessibility

(Green, 2002). Overall, the inpatient setting is more challenging to manage than the

outpatient since it involves more complex patient care (Pierskalla & Brailer, 1994), and

therefore, more data and efficient information systems are needed.

The admission planning in the inpatient setting generally considers two categories

of patients, unscheduled and scheduled; the first one refers to the unplanned admissions

and is commonly termed as emergency patients, while the latter concern the elective

admissions of patients who have previously visited a specialist and need hospitalization.

The admission is usually managed by a Central Admission Department (CAD), that

receives requests for admission from different departments in the hospital, i.e., emergency,

surgery, and other clinical services, to be allocated in the corresponded care units such as
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Intensive Care Unit (ICU), intermediate unit, and nursing wards. The CAD also receives

requests for admission from other hospitals in the healthcare network. The beds that

belong to each area are categorized according to the level of diagnosis acuity; the ICU

is for patients with a high acuity level, while the intermediate unit is a previous step to

occupy the general nursing wards.

The general scheme of the admission process and patient flow in the inpatient service

is illustrated in Figure 1.1, in which several flows can be identified. The unscheduled

(i.e., emergency) patients get into the emergency room and could require surgery in

the Operating Room (OR), and the use of the Post-Anesthesia Care Unit (PACU). The

scheduled patients may need the OR before being allocated in the corresponding units or

going directly to the nursing wards. Two main storage points or waiting areas (inverted

triangle symbol) can be identified in the admission flow, indicating the list of patients

waiting to be admitted to the hospital. The waiting list corresponds to requests for

admission of different care units in the hospital. Note that there is no waiting list for

unscheduled patients because those patients are supposed to be served as soon as possible.

The first waiting list point (intersection between scheduled and operating theatre block) is

for scheduled patients waiting for surgical intervention and, the second one is for patients

waiting to be allocated in a nursing ward.

During the hospitalization and according to the patient’s condition and the availability

of beds, he/she may be transferred between care units. The process concludes with

the patient discharge from the nursing ward, which can be due to a voluntary decision,

medical referral, or by death. Additionally, a patient may be sent to an external location,

i.e., a private or public hospital in the healthcare network. The hospital can also receive

applications for admission from external hospitals. Figure 1.1 illustrates that overall, all

of the admission flows require a nursing ward to be allocated. The wards correspond to
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FIGURE 1.1. General scheme of the admission process and patient flow in hospitals.

the most significant mass of allocation in the hospital; therefore, it needs more attention

in the admission process because it can cause bottlenecks in the inpatient flow.

As seen in the inpatient process flow, admission decisions are complex since they

involve different interrelated processes. In general, the admission decision process can be

classified into two phases: allocation and scheduling. Allocation decisions aim to decide

which patient to admit considering resource availability. Scheduling decisions address the

problem of determining the time and date of admission for assigning patients to beds or

rooms for the duration of their stay. Such decisions, similar to manufacturing and other

service settings, could be described according to a temporal hierarchy.

In the capacity planning and control framework applied to healthcare presented in

Hulshof et al. (2012), the authors considered the well-known hierarchical decomposition

of decisions as defined in Anthony (1965); strategic, tactical and operational, but

subdividing the operational level in offline and online. The hierarchical decisions are

described as follows:
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(i) Strategic planning: This level considers a long horizon of multi-year planning

at an aggregated level. The admission decisions are related to service mix,

case mix, and capacity dimensioning of the hospital services. The performance

criteria involve the setting of service levels per patient group (i.e., waiting time,

cancellation rate, deferred admission), and the definition of resource utilization

targets (i.e., bed occupancy).

(ii) Tactical planning: The planning at this level considers mid-term decisions

on a monthly to a weekly horizon. It concerns decisions of determining the

mix of patients, i.e., which patient to admit and the definition of admission

policies for patient groups. It also determines capacity reserve rules for

unscheduled patients (i.e., emergency patients). In addition, this level of

planning involves decisions about where (i.e., bed, room/ward) to allocate the

patient, by considering several features such as hospital resource availability,

medical requirements, patient needs, among others.

The problem of bed allocation is a subproblem of the APP that has been

addressed in the technical literature as Patient Bed Assignment (PBAP). At the

tactical level, the PBAP defines aggregated scheduling policies of patient groups

to be allocated in rooms (i.e., patient-to-room). The performance measures are

related to the evaluation of the criteria previously established at the strategic

level, such as waiting time and bed utilization. The PBAP further considers

measures of patient throughput.

(iii) Offline-operational planning: it focuses on short-term decision-making in days

and up to a couple of weeks. The decisions stand for in advance planning,

usually related to decisions of scheduling individual patients, (who), to provide

dates and times (when), of admission in a more detailed fashion. At this

level, the PBAP determines scheduling policies and time allowances for patients
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to be assigned in a specific bed/room. The performance measures consist

of evaluating resource under-utilization and over-utilization metrics due to

fluctuations in bed utilization. Also, it evaluates measures of overstay and

overtime.

(iv) Online-operational planning: This level of planning refers to short-term

decisions on the day to hours of patient admission at a detailed level. The

decisions are made reactively to control unforeseen events such as the arrival

of emergency patients. It determines buffers for handling daily fluctuations and

the definition of priority rules of admission. The performance criteria are similar

to offline operational planning but are evaluated dynamically.

Decisions at the strategic level in public hospitals are defined by governmental

institutions that decide capacity levels and targets of resource utilization; thus, at this level,

limited flexibility can be achieved. The operational level also has low responsiveness

since the decisions have to be taken reactively, given that the upper levels decisions

impose constraints to the lower level planning. Then, in comparison to the strategic and

operational levels, the tactical planning, which lies in between, allows more flexibility,

focusing on operations/execution decisions. For example, at the strategic and operational

levels, capacity requirements are fixed; however, at the tactical level, temporary capacity

expansions, such as overtime or additional resources, could be added (Hans et al., 2012).

Improvements in terms of cost-efficiency are thus better implemented at the tactical-

operational (offline) levels of planning. Figure 1.2, summarizes the functions of each

decision level for the inpatient service’s admission planning problem.

From Figure 1.2, we observe that there is an evident interrelation between the

temporal levels. The strategic level focuses on aggregate long-term decisions, such as

sizing and case-mix planning, while the tactical-operational levels concern the execution



10

FIGURE 1.2. Temporal decomposition of the decisions in the APP.

of the processes. Since, at the strategic level, there is no detailed information available,

decisions are made with aggregate information. Then, at the tactical-operational

level, when the decisions are executed, the plan may result in inconsistencies. Such

inconsistencies, e.g., cancellations, patient diversion, waiting time, overstay, affect not

only the quality of patient care but also the performance in the use of resources. Therefore,

the admission plan must be executed, guaranteeing coordination between the different

temporal levels.

1.2. Intertemporal planning

The planning process in most industries is usually managed hierarchically. In practice,

at upper levels, industries perform aggregate plans to anticipate demand and establish

optimal production and inventory (Nam & Logendran, 1992). Then, in the short term, it is
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necessary to perform scheduling tasks. As the aggregation level decreases, the aggregate

plan may not be directly feasible due to variability and uncertainty. Several issues may

arise if the decisions at each level are carried out independently because higher levels

impose constraints on lower-level actions. In other words, lower level decisions can be

used to reevaluate the decisions taken at upper levels (Carravilla & de Sousa, 1995).

Therefore, there exists a need for coordination between the different levels of planning

to achieve a certain level of consistency and feasibility. This decision-making process is

known as hierarchical planning.

The hierarchical planning concept was first introduced by Hax and Meal (1975) in the

production and planning setting. The approach divides a set of problems in subproblems

to be solved sequentially. This method aims to achieve coordination between decision

levels, i.e., long-term aggregate planning with short-term disaggregate planning. Three

main concepts have been employed in the literature to define a hierarchical decision

process (Yan, 2000), namely, (i) product disaggregation that divides the production plan

into product types, families, and items to solve each problem sequentially (Bitran & Hax,

1977; Kira et al., 1997); (ii) process decomposition which is commonly applied in the

manufacturing setting divides the decision-making in sequential processes (Yan, Xia, Zhu,

Liu, & Guo, 2003), and (iii) temporal decomposition that consists of the decomposition of

the decisions within the planning horizon (i.e., strategic, tactical, operational), also known

as intertemporal planning (Lobos & Vera, 2016; Alvarez et al., 2020).

The application of the concepts above within a hierarchical decision approach has

shown several advantages in decision-making. According to Dempster et al. (1981), there

are two main advantages of using a hierarchical approach methodology:

(i) the reduction of complexity because it allows ensuring interaction between

subproblems.
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(ii) the management of uncertainty given that it postpone the detailed decisions at

lower levels to guarantee that decisions made at higher levels are consistent at a

certain cost.

Although a hierarchical approach provides several benefits, its application is prone

to cause, inconsistencies, infeasibilities, and suboptimality if it is not effectively

implemented (Beaudoin et al., 2008). The definition of such concepts is clearly explained

in Beaudoin et al. (2008); inconsistencies are the result of conflicting objectives at different

planning levels, infeasibility occurs due to information aggregation, and suboptimality

refers to the lack of quality interactions between decision levels.

Therefore, in order to achieve efficient planning, it is necessary to consider the

adequate methodology able to acknowledge coordination between decision levels for

conflicting objectives, reduce complexity, and that incorporates uncertainty for different

levels of disaggregation in the planning process. Optimization methods under uncertainty

within an intertemporal approach of decisions may provide the proper framework to

develop efficient planning.

1.3. Optimization frameworks for decision making under uncertainty

Optimization methods under uncertainty at different decision stages linked in time

have been shown to provide efficient planning (Bertsimas & Goyal, 2010). Accordingly,

within such a decision framework, strategic and tactical planning performed with data

aggregation under uncertain conditions and limited information at a lower level may

reduce the infeasibilities and inconsistencies typically found in the plan implementation.

Several optimization methodologies can be adopted. The most common being

Stochastic Programming (SP) and Robust Optimization (RO). Within stochastic

programming, Two-stage Stochastic Optimization (TSO) is a type of integrated approach
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in which decisions are divided into two stages (Birge & Louveaux, 2011). The first stage

is an aggregate level of decision and is taken before the realization of uncertainty. At this

stage, the impact of decisions at lower levels have to be considered. The second stage

captures the variations related to lower-level decisions, subject to uncertainty. In two-

stage optimization models, uncertain parameters are modeled as random variables, and

the probability distribution is assumed to be known.

In contrast to two-stage stochastic optimization, RO does not require detailed

probabilistic knowledge of the uncertain information. Such a feature allows the

problem’s solution to be independent of data variability, modeled within an uncertainty

set (Bertsimas et al., 2011). The decision-making can be sub-divided into a two-stage

or multi-stage framework, in which the decision variables can be adapted in response to

uncertain realizations (Ben-Tal et al., 2004).

Another methodology to study intertemporal problems is Distributionally Robust

Optimization (DRO), which can be seen as a generalization of two-stage optimization

and classical robust optimization (Wiesemann et al., 2014). In contrast to TSO and

RO, distributionally robust optimization captures the decision-makers ambiguity aversion

while assuming partial knowledge of the distributional characteristic of the uncertain

parameters.

The optimization methodologies mentioned above share several similarities and

differences, as well as advantages and disadvantages in its implementation. In Chapter

2, we explain in detail the theory of decision-making under uncertainty, including TSO,

RO, and DRO methodologies.
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1.4. Thesis motivation

The hospitals face constant pressure to be cost-efficient. In particular, public hospitals

are under governmental control on the expenditure and must guarantee high levels of

service and the fulfillment of resource utilization targets in a system with limited resources.

The improvement in resource utilization in hospitals plays a crucial role in determining

capacity decisions (e.g., medical staff, beds, equipment). Of particular importance in

hospital capacity planning is the admission planning process that aims to ensure timely

access and efficient use of resources. In this process, the beds are a critical resource since

they represent the place where the patients are allocated for their stay, and thus it serves as

a measure of hospital capacity (Green, 2002).

The decisions about the accomplishment of the level of service and resource

utilization are conflicting objectives. For instance, hospitals aim to obtain high bed

occupancy levels while patients expect to be treated with good service quality. However,

this objective is diminished when capacity levels are high since it restricts the admission

of new patients. Achieving these goals is particularly challenging because care is the

main factor in the delivery of health services, causing uncertainty in the decision-making

process. Additionally, due to the technological advances and the increase in acute care

demand, the inpatient admissions are growing globally and, therefore, the management

costs. In the United States, for instance, the number of admissions in 2019 increased by

one million patients compared to 2018 (American Hospital Association [AHA], 2019),

which represented an expense of over $1 trillion in admitted patients. Despite this,

according to the Organisation for Economic Co-operation and Development (OECD), the

number of beds has dropped in almost all countries, on average, from 5.5% per 1000

inhabitants in 2000 to 2.5% in 2018 (OECD, 2020). Thus, the mismatch between demand
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and capacity, along with the system uncertainty, complicates decision-making in service

delivery.

Several drawbacks can be identified as a result of the inefficiencies in the admission

process, such as cancellations, patient diversion, the use of temporal capacity, fluctuations

in bed utilization and, prolonged waiting time, which by all means affect the level of

service offered to patients as well as the health spending. For instance, in Chile, patients

in the emergency service wait over five days to be admitted to a ward bed. Additionally, by

2017, more than 270,000 patients were held on the waiting list, of which most of them have

been waiting for more than a year (Bedregal et al., 2017). Even more regrettable, in the

first half of 2018, about 9000 people died while waiting on the waiting list, representing

a 54% increase compared to 2017 (Rebolledo, 2019). Such trends suggest the need to

develop robust admission plans to improve the hospital’s performance through resource

utilization and service level.

In order to perform an admission plan, it is necessary to have information about:

(i) how much capacity is needed, (ii) how much capacity is available, and (iii) which policy

to implement to achieve the expected goals (Groot, 1993; Gemmel & Van Dierdonck,

1999). However, hospitals usually lack relevant information to develop robust plans,

mainly due to several sources of uncertainty revealed at the operational level and are

difficult to estimate, such as bed availability, arrival pattern of unscheduled patients,

and the patient’s length of stay. Note that as stated in Joosten et al. (2009), such

variations could be artificial, which must be eliminated, e.g., scheduling methods of

medical appointments, and natural, which can be administered but not eliminated, e.g.,

individual differences between patient’s diagnostic.

The management of patient admissions in most hospitals is reactive rather than

proactive. The current practice is based on operational strategies over fixed decisions
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established strategically, which may lead to suboptimal results. For instance, hospitals set

targets of bed occupancy at the strategic level, expected to be achieved at the operational

level. This policy may result in low capacity availability at the operational level to admit

the uncertain demand from unscheduled patients. Note that while scheduled patients

can be held in waiting lists (i,e., capacity buffers), the unscheduled patients have to be

served immediately; hence, slack capacity is needed to avoid bed shortages and reduce

delays, waiting time, and transfers. Another common strategy in hospitals to deal with

the variations and uncertainty is to increase bed capacity. However, this strategic measure

may result in performance deviations (i.e., under-utilization and over-utilization) if the

necessary adjustments are not made at lower levels, i.e., tactical-operational.

The above considerations lead us to infer that, to derive robust admission plans and

to ensure feasibility and coordination in the planning process, the plan carried out at the

aggregate level needs to be consistent with the disaggregated plan in the short term, subject

to uncertainty and variability.

In the past years, operational researchers have shown increasing interest in healthcare

applications aiming to improve the quality of care and efficiency in its complex operations

(Green, 2012). In particular, the APP with bed capacity constraints has been studied

extensively in the technical literature (He et al., 2019; Teixeira & De Oliveira, 2015;

Hulshof et al., 2012), due to its impact in hospital operations. The studies focus

on minimizing patient overcrowding in the service units, the number of canceled

interventions, and transfers due to the lack of beds. From the mathematical modeling point

of view, the APP has the structure of the bin-packing model, which is known to be NP-hard

(Korf, 2002). Due to its combinatorial complexity, most existing models are heuristics,

and metaheuristic-based methods used approximation algorithms (see, e.g., Demeester et

al. (2010); Ceschia and Schaerf (2011, 2012); Turhan and Bilgen (2017); Guido et al.
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(2018)). Although the models capture interesting characteristics of real problems in size

and structure, they neglect the guarantee of temporal consistency in the decision-making

and the uncertain nature of the APP.

Other contributions focus on modeling the variability and uncertainty of parameters,

such as patient arrival, length of stay, and capacity availability. The most common applied

approaches are simulation and scenario-based frameworks (He et al., 2019), focused on a

single level of decision (e.g., strategic and operational). Other studies consider analytical

approaches such as queuing theory (Green & Nguyen, 2001; Utley et al., 2003; Bekker

& Koeleman, 2011) and Markov Decision Process (MDP) models (Helm, AhmadBeygi,

& Van Oyen, 2011; Barz & Rajaram, 2015; Samiedaluie, Kucukyazici, Verter, & Zhang,

2017; Li, Liu, Geng, & Xie, 2018), because they allow modeling the admission dynamics

at the operational level. Still, such models are based on the assumption of a steady-

state system and applied to a single hospital unit, due to the “curse of dimensionality”;

a common drawback in such optimization models.

Finally, a small number of studies have applied, stochastic optimization (Min & Yih,

2010b), robust optimization (Mittal, Schulz, & Stiller, 2014), and distributionally robust

optimization (Meng et al., 2015; Mak et al., 2014; Zhang et al., 2017), to improve hospital

admission planning under bed capacity constraints. In several fields, it has been shown that

such methodologies, when considered in a multi-stage fashion, guarantee consistency in

decision-making at different planning levels. See, for instance, Zymler (2010), Shang and

You (2018), Alvarez et al. (2020), for applied studies in risk management, manufacturing

processes, and forest industry, respectively.

Overall, despite the clear dependence between the different temporal levels of

decision, few contributions consider a hierarchical planning approach to perform

admission plans. Most research focuses on solving problems at a single level of
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decision, mostly the operational level (Hulshof et al., 2012). Thus, current literature lacks

coordinated decision frameworks, which provide feedback from lower levels (subject to

uncertainty) to higher levels to guarantee consistency of the global admission plan. In

healthcare capacity planning, these inconsistencies not only generate extra management

costs but also affect the service quality that translates into transfers, rejections, long waits,

early death, among others inefficiencies.

Summarizing, admission planning in public hospitals is complex due to the

uncertainty and limited resources. The uncertainty is mostly associated with natural

processes that can not be eliminated but managed. Another factor is that the critical

component to improve is the person’s well-being, which directly impacts their quality

of life. Also, the planning process is associated with decisions that impact public policies,

so the improvements to be implemented are limited by the national healthcare budget

expenses. While vast work has been done on bed capacity planning, the current state of

the art in the scope of the admission planning problem requires more integrated and robust

decision models to achieve the expected service level and resource utilization goals.

This dissertation focuses on the study of intertemporal planning for the admission

planning problem, which is subject to uncertainty and constrained for resource capacity.

We consider optimization methods under uncertainty in a multi-stage fashion to improve

temporal consistency and coordination at the tactical-operational levels. We account for

the inpatient service (i.e., secondary and tertiary levels of care) of public hospitals. The

ward beds - defined as an approximation of hospital capacity - are the primary resource of

planning due to its interaction with the overall flow of admission.

Some questions that arise are: (i) Which optimization methodologies under

uncertainty can better handle decisions in admission planning while finding a balance

between robustness and consistency? (ii) How to develop robust admission tactical plans
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consistent with the operational level? (iii) What is the trade-off between the level of service

offered to patients and resource utilization targets? (iv) How to improve the admission

process under limited distributional information of uncertainties?.

1.5. State of the art

The admission planning problem contributions comprise studies in many disciplines,

including operation research, statistics, public health, and medicine (Hall, 2012). Our

focus is on studies related to techniques in the field of Operations Research and

Management (OR/OM), which has been widely applied to healthcare services in recent

years. OR/OM provides the necessary tools and methods to support decision-making in

health care delivery, to improve the quality of services by considering limited resources.

The state of the art of the admission planning and control in the inpatient service

is sub-divided into three main streams: (i) surgery planning, through the management of

ORs; (ii) admission planning with bed capacity constraints; and (iii) surgery planning with

downstream capacities, e.g., beds. The streams share several similarities and differences

that we would like to highlight. The surgery planning stream focused on studies about

OR allocation and scheduling at different levels of planning (Cardoen et al., 2010).

Allocation decisions determine how many ORs to open and surgery-to-OR allocation,

while scheduling decisions assign time intervals between surgeries (typically single OR).

For the admission planning with bed capacity constraints, by contrast, allocation decisions

aim to decide which patient group (i.e., classified by specialty) to admit. Scheduling

decisions, in turn, address the problem of determining the time and date of admission

for individual patients, and the assignment of patients to beds or rooms for their stay.

In surgery planning, the ORs are resources that involve fixed and variable costs, so it

is necessary to decide which ORs to open at a specific time before scheduling. On the
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contrary, in admission planning, the beds are a fixed resource; thus, the decisions are

within a different scope.

The surgery problem has also been studied with downstream bed capacities (Beliën

& Demeulemeester, 2007; Beliën et al., 2009; Ceschia & Schaerf, 2016) aiming to level

bed occupation. Through these studies, it has been shown that the integrated approach of

master surgery scheduling with downstream bed capacities results in a better performance

of the planning system since they are related operations. Nevertheless, most of these

studies address bed allocation to a particular care service, usually ICU.

In this dissertation, however, we focus on studying a more general hospital system

where the admission process is managed by a central unit of planning that receives

admission requests from different care units. Therefore, it is expected to optimize the

overall admission process and not a particular case of single care service. Thus, we

are focused on the second stream, i.e., the admission planning problem in the inpatient

service with bed capacities. Notwithstanding, we have included the other research lines

in the literature review, since the mathematical modeling structure and scope are similar,

although the objectives differ in many ways.

This section provides a state of the art of the relevant literature related to this thesis.

Since there exists a vast distinction according to features and scope of decisions, we

firstly account for studies related to applications at each hierarchical decision level, (i.e.,

strategic, tactical, operational) in Subsection 1.5.1. Subsequently, in Subsection 1.5.2,

we describe studies considering integrated frameworks, i.e., papers that address the APP,

including more than one decision level by using methodologies under uncertainty. The

literature review is summarized in Table form at the end of each subsection, comparing

the main characteristics of the admission planning problem with the up-to-date state of the
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art. Finally, in Subsection 1.5.3, we discuss the main gaps and limitations identified in the

literature review.

1.5.1. The Admission Planning Problem

Within the OR/OM field, the APP has been studied at different temporal levels of

planning according to the scope of decisions. We employ the vertical axis of the taxonomy

presented in Hulshof et al. (2012) to summarize the main contributions and optimization

methodologies at each planning level for the inpatient service. Our classification is

a refinement of the capacity planning stream that mainly considers beds as planning

resources. Besides, we include some works that study ORs’ management due to its

interaction with admission decisions in the inpatient service and, therefore, similarities

in the modeling approach.

At the strategic level, admission decisions account for bed capacity dimensioning of

care services for long-term planning, based on resource utilization targets. Aggregated

historical data of patient arrival and LoS is used to establish bed requirements. At this

level, determining bed capacity is critical, given that it imposes constraints over the daily

use of beds at the operational level. Sizing decisions are commonly based on average

bed occupancy, historically defined as 85%. The bed occupancy target aims to measure

hospital performance from which government entities decide the number of beds to be

granted to a hospital or care unit. However, as stated in Green (2002), this indicator usually

gives the wrong idea of excess capacity, causing the reduction of beds, and therefore,

deficiency in the service offered to patients.

Simulation models have been applied to determine the size of care units or several

departments in a hospital, aiming to improve the patient flow and prevent blockage (Harper

& Shahani, 2002; Nguyen et al., 2005; Kokangul, 2008; Zhang et al., 2012). In Harper

and Shahani (2002), several admission policies are studied to improve hospital efficiency
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in terms of bed utilization and refusal rate. The authors emphasize the need to incorporate

the necessary details (e.g., random arrival and patient stay) to calculate bed requirements

in a hospital. For long-term capacity planning, Zhang et al. (2012) developed a simulation

model to determine the number of beds needed over a multi-year planning horizon, to

guarantee expected levels of waiting time. Overall, simulation techniques provide strong

scenario analysis capabilities to imitate the complex dynamic of healthcare systems. Still,

they are based on the assumption of full knowledge of the probability distributions and are

hard to validate. An extensive overview of the use of discrete event simulation for capacity

planning can be found in Günal and Pidd (2010) and Baru et al. (2015).

Queuing models also have been used to determine the size of a care unit. The main

advantage is that such models allow modeling time-dependent stochastic flows when

limited data is available. However, its primary assumption is based on the system’s steady-

state, which is not always applicable for finite planning horizons. The models assume

random arrivals according to a Poisson process and exponential distributions of the patient

LoS. For instance, Green and Nguyen (2001) proposed a queuing model to study how the

use of utilization targets affects admission delays. The authors found that using fixed

targets of resource utilization may lead to excessive delays for clinical units of small

size. Utley et al. (2003) aiming to reduce the number of cancellations for acute patients,

developed a queuing model to regulate the patient flow of acute and non-acute patients

by creating an intermediate care unit and determining its size. The reader is referred to

Lakshmi and Iyer (2013) for an extensive literature on queuing theory methods in bed

capacity planning.

The admission planning at the tactical level has the objective of providing patient

access (i.e., service concept) by controlling waiting and idle time and maximize resource

utilization. It also determines the mix of patients admitted in a time horizon considering
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resource utilization metrics and service-related metrics. Most of the studies have

focused on resource utilization rather than the service concept in the planning process

(J. M. Vissers et al., 2007). For instance, reference Adan et al. (2009) proposes a Mixed

Integer Linear Program (MILP) model to determine the mix of patients to be admitted

aiming to minimize the deviation for a targeted utilization considering different resources

in the patient flow (e.g., beds, operating room, and personnel staff). The authors conclude

that using stochastic values of the patient’s length of stay will result in a better balance of

resource use than the average length of stay. Similarly, Hulshof et al. (2013) studied an

integrative approach to allocating resource capacities (i.e., OR) to care processes. The

authors propose an iterative method based on MILP to determine the mix of patients

to be served, considering the performance measures of resource utilization and balance

workload.

Unlike focusing on improving resource utilization, the service concept is related to the

management of waiting times and priorities rules to admit patients differing by predefined

characteristics. To this matter, several schemes have been developed in the literature

to define the priority levels by patient type (Mullen, 2003). Thus, due to the patient

heterogeneity in the admission process, deciding which patient to admit is one of the

most challenging issues. The decisions have welfare implications that must be taken into

account. For instance, Testi and Tànfani (2009), and, Durán et al. (2017) evaluate the

welfare implications of patient allocation for the OR problem. The authors employed a

service measure to adjust the patient’s waiting time to prioritize their allocation.

Two major patient categories are considered in the literature: elective and emergency

patients. The planning of elective patients is more studied since it can be planned in

contrast to emergency patients that require dynamic allocation rules or reserve policies of

admission (Hulshof et al., 2016). Nevertheless, in practice, admission decisions concern



24

more than two categories of patients differing in their characteristics such as length of

stay, level of illness severity, and other clinical issues. A qualitative study by Gemmel

and Van Dierdonck (1999) states the importance of considering different patient types

in the admission process to capture the inherent variability in the use of resources. A

limited number of studies have developed the admission problem taking into account

this broad of patient categories. Relying on this idea, J. Vissers et al. (2005) analyzes

the APP considering ten patients types depending on the surgery duration and length of

stay for a cardiothoracic service. Min and Yih (2010a), on the other hand, sub-classifies

elective patients in urgent patient groups to achieve an optimal policy in operating room

scheduling. The authors highlight the dependence of different patient priorities in the

scheduling process.

Due to the complex interaction between scheduled and unscheduled patients,

allocation policies must be flexible to ensure service levels; the technical literature study

reservation policies to deal with this problem. For instance, Seung-Chul and Ira (2000)

applied bed reservation policies based on a multi-objective simulation method, which

measures different performance indicators simultaneously. The authors conclude that

there is not a dominant solution to the problem of bed allocation. However, they offer a

general solution scheme in which the trade-off is obtained between the impact on waiting

time for canceled surgeries and the occupancy rate. In order to determine the optimal

number of elective admissions, a queuing model is proposed in Bekker and Koeleman

(2011), considering variability in patient arrivals and LoS. Their experiments showed

that variability in admissions leads to higher variability in bed demand and more refused

admissions. The authors propose an admission policy to establish a smooth admission

pattern during the week to reduce bed utilization variation. Barz and Rajaram (2015)

studied admission planning as a MDP considering multiple resource constraints and
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uncertain care requirements. To address the curse of dimensionality, the authors propose

an Approximate Dynamic Programming (ADP) based on heuristics.

At the operational level, the contributions focus on developing operational strategies

on handling the patient’s over-occupation due to limited capacity. The operational

admission plan is carried-out weekly to daily and can be performed online or offline. The

former is implemented while the system is ongoing and requires dynamic allocation of

patients (see, e.g., X. Wang et al. (2018); Vancroonenburg et al. (2016)); the latter assumes

the admission requests are known before the plan is made and considers non-emergency

(elective) patients. Most contributions in the literature are focused on the offline models

because elective patients represent a more significant amount of admissions and, therefore,

more complexity in the decision-making. Within offline scheduling, studies concern the

application of transfer strategies and patient’s reassignment to other care units to manage

unit congestion, usually applied to individual care units in a hospital.

Different sources of variability and uncertainty are present in the operational

admission plan, such as patient arrival, capacity availability, and length of stay. Since

uncertain parameters are difficult to estimate, most contributions consider estimates of

the probability distributions of the uncertain parameters (He et al., 2019). In this regard,

Kortbeek et al. (2015) proposed an analytic method to predict bed availability on an hourly

basis for the problem of nurse staffing. The method is an interesting approach to be used

as an input for operational models to improve the estimation precision of the uncertain

parameter. In order to address variability, most studies apply analytical approaches such

as queuing theory and MDP models (Samudra et al., 2016) because they allow modeling

the admission dynamics at the operational level. Still, it can only be applied to an

individual care unit or hospital department. For instance, Gallivan et al. (2002) proposed

a queuing model to study the interactions between the LoS variability, booked admission,
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and capacity requirements for an ICU. The authors conclude that a high degree of reserve

capacity is required to cope with variability in the LoS.

To capture the dynamics of the admission process and manage the congestion in care

units, Thompson et al. (2009) studied the relocation problem solved as a finite-horizon

MDP. It was concluded that proactive patient relocation reduces waiting times, which

contributes to both quality and efficiency. A similar analysis is found in Dobson et al.

(2010) in which a discrete Markov chain approach is proposed. The objective is to evaluate

the effect of transferring patients to other care units under different arrival patterns and

capacity availability. A real-time allocation model was developed considering ICU beds.

Different scenarios were analyzed to determine the effects of LoS variation on the patient’s

bumping decisions. A more detailed approach is studied in Hulshof et al. (2016) using an

ADP framework. Many features are included that make the approach realistic to be applied

in real-world situations. The authors concluded that ADP models are suitable for tactical

admission planning, and can be used to readjust the plan by including new information

related to arrivals and capacity availability.

Studies in dynamic strategies of bed reservations are found in Helm et al. (2011).

The authors propose an analytic approach of MDP to smooth resource utilization by

considering the beds as a shared resource of emergency and elective patients. The priority

rules of admission are dynamic and related to the patient’s waiting time in a queue. The

authors use the results as an input to the strategic plan in a MILP model to obtain optimal

admission schedules. A similar study is proposed in Liu et al. (2019) in which the authors

also consider the utilization of inpatient beds for patient admission but simultaneously with

OR utilization to study a two-stage hospital service system, considering ward transfers.

In general, studies applying dynamic approaches employing a MDP model are useful

to capture the admission dynamics at the operational level, especially to determine whether
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or not to accept patients belonging to a waiting queue. However, it is usually assumed full

knowledge of the probability distribution of the uncertain parameters; Poisson arrivals and

exponential distributions of the patient length of stay. See Gupta and Denton (2008) and

He et al. (2019) for a detailed overview of the use of MDP for appointment scheduling in

healthcare.

Due to the APP’s combinatorial complexity, some authors have applied heuristic

and metaheuristic-based methods as approximation algorithms. Although the models

are computationally more efficient than integer programming methods, the solutions are

only lower bounds on the optimal solution. Demeester et al. (2010) is among the first

studies to introduce the APP as a combinatorial problem. The authors proposed a tabu-

search algorithm that considers medical needs and patient preferences. The objective is

to minimize the weighted sum of the penalty for assigning patients to no preferred rooms

and the number of transfers. Demeester et al. (2010) found that the proposed algorithm

outperforms previous Mixed Integer Programming (MIP) formulations, which takes over

three hours to find a feasible solution. Nevertheless, the study assumes known admission

dates and expected patient’s length of stay. Ceschia and Schaerf (2012), by contrast,

proposes a simulated annealing-based metaheuristic based on local search incorporating

uncertain length of stay. The model, which is the same defined in Demeester et al.

(2010), captures interesting features of real operations, such as room gender and age

policy, specialty, and room equipment requirements. Intending to improve the solution

time, Range et al. (2014) introduces an optimization-based heuristic of the APP based on

a column and constraint generation approach. The author reported good performance in

some instances.

A dynamic version of Ceschia and Schaerf (2012) was studied in Vancroonenburg

et al. (2016). To model the daily dynamic of arrivals and departures of elective and
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emergency patients, the authors consider estimates values of arrivals and departure dates,

and patient LoS, employing an Integer Linear Programming (ILP) model. Experimental

results indicate that including information about future arrivals in the admission plan

yields better solutions in terms of admissions costs. The authors note as future research the

study of scheduling and allocation simultaneously, instead of considering the admission

date as an input parameter. Later, Turhan and Bilgen (2017) considered a MIP heuristic-

based approach for solving the APP. The model was addressed for several instances while

decomposing the patients based on their preferences and length of stay. The solutions

of the approach are shown to be feasible in low computation times, but no optimality

guarantee is obtained. Related studies can be found in, Ceschia and Schaerf (2016) and

Guido et al. (2018). An exact solution method of a similar model was proposed in Bastos

et al. (2019) as a MIP approach, achieving improved performance.

Overall, the studies mentioned above provide a significant contribution in terms of

modeling and practical application. However, they lack integration between the temporal

levels of planning, which would help to ensure consistency in decision-making. A

summary of the contributions highlighting the main aspects relevant to this thesis is shown

in Table 1.1. We group the studies by the level of planning, i.e., strategic, tactical,

operational, in column 1. Columns 2 list the authors, while columns 3–11 show the

main features of the APP. The number and hyphen symbols in each column indicate

the presence or absence of a given characteristic defined at the bottom of the table. The

features indicated in Table 1.1 are defined below.

(i) Decision level: is referred to as the level of decision in the APP, i.e., strategic,

tactical, operational (offline-online).

(ii) Type of problem categorizes between scheduling and allocation decisions, which

are sub-task in admission planning. We remark that allocation decisions aim
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to decide which patient to admit considering bed availability, and scheduling

decisions address the problem of determining time and date of admission and

assigning patients to beds or rooms for the duration of their stay. For surgery

planning, allocation decisions determine how many OR to open and the surgery-

to-OR allocation, while scheduling decisions assign time intervals between

surgeries (typically single OR).

(iii) Resource type: specifies which resource was considered for the admission

problem, e.g., beds, ORs, or general services.

(iv) Resource dimension: indicates the use of single or multiple resources in parallel

in the modeling framework.

(v) Capacity availability: classifies the contributions according to whether they

consider time-varying or fixed bed capacity in the time horizon.

(vi) Specialty dimension: indicates the consideration of single or multiple care units

or specialty in the modeling framework.

(vii) Patient category: indicates whether patients categories were considered, e.g.,

by grouping them according to their LoS or source of arrival or priority.

(viii) Uncertain parameter: shows the stochastic parameter considered in the

modeling framework, e.g., length of stay, arrival.

(ix) Solution method: indicates the mathematical methodology used to solve the

problem.

(x) Criteria: describes the solution criteria of the modeling framework.
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TABLE 1.1. Summary of the literature on the APP: Comparison of main characteristics.

Decision level Research
Type of

problem

Resource

type

Resource

dimension

Capacity

availability

Specialty

dimension

Patient

category

Uncertain

parameter

Solution

method
Criteria

Strategic (1)

Green and Nguyen (2001). 3 1 1 1 1 1 1-2 8 1

Harper and Shahani (2002). 3 1 1 1 2 2 1-2 7 9

Utley et al. (2003). 3 1 1 1 1 1 1-2 8 8

Zhang et al. (2012). 3 1 1 1 1 1 1-2 7 1

Tactical (2)

Adan and Vissers (2002). 1 1-2 2 1 1 2 - 5 10

Adan et al. (2009). 1 1-2 2 1 1 2 1 5 10

Barz and Rajaram (2015). 1 1-2 1 1 1 2 2 9 7

Bekker and Koeleman (2011). 1 1 1 1 1 2 1-2 8 10

B. Denton and Gupta (2003). 2 2 1 1 1 1 4 6 1-3

Hulshof et al. (2013). 1 3 2 1 2 2 2 9 1

Hulshof et al. (2016). 1 3 2 1 2 2 2 9 1

Seung-Chul and Ira (2000). 1 1-2 2 1 1 1 2-3 7 1-9

Offline (3)

Bachouch et al. (2012). 2 1 2 1 1 2 - 5 9

Ceschia and Schaerf (2011). 2 1 2 1 2 1 - 4-9 8

Conforti et al. (2011). 2 1-2 2 1 1 2 - 5 7

Demeester et al. (2010). 2 1 2 1 2 2 - 3 8

Guido et al. (2018). 2 1 2 1 2 1 - 3-5 8

Range et al. (2014). 2 1 2 1 2 1 - 9-10 8

Turhan and Bilgen (2017). 2 1 2 1 2 2 - 4 8

Online (3)

Ceschia and Schaerf (2012). 2 1 2 1 2 2 1 3-5 8

Ceschia and Schaerf (2016). 2 1-2 2 1 2 2 1-2 3-4 8

Helm et al. (2011). 2 1-2 1 1 1 2 2 5-11 10

Li et al. (2018). 2 1 2 1 1 2 1-2 11 11

Liu et al. (2019). 1 3 1 1 1 1 1-2 11 10

Mazier et al. (2010). 2 1 2 1 1 1 2 5-7 1-8

Samiedaluie et al. (2017). 2 2 2 1 1 2 1-2 9 1

Vancroonenburg et al. (2016). 2 2 2 1 2 2 1 3-5 8

Decision level: 1 (strategic); 2 (tactical); 3 (operational). - Type of problem: 1 (allocation); 2 (scheduling); 3(sizing) - Resource type: 1 (ward beds); 2 (OR); 3

(general jobs). - Resource dimension: 1 (single); 2 (multiple). - Capacity availability: 1 (constant); 2 (variable). - Specialty dimension: 1 (single); 2 (multiple).

- Patient category: 1 (single); 2 (multiple). - Uncertain parameter: 1 (length of stay); 2 (demand/arrival); 3 (service time); 4 (surgery duration); 5 (No - shows). -

Solution method: 1 (DRO); 2 (Chance constraint); 3 (meta-heuristics); 4 (other heuristics); 5 (ILP); 6 (stochastic programming); 7 (simulation); 8 (queuing theory); 9

(dynamic programming); 10 (BIP); 11 (MDP); 12 (robust optimization). - Criteria: 1 (waiting time); 2 (overtime); 3 (idle time); 4 (opening OR); 5 (bed shortages); 6

(overstay); 7 (admission benefit); 8 (admission cost); 9 (cancellation); 10 (resource utilization); 11 (others).

1.5.2. Intertemporal planning and decision-making under uncertainty

Limited research has been developed that considers intertemporal approaches for the

admission planning problem with bed capacity constraints. Some studies have instead
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studied two-steps frameworks to solve the APP considering different levels of planning.

For instance, Adan et al. (2011) proposed a MIP model divided into two sequential stages;

the first stage decisions reserve beds for urgent patients while the second stage decisions

are operational strategies to manage the flow of elective and urgent patients. The results

show the relationship between patient satisfaction and resource utilization. Nevertheless,

the results are obtained through simulation, applying flexibility rules between elective

and urgent patients. Thus, there is no guarantee of consistency in intertemporal decision-

making.

One way to ensure consistency between different planning levels is through the

application of decision-making methods under uncertainty in a multi-stage fashion. Such

methods guarantee that the aggregate plan at upper levels can be efficiently implemented

at lower levels at a certain cost.

The most common method to handle uncertainty in an intertemporal fashion is two-

stage stochastic programming, which assumes full information about the distribution of

uncertain parameters (Birge & Louveaux, 2011). For the APP in the inpatient service, few

contributions are found in the literature; studies are mainly applications of surgery care

services, considering in some cases, downstream bed capacities under uncertain surgery

duration. For instance, in the context of surgery planning, B. Denton and Gupta (2003)

proposed a TSO approach for the appointment scheduling problem considering a single

OR. They aimed to determine the planned start times while minimizing OR waiting and

idle times, under stochastic surgery durations. The authors considered the Sample Average

Approximation (SAA) and L-shaped algorithms to solve the model. An interesting finding

is that the job allowances tend to take a dome-shaped structure when idling costs are high

in comparison to low waiting costs. On the contrary, a uniform distribution is found for

the opposite case of high waiting cost and low idling costs.
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Later, B. T. Denton et al. (2010) extends the model presented in B. Denton and Gupta

(2003) by considering multiple ORs instead of single resource. Min and Yih (2010b)

also proposed a TSO model for elective surgery scheduling but under downstream bed

capacities. It assumes uncertainty in surgery durations and LoS in ICU beds. The authors

reported optimal solutions when employing a SAA with a moderate sample size. As a

future research direction, it is proposed the study of different allocation cost structures

considering the patient medical condition. Similar approaches are found in Jebali and

Diabat (2015, 2017).

More recently, Vancroonenburg et al. (2019) considers downstream capacities for

patients to stay after surgery, including the daily dynamic patient allocation. The authors

propose a stochastic chance-constrained model to minimize OR allocation costs and

patient access for a single specialty. It is particularly interesting that their model accounts

for real-time decisions, in which the schedule is revised in response to future changes.

Such a dynamic setting is modeled through a heuristic local-search algorithm. Analogous

to the contributions mentioned above, Vancroonenburg et al. (2019) addresses the surgery

scheduling problem employing approximated methods and heuristics, assuming full

knowledge of the uncertain parameters. The authors point out that under a constrained

allocation process under uncertainty, a balanced performance can be obtained at the

expense of higher waiting times and late notification to patients.

In general, the TSO approach is reported to be effective in terms of performance to

solve the APP, albeit neutral risk. Of course, this method’s effectiveness is subject to the

accurate definition of the uncertain parameters, which should be properly estimated to

avoid adverse results due to inaccurate estimations.

Robust optimization is an alternative framework in the absence of information about

the true distribution of the uncertainties. In RO, uncertain parameters are described by
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means of uncertainty sets, making no assumptions about the probability distributions

(Ben-Tal & Nemirovski, 1998; Bertsimas & Sim, 2004). In particular, adaptive robust

optimization is solved in several stages, aiming to find a robust plan under the worst-

case scenario within the predefined uncertainty set, (Bertsimas, Litvinov, Sun, Zhao,

& Zheng, 2012). For the APP, very few contributions have been developed under this

framework. We only found the contribution of Mittal et al. (2014), who studied the

appointment scheduling problem to minimize waiting and idle time costs for general jobs

under uncertain processing times. The authors assume partial information for the service

durations that lie in an interval uncertainty set. A heuristic is developed to balance the costs

of jobs in the allocation process. Although the authors proved to obtain optimal solutions

under the RO approach, such models sometimes could lead to very over-conservative

solutions limiting its utility in the healthcare setting.

Recently, distributionally robust optimization has received increasing attention in

many fields (Bertsimas et al., 2011; Gabrel, Murat, & Thiele, 2014). DRO models allow

more information to be included in the uncertainty set, such as the mean and covariance,

that can be estimated from historical data or expert knowledge (Wiesemann et al., 2014).

For the healthcare system, the DRO scheme of decisions is relevant since it is expected to

prioritize the patient’s welfare under robust decisions, but not over-conservative, as in the

case of RO. Nevertheless, not many studies have considered the DRO approach in APP

under bed capacity constraints.

The work presented in Mak et al. (2014) is among the first to study the APP with

limited distributional information of service duration. For a single resource and a fixed

sequence of appointment arrivals, the authors study the surgery appointment scheduling

problem to minimize the cost of patient waiting times and overtime considering uncertain

service time. The model is solved by deriving tractable conic reformulations assuming
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a marginal moment (i.e., mean-support, mean-variance) ambiguity set of the random

service time. The optimality of the order of variance policy, for patient sequencing,

was proved analytically. The authors indicated, as further research, the problem of

scheduling in conjunction with allocation decisions. Later, Jiang et al. (2017) solved

the appointment scheduling problem presented in Mak et al. (2014) by incorporating

ambiguity in heterogeneous no-shows in addition to service times.

A DRO MILP is proposed in Meng et al. (2015) by deriving a second-order conic

programming counterpart, under moment ambiguity set. The objective is to determine

(at the tactical level), quotas of admission for elective and emergency patients under

patient arrival uncertainty. The DRO minimizes the worst-case expected bed excess in

the planning horizon. Through simulation studies with real data and a rolling horizon

approach, they concluded that the poor choice of the budget of uncertainty could lead to

inferior solutions in a robust optimization approach. Additionally, they claim that bed

shortfalls are inevitable in any hospital that is operating near its capacity.

The most recent study is found in Y. Wang et al. (2019), in the context of OR planning.

The authors studied the surgery block allocation problem presented in B. T. Denton et al.

(2010) as a DRO approach considering uncertainty in the surgery durations. The model

aims to minimize the total cost of opening ORs assuming the overtime cost over the

worst-case probability distribution within a moment ambiguity set. The authors reveal

the importance of considering heterogeneous service time in the scheduling process to

improve prediction accuracy.

Distributionally Robust Chance Constrained (DRCC) approaches are also considered

to solve the admission planning problem under distributional ambiguity of the uncertain

parameters. DRCC under ambiguity guarantees that the probability of meeting a certain

constraint within the worst-case distribution is not above a risk tolerance (Zhang et al.,
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2018). The approach has the advantage that it does not rely on estimations of cost

parameters in its formulation, to reflect the impact of decisions at lower levels of planning.

Zhang et al. (2017) developed a DRCC model to solve the appointment scheduling

problem. The authors assume ambiguity of service times distribution, which follows

a moment-based approach. The objective is to minimize the cost of waiting time by

restricting the risk of overtime and considering a fixed order of arrivals. In particular,

the authors incorporate ambiguity in both the objective function (i.e., waiting time) and

the chance constraint of overtime. The model is solved by reformulating the chance-

constrained formulation as an equivalent semidefinite programming (SDP) model through

dual theory. When compared to a sampling-based stochastic linear approach, they found

that a DRCC model ensures lower levels of overtime with a high probability.

Later, Zhang et al. (2018) proposed a similar model for surgery block allocation,

aiming to minimize the total cost of opening ORs due to overtime. In contrast to the

approach presented in Zhang et al. (2017), the reformulation to an SDP model includes

the binary variables of opening OR, thus, in order to handle the 0–1 SDP reformulation the

authors proposed a cutting-plane algorithm and a 0–1 second-order cone program (SOCP)

approximation. The authors conclude that the 0–1 SDP approach yielded better solutions

than the SOCP approximation.

The authors in Deng et al. (2019), in contrast to previous contributions, solved an

integrated model of scheduling and surgery-to-OR allocation to determine the sequence

of performing surgeries and decisions of opening ORs. A DRCC model is proposed

to constrain overtime and waiting times, under a phi-divergence ambiguity set. They

define the decisions of opening ORs and start-times as binary variables and the sequence

of allocation, as continuous. A SAA approach is employed to reformulate the chance

constraint problem as a MILP solved by a branch-and-cut algorithm. The authors
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provide insights into the relevance of developing integrated frameworks of scheduling and

allocation to get a better balance in the use of resources in operational planning. We refer

to Delage and Ye (2010) for further details about applications in DRCC under a moment

ambiguity set.

Overall, most contributions applying intertemporal approaches considering methods

under uncertainty, have been studied in the context of surgery planning. More research

is needed to derive robust plans of admission under bed capacity constraints. Similar

to the previous subsection, we summarize in Table 1.2 the main contributions that have

considered integrated or hierarchical planning approaches to solve the admission planning

problem.

TABLE 1.2. Summary of literature on the APP under intertemporal planning:
Comparison of main characteristics.

Research
Decision

Level

Type of

problem

Resource

type

Resource

dimension

Capacity

availability

Specialty

dimension

Patient

category

Uncertain

parameter

Solution

method

Ambiguity

set
Criteria

Deng et al. (2019). 2-3 1-2 2 2 1 1 2 4 1-2 4 1-2

B. T. Denton et al. (2010). 2-3 1 2 2 1 1 1 4 6 - 2

B. Denton and Gupta (2003). 2-3 2 2 1 1 1 1 4 6 - 1-3

Jiang et al. (2017). 2-3 2 3 1 1 1 1 4-5 1 1-2 1-2-3

Mak et al. (2014). 2-3 2 3 1 1 1 1 3 1 1-2-3 1-2

Meng et al. (2015). 1-2 1 1 1 1 1 1 2 1 1-2 5

Min and Yih (2010b). 2-3 1 1-2 1 1 1 1 1-4 6 - 2-8

Mittal et al. (2014). 2-3 1 3 1 1 1 1 3 12 - 1-3

Vancroonenburg et al. (2019). 2-3 1-2 1-2 2 1 1 2 1-4 2-4 - 8

X. Wang et al. (2018). 2-3 1 2 2 1 1 1 4 1 1-2 2-8

Zhang et al. (2017). 2-3 2 3 1 1 1 1 3 1-2 1-2-3 1-2

Zhang et al. (2018). 2-3 1 2 2 1 1 1 4 1-2 2-3 2

Decision level: 1 (strategic); 2 (tactical); 3 (operational). - Type of problem: 1 (allocation); 2 (scheduling); 3(sizing) - Resource type: 1 (ward beds); 2 (OR); 3 (general

jobs). - Resource dimension: 1 (single); 2 (multiple). - Capacity availability: 1 (constant); 2 (variable). - Specialty dimension: 1 (single); 2 (multiple). - Patient category:

1 (single); 2 (multiple). - Uncertain parameter: 1 (length of stay); 2 (demand/arrival); 3 (service time); 4 (surgery duration); 5 (No - shows). - Solution method: 1 (DRO); 2

(chance constraint); 3 (meta-heuristics); 4 (other heuristics); 5 (ILP); 6 (stochastic programming); 7 (simulation); 8 (queuing theory); 9 (dynamic programming); 10 (BIP); 11

(MDP); 12 (robust optimization) - Criteria: 1 (waiting time); 2 (overtime); 3 (idle time); 4 (opening OR); 5 (bed shortages); 6 (overstay); 7 (admission benefit); 8 (admission

cost); 9 (cancellation); 10 (resource utilization); 11 (others).

Column 1 lists the authors, while columns 2–12 show the relevant features of

the study. In comparison with Table 1.1, we have added column 10 to identify the
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feature, Ambiguity set, which characterizes the studies that consider a DRO approach as a

resolution method. The number and hyphen symbols in each column indicate the presence

or absence of a given characteristic defined at the bottom of the table.

1.5.3. Literature gaps and limitations

From the literature review presented in Subsections 1.5.1 and 1.5.2, we have identified

relevant limitations in the study of the admission planning problem under bed capacity

constraints. In particular, three main gaps are evidenced, namely (i) the lack of an

integrated framework to guarantee temporal consistency in the admission planning, (ii) the

study of multi-objective criteria to evaluate the trade-off between conflicting objectives

typically found in the admission planning problem, and (iii) the study of intertemporal

modeling approaches through optimization methods under uncertain length of stay to

guarantee robust plans of admission. Those aspects will be described in detail in the

following subsections.

1.5.3.1. Use of an integrated framework in the Admission Planning Problem

The APP problem has been approached in many ways at different levels of temporal

planning. The existing literature is focused on optimizing patient throughput, considering

criteria of waiting time, resource utilization, and total admission cost. As we showed in

Table 1.1, most papers focus on a single level of decision. Thus, no consistency guarantee

or coordination between decision levels is acknowledged. From the studies, Adan et al.

(2011) considers the hierarchy in the decision-making for the surgery planning problem.

However, the approach is a two-step model that is solved sequentially, not in an integrative

framework, which may lead to infeasibility in the short-term.

In general, most contributions focus on one decision level without considering the

impact of future realizations when making decisions at higher levels. Thus, the applied
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admission policies would result in inconsistencies during the plan execution, such as

rejections and unnecessary waiting times.

1.5.3.2. Multi-objective criteria to evaluate conflicting objectives

The decisions in the APP under bed capacity constraints are driven by several

conflicting objectives, divided into two broad categories: the hospital and patient

perspective. The hospital aims to obtain the maximum performance of bed utilization.

At the same time, the patient expects to receive the best service quality, measured as a

reduction in delays, cancellations, and waiting times. The study of both objectives as part

of an intertemporal multi-objective approach, has not been studied. To date, only one

contribution, Seung-Chul and Ira (2000), have considered a multi-objective framework,

evaluating a Pareto-frontier to trade-off canceled surgeries and waiting time, as a result of

bed reservations. However, they performed the analysis via simulation, for one specialty,

and at a single level of planning (operational), which may lead to infeasible solutions.

1.5.3.3. Intertemporal approach through optimization methods under uncertainty

Most existing optimization models employing an intertemporal approach for

admission planning, have been applied in the context of surgery planning. We remark

that these papers do not specify the use of hierarchical models as the main contribution,

but the modeling structure implies it. The studies consider, the OR (Deng et al., 2019;

B. T. Denton et al., 2010; Y. Wang et al., 2019; Zhang et al., 2018) or both OR and beds as

downstream capacity (Min & Yih, 2010a; Vancroonenburg et al., 2019). Such works are

focused on developing robust models to overcome the consequences of surgery duration

uncertainty. Other papers do not explicitly indicate the resource being planned1 (Jiang

et al., 2017; Mak et al., 2014; Mittal et al., 2014; Zhang et al., 2017), and consider the

service time as uncertain parameter, to reduce waiting and overtime in the allocation and

1Categorized as general jobs in Tables 1.1 and 1.2.
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scheduling processes. Only one contribution, (Meng et al., 2015), considers ward beds

as the main focus of planning, for the strategic-tactical level of decisions. In Meng et al.

(2015), the patient’s demand is assumed uncertain, aiming to minimize bed shortages and

smooth bed utilization.

From table 1.2 we observe that while some studies assume perfect information of the

probability distribution of the uncertain parameter, employing TSO (B. T. Denton et al.,

2010; Min & Yih, 2010b) and chance constraint methods (Vancroonenburg et al., 2019),

others assume ambiguity of the distribution using a DRO approach (Deng et al., 2019;

Jiang et al., 2017; Mak et al., 2014; Meng et al., 2015; Y. Wang et al., 2019; Zhang et al.,

2017, 2018), or RO (Mittal et al., 2014). Although the studies mentioned above model the

admission planning problem, employing approaches that guarantee coordination between

different decision levels, most partially cover the essential characteristics of the problem.

For instance, both of the contributions that consider a TSO approach (B. T. Denton

et al., 2010; Min & Yih, 2010b) are focused on optimizing OR utilization, assuming

a single patient category and resource to allocate time intervals between appointments.

As these studies focus on surgery planning, aspects such as the deviation in the use of

beds, multi-priority, and multi-specialty are not acknowledged. On the other hand, the

contributions that applied a DRO approach, are mostly focused on allocation decisions,

i.e., determining OR opening for patients to be admitted to a single OR (X. Wang et al.,

2018; Zhang et al., 2018) or general service (Jiang et al., 2017). Still, not a multi-period,

multi-priority, and multi-specialty approach is considered. Other studies, see, e.g., Mak

et al. (2014) and Zhang et al. (2017), consider only scheduling decisions, determining

time intervals between general jobs under stochastic service time. Most contributions,

ignore the integrated framework of allocation and scheduling in the admission planning.
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Relevant exceptions are the papers Deng et al. (2019), and Vancroonenburg et al. (2019)

for a multi-priority scheme. However, they are studied in the context of surgery planning.

In summary, to date, few contributions in the technical literature study the admission

planning problem under bed capacity constraints, to achieve consistency between temporal

levels of planning by employing optimization methods under uncertainty and capturing

real-life characteristics of the problem. There is also a need for integrated approaches

to allocation and scheduling in the context of bed capacity planning; it has been shown

that better performance can be achieved when both processes are integrated (Deng et al.,

2019).

1.6. Thesis hypothesis and objectives

1.6.1. Hypothesis

The main hypothesis of the thesis is that it is possible to model and solve hierarchical

models in multiple stages to improve decision-making in admission planning for the

healthcare system.

The specific hypotheses are described as follows:

(i) Hierarchical decision frameworks allow obtaining robust plans that guarantee

consistency between different decision levels in healthcare admission planning.

(ii) It is possible to develop mathematical optimization models that consider

intertemporal approaches for admission planning in the healthcare sector to

ensure consistency between decision horizons.

(iii) It is possible to find a trade-off between service level and resource utilization

under uncertain conditions, to ensure flexibility in the decision-making that

benefits conflicting parties.
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(iv) It is possible to obtain robust solutions at the tactical level, which guarantees a

balance between robustness and the consistency of decisions at the operational

level, considering limited information of uncertain parameters.

(v) It is possible to provide empirical evidence on real data to enhance hospital

admission operations through cost-efficient practical guidelines.

1.6.2. Objectives

The main objective of the thesis is to model and solve a hierarchical decision-making

process, in multiple stages, for admission planning in the healthcare system, to improve

temporal consistency under uncertain conditions.

The specific objectives are described as follows:

(i) To study hierarchical decision methodologies under uncertainty that allow

to obtain robust admission plans considering bed capacity constraints in the

healthcare sector.

(ii) To model and solve the problem of admission planning through an intertemporal

approach that adjusts the needs of supply to demand and ensures consistency at

the tactical-operational levels.

(iii) To develop an intertemporal mathematical model under uncertainty, which

allows finding a trade-off between the level of service and the use of resources

in admission planning.

(iv) To study the robustness of decisions in a hierarchical decision setting while

finding a balance between robustness and consistency under limited information

of the uncertain parameters.

(v) To provide empirical evidence on real data that support hospital admission

operations through cost-efficient practical guidelines.
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1.7. Structure of the thesis and contributions

1.7.1. Structure of the thesis

The remaining of this document is organized into six additional chapters. Each

chapter aims to answer one or various objectives, as previously described in Subsection

1.6. We remark that the content of the Chapters 3–5 are based on individual papers

published or submitted in journals. The mathematical notation is presented independently

in each chapter. Chapter 6 concludes the thesis and gives future research directions. The

document finishes with the Appendix.

The chapters content are outlined as follows:

Chapter 2 provides a summary of the background theory of decision-making

optimization approaches under uncertainty that are used in this thesis. In particular, we

describe the basic concepts of two-stage stochastic optimization, robust optimization, and

distributionally robust optimization. Besides, we provide a brief up-to-date state of the art

of decision-making methods under uncertainty and related solution methodologies.

Chapter 3 studies the allocation decisions in the admission planning problem,

considering an intertemporal approach at the tactical-operational levels. A novel

framework is presented as a TSO model in a multi-objective fashion. The approach allows

evaluating the APP from both perspectives, hierarchical structure, and uncertain nature of

the problem. The model defined as a mixed-integer linear programming problem includes

reserving bed capacity decisions at the tactical level and patient allocation decisions at

the operational level, constrained for demand and capacity availability uncertainties. The

bi-objective approach, defined through the weighted-sum method, evaluates the trade-off

between resource utilization deviation and cost of service. Real data from a Chilean public

hospital illustrates the approach and validate the model. The results show that the solutions
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of the proposed approach outperform the actual practice in the Chilean hospital. We

provide insights to practitioners on balancing conflicting decisions of resource utilization

and service level.

The content of this chapter is based on the paper, Batista, A., Vera, J., & Pozo, D.

(2020), Multi-objective admission planning problem: A two-stage stochastic approach.

Health Care Management Science, 23, 51-65.

Chapter 4 proposes an alternative framework for modeling service time constraints

for problems that cannot be interrupted once allocated. Motivated by the admission

planning problem with uncertain length of stay, this chapter provides a formulation

framework that includes a single binary variable of service allocation and the service time

on the right-hand side of the allocation constraint in a multi-period system. We contrast the

proposed formulation with the current approaches in the literature. Besides, we describe

the main variables and constraints of the proposed MILP formulation, which can be

generalized for the type of problems of uninterruptible services in scheduling theory. The

main advantage of the formulation is that the uncertain parameter is on the right-hand side

of the constraint, rather than over the indexes of a summation as it is usually modeled. This

feature facilitates the implementation of existing algorithms (e.g., dual-based methods, or

Benders decomposition) that consider uncertainty, such as stochastic programming, robust

optimization, and distributionally robust optimization.

The content of this chapter is partially based on the paper Batista, A., Pozo, D., &

Vera, J. (2020), Stochastic time-of-use-type constraints for uninterruptible services. IEEE

Transactions on Smart Grid, 11(1), 229-232.

Chapter 5 studies the robustness of decisions in an intertemporal decision framework

for the admission planning problem. The modeling framework developed in Chapter 4 is

employed to model a patient-to-room admission problem. The model aims to maximize
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patient access and the use of available resources. In contrast to Chapter 3, in which the

demand is considered uncertain, in this chapter, the demand is known, and the patient

length of stay is uncertain. Besides, this chapter incorporates scheduling decisions in

addition to the allocation decisions studied in Chapter 3.

Due to the lack of reliable information in most hospitals, we assume limited

distributional information of the patient LoS. In order to solve the problem, a DRO

framework is presented that is distribution-free; it considers that known information is

limited only to the first moment and the support set of the true probability distribution.

The framework is robust against the infinite set of probability distribution functions that

could represent the stochastic process of the patient’s length of stay. The resulting infinite-

dimensional linear optimization problem is reformulated as an exact finite-deterministic

mixed-integer linear problem. To demonstrate the effectiveness of the proposed approach,

we compared it with benchmark models (i.e., deterministic, TSO, RO) employing a

real data set from a public hospital in Chile. The results show that the DRO approach

outperforms the benchmark models in both reliability and computational efficiency. It

provides the most cost-efficient combination of consistency and robustness. We provide

insights to practitioners and hospital decision-makers to anticipate admission decisions at

the tactical-operational level while considering the randomness of the length of stay.

The content of this chapter is based on the paper Batista, A., Pozo, D., & Vera,

J. (2020). Managing the unknown: A distributionally robust model for the admission

planning problem under uncertain length of stay. Computers and Industrial Engineering.

Chapter 6 provides a summary, the conclusions and future research directions of the

thesis.

Appendix A describes a data collection sheet designed to collect data about bed

capacity requirements and availability of the hospital under study.
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Finally, the Appendix B includes the data input employed in Chapter 5.

1.7.2. Contributions

1.7.2.1. General contributions

The general contributions of the research conducted in this thesis are listed below:

(i) Regarding admission planning considering a stochastic hierarchical framework.

The thesis acknowledges the importance of considering the hierarchical and

stochastic characteristics of the admission planning problem in the healthcare

setting. Since most studies in the literature of healthcare capacity planning are

developed at a single level of decision, the thesis fills this gap; the consistency

issue between different decision horizons of the admission planning problem

is studied. The thesis shows the advantages of an intertemporal decision

framework to manage coordination between temporal levels of planning and

to achieve robust solutions while considering variability and uncertainty at the

operational level. By considering optimization methods under uncertainty in a

multi-stage fashion, we improve consistency and coordination between tactical-

operational planning.

(ii) Regarding admission planning considering alternative modeling frameworks.

The thesis provides novel modeling frameworks for the admission planning

problem under bed capacity constraints.

Firstly, the thesis considers a bi-objective TSO approach within a hierarchical

framework of decisions. Besides considering the consistency issue between

tactical and operational levels of decision, the modeling structure allows

evaluating conflicting objectives commonly presented in the healthcare

setting. Secondly, the thesis provides an alternative modeling framework

that incorporates service-time-type constraints for services that cannot be
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interrupted once allocated. The framework, which relies on a single binary

variable, enhances current service allocation models under uncertain service

duration. In particular, the proposed modeling is used to formulate the

admission planning problem under uncertain patients length of stay. The thesis

recognizes the lack of reliable information on the patient stay duration and

presents an adaptive DRO-based formulation. The approach allows decision-

makers to take admission decisions acknowledging the ambiguity of the true

probability distribution of the uncertain parameter. Through this approach, the

thesis also gives insights over the balance between robustness and consistency

in a capacity-constrained system.

(iii) Regarding admission planning modeling considering data and insights from real

hospital practice.

The thesis devises a practical value of the proposed mathematical optimization

models and their applicability in the healthcare system. Contrary to most

works in the literature that focus on theoretical approaches, the proposed

modeling frameworks incorporate real-life characteristics that enhance their

applicability in the healthcare system. The decision framework’s effectiveness

is demonstrated through extensive numerical studies and validation employing

real data from a public hospital in Chile. From a managerial point of

view, the thesis provides insights to practitioners and decision-makers to

anticipate decisions at the tactical level while considering the randomness at

the operational level. We detail several guidelines to derive decisions to favor

patient and hospital perspectives instead of a single benefit.

1.7.2.2. Specific contributions

The specific contributions of each chapter of this thesis are listed below:
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Chapter 2

(i) Study hierarchical decision methodologies under uncertainty

We study decision-making methodologies that allow modeling intertemporal

problems under uncertainty. The chapter refers to the relevant literature in the

field of operations research, which can be used as a guide to understanding the

theoretical foundations in decision making under uncertainty.

Chapter 3

(i) Develop an intertemporal stochastic approach for the APP.

We propose a TSO model to address the APP for optimal patient allocation

on beds at the tactical and operational levels, considering demand and capacity

uncertainties. The approach allows evaluating the APP from both perspectives,

hierarchical structure, and uncertain nature of the problem, to guarantee

consistency in the admission process.

(ii) Study the APP as a two-stage stochastic multi-objective problem.

We incorporate a bi-objective approach to evaluating the trade-off between two

conflicting objectives in the APP: resource utilization deviation and the cost

of service. To the best of our knowledge, this study is the first effort in the

literature to explore the APP as a two-stage stochastic model in multi-objective

fashion. The model accounts for a balance of service level considering hospital

and patient perspectives in the allocation process. We include flexible options

for allocation, such as diverting patients to another hospital and temporary

assignments. Also, unlike most studies, we consider bed allocation decisions

for the entire hospital instead of a single unit.

(iii) Validation of the proposed APP with real data.

The proposed approach is validated with real practices on the APP for a
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Chilean public hospital. Also, we provide insights to practitioners on balancing

conflicting decisions of resource utilization and service level.

Chapter 4

(i) Develop an alternative formulation for modeling service-time-type constraints

of uninterruptible services.

We propose a new but simple, effective formulation that includes service time

constraints for problems in which the service’s interruption is not allowed.

(ii) Enhancement of service allocation models under uncertain service duration.

We enhance current admission planning (or appointment scheduling) models by

considering a single binary variable and continuous service time on the right-

hand side of the formulation, rather than over the indexes of a summation.

This structure facilitates the implementation of the existing algorithms (e.g.,

dual-based methods, or Benders decomposition) that consider uncertainty, such

as stochastic programming, robust optimization, and distributionally robust

optimization.

Chapter 5

(i) Develop a new version of the APP that considers various patient types, multi-

specialty, and time-varying bed capacity.

We formulate a different version of the APP under stochastic patient length of

stay. The model focuses on maximizing patient access to guarantee the use of

available bed resources, although minimizing the cost of overstay. The approach

is relevant for public hospitals where the bed costs are fixed (i.e., the resources

are given a priori), and the main objective is to treat the most significant number

of patients.
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The model is solved at the tactical-operational level and provides insights

into the relevance of considering scheduling and allocation decisions

simultaneously; it determines the planned start times, time allowances, and bed

assignment of patients. Unlike most studies in the patient-to-room admission

problem, we do not assume a fixed sequence of arrival. Additionally, we

capture the characteristics of the real-life setting in the modeling approach. For

instance, we consider the heterogeneity of the patient LoS, including several

patient types (i.e., multi-specialty, multi-priority) and room assignment with

multiple identical parallel beds instead of a single resource. In contrast to

previous research in which capacity availability is considered constant in the

time horizon, we assume time-varying bed capacity (as it happens in practice),

intending to model the real dynamics in the admission process.

(ii) Extension of the admission planning model for considering LoS uncertainty for

deriving a robust admission planning.

We propose a distributionally robust optimization approach to solve the

admission planning problem. Rather than assuming perfect information on the

probability distribution of the patient LoS, we account for an ambiguity-averse

framework. We consider that known information is limited only to the first

moment and the support set of the true probability distribution of the LoS. This

framework is convenient for the healthcare sector, lacking reliable information

about the probability distributions of the uncertain length of stay and seeking to

focus on high-quality care at a lower cost. Additionally, we derive a tractable

solution methodology for solving the DRO through dual theory. Thus, the

infinite-dimensional DRO is then reformulated into a deterministic equivalent

model.
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(iii) Validation and thoughtful analysis of the proposed DRO admission planning

model with real data. Comparison with standard TSO and RO frameworks for

decision-making under uncertainty.

To the best of our knowledge, we are among the very few contributions to

account for real data under the proposed framework. The data, which is

obtained from the Electronic Health Records (EHR) of a public hospital in

Chile, is employed to construct the ambiguity set and generate the sample

scenarios. We illustrate the robustness of the proposed approach through an

extensive computational study by comparing it with standard approaches in

the literature: robust optimization, two-stage stochastic programming, and

deterministic. Besides, we propose a reliability metric by benchmarking with

different approaches and conventional cost-based metrics in out-of-sample

analysis.
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Chapter 2. DECISION MAKING UNDER UNCERTAINTY

The decision-making process in many real-world problems is subject to uncertainty.

This uncertainty can be due to several reasons, including predictable and unpredictable

events such as future demand or the cost of a service or product. Problems subject to

uncertainty can be formulated as optimization models that require the characterization of

the unknown parameters. In some cases, the uncertainty is difficult to estimate, either

because there is no adequate information or due to the fact that parameters that represent

such uncertainty are very volatile. In the healthcare system, for instance, uncertain

parameters are commonly associated with patient health and are difficult to estimate, such

as the demand for unscheduled patients and the length of stay that, in turn, affects the

availability of resources. Thus, failure to consider uncertainty in the planning process

could result in suboptimal decisions (Zymler, 2010).

According to how uncertainty is taken into account, several optimization frameworks

can be considered for capacity planning problems. Among these, we have deterministic

methods, stochastic programming, robust optimization, and distributionally robust

optimization. Deterministic approaches assume that uncertain parameters are known and

can be estimated using expert knowledge or historical data. However, this approach could

over or underestimate the solutions since decisions do not consider future changes caused

by the realization of uncertainty. As for stochastic programming, the main assumption

is that the probability distribution of uncertain parameters is known. A particular case

is two-stage stochastic optimization, in which decisions are modeled in two stages. The

expected value of the objective function is optimized on the scenarios that describe the

uncertain parameters (Birge & Louveaux, 2011). The main drawback of this approach

is that a significant number of scenarios are needed to characterize the uncertainty, so

the solution could be computationally expensive. Unlike stochastic programming, robust
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optimization requires minimal probabilistic information to estimate unknown parameters.

Uncertainty is modeled as parameters that belong to a set of uncertainty (Bertsimas &

Sim, 2004). One of the main disadvantages of robust optimization is that the solutions can

be very conservative since they are driven by the worst-case within the set that represents

the uncertainty. Finally, distributionally robust optimization is an alternative approach that

takes into account distributional information of uncertain parameters. Thus, in addition to

including the uncertainty set, it considers partial distributional information, such as the

mean and variance. The solution, therefore, acknowledges the worst-case expected total

cost instead of the worst-case scenario (Delage & Ye, 2010).

In this chapter, we summarize the background theory of decision-making under

uncertainty to be employed in the subsequent chapters. In particular, we give a

general description and overview of stochastic programming, robust optimization, and

distributionally robust optimization methodologies. We remark that the concepts presented

in this chapter are entitled to describing relevant background theory related to this thesis.

For a thorough review and overview of the content, the reader is referred to Birge and

Louveaux (2011); Shapiro et al. (2014), Bertsimas and Sim (2004), and Delage and

Ye (2010) for theory about stochastic, robust, and distributionally robust optimization,

respectively.

The remainder of this chapter is organized as follows. Section 2.1 presents the

methodological background of decision-making problems. Section 2.2 describes the

stochastic programming method, particularly, two-stage linear stochastic optimization.

Section 2.3 focuses on robust optimization problems. Section 2.4 considers

distributionally robust optimization problems. Finally, Section 2.5 presents the concluding

remarks and summary of the chapter.
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2.1. Methodological background

An optimization problem under uncertainty can be stated as the following standard

optimization problem:

min
x∈X

f(x, ξ), (2.1)

where x is the vector of variables, ξ denotes the random vector of data parameters,

and X ∈ Rd is a set (of nonnegative integers or binary integers variables) of feasible

solutions not affected by uncertainty. Note that the cost function f is characterized as a

minimization problem that depends on the random vector of parameters ξ. Thus, f(·, ξ)

is a random variable representing a family of optimization problems in each realization

of ξ. The goal is to find a unique optimal solution that minimizes the cost function f .

This solution can be obtained according to the optimization approach, for instance, by

computing the function expected cost, E
(
f(x, ξ)

)
, or by means of probability constraints,

Pr
(
g(x, ξ) ≤ 0

)
≥ 1 − α, to control the cost function risk to be satisfied with high

probability, where α ∈ (0, 1) is the risk factor.

Based on the available information, different assumptions can be adopted to

characterize the uncertain parameter ξ in problem (2.1). The characterization of the

random vector, ξ, in an optimization problem will depend on the uncertain data’s

assumptions. A deterministic approach, for instance, will assume expected values,

ξ̄, of the data uncertainty based on expert judgment or historical data if available.

Other optimization methodologies under uncertainty, represent unknown parameters

assuming probabilistic estimates, partial or distributional information, such as TSO,

robust optimization, and distributionally robust optimization, respectively. Regardless

of the assumption made about the uncertain parameter, it is important to achieve the
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most accurate estimate of the uncertain data based on the available information, to avoid

unfavorable outcomes in the decision-making process.

In the rest of this chapter, we provide an overview of the methodologies mentioned

above.

2.2. Stochastic Programming

Stochastic Programming (SP) is one of the most common approaches for modeling

optimization problems under uncertainty. Different stochastic programming frameworks

can be found in the literature. The most common approaches are two-stage linear

optimization program (Birge & Louveaux, 2011), in which decisions are divided into

stages, and Chance constraint linear programs involving probabilistic constraints (see,

e.g., Charnes and Cooper (1959); Miller and Wagner (1965) and references therein). In

this section and the rest of the chapter, we focus on stochastic linear programs of the form

of two-stage stochastic optimization.

Below we specify the relevant notation and the probabilistic description of the

uncertain parameters in two-stage stochastic programming based on Birge and Louveaux

(2011).

The random experiments can be denoted by ω and the set of outcomes by Ω, so that

ω ∈ Ω. The setA represents the collection of random events where A ∈ A. A probability,

P (A), is associated to each event such that 0 ≤ P (A) ≤ 1, P (0) = 0, P (Ω) = 1.

The probability space that describes the random events can be defined by (Ω,A, P ).

Within the probability space the random parameter, ξ, is defined as a particular random

variable with a cumulative distribution Fξ(x) = P (ω|ξ ≤ x). The random variable can

be defined as discrete or continuous. The discrete random variables take finite values

within a countable range, ξk, k ∈ K, described by a probability mass function in which,
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f(ξk) = P (ξ = ξk) such that
∑

k∈K f(ξk) = 1, and its expectation is calculated by

ξ̄ =
∑

k∈K ξ
kf(ξk). The continuous random variables are represented by a probability

density function, f(ξ), and it can be defined by, P (a ≤ ξ ≤ b) =
∫ b
a
f(ξ)dξ, in

which the probability of ξ lays in the interval [a, b]. The expectation can be computed

as ξ̄ =
∫∞
−∞ ξdF (ξ), in which F (·) is the cumulative distribution.

2.2.1. Two-stage Stochastic Optimization

In decision-making problems under uncertainty, the decisions have to be made at

different moments or stages in the time horizon, with incomplete information about the

random parameters. At the upper stages, the available information is usually aggregated,

but as the level of decision decrease, more detailed information is accessible. A common

approach to represents this decision process in stages is Two-stage Stochastic Optimization

(TSO), in which unknown data are represented as random variables (Birge & Louveaux,

2011).

TSO was first introduced by Dantzig (1955), and it assumes that the probability

distribution of unknown parameters is known; thus, the decision-maker has full and

accurate information to represent data uncertainty. The solutions of the TSO are provided

through recourse programs in which some actions are taken after the uncertainty is

revealed. The decision process is divided in two stages:

(i) first-stage decisions. These decisions are taken without knowledge of the

uncertain realizations, and are commonly named, here-and-now decisions.

(ii) second-stage decisions. These decisions are corrective actions taken once the

random data is revealed.

In order to characterize a TSO problem, we consider the optimization problem

presented in (2.1) and assume that it is a stochastic linear program. We use boldfaced upper
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and lower case symbols to represent vectors and matrices, respectively. The TSO can be

represented in its compact form in the model (2.2), distinguishing between first-stage and

second-stage decisions. The first term, cᵀx, corresponds to the first-stage, deterministic

decisions. Here, the first-stage decisions are defined by the vector, x, to which corresponds

the vectors c, and b, and matrix A, with the related dimensions. The second-stage term

is the recourse function of the problem, f(x, ξ), which is represented as the expectation

of the second-stage objective taken over all realizations of ξ within a given probability

measure P .

min
x∈X

cᵀx + EP
[
f(x, ξ)

]
s.t.: Ax ≤ b

(2.2)

The operational value function, f(x, ξ) can be represented as in the model in relation

(2.3), where the second-stage decisions are defined by the vector y. h, d, W , and B,

corresponds to the vector and matrices, respectively, that become known when the random

variable, ξ, is realized. Each component of the vector and matrices can be a possible

random variable.

f(x, ξ) = min
y≥0

hᵀ
ξy

s.t.: Wξx +Bξy ≥ dξ

(2.3)

The deterministic equivalent of the two-stage stochastic formulation is defined as the

equations (2.4) (Birge & Louveaux, 2011). Let us define the second-stage decisions by the

function gSP(x) = EP [f(x, ξ)]. Then, first-stage decisions are taken by considering future

events which are measured by the value function, gSP(x). We remark that this general

formulation can be extended according to the specific problem. For instance, for problems

considering first-stage or second-stage decisions as continuous and integer variables, the
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domain can be replaced by x ≥ 0, and y ∈ Y , for first-stage and second-stage variables,

respectively.

SP: min
x∈X

cᵀx + gSP(x)

s.t.: Ax ≤ b

where: gSP(x) = EP
[
f(x, ξ)

] (2.4)

According to the type of problem, and which parameters are considered uncertain,

there exist several formulation structures, in addition to the basic form of the two-

stage stochastic program presented in equations (2.2). For instance, complete recourse

problems, are of the form in equations (2.3), in which the matrix B is subject to

uncertainty. Here, every first-stage solution, x, under the constraints Ax ≤ b have

a feasible completion in the second-stage (Birge & Louveaux, 2011). Fixed recourse

problems, considers the recourse matrix, B, as known. Such a formulation structure

offers computational advantages because it allows us to characterize the feasibility region

in a convenient way (Birge & Louveaux, 2011). There are also problems in which the

parameter vector h, and matrix W are fixed, and only the vector d is random. This

formulation structure is named, simple recourse. This characterization allows the cost

function, gSP(x), to be separable in the random components, d, which is easy to solve.

Regardless of the formulation structure, stochastic optimization models should

consider the non-anticipativity conditions. The decisions, x, taken at the first stage,

should be fixed for all future realizations in the second stage; this can be done by

including non-anticipativity constraints in the formulation to enforce it. Further details

about the properties of the aforementioned stochastic formulations can be found in Birge

and Louveaux (2011).
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2.2.2. Solution methods for Two-stage Stochastic Optimization

One of the main drawbacks of TSO problems is that its size (measured as the number

of variables and constraints) can grow exponentially as the number of scenarios increases.

Besides, the computation time can also be affected according to the problem modeling

structure, in terms of the random variable’s characterization, e.g., discrete or continuous.

Thus, it is important to understand the problem structure in order to use a cost-efficient

solution method.

Different approaches have been proposed in the literature, such as approximated

techniques and decomposition-based methods. Approximated methods such as sampling,

variance reduction, and scenario aggregation, are developed to approximate the

optimal solution (Heitsch & Römisch, 2003; Homem-de Mello & Bayraksan, 2014).

Decomposition methods, e.g., L-shaped, Benders, aims to find an exact or near-optimal

solution of the linear program (Higle & Sen, 1991; Birge & Louveaux, 2011). Such

methods are easily applicable if the model formulation includes complicating constraints,

that can help to decompose the problem by scenarios (Conejo et al., 2010). Overall,

linear problems can be usually solved by characterizing uncertainty with many scenarios,

without affecting the solution time. In contrast, if the linear problem includes discrete

variables, a decomposition technique is usually applied. For nonlinear problems involving

continuous and discrete variables, decomposition techniques are also used (Conejo et al.,

2010).

In this subsection, we cover the Sample Average Approximation approach, which lies

within sampling solution methods in linear stochastic programs. For a broader detail of

solution techniques based on decomposition methods, the reader is referred to Higle and

Sen (1991), Conejo et al. (2006), and Birge and Louveaux (2011).
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2.2.2.1. Sample Average Approximation solution method

Sample Average Approximation (SAA) method is a well-known approach in decision-

making under uncertainty; it has been shown that under mild assumptions, it guarantees

strong asymptotic performance and tractability for continuous and discrete distributions

(see, e.g., Bertsimas et al. (2018b), Kleywegt et al. (2002)). The main drawback of

SAA is that for a large number of samples and complex recourse functions, it can be

computationally expensive to solve. Thus, the random parameters’ sample size should

represent the uncertainty, without affecting the resolution time. Hence, in some cases,

scenario reduction techniques and sampling methods are advisable (Kleywegt et al., 2002).

SAA consists in replacing the recourse function, gSP(x), by a Monte Carlo estimate.

The Monte Carlo method generates random samples of the uncertain parameter from

the assumed continuous distribution density. The expected value function is, thus,

approximated by the sample average function. The approximated problem is solved

by deterministic optimization algorithms. Note that when assuming discrete probability

distributions of the random parameters, the samples can be enumerated to compute the

value function’s expected value. On the contrary, when the probability distribution of

the uncertain parameter is continuous, finding a solution for the TSO can be intractable;

therefore, sampling techniques are commonly employed.

To characterize the SAA approach, let assume the random vector, ξ, has finite support,

in which ξk index the random samples,

gn
SP(x) =

∑
k∈N

f(x, ξk)

N
. (2.5)

Then, for a two-stage stochastic model the SAA can be defined as follows:
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min
x

cᵀx +
1

N

∑
k∈N

hᵀ
kyk

s.t.: Ax ≤ b

Wkx +Byk ≥ dk ∀k ∈ N

x ∈ X ,yk ≥ 0.

(2.6)

The samples, N , can be derived via Monte Carlo simulations or employing historical

data. For a large size of N , the solutions to (2.6) will converge to an optimal solution

(Birge & Louveaux, 2011). However, as stated before, scenario reduction techniques,

e.g., probability distance method, are advisable to reduce the computation time while

guaranteeing an accurate representation of uncertainty.

2.2.3. Quality metrics

TSO can become computationally difficult to solve according to the number of

scenarios and the problem structure. In order to handle the computational difficulties,

problems under uncertainty are usually solved by considering its deterministic version.

Such programs consider expected values of the uncertain parameters, and therefore,

are simpler to solve. Another alternative is to solve different deterministic problems,

as independent scenarios and combine the solutions via heuristic methods (Birge &

Louveaux, 2011).

Since stochastic programs are computationally expensive, it is important to assess

the benefits and advantages of using stochastic programming, rather than a simpler and

easier program, such as a deterministic approach. Two metrics are commonly employed

to evaluate the accuracy and optimality of stochastic programs, namely, the Expected

Value of Perfect Information (EVPI) and the Value of the Stochastic Solution (VSS).
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Besides, out-of-sample techniques are also used to evaluate the outcome of the solutions

by employing stochastic programming models.

In this subsection, we describe the metrics mentioned above, widely used to evaluate

the solution performance of stochastic programs and problems under uncertainty.

A. Expected value of perfect information

The expected value of perfect information metric represents the value that a decision-

maker would pay if he had perfect information about the future. Let us assume a TSO

linear problem with fixed recourse, as in equations (2.7), in which the uncertainty is

modeled through a finite set of scenarios. ξ is the random variable representing the

scenarios within the set Ξ so that ξ ∈ Ξ. Here it is assumed that for all ξ ∈ Ξ, there

is at least one optimal solution.

min
x

z(x, ξ) = cᵀx + min
y

{
hᵀ
ξy|By ≥ d−Wx,y ≥ 0

}
s.t.: Ax ≤ b, x ∈ X

(2.7)

The optimal solution of problem (2.7) can be defined by x̄(ξ). Assuming available

perfect information, the objective function optimal value can be defined by z(x̄(ξ), ξ).

Here, the objective value is obtained by relaxing the nonanticipativity constraints. This

solution is commonly known as the wait-and-see solution, which we define as, ZK in

equations (2.8), where K stands for “known information”.

ZK = EP
[
min
x

z(x, ξ)

]
= EP z

(
x̄(ξ), ξ

)
(2.8)

The solutions obtained from (2.8), can be compared with the here-and-now solutions

defined as ZS, and obtained by computing the expected value of z over all scenarios, ξ, as

in equation (2.9), in which x, represents the optimal solution.
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ZS = min
x

EP z(x, ξ) (2.9)

The EVPI is then computed as the difference between the here-and-now and wait-

and-see solutions,

EV PI = ZS − ZK. (2.10)

B. Value of the stochastic solution

The value of the stochastic solution metric assesses how much is gained from using

stochastic programming instead of a deterministic approach. To compute the VSS, it is

necessary to derive a new problem, obtained by replacing the random variables with their

expected value, where the expectation of ξ is denoted by ξ̄ = E(ξ). This new problem is

called the mean value problem, ZM, as represented in equation (2.11).

ZM = min
x

z(x, ξ̄) (2.11)

The optimal solutions of ZM in (2.11) can be defined by, x̄(ξ̄), which are optimal

values of the first-stage variables. Then, we can solve the stochastic programming problem

by fixing the values of first-stage variables obtained by solving ZM. This problem is

decomposed by scenarios and easy to solve (Conejo et al., 2010). The expected result of

using the ZM solution, can be defined as,

ZM* = EP
(
z(x̄(ξ̄), ξ)

)
. (2.12)

The ZM* problem in (2.12) measures the performance of x̄(ξ̄) when fixing its values

into the first-stage variables, and obtaining second-stage solutions chosen optimally as a
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function of x̄(ξ̄), and ξ. For a minimization problem, the VSS can be computed as in

(2.13), which is the difference between the here-and-now and expected value solutions,

V SS = ZM* − ZS. (2.13)

As a final remark, we would like to highlight the relationship between the values

obtained from EVPI and VSS metrics, as indicated in Birge and Louveaux (2011). The

two main properties that describe the metrics relation over uncertainty effects are listed

below.

1. For any stochastic program, the metrics are nonnegative.

EV PI ≥ 0

V SS ≥ 0

2. For stochastic programs with fixed recourse matrix and objective coefficients,

the metrics are bounded by the same quantity, and will be zero when the values

of ZM* and ZM are equal.

EV PI ≤ ZM* − ZM

V SS ≤ ZM* − ZM

C. Out-of-sample evaluation

In the stochastic programming field and overall optimization under uncertainty, other

techniques can be used to assess the performance of stochastic models, such as out-of-

sample evaluation. The procedure consists of simulating new scenarios (by fixing first-

stage decisions), employing real data, or different distributional information to evaluate

the reliability of the stochastic model’s solutions. The robustness of the solutions can be

evaluated via risk measures defined according to the model objective.
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2.3. Robust Optimization

Robust Optimization (RO) is an alternative framework to stochastic optimization in

which the uncertain parameter, ξ, does not rely on probabilistic information; instead,

uncertainty is modeled within an uncertainty set, U . A generic robust optimization

program takes the form:

min
x∈X

{
max
ξ∈U

[
f(x, ξ)

]}
. (2.14)

While in the TSO approach, the expected value of the objective function is optimized

over a set of scenarios with known distributional information, in RO, a feasible and

optimal solution is sought for the worst case of the objective function. RO approach

is a useful methodology for applications in which infeasibility cannot be allowed since

it provides an optimal solution that is feasible for any realization of the random data

within the uncertainty set, i.e., the worst-case. The main drawback of RO is that it can

lead to over-conservative solutions since it does not consider distributional information

in case of available. However, the level of conservatism may be adjusted according to

how the uncertainty set characterizes the uncertainty. Several robust approaches for linear

optimization problems under uncertainty have been considered in the technical literature,

differing according to the uncertainty set, U , characterization.

The first contribution in RO was introduced by Soyster (1973), in which the uncertain

parameters are modeled as variables that vary within an interval. Within this approach,

the author obtained tractable robust optimization counterparts. In other words, under the

Soyster approach, the uncertain optimization problem is reformulated into a deterministic

convex program, guaranteeing feasibility for all realizations of the model uncertainties
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(Goh & Sim, 2010). However, the interval modeling approach could lead to over-

conservative solutions, since uncertain variables vary within a fixed range in the robust

optimization counterpart; thus, the optimal solution tends to be at either end of the range.

The solutions of this approach, also known as box constrained uncertainty set, give more

value to robustness than to optimality, making it impractical for certain applications.

We remark that the Soyster (1973) approach considers column-wise uncertainty,

defined as a specific set for each of the columns subject to uncertainty (Minoux, 2012).

The box uncertainty set can be described as follows,

Ubox =
{
ξ ∈ Rn : l ≤ ξ ≤ u

}
, (2.15)

where the ξ is the random vector of decisions, that lies into a bounded and symmetric

interval [l, u], so that l, u ∈ Rn represent the lower and upper bound of the pre-defined

interval, respectively, and l ≤ u. Note that the uncertainty set, Ubox, assumes that all

uncertain parameters vary simultaneously, i.e., every uncertain parameter takes the worst-

value within the set, which may lead to over-conservative solutions.

In order to overcome the over-conservatism of the interval-based approach, the

contributions Ben-Tal and Nemirovski (1998, 1999), El Ghaoui and Lebret (1997), and

El Ghaoui et al. (1998) independently proposed a method based on ellipsoidal uncertainty

sets for uncertain linear problems. The incorporation of ellipsoidal uncertainty allows the

model to be less conservative, by considering correlation information in the uncertainty

set. Here the uncertainty can be controlled by adjusting the size of the ellipsoidal sets.

The main disadvantage of this approach is that it leads to nonlinear, although convex

(Bertsimas & Sim, 2004), robust counterpart, which is more difficult to solve than the

model proposed by Soyster (1973), especially in large scale applications.
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The uncertainty set with ellipsoidal uncertainty can be described as follows,

U ell =
{
ξ ∈ Rn : (ξ − ξ̄)ᵀ Sᵀ (ξ − ξ̄) ≤ Υ2

}
, (2.16)

where (as described before), ξ is the random vector of decisions that represents

uncertainty. ξ̄ is the vector of the nominal (mean) value of the uncertain parameters, S

represents a positive definite matrix of the relationship between the uncertain parameters

(e.g., variance-covariance) and Υ is a safety parameter that determines the size of the

ellipsoid to control the level of conservatism concerning the uncertainty. For values

of Υ ≥ 1, more variability is acknowledged. The robust counterpart of (2.16) is an

optimization over a quadratic constraint, which will result in a SOCP (Bertsimas et al.,

2011).

Aiming to provide a trade-off between robustness and performance, Bertsimas and

Sim (2004) proposed a framework based on a polyhedral uncertainty set. This approach

allows for varying the degree of conservatism of the solution through a parameter called

budget of uncertainty. As in Soyster (1973), the robust counterpart remains linear but can

be generalized to discrete optimization problems. Besides, this new approach, in contrast

to the box constrained uncertainty set method, allows controlling the level of conservatism

for every constraint subject to uncertainty rather than simultaneously. Thus, the set has a

row-wise structure, which allows that only a subset of the uncertain parameter changes

to affect the solution (Bertsimas & Sim, 2004). The polyhedral uncertainty set can be

described as follows,

Upol =

{
ξ ∈ Rn : |ξj − ξ̄j| ≤ sj,

∑
n

|ξj − ξ̄j|
sj

≤ Ω

}
, (2.17)
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where n is the index set that contains the coefficients subject to uncertainty, sj is the

range of variation of coefficient j, and Ω is the adjustable parameter of robustness, also

called uncertainty budget. The uncertainty budget is user-defined and indicates the number

(not necessarily integer) of uncertain parameters that protect the solution against the level

of conservatism so that 0 ≤ Ω ≤ n. Note that when Ω = 0, no protection is considered,

so the uncertain parameter is equivalent to its nominal value. Similarly, for Ω = |n| it

becomes the Soyster (1973) method in which full protection is acknowledged.

From the mathematical modeling point of view, the robust optimization approaches

differ according to problem structure, namely, single-stage and adjustable robust

optimization. In the former approach, the decisions are not adjusted once the uncertainty

is realized; thus, recourse actions cannot be taken in response to changes in the wait-

and-see decisions. Some examples of single-stage works are the contributions previously

presented, Soyster (1973); Ben-Tal and Nemirovski (1998); El Ghaoui and Lebret (1997);

Bertsimas and Sim (2004). Adjustable robust linear programs, similar to TSO problems,

consider adjustable decisions or recourse actions in the second-stage problem. The two-

stage robust decision framework was addressed by Ben-Tal et al. (2004) in which the

decisions are divided into stages, guaranteeing to some extent consistency in the decision-

making. This approach, in particular, is explained in the next section, which is the focus

of this thesis. For further review of the aforementioned robust optimization methods, the

reader is referred to Ben-Tal and Nemirovski (1999), Bertsimas et al. (2011), Gorissen et

al. (2015) and Sözüer and Thiele (2016).

2.3.1. Two-stage Robust Optimization

Adjustable robust optimization (RO henceforth) was introduced in Ben-Tal et al.

(2004). The authors studied the problem in which decisions are flexible to adapt to changes

in the uncertain parameters. Thus, recourse actions can be taken in response to future
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variations in decisions. In Ben-Tal et al. (2004), it was showed that the adjustable RO is in

general NP-hard. The adjustable RO framework is similar to stochastic programming with

recourse, in which several stages can be considered according to how the decision process

is conformed.

In particular, two-stage robust optimization considers two stages; first-stage decisions

are taken before the realization of uncertainty, and second-stage decisions involve recourse

or correction actions made once the uncertain events are realized. Unlike stochastic

programming in which uncertainty is assumed to take values within a set of scenarios

with a known probability distribution, in RO, decisions belong to an uncertainty set, that

can be defined as we detailed in Subsection 2.3.

To illustrate the adjustable RO approach in two stages, let us recall the compact

linear optimization problem presented in equations (2.2)–(2.3), in which we defined the

operational value function f(x, ξ),

f(x, ξ) = min
y≥0

{
hᵀ

ξy |Wξx +Bξy ≥ dξ

}
. (2.18)

In equation (2.19), instead of obtaining the expectation over f(x, ξ) as in (2.2), we

compute the worst-case operational cost under first-stage decisions, x, and the observed

vector of uncertainty, ξ ∈ U , defined by the cost function gRO(x) = max
ξ∈U

[f(x, ξ)].

The two-stage robust counterpart can be described as follows,

RO: min
x∈X

cᵀx + gRO(x)

where: gRO(x) = max
ξ∈U

[
f(x, ξ)

]
.

(2.19)

The robust counterpart model in (2.19) aims to find a feasible solution under any

realization of the uncertain parameter, ξ, within the pre-specified uncertainty set, U .
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2.3.2. Solution methods for Two-stage Robust Optimization

Adaptive robust optimization models are difficult to compute; they are a tri-

level optimization model that has been shown to be NP-hard (Ben-Tal et al., 2004).

Several solutions strategies have been studied in the literature, aiming to find tractable

methodologies to overcome the computational difficulty, for instance, approximation

algorithms, decomposition-based methods, and scenario-based approaches. We remark

that we limit this subsection to solution strategies applicable to two-stage robust

counterpart models with continuous recourse variables, which is the scope of this thesis.

For further detail of solution methodologies involving discrete recourse variables, the

reader is referred to Zhao and Zeng (2012a).

Approximation algorithms were studied in Ben-Tal et al. (2004). The authors

proposed the use of affine decision rules, named as affinely adjustable robust counterpart

approach, in which the recourse decisions are restricted to being affinely dependent on

the uncertain parameters. The main assumption is that the problem has a fixed recourse

scheme (i.e., the recourse matrix, B, in (2.18) is known). The optimality of the linear

decision rule method was later studied in Bertsimas, Iancu, and Parrilo (2010) to prove the

solution approach’s tractability. For the case of discrete second-stage variables, Bertsimas

and Caramanis (2010) introduced the finite adaptability approach, in which discrete

variables are modeled as a piecewise constant function of the uncertainty. For large-scale

problems, such approximation techniques are generally NP-hard, since the computational

time grows with the number of partitions.

Decomposition-based methods, such as Benders decomposition (Benders, 1962)

and column-and-constraint generation (CCG) algorithms, are used for large scale linear

optimization problems. Rather than providing near-optimal solutions as in the fixed-

recourse framework, global optimality may be obtained in a short time (depending on
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the problem structure). The general idea behind the decomposition methods algorithms

is to dynamically generate new solutions in a master-subproblem framework through an

iterative process that provides bounds of the optimal solution (González Cobos, 2019).

Applications of the Bender decomposition algorithm for two-stage robust models can be

found in Zhao and Zeng (2012b). Here, the value function of the first-stage decisions

is constructed by employing dual solutions of the second-stage decisions. The CCG

algorithm, similar to Benders, creates cutting planes but with primal decision variables

(Zeng & Zhao, 2013). Overall, it has been proven that for recourse problems involving

continuous variables, both algorithms converge to an optimal solution in finite iterations

(Bertsimas et al., 2012; Zhao & Zeng, 2012a; Gabrel et al., 2014).

The uncertainty in robust models can also be characterized by scenarios. Recent

studies in the literature have considered this approach defined as data driven robust

optimization, in which data is employed to design the uncertainty set, see, e.g., Bertsimas

et al. (2018a), Bertsimas et al. (2018b), and Bertsimas and Kallus (2020). Such scenario-

based methods are particularly suitable for robust approaches under polyhedral uncertainty

sets and continuous recourse variables. The procedure is similar to the SAA approach

described in Subsection 2.2.2.1; the second-stage is replaced with the uncertain constraints

related to the scenarios representing the vertexes of the polyhedron that characterize the

uncertainty (Bertsimas et al., 2018a).

A tractable reformulation duality-based of problem (2.19) will be derived in

Subsection (2.4.2.1), by considering a box uncertainty set.

2.4. Distributionally Robust Optimization

The Distributionally Robust Optimization (DRO) approach is known to be a

generalization of the stochastic and robust optimization approaches in which limited
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distributional information of the uncertain parameter, ξ, is considered. In contrast

to stochastic programming in which the uncertainty is based on knowledge of the

probability distribution, the distributionally robust optimization approach stands on the

paradigm of ambiguity in decision-making (Bertsimas, Sim, & Zhang, 2019). A generic

distributionally robust optimization program takes the form:

min
x∈X

{
sup
P∈D

EP
[
f(x, ξ)

]}
, (2.20)

where D is the ambiguity set that represents the family of probability distributions

that characterize the random parameters. Hence, a DRO model seeks to hedge against the

worst-case probability distribution within a pre-defined ambiguity set,D. The definition of

D is crucial in the robust optimization setting since it defines the computational tractability

of the model and the degree of conservatism of the solution.

The adoption of limited distributional information in stochastic programming was

first considered in Scarf (1958). Scarf studied a minimax stochastic problem applied

to inventory planning under known moment information (first and second-order) of

demand. It was shown that the proposed model could be reformulated as a tractable

optimization problem. A similar approach was also studied in Žáčková (1966), assuming

knowledge of the mean and support of the uncertain variables. Additional works to this

minimax stochastic programming approach can be found in Dupačová (1987), Breton and

El Hachem (1995), and Shapiro and Ahmed (2004).

More recently, the DRO approach has gained considerable interest in a number

of applications, including revenue management, portfolio management, scheduling, and

power system management. The studies can be subdivided into three main streams

according to the ambiguity characterization, namely, (i) confidence region of the goodness

of fit, (ii) probability distance (e.g., Kullback–Leibler, Wasserstein metric), and (iii)
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moment information. We remark that this classification includes the most common

approaches found in the literature; various ambiguity sets have been studied beyond this

classification. Refer to Ben-Tal et al. (2013), Hanasusanto et al. (2015), and Postek et

al. (2016) for a broad description of the DRO approach. Below we briefly detail the

aforementioned approaches.

Goodness-of-Fit. The uncertainty set under the Goodness-of-Fit (GoF) approach

contains all distributions that pass prescribed statistical tests (Bertsimas et al., 2018b),

e.g., Kolmogorov-Smirnov or Anderson-Darling for univariate distributions. The GoF

approach was employed in Bertsimas et al. (2018b) to derive a robust SAA (termed by

authors), applied to a data-driven DRO by means of statistical hypothesis testing. The

authors proposed an enhanced SAA guaranteeing asymptotic convergence and tractability

for a finite sample, which may be unstable in out-of-sample-evaluation. The proposed

robust SAA procedure consists of employing a GoF test at a significance level, 0 < α < 1,

to construct the uncertainty set that contains a true probability distribution within the

confidence region at least 1 − α. Similarly, for a given uncertainty set containing the

true distribution at a significance level of at least 1 − α (as a reference of the sampling

distribution), a GoF can be constructed with a significance level of α.

A general representation of the ambiguity set under GoF has the form: DGoF =

{Pα
SN

: SN(P0, ξ
1, ..., ξN)}, where DGoF represents the ambiguity set considering a

GoF approach, SN indicates a particular statistic test, which takes values ξ1, ..., ξN

denoting independent and identically distributed (iid) data of dimension N , and P0 is the

hypothetical distribution. The confidence region (i.e., set of all distributions, P0, that past

the test) is denoted by, Pα
SN

(ξ1, ..., ξN) = {P0 ∈ P(Ξ) : SN(P0, ξ
1, ..., ξN) ≤ QSN

(α)},

such that, Ξ is the support (closed) of ξ, denoted by the set of probability distributions

over P(Ξ), QSN
represents a threshold which depend on the true distribution for a defined
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confidence level, α. The null hypothesis is rejected if P0 > QSN
. Overall, the GoF

approach accounts for the evaluation of the entire distribution via its confidence region

instead of considering only moments (mean and covariance) or the probability distribution

distance.

Probability distance. This approach defines the ambiguity set as a ball in the space of

probability distributions; thus, the degree of conservatism can be controlled by adjusting

its radius. The ambiguity set under probability distance contains a family of distributions

close to the nominal distribution related to the evaluated metric (Esfahani & Kuhn, 2018).

A general representation of the ambiguity set under probability distance has the form:

Ddist = {P : d(P, P̂ ) ≤ β}, where Ddist is a bounded ambiguity set, P ∈ D denotes

probability measures defined under the same sample space, d(·, ·) is a distance function

between probability measures, P̂ denotes a central (or reference) probability measure, and

β ≥ 0 is a given constant. Some of the most common measures studied in the literature

are the Prohorov metric, Kullback–Leibler, and the Wasserstein metric.

The Prohorov metric (Billingsley, 2013) is important in probability and statistics

theory because it metrizises the weak convergence between probability measures.

The authors in Erdoğan and Iyengar (2006) employed this metric for the study of

ambiguous chance-constrained problems under a sample-based approximation method.

The uncertainty set is defined by norm balls described in terms of the Prohorov metric.

The Kullback–Leibler (KL) divergence measure also named relative entropy, belongs

to the class of distances called phi-divergence; see, e.g., Ben-Tal et al. (2013) and

references therein. It compares the difference between two probability distributions,

assuming known, finite and discrete support. This metric is known to be asymmetric

and, therefore, is not a metric since it doesn’t satisfy the triangle inequality. The KL

measure has been mostly applied to chance-constrained problems providing tractable
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approximations for the ambiguous chance constraint, for instance, Calafiore and El Ghaoui

(2006); Hu et al. (2013); Hu and Hong (2013) and, Jiang and Guan (2016).

The Wasserstein metric (Kantorovich & Rubinstein, 1958), has been widely used for

modeling distributional ambiguity; see, e.g., Pflug and Wozabal (2007), Wozabal (2012),

Mehrotra and Zhang (2014), Gao and Kleywegt (2016), and Esfahani and Kuhn (2018).

The Wasserstein distance (also referred to as Kantorovich metric), of two distributions,

can be defined as the transportation cost for moving the probability mass between

both distributions. In other words, the Wasserstein distance describes the cost of an

optimal mass transportation plan (Esfahani & Kuhn, 2018). The distributionally robust

optimization problems under Wasserstein/Kantorovich metric are known to be difficult

to solve. Most existing methods to solve such problems rely on global optimization

techniques (Esfahani & Kuhn, 2018). In this regard, the authors in Esfahani and Kuhn

(2018) studied the tractability issue of the worst-case expectation over a Wasserstein ball

for a data-driven distributionally robust model. The authors demonstrated the tractability

of the Wasserstein distance that can be achieved by transforming the inner problem into a

finite-dimensional convex program. Besides, it was shown that for a finite sample, such

an approach provides good out-of-samples performance. The authors also pointed out that

moment-based ambiguity set approaches provide advantages over the Wasserstein distance

metric in terms of tractability properties. Below we describe the moment-based ambiguity

set approach, which is within the scope of this thesis.

Moment information. This approach assumes that only moment information (such

as mean, covariance, support) of the distribution of the uncertain parameters is known

(estimated) to the decision-maker. Several definitions of ambiguity set under moment

information have been proposed in the literature.
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The first study based on moment information is found in Scarf (1958). The ambiguity

set is defined by considering linear constraints on the first and second moments of

the demand distribution for a (one-stage) single-product news-vendor problem. The

solution method relies on characterizing the worst-case distribution as a point distribution.

Thereafter a similar linear constraint-based approach has been applied to several studies;

see, e.g., Dupačová (1987); Bertsimas and Popescu (2005), considering the knowledge of

mean and support of the uncertain parameters, and Yue et al. (2006); Zhu and Fukushima

(2009); Prékopa (2013), imposing exact knowledge on mean and covariance matrix

constraints.

A different approach to describe the uncertainty set under moment information is

to consider conic constraints; see, e.g., Bertsimas, Doan, et al. (2010); Delage and Ye

(2010); Wiesemann et al. (2014). More specifically, Delage and Ye (2010) propose

a general uncertainty set, assuming knowledge of the distribution’s support, mean and

second-moment matrix, which lied in a confidence region rather than considering point

estimation as in previous studies. The authors show that due to the structure of this new

generalized uncertainty set, a DRO model can be solved in polynomial time (through an

ellipsoid method), offering computational advantages over previously reported approaches

in the literature. The proposed DRO model is developed under a data-driven approach and

applied to a portfolio selection problem.

Mehrotra and Zhang (2014), extended the study in Delage and Ye (2010) for least-

square problems. The authors considered three uncertainty sets, defined by moment

constraints, norm bounds, and confidence regions. The model is solved in polynomial

time by using a semidefinite programming method. In Mehrotra and Papp (2014) high-

dimensional moments (e.g., third and fourth marginal) are considered to define the

uncertainty set, which is able to provide the overall shape of the distribution. However,
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the proposed cutting surface method based on a semi-infinite programming approach does

not guarantee a polynomial solution. More recently, a generalized ambiguity set based on

conic constraints is proposed in Wiesemann et al. (2014). The unified framework considers

several uncertainties sets previously presented in the literature. Tractability conditions for

the proposed approach are presented.

Motivated by the new emerging of data availability in various fields, there exists

a vast literature in data-driven distributionally robust optimization; see, e.g., Calafiore

and El Ghaoui (2006), Delage and Ye (2010), Jiang and Guan (2016), Esfahani and

Kuhn (2018), Bertsimas et al. (2018b), and Bertsimas et al. (2018a). In this setting, the

main objective is to construct the uncertainty set based on historical data. For instance,

Delage and Ye (2010), design the ambiguity set from historical data by employing the

McDiarmid’s inequality (Mcdiarmid et al., 1998), to define the confidence region of

the mean and covariance matrix of the uncertain parameter. In contrast, the authors

in Bertsimas et al. (2018a) develop general uncertainty sets by employing a hypothesis

test. It was shown that this framework leads to less conservative solutions while

maintaining similar probabilistic guarantees and enhanced robustness properties compared

to the previous approaches in the literature. For a broad review on uncertainty set

characterization in distributionally robust optimization the reader is referred to Gabrel

et al. (2014), Wiesemann et al. (2014), and Sözüer and Thiele (2016).

Below we summarize the most common formulations of the ambiguity set, Dmom,

under moment information to solve a problem of type (2.20).

1. Considering all distributions with exact mean vector, ξ̄, and covariance matrix,

Σ, constraints, (Scarf, 1958; Ghaoui et al., 2003; Yue et al., 2006; Popescu,

2007):
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Dmom
1 =


P ∈ Pn

∣∣∣∣∣∣∣∣∣∣∣

P{ξ ∈ Ξ} = 1

EP [ξ] = ξ̄

EP
[
(ξ − ξ̄)(ξ − ξ̄)ᵀ

]
= Σ


, (2.21)

where Pn represents the set of all probability measures on Rn, ξ̄ stands for the

mean vector, and Σ is the covariance matrix.

2. Considering all distributions with exact mean vector, ξ̄, and support, Ξ,

constraints, (Dupačová, 1987; Bertsimas & Popescu, 2005):

Dmom
2 =

P ∈ Pn

∣∣∣∣∣∣∣
P{ξ ∈ Ξ} = 1

EP [ξ] = ξ̄

 , (2.22)

where Ξ represents the support set of the random vector ξ, and P{ξ ∈ Ξ} = 1

guarantees that the uncertainty realizations are constrained within the support

set.

3. Considering all distributions with known support, Ξ, ambiguous mean vector, ξ̄

and ambiguous covariance matrix, Σ, constraints, (Delage & Ye, 2010):

Dmom
3 =


P ∈ Pn

∣∣∣∣∣∣∣∣∣∣∣

P{ξ ∈ Ξ} = 1(
EP [ξ]− ξ̄

)ᵀ
Σ−1

(
EP [ξ]− ξ̄

)
≤ γ1

EP
[
(ξ − ξ̄)(ξ − ξ̄)ᵀ

]
≤ γ2 Σ


. (2.23)

The generalized ambiguity set, (2.23), proposed by Delage and Ye (2010), aims to

control the estimation errors on the mean vector and covariance matrix. It considers the

parameters, γ1 ≥ 0 and γ2 ≥ 1, which define the size of the ambiguity set.
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The DRO has been studied within a multi-stage decision framework (see, for instance,

Bertsimas and Goyal (2010); Bansal et al. (2018); Bertsimas, Sim, and Zhang (2019) and

references therein). Similar to how we explained in previous sections, the framework

divides the decision-making process into stages and is termed in the technical literature as

the “Adaptive distributionally robust optimization problem”. In Subsection 2.4.1 we focus

on the two-stage distributionally robust linear optimization problem, following a similar

criteria of Subsections 2.2.1 and 2.3.1. We consider moment information to characterize

the uncertainty set, and to derive a tractable solution methodology.

2.4.1. Two-stage Distributionally Robust Optimization

The two-stage DRO optimization approach, follows the same decision criteria of two-

stage stochastic (Birge & Louveaux, 2011) and robust optimization (Bertsimas et al.,

2012) frameworks. The decisions are divided into two stages, where the first-stage or

here-and-know decisions are taken before the realization of uncertainty, and the second-

stage wait-and-see or recourse decisions are made once the uncertain events are realized.

Thus, decisions can be adjusted in response to changes in future realizations. Within two-

stage DRO framework several classes of optimization problems are studied in the literature

which differ according to the model structure (e.g, LP, MILP, MIP) and the definition of

the ambiguity set. Some interesting contributions within this framework of decisions can

be found in, Goh and Sim (2010), Bansal et al. (2018), Shang and You (2018), Bertsimas,

Sim, and Zhang (2019), Y. Wang et al. (2019), and Velloso et al. (2020). In the following

subsections, we focus on two-stage distributionally robust linear programs under moment

information.

Based on the generic distributionally robust program in equation (2.20) we further

consider the following two-stage DRO problem:
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DRO: min
x∈X

cᵀx + gDRO(x)

where: gDRO(x) = sup
P∈Dmom

EP
[
f(x, ξ)

]
.

(2.24)

The goal of problem (2.24) is to determine the first-stage decisions, x, (which can

be binary or continuous variables), by minimizing the sum of the first-stage cost and

an ambiguity-averse expectation measure, gDRO(x), (Bertsimas, Sim, & Zhang, 2019).

The second-stage recourse function gDRO(x) computes the worst-case expected cost of all

probability distributions over the ambiguity set Dmom.

Without loss of generality, we assume that function f(x, ξ) is a linear optimization

problem, defined on the first-stage (deterministic) decisions, x, and the uncertain

realizations, ξ. Here the second-stage decision is represented by the vector y. The inner

linear optimization problem can be defined as follows:

f(x, ξ) = min
y≥0

hᵀy

s.t.: By ≥ dξ −Wx,

(2.25)

where the uncertain parameter, d, of the second-stage problem is on the right-hand

side of the uncertain constraint. Therefore, f(x, ξ) can be defined as a convex function

on x and ξ. We remark that in the context of stochastic programming, problem (2.24) is

categorized as simple recourse, in which the parameter vector h, and matrixW are fixed,

and only the vector d is random (Birge & Louveaux, 2011).

As we explained in the previous section depending on the available information about

ξ, the uncertainty can be characterized according to the definition of the ambiguity set. We

consider the ambiguity set, Dmom
2 , defined in equation (2.22), which assume knowledge of
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the mean vector, ξ̄, and support, Ξ, of the uncertain parameter. Then, the ambiguity-

averse operational cost function, gDRO(x), can be expressed as an infinite dimensional

linear optimization problem in equation (2.26):

gDRO(x) = sup
P∈Dmom

∫
Ξ

f(x, ξ) dP (ξ),

s.t.:
∫

Ξ

dP (ξ) = 1 : α∫
Ξ

ξdP (ξ) = ξ̄ : γ

(2.26)

where the symbols, α and γ, are the dual variables related to moment problem

constraints. Note that under this formulation, (2.24) is a min-sup problem that cannot

be solved with commercial solvers.

In the next subsection, we describe the up-to-date solutions methodologies to

solve two-stage distributionally robust linear optimization problems for ambiguity set

constructions under moment information. Besides, we derive a tractable methodology

similar to Pozo et al. (2018) to solve problem (2.24) based on duality theory.

2.4.2. Solution methods for Two-stage Distributionally Robust Optimization

Adaptive DRO models are usually hard to solve. Accordingly, Bertsimas, Doan, et

al. (2010) showed that such problems could be NP-hard for right-hand side uncertainty

models. Several solution methods have been proposed in the literature to solve adaptive

distributional robust optimization models, including exact and approximated approaches.

Approximated methods (e.g., linear decision rule) are commonly employed to solve

polynomial sized problems that can be computationally expensive to be solved by exact

methods.
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Besides, the solution methods differ according to the ambiguity set characterization

and the structure of the recourse function f(x, ξ). For instance, when choosing an

uncertainty set of the type in equations (2.23), the recourse function involves quadratic

constraints, so that, its dual will lead to SOCP. For the case of considering first moments

and support (e.g., polyhedral uncertainty) as in (2.22), the reformulation will result in an

equivalent linear optimization problem. Of course, this is valid for the case in which the

subproblem involves continuous variables so that its dual can be obtained (Bertsimas et

al., 2011).

We briefly detail solution methods in the literature for adaptive DRO models under

moment information. The reader is referred to Goh and Sim (2010) and Kuhn et al.

(2011) for an overview of tractable reformulations to generic two-stage and multi-stage

distributional linear robust programs.

Exact methods to solve adaptive DRO problems typically rely on duality theory

approaches to find an equivalent finite formulation for the recourse function. This problem

can then be solved by a vertex enumeration approach (i.e., including all the extreme points

of the feasible set), and considering scenarios that represent the uncertainty described

by the ambiguity set, see, e.g., Pozo et al. (2018). The optimization problem’s size can

increase exponentially according to the uncertain parameter dimension, which can be

computationally intractable for large size problems. Thus, decomposition algorithms are

employed, aiming to find tractable reformulations. For instance, a decomposition method

based on Bender’s algorithm and an L-shaped method is employed in Bansal et al. (2018)

to solve two-stage DRO problems with first-stage binary variables and mixed binary

variables in the second-stage. The problem, which is based on moments and Kantorovich

ambiguity sets resulted in optimal solutions obtained in a short time.
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Recently, an enhanced CCG algorithm is developed in Velloso et al. (2020) for

solving two-stage DRO models with right-hand side uncertainty and continuous second-

stage variables under first-moment information. In the traditional CCG algorithm usually

applied in RO, the iterative process between the master and subproblem is based on a

single scenario (at each iteration) to compute the worst-case value of the recourse function.

In contrast, the enhanced CCG proposed by Velloso et al. (2020) considers that since

in adaptive DRO, the recourse function relies on the worst-case expected value, more

scenarios are needed to compute the mean value. Thus, an inner loop is included based

on a Dantzig-Wolfe procedure to obtain the expected value of the recourse function,

considering more scenarios at each iteration of the CCG algorithm. Better solutions were

reported compared to the traditional CCG method.

Approximated algorithms are used to derive tractable reformulations for high

dimensional problems. A common approach is the Linear Decision rule (LDR) technique

also studied in robust optimization (Ben-Tal et al., 2004) as well as stochastic optimization

(Kuhn et al., 2011). This approximated method consists in assuming that recourse

decisions are affinely dependent on the uncertain parameters. According to Ben-Tal et al.

(2004), performance improvement can be obtained under this approach for certain types

of problems.

Lately researchers have been considering the LDR technique in DRO, see, e.g., Chen

et al. (2007), Goh and Sim (2010), S. Wang et al. (2017) and Bertsimas, Sim, and Zhang

(2019). In particular, Bertsimas, Sim, and Zhang (2019) developed a tractable formulation

for adaptive DRO problems by considering a new variant of the LDR technique under a

lifted ambiguity set. A scalable framework is proposed for SOC ambiguity sets; defined

as partial cross-moment ambiguity set. In contrast to the previous studies that consider

marginal moment ambiguity sets, the authors showed that by employing cross-moments,
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the solutions are less conservative and yield tractable models. To guarantee feasibility of

the second-stage problem, Bertsimas, Sim, and Zhang assumes that the recourse matrix

(i.e., B) and the cost vector (i.e., h) of the recourse function, f(x, ξ), are constants and

that it has relatively complete recourse, i.e., for every first-stage solution and uncertain

realization, the second-stage is feasible (Birge & Louveaux, 2011).

Another approach is based on semidefinite programming (SDP) by employing a

moment decomposition approach. This method is suitable for problems in which first

and second moments characterize the ambiguity set. Kong et al. (2013) proposes an

approximation algorithm based on the conic representation of the recourse function.

A cross-moment ambiguity set is considered characterized by partial distributional

information of the mean and covariance matrix of the uncertain parameter. A copositive

cone programming reformulation is obtained, and a semidefinite program is used to

approximate the solutions.

In the next subsection, we present an exact solution method to solve problem (2.24).

2.4.2.1. Scenario-based equivalent finite formulation

The model in the set of equations (2.26) is a linear optimization problem in the space

of distributions with an infinite number of variables, each one associated with a probability

element, dP (ξ). In order to find a finite single-level equivalent formulation we consider a

scenario-based approach to reformulate the model into an equivalent finite mixed-integer

linear program. A dual formulation is developed that results in a problem with infinitely

many linear constraints, one for each scenario, ξ ∈ Ξ, and it can be defined as follows:

gDRO(x) = min
α,γ

α + γᵀξ̄

s.t.: f(x, ξ) ≤ α + γᵀξ ∀ξ ∈ Ξ.

(2.27)
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In order to reformulate problem (2.27) into a fine-dimensional one, we remark that

the infinite set of linear constraints in problem (2.27) can be represented as,

max
ξ∈Ξ

{
f(x, ξ)− γᵀξ

}
≤ α. (2.28)

By definition, f(x, ξ) is a convex function on ξ. Thus, expression f(x, ξ)− γᵀξ is a

convex function on ξ. Therefore, the optimal value of maxξ∈Ξ

{
f(x, ξ)−γᵀξ

}
would be

at any of the vertexes of the box type support set, Ξ, of ξ, (Ben-Tal et al., 2009). Then, the

equivalent finite formulation for the distributionally robust recourse function (2.24), can

be defined as follows:

gDRO(x) = min
α,γ

α + γᵀξ̄

s.t.: f(x, ξk) ≤ α + γᵀξk ∀k ∈ K,
(2.29)

where ξk is defined as the extreme points vector of the uncertain parameter, ξ. k

is used to index all extreme points of the support set, Ξ. By computing the dual of

problem (2.29) we can derive the equivalent finite primal formulation of problem (2.24),

as described in problem (2.30).

gDRO(x) = max
pk

∑
k∈K

f(x, ξk)pk

s.t.:
∑
k∈K

pk = 1

∑
k∈K

ξkpk ≤ ξ̄

(2.30)

In order to derive an equivalent finite scenario-based linear program for the DRO

problem defined in (2.24), we replace f(x, ξk) in (2.29) with the objective function of

(2.25). The decision variables, α and γ are jointly minimized with first-stage decisions,



85

x, and second-stage decisions, yk, for each extreme point k, ξk. The equivalent finite-

deterministic MILP of problem (2.24) can be formulated as follows,

min
x,y,α,γ

cᵀx + α + ξ̄

s.t.: x ∈ X

hᵀyk ≤ α + γᵀξk ∀k ∈ K

Wyk ≥ Bξk +Gx ∀k ∈ K,

(2.31)

which is an equivalent scenario-based approach, considering only the subset of

scenarios in Ξ, which are candidates for a positive-probability mass in the worst-case

distribution.

Correspondence between two-stage RO and DRO approaches

The DRO reformulation in the set of equations (2.31) can be used to derive an equivalent

finite formulation of the two-stage robust model, (2.21), presented in subsection 2.3.1.

The equivalent robust optimization approach can be achieved by excluding the moment

information, ξ̄, from the objective function and related constraints. In this case, the

operational model’s solution will be the worst-case scenario in the support set Ξ, as we

present in the set of equations (2.32).

min
x,y,α

cᵀx + α

s.t.: x ∈ X

hᵀyk ≤ α ∀k ∈ K

Wyk ≥ Bξk +Gx ∀k ∈ K

(2.32)
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2.5. Summary and concluding remarks

This chapter provides a brief overview of the decision-making theory under

uncertainty. We describe the fundamentals of stochastic programming, robust

optimization, and distributionally robust optimization. Such optimization methods under

uncertainty are useful to solve real-life problems in which unknown parameters can be

characterized as random variables. Several versions of the approaches were presented as

well as a brief review of their up-to-date solution methods in the literature.

Figure 2.1 shows in compact form, an overview of the optimization models described

in this chapter, where f(x, ξ) = min
y
hᵀ

ξy, s.t.: Bξy ≥ dξ −Wξx. Note that we only

include the modeling decision frameworks for two-stage or adjustable programs.

min
x

cᵀx + f(x, ξ)

s.t.: x ∈ X

(A) Deterministic optimization

min
x

cᵀx + EP [f(x, ξ)]

s.t.: x ∈ X

(B) Stochastic optimization

min
x

cᵀx + max
ξ∈U

[f(x, ξ)]

s.t.: x ∈ X

(C) Robust optimization

min
x

cᵀx + sup
P∈Dmom

EP [f(x, ξ)]

s.t.: x ∈ X

(D) Distributionally robust optimization

FIGURE 2.1. Comparison of the different optimization approaches under uncertainty.

The deterministic model, Figure 2.1a, assumes the uncertainty, ξ, as a singleton (point

estimates), ξ̄, that can be defined as the expected value of the uncertain parameter obtained

from historical data or estimations from expert’s opinion. The main disadvantage of this
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approach is that small changes in such mean values may result in infeasible solutions.

The two-stage stochastic model, 2.1b, minimizes the total cost under the expected cost of

the operational function, f(x, ξ), represented by a finite set of scenarios with a known

probability distribution, P of the continuous random vector ξ. The main drawback

of TSO is the computational load of computing, which increases with the number of

scenarios, and it is even more difficult to solve for problems incorporating integer

variables; scenario reduction techniques may be needed. In addition, since the uncertain

parameters’ distribution is inferred from data, accurate characterization of uncertainty

must be guaranteed.

The adjustable robust optimization model, 2.1c, minimizes the total cost considering

the worst-case realization of the random parameter, ξ, within the uncertainty set, U .

The uncertainty can be characterized according to different set structures, each of them

indicating a different level of protection against uncertainty, including box uncertainty

(red line figure), ellipsoidal uncertainty (blue dash line figure), and polyhedral uncertainty

(black line figure). Here, no distributional information is required, ensuring a trade-off

between accuracy and tractability. The distributional robust optimization model, 2.1d, is a

generalization of the stochastic and robust models, that computes the worst-case expected

cost over the probability distributions within the ambiguity set. The ambiguity set, Dmom,

in Figure 2.1d represents the family of distributions of ξ, in which information about, the

mean, support, and variance (for moment-based ambiguity sets) can be estimated from

historical data.

The optimization methodologies under uncertainty presented in this chapter are

applied in the subsequent chapters of this thesis. The TSO approach is considered in

Chapter 3, and solved employing a SAA method. In Chapter 5, the DRO approach under

moment information is employed by considering a scenario-based solution methodology.
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The performance of the DRO approach is then benchmarked with two-stage RO and TSO

approaches.
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Chapter 3. MULTI-OBJECTIVE ADMISSION PLANNING PROBLEM: A TWO-

STAGE STOCHASTIC APPROACH

The public healthcare system is under constant pressure from the government to

achieve quotas of patient’s admission. Besides, hospital managers must guarantee cost-

effective care with limited funding and constraints on the availability of resources.

However, the uncertainty in the patient’s arrival and the availability of resources makes

the patient’s allocation challenging to manage. Bed shortage is one of the main drawbacks

of the allocation process, which can increase patient delays, transfers, unnecessary waiting

times, and mortality. Thus, the admission planning process should anticipate such effects

caused by the uncertainty, in order to reduce the impact of two conflicting objectives,

service quality, and hospital performance.

This chapter studies intertemporal decisions in the admission planning problem

through a two-stage stochastic approach. We tackle the APP at the tactical-operational

level to study the trade-off between bed utilization and cost of service. We propose

a bi-objective stochastic optimization model taking into account demand and capacity

availability uncertainty. Real data from the surgery and medical care units of a Chilean

public hospital illustrate the approach and validate the model.

The content of this chapter is based on a paper published in the Health Care

Management Science (Batista, Vera, & Pozo, 2020).

This chapter is organized as follows. Section 3.1 provides an overview of the problem

of tactical admission planning in healthcare. Section 3.2 presents the proposed framework

formulation to solve the admission planning problem. Section 3.3 provides the modeling

of the admission planning problem and discusses the problem setting and case of study.

In Section 3.4, we present a computational study and thoughtful analysis of the results.

Finally, Section 3.5 summarizes and concludes the chapter.



90

Notation

The mathematical symbols used throughout this chapter are described below:

Indexes

i Patients groups.

k Scenarios.

t Time period.

Sets

P Set of patients groups.

T Set of time periods t.

X Set of feasible admission plans.

Y Set of feasible allocation plans.

Ξ Set of scenarios.

Parameters

ct Internal capacity availability in period t.

dpt Demand of patients group p in the period t.

et External capacity availability in period t.

nt Temporary capacity availability in period t.

qp Maximum number of patients type p in queue.

ut Target utilization in period t.

wr
p Cost of reserve capacity by patient group type p.

wi
p Cost of internal assignment by patient group type p.

we
p Cost of external assignment by patient group type p.

wt
p Cost of temporary assignment by patient group type p.
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wu
p Cost of unmet demand by patient group type p.

Variables

Hpt Number of unmet demand by patient group p in period t.

Kpt Number of beds reserved to patient group p in period t.

Xpt Number of internal assignments by patient group p in period t.

Ypt Number of external assignments by patient group p in period t.

Zpt Number of temporary assignments by patient group p in period t.

UUt Under-utilization of resource in the period t.

OUt Over-utilization of resource in the period t.

3.1. Introduction

Public hospitals face political pressure to improve its processes due to limited

resources. Also, the aged population and new technological advances push the healthcare

system to be more efficient. The main issues are waiting lists and waiting times, that

affect the timely access and the quality of service offered to patients. Additionally, the

heterogeneity of patients and their resource requirements cause a high variability in the

decision process. Under this complex framework, decision-makers should develop robust

admission plans to achieve efficient solutions without compromising performance targets.

The APP at the tactical level consists of making decisions about the mix of patients

admitted, considering resource requirements. In particular, the inpatient beds, which are

scarce resources, are among the most critical assets in the admission process. The beds

are considered the fundamental measure of capacity in hospitals because they affect the

expenditure, quality of care, and patient access (Green, 2005). Within the admission

planning, two major patient categories are distinguished: elective and emergency patients.

Elective patients can be planned while emergency patients need to be admitted in a short
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time. The planning of elective patients is more studied since it can be planned in contrast to

urgent or emergency patients (Hulshof et al., 2013; J. Vissers et al., 2005). As both patients

share the same resources, an efficient admission policy at the tactical level should consider

slack capacities to handle the uncertainty caused by the arrival of unscheduled patients

(Gemmel & Van Dierdonck, 1999). A typical tactical policy in hospitals to perform the

admission plan is to allocate patients considering a fixed target of bed utilization, e.g., as

85% (Green, 2002), that is strategically defined. The accomplishment of the bed utilization

target is crucial because it determines the efficiency of the admission plan. Therefore,

the evaluation of resource utilization deviation from a predefined target helps to assess

hospital performance. Another admission policy is to use waiting lists to buffer capacity

for elective patients. However, these policies may result in an over or underestimation

of beds, causing delays and rejections if the uncertainty at the operational level is not

acknowledged.

Another issue is that most hospitals’ allocation policies prioritize resource

performance rather than the service criteria (J. M. Vissers et al., 2007). Hospitals aim

to use their available resources to the maximum, i.e., treating as many patients as possible.

In contrast, patients pursue timely access and better quality of care. The service level

is related to the ability to allocate patients according to their needs at a specific cost,

while the hospital performance concerns the optimal use of resources according to a

target strategically determined. The decision framework mentioned above evidences an

interesting trade-off between two conflicting objectives resource utilization and cost of

service.

The admission planning problem considering bed capacities have been studied in the

literature. The studies are focused on admission and resource allocation to improve patient

access and resource utilization. The reader is referred to Kusters and Groot (1996); Green
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(2005), and Samudra et al. (2016) for a more detailed survey of related works. We focus

on studies of admission planning at the tactical and operational levels.

Table 3.1 compares the contributions in the APP with our proposed approach. The

papers listed are taken from Tables 1.1 and 1.2 presented in Chapter 1, refining those

that consider beds as a resource of allocation. We have included the main characteristics

of the admission problem at the tactical-operational level. Column 1 indicates the paper

information. Column 2 details whether the research considers intertemporal decisions.

Column 3 details the use of capacity reserve variables in the modeling approach. Column

4 includes information about the assumption of demand or LoS uncertainty. Column 5

details the incorporation of flexible allocation rules. Column 6 shows if the contribution

considers real data. Column 7 and 8 show whether the research considers the service

concept or utilization concept in the modeling approach, respectively. Finally, column 9

indicates whether the research considers a bi-objective approach. The black or white dot

indicates whether a feature is considered or not, respectively.

Several gaps can be observed in Table 3.1. The use of reserve capacities at the tactical

level to prevent patient diversion and rejection is rarely applied. The studies Seung-Chul

and Ira (2000); Adan and Vissers (2002); Adan et al. (2011); Barz and Rajaram (2015) and

Samiedaluie et al. (2017) are the only exceptions, but the problem is solved considering

a single level approach. Thus, no consistency in decision-making is guaranteed. Flexible

allocation rules, such as diverting patients to external allocation and temporal assignment,

are considered in some contributions, see, e.g., Adan and Vissers (2002); Demeester et

al. (2010); Ceschia and Schaerf (2011); Range et al. (2014); Turhan and Bilgen (2017);

Guido et al. (2018); Ceschia and Schaerf (2012, 2016); Vancroonenburg et al. (2016).

However, such studies are instances of a single level decision framework considering an

individual objective.
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TABLE 3.1. Comparison of the proposed approach versus current literature on the
admission planning allocation problem.

Research Intertemporal
decisions

Capacity
reserves
variables

Stochastic
demand/LoS

Flexible
allocation

Real
data

Service
concept

Resource
utilization
concept

Bi-objective

Demeester et al. (2010); Ceschia and Schaerf (2011)
Range et al. (2014); Turhan and Bilgen (2017); Guido et al. (2018)
Hulshof et al. (2013, 2016)
Seung-Chul and Ira (2000).
Green and Nguyen (2001).
Adan and Vissers (2002).
Harper and Shahani (2002).
Utley et al. (2003).
Adan et al. (2009).
Mazier et al. (2010).
Adan et al. (2011)
Bekker and Koeleman (2011).
Conforti et al. (2011).
Helm et al. (2011).
Bachouch et al. (2012).
Ceschia and Schaerf (2012).
Zhang et al. (2012).
Barz and Rajaram (2015).
Meng et al. (2015).
Ceschia and Schaerf (2016).
Vancroonenburg et al. (2016).
Samiedaluie et al. (2017).
Li et al. (2018).
Liu et al. (2019).
Our model

Most papers have focused on resource utilization metric rather than the service

concept, see, e.g., Demeester et al. (2010); Ceschia and Schaerf (2011); Range et al.

(2014); Turhan and Bilgen (2017); Guido et al. (2018); Green and Nguyen (2001); Adan

and Vissers (2002); Harper and Shahani (2002); Adan et al. (2009, 2011); Bekker and

Koeleman (2011); Helm et al. (2011); Ceschia and Schaerf (2012); Barz and Rajaram

(2015); Ceschia and Schaerf (2016); Vancroonenburg et al. (2016); Meng et al. (2015).

Only one paper (Liu et al., 2019) evaluate both concepts in the allocation problem, but

not within a bi-objective framework. Besides, nearly all papers listed consider a source

of uncertainty (i.e., demand and LoS) assuming knowledge of the probability distribution

of the uncertain parameter. Some studies employ real data to fit the distribution, as we

approached.

Many contributions focus on solving a deterministic approach of the APP, see, e.g.,

Demeester et al. (2010); Ceschia and Schaerf (2012); Range et al. (2014); Turhan and
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Bilgen (2017); Guido et al. (2018); Adan and Vissers (2002); Conforti et al. (2011);

Bachouch et al. (2012). Their main objective is to study computational performance and

other characteristics, as we detailed in Table 1.1 of Section 1.5.

We observe that only one contribution focuses on solving the APP considering

intertemporal decisions. Adan et al. (2011) developed a MIP divided into two stages;

the first stage concerns a tactical plan to reserve beds for urgent patients. The second

stage develops operational strategies to manage the flow of elective and urgent patients.

The results show the relationship between patient satisfaction and resource utilization.

Although this approach shares some similarities with our proposal, several differences can

be noticed. Firstly, the model is used to schedule surgical patients considering resource

constraints such as beds. Secondly, the authors assume that all resources are dedicated to

a cardiothoracic service. Our model instead considers a centralized system in which beds

are shared for several services in the hospital. This feature may allow for more realistic

results considering that inpatient beds are critical resources in the hospital. Also, the

solution method employed in Adan et al. (2011) is a MIP in which results are obtained

through simulations applying flexibility rules between elective and urgent patients. In

contrast, we propose a TSO in which the scenarios are generated through SAA.

As we indicated in Table 1.1, methods such as queuing theory (Bekker & Koeleman,

2011; Green & Nguyen, 2001; Utley, Jit, & Gallivan, 2008) and MDP (Helm et al., 2011;

Li et al., 2018; Liu et al., 2019) are the most considered to solve the admission problem at

the tactical-operational levels. The main disadvantage of such methods is that they assume

a steady-state system and that it becomes complicated to apply it to the entire patient flow

(He et al., 2019). Besides, they are mostly applied to a single level of decision. Dynamic

Programming methods have also been considered (Barz & Rajaram, 2015; Hulshof et al.,
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2016; Range et al., 2014; Samiedaluie et al., 2017), which could permit readjust the plan

by including new information; however, the curse of dimensionality is the main drawback.

In contrast to the methodologies mentioned above, stochastic programming is useful

to make decisions under uncertainty when the probabilities distribution of random

parameters can be estimated (Birge & Louveaux, 2011). In particular, a TSO approach

allows evaluating intertemporal decisions in the admission planning problem.

Overall, the lack of visibility in bed requirements complicates the admission process

at the tactical level. Admission decisions are usually made without considering the future

realization of the system. As a consequence, rejections and long waiting times are faced

by patients with high priority. To overcome this problem, we propose a bi-objective

stochastic approach for real-life applications to study intertemporal decisions at the tactical

and operational levels of planning.

The contributions of this chapter are twofold. Firstly, we develop a TSO model to

address the APP for optimal patient allocation on beds at the tactical and operational

levels, considering demand and capacity availability uncertainty. The approach allows

evaluating the APP from both perspectives, hierarchical structure, and uncertain nature of

the problem. At the tactical level, the goal is to decide the beds that should be dedicated

to different patient groups. These decisions are then constrained at the operational level,

where the flow of patients and bed availability are stochastic.

Secondly, we incorporate a bi-objective approach to evaluating the trade-off between

two conflicting objectives in the APP: resource utilization deviation and the cost of service.

To the best of our knowledge, this study is the first effort in the literature to explore the

APP as a two-stage stochastic model in multi-objective fashion. The model accounts for

a balance of service level considering hospital and patient perspectives in the allocation

process. We include flexible options for allocation, such as diverting patients to another
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hospital and temporary assignments. Also, unlike other studies, we consider bed allocation

decisions for the entire hospital instead of a single unit. Finally, the proposed approach is

validated with real practices on the APP for a Chilean public hospital, a center of reference

in the public system.

3.2. Framework formulation and solution methodology

In this section, we propose a bi-objective two-stage stochastic optimization model for

the APP, under patient demand and capacity availability uncertainties. For details about

the theory of two-stage stochastic optimization, the reader is referred to Chapter 2, Section

2.2.

In our approach, decisions are made in two stages. The first-stage variables are

represented by the vector, x, and are decisions known as “here-and-now”. They are

made before the realization of uncertainty. The first-stage decision variables are related to

decisions about reserve capacity of internal beds. The second-stage decision variable,

y(x), known as “wait and see” are taken after the realization of uncertainty. Those

variables concern decisions about patient assignment and resource utilization deviation.

We will assume that uncertainty is present in some of the parameters of the problem, which

we will denote by ξ. Hence, second-stage variables depend on first-stage variables and the

realization of the uncertain parameters, and we will make this more explicit by denoting

second-stage variables as y(x, ξ). We will assume that the probability distribution of the

uncertain parameters, ξ, is perfectly known in our problem and driven from historical data.

The general form of the model is expressed in Equation (3.1), where θ1 and θ2 are the

objectives to be minimized. θ1 refers to the resource utilization deviation and θ2 to the cost

of service.
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min
x,y(x,ξ)

{
θ1

(
x,y(x, ξ)

)
, θ2

(
x,y(x, ξ)

)}
s.t.: x ∈ X

y(x, ξ) ∈ Y(x, ξ)

(3.1)

In order to deal with the bi-objective problem, we construct the Pareto efficient curve.

This curve collects the set of all solutions that are efficient for both objectives, which

means it is not possible to improve one objective without worsening the other (Tamiz et

al., 1999). For obtaining the Pareto frontier, we employed the weighted-sum method (Deb,

2014). We generated a single objective function composed of the weighted-sum of both

objectives. The introduced weights, λ, are changed iteratively to build every point of the

Pareto frontier known as Pareto-optimal solutions.

min
x,y(x,ξ)

(1− λ)
[
θ1

(
x,y(x, ξ)

)]
+ λ
[
θ2

(
x,y(x, ξ)

)]
s.t.: x ∈ X

y(x, ξ) ∈ Y(x, ξ)

(3.2)

Of course, θ1 and θ2 are themselves random variables, and to address the two-stage

stochastic problem (1) we implemented a SAA approach which is widely used in TSO

problems. The method creates one set of second-stage variables for every possible scenario

(Birge & Louveaux, 2011). Thus, we generated a large enough, although finite, set

of samples from the continuous distribution of our random parameter ξ, represented by

ξ ∈ Ξ, where Ξ is the set of scenarios generated. Then, an equivalent finite-dimensional

problem is defined in Equation (3.3).
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min
x,y

1

|Ξ|
∑
ξ∈Ξ

{
(1− λ)

[
θ1

(
x,y(x, ξ)

)]
+ λ
[
θ2

(
x,y(x, ξ)

)]}
s.t.: x ∈ X

y(x, ξ) ∈ Y(x, ξ), ξ ∈ Ξ

(3.3)

Where |Ξ| denotes the cardinality of Ξ; hence, the number of scenarios used form the

SAA problem.

3.3. Bi-objective stochastic admission planning model

3.3.1. Context and problem setting

Our study is inspired by the public healthcare system in Chile that serves 80% of

the population. Due to limited resources, public hospitals require reliable admission

decisions to improve their processes and the service level offered to patients. The study is

conducted in an important center of reference in the Chilean public system. The hospital

under study (henceforth referred to as the “Hospital”) receives nearly 100,000 requests for

hospitalization yearly. Inpatient beds are the most critical resources. By 2015, the Hospital

has 401 staffed beds, which are shared between medical and surgery departments. The

principal issues are the long waiting times and rejections. The patient’s flow is managed

by the CAD, which receives admission requests from different sources inside and outside

the Hospital, as shown in Figure 3.1.

Patient admission planning in the CAD is based on policies that do not consider the

system’s uncertain state, leading to inefficient service levels and non-fulfillment of the

resource utilization targets. Daily, a decision-maker (e.g., a nurse) receives requests for

admission. She should allocate those admissions considering the waiting list of patients

not served in the previous days.
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FIGURE 3.1. Patient’s flow to inpatients beds in the Chilean hospital.

The current patient allocation process is shown in Figure 3.2. Specifically, the process

is as follows. Firstly, the nurse receives a request for admission from different (internal

and/or external) sources to allocate patients to inpatients beds. After the request is

received, the nurse checks bed capacity availability. If there are not enough bed availability

for all patients, they are selected according to an internal policy of patient priority. These

patients are allocated to available beds. Then, the non-selected patients must wait until a

bed is available or their requests are refused. Additionally, if the patient is classified as

high priority, and there is not enough capacity, the patient is externalized or temporarily

assigned to a stretcher or chair.

3.3.2. Admission Planning Problem formulation

In this subsection, we describe the detailed mathematical formulation of the APP

model defined as a mixed-integer linear programming problem. Additionally, we present

the major assumptions of the model. Demand and capacity availability are the principal

sources of uncertainty. We assume both parameters are independent stochastic processes.
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FIGURE 3.2. Patient admission planning process for a Chilean public hospital.

The demand, dpt, is defined as the patients waiting to be allocated to an inpatient bed in

a period. We choose the major sources of demand in the Hospital: Critical Unit (CU),

Emergency Room (ER), Recovery Room (RE), Surgery Room (SU) and Network (NE).

The capacity is described as the number of available beds in each time period (days). We

defined three (3) sources of capacity as: internal, ct, temporary, nt, and external, et. The

internal capacity, ct, is established as the expected value in the time horizon. We assume

there is infinite external capacity et available in the allocation process. The assumption

is well-founded, considering that there is always an availability of general beds in other

hospitals, including the private sector.

We considered recourse variables to allocate the patients in the time horizon. The

patients can be allocated to an internal, Xpt, external, Ypt, or temporary, Zpt, bed. In

case of insufficient internal capacity, ct, the patient can be allocated to an optional bed:

temporary, nt, or external, et, at a certain cost, wp. Otherwise, the allocation is penalized

as unmet demand, Hpt, in the objective function. We assume that the cost of allocation,
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wp, is a rank of priority in the admission process; the patients are classified according to

different levels of priority regarding their source of demand.

Considering the mentioned assumptions we formulate the bi-objective stochastic APP.

The objective function consist of minimizing two functions: resource utilization deviation,

θ1, and cost of service, θ2. Where:

min

θ1 =
∑
t∈T

[
UUt(ξ) +OUt(ξ)

]
+ (3.4)

θ2 =
∑
p∈P

∑
t∈T

wr
pKpt +

∑
p∈P

∑
t∈T

wi
pXpt(ξ) +

∑
p∈p

∑
t∈T

we
pYpt(ξ)

+
∑
p∈p

∑
t∈T

wt
pZpt(ξ) +

∑
p∈p

∑
t∈T

wu
pHpt(ξ). (3.5)

The objective function, θ1 in Equation (3.4), defines the resource utilization deviation.

The variables under-utilization, UUt, and over-utilization, OUt, compute the expected

value of the deviation in the resource utilization (second-stage decisions). To evaluate

the deviation, we considered a constant target, ut, of bed utilization.

The objective function, θ2 in Equation (3.5), defines the cost of service. This function

is measured concerning the cost of allocation weighted by wp. The first-stage variable,

Kpt, represents the total number of beds to be reserved for patient allocation. The

decisions about how many internal beds should be reserved in the first stage of the

stochastic problem will affect the resource use deviation in the second-stage. The second-

stage variables are recourse variables considered as corrective actions of allocation: the

assignment of patients to internal beds, Xpt, external beds. Ypt, temporary beds, Zpt, and

a slack variable of the unmet demand, Hpt, by patient group and time period. Recall that
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in the SAA problem, these objective functions are averaged over the generated scenarios

ξ ∈ Ξ.

We now specify the constraints used in the model and describe them for the

corresponding scenarios of the SAA problem.

Constraint (3.6) defines the unmet demand through periods. It ensures that the demand

allocation of every patient group does not exceed the total requests from each source and

period.

Xpt(ξ) + Ypt(ξ) + Zpt(ξ) +Hpt(ξ)

= dpt(ξ) +Hpt−1(ξ) ∀p ∈ P, t ∈ T, ξ ∈ Ξ

(3.6)

The capacity constraints guarantee that the allocation of patients does not exceed

the availability of internal (3.7), external (3.8), and temporary (3.9) beds in each period.

Constraints (3.10) refer to the first-stage decisions in which the number of beds assigned

to each group of patients, must be equal to the total availability defined at the beginning

of the time horizon.

∑
p∈P

Kpt ≤ ct ∀t ∈ T (3.7)

∑
p∈P

Ypt ≤ et ∀t ∈ T (3.8)

∑
p∈P

Zpt(ξ) ≤ nt(ξ) ∀t ∈ T, ξ ∈ Ξ (3.9)

Xpt(ξ) ≤ Kpt ∀p ∈ P, t ∈ T, ξ ∈ Ξ (3.10)
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Expressions (3.11) and (3.12) are the utilization constraints. They ensure the

fulfillment of the bed utilization target. Constraint (3.12) guarantees that the over-

utilization allocation does not exceed the capacity available in each time period.

∑
p∈P

Xpt(ξ) + UUt(ξ)−OUt(ξ) = ut ∀t ∈ T, ξ ∈ Ξ (3.11)

ut +OUt(ξ) ≤ ct ∀t ∈ T, ξ ∈ Ξ (3.12)

Constraints (3.13) establish a bound in the queue level. We guarantee that the not

allocated patients at each time period must not exceed the target, qp, defined per each

patient group.

Hpt(ξ) ≤ qp ∀p ∈ P, t ∈ T, ξ ∈ Ξ (3.13)

Lastly, the nonnegative integer variables are defined in constraints (3.14) and (3.15).

Kpt, Xpt(ξ), Ypt(ξ), Zpt(ξ), Hpt(ξ) ∈ {0} ∪ Z+ ∀p ∈ P, t ∈ T, ξ ∈ Ξ (3.14)

UUt(ξ), OUt(ξ) ≥ 0 ∀t ∈ T, ξ ∈ Ξ (3.15)

3.4. Numerical studies

This section presents the numerical studies and the insights obtained from applying

the bi-objective stochastic approach to a Chilean public hospital. Subsection 3.4.1

describes the data used in the model, and Subsection 3.4.2 presents the results with a

discussion of their managerial implications.
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3.4.1. Data description

The dataset has been collected from the EHR of the Hospital for the period 2010-

2016s1. The database includes information about patient resource consumption during

his/her stay in the Hospital, demand requirements, and daily capacity availability (census).

Additionally, data of demographic information, the source of demand, patient length

of stay, severity illness, diagnosis, treatment, and cause of the discharge is obtained

from this dataset. A discretized planning horizon of T days (t = {1, . . . , T}) related

to the seven days of the week was considered. We generated 100 iid random samples,

(ξpt), for each patient group, p, and time period, t, assuming a known distribution fitted

using historical data. For the demand, dpt we considered a Poisson distribution with rate

E[fpt] = λpt ∀p ∈ P, t ∈ T , per each source of demand and time period. For the capacity,

we employed historical data of the daily capacity availability for which we adjusted a

Uniform distribution Ut ∀t ∈ T .

To implement the Pareto frontier resolution method described in Subsection 3.3.2, the

objective θ1 is weighted as 1 − λ and the cost of service θ2 as λ. Namely, when λ = 0,

the preference is to minimize the resource utilization deviation; similarly, when λ = 1, the

optimization problem seeks to minimize the cost of service. To build the Pareto frontier,

we defined a set of weights λ, ranging from 0 to 1, with steps of 0.02.

The experiments were run on a personal computer powered by an Intel core I7,

2.7GHz processor with 16 GB of RAM. The model was implemented in AMPL and solved

with CPLEX 12.7, and it requires less than 1 second to obtain the optimal solution, due to

the implicit network structure of the problem and the fact that patient demands are integer

numbers.

1The data about demand requests and resource capacity have been obtained from a data sheet developed in
conjunction with the hospital under study. See details in Appendix A.
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A. Patient priority

The priority between patient categories is denoted as, wp, in Equation (3.5). The

parameter refers to a weight of importance between patient groups rather than a cost of

allocation. To determine the value for each patient group, we employed a priority scoring

method intending to standardize the allocation in the admission process.

In conjunction with the Chilean hospital, we determined the priority values for each

patient group. We analyzed the dataset from 2010-2015 that contains information about

the Diagnosis Related Group (DRG) and Severity Illness Index (SII) of each patient group.

The DRG is a mechanism used in the hospital setting for reimbursement and hospital

management (Groot, 1993). The method aggregates patients according to the resources

employed in the medical procedure. On the other hand, the SII ranks patients according to

their illness condition and level of urgency to the system according to ordinal categories

(Rosko, 1988). The ranking of severity is set as 1 (minor), 2 (moderate), and 3 (major).

The DRG and SII indexes were used as a proxy of patient priority, for each patient

group. In order to determine the patient group’s priority, we assumed that the patient

group with the highest DRG and severity index, represents the higher admission priority.

Table 3.2 shows the results of the analysis related to the ranking of priority, wp, in which,

wCU > wER > wRE > wSU > wNE .

Additionally, we defined weights for assigning a patient to an internal, external,

temporary bed, and a penalty for non-assigned patients. We considered aspects related

to the quality of service, i.e., there is a higher consequence of allocating a patient to a

temporary bed than an external bed. Table 3.2 shows the results of the scoring method

resulting in an allocation matrix in which the values are presented in ascending order

according to the weight given. The cost of reserve, wr
p, is related to the priority ranking,

also defined in Table 3.2.
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TABLE 3.2. Weight values (wp) and demand proportion for each source of
demand and allocation place.

Weight values wp

Patient Group Weekly
demand proportion Priority Ranking

Reserve
(wr

p)
Internal

(wi
p)

External
(we

p)
Temporary

(wt
p)

Unmet
(wu

p)
Critical Unit (CU) 13% 1 5 5 10 7 12
Emergency (ER) 45% 2 4 4 7 5 9
Recovery (RE) 17% 3 3 4 7 6 9
Surgery (SU) 16% 4 2 3 6 5 8
Network (NE) 8% 5 1 2 3 2 4

B. Demand request

The flow of patients in the CAD is characterized by a high level of variability. The

decision-maker should decide which patient to serve, considering the lack of proper

information about the future arrival pattern and bed availability. We have defined the

demand as the request of allocation to general beds from different sources denoted as

patient groups. Table 3.2 summarize the weekly demand proportion from each source of

demand request. We employed historical data to perform a Chi-square goodness-of-fit

test to the daily requests for source of demand. As we show in Table 3.3, the analysis

suggests that for most of the patient groups, a Poisson arrival distribution is appropriate at

a significance level of α = 0.10. Note that for the patient groups ER and RE the Poisson

arrival assumption is not validated from historical data. However, it is still a common

assumption employed in the literature that has been shown to be appropriate in hospital

admissions (Young, 1965; Mondschein & Weintraub, 2003; Green, 2005).

TABLE 3.3. Chi-square goodness of fit analysis for the patient arrival per patient
group p. Np = 280, α = 0.10

Patient Group Adjusted empirical λp χ2 p-Value

Critical Unit(CU) 3.76 29.4 0.0002
Emergency(ER) 11.0 11.682 0.8600
Recovery (RE) 3.07 3.72 0.8109
Surgery (SU) 2.07 19.36 0.0130
Network (NE) 1.29 8.66 0.0340



108

C. Resource capacity

The resource capacity is defined as the number of beds available every day during the

week. As we described in Section 3.3, the patients can be allocated to internal, external,

or temporary beds at a certain cost. We defined the internal beds as the general beds (from

now on, will be referred to as beds). The temporary and external beds are used as backup

capacity in case there are not enough beds available. The temporary beds are usually

chairs and stretchers. Although this capacity affects the quality of care of the patient,

it is a common source of allocation in the Hospital. The external beds are the available

capacity in the hospital network; public and private. Patients can be sent to an external

hospital at a certain cost.

TABLE 3.4. Expected values of internal capacity and fixed target of resource
utilization per day of the week.

Week-day Internal capacity(ct) % Target of utilization(ut)

Monday 11 85%
Tuesday 13 85%
Wednesday 10 85%
Thursday 9 85%
Friday 10 85%
Saturday 8 85%
Sunday 11 85%

D. Target of utilization

The target of utilization is a performance indicator established as a strategical decision

in the public sector (i.e., 85%). We considered this target as a fixed performance measure

in the bed use. Table 3.4 shows the data about the expected value of internal capacity and

the fixed target of resource utilization for each day of the week. The measure helps to

assess the performance of the Hospital regarding the use of resources. Also, it is defined



109

as a measure of slack for unscheduled patients. Thus, hospitals face political and internal

pressures to accomplish the target.

3.4.2. Results and discussion

In this subsection, we present and discuss the results of the proposed model. In the

following sections, we evaluated the performance of the admission plan and validated the

model using real data provided by the hospital under study. Additionally, we developed a

sensitivity analysis over the target of utilization.

The Pareto frontier in Figure 3.3 represents the optimal solutions for the optimization

problem, considering a target of utilization of 85%. The vertical axis refers to the θ1

objective; the sum of deviations in the use of beds (below and above) of the target

of utilization. The horizontal axis represents the θ2 objective; the sum of the cost of

service. These costs are associated with the allocation of patients to an internal, external,

or temporary beds and a penalty for unmet demand. From Pareto optimality properties,

we can state that there are non-dominated solutions because all of them are important.

The Pareto curve reveals the trade-off between the evaluated objectives; the value of the

cost of service increases as the resource utilization deviation is into the most efficient

configuration and vice versa.

The detailed values of the Pareto analysis are summarized in Table 3.5. The table

shows the solutions for the evaluated objectives θ1 and θ2 for different weights (λ), and

the internal reserve capacity, Kpt, results indicating the number of beds dedicated to each

patient group. The most interesting aspect of this table is that for values of λ near 0

(i.e., the resource utilization deviation is more significant), the reserve capacity is greater

than for values near to λ = 1. Also, we observe that the patient groups, Emergency,

and Recovery receive a greater number of beds compared to the other groups, which are

interesting results and coherent with the current practice in the Hospital. Overall, patients
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FIGURE 3.3. Trade-off between the resource utilization deviation and the cost of
service, ut = 85%.

from Emergency and Recovery groups receive a higher priority concerning admission

decisions. Nevertheless, the Hospital’s current policy is to reserve a fixed number of

beds regardless of the type of patient. Instead, the presented approach accounts for

an equitable distribution of capacity, considering the variability in patient demand and

resource availability.

In addition, we performed a comparison of the patient allocation considering different

weights of λ, detailed in Tables 3.6 and 3.7 for the internal, external, temporary and unmet

allocation, respectively. Column 1 details the weights, λ. Columns 2–11 show the result

values. It concerns the percentage of patients over the total demand to be allocated in

the time horizon (weekly), for a target of utilization of 85%. The allocation per patient

group is summarized in Figure 3.4, which compares the proportion of patient allocation

for different lambda weights.
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TABLE 3.5. Values of objectives, θ1 and θ2, by the weight λ and reserve capacity
per patient group, ut = 85%.

Reserve capacity (Kpt)

λ
θ1

Resource utilization deviation
θ2

Cost of service
Critical Unit

(CU)
Emergency

(ER)
Recovery

(RE)
Surgery

(SU)
Network

(NE)
0.00 8 1313 9 36 8 5 1
0.02 8 1016 3 32 10 8 6
0.04 8 1015 3 31 10 9 6
0.06 9 1010 3 29 10 10 7
0.08 9 1007 3 28 11 10 7
0.10 9 1003 3 25 11 11 9
0.20 14 980 4 15 12 14 10
0.30 24 947 3 3 11 14 8
0.40 28 939 1 1 10 14 7
0.50 31 935 0 0 9 12 7
0.52 32 934 0 0 8 11 7
0.54 33 934 0 0 7 11 7
0.56 33 934 0 0 7 11 7
0.58 33 934 0 0 7 11 7
0.60 33 933 0 0 7 11 6
0.70 37 931 0 0 6 11 2
0.80 42 930 0 0 2 11 0
0.90 44 929 0 0 0 10 0
1.00 54 929 0 0 0 9 0

TABLE 3.6. Patient allocation values (internal - external) in % by the weight λ,
ut = 85%.

Internal assignment (Xpt) External assignment (Ypt)

λ
Critical Unit

(CU)
Emergency

(ER)
Recovery

(RE)
Surgery

(SU)
Network

(NE)
Critical Unit

(CU)
Emergency

(ER)
Recovery

(RE)
Surgery

(SU)
Network

(NE)
0.00 23.83% 31.67% 26.51% 21.99% 5.31% 66.45% 52.84% 63.08% 59.30% 53.55%
0.02 11.37% 33.60% 34.13% 38.86% 28.37% 7.35% 40.58% 60.54% 50.93% 55.27%
0.04 11.37% 32.97% 33.46% 42.11% 28.53% 7.35% 41.05% 61.11% 47.18% 56.47%
0.06 11.37% 32.01% 34.65% 41.75% 31.43% 7.35% 41.58% 60.06% 49.20% 55.56%
0.08 11.37% 30.22% 36.35% 47.18% 31.65% 7.35% 43.20% 59.18% 45.18% 56.42%
0.10 11.37% 27.98% 38.49% 47.04% 38.62% 7.35% 45.06% 56.39% 46.21% 48.57%
0.20 15.02% 17.53% 42.11% 57.34% 45.57% 6.55% 53.11% 55.69% 41.65% 46.19%
0.30 11.34% 3.97% 44.26% 65.46% 46.74% 7.39% 66.56% 54.80% 33.87% 52.39%
0.40 3.68% 1.34% 41.64% 64.59% 45.98% 8.12% 71.42% 57.42% 35.08% 53.04%
0.50 0.00% 0.00% 38.78% 60.56% 48.91% 9.04% 73.67% 60.09% 39.30% 50.22%
0.52 0.00% 0.00% 33.96% 58.48% 51.20% 9.04% 73.67% 65.39% 40.58% 48.15%
0.54 0.00% 0.00% 30.21% 58.55% 51.41% 9.04% 73.67% 68.62% 41.31% 47.83%
0.56 0.00% 0.00% 30.35% 58.35% 51.41% 9.04% 73.67% 68.90% 41.11% 47.50%
0.58 0.00% 0.00% 30.40% 58.28% 51.41% 9.04% 73.67% 68.85% 41.11% 47.61%
0.60 0.00% 0.00% 30.54% 58.08% 45.00% 9.04% 73.67% 68.85% 40.98% 54.24%
0.70 0.00% 0.00% 26.60% 58.08% 16.09% 9.04% 73.67% 72.97% 40.98% 82.72%
0.80 0.00% 0.00% 9.04% 59.09% 0.00% 9.04% 73.67% 90.26% 40.44% 98.59%
0.90 0.00% 0.00% 0.00% 54.93% 0.00% 9.04% 73.67% 99.58% 44.47% 98.15%
1.00 0.00% 0.00% 0.00% 50.50% 0.00% 9.04% 73.67% 98.50% 49.50% 99.67%
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TABLE 3.7. Patient allocation values (temporary - unmet) in % by the weight λ,
ut = 85%.

Temporary assignment (Zpt) Unmet demand (Hpt)

λ
Critical Unit

(CU)
Emergency

(ER)
Recovery

(RE)
Surgery

(SU)
Network

(NE)
Critical Unit

(CU)
Emergency

(ER)
Recovery

(RE)
Surgery

(SU)
Network

(NE)
0.00 0.14% 0.00% 0.00% 0.00% 0.00% 9.57% 15.49% 10.41% 18.71% 41.13%
0.02 81.23% 25.72% 3.40% 5.97% 7.00% 0.04% 0.09% 1.93% 4.24% 9.36%
0.04 81.23% 25.94% 3.68% 5.26% 5.82% 0.04% 0.04% 1.75% 5.45% 9.18%
0.06 81.23% 26.37% 3.54% 4.08% 5.11% 0.04% 0.04% 1.75% 4.97% 7.91%
0.08 81.23% 26.55% 2.95% 4.14% 4.95% 0.04% 0.03% 1.52% 3.50% 6.98%
0.10 81.23% 26.95% 3.65% 2.57% 3.45% 0.04% 0.01% 1.48% 4.18% 9.36%
0.20 78.43% 29.36% 2.20% 1.01% 1.83% 0.00% 0.00% 0.00% 0.00% 6.41%
0.30 81.26% 29.47% 0.94% 0.67% 0.87% 0.00% 0.00% 0.00% 0.00% 0.00%
0.40 88.20% 27.24% 0.94% 0.34% 0.98% 0.00% 0.00% 0.00% 0.00% 0.00%
0.50 90.96% 26.33% 1.12% 0.13% 0.87% 0.00% 0.00% 0.00% 0.00% 0.00%
0.52 90.96% 26.33% 0.66% 0.94% 0.65% 0.00% 0.00% 0.00% 0.00% 0.00%
0.54 90.96% 26.33% 1.17% 0.13% 0.76% 0.00% 0.00% 0.00% 0.00% 0.00%
0.56 90.96% 26.33% 0.75% 0.54% 1.09% 0.00% 0.00% 0.00% 0.00% 0.00%
0.58 90.96% 26.33% 0.75% 0.60% 0.98% 0.00% 0.00% 0.00% 0.00% 0.00%
0.60 90.96% 26.33% 0.61% 0.94% 0.76% 0.00% 0.00% 0.00% 0.00% 0.00%
0.70 90.96% 26.33% 0.42% 0.94% 1.20% 0.00% 0.00% 0.00% 0.00% 0.00%
0.80 90.96% 26.33% 0.70% 0.47% 1.41% 0.00% 0.00% 0.00% 0.00% 0.00%
0.90 90.96% 26.33% 0.42% 0.60% 1.85% 0.00% 0.00% 0.00% 0.00% 0.00%
1.00 90.96% 26.33% 1.50% 0.00% 0.33% 0.00% 0.00% 0.00% 0.00% 0.00%

FIGURE 3.4. Comparison of the weekly patient allocation by weight, λ, and ut = 85%.

In summary, from Figure 3.4 and Tables 3.6–3.7, we observed that:
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(i) Prioritize the resource utilization deviation (λ → 0), gives a balanced

assignment per patient group.

(ii) As the deviation in resource utilization is more important (λ → 0), the

percentage of unmet demand increases and the temporary assignment decreases

for more priority patient groups, CU and ER.

(iii) As the cost of service (λ→ 1) is prioritized, the internal allocation is higher for

less priority patient groups, RE, SU, and NE.

(iv) The unmet demand decreases as the cost of service is prioritized (λ→ 1).

Overall, the presented Pareto analysis between the cost of service and resource

utilization deviation can be a convenient tool for decision-makers and practitioners in

hospitals. The best setting in the admission decisions will depend on the goal expected

by the Hospital. For instance, as a tactical decision, for a target of utilization of 85%, the

Hospital could assume a deviation in the use of its resources of 15 beds, this would imply

a cost of service nearly to 968. Alternatively, if the Hospital’s objective is to accomplish

the lowest deviation in the use of resources, it would entail a high cost of service. Thus, it

is necessary to find a balance to satisfy both objectives for the sake of the organization.

3.4.2.1. Performance evaluation of the admission planning problem

To evaluate the admission plan performance, we analyzed the resource utilization

deviation from the target in the use of beds. The over-utilization implies the bed resource

is used to its maximum capacity, leaving no slack capacity for unscheduled patients. This

admission policy could cause a high cost of service due to the allocation of patients on

temporary or external beds or, in some cases, long waiting times. On the other hand,

under-utilization means that the hospital has idle capacity. In this case, the government

could justify the reduction of resources in the Hospital. The deviation function Ft in

Equation (3.16), represents the sum of the internal assignment, Xpt, over the patients
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types, p, and time period, t against the target of utilization ut. Observe that if Ft > 0 it

refers to over-utilization and if Ft < 0 to under-utilization.

Ft(ξ) =
∑
p∈P

Xpt(ξ)− ut (3.16)

Figure 3.5 shows the deviation function as a continuous probability density plot. The

function was estimated via kernel density estimation over the scenarios, ξ. The figure

compares different weights in which λ = {0, 0.3, 0.5, 1}. The comparison stands out

that as we increase the weight λ, the deviation in resource utilization increases, i.e., from [-

8, 2], (λ = 0) to [-20, 0], (λ = 1). In contrast, the over-utilization is reduced by increasing

the weight λ = 1, which suggests that more patients have been derived to external and

temporary assignment.

FIGURE 3.5. Comparison of the deviation function Ft, from λ = 0 (top-left) to λ = 1.
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From the analysis, we can state that the resources are being used to its maximum

capacity; the over-utilization is more probable than under-utilization for all cases. These

results suggest that it is difficult to accomplish the expected target of utilization due to the

variability, uncertainty, and internal capacity constraints for every scenario.

3.4.2.2. Validation of results

Model validation was conducted by comparing the optimal results of the proposed

approach with the actual practice of the Hospital. To perform the analysis, we collected

data about patient admission and bed allocation from 15 weeks, distributed among several

months during the year 2017. It creates a diverse pool of weeks of historical data. The

collected information regarding the cost of service and resource utilization deviation is

represented in Figure 3.6 with the Pareto frontier obtained from our model. Every red

square dot represents a one-week outcome for the Hospital’s decisions that were made.

The target of utilization is fixed to 85%.

From Figure 3.6, it can be seen that the uncertainty in the decision process challenges

the Hospital to make admission decisions in which the cost of service and the deviation

in the resource utilization, are in the minimum values. Interestingly, in most cases, the

policy employed for the Hospital seeks to reduce to a minimum the deviation in resource

utilization over the cost of service. For instance, the largest number of solutions are found

in deviation levels between [0-25], which implies a high cost of service. The comparison

between the Pareto frontier shows that solutions to our approach dominate the Hospital

decisions in all evaluated weeks. We can state that the decisions made in the Hospital are

suboptimal and can be improved with the approach proposed in this chapter.

3.4.2.3. Sensitivity analysis

The definition of a fixed target (i.e., 85%) of utilization has been shown being a

suboptimal measure of capacity (Testi, Tanfani, Valente, Ansaldo, & Torre, 2008). It
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FIGURE 3.6. Validation of results of the actual practice of the Hospital, ut = 85%.

relates to a flexibility value in the decision-making process. Deciding which value is the

best for any hospital configuration is not easy due to the uncertainty in the admission

process.

We have developed a sensitivity analysis aiming to study how a fixed performance

indicator affects the trade-off between the resource utilization deviation and the cost of

service. We evaluated the Pareto frontier for different values of the target of utilization.

Figure 3.7 shows the analysis for targets of utilization, ut = [60, 75, 85, 95, 100]%. The

case in which the target of utilization is defined as 100% implies no slack capacity for

unscheduled patients. For this case study, we observed that there is a domination of

one Pareto curve over the others, depending on the target of utilization. As the target of

utilization increases, the deviation in resource utilization also increases. For a fixed cost

of service, the curve related to the target of 60% dominates over the others. Interestingly,
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a low target suggests the best deviation levels, in contrast to the usual belief in hospital

practice that establishes a greater target indicates efficiency. Therefore, we can state that

a fixed target of utilization can be suboptimal if uncertainty and variability are part of the

admission problem.

FIGURE 3.7. Sensitivity analysis of the trade-off between the resource utilization
deviation and the cost of service for different values of the target of utilization, ut.

3.5. Concluding remarks and future research directions

The hospitals pursue the lower values for two conflicting objectives: the deviation in

the use of resources and the cost of service for a patient mix. One of the most critical

resources to manage are the ward beds since they can cause bottlenecks in the inpatient

flow. The hospital manager should define a target of utilization as a strategical decision.

This measure should be accomplished at the tactical and operational levels in which bed

allocation decisions are made. Nevertheless, due to the variability and uncertainty in
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the arrival and the resource availability, achieving this objective is complex. Therefore,

we presented a bi-objective stochastic approach to evaluating the trade-off between the

mentioned objectives. A two-stage stochastic optimization model was developed in which

we incorporated demand and bed availability uncertainties. For the numerical study, we

considered real data from a public hospital in Chile to validate the model. The model

raises awareness of the importance of making integrated and coordinated decisions in the

admission process.

The results stated that the solutions to our approach outperform the actual practice

in the Hospital. We found that to accomplish the target of utilization is complex due

to the uncertainty at the operational level. Additionally, for cases where the capacity

is limited, it is more likely to achieve over-utilization than under-utilization because the

resources are being used to the maximum. Thus, the measure of a target of utilization is

a strategic decision that must be defined considering the uncertainty in the lower levels

rather than a fixed value over time. The admission decisions entail a process in which

patients are prioritized. For the presented case of study, we found that a better balanced

allocation of the patient groups can be obtained when the deviation in the use of resources

is prioritized over the cost of service. Nevertheless, that policy could cause higher rates

of unmet demand in the allocation process. We performed a sensitivity analysis over the

target of utilization and observed that as the target is lower better solutions are obtained

concerning the evaluated objectives. This result is because lower values of the target of

utilization allow greater flexibility in bed allocation.

The findings of this study have important implications for future practice. The

approach can support tactical to operational admission decisions at an aggregate level.

The decision managers (e.g., nurses) can use the model as an optimization tool to favor

the evaluated objectives instead of individual benefits. To find a balance that satisfies both
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parties when several objectives conflict, it is necessary to establish a goal that indicates

the breakpoint between the cost of service and resource utilization deviation.

This study has identified further research directions concerning the admission

planning problem for bed allocation. The results obtained for the model were well

accepted for the Hospital administration. An important practical extension is to implement

the approach in the public hospital system. The model can be easily extended considering

slack capacities for a network of hospitals in which the beds are shared. Also, we consider

appealing to study the target of utilization as a strategic decision. We investigated this

metric through a sensitivity analysis, but interesting results can be obtained if optimized.

The developed approach is inspired by the hospital system. Nevertheless, it can still be

implemented in any system in which admission decisions are taken in a stochastic setting

and several decisions conflict.
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Chapter 4. MODELING SERVICE-TIME-TYPE CONSTRAINTS FOR UNIN-

TERRUPTED SERVICES

Problems that incorporate decisions about service duration arise in many settings,

including project management (Hartmann & Briskorn, 2010), manufacturing (Mokotoff,

2001), power systems (Carrión & Arroyo, 2006), and healthcare (Gupta & Denton, 2008).

In particular, appointment scheduling is a common problem consisting of determining

start times, and the allocation of services for its entire duration (i.e., time allowances).

If the service’s duration is uncertain or difficult to estimate, the problem of determining

start times and time allowances of the services becomes a challenge. Due to the random

duration, the service may be completed before or after the next service’s planned start time.

As a consequence, waiting time, idle time, overtime, or cancellation, can occur. In addition

to the uncertain duration, some services cannot be interrupted once they have started along

with a determinate time window (minimum time of use). There is also the possibility that

the uninterrupted service has an expiration time (maximum time of use) or a determined

time window (exact time of use). Determining an efficient modeling framework for that

type of problem is important to achieve efficient planning.

Typically, problems with uninterruptible service time are modeled as a summation

over a rolling time window constraint employing integer variables, which difficult to

consider this parameter as uncertain. In this chapter, we propose an alternative formulation

in which the service time is on the right-hand side of constraints; this allows applying

existing stochastic optimization methodologies easily.

The content of this chapter is partially based on a paper published in the IEEE

Transactions on Smart Grid (Batista, Pozo, & Vera, 2020).

This chapter is organized as follows. Section 4.1 presents an overview of the

appointment scheduling problem. Section 4.2 describes the appointment scheduling
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process from a mathematical modeling perspective. Section 4.3 presents the current

formulations in the literature and the proposed modeling framework. Finally, Section

4.4 concludes the chapter.

4.1. Introduction

The appointment scheduling problem under uncertainty shares common characteris-

tics with several operations where customers (i.e., jobs, machines, patients) are served

sequentially, service times of customers are uncertain, and time slots need to be reserved

in advance for serving the customers; for instance, manufacturing, power systems, and

patient allocation planning.

Research in several fields includes formulations for the appointment scheduling

problem (or equivalent) in which the service cannot be interrupted once allocated (i.e.,

uninterrupted service). Such problems are developed by means of integer variables to

describe the allocation process. In the manufacturing setting, for instance, the appointment

scheduling problem shares similarities with the well-known machine scheduling problem

where tasks are allocated to resources (i.e., machines) over a given time horizon. The

uninterrupted appointment problem is referred to as non-preemption scheduling, and

the modeling structure relies on integer programming formulations (Pinedo, 2012). In

the power system literature, the unit commitment problem seeks to allocate power

units considering integer minimum up-time and down-time constraints. It is classically

reformulated as mixed linear constraints using a summation of binary variables over the

time windows (Carrión & Arroyo, 2006; Ostrowski et al., 2012; Ozturk et al., 2004).

Those settings are analogous to the healthcare system, except that in health care, it is

explicitly expected that once the customers are assigned to a resource for the duration of

their stay, they cannot be interrupted. Thus, this condition should not be relaxed.
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The appointment problem in the healthcare literature is subdivided into allocating

appointments to resources and simultaneously allocating and scheduling appointments to

individual resources (Deng & Shen, 2016). For instance, in the outpatient setting, the goal

is to determine appointment dates for patients to be assigned to a specific clinician (e.g.,

medical consultation) or special treatment (e.g., chemotherapy). On the contrary, in the

inpatient service, in addition to determining the appointment date, the patient’s allocation

to resources is also decided (e.g., bed, operating room) for the duration of their stay or

treatment. In particular, the problem of admitting patients to beds is referred to as the

admission planning problem.

The admission planning problem is usually modeled considering deterministic stay

durations of patients (He et al., 2019). In some cases, the problem includes integer

variables of start and finish time of the service; the LoS, therefore, is defined as the

difference of such values (Bachouch et al., 2012). Other studies (see, e.g., Demeester

et al. (2010), Ceschia and Schaerf (2011), Guido et al. (2018)), in turn, assume fixed times

of arrival and discharge, defined as integer parameters. Another modeling framework

to determine the patient allocation includes the LoS over the summation indexes, also

considering integer parameters (Conforti et al., 2011).

During the development of this research, we found a paper, (Deng et al., 2019),

that performed a modeling approach similar to the one we propose in this chapter. In

Deng et al. (2019), the authors developed a MILP formulation applied to the surgery

scheduling problem. The modeling scheme considers two binary variables related to

the patient allocation and opening of the ORs. Besides, the approach considers two

continuous variables of the planned start and finish time of the service, which depends

on the uncertain service time. In contrast to the formulation we propose, Deng et al.

assumes continuous-time allocation to determine the start and end of the service. In
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addition, since this type of allocation problem (i.e., surgery scheduling), requires to decide

whether or not to use the resource, an additional binary variable (concerning our proposal)

is considered. Although their formulation shares some similarities with our proposal, we

intend to present a more general framework that could be applied to any problem that

requires uninterrupted assignment of services in a multi-period framework.

Overall, we can state that most studies from the appointment scheduling literature (or

equivalent) have considered the service time constraints as an integer parameter, while its

nature is stochastic in many applications. In this chapter, we propose a new simple but

effective formulation that includes constraints for problems in which a service cannot be

interrupted once started, and has an uncertain time to be fulfilled.

The contribution of this chapter is twofold. First, we develop an efficient formulation

that includes service time constraints for problems in which interruption is not allowed.

Second, this study enhances existing admission planning models by considering a single

binary variable and the service time on the right-hand side of the formulation, rather

than over the indexes of a summation, how is typically modeled. This structure

facilitates the implementation of the existing algorithms (e.g., dual-based methods, or

Benders decomposition) that consider uncertainty, such as stochastic programming, robust

optimization, and distributionally robust optimization.

4.2. The appointment scheduling process

The appointment scheduling problem plays a crucial role in any service and

manufacturing industry seeking optimal scheduling. In particular, for the healthcare

setting, this problem at the tactical-operational levels of planning aims to guarantee smooth

patient allocation, while reducing patient waiting times and resource idle times. For
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a thorough review on appointment scheduling research the reader is referred to Pinedo

(2012), Cayirli and Veral (2003), and Gupta and Denton (2008).

In this section, we detail the appointment process in the healthcare setting1 to give

a better understanding of the modeling approach we propose. Figure 4.1 outlines the

appointment scheduling process divided into two main parts: allocation and scheduling,

which describe a six-stage process. A modeling approach may consist of some of these

steps or the complete process, which varies according to the scope of decisions..

FIGURE 4.1. An illustrative representation of the appointment process.

1. Select the service(s) to be scheduled (service mix). This stage determines,

(who), which patient (or patient group) to admit or allocate according to

different criteria, such as the urgency of treatment, or patient preference.

2. Assign the service(s) to the resource. This stage consists of the allocation of

the patients previously selected to resources. The modeling framework in this

stage can be defined for single or multiple resources. The resource allocation

depends on the problem scope. For instance, in the outpatient setting, the

resources are mostly physicians for consultation or treatment. For such cases,
1Here, we refer only to elective patients.
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the appointment slot is usually fixed. For the inpatient setting, the resources

are commonly operating rooms and beds. In the inpatient setting, the allocation

to operating rooms involves the objective of minimizing waiting times or idle

times due to the operating room concern fixed and variable costs of allocation

(e.g., clinical staff and equipment costs). The patient allocation to beds is

different since the beds are a fixed resource; thus, the objective is mostly related

to improving resource utilization and service cost.

3. Determine the planned start time(s) of the service(s). After selecting the

patients and the resource of allocation, in this step, the planner decides the

appointment date or planned start time, (when), of the patient within the time

horizon. This decision can be constrained by resource availability.

4. Designate (or not) the sequence to perform the service(s). This step is

performed according to the problem scope in conjunction with the previous

stage (3). For instance, in surgery planning, a set of surgeries of the same type

would need to be scheduled in a fixed sequence, due to clinical requirements.

However, this is not the case for admission planning to beds, in which a fixed

sequence of allocation is not necessary. We remark that the optimality of the

sequence order has been studied in the literature, and heuristics, such as the

order of variance, have been developed. However, there is no proof of its

optimality for more than three services (Mak et al., 2014).

5. Determine the time allowances of the service(s). This stage requires to decide

the length of the appointment for each patient type or group. When sequencing

decisions are taken, both steps are made simultaneously. Note that for the case

of uncertain durations, this step involves decisions of reducing idle times and

waiting times due to the early or late competition of the service in the defined

sequence.
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6. Patient discharge. The process finalizes with the patient’s discharge. This step

can be planned according to the time allowances determined in the previous step

(5). However, several disruptions can occur during the patient hospitalization

that change the planned discharge, such as the early death of the patient, clinical

conditions, or managerial reasons.

4.3. Modeling service-time-type constraints

Problems that involve service-time-type constraints are considered to be computa-

tionally hard to solve. Some algorithms haven been proposed in the literature (Begen &

Queyranne, 2011), in which this type of models can be solved in polynomial-time. How-

ever, the modeling structure in terms of the constraint’s type, and the dimension, make this

type of problem a challenge. An enhanced modeling approach could be valuable to solve

computationally challenging problems, such as stochastic and robust optimization.

Several formulations have been presented in the literature to model service-time-type

constraints. The modeling approaches are based on MILP models considering mostly

binary and integer variables to determine the on-off of the service and its allocation. A

common formulation approach is to model the service time considering uptime/downtime

constraints. The service time is expressed by a set of linear expressions, modeled as a

summation over a rolling time windows constraint. Another approach to model the service

time allocation is to define parameters of start and finish time of the service to derive

the service length. Such modeling frameworks are mostly considered for deterministic

approaches of service time.

In this section, we first summarize the current service time formulations in Subsection

4.3.1. Then, we introduce an alternative formulation in Subsection 4.3.2.
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The MILP formulation approaches detailed in this subsection contain differentiated

notation, which varies according to the context they are developed. Below we detail

the common notation, and then in each formulation approach, we indicate the particular

notation related to the individual modeling frameworks.

We consider a finite set of services (e.g., jobs, patients, machines), I , that are available

in advance of the service date or the day of processing, to be allocated in the available

resource(s). We use boldfaced symbols such as x to represent vectors. T is used to denote

the set of finite time periods in the planning horizon, {1, ..., |T |}. Thus, there are i ∈ I

services to be scheduled during a time interval
[
1, |T |

]
. The service duration is represented

by the parameter L.

4.3.1. Current service time modeling approaches

From the literature, we distinguish three main formulation approaches: (i) the use of

uptime/downtime service constraints, (ii) the use of minimum time of service, and (iii)

the use of fixed integer variables to define the service length. Below we detail each of

these formulations, indicating only the service time-type constraints. For the extended

formulation, the reader is referred to the related studies.

(i) Minimum Uptime and Downtime Constraints: This formulation is mostly

applied in machine scheduling and power system scheduling settings in which

the services or jobs have a pre-defined minimum uptime and downtime of

operation. In the healthcare setting this type of formulation can be used to define

a window of a service operation, e.g., deterministic patient stay duration. The

set of linear Equations (4.1)–(4.7) in the Case labeled (i), are applied to the unit

commitment problem in Ostrowski et al. (2012) in which a minimum service

time of a generator has to be allocated if it is committed to generate. The set

of constraints consider three binary variables, i.e., vjt, yjt, zjt, in which j refers
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to the index of generators and t the time period. Besides, integer parameters of

uptime and downtime of the service are also defined. An alternative formulation

for the same problem type, considering one binary variable is presented in

Carrión and Arroyo (2006). The set of uptime/downtime constraints are defined

as follows:

(i) Minimum uptime/downtime constraints

t+UTj−1∑
i=t

vj(i) ≥ UTjyjt ∀t = Lj + 1, ..., |T | − UTj + 1, j ∈ J (4.1)

t+DTj−1∑
i=t

(1− vjt) ≥ DTjzjt ∀t = Fj + 1, ..., |T | −DTj + 1, j ∈ J (4.2)

|T |∑
i=t

(vjt)− yjt) ≥ 0 ∀t = |T | − UT + 1, ...|T |, j ∈ J (4.3)

|T |∑
i=t

(1− vjt − zjt) ≥ 0 ∀t = |T | −DT + 2, ...|T |, j ∈ J (4.4)

Fj∑
t=1

vjt = 0 ∀j ∈ J (4.5)

Lj∑
t=1

vjt = Lj ∀j ∈ J (4.6)

vjt, yjt, zjt ∈ {0, 1} ∀t ∈ T, j ∈ J, (4.7)

where UTj and DTj are parameters referring to the up-time and down-time,

respectively. The parameters Fj and Lj indicates the time the service, j,

should remain off and on, respectively, so that, Fj = min [|T |, Dj] and

Lj = min [|T |, Uj]. Here the parameters Dj and Uj are referred to the number

of hours the unit is required to be off and on at the start of the planning period.

The binary variables are vjt related to the on/off status of the service; yjt
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referred to the start-up status; and zjt, which indicates the shut-down status.

Equations (4.1) and (4.3) enforce the uptime constraints. Equations (4.2) and

(4.4) guarantee the downtime constraints. Finally, Equations (4.5) and (4.6)

force the service to remain on to satisfy the uptime/downtime constraints. Note

that in Equations (4.1) and (4.2), the service time is modeled as a summation

over a time windows for the uptime and downtime service time, respectively.

Lastly, constraint (4.7) indicates the variable’s domain.

(ii) Minimum time of service constraints: This formulation is considered for

services in which a minimum time of service is required to be performed. For

instance, an integer linear formulation in the healthcare literature for the patient

admission problem is found in Conforti et al. (2011). In this study, a patient

should be allocated for at least a minimum stay duration for a weekly schedule.

The minimum time of service is assumed to be prescribed by the physician

during the baseline visit and aimed to guarantee service quality to the patient.

The set of Equations (4.8)–(4.13) in the Case labeled (ii), defines the minimum

service time formulation. The formulation considers two binary variables of the

patient allocation, xt, yt, and an integer variable, zt, related to the remaining

periods concerning the minimum service time. The set of linear constraints are

defined as follows2:

2Note that we have modified the notation from the source to show a more compact formulation.
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(ii) Minimum time of service

zt = Lminyt ∀t = 1 (4.8)

zt ≤ Lmin
T∑
t=1

yt −
t−1∑
t=1

xt ∀t = 2, ..., |T | (4.9)

Lminxt ≥ zt ∀t ∈ T (4.10)

t+Lmin−1∑
t=1

xt ≥ Lminyt ∀t = 1 : |T | − Lmin + 1 (4.11)

yt = 0 ∀t > |T | − Lmin + 1 (4.12)

xt, yt ∈ {0, 1}, zt ≥ 0 ∀t ∈ T, (4.13)

where xt represents the occupation variable, yt indicates if the patient is

admitted, and zt is an integer variable of the remaining periods of allocation

regarding the minimum time of service denoted as Lmin. Constraints (4.8)

and (4.9) computes the remaining blocks of the admitted patients in the time

horizon. The group of constraints (4.10)–(4.12) guarantee that the service

time is at least equal to the days required for the admitted patient. Note that

in Equation (4.11), the service time is modeled as a summation over a time

windows. Lastly, constraint (4.13) defines the variable’s domain.

(iii) Fixed arrival and departure service time constraints: This formulation type

is based on a MILP model and considers integers and binary variables to define

the service time allocation. The framework assumes a deterministic service

time, which is defined within an availability window that corresponds to the

earliest and latest hospitalization periods (see, e.g., Demeester et al. (2010) and
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references therein). For instance, the authors in Bachouch et al. (2012) applied

the formulation scheme in the Case labeled (iii) to a capacity planning problem

in healthcare, to derive an optimal bed occupancy schedule.

The formulation considers two binary variables, xt, y, and two integer variables,

s, f , to ensures the service time allocation in a finite time horizon. Note that the

set of Equations (4.14)–(4.19) is a simplified version of the source, in which

we omitted the service allocation index. For the complete formulation refer to

Bachouch et al. (2012).

(iii) Fixed arrival and departure service time

T∑
t=W s

(
xt(Bt − 2)(Bt + 2)

)
/(−3) = Ly (4.14)

s ≤ txt + (−xt + 1)M ∀t ∈ T (4.15)

f ≥ txt ∀t ∈ T (4.16)

f = s+ L− 1 (4.17)

W s ≤ s ≤ W f (4.18)

xt, y ∈ {0, 1}, s, f ≥ 0 ∀t ∈ T, (4.19)

where xt is defined as the allocation variable in the time horizon. The variable y

is also an allocation variable not indexed in time t. The integer variables s and

f refer to the beginning and ending periods of the service allocation. So that,

L = f − s + 1. The parameters, W s and W f, indicate the time windows of the

earliest and latest hospitalization, respectively. The parameter Bt is a matrix of

resource availability, with values [-2, 1, 2] indicating the resource occupation to

different types of services.
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Constraint (4.14) ensures the allocation of the service for its required duration

to an available resource. Constraints (4.15) and (4.16) guarantee that s and f

take a value within the smallest and greatest period values of stay, respectively.

Constraint (4.17) computes the ending time of allocation as a function of the

service time, L. Constraint (4.18) ensures that the service should be allocated

within the predefined time window
[
W s,W f

]
. Lastly, constraint (4.19) defines

the variable’s domain.

In general, we observe that current formulations in the literature for modeling the

service time of uninterrupted services rely on integer variables. Besides, the service time

is modeled as a summation over a rolling constraint (e.g., Cases (i) and (ii)), which may

difficult to consider this parameter as uncertain. We remark that the formulation presented

in the Case (iii), although the service time is on the right-hand side of the constraints, the

modeling framework is complex to implement. It considers two binary and two integer

variables to ensure service time allocation, and it is problem-specific.

In the next subsection, we present a simple but effective formulation in which the

service time is on the right-hand side of constraints rather that over the indexes of a

summation; this allows applying existing stochastic optimization methodologies easily.

Besides, the proposed approach considers a single binary variable and a continuous time

of allocation.

4.3.2. Proposed service time modeling approach

In this subsection, we present a modeling approach to allocation problems of

uninterruptible services. The decision framework is sketched in Figure 4.2.

The allocation process is subdivided into a set of T time slots over a finite time

horizon. It considers the variables, yt that indicates the initiation of the service and the
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FIGURE 4.2. An illustrative representation of the allocation problem for
uninterruptible service.

binary variable, xt associated with each time slot, it takes the value 1 if we allocate this

slot to fulfill the service 0 otherwise. The parameter, L, is the continuous service time of

the uninterrupted service. Without loss of generality, we assume that the service always

initiates at the beginning of a time slot and is assigned completely; thus, it can end at any

moment and not necessarily at the end of a time slot. The service has to be allocated only

once during the time horizon, and there must be enough time slots to complete the service

length, L.

The proposed set of linear constraints that represent the aforementioned problem

description can be formulated as follows:

Proposed alternative formulation

T∑
t=1

yt = 1 (4.20)

T∑
t=1

xt ≥ L (4.21)

yt ≥ xt − xt−1 ∀t = {2, . . . , |T |} (4.22)

yt ≥ xt ∀t = 1 (4.23)

xt ∈ {0, 1}, yt ∈ [0, 1] ∀t ∈ T. (4.24)
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Constraint (4.20) indicates that the service has to be assigned once during the entire

horizon. Constraint (4.21) guarantees that the service has enough time slots allocated to

accommodate the service of length L. Constraint (4.22) depicts the logic between the

allocation variable xt and the activation variable yt. We assume that for t = 0, x0 = 0.

Thus, for t = 1, yt ≥ xt, as defined in constraint (4.23). It should be noted that constraints

(4.20) and (4.21) ensure that the service cannot be interrupted, and there are enough time

slots to be allocated. Lastly, constraint (4.24), defines the variables’ domain. Observe that

it is not required to define, yt as binary due to Equations (4.20) and (4.22) enforce to yt to

take the value 1 for a single time slot and therefore it would be 0 for the rest of time slots.

4.4. Summary and concluding remarks

We presented an alternative formulation inspired by the appointment scheduling

problem to model service-time-type constraints of uninterruptible services. In contrast

to current formulations in the literature, the proposed approach considers a single binary

variable and the continuous service time parameter on the right-hand side of the allocation

constraint. The formulation provides relevant information on the modeling structure of

allocation problems with service-time-type constraints, which can be easily adapted to

yield more efficient and practical allocation policies.

The effectiveness of the approach is tested on Chapter 5 to solve the admission

planning problem under uncertain patient LoS.
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Chapter 5. A DISTRIBUTIONALLY ROBUST MODEL FOR THE ADMISSION

PLANNING PROBLEM UNDER UNCERTAIN LENGTH OF STAY

The admission planning problem in the inpatient service aims to provide patient

access and to guarantee expected levels of bed utilization. However, uncertainty in the

patient’s length of stay and bed availability challenge the accomplishment of that objective.

Besides, there is limited information about the distribution of the uncertain parameters.

Thus, several inconsistencies may arise during execution, if the plan performed at the

tactical level is not robust. This chapter studies intertemporal decisions in the admission

planning problem through a distributionally robust optimization approach.

We study the coordinated decisions of allocation and scheduling for the patient-to-

room admission planning problem assuming heterogeneous patient types and time-varying

capacity. The objective is to maximize the weighted sum of the patient’s admission benefit

while reducing the cost of overstay. We present a distributionally robust optimization

framework that is distribution-free. The framework is robust against the infinite set

of probability distribution functions that could represent the stochastic process of the

patient’s length of stay. To test the performance of the proposed approach, we compared

it with benchmark models (i.e., deterministic, TSO, RO) employing a real data set

from a public hospital in Chile. The results show that our approach outperforms the

evaluated models in both reliability and computational efficiency. We provide insights

to practitioners and hospital decision-makers to anticipate admission decisions while

considering the randomness of the length of stay at the tactical-operational level.

The content of this chapter is based on a paper published in the Computers and

Industrial Engineering (Batista, Pozo, & Vera, 2021).

This chapter is organized as follows. Section 5.1 outlines the problem and compares

the proposed approach with up-to-date literature. Section 5.2 describes the proposed
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framework of the admission planning problem, the mathematical notation, and the

uncertainty modeling. Section 5.3 presents the solution methodology of the DRO

approach. Section 5.4 details the numerical studies and computational experiments for

the case study. Finally, Section 5.5 underlines the conclusions and findings of the study.

Notation

The mathematical symbols used throughout this chapter are detailed below:

Sets

D Ambiguity set of the patient’s length of stay.

I Set of patients.

K Set of indexes of extreme point of Ξ.

R Set of rooms related to individual beds.

S Set of patient types.

T Set of time periods t.

X Set of feasible admission plans.

Ξ Support set for ξ, defined by upper and lower bounds component-wise.

Ir Subset of patients who belong to the rooms, r, Ir ⊆ I .

Is Subset of patients who belong to the types, s, Is ⊆ I .

Irs Subset of rooms, r, and patient type, s, so that Ir ∩ Is.

Parameters

ξis Random parameter of patient length of stay of patient i type s.

ξ̄is Mean value of patient length of stay of patient i type s.

ξk k-th extreme point of Ξ.

θis Penalty of overstay of patient i type s.
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ζis Benefit of admission of patient i type s.

Ctr Available capacity in period t in room r.

Dis Demand of patient i type s.

Omax
r Maximum days of overstay to penalize per room r.

Variables

xA
rist Binary variable denoting the initiation of the allocation of patient i type s in

period t.

xP
ris Integer variable indicating the number of admitted patients i type s.

xS
rist Binary variable of patient allocation of patient i type s in period t.

oris Continuous variable of overstay days per room r of patient i type s.

urt Utilization of room r in period t.

α Dual variable related to the sum-one probability constraint.

γis Dual variable related to the first-moment of patient i and type s.

Functions

f(x, ξ) Function of the cost of admission decisions x, and length of stay realization ξ.

gSPAPP(x) Stochastic programming recourse function of the expected cost of admission

decisions x.

gROAPP(x) Robust optimization function of the worst-case operational cost of admission

decisions x.

gDROAPP(x) Distributionally robust recourse function of the worst-case expected opera-

tional cost of admission decisions x.

Problems

DTAPP Deterministic formulation for the APP.

SPAPP Stochastic programming formulation for the APP.
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ROAPP Robust optimization formulation for the APP.

DROAPP Distributionally robust optimization formulation for the APP.

5.1. Introduction

Admission planning is a critical process in hospitals that aims to ensure timely access

and efficiency in the use of resources. At the tactical-operational level for the inpatient

service, the process consists of scheduling and allocating elective patients to beds for

the duration of their stay and is termed Admission Planning Problem (APP). The plan is

usually managed by a CAD that receives requests from different care units. Nowadays,

this task is often solved manually in many hospitals, resulting in sub-optimal decisions and

inefficient use of resources (J. M. Vissers et al., 2007). Therefore, there is still room for

improvement in the management of admissions to derive robust decision-making plans.

One of the major complexities in the admission process is the uncertain patient’s

length of stay (LoS). At the tactical level, the admission decisions are taken for several

categories of patients differing by priorities, lacking perfect information about the LoS.

The lack of reliable information causes inconsistencies in the execution of the admission

plan (i.e., operational level), such as overstay, cancellations, and fluctuation in the use

of resources. The main causes of the randomness are due to individual differences in

the patient’s diagnosis and managerial inefficiencies that challenge the admission process.

For instance, the patient overstay (i.e., prolonged stays) is caused for both the patient’s

clinical condition and delays during the discharge. Thus, the overstay must be considered

in the planning in a way that affects the admission process to its minimum, given that

it constraints the access of new patients in the admission plan and increases the hospital

expenditures. Yet, although the information about the patient’s LoS is unknown, decisions

have to be made.
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Ideally, the CAD should decide when, which, and how many patients to admit to the

available beds, considering uncertain LoS and time-varying capacity, while reducing the

overstay. The decisions about patient admission and management of overstay are related

as scheduling a high number of patients may result in high levels of overstay because

many patients with a short duration may have to be scheduled. On the contrary, admitting a

small number of patients will tend to reduce the overstay, but lessening the level of service,

defined as the number of admitted patients. A typical approach to manage the overstay is

by considering a strategy of early discharge. This policy is prevalent in hospitals in which

physicians have to control resources due to shortages. In this sense, the authors in Berk

and Moinzadeh (1998) showed that early discharge policies (under conditions of limited

capacity) could improve system accessibility without threatening care equity among the

patients.

The admission planning problem has been studied in the literature. The problem has

the structure of the bin-packing model, which is known to be NP-hard (Korf, 2002). The

studies in the literature are subdivided into allocation and scheduling decisions according

to the level of aggregation considered. Allocation decisions are performed in a more

aggregated way to determine the mix of patients admitted and bed resource allocation, as

presented in Chapter 3. Scheduling decisions involve a more detailed scheme, considering

sequencing, and the scheduling of individual appointments. Thus, information about the

patient’s length of stay is required.

Table 5.1 compares the contributions in the APP with our proposed approach. The

papers listed are taken from Tables 1.1 and 1.2 of Chapter 1, refining those that consider

beds as a resource of allocation and the patient’s length of stay to schedule appointments.

We have included the main characteristics of the admission problem from the modeling

structure perspective of allocation and scheduling decisions. Column 1 indicates the paper
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information. Columns 2 and 3 show whether the research considers intertemporal or an

integrated framework of allocation and scheduling. Columns 4–8 includes information

about the patient LoS modeling. The sequence variable determines the time intervals

between appointments. The inclusion of start and discharge times variables implies

the determination of time allowances for the patient stay duration. We distinguish the

assumption on the length of stay distribution as unknown and known distribution. Finally,

column 9 shows whether the contribution considers real data. The black or white dot

indicates whether a feature is considered or not, respectively.

TABLE 5.1. Comparison of the proposed approach versus existing contributions
on the admission planning allocation-scheduling problem.

Length of Stay modeling

Research Intertemporal
decisions

Integrated
A-S

Sequence
(variable)

Start - discharge time
(variable)

Known
distribution

Unknown
distribution

Real
data

Mittal et al. (2014); Jiang et al. (2017); Zhang et al. (2017)
Harper and Shahani (2002); Li et al. (2018)
Liu et al. (2019); Zhang et al. (2012)
Green and Nguyen (2001); Utley et al. (2003); Bekker and Koeleman (2011)
Hulshof et al. (2013); Ceschia and Schaerf (2016); Vancroonenburg et al. (2016)
Demeester et al. (2010); Ceschia and Schaerf (2011); Bachouch et al. (2012)
Range et al. (2014); Turhan and Bilgen (2017); Guido et al. (2018)
Min and Yih (2010b)
Ceschia and Schaerf (2012)
Mak et al. (2014)
Meng et al. (2015)
Samiedaluie et al. (2017)
Vancroonenburg et al. (2019)
Our model

Several observations can be made from Table 5.1. The admission planning problem

was first formalized by Demeester et al. (2010) as an extension of the patient bed

assignment problem. The modeling approach distinguishes between hard and soft

constraints that determine the suitability of the patient assignment to a room or bed, aiming

to minimize patient preference violations and transfer costs. The problem was conceived

considering fixed dates of admission and discharge; thus, the LoS is assumed to be known

in advance. The contributions employing such framework, see, e.g., Bachouch et al.

(2012); Ceschia and Schaerf (2011); Conforti et al. (2011); Demeester et al. (2010); Guido

et al. (2018); Range et al. (2014); Turhan and Bilgen (2017), have been concerned with

modeling other necessary aspects, such as patient preference, age policy, room specialty,
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among others. However, the assumption of fixed discharge dates is not the typical case

faced by clinicians in hospitals; the patient LoS is usually uncertain and difficult to

estimate due to clinical conditions. The contributions mentioned above focus on handling

the dimensionality problem through heuristics and meta-heuristics based methods, which,

despite presenting good performance, in terms of efficiency, do not guarantee a global

optimum. An exact MILP version of the admission planning problem is proposed in

Range et al. (2014) and Turhan and Bilgen (2017), but still, no uncertain parameters are

considered.

The LoS uncertainty is acknowledged in some studies. Most contributions incorporate

uncertainty in the APP, assuming perfect information of the uncertain parameter (see,

e.g., Green and Nguyen (2001); Harper and Shahani (2002); Utley et al. (2008); Min and

Yih (2010b); Bekker and Koeleman (2011); Ceschia and Schaerf (2012); Zhang et al.

(2012); Hulshof et al. (2013); Ceschia and Schaerf (2016); Vancroonenburg et al. (2016);

Samiedaluie et al. (2017); Li et al. (2018); Liu et al. (2019); Vancroonenburg et al. (2019)).

The papers tackle the APP by employing heuristics, simulation, queue theory, or integer

methods to solve the problem.

Other studies, in turn, consider that the LoS does not follow a specific distribution and

assume a DRO approach, as we propose in this chapter (see, e.g., Mak et al. (2014); Mittal

et al. (2014); Jiang et al. (2017); Zhang et al. (2017); Meng et al. (2015)). However, such

studies are focused on scheduling decisions rather than the integration with allocation

decisions, which have been shown to provide better performance (Ceschia & Schaerf,

2012). For a detailed literature review of the APP by methodology, the reader is referred

to Section 1.5 of Chapter 1.

We observe in Table 5.1 that most studies do not tackle intertemporal decisions in

the modeling approach. The studies are focused on a single level, mainly on operational
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decisions. Besides, only one contribution (Vancroonenburg et al., 2019) tackle allocation

and scheduling decisions simultaneously. The sequence variable in the scheduling

problem is only considered in Mak et al. (2014). Real data is taking into account in a

few studies (Harper & Shahani, 2002; Zhang et al., 2012; Meng et al., 2015; Samiedaluie

et al., 2017; Li et al., 2018; Liu et al., 2019; Vancroonenburg et al., 2019).

In summary, the objective of this chapter is to study the APP to maximize patient

access while reducing the cost of overstay. From the literature review, we can state that

there is still a need for developing robust models for the admission planning problem

by incorporating the essential features of real operations. Besides, as we stated in a

more detailed review in Section 1.5, most contributions do not consider an intertemporal

decision framework under limited information of the uncertain parameter of LoS. In

contrast, we account for a distributionally-robust framework that considers ambiguity in

the probability distribution of the patient’s length of stay.

The contribution of this chapter to the issue of admission planning under uncertain

length of stay is threefold. First, a new version (not yet reported in the literature) of the

APP is developed at the tactical-operational level. The proposed model considers a multi-

period, multi-priority, multi-specialty scheme of decisions. Besides, the bed capacity

availability over time is assumed time-varying, in contrast to current contributions. Unlike

most studies in the patient-to-room admission problem, we do not assume a fixed sequence

of arrival. The model determines the planned start times along with the stay duration

and bed assignment of patients. Such a modeling framework provide insights into the

relevance of considering scheduling and allocation decisions simultaneously.

Second, to help ambiguity-averse decision-makers derive a robust plan of admission,

we propose a distributionally robust optimization approach to solve the APP. Rather than

assuming perfect information on the probability distribution of the patient LoS, we account
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for an ambiguity-averse framework. We consider that known information is limited only

to the first moment and the support set of the true probability distribution of the LoS. We

solve this problem through duality theory and derive a tractable solution methodology for

solving the DRO model. Thus, the infinite-dimensional DRO is then reformulated into a

deterministic equivalent model.

Third, we employ real data to validate the performance of the proposed approach.

The data is used to construct the ambiguity set and to generate the sample scenarios.

The robustness of the approach is evaluated through an extensive computational study by

comparing it with standard approaches in the literature: robust optimization, stochastic

programming, and deterministic. In addition, we propose a reliability metric by

benchmarking with different approaches along with the conventional cost-based metrics

in out-of-sample analysis.

5.2. Problem formulation

In this section, we present the proposed framework of the APP and the uncertainty

modeling of the LoS. We first describe the admission planning process and the main

assumptions in Subsection 5.2.1. Then, in Subsection 5.2.2, we characterize the admission

process scheme and the uncertain modeling, along with the main variables and constraints

that describe the tactical-operational plan. In Subsection 5.2.3, we present the MILP

deterministic formulation as an extended version of the proposed model. Finally,

Subsections 5.2.4, 5.2.5 and, 5.2.6 describe the stochastic, robust and distributionally

robust formulations, respectively.

5.2.1. General description and assumptions

We consider the problem of patient scheduling and allocation in admission planning.

The problem consists of determining start times (i.e., date of admission) for a list of
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requests that belong to a waiting list along with the room of allocation. Additionally,

we derive time intervals between admissions considering random LoS. The admission

decision depends on the availability of beds over time and patient priority. Once the

planned start times and the time interval between patients are determined, the patient’s

stay duration may vary, causing disruptions in the schedule, such as overstay.

The objective of this study is to maximize the total benefit of patient admission that is

composed of two parts; the reward of admission and the penalty of overstay. The first part

is related to the benefit of admitting a patient according to a weighted priority. The second

is a penalty cost of the prolonged patient stay that occurs due to variations in the length of

stay. Thus, the overstay is used to overcome the effects of the uncertainty in the planning.

In summary, the decisions to make in the APP are: (i) Which patient type to admit in the

time horizon; (ii) When to assign a patient to the available resources; (iii) How many days

of stay to reserve, and (iv) How many overstay days to allocate for each patient type.

5.2.1.1. Assumptions

The main assumptions considered in the formulation of the admission planning model

are described as follows:

1. The patient demand, Dis, is known and is retrieved from the waiting list of

elective patients.

2. The LoS, ξ, is uncertain, i.e., a random parameter. We assume different levels

of knowledge on the underlying distribution of ξ: (i) full knowledge of the true

distribution for the stochastic formulation of the APP, (ii) partial knowledge of

the true distribution consisting of first moment (mean) and its support set for the

distributionally robust formulation; and (iii) minimal information consisting of

the support set of the true distribution for the robust formulation.
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3. The time horizon of study is divided into periods of equal time slots, typically

a day.

4. The patient LoS is defined as a continuous random value on the unit-base of the

time horizon, i.e., days.

5. The admission decisions are made at the beginning of the period for the entire

planning horizon. Thus, the request for admission is assumed to be at the time

period, t = 1.

6. We assume that a patient is always assigned at the beginning of a time slot for

the total period; thus, it can end at any moment and not necessarily at the end

of a time slot.

7. The resources are defined as ward beds; the room type determines the

distinction between them. Hence, the patients can be allocated in any of the

available beds in the room.

8. The available capacity, Ctr, per period, t, and room, r, is known at the beginning

of the plan and is considered to be time-varying in the planning horizon. The

reason for assuming time-varying bed capacity is to study its influence on the

scheduling and allocation process of a shared resource along with the uncertain

LoS. Recently, some studies based on machine learning techniques (Rajkomar

et al., 2018; Bertsimas, Pauphilet, et al., 2019), have proposed approaches to

predict the hospital census and capacity availability. The developed tools may

be useful as an input to our model.

9. Unmet demand is allowed due to capacity limitations. This assumption is

appropriate in many hospital services, where the management of the waiting

list is done periodically. No admitted patients are held on the waiting list for

later scheduling.
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10. Emergency patients are not considered in the scheduling. Generally, the

hospitals determine a fixed quota of admission for those patients.

11. The transfer of patients is not allowed; the proposed approach accounts for the

service’s continuity.

12. The patient allocation priority, ζ, is defined by considering the Diagnosis

Related Group (DRG) and the Severity Illness Index (SII) scores, both obtained

through historical data. The DRG is a worldwide system to classify patients

according to their resource consumption during the treatment (Peters-Groot,

1993), and the SII is an ordinal measure of patient severity illness (Rosko,

1988).

5.2.2. Modeling the uncertain LoS

In this subsection, we recall the modeling framework for service-time-type constraints

presented in Chapter 4, and we apply it to the admission planning problem with uncertain

LoS.

The off-line admission planning problem can be classified as a standard capacitated

dual bin packing type problem (Vijayakumar et al., 2013), where the number of bins (beds)

is given at a fixed cost. In addition, the APP has the structure of the allocation problem

for uninterruptible services presented in Chapter 4. Under this scheme, once the service is

allocated, it cannot be interrupted during the time window (Batista, Pozo, & Vera, 2020).

Similar to what we presented in Subsection 4.3.2 of Chapter 4, Figure 5.1 illustrates the

allocation scheme for a single patient, i and resource in the time horizon. A finite planning

horizon of T days indexed by t = {1, . . . , T} is considered, subdivided into a set of t time

slots of the same duration. The admission process starts at the beginning of the period,

t = 1. From a request list, the decision-maker decides which patient, i, to admit along

with the date of admission.
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FIGURE 5.1. Representation of the proposed framework for the APP. UU
measures the under-utilization.

The variable xA
it, is associated with the initiation of the admission. The binary variable

xS
it, represents the discrete allocation of the patient stay duration and, the parameter, ξ̄i, is

the mean value of the LoS of the patient i, not necessarily an integer value. Note that, in

this subsection, ξi is assumed deterministic and equal to the mean value, but in the next

subsection, we relax this assumption considering it a random parameter. The patient has

to be allocated only once during the time horizon, and enough number of slots are required

to cover the total allocation of length, ξ̄i. The set of linear constraints that represent the

proposed approach are described in Equations (5.1)–(5.7).

xA
it ≥ xS

it − xS
it−1 ∀i ∈ I, t = {2, . . . , T} (5.1)

xA
it ≥ xS

it ∀i ∈ I, t = 1 (5.2)

xP
i =

T∑
t=1

xA
it ∀i ∈ I (5.3)

xP
i ≤ 1 ∀i ∈ I (5.4)
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T∑
t=1

xS
it ≥ xP

i ξ̄i ∀i ∈ I (5.5)

xP
i ≥ 0 ∀i ∈ I (5.6)

xS
it ∈ {0, 1}, xA

it ∈ [0, 1] ∀i ∈ I, t ∈ T (5.7)

Constraints (5.1) and (5.2) preserve the continuity in the allocation for the patient’s

entire LoS. Constraints (5.3) define the auxiliary variable, xP
i ; it indicates if a patient have

been admitted. Constraints (5.4) indicate that a patient must be allocated to at most one

room/bed in the time period. Note that with constraints (5.4), we permit unmet demand.

Constraint (5.5) guarantees that there are enough time slots to allocate the duration of the

stay of length, ξ̄i. Lastly, constraints (5.6)–(5.7) define the decision variables’ domain.

As presented in Subsection 4.3.2 of Chapter 4, it is not required to define the variable,

xA
it, as binary due to Equations (5.1)–(5.4) are enforcing, xA

it, to take the value 1 for a

single time slot, and therefore it would be 0 for the rest of them. Additionally, note that

the parameter, ξ̄, is on the right-hand side of the constraint in expression (5.5), instead

of being modeled as a summation over a rolling time window. This modeling structure

facilitates the implementation of dual-based algorithms, such as stochastic programming,

robust optimization, and distributionally robust optimization.

5.2.2.1. Overstay modeling

In Figure 5.1 we observe that when assigning a patient for their mean length of stay

(i.e., ξ̄i = 7.4) to the available capacity, there may be under-utilized blocks (i.e., UU = 4)

because there are not enough time slots to allocate a new patient for the duration of their

stay. This situation arises due to the constraint (5.5) presented in the modeling framework

is very strict; it considers that the stay duration to be allocated should be at least the

patient LoS. We can relax this constraint by introducing a slack variable, oi, to capture the
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variations in the LoS of the patient, i. This slack variable allows the introduction of extra

flexibility in the allocation process by extending the space dimension of decisions to be

taken.

Thus, we can reformulate relation (5.5) into constraint (5.8); it can be interpreted as

an early discharge policy to increase patient access and to maximize bed utilization in

tactical-operational planning.

T∑
t=1

xS
it ≥ xP

i ξ̄i − oi ∀i ∈ I (5.8)

5.2.3. Deterministic Admission Planning Problem formulation

Under the deterministic approach, the patient LoS is known. The MILP formulation

for this problem is described in Equations (5.9)–(5.20), which is an extension of the model

described in Subsection 5.2.2. We have included the indexes related to patient types, s ∈ S

and rooms, r ∈ R. In order to characterize a system in which patients of a certain type are

allocated in rooms according to the related diagnose, s, we defined the subsets, Ir ⊆ I ,

Is ⊆ I , and Irs. Is is referred to as the subset of patients who belong to a type, s, Ir

corresponds to the subset of patients associated with a room, r, and Irs is a simplified

expression of the subsets Ir and Is. The deterministic (DTAPP) APP is defined as follows,

DTAPP: max
xS,xA,xP,o

R∑
r=1

Ir∑
i=1

Is∑
i=1

ζisx
P
ris −

R∑
r=1

Ir∑
i=1

Is∑
i=1

θisoris (5.9)

s.t.:

xP
ris ≤ Dis ∀r ∈ R, i ∈ Irs, s ∈ S (5.10)
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Irs∑
i=1

xS
rist ≤ Ctr ∀r ∈ R, t ∈ T (5.11)

xA
rist ≥ xS

rist − xS
rist−1 ∀r ∈ R, i ∈ Irs, s ∈ S, t = 2, . . . , T (5.12)

xA
rist ≥ xS

rist ∀r ∈ R, i ∈ Irs, s ∈ S, t = 1 (5.13)

xP
ris =

T∑
t=1

xA
rist ∀r ∈ R, i ∈ Irs (5.14)

xP
ris ≤ 1 ∀r ∈ R, i ∈ Irs (5.15)

R∑
r=1

xS
rist ≤ 1 ∀i ∈ Irs, t ∈ T (5.16)

T∑
t=1

xS
rist ≥ xP

risξ̄is − oris ∀r ∈ R, i ∈ Irs (5.17)

Irs∑
i=1

oris ≤ Omax
r ∀r ∈ R (5.18)

xP
ris, oris ≥ 0 ∀r ∈ R, i ∈ I, s ∈ S (5.19)

xS
rist ∈ {0, 1}, xA

rist ∈ [0, 1] ∀r ∈ R, i ∈ I, s ∈ S, t ∈ T (5.20)

The objective function, (5.9), accounts for the benefit of patient admission and the

weighted cost of overstay per patient type. The weights of admission and penalty of

overstay respectively, follows, ζ > θ.

Constraints (5.10) accounts for demand fulfilment. From Equation (5.10) we can

easily calculate unmet demand. Constraints (5.11) ensure the capacity availability which

varies in time, t, and room type, r. The group of Equations (5.12)–(5.15) are an extension

of the constraints described in Subsection 5.2.2. Constraint (5.16) ensure that the patients

will be allocated in only one room during their stay. Constraint (5.17) is an extension of

the constraint (5.8); it guarantees a certain degree of flexibility in the allocation process,
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by allowing days of overstay. Constraints (5.18) impose a limit of the maximum days of

overstay to penalize per room, through the parameter, Omax
r . Finally, constraints (5.19)

and (5.20) defines the variables’ domain. The resulting model (5.9)–(5.20), is a MILP

suitable for solving with commercial solvers.

5.2.4. Stochastic Admission Planning Problem formulation

When full knowledge about the distribution of the uncertain parameter of the patient’s

LoS is available, DTAPP formulation can be extended to add such uncertainty. A two-

stage stochastic optimization approach can model the APP. It divides into two sets of

decision variables: first-stage and second-stage. The first-stage decisions are made before

the random realizations of the patient’s LoS (tactical level). The second-stage decision

variables are the operational adjustments once the uncertain parameter, ξ, is observed

(operational level). We define the first-stage decision vector as x, which represents the

decisions, xS,xA, and, xP. The second-stage decisions are represented by the continuous

variable of overstay, o, renamed as the vector, y, to follow standard nomenclature on

two-stage stochastic programming.

Model (5.21) represents a compact form of the classical two-stage stochastic model

with recourse. It can be defined as a simple recourse problem in which the recourse actions

(i.e., overstay), are linear penalties based on the surplus of the scarce resources (Birge &

Louveaux, 2011).

max
x∈X

bᵀ0x + EP
[
f(x, ξ)

]
(5.21)

The first-stage admission decisions, x, are binary variables, and the second second-

stage decisions, y, are continuous. The uncertain parameter, ξ, follows a perfectly-known

probability distribution. The vector, b0, is defined as the benefit of admission. The
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set X represents the set of constraints that affect only the first-stage decisions, x, that

corresponds to constraints (5.10)–(5.16) in the DTAPP model.

The operational cost function, f(x, ξ) can be represented as in the model in relation

(5.22):

f(x, ξ) = max
y≥0

bᵀ1y

s.t.: Wy ≥ Bξ −Gx.

(5.22)

We define b1 as the penalty vector (negative) of the cost of overstay. Here, we are

using the standard notation in two-stage problems, with the matrices W , B, and G,

representing the blocks of coefficients associated with the rest of the constraints of the

problem. Note that both parameters, x and ξ, of this second-stage problem, appear on the

right-hand side of the linear optimization problem (5.22). Thus, we can state that f(x, ξ)

is a convex function of the first-stage decisions of planned admissions, x, and the length

of stay realizations, ξ.

We can represent the two-stage stochastic formulation (SPAPP) as (5.23)–(5.24). The

SPAPP model aims to maximize the patient admission under the expected cost of overstay.

SPAPP: max
x∈X

bᵀ0x + gSPAPP(x) (5.23)

where: gSPAPP(x) = EP
[
f(x, ξ)

]
(5.24)

5.2.5. Robust Admission Planning Problem formulation

Robust optimization is an alternative framework to SPAPP, where the uncertain

parameter of the patient’s LoS does not rely on probabilistic information; instead,

uncertainty is modeled within an uncertainty set obtained through historical data or
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estimates with a confidence interval. The robust optimization (ROAPP) model is introduced

in Equations (5.25)–(5.26). The support set, Ξ, is characterized by the use of estimates of

the length of stay. The random vector, ξ, belongs to the support, Ξ ⊂ Rd.

The aim of the ROAPP model in Equation (5.25) is to maximize the total benefit of

admission within the uncertainty set, considering the worst-case realization of the random

parameter, ξ. The function, gROAPP(x), in Equation (5.26), aims to minimize the worst-case

operational cost of overstay for the admission decisions, x.

ROAPP: max
x∈X

bᵀ0x + gROAPP(x) (5.25)

where: gROAPP(x) = min
ξ∈Ξ

[
f(x, ξ)

]
(5.26)

5.2.6. Distributionally Robust Admission Planning Problem formulation

The distributionally robust optimization approach is a generalization of the SPAPP and

ROAPP models, in which is considered limited distributional information of the uncertain

parameter, ξ. In Equation (5.27), we introduce the distributionally robust optimization

(DROAPP) model. It aims to maximize the net benefit of patient admission, considering the

expected cost of overstay that is represented by an ambiguity-averse expectation measure,

gDROAPP(x), of the operational cost.

DROAPP: max
x∈X

bᵀ0x + gDROAPP(x) (5.27)

where: gDROAPP(x) = inf
P∈D

EP
[
f(x, ξ)

]
(5.28)
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The inner operational problem that computes the worst-case expected value of

overstay can be expressed as in Equation (5.28). We employed historical data of the

patient stay as well as expert estimates to define the support and the expected value of

ξ. We define a set of a compact support, Ξ, and the expected value of ξ̄, for ξ ∈ Ξ. Thus,

the ambiguity set, D, in Equation (5.29), represents the family of distributions with mean

value, ξ̄, within the support, Ξ. P is the set of all probability measures in the measurable

space,N and, EP [ξ], represents the expected value of ξ under a given probability measure

P .

D =
{
P ∈ P : EP [ξ] = ξ̄

}
(5.29)

Considering the information about the expected value of ξ, the ambiguity-averse

expected operational cost in (5.28), assumes the following form:

gDROAPP(x) = inf
P∈D

∫
Ξ

f(x, ξ) dP (ξ) (5.30)

In the next section, we solve problem (5.28) under the ambiguity-averse measure

defined in Equation (5.30).

5.3. Solution methodology

In this section, we employ the scenario-based solution methodology presented in

Chapter 2, to solve the DROAPP model.

Similar to what indicated in Subsection 2.4.1, the ambiguity-averse expectation in

Equation (5.30) can be expressed as an infinite-dimensional linear optimization problem.
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The typical form of the classical moment problem (Landau, 1987) is presented in Equation

(5.31), where α and γi are the dual variables related to moment problems constraints.

gDROAPP(x) = inf
P∈D

∫
Ξ

f(x, ξ) dP (ξ)

s.t.:
∫

Ξ

dP (ξ) = 1 : α∫
Ξ

ξi dP (ξ) = ξ̄i ∀i ∈ I : γi

(5.31)

The finite single-level equivalent formulation of problem 5.31 can be defined as

follows,

gDROAPP(x) = max
α,γ

α + γᵀξ̄

s.t.: f(x, ξ) ≤ −α− γᵀξ ∀ξ ∈ Ξ.

(5.32)

Note that as we explained in Subsection 2.4.2, the infinite set of constraints in problem

(5.32) can be represented as maxξ∈Ξ

(
f(x, ξ) + γᵀξ

)
≤ −α. By definition, f(x, ξ) is a

convex function on ξ. Thus, expression f(x, ξ)+γᵀξ is a convex function on ξ. Therefore,

the optimal value of maxξ∈Ξ

(
f(x, ξ) + γᵀξ

)
would be at any of the vertexes of the box

type support set of ξ, Ξ.

We define ξk as the extreme points vector of our uncertain parameter, ξ and use k

to index all extreme points of the support set, Ξ. Then, the DROAPP model in Equations

(5.27)–(5.28) can be formulated as an equivalent MILP as in (5.33).
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max
x,y,α,γ

bᵀ0x + α + ξ̄

s.t.: x ∈ X

bᵀ1yk ≤ −α− γᵀξk ∀k ∈ K

Wyk ≥ Bξk −Gx ∀k ∈ K

(5.33)

The set of Equations (5.34) shows the equivalent robust optimization approach to

solve the ROAPP derived from the formulation in the group of Equations (5.33). The

solution of the operational model will be the worst-case scenario in the support set Ξ,

as we present in (5.34).

max
x,y,α

bᵀ0x + α

s.t.: x ∈ X

bᵀ1yk ≤ −α ∀k ∈ K

Wyk ≥ Bξk −Gx ∀k ∈ K

(5.34)

5.4. Numerical studies

The case study used to validate our proposed methodology is based on a public health

center in Chile. The hospital is a national center of reference and receives about 11,000

requests of admission yearly. The institution has ten care units (i.e., areas of allocation)

and serves nearly twenty different diagnosis groups. We focus on the process of admission

to ward beds, which is managed from the CAD that makes daily decisions of scheduling

and allocation. The evaluated case study describes the prevalent situation in the hospital

under study. The monthly admission plan in the CAD is executed manually, and there is no
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formal method or standard policy of admission as it happens in most hospitals (Gemmel

& Van Dierdonck, 1999).

This section describes the numerical studies of the proposed approach. Subsection

5.4.1 describes the performance metrics to be evaluated and Subsection 5.4.2 explains the

data requirements.

5.4.1. Performance metrics

In order to assess the performance of the proposed approach, we defined several

metrics. These metrics allow for measuring the level of service (APs) and hospital

performance (RUrt, MOis). Detailed definition of the metrics is given as follows:

(i) Percentage of admitted patients: This metric measures the total percentage of

admitted patients by type, s.

APs =

R∑
r=1

I∑
i=1

xP
ris

I∑
i=1

Dis

× 100 ∀s ∈ S (5.35)

(ii) Percentage of resource utilization: This metric measures the total percentage of

beds occupied per room, r, and period, t.

RUrt =

I∑
i=1

S∑
s=1

xS
rist

Ctr
× 100 ∀r ∈ R, t ∈ T (5.36)

(iii) Percentage of maximum budget of overstay utilization: This metric measures

the total percentage of overstay days used, per patient, i, and type, s, over the

total allowed.
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MOis =

R∑
r=1

oris

R∑
r=1

Omax
r

× 100 ∀i ∈ I, s ∈ S (5.37)

5.4.2. Data description

The numerical experiments are based on real data from the EHR of the hospital under

study1. The database accounts for information on the inpatient service for the period 2010-

2016. It includes data about the patient’s date of admission and discharge, admission

care unit, length of stay, diagnosis, and DRG and SII indexes. Below, we describe the

characteristics and setup of the parameters used in the study. The input data of the model

parameters is detailed in Appendix B.

A. Demand

The CAD receives requests for admission from different care units in the hospital. We

characterize the demand, Dis, as the number of requests of elective patients that differ by

type, i.e., diagnosis. We remark that the admission requests are in terms of the “number of

patients.” Hence, considering that our approach accounts simultaneously for scheduling

and allocation decisions, the model schedules patients and allocates days of stay. For the

case study, we considered demand requests of sixty patients, I = 60, that belong to twelve

different patient diagnoses2, S = 12, to be allocated in ten room types, R = 10, and a time

horizon of T = 30 days3. Table 5.2 summarizes the patient type classification according

to the DRG. A description of the diagnosis can be found in Laguna et al. (2000). The table

also shows the historical rates of admission for the care units with greater patient flow, i.e.,

1Specific details about the hospital under study have been omitted for the sake of privacy.
2Note that to each patient, i, is associated a type, s, according to their diagnosis.
3In Appendix B, Table B.3 we detail the input data of the patient admission.



159

86% of the total admissions in the CAD (Medical 37%, Surgical 41%, Ophthalmology

8%). Based on such proportions, we determined the distributions of patients scheduled in

the corresponding care units. For example, in the Ophthalmology unit, only the patient

types C, H, S, and Z, can be assigned. An extended version of Table 5.2 is presented in

Appendix B, Table B.2.

TABLE 5.2. Mean value (in days), support set (in days) and proportion of
admission of patient type per care unit from period 2010-2016.

Length of Stay Data % of admission request per care unit
Diagnosis ξ̄ Ξ Medicine Surgery Ophthalmology

C 9.93 [2,26] 7.6% 12.9% 0.7%
F 13.02 [2,27] 1.1% 0.0% 0.0%
H 5.06 [1,15] 0.6% 0.4% 43.0%
I 11.26 [1,26] 29.0% 6.3% 0.0%
K 6.71 [1,21] 8.1% 22.1% 0.0%
S 9.18 [1,25] 3.0% 21.9% 48.5%
Z 5.26 [0,12] 3.4% 1.1% 1.7%

B. Capacity availability

The hospital under study is divided into several care units according to the clinical

specialty, which are subdivided into room types. We define as "room" the aggregate set

of rooms associated with a care unit. The beds that belong to each room are identical.

The capacity availability, Ctr, is defined as the total number of available beds per time

period and room. We employed historical data to determine bed availability in the time

horizon. In our study, we computed the expected value of daily bed availability per room

for the period 2010-2016. Such information can also be estimated by employing machine

learning techniques, as stated in (Bertsimas, Pauphilet, et al., 2019). We remark that this

data corresponds to the total daily available capacity, including the beds for unscheduled

patients.
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Figure 5.2 illustrates an example (from real data) of the pattern of daily bed

availability for a typical month for the three main care units of allocation. We note that

due to the time-varying bed availability, ensuring continuity in allocation is difficult to

achieve. This high variability could be attributed to hospital planning deficiencies (e.g.,

discharge), which should be revised to guarantee better admission levels.

FIGURE 5.2. Daily bed availability graph by care unit in the hospital (typical month).

C. Patient Length of Stay

We consider the patient LoS, ξ, as the uncertain parameter. Figure 5.3 details the

statistics (from real data) of the patient’s length of stay by type of diagnosis. We observe

not only a high variability in the data but also a difference in the distribution between

patient types. The input data for the case study is reported in Table 5.2. It shows the

mean, ξ̄, and support, Ξ (main diagnoses), per patient type, obtained from historical data.

The support set was defined considering data between the 5th and 95th percentile, i.e., we

account for 90% percent of the data distribution.
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FIGURE 5.3. Length of stay distributions of patient type (diagnosis) from period
2010-2016.

D. Benefit of admission

In practice, health care providers decide the admission of patients in terms of their

health priority. From the EHR, we employed the DRG and the SII indexes to estimate

the weighted priority of the patients, ζis. We assumed that a high DRG score indicates

that the patient has a higher priority. The SII ranks the patients between three levels of

illness acuity; Major (3), Moderate (2) and, Minor (1). We developed a statistical analysis

to calculate the correlation between patient severity illness and DRG to determine the as-

sociation between the variables, employing a parametric test of Pearson correlation. The

results of the analysis indicated a significant correlation at a significance level of P < 0.05

(2-tailed), between the DRG and SII indexes (See Table B.1 in Appendix B). Considering

the reported results, we can assume that the DRG weight is an adequate score to charac-

terize the patient’s priority.
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E. Cost of overstay

The cost of overstay, θis, refers to the penalty for shortening the patients stay duration

in the allocation process. The cost can be seen as a detriment of patient service, as the

patients will have to be transferred or wait to be allocated, among other actions. In practice,

the weights have to be defined by hospital managers based on particular preferences and

internal policies. To set up the weights of overstay, we assumed proportional values of the

benefit of allocation, which varies according to the patient type.

F. Maximum budget of overstay

In order to define the maximum number of overstay days per room, r, we have

included the parameter, Omax
r . The value should be set by managerial decisions and will

depend on the level of service that is expected to be offered. For this study, we decided

to choose a value arbitrarily and test its influence over the optimal admission decisions

through a sensitivity analysis. We defined a total threshold of maximum overstay of,

Omax
r = 300 days, which differs according to the room.

5.4.3. Results and discussion

In this section, we present the computational experiments along with the results and

discussions of the case of study. We first compare the in-sample solutions in terms of

the scheduling and allocation decisions of the distributionally robust model (DROAPP) with

the solutions of standard models, robust model (ROAPP), stochastic model (SPAPP), and,

deterministic model (DTAPP), in Subsection 5.4.4. In Subsection 5.4.5, we perform an

out-of-sample analysis of the benchmark models to compare the results in terms of cost

and reliability. In Subsection 5.4.6, we present a sensitivity analysis over the maximum

overstay budget. Finally, in Subsection 5.4.7, we analyze the computational performance

of the DROAPP model and its capability to solve large instances.
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The models have been implemented in CPLEX 12.7.0, with an optimality gap set as

0.0001%. All computations were performed on a computer Intel Xeon Gold 6148, 2.4GHz

- 2.39GHz (2 processors) with 256 GB of RAM.

5.4.4. Benchmark analysis

The proposed DROAPP model is compared with the benchmarks approaches ROAPP,

SPAPP, and DTAPP. The ROAPP model is solved as we defined in Equations (5.34). It accounts

for the support, Ξ, of the uncertain parameter, ξ, ignoring the moment information. The

DTAPP model is solved by considering the nominal values of the uncertain parameter,

obtained from the support set, Ξ, and the moment information, ξ̄. The SPAPP model,

(5.23)–(5.24), is solved by using a SAA method (Birge & Louveaux, 2011). By doing

so, we generated 1000 iid random samples, assuming a known distribution fitted using

historical data. We remark that we assumed different probability distributions depending

on the patient type, ξis.

The in-sample results of the four optimization models are listed in Table 5.3. Column

2 shows the average percentage of admitted patients over all the patient types, (APs).

Column 3 indicates the average percentage of bed utilization for each time period, (RUrt).

Column 4 indicates the average percentage of the maximum budget of overstay utilization,

(MOis). Column 5 reports the first stage results related to the benefit of admission

and, column 6 shows the total benefit, including the cost of overstay. Columns 7–10

reports the computational times and size of the models. Overall, the computational

time of the DROAPP is shorter than the SPAPP and ROAPP models; it takes 45 minutes to

solve to optimality, which is acceptable for weekly to daily scheduling. In contrast, the

SPAPP, which is an approximate model with finite samples, takes about 75 minutes. The

computational time in DTAPP model is shorter than the other models, as a result of the

difference in size.
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TABLE 5.3. Admission Planning Problem In-sample solutions.

In-sample solutions Computational time / Size

Model Admitted patients
(APs %)

Bed utilization
(RUrt %)

Maximum budget
(MOis %)

Admission
benefit

Total
benefit

CPU
time (s) Constraints Binary

variables
Linear

variables
ROAPP 25.15 23.78 4.17 8.87 7.51 1861.77 252231 14539 247466
DROAPP 44.40 37.65 32.33 29.34 19.32 1780.21 252231 14539 247526
SPAPP 57.50 41.31 18.47 41.79 34.89 2699.37 146923 15869 61705
DTAPP 85.69 34.09 38.85 56.41 47.80 1.30 14723 14539 1765

From Table 5.3, it can be seen that the solutions of the ROAPP model are the more

conservative in terms of the percentage of admitted patients, (25.15%), average bed

utilization, (23.78%), and percentage of overstay budget use, (4.17%), which implies a

lower benefit of admission in comparison to the other approaches. The DROAPP solutions

are less conservative than the ROAPP, mainly because it incorporates partial information

omitted by the ROAPP. Compared to the DROAPP, the SPAPP model gives a higher value

of admission rate, for an increment of 18.33% of the percentage of admitted patients and

4% in bed utilization. The results can be explained because the DROAPP model seeks to

hedge against the worst-case probability distribution in the ambiguity set. Therefore, it

protects itself against the inaccuracy of probability distributions under all ambiguities.

Interestingly, we observe that the percentage of overstay use for the SPAPP model is lower

than the DROAPP and DTAPP model’s values. Such results suggest that the SPAPP model,

which assumes expected values of the patient’s LoS, focuses on scheduling a high number

of patients with mean values of time allowances, that will require shorter overstay budget

use. The DTAPP model has similar behavior to SPAPP admitting the highest rate of patients,

85.69%, but with a high percentage of the overstay budget, 39%, to compensate for the

short stay durations allocated.

We remark that according to historical data of the hospital under study, the average

percentage of monthly scheduled elective patients (APs) is approximately 11%, implying

a lack of visibility of future events, which lead to a pessimistic decision-making approach.

We can state that the results of the proposed DRO approach outperform the hospital’s
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actual practice. In the next subsection, we extend the analysis of in-sample solutions

regarding the scheduling and allocation decisions.

5.4.4.1. Scheduling and allocation decisions

In this subsection, we analyze and compare the tactical admission solutions of the

evaluated models, in terms of the reserved days of stay, xS, the overstay, o, and, the effect

of the time-varying capacity availability, Ctr, over the scheduling-allocation decisions.

The optimal schedule for the four evaluated models is compared in Figure 5.4. The

scheduling plan indicates the start times, xA, reserved days, xS, and assigned room of

patient type, s. Each line in the timetable represents a patient, i, on the waiting list. The

figure also includes the vector of available capacity, Ctr, per time period, and room. We

remark that due to we account for a patient-to-room approach, the sequencing problem

for individual patients is not evaluated. We instead study the reserved days of stay4, per

patient type.

The solutions of the benchmark models can be analyzed from several angles, such

as the decisions about the reserved days of stay, the day of admission by patient type, the

number of admitted patients. Those aspects are determined by the level of conservatism of

the models, whether they are ambiguity-averse or risk-neutral. The ROAPP model, Figure

5.4a, admits fewer patients per room with longer days of stay compared to the other

approaches. Besides, the admission date of the patients varies for some of the rooms. In

contrast, the DROAPP model, Figure 5.4b, keeps a balance in the number of admissions and

the reserved days of the patient’s type; it admits more patients with shorter time allowances

than the ROAPP model.

4Some studies refer to as time allowances.
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(A) ROAPP (B) DROAPP

FIGURE 5.4. Optimal schedule of patients of the ROAPP (A), DROAPP (B), SPAPP

(C) and DTAPP (D) models.
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(C) SPAPP (D) DTAPP

FIGURE 5.4. Optimal schedule of patients of the ROAPP (A), DROAPP (B), SPAPP

(C) and DTAPP (D) models (cont.).
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Interestingly, the SPAPP, Figure 5.4c, and DTAPP, Figure 5.4d, models, admits a more

significant number of patients with shorter reserved days. For these cases, the admission

delays are smaller, i.e., more patients are admitted at the beginning of the horizon,

compared to the ambiguity-averse approaches. However, as we explained in Subsection

5.4.5, the solutions will result in high regret due to the risk-neutral approach in which the

expected values of the LoS are considered.

Three main insights can be obtained from Figure 5.4; firstly, the admission date

of certain patients could be delayed in the time horizon; secondly, there exist under-

utilization between periods, in which the capacity exceeds the bed requirements. The

timetable underlines the effect of time-varying bed capacity and LoS uncertainty in the

scheduling plan. Finally, the timetable also shows that the optimal time allowances per

patient type can differ by lengths and patterns, depending on the capacity availability in

the time horizon. Therefore, the intuitive safety factor pattern of allocation “mean plus

safety stock” presented in Mak et al. (2014) is not accomplished in this particular case

under time-varying capacity. Below we explain those aspects in detail.

Reserved days of stay. The reserved days of stay (i.e., time allowances), xS, for the

four evaluated models are compared in a box-plot graph, Figure 5.5. The x-axis indicates

the patient diagnoses, and the y-axis denotes the reserved days of stay. We observe that the

ROAPP model, Figure 5.5a, schedule fewer patients types with conservative values of time

allowances. The DROAPP model, Figure 5.5b, allocates longer time allowances resulting

in better use of resources. The solutions are less conservative, on average, and schedules

a more significant number of patients types. The stochastic model, SPAPP, Figure 5.5c,

which accounts for perfect information of the LoS distribution, assign all the patient types

while assuming expected values of the stays. Finally, contrasted to the previous cases, the
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deterministic model, DTAPP, Figure 5.5d, allocates significantly more patients with shorter

time allowances.
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FIGURE 5.5. Box-plot representation of the time allowances per patient type for
the evaluated models.

From the results, we can infer that a decision-maker who is ambiguity-averse will

prefer to schedule fewer patients with longer reservations of stay, to avoid overstay costs

due to the LoS variations. For example, for the patient type K, the DROAPP model reserves

on average, 7.25 days; the SPAPP, 5.33 days; the DTAPP, 4.43 days. Recall that from the

historical data (see Table 5.2), the mean LoS for this patient type is ξ̄K = 6.71 and the

support, Ξ = [1, 21]. Accordingly, the average length of reserved days in the SPAPP and

DTAPP models are less than the mean LoS of patient K, which could result in infeasible

solutions at the operational level.
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Overstay - Early discharge policy. The early discharge policy aims to offer a certain

degree of flexibility in the admission process due to the uncertain LoS. In that sense,

since we account for a multi-specialty and multi-priority framework, it is important to

evaluate the resulted admission case mix of the proposed approach, i.e., which patients are

admitted according to their priority and early discharge days. This analysis extends the

results presented in Table 5.3, about the percentage of the maximum budget of overstay

days used, MOis, for the evaluated models.

Figure 5.6 illustrates the admission plan for the evaluated models, as a function of

the patient priority (i.e., DRG), ζis, on the horizontal axis, and the early discharge days

assigned per patient, oris, on the vertical axis. We note that there is not a clear association

between the patient priority and allocated days of overstay. This result indicates that early

discharging only the lower priority patients may not be the best admission policy. The

DTAPP model admits a more significant number of patients in the priority range [1 − 1.5],

compared with the other models in which the highest admission frequency is in the priority

range [0−1]. We also note that the allocated early discharge days vary among the evaluated

models according to the patient priority weight. The DTAPP and DROAPP models consider

early discharge days in the scale range [0−9]. On the contrary, the SPAPP and ROAPP models

allocate early discharge days in a lower scale range [0− 4].

By comparing these solutions with the decisions about the reserved days of stay, and

the proportion of admitted patients of the evaluated models, we observe that the results

are highly dependent on the level of protection to future changes and the assumptions

made over the uncertain LoS. The DROAPP model reserves longer stay durations due to

its ambiguity approach over the distribution of the patient length of stay, which causes

the allocation of higher values of early discharge days. The DTAPP model admits a higher

number of patients with very short stay reservations due to its myopic approach, which
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requires a high use of early discharge days. In contrast, the SPAPP model consumes fewer

overstay days as a result of assuming expected values of the LoS. Finally, the ROAPP model

is the more conservative, and longer stay durations are reserved that require fewer days

of overstay to protect itself to future changes. Overall, this analysis reveals that tactical

admission decisions are not trivial; scheduling only patients with the highest priority will

not guarantee better performance in terms of the number of admitted patients and bed

utilization.

FIGURE 5.6. Comparative of the admission case mix as a function of the patient
priority weight and the allocated overstay days for the evaluated models.

Capacity availability. Figure 5.7 compares the solutions of the average daily bed

utilization among the evaluated models. The SPAPP and DROAPP models show the highest

levels of bed utilization, while the ROAPP model indicates the lowest levels due to its over-

conservative approach. The DTAPP model, which reserves short stay durations, has low
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utilization levels, allocating fewer patients at the beginning of the time horizon (i.e., t = 1 –

13) compared to the other models. It can also be observed that the bed utilization decrease

at the end of the time horizon for all cases, due to the increase in available capacity in such

periods.

FIGURE 5.7. Comparative results of the daily bed utilization of the APP of the
evaluated models.

Interestingly, the resulting daily occupancy rates are in the range of 10% – 60%

compared to the target of 85% for a medium-large size hospital. Such results can be

explained by remarking that the historical data used about bed availability includes the

total daily availability in the hospital, including the beds for unscheduled patients; this

slack capacity corresponds to 20% of the total availability. Besides, the standard measure

of 85% of occupation does not capture the variations in bed occupancy throughout the day,

which causes the general thought that hospitals have excess capacity (Green, 2002). Thus,

according to the reported results, we can assert that this perception is the consequence of
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the inherent daily variations in capacity availability and uncertain length of stay, making it

more difficult to guarantee the highest levels of bed occupancy. Nevertheless, the proposed

tactical-operational plan may allow decision-makers to anticipate the planning and adjust

it with an appropriate supply of beds, in which the idle capacity could be used as a buffer

to allocate unscheduled patients.

5.4.5. Out-of-sample analysis

In order to make fair comparisons and to measure the performance of the solutions of

the evaluated models (ROAPP, DROAPP, SPAPP, DTAPP), we performed an out-of-sample test.

Table 5.4 reports the out-of-sample solutions. We performed four out-of-sample

experiments, named as MIX PROB 1–4. In contrast to most studies in the literature, that

assume exponential or log-normal distributions for the patient LoS (He et al., 2019), in

our study, we tested the solutions considering different probability distributions according

to the patient’s diagnoses, fitted using historical data. The first three experiments consider

a mix of the LoS probability distribution differing by patient type, and as a mode of

comparison, for the fourth case, the LoS is assumed exponential for all patient types.

It should be noted that, since we are working with a real dataset, the fitting data of the

patient’s LoS accounts for high-variance distributions with a coefficient of variation over

80% for all of the cases. Hence, we are evaluating the models for extreme instances

of uncertainty. In Appendix B, Table B.5, we detail the parameters and probability

distributions of each experiment.

We generated 10000 independent and identically distributed random samples by

patient type to perform the experiments. The operational cost of patient overstay was

computed for each scenario by employing the framework scheme based on Equations

(5.33) and (5.34) for the DROAPP and ROAPP models, respectively. For the SPAPP model, we
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considered the SAA method as explained in Subsection 2.2.2, Equation (2.6). In order to

assure feasibility, the test was implemented by relaxing the hard constraint (5.18).

To evaluate the reliability and robustness of the solutions, we defined a reliability

index, RI, computed over the 10000 scenarios of the test data. The RI indicates a frequency

of occurrence; it assesses the feasibility of the model by calculating the average frequency

in which the overstay days in the out-sample solution are less than or equal to the solutions

obtained in the in-sample analysis.

TABLE 5.4. Admission Planning Problem out-of-Sample solutions.

Model MIX PROB 1 MIX PROB 2 MIX PROB 3 Exponential
distribution

Total
Benefit

RI
(%)

Total
Benefit

RI
(%)

Total
Benefit

RI
(%)

Total
Benefit

RI
(%)

ROAPP 8.60 94.80 8.53 94.43 8.37 94.38 8.30 92.05
DROAPP 24.28 91.77 24.89 92.58 22.70 90.38 22.63 87.24
SPAPP 31.58 73.64 32.51 74.44 29.15 72.64 29.33 69.64
DTAPP 35.56 47.64 37.43 49.46 33.36 49.72 33.75 49.66

From Table 5.4 several observations can be derived. We note that the solutions

are similar for the first three experiments despite considering a mix of patient types

distributions. Nevertheless, the fourth experiment’s solutions in which we assumed an

exponential distribution for all patient types have the lower performance for the ROAPP,

DROAPP, and SPAPP models, compared to the other experiments. Therefore, we can

state that considering various probability distributions of the patient’s LoS, differing by

patient type, assures the admission plan’s robustness at the tactical level. The DROAPP

approach exhibits good performance for both the total benefit of admission and the RI

among all tested experiments. When compared to the ROAPP model, the solutions are less

conservative with similar values of the RI. Note that as indicated in Table 5.3, the DROAPP

model guarantees 57% more admission rate than the ROAPP model, for only a 3% difference
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in the RI. In contrast, the SPAPP and DTAPP models show a lower performance of the RI,

differing in more than 40%, compared to the DROAPP model.

In summary, a decision-maker with limited information about the LoS distributions

will obtain better performance if considering the DROAPP approach. The regret of using

the SPAPP and DTAPP models is high, given that the solutions show low-reliability index

and benefit of admission, in the face of extreme realizations of the patient’s LoS. Hence,

there will be high operational costs, which will cause transfers, delays, and appointments

overlap. A more conservative approach could also be considered, as the ROAPP model;

however, this may result in low admission quotas and higher under-utilization rates of the

bed resources.

5.4.6. Sensitivity analysis of the overstay maximum budget

We performed two what-if analyses considering the penalized days of overstay, Omax
r

(i.e., overstay maximum budget). The parameter which must be specified by a decision-

maker is interpreted as the total early discharge days allowed per room. For the evaluated

models, we first analyze in Subsection 5.4.6.1, the number of admitted patients metric for

different values of the budget of overstay. Then in Subsection 5.4.6.2, for the DROAPP

model, we evaluate the trade-off between the maximum budget of overstay over the

number of admitted patients, resource utilization, and the reliability index, RI.

5.4.6.1. Comparative sensitivity analysis of the evaluated models

Figure 5.8 shows the solutions to the analysis. For the evaluated models, we compare

the average number of admitted patients (x-axis) for different values of the maximum

budget of overstay (y-axis). As expected, we observe that as the maximum value of the

budget of overstay increases, more patients are admitted. However, the number of admitted

patients differs according to the decision approach adopted.
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FIGURE 5.8. Comparative of the maximum budget of overstay versus the
performance metric (%): admitted patients, APs.

The DTAPP model, which disregards the risk in future random realizations of the

uncertain LoS, considers the higher number of admitted patients (40%) for the case in

which early discharge days are not allowed (Omax
r = 0). This value increases to reach a

steady state due to bed capacity limitations. The ROAPP model keeps the same admission

percentage independently of the flexibility in the number of overstay days allowed; the

model protects itself to a fixed value to avoid infeasibilities at the operational level. A

higher level of protection is observed in the SPAPP model, which similar to the DROAPP,

and ROAPP models consider a percentage of admission of 10% when early discharge days

are not allowed. For the SPAPP model, the number of admissions increases rapidly as more

flexibility is allowed in the admission process.

A different pattern is observed in the DROAPP model, which clearly protects itself

from future infeasibilities but not over conservative as the ROAPP model. This insight

complements the results of the out-of-sample evaluation in which the DROAPP model
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achieved the most effective combination of robustness and consistency, measured through

the RI metric. In the next subsection, we analyze the performance of the DROAPP model,

including the resource utilization metric and the RI metric for different values of the

maximum budget of overstay.

5.4.6.2. Sensitivity analysis evaluation of the DROAPP model

Figure 5.9 exhibits the solutions of the sensitivity analysis for the DROAPP model. The

x-axis corresponds to the maximum budget of overstay, Omax
r , and the y-axis denotes the

average percentage of admitted patients (left) and the average rate of bed utilization (right).

The results, as shown in Figure 5.9, indicate the positive association between the metrics;

as the value of maximum overstay days increases, the admission rate also increases as well

as the bed utilization, but at the cost of overstay.

FIGURE 5.9. DROAPP model comparative of the maximum budget of overstay
versus the performance metrics (%): average admitted patients, APs, average
resource utilization, RUrt, and reliability index, RI.
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As mentioned in the previous subsection, for the case in which early discharge days

are not permitted, the model indicates a maximum percentage of admission of 10%.

Hence, with an increment in the budget of overstay of 6%, it can be obtained, on average,

27% more admissions and a 16% improvement in bed utilization. It can also be observed

that the solutions of the RI, reaches a steady-state as from 300 days of discharge allowed.

This result can be explained due to the time-varying bed availability, which imposes an

upper bound over the used early discharge days and, therefore, the number of admitted

patients.

5.4.7. Computational performance evaluation

The admission planning problem has a complex combinatorial structure. The number

of constraints and variables could increase exponentially according to the cardinality of

patients types and rooms. We performed an analysis to test the computational performance

of the proposed DROAPP model and its capability to solve large instances. We remark that

the DROAPP model is solved by considering an exact MILP deterministic reformulation,

based on full vertex enumeration rather than a sampling approach. Thus, as we explained

in Section 5.3, we employed only the k-th extreme points in the support, Ξ, to map the

scenarios, which reduces computational time. Table 5.5 compares the performance in

terms of CPU time and resolution gap (%) of six configurations. We set a time limit of 24

hours to obtain the solutions.

As shown in Table 5.5 seven cases are compared. The cases correspond to different

sizes of waiting lists (demand) below and above the base case (instance No. 2). Hence,

the higher the number of patients, the number of rooms, and diagnoses increases. For

all of the cases, we have considered a time horizon of T = 30 days. We observe that

the DROAPP model can produce feasible solutions for instances of significant size in a

reasonable computational time (i.e., less than 24 hours), with gap values within 1%, which
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is acceptable in hospitals for tactical-operational planning. However, improvement is still

needed to solve larger instances (i.e., above 14 diagnoses and 200 patients) by investigating

more efficient solution methods.

TABLE 5.5. Comparative of performance evaluation DROAPP model.

Instance characteristics Computational time / size

Instance
Patients, i

(Total)

Rooms,

r

Diagnoses,

s

Scenarios,

ξk

Variables

(thousands)

Constraints

(thousands)

CPU time

(s)

Gap

(%)

1 60 6 7 2187 133.30 143.31 2488.20 0.00%

2 60 10 12 4096 262.22 252.36 1780.21 0.00%

3 100 6 7 2187 238.01 247.43 7903.04 0.00%

4 100 6 12 4096 426.10 433.39 81476.38 0.64%

5 100 10 12 4096 441.81 449.06 71710.68 0.00%

6 200 10 12 4096 870.76 870.90 86062.11 1.31%

7 200 10 14 16384 3337.05 3355.55 T -

T - Time limit of 24 hours exceeded without solution.

5.5. Concluding remarks and future research directions

This study introduces a new version of the off-line admission planning problem under

ambiguity distributions of the patient’s length of stay. The methodology to solve the

MILP problem is based on the dualization of the inner-problem. The approach is suitable

for ambiguity-averse decision-makers who choose to make robust decisions, albeit not

over-conservative under extreme scenarios. The findings can be used as guidance for

practitioners to make robust tactical-operational decisions, such as the case-mix of patients

to admit from a waiting list and room scheduling and allocation.

We analyze the benefit of coordinated decisions of scheduling and allocation

(i.e., tactical-operational) assuming time-varying bed capacity for the patient-to-room
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admission problem under stochastic length of stay. The integrated framework accounts

for multi-specialty and several patient types differing by clinical priorities. Through

numerical studies employing real data, we have shown that including information not

only on the patient’s priority but also on the daily capacity availability, together with

the uncertain LoS can improve the patient admission. Accordingly, the most priority

patients are not the ones that necessarily offer the best system performance; the available

bed capacity is also an upper bound of the allocation decisions and cause of bottlenecks

for patient flow. Through the analysis of the bed utilization metric, we found that a

hospital that is subject to both, uncertainty in the LoS and variable capacity availability

will inevitably have under-utilization in some periods while over-utilization in others.

Nevertheless, the proposed tactical plan helps to anticipate the admission decisions

resulting in better utilization of idle bed capacity.

The other interesting finding is that the admission decisions are highly determined

according to the assumptions made over the uncertain LoS, in terms of the solution method

and the level of conservatism. We evaluated the reliability of the DROAPP approach by

performing an out-of-sample analysis, including ambiguity-averse (i.e., ROAPP, DROAPP)

and risk-neutral (i.e., SPAPP, DTAPP) models. We showed that in comparison with the

SPAPP, ROAPP, and DTAPP approaches, the DROAPP model allows more flexibility in the

decisions regarding possible changes in future scenarios. We believe that for a healthcare

institution that aims to protect the patient’s well-being, this framework is more desirable.

Through a sensitivity analysis, we demonstrate the influence of managing the overstay

in the decision process by including the threshold constraint of the maximum days of

overstay, i.e., early discharge days. We acknowledge that this tactical policy is prone to

cause delays and waiting times at the operational level, but it also helps increase the overall

rate of admission and bed utilization. It would be interesting to perform a further study
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to evaluate the optimal value of this parameter as a multi-objective measure of capacity

availability under uncertain LoS.

Regarding the practical use of the model, we notice that it could be executed in a

real hospital environment. Of course, additional developments will be needed for the

implementation, like software interfaces and data handling. Typically, a planning model

like this might be implemented in a rolling horizon fashion. Rolling horizon applications,

as are used in other industries, many times need to fix decisions for the immediate future,

in order to avoid excessive rescheduling. This could also be implemented here, and, for

example, the first-week schedule could be considered “frozen” for the next iterations. We

plan to explore, in the future, the potential practical implementation of the approach in this

paper.

The proposed model can also be extended to incorporate additional features, such

as gender and age policy, room equipment requirements, and unscheduled patients. The

management of waiting times in the admission process is also crucial. Such aspects can be

easily included in the current model without modifying the main structure. Additionally,

under the proposed framework, future research may focus on the study of upstreams

capacities as the ORs planning to account for a more integrated approach of advance

scheduling. Further study is needed to investigate larger instances and methods to improve

computational efficiency, given the complex combinatorial structure of the problem.

Finally, the proposed MILP formulation structure can be broader applied to any problem

in which the service time is continuous and can not be interrupted once it started. The

modeling scheme can also be generalized to other optimization problems with uncertain

service duration, e.g., project scheduling or process planning and scheduling with multiple

parallel resources.
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Chapter 6. CONCLUSIONS AND FUTURE RESEARCH DIRECTIONS

In this chapter, a summary of the thesis is provided. Section 6.1 presents an overview

of the chapters content. The most relevant conclusions of the research conducted in

this thesis are outlined in Section 6.2. Finally, Section 6.3 indicates the future research

directions.

6.1. Thesis overview

The main objective of this thesis is to model and solve a hierarchical decision-

making process, in multiple stages, for admission planning in the healthcare system. By

implementing a hierarchical framework, we aim to improve consistency in the decision-

making process, by guaranteeing the proper coordination between different temporal

levels of decision. The problem of intertemporal consistency arises when making

aggregate plans at the tactical level, which are constrained by disaggregated decisions

at the operational level. This decision-making process is prevalent in many industries

where long-term decisions are taken based on forecasts and under subjective and imprecise

conditions which should be fulfilled in the short term that is subject to uncertainty.

We study the admission planning problem for the inpatient service in public hospitals,

that is constrained for bed capacity. This problem is subject to several sources of

uncertainty, such as patient arrival, LoS, and resource availability, which difficult the

admission process, causing delays, unnecessary waiting times, rejections, and even early

death of patients. We employed optimization methods under uncertainty in a multi-

stage fashion to integrate different decision stages linked in time, aiming to guarantee

the expected levels of service and resource utilization. The studies presented in this thesis

are based on real data from a public hospital in Chile.
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In Chapter 2 we studied hierarchical decision methodologies under uncertainty.

We presented an overview of decision-making methodologies that allow modeling

intertemporal problems under uncertainty. In particular, we described the basics

of the methodologies, two-stage stochastic optimization, robust optimization, and

distributionally robust optimization. Besides, a brief review of the up-to-date state of the

art of the methodologies mentioned above was provided. The chapter refers to the relevant

literature in the field of operations research, which can be used as a guide to understanding

the theoretical foundations in decision making under uncertainty.

In Chapter 3 we developed a bi-objective stochastic approach to study the allocation

decisions in the admission planning problem, considering an intertemporal approach at

the tactical-operational levels. The allocation model aims to balance the service level by

considering both hospital and patient perspectives. The intertemporal approach seeks to

overcome the infeasibilities that might appear at the operational level due to uncertainty,

such as rejections and long waiting times of patients, by anticipating decisions at the

tactical level. We proposed a TSO model defined as a mixed-integer linear programming

problem, under demand and capacity availability uncertainties, divided into two stages:

the first stage variables are reserve capacity decisions for patient groups, and the second-

stage variables are decisions about patient allocation and bed utilization deviation. We

assumed full knowledge of the probability distributions of the uncertain parameters,

obtained from historical data. The purpose of the bi-objective approach is to evaluate

the trade-off between the conflicting objectives: resource utilization deviation and service

cost.

To derive an equivalent finite-dimensional problem of the TSO model, we

implemented a SAA approach, which creates one set of second-stage variables for every

possible scenario of the uncertain parameters. The bi-objective problem was solved by
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constructing the Pareto efficient curve, which was obtained by employing the weighted-

sum method.

Through an extensive numerical study employing real data from a public hospital

in Chile, we found that a TSO approach in a bi-objective framework is a suitable

methodology for improving consistency at the tactical-operational levels for the allocation

problem under bed capacity constraints when enough information is available to describe

the uncertainty. This chapter is based on the published paper Batista, Vera, and Pozo

(2020).

In Chapter 4 we proposed an alternative framework for modeling service-time-type

constraints for problems that cannot be interrupted once allocated. From the mathematical

modeling perspective, the proposed framework is related to the problem of appointment

on multiple servers with random service duration. It is also linked to the parallel machine

problem found in the job shop scheduling literature. Such problems usually rely on integer

programming formulations, in which the uncertain parameter is modeled as a summation

over a rolling time windows constraint or through integer parameters. We proposed a

set of linear constraints for multi-period problems where preemption is not allowed. The

proposed MILP formulation considers a single binary variable and continuous service

time on the right-hand side of the allocation constraint, enhancing current admission

planning (or appointment scheduling) models. Thus, it facilitates the implementation of

existing algorithms (e.g., dual-based methods, or bender decomposition) that consider

uncertainty, such as stochastic programming, robust optimization, and distributionally

robust optimization. We illustrated the applicability of the proposed modeling framework

in Chapter 5 and in the published paper Batista, Pozo, and Vera (2020).

In Chapter 5 we studied the robustness of decisions in an intertemporal decision

framework for the admission planning problem. The aim was to find a balance between
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robustness and consistency under limited distributional information on the patient’s length

of stay. The consistency question is whether it is possible to achieve a robust tactical plan

of admission while guaranteeing a feasible operational plan subject to uncertainty.

We extended the model presented in Chapter 3 to develop a more detailed approach

of the APP considering allocation and scheduling decisions under uncertain LoS. This

integrated framework is developed to consider coordinated decisions of allocation and

scheduling for a multi-specialty, multi-priority, and time-varying capacity framework. The

proposed model determines at the tactical level, date and time of admission, along with

time allowances and room allocation of patients. These decisions are then constrained

at the operational level, where the LoS is uncertain, causing several disruptions in the

planning, such as patient overstay.

Due to the limited information available of the patient LoS in hospitals, we adopted a

mixed-integer linear DRO approach. It considers that known information is limited only

to the first moment and the support set of the true probability distribution of the LoS. The

model aims to maximize the net benefit of patient admission, considering the expected cost

of overstay represented by an ambiguity-averse expectation measure of the operational

cost. To solve the model, we derived a tractable solution methodology employing dual

theory. Thus, the infinite-dimensional DRO is reformulated into an exact deterministic

equivalent MILP model.

Through an extensive computational study, we illustrated the robustness of the DRO

approach by comparing it with alternative frameworks, namely, deterministic, TSO, and

RO, employing a real data set from a public hospital in Chile. We also proposed a

reliability metric for benchmarking with the different approaches and the conventional

cost-based metrics in out-of-sample analysis. The experiments showed that a DRO

approach is suitable for ambiguity-averse decision-makers who choose to make robust
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decisions, albeit not over-conservative under extreme scenarios. This chapter is based on

the paper Batista et al. (2021).

6.2. Conclusions

The general conclusions of the research conducted in this thesis, which support the

initial hypothesis proposed in Subsection 1.6.1, are listed below:

1. Extensive numerical analysis and validation employing real data demonstrated

that reactive decision-making practices based on deterministic models at

a single level of temporal decision are prone to suboptimal solutions for

the admission planning problem under bed capacity constraints. Integrated

approaches able to capture the operational impact of tactical decisions guarantee

better performance of the admission plan.

2. Two-stage stochastic optimization provides a suitable framework to solve the

admission planning problem under a tactical-operational intertemporal decision

setting. This decision framework in two stages effectively describes the

admission decisions while considering the stochastic particularities of the

problem and providing proper coordination between temporal decision levels.

It allows to anticipate aggregated tactical admission decisions (i.e., reserve bed

capacity, admission case mix) acknowledging the randomness at the operational

level (i.e., LoS, bed availability, patient arrival) through the recourse function.

3. The novel bi-objective two-stage stochastic approach effectively evaluates

conflicting objectives that arise naturally in the healthcare setting. Contrary

to current practice in which decisions are taken favoring a single objective,

the framework permits to trade-off between hospital and patient perspective
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within an hierarchical framework of decision. The best setting of the trade-off

evaluation will depend on the goal settle by the decision-maker.

4. The SAA solution methodology employed in the bi-objective two-stage stochas-

tic approach guarantees optimality and efficient computational performance for

tactical admission planning. It requires seconds to solve to optimality due to

the problem’s implicit network structure and the fact that patient demands are

integer numbers.

5. Two-stage distributionally robust optimization provides a suitable framework

to improve consistency between tactical-operational admission decisions while

guaranteeing robustness. The solutions derived for the tactical plan were shown

to be highly reliable for extreme scenarios of the uncertain LoS, providing a

valid operational plan of allocation.

6. The trade-off between consistency and robustness for the admission planning

problem is guaranteed with a two-stage distributionally robust optimization

approach. The price of robustness that affects the total benefit of admission

is compensated with the diminution of the operational infeasibilities, such as

delays, transfers, and overstay, that affect the patient’s well-being.

7. A two-stage stochastic formulation with simple recourse can achieve efficient

solutions for the admission planning problem under expected operational

function values. However, when higher conservatism levels are preferred,

and there is limited distributional information of the uncertain parameters, a

distributionally robust optimization approach provides the most cost-efficient

combination of consistency and robustness, not over conservative as traditional

robust optimization.

8. The admission planning problem, although being characterized in general as

a combinatorial NP-hard problem, can be solved to optimality in reasonable
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computational time (for tactical planning) employing a distributionally robust

optimization approach. Exact solutions are obtained through a finite-

deterministic mixed-integer linear scenario-based reformulation of the cost

function. The enhancement in resolution time is also achieved by employing

a modeling framework relying on a single binary variable of allocation and by

reducing the combinatorial problem’s search space.

9. Managerial insights to practitioners:

9.1. The admission policy of reserving bed capacities for patient groups at the

tactical level (weekly) for later allocation at the operational level (daily),

constrained by demand and capacity availability uncertainty, provides

better performance, in terms of resource utilization and level of service,

than deciding the patient admission daily.

9.2. Prioritizing deviation in resource utilization over the cost of service

guarantees a better balanced patient group allocation but at the expense

of higher unmet demand.

9.3. Prioritizing cost of service over the resource utilization deviation will result

in less reserve of internal capacity for prioritized patients groups, when the

queue level is constrained. The allocation of those patients in temporary

and external beds is the most cost-effective admission policy.

9.4. For a system subject to demand and capacity availability uncertainty, as

lower the fixed target of utilization defined strategically, better flexibility is

obtained in the admission process in terms of resource utilization.

9.5. Deciding the admission of a patient, including information not only on

the patient’s priority but also on the uncertain LoS and daily capacity

availability, provides an overall better performance of the admission plan,

than admitting based only on patient priority.
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9.6. Determining the patient’s time allowances in a system under uncertain LoS

is highly dependent on the level of conservatism of the decision-maker. For

a risk-neutral decision-maker that considers expected values of the patient’s

LoS, shorter stay durations are reserved for a high number of patients. On

the contrary, for a risk-averse decision-maker, longer stay durations are

reserved for a small number of patients. Note that a conservative approach

to admission decisions is advisable for a multi-priority system.

9.7. For a system with time-varying bed capacity availability and LoS

uncertainty, achieving high bed occupancy targets is a challenge. However,

if the tactical admission plan is made within an intertemporal framework of

decisions, it is possible to anticipate the operational level’s inconsistencies,

such as idle capacity, to efficient use of available resources.

9.8. The early discharge policy, when planning the admissions at the tactical

level – in a system subject to LoS uncertainty – increases the overall

ratio of admission and bed utilization. When considering a conservative

approach such as the ROAPP, the increment in the number of admissions

is not significant. For a less conservative approach such as the DROAPP,

more admissions can be planned and still achieve a good balance between

robustness and consistency.
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6.3. Future research directions

This thesis was developed under the premises of several assumptions that may be

relaxed to meet practical requirements in the hospital setting; still, several aspects remain

open for future research. This subsection suggests further research directions related to

this thesis, outlined below:

1. To explore a three-level hierarchical decision-making process.

We considered an intertemporal decision system of two temporal levels: tactical

and operational. We assumed that capacity at the strategic level, i.e., bed

capacity is fixed. It would be interesting to consider a three-level framework,

including the strategic level at the top, to determine hospital facilities’ bed

capacity requirements, constrained by random arrivals, LoS, and capacity

availability at the tactical-operational level to minimize bed shortages, patient

diversion, and waiting time.

2. To analyze the network structure of the APP under bed capacity con-

straints.

This thesis was developed to improve capacity decisions for a single hospital.

However, most healthcare systems in many countries are structured as a net-

work of hospitals serving communities in a specific area. A network framework

can be studied in which several hospitals share resources to balance supply and

demand under uncertain conditions of patient arrival, LoS, and capacity avail-

ability. We believe this cooperative framework can help evaluate capacity de-

cisions from both a temporal and spatial perspective while improving resource

utilization and service level.
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3. To study the target of bed utilization as a strategic decision constrained by

operational uncertainty.

The target of utilization (commonly defined as a fixed performance measure)

has been widely criticized (Green, 2002) because it does not capture the

variability at the operational level. This measure can be defined as a strategic

decision variable to analyze the robustness of the assumption of a fixed 85%

target value, thereby determining its optimum value under an intertemporal

framework of decisions under uncertainty.

4. To develop a service level function that fairly measures patient prioritiza-

tion in the admission process.

From an extensive literature review in the context of capacity planning in hos-

pitals, we observed that very few studies are focused on developing effective

prioritization methods to improve the admission process. Although there is ex-

tensive literature on prioritization techniques for emergency triage (Fernandes

et al., 1999), these studies are focused on categorizing patients based on primary

symptoms. However, a quality function that considers not only these aspects but

a collective categorization, including waiting times and use of resources, is still

lacking.

5. To extend the APP under LoS uncertainty, to include other resources in

addition to bed capacity.

In this thesis, we assumed the beds as a measure of capacity in a hospital,

which is a reasonable assumption since, without beds, admission cannot be

performed; the beds are where the patients have to be allocated during their

entire stay. This assumption considers that other resources, such as special

equipment, medical staff, and nurses, are linearly related to the available bed

capacity. However, a more integrated admission schedule can be considered
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by developing an advanced system under several capacity constraints and

intertemporal decisions. For instance, there exist a vast literature on nurse

rostering (Burke et al., 2004) and operating room scheduling (Cardoen et al.,

2010) that can be incorporated. Insights from such studies can be used to

complement our proposed intertemporal decision approach.

6. To extend the APP under LoS uncertainty to consider larger instances.

The APP under uncertain LoS proposed in Chapter 5, consider aggregated

decisions of patient-to-room assignment. This assumption by all maters reduced

the search space of the model, improving computational performance. A more

detailed approach can be further developed to consider more of the complexities

of the hospital setting, such as the patient-to-bed assignment problem of

patients allocated to individual beds, including patient preferences and gender

assignment constraints. It would be interesting to further explore the structure

of the problem (5.9)–(5.20) in Subsection 5.2.2. This problem has a network

structure that can be exploited to improve computational efficiency for larger

instances.

7. To develop enhanced methods to solve a more complex combinatorial APP.

As we detailed in Chapter 2, several solution methodologies have been proposed

to solve optimization problems under uncertainty. The approaches are based

on exact or approximated solution methods, such as sampling methods, affine

decision rules, and decomposition-based methods. In order to develop more

detailed admission planning problems, such as the patient-to-bed assignment

under uncertain LoS, new solution methods will have to be investigated to

improve computational efficiency, given the complex combinatorial structure

of the problem.
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8. To include additional distributional information for the DRO model under

uncertain LoS.

The APP under uncertain LoS proposed in Chapter 5 was developed considering

first-moment and support information of the uncertain LoS. However, as

more information is included in the ambiguity set, the solution tends to be

less conservative. The proposed model can be extended to include more

distributional information, such as variance and co-variance. The correlation

between the patient’s stay duration can be considered for patients allocated

in the same room. This particular case is useful for isolated care units of

contagious diseases.

9. To explore the use of additional techniques, such as machine learning, in

conjunction with optimization for the APP.

The APP under uncertainty to improve patient access and resource utilization

can also be analyzed in conjunction with other techniques such as prediction

models. The output of a prediction model can be used as an input of the

optimization model to obtain better accuracy in the decision process. For

instance, capacity availability, Length of Stay, and patient discharge can be

predicted through artificial intelligent algorithms.
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APPENDIX A. DESIGN OF DATA COLLECTION SHEET OF HOSPITAL DAILY

OPERATION

This section introduces the data collection sheet designed in conjunction with the

hospital under study to collect data about daily bed capacity requirements and availability1.

The process of data collection is described in Section A.1 and the spreadsheet design in

Section A.2.

A.1. Data collection process in the hospital Central Admission Department

The hospital under study has an EHR system that collects data about the patient’s date

of admission and discharge, admission care unit, length of stay, diagnosis, DRG weight,

and severity index. However, at the time of this research, information about daily bed

availability and requirements was not collected. Since this information is crucial for this

thesis, in conjunction with the hospital CAD managers, we designed a spreadsheet to

record the data to be used as input to the mathematical optimization models and help the

hospital administer their resources better.

The data collection process in the hospital under study is currently manual. Daily, the

CAD collects data about the status of the different care units (e.g., emergency, medicine,

neurology, surgery), including the number of patients on the waiting list, bed availability,

and requirements. This data is then included in the spreadsheet.

A sample of the spreadsheet is shown in Figures A.1–A.6, which indicates different

modules of the data collection process. For this thesis, we employed data related to bed

requirements and availability for the different care services during the period 2017-2019.

The collected data was also used to validate the optimization models. Worthy of note is

that we acknowledge that a process that is done manually is prone to misleading. However,

1Note that for privacy reasons we have omitted the details about the hospital under study.
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the use of this spreadsheet to record relevant information of the hospital operations is a

first step to build an automated system, especially nowadays, when having relevant data

available can help make better decisions.

In the following section, we detail the information contained in each of the

spreadsheet modules of the Figures A.1–A.6.

A.2. The data collection spreadsheet design

The first module is presented in Figure A.1, in which data about the number of

hospitalized patients for different care units is recorded.

As shown in Figure A.1, the data collection spreadsheet contains in its first row the

days of the month, differentiating between data collected during the morning (AM) and

the afternoon (PM)2. At the bottom of each module, the data is summarized. The first

column indicates the name of the module. The two last columns calculate the average of

the collected information.

FIGURE A.1. Spreadsheet module: hospitalized.

Figure A.2 contains information about the emergency service, which is important to

get an idea of the overflow of patients that will have to be allocated in the internal hospital

2The headline of the spreadsheet is repeated in the next figures.
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beds. Two modules are indicated, waiting time for bed and status. The first section

is completed with data about the number of patients waiting in the emergency service

considering different threshold times (e.g., 8–11, 12-23). The second section indicates

the status of the emergency service in terms of the number of patients hospitalized in

triage3, the patients who have been discharged, and those waiting in temporary units to be

transferred to the internal hospital beds. Finally, the spreadsheet also records data about

the number of patients who have died in the emergency service.

FIGURE A.2. Spreadsheet modules: waiting time, status, death (emergency service).

Figure A.3 contains the free beds module, which is completed with data about the

number of available beds in the different care units. We list some of the care units in the

hospital, namely, medicine, neurology, and surgery. Besides, data about the number of

available beds in the critical patient unit (UPC) is also recorded, differentiating between

3Triage is a classification system employed in emergency units to categorize patients according to priorities,
e.g., C2, C3, C4.
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beds from the intensive care unit (UCI), intermediate care unit (UTIM), and special care

unit (UCE).

FIGURE A.3. Spreadsheet module: free beds.

Figures A.4 and A.5 contain the module of bed requirements, which is completed with

data about the demand for beds (e.g., general, UPC, acute), from the different care units.

The requirements will then be, satisfied or not depending on bed availability.
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FIGURE A.4. Spreadsheet module: bed requirements (a).

FIGURE A.5. Spreadsheet module: bed requirements (b).
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Figure A.6 contains the module of discharge, which is completed with data about the

number of patients discharged from different care units. A distinction is made between the

information received in the morning (AM) and the confirmed information in the afternoon

(PM). Besides, it is recorded data about the diverted patients to the network of hospitals,

distinguishing between morning and afternoon executions. Finally, the spreadsheet is

completed with data about the number of blocked beds in different care units. This

information is essential to visualized bed availability over time.

FIGURE A.6. Spreadsheet modules: discharge, diverted, blocked beds.

The spreadsheet is currently being used in the hospital to collect relevant data for the

admission planning process. Future improvements are still needed to automate the tool, to

allow online update in connection with the central EHR.
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APPENDIX B. DATA DESCRIPTION OF THE ADMISSION PLANNING PROB-

LEM APPROACH UNDER UNCERTAIN LENGTH OF STAY

This section details the data input used to solve the APP approach under uncertain

LoS, presented in Chapter 5. The dataset was obtained from the EHR of a public hospital

in Chile1. It contains historical data of patient admission from 2010-2016. The size of the

samples differs according to the patient type and room of allocation.

B.1. Statistical analysis of the patient DRG and Severity index

Table B.1 reports the results of the statistical analysis to determine the correlation

between the patient DRG and severity index. The study was performed employing a

parametric test of Pearson correlation over the available data per patient diagnosis. The

samples of patient types are reported in the table footer. The results indicate that the

values are positively correlated, with a P < 0.05. We difference between high correlation

for ρ ≥ 0.5 and moderate correlation when ρ < 0.5.

TABLE B.1. Pearson’s correlation for the patient DRG and Severity Illness indexes.

Severity Illness Index
C F H I K S Z E J M N T

DRG

C 0.584* - - - - - - - - - - -
F - 0.522* - - - - - - - - - -
H - - 0.547* - - - - - - - - -
I - - - 0.399** - - - - - - - -
K - - - - 0.453** - - - - - - -
S - - - - - 0.539* - - - - - -
Z - - - - - - 0.764* - - - - -
E - - - - - - - 0.539* - - - -
J - - - - - - - - 0.343** - - -

M - - - - - - - - - 0.371** - -
N - - - - - - - - - - 0.322** -
T - - - - - - - - - - - 0.493**

Sample of patient type: C = 6299; F = 2090; H = 2421; I = 9514; K = 10722; S = 7464; Z = 1670; E = 3338; J = 3455; M = 2717;
N = 4577; T = 3673 - Correlation: *High correlation ρ ≥ 0.5, **Moderate correlation, ρ < 0.5

1Specific details about the hospital under study have been omitted for the sake of privacy.
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B.2. Demand proportion, mean and support of patient type and care unit

Table B.2 describes the distributional information about the patient types and

historical proportions of admission. Columns 1 and 2, include the patient’s type and

related ID, which corresponds to the DRG classification of the patient diagnosis. Each

letter is associated with a diagnosis group reported in the EHR of the hospital under study.

For a description of each diagnosis-group, the reader is referred to (Laguna et al., 2000).

Columns 3 and 4 report the mean vector, ξ̄, and support set, Ξ, of the patients. Columns

5–11 indicate the demand proportions of patient’s admission to the different rooms.

TABLE B.2. Mean value (in days), support set (in days) and demand proportion
per care unit from period 2010–2016.

Length of Stay

data
Admission request by room (%)

Diagnosis

ID
Diagnosis ξ̄ Ξ

Medicine

(%)

Surgery

(%)

Ophthalmology

(%)

Adult transplant

(%)

Psychiatry

(%)

Adult pensioner

(%)

ICU

(%)

CMA

(%)

Intermediate care

Surgery (%)

Intermediate care

Medicine (%)

1 C 9.93 [2,26] 7.58 12.89 0.73 51.41 0.00 9.05 10.20 6.20 25.55 4.99

2 F 13.02 [2,27] 1.13 0.03 0.00 0.00 87.67 0.18 0.33 0.00 0.00 0.00

3 H 5.06 [1,15] 0.62 0.41 43.03 0.00 0.00 0.62 0.00 0.00 0.00 0.00

4 I 11.26 [1,26] 29.04 6.33 0.02 0.95 0.05 7.83 29.02 8.86 21.03 51.07

5 K 6.71 [1,21] 8.15 22.11 0.02 2.31 0.00 20.66 21.41 41.83 18.44 8.19

6 S 9.18 [1,25] 2.96 21.87 48.46 0.00 0.22 5.57 11.59 16.47 7.33 2.93

7 Z 5.26 [0, 12] 3.35 1.07 1.69 26.26 0.00 0.33 0.35 3.13 1.59 1.40

8 E 8.92 [1, 25] 3.08 8.19 1.40 0.00 0.04 10.26 2.32 4.35 5.48 1.60

9 J 8.15 [1,21] 10.47 2.22 0.02 3.09 0.04 5.96 7.64 0.54 4.25 11.51

10 M 6.91 [1,21] 2.34 5.43 0.07 0.00 0.09 18.61 1.39 3.28 0.66 0.77

11 N 8.41 [2, 22] 8.68 8.03 0.00 0.43 0.16 9.91 1.27 2.60 2.64 3.27

12 T 8.63 [0,24] 5.67 6.41 3.98 2.19 9.31 2.35 5.56 8.01 7.88 6.00

B.3. Detailed input of the patient waiting list

Table B.3 details the characteristics of the patient waiting list used as input in the case

study. The table includes information about the patient ID, i, his/her type according to

the diagnosis, s, the room of allocation, r, the benefit of admission, ζis, and penalty of

overstay, θis.



226

TABLE B.3. Waiting list input data of the patient admission.

Patient, i Type, s Room, r Benefit of
admission, ζis

Penalty
overstay, θis

Patient, i Type, s Room, r Benefit of
admission, ζis

Penalty
overstay, θis

1 5 2 0.847 0.085 31 6 1 0.579 0.058
2 2 5 0.216 0.022 32 6 2 1.322 0.132
3 11 1 0.761 0.076 33 2 5 0.409 0.041
4 4 1 1.671 0.167 34 6 2 0.643 0.064
5 6 2 0.982 0.098 35 1 1 1.548 0.155
6 6 2 0.428 0.043 36 1 2 1.284 0.128
7 10 1 0.869 0.087 37 5 2 0.535 0.053
8 4 1 0.537 0.054 38 8 2 1.120 0.112
9 4 1 0.809 0.081 39 10 2 0.755 0.076

10 1 1 0.927 0.093 40 12 2 2.091 0.209
11 4 2 0.932 0.093 41 4 7 1.365 0.136
12 7 1 0.642 0.064 42 3 3 0.486 0.049
13 5 1 0.594 0.059 43 7 1 0.795 0.080
14 12 1 0.467 0.047 44 8 1 0.266 0.027
15 4 1 0.624 0.062 45 5 2 0.736 0.074
16 1 2 1.838 0.184 46 3 3 0.507 0.051
17 5 2 0.825 0.082 47 10 6 1.310 0.131
18 4 1 0.479 0.048 48 5 8 0.962 0.096
19 9 1 1.472 0.147 49 6 2 0.511 0.051
20 8 2 1.753 0.175 50 6 3 0.927 0.093
21 9 1 0.869 0.087 51 1 9 3.094 0.309
22 12 2 1.062 0.106 52 6 2 1.191 0.119
23 5 6 1.198 0.120 53 4 1 0.406 0.041
24 5 2 0.969 0.097 54 6 3 0.207 0.021
25 11 1 1.235 0.124 55 9 1 0.843 0.084
26 5 1 0.876 0.088 56 9 2 1.059 0.106
27 12 1 0.939 0.094 57 4 1 0.471 0.047
28 11 2 0.815 0.082 58 11 2 1.180 0.118
29 11 6 0.446 0.045 59 1 4 2.915 0.291
30 1 2 1.494 0.149 60 4 10 4.851 0.485

B.4. Maximum budget of overstay

Table B.4 describes the data employed to define the maximum value of overstay,

Omax
r . Columns 1 and 2 display the care unit/room ID and description of each room

in the hospital under study. Column 3 indicates the parameters assumed for each room.
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TABLE B.4. Distribution parameters of the maximum value of overstay per room.

Room
ID Description Omax

r

(days)
1 Medicine 60
2 Surgery 70
3 Ophthalmology 30
4 Adult transplant 20
5 Psychiatry 20
6 Adult pensioner 20
7 ICU 20
8 CMA 20
9 Intermediate care, Surgery 20

10 Intermediate care, Medicine 20

B.5. Distribution parameters of the patient LoS for the out-of-sample analysis

Table B.5 describes the distribution fitting of the patient’s LoS described in Subsection

5.4.5. We employed historical data and assumed the LoS of the patient’s type is drawn

from different distributions. A Monte Carlo simulation was performed to generate the

samples. We considered the length of stay is independent and identically distributed for

each patient type.

TABLE B.5. Length of Stay input parameters of the probability distribution mix
for the out-of-sample test analysis.

Patient
type

Sample
size MIX PROB 1 MIX PROB 2 MIX PROB 3 Exponential

distribution
C 5215 Gamma [1.67, 5.94] Weibull [10.68, 1.37] Exponential [9.92] Exponential [5.05]
F 1919 Weibull [14.76, 1.87] Exponential [13.01] Chi-square [13] Exponential [13.01]
H 2407 Exponential [5.05]; Chi-square [4] Gamma [0.97, 5.24] Exponential [5.05]
I 8684 Weibull [12.66, 1.35] Chi-square [11] Lognormal [2.15,0.84] Exponential [11.26]
K 9071 Chi-square [5] Gamma [1.13, 5.90] Lognormal [1.45,0.99] Exponential [6.71]
S 8874 Lognormal [1.87,0.93] Exponential [9.17] Weibull [10.15, 1.27] Exponential [9.17]
Z 1653 Gamma [1.88, 2.99] Lognormal [1.56,0.62] Exponential [5.25] Exponential [5.25]
E 2966 Normal [7.22, 8.91] Log-logistic [1.89, 6.43] Burr [104.3,1.31,23.04] Exponential [8.91]
J 3274 Lognormal [1.78,0.89] Logistic [3.51, 8.15] Normal [6.37, 8.15] Exponential [8.84]
M 2523 Log-logistic [1.86, 5.144] Normal [6.37, 6.91] Gamma [1.17,5.87] Exponential [6.91]
N 4377 Logistic [3.50, 8.41] Burr [10.23,1.89,1.86] Lognormal [1.85,0.77] Exponential [8.41]
T 3243 Burr [4671.8,1.29,2767.3] Gamma [1.355, 6.36] Log-logistic [1.83,6.91] Exponential [8.63]


	Acknowledgements
	List of Tables
	List of Figures
	List of Acronyms
	Abstract
	Resumen
	Chapter 1. Introduction
	1.1. Healthcare system: Overview
	1.1.1. Admission control in healthcare systems

	1.2. Intertemporal planning
	1.3. Optimization frameworks for decision making under uncertainty
	1.4. Thesis motivation
	1.5. State of the art
	1.5.1. The Admission Planning Problem
	1.5.2. Intertemporal planning and decision-making under uncertainty
	1.5.3. Literature gaps and limitations

	1.6. Thesis hypothesis and objectives
	1.6.1. Hypothesis
	1.6.2. Objectives

	1.7. Structure of the thesis and contributions
	1.7.1. Structure of the thesis
	1.7.2. Contributions


	Chapter 2. Decision making under uncertainty
	2.1. Methodological background
	2.2. Stochastic Programming
	2.2.1. Two-stage Stochastic Optimization
	2.2.2. Solution methods for Two-stage Stochastic Optimization
	2.2.3. Quality metrics

	2.3. Robust Optimization
	2.3.1. Two-stage Robust Optimization
	2.3.2. Solution methods for Two-stage Robust Optimization

	2.4. Distributionally Robust Optimization
	2.4.1. Two-stage Distributionally Robust Optimization
	2.4.2. Solution methods for Two-stage Distributionally Robust Optimization

	2.5. Summary and concluding remarks

	Chapter 3. Multi-objective admission planning problem: A two-stage stochastic approach
	Notation
	Indexes
	Sets
	Parameters
	Variables

	3.1. Introduction
	3.2. Framework formulation and solution methodology
	3.3. Bi-objective stochastic admission planning model
	3.3.1. Context and problem setting
	3.3.2. Admission Planning Problem formulation

	3.4. Numerical studies
	3.4.1. Data description
	3.4.2. Results and discussion

	3.5. Concluding remarks and future research directions

	Chapter 4. Modeling service-time-type constraints for uninterrupted services
	4.1. Introduction
	4.2. The appointment scheduling process
	4.3. Modeling service-time-type constraints
	4.3.1. Current service time modeling approaches
	4.3.2. Proposed service time modeling approach

	4.4. Summary and concluding remarks

	Chapter 5. A distributionally robust model for the admission planning problem under uncertain length of stay
	Notation
	Sets
	Parameters
	Variables
	Functions
	Problems

	5.1. Introduction
	5.2. Problem formulation
	5.2.1. General description and assumptions
	5.2.2. Modeling the uncertain LoS
	5.2.3. Deterministic Admission Planning Problem formulation
	5.2.4. Stochastic Admission Planning Problem formulation
	5.2.5. Robust Admission Planning Problem formulation
	5.2.6. Distributionally Robust Admission Planning Problem formulation

	5.3. Solution methodology
	5.4. Numerical studies
	5.4.1. Performance metrics
	5.4.2. Data description
	5.4.3. Results and discussion
	5.4.4. Benchmark analysis
	5.4.5. Out-of-sample analysis
	5.4.6. Sensitivity analysis of the overstay maximum budget
	5.4.7. Computational performance evaluation

	5.5. Concluding remarks and future research directions

	Chapter 6. Conclusions and future research directions
	6.1. Thesis overview 
	6.2. Conclusions
	6.3. Future research directions

	References
	APPENDIX A. Design of data collection sheet of hospital daily operation
	A.1. Data collection process in the hospital Central Admission Department
	A.2. The data collection spreadsheet design

	APPENDIX B. Data description of the Admission Planning Problem approach under uncertain length of stay
	B.1. Statistical analysis of the patient DRG and Severity index 
	B.2. Demand proportion, mean and support of patient type and care unit
	B.3. Detailed input of the patient waiting list
	B.4. Maximum budget of overstay
	B.5. Distribution parameters of the patient LoS for the out-of-sample analysis


