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The renormalizable Abelian quantum field theory model of Kroll, Lee, and Zumino is used to compute
the one-loop vertex corrections to the tree-level, vector meson dominance pion form factor. These
corrections, together with the known one-loop vacuum polarization contribution, lead to a substantial
improvement over vector meson dominance. The resulting pion form factor in the spacelike region is in
excellent agreement with data in the whole range of accessible momentum transfers. The timelike form
factor, known to reproduce the Gounaris-Sakurai formula at and near the rho-meson peak, is unaffected by
the vertex correction at order O�g2

����.
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The renormalizable Abelian quantum field theory of
charged pions, and massive neutral vector mesons, pro-
posed long ago by Kroll, Lee, and Zumino (KLZ) [1],
provides a rigorous theoretical justification for the vector
meson dominance (VMD) ansatz [2]. The fact that in this
model the neutral vector mesons are coupled only to con-
served currents ensures renormalizability [1,3]. A very
interesting phenomenological application of this model
was made some time ago by Gale and Kapusta [4] who
computed the rho-meson self energy to one-loop order.
When this result is used in the VMD expression for the
pion form factor, there follows the well-known Gounaris-
Sakurai formula [5,6] in the timelike region at and near the
rho-meson pole. We find this quite intriguing. That an
empirical fit formula such as this should follow from the
KLZ Lagrangian may be hinting at additional unexpected
properties of this model. In this paper we explore this
possibility by computing the vertex diagram, i.e. the one-
loop correction to the strong coupling constant in the
framework of the KLZ model. This correction is of the
same order in the coupling as the one-loop vacuum polar-
ization. After regularization and renormalization, and in
conjunction with the VMD expression for the pion form
factor, this vertex correction, together with the vacuum
polarization contribution, leads to an excellent agreement
between theory and experimental data in the spacelike
region. The parameter-free result (masses and couplings
are known from experiment) constitutes a substantial im-
provement over naive (tree-level) VMD. In fact, the result-
ing chi-squared per degree of freedom is close to unity,
while the one from tree-level VMD is about 5 times bigger.
Predictions in the timelike region are shown to be unaf-
fected by the vertex correction. In fact, the combination of
vacuum polarization and vertex corrections in this region

turns out to be of higher order in the coupling. Clearly,
since the KLZ model involves a strong coupling, the
perturbative expansion could be questioned, and the next-
to-leading (one-loop) contributions need not be smaller
than the leading term. However, this is not the case with
the KLZ model. In fact, the relatively small ��� coupling
(g��� ’ 5) is accompanied by the large loop suppression
factor 1=�4��2, so that the one-loop contributions remain
reasonable corrections to the leading order tree-level term.
At higher orders, we expect higher powers of this suppres-
sion factor from loop integrations. However, a detailed
next-to-next-to leading order calculation is beyond the
scope of this work.

We begin by introducing the KLZ Lagrangian,
 

LKLZ � @��@
��� �m2

���
� � 1

4����
�� � 1

2m
2
����

�

� g�����J
�
� ; (1)

where �� is a vector field describing the �0 meson
(@��� � 0), � is a complex pseudoscalar field describing
the �� mesons, ��� is the usual field strength tensor, and
J�� is the �� current, i.e.

 ��� � @��� � @���; (2)

 J�� � i��@
$
��: (3)

Omitted from Eq. (1) is an additional term of higher order
in the coupling, of the form g2

������
����, which is not

relevant to the present work.
In Fig. 1 we define the vertex function kinematics. Using

the Feynman propagator for the �-meson [3,7] and in
d-dimensions, the unrenormalized vertex is given by

 

~�
�1��
����p1; p2; q2� � g3

�����3�2��d=2�
Z ddk

�2��d
�p1 � p2 � 2k���2p1 � k� � �2p2 � k�

	�p1 � k�2 �m2
� � i"
	�p2 � k�2 �m2

� � i"
�k2 �m2
p � i"�

: (4)
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Using the Feynman identity for the propagators, Eq. (4)
can be rewritten as
 

~��1������p1; p2; q2� � 2g3
�����3�2��d=2�

Z 1

0
dx1

Z 1�x1

0
dx2

�
Z ddl

�2��d
�2l� 2s� p1 � p2�

�

�l2 � ��q2� � i"�3

� 	l2 � �2p1 � s� � �2p2 � s�

� 2l � �p1 � p2 � s�
; (5)

where the new momentum l is defined as

 l � k� �x1p1 � x1p2�; (6)

the parameter s is

 s � �x1p1 � x1p2�; (7)

and the real variable ��q2� is given by

 ��q2� � m2
��x1 � x2�

2 �m2
��1� x1 � x2� � x1x2q

2:

(8)

Introducing the integrals

 Is �
Z ddl

�2��d
l2s

�l2 � ��q2� � i"�3
; (9)

and the functions
 

f1�x1;x2�� 	m2
��x1�x2�2�2�q2�x1x2�x1�x2�2�
I0

�

�
1�

4

d

�
I1; (10)

and

 

f2�x1; x2� � 	m
2
��x1� x2� 2�2�q2�x1x2� x1� x2� 2�
I0

�

�
1�

2

d

�
I1; (11)

the vertex function becomes

 

~��1������p1; p2; q2� � 2g3
�����3�2��d=2��p1 � p2�

�

�
Z 1

0
dx1

Z 1�x1

0
dx2	f1�x1; x2�

� 2x1f2�x1; x2�


� ��0������p1; p2�G�q
2�; (12)

where

 ��0������p1; p2� � ig����
�2��d=2���p1 � p2�

�; (13)

is the tree-level vertex in d dimensions, and

 

G�q2� � g2
�����2��2��d=2�� 2

i

Z 1

0
dx1

Z 1�x1

0
dx2	f1�x1; x2�

� 2x1f2�x1; x2�


� g2
�����

2��2��d=2�� 2

i

Z 1

0
dx1

Z 1�x1

0
dx2

�

��
�1� 2x1� �

4

d
�1� x1�

�
I1

� �1� 2x1�	m2
��x1 � x2 � 2�2

� q2�x1x2 � x1 � x2 � 2�
I0

�
: (14)

Evaluating the integrals I0 and I1 in dimensional regu-
larization leads to

 

G�q2� � �2
g2
���

�4��2
��2��2��d=2��

Z 1

0
dx1

Z 1�x1

0
dx2

�

�
�2� 3x1�

�
2

"
� ln

�
��q2�

�2

�
�

1

2
��� ln�4��

�

�
�1� 2x1�

2�
	m2

��x1� x2� 2�2

� q2�x1x2� x1� x2� 2�
 �O�"�
�
: (15)

Separating the terms involving divergences and con-
stants from the rest of the expression this equation can be
rewritten as

 G�q2� � ~G�q2� � A
�

2

"
�

1

2
� �� ln�4��

�
�O�"�;

(16)

where ~G�q2� is the 1
" divergence free function of q2, i.e.

FIG. 1. Vertex function kinematics.
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~G�q2� � �2
g2
���

�4��2
Z 1

0
dx1

Z 1�x1

0
dx2

�
�2� 3x1�

� ln
�

��q2�

�2

�
�

�
1� 2x1

2��q2�

�
	m2

��x1 � x2 � 2�2

� q2�x1x2 � x1 � x2 � 2�

�
: (17)

The factor A in Eq. (16) is an integral over x1 and x2, but
does not depend on q2. As a result, it is a constant that will
be cancelled during renormalization and there is no need to
calculate it explicitly. It is easy to show that this vertex
function develops an imaginary part above the two-pion
threshold (q2 
 4m2

�).
The renormalization program is quite standard [3,4], as

sketched in the following. First, the KLZ Lagrangian
Eq. (1) is understood as involving bare quantities (pion
and rho-meson fields, masses and coupling) denoted with a
subscript 0. Next, a rescaling is performed

 �0 � Z1=2
� � �0

� � Z1=2
� ��; (18)

where Z� and Z� are the renormalization constants asso-
ciated with each field. Inserting these into the Lagrangian
yields
 

L0 � Z�@��@
��� � Z�m

2
0��

��� Z�
1
4����

��

� Z�
1
2m

2
0����

� � iZ�Z
1=2
� g0����

���@
$
��: (19)

Now define

 �Z� � Z� � 1 �Z� � Z� � 1

��2
� � m2

0�Z� ��
2
� �M2

� � m2
0�Z� �M

2
�

g���Zg � g0���Z�Z
1=2
� �Zg � Zg � 1;

(20)

where��,M�, and g��� are the physically measured mass
of ��, mass of the �0, and the ��� coupling, respectively.
The full Lagrangian now separates into terms involving
only physically measurable quantities and a set of counter
terms, viz.

 L 0 � L��L; (21)

 

L � @��@��� ��2
�����

1
4����

�� � 1
2M

2
�����

� ig�������@
$
�� (22)

 �L � �Z�@��@
��� � ��2

��
��� 1

4�Z�����
��

� 1
2�M

2
����

� � i�Zgg����
���@

$
��: (23)

The five � coefficients in the counter terms require the
definition of five renormalization conditions. There are
four homogeneous conditions which define the position
of the pion and rho-meson propagator poles, and their
unit residues, which determine ��2

�, �M2
�, �Z�, and

�Z�. These have no practical bearing on the vertex func-

tion, hence we concentrate on the renormalization condi-
tion for the latter. For reasons to become clear below, we
choose for the vertex function the renormalization point
q2 � 0 and the condition

 ��1������p1; p2; q2 � 0� � ��0�����p1; p2�: (24)

The bare vertex function Eq. (12) is now replaced by the
renormalized one according to
 

��1������p1; p2; q2� � ��0������p1; p2� � ~��1������p1; p2�

� ��0������p1; p2�	1�G�q
2� � �Zg
; (25)

which, using Eq. (16) it becomes
 

��1������p1; p2; q
2� � ��0������p1; p2�

�
1� ~G�q2�

� A
�

2

"
�

1

2
� �� ln�4��

�
� �Zg

�
:

(26)

The renormalization condition Eq. (24) implies

 �Zg � � ~G�0� � A
�

2

"
�

1

2
� �� ln�4��

�
; (27)

yielding the renormalized vertex function

 ��1������p1; p2; q
2� � ��0������p1; p2�	1� ~G�q2� � ~G�0�


� i�p1 � p2�
�g���	1� ~G�q2� � ~G�0�
:

(28)

We have chosen to renormalize the vertex at the off-shell
point q2 � 0, where G�q2� is purely real, to make use of
the known normalization of the pion form factor, F��0� �
1. This allows us to obtain the renormalized vertex function
involving no additional constants, i.e.
 

G�q2� �G�0� � �2
g2
���

�4��2
Z 1

0
dx1

Z 1�x1

0
dx2

�
�2� 3x1�

� ln
�
��q2�

��0�

�
�
�1� 2x1�

2

�

�
�2
��x1 � x2 � 2�2

�
1

��q2�
�

1

��0�

�

�
q2

��q2�
�x1x2 � x1 � x2 � 2�

��
; (29)

and where g��� � g����q2 � 0�. The pion form factor in
VMD at tree level is given by the well-known expression

 F��q
2�jVMD �

g���
f�

M2
�

M2
� � q

2 : (30)

The pion form factor including the one-loop vertex correc-
tion at order O�g2

���� can then be written as

 F��q2�jvertex �
g���
f�

M2
�

M2
� � q2 	1�G�q

2� �G�0�
; (31)
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where f� � 4:97� 0:07 [8], and from universality and
F��0� � 1 it follows that g����0� � f�. Hence, the one-
loop vertex correction generates an additional momentum
dependence in the form factor; this turns out to be a smooth
monotonically decreasing function of q2. Numerically, it is
a reasonable correction to the tree-level result due to the
relatively mild coupling, and to the strong suppression
factor 1=�4��2 from the loop integration.

In addition to the vertex correction there are two seagull-
type corrections to tree-level at the same order O�g2

����, as
illustrated in Fig. 2. It is easy to show, though, that after
regularization and renormalization these diagrams do not
contribute to the form factor. In fact, as they are
q2-independent, they cancel after subtraction at q2 � 0.
Nevertheless, these diagrams do contribute to the renor-
malization constants (of the masses and fields but not the
coupling), and are essential to ensure gauge invariance of
the vertex correction. To complete the calculation of the
pion form factor at order O�g2

���� one has to include the
vacuum polarization contributions from the diagrams
shown in Fig. 3. The calculation of these diagrams is
standard in scalar electrodynamics with a massive photon
[7] and it has been discussed in [4], the result being

 

��q2�jvac �
1

3

g2
���

�4��2
q2

�
1� 4

�2
�

q2

�
3=2

�

�
ln

��������
�����������������������������
�1� 4�2

�=q
2�

p
� 1�����������������������������

�1� 4�2
�=q2�

p
� 1

��������
� i���q2 � 4�2

��

�
� Aq2 � B; (32)

where the constants A and B are

 A � �
1

3

g2
���

�4��2

2
648

�2
�

M2
�
�

�
1� 4

�2
�

M2
�

�
3=2

� ln

������������
��������������������������������
�1� 4�2

�=M
2
��

q
� 1��������������������������������

�1� 4�2
�=M2

��
q

� 1

������������
3
75; (33)

 B � ��0�jvac �
8

3

g2
���

�4��2
�2
�: (34)

The tadpole contribution in Fig. 3, proportional to g��,
cancels an identical piece from the first diagram, rendering
the result purely transverse. Adding the vacuum polariza-
tion to the vertex contribution gives the complete correc-
tion to the VMD pion form factor at order O�g2

����

 F��q
2��

M2
����0�jvac

M2
��q

2���q2�jvac

�
M2
�

M2
��q

2 	G�q
2��G�0�
;

(35)

where ��q2�jvac is given in Eq. (32), and G�q2� is obtained
after performing a numerical integration in Eq. (29). This
result contains no free parameters, as the masses and the
coupling are known from experiment. Notice that the
vacuum polarization correction is not included in the sec-
ond term above, as it would make this term of order O�g4�.
Hence, the vertex correction does not affect the form factor
in the timelike region, where it becomes the Gounaris-
Sakurai formula near the rho-meson peak. In fact, from

FIG. 2. Seagull, q2-independent corrections to tree level at order O�g2
����.

FIG. 3. Vacuum polarization contributions at order O�g2
����.
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the definition of the hadronic width [9]: �� �
��1=M�� Im ��M2

��, where �� � ���M2
��, and from

Eq. (32) there follows

 �� �
g2
���

48�
1

M2
�
�M2

� � 4�2
��

3=2; (36)

which is the standard kinematical relation between width
and coupling of a vector and two pseudoscalar particles [9].
Notice that this result follows automatically in the KLZ
model, i.e. it has not been imposed as a constraint. Near the
rho-meson peak, where ��s� is largely purely imaginary,
the s-dependent width which follows from Eqs. (32) and
(36) is

 ���s�jKLZ �
M������

s
p

�
s� 4�2

�

M2
� � 4�2

�

�
3=2
; (37)

which is precisely the momentum dependent Gounaris-
Sakurai width [9]. This is known to provide an excellent
fit to the data in this region [6].

Turning to the spacelike region, the form factor Eq. (35)
is plotted in Fig. 4 (solid line) together with the experi-
mental data [10] and the reference prediction from tree-
level VMD (dotted curve). The latter provides a poor fit to
the data as evidenced from the resulting chi-square per
degrees of freedom 	2

F � 5:0, while Eq. (35) gives the
optimal value 	2

F � 1:1. In addition, the mean-square ra-
dius of the pion obtained from Eq. (35) is hr2

�i � 0:40 fm2,
to be compared with a similar result from tree-level VMD
hr2
�i � 6=M2

� � 0:39 fm2, and the experimental value
hr2
�i � 0:439� 0:008 fm2. For reasons of scale, it is diffi-

cult to appreciate visually the agreement of the KLZ form
factor with the data at small momenta. This is the region
where the errors are smaller, hence the region that counts
the most towards achieving a low chi-squared. In Fig. 5 we
show the data in this region together with the KLZ form
factor (solid curve) and tree-level VMD (dotted line). This

kind of excellent agreement between theory and experi-
ment is comparable to that obtained from dual large Nc
QCD (QCD1) [11] which gives 	2

F � 1:2. QCD1 is a dual
resonance model (Veneziano) realization of QCD in the
limit of an infinite number of colors. In this limit QCD is
solvable and the hadronic spectrum consists of an infinite
number of zero-width resonances [12]. The masses and
couplings of these states remain unspecified, though, so
that one needs a model to fix them. Dual- QCD1, after
unitarization in the timelike region, bears some resem-
blance to KLZ in the sense of generating a correction to
naive VMD, in this case single rho-dominance. The infinite
set of vector meson radial excitations in Dual- QCD1
correspond to the loop corrections in KLZ. But then, con-
trary to KLZ, QCD1 involves one free parameter in the
spacelike region. Unitarization of the QCD1 pion form
factor in the timelike region gives a reasonable result at and
around the rho-meson peak. However, the KLZ form factor
stands aside as it reproduces the Gounaris-Sakurai formula
in this region.

In summary, the KLZ one-loop level contributions to the
pion form factor turn out to be reasonable corrections to the
leading order result. This is in spite of KLZ being a strong
interaction theory. This is due to the relatively mild cou-
pling (g��� ’ 5), together with a large loop suppression
factor (�1=4��2), as seen from Eqs. (15), (17), and (29).
Increasing powers of this suppression factor are expected
at higher orders in perturbation theory. An explicit two-
loop calculation, though, is beyond the scope of the present
work. The parameter-free prediction for the pion form
factor leads to excellent agreement with data for both
spacelike and timelike momenta. In view of its renormaliz-
ability, plus the successful predictions for the pion form
factor, we wish to argue the case for the KLZ model to be
considered as a viable tool to analyze �� dynamics [13].

FIG. 4. Pion form factor data together with the KLZ predic-
tion, Eq. (35) (solid line), and the tree-level VMD result (dotted
line).

FIG. 5. Pion form factor data at low momenta, together with
the KLZ prediction, Eq. (22) (solid line), and the tree-level VMD
result (dotted line).
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One should keep in mind, though, that a good part of that
dynamics (involving charged rho-mesons) would remain
excluded if one were to insist on renormalizability. But
then, VMD is by construction an Abelian (tree-level)
model. The virtue of the KLZ model is to provide a
quantum field theory framework to compute corrections
to VMD in a systematic way, with these corrections in-
volving no free parameters on account of renormalizabil-
ity. There are some alternative, nonrenormalizable,
effective field theory models to describe hadronic interac-
tions, e.g. chiral perturbation theory [14], and hidden local

symmetries [15], which incorporate neutral as well as
charged vector mesons. Whether or not nonrenormalizabil-
ity is viewed as a handicap, is probably a contentious issue.
In any case, we feel that the KLZ model provides an
alternative approach worth of further exploration.
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