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SUMMARY

Frequency setting takes place at the strategic and tactical planning stages of public transportation systems.
The problem consists in determining the time interval between subsequent vehicles for a given set of lines,
taking into account interests of users and operators. The result of this stage is considered as input at the
operational level. In general, the problem faced by planners is how to distribute a given fleet of buses
among a set of given lines. The corresponding decisions determine the frequency of each line, which
impacts directly on the waiting time of the users and operator costs. In this work, we consider frequency
setting as the problem of minimizing simultaneously users’ total travel time and fleet size, which represents
the interest of operators. There is a trade-off between these two measures; therefore, we face a multi-
objective problem. We extend an existing single-objective formulation to account explicitly for this trade-
off, and propose a Tabu Search solving method to handle efficiently this multi-objective variant of the
problem. The proposed methodology is then applied to a real medium-sized problem instance, using data
of Puerto Montt, Chile. We consider two data sets corresponding to morning-peak and off-peak periods.
The results obtained show that the proposed methodology is able to improve the current solution in terms
of total travel time and fleet size. In addition, the proposed method is able to efficiently suggest (in
computational terms) different trade-off solutions regarding the conflicting objectives of users and
operators. Copyright © 2017 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Transit service design entails making decisions concerning several aspects of public transportation
systems, namely, line design, timetable construction, fleet/crew assignment, and fare determination,
among others. Ideally, these decisions should be taken optimally, in the sense of the interests of the
whole society. In this work, we focus on the task of frequency setting, known as the problem of
determining the number of buses per time unit on each line of a public transportation system. This
problem arises in both strategic and tactical planning; in the former case, as part of the transit network
design, while for the latter, as a way to adjust the services to variations in the demand or the route
network [1, 2]. In these cases, the main decision maker is a centralized planning and regulating entity.
The output of the frequency setting is taken as input to create the operational plans for each line,
including, for example, the timetable construction. Here, decisions are usually made by individual
operators, which are in charge of running a subset of lines from the whole system.
When considered as an optimization problem, frequency setting should take into account the

interests of the main actors involved in the system: users and operators. At the strategic and tactical
levels, the planner is represented by a transit agency that is in charge of taking care of the interests
of both actors. The existing optimization models usually seek to maximize the level of service offered
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to the users and minimize the level of required resources delivered by the operators. Problem data is
given by the itinerary of each line and origin–destination (OD) demand within a specific time horizon.
An important component of the model is the assignment sub-model, which represents the behavior of
the users with respect to a set of lines and frequencies. This sub-model is needed to measure the
performance of the system with respect to the users, that is, the level of service.
The literature concerning transit frequency optimization can be classified into (i) analytical models

that admit closed-form solutions and (ii) mathematical programming formulations either explicit or
not, with associated solution algorithms. In the first group, there are formulations that characterize
the system in terms of few variables and allow getting a full description of the optimal solution.
Although these models make considerable simplifications of the real system, they allow obtaining
practical guidelines that are theoretically well founded [3, 4], for example, the well-known rule of
the square root [5, 6]. The other important stream of work is based on a detailed characterization of
the transit system, in terms of the route network and the demand that should be transported over it.
These studies formulate the optimization problem in terms of a graph model, where decision variables
are the capacities of the arcs (represented by the frequencies) and the flows that represent the OD
demand that is governed by the assignment sub-model. In the most general case, the objective function
seeks to minimize the total travel time, while a maximum fleet size constraint is the main component of
the formulation that bounds the increase of the frequency, which is desirable from the users’ viewpoint
since it reduces the waiting time. Early work can be found in [7], which states the minimization of the
walking and on-board travel time plus the waiting time subject to a constraint on the maximum fleet
size; the resulting nonlinear formulation is solved approximately using a descent strategy and the
methodology is tested with a small city comprising six lines. In [8], a nonlinear bilevel formulation that
minimizes overall travel time subject to a fleet size constraint is proposed and solved approximately
using a gradient descent method that exploits the problem structure; the methodology is tested by using
several test cases ranging from 38 to 115 transit lines. More recently, in [9], a reformulation of the
problem stated in [8] is proposed and solved using mixed-integer linear techniques for small-sized
cases (seven lines) and using a Tabu Search metaheuristic for instances comprising up to 133 lines.
In these two studies, special effort has been done in solving the problem to optimality and quantifying
the accuracy of approximate methods in the sense of distance from their results to optimal solutions;
moreover, these studies are based on the well-known optimal strategies assignment sub-model [10],
which is widely studied and used at both academic and practice fields. Other variants explored in
the literature include joint optimization of frequencies and bus size [11–13], joint optimization of
frequencies and fare [14], joint optimization and data collection methods [15], consideration of
stochastic demand and travel time [16], consideration of equity concerns [17] and the case in which
elastic demand is considered [18–21].
The existing models usually have real variables that represent line frequencies and passenger flows.

In most cases, the mathematical formulations are nonlinear, because of the relationships between the
frequency with the waiting time and the passenger flows [7]. Moreover, the representation of the
passenger behavior makes it difficult to state an explicit formulation, which precludes the identification
of the model structure and therefore the determination of an effective solution method [22]. In addition,
the realistic modeling of bus capacity and congestion introduces even more difficulties due to bilevel
and/or equilibrium formulations [8, 23]. Therefore, all solution methods rely on heuristic algorithms
either driven by mathematical formulations [8] or purely heuristics [24]. These methods have been
tested with different cases, including real ones comprising up to 140 lines approximately [9, 19].
The transit frequency optimization problem has several aspects that have been studied with different

emphasis by different authors, as can be noted from the previous paragraphs. In this work, we focus on
the multi-objective aspect of the problem and its efficient solution. Particularly, we consider user and
operator objectives under general assumptions of fixed and deterministic demand, deterministic travel
times, single fare, homogeneous fleet, single operation pattern, and uncongested conditions. Under
these hypothesis, conflicting interests of users and operators can be clearly identified: higher
frequencies entail lower travel time (particularly its waiting component) and vice-versa. Note this
trade-off cannot be as easily identified in cases of demand elasticity, congestion, or different fare
patters, where special care has to be taken in the formulation of the objective function and constraints.
We resume the work undertaken in [8, 9] in a multi-objective optimization framework. This means that
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in order to solve the problem we look for a set of non-dominated solutions (also known as Pareto front
or set of efficient solutions [25]) in terms of the conflicting objectives of users and operators. Roughly
speaking, we can say that two solutions (settings of frequencies) are non-dominated if none of them
can improve the other in both objectives. To the best of our knowledge, this approach has not been
applied before to transit frequency optimization, even though the existing models consider interests
of users and operators in their formulations. Few models join both objectives into a single function
by using weighting values [23]. Moreover, most models optimize users’ objective under a budgetary
constraint representing the fleet size (e.g. [7, 8]). The usual way to obtain different non-dominated
solutions using this kind of formulations is by repeating the execution of the single-objective model
for different weighting or constraint values. These are in fact two classical methods for solving
multi-objective problems [25]: the Weighted-Sum and the ε-Constraint methods. Previous experiences
with a related problem regarding transit network design [26, 27] have shown that the multi-objective
problem can be tackled as such, by using specific solution algorithms designed specially to deliver
an entire set of non-dominated solutions in a single run. The main advantages of this approach are
the significant reduction in total execution time and the ability of finding solutions that cannot be found
by using classical multi-objective optimization methods (non-supported efficient solutions, [25]). That
stream of work is resumed in the current proposal.
In this work, we contribute in the context of transit frequency optimization on the following specific

directions: (i) We present an extension and improvement from our previous single-objective model and
Tabu Search solution method [9], conceived to solve efficiently the multi-objective variant of the
problem, and (ii) an application to a real case concerning a medium-sized city. A preliminary version
of this work was presented in [28].
Concerning the first contribution, we propose an extension of our previous formulation and solution

method to handle a multi-objective variant of the transit frequency optimization problem, considering
the conflicting objectives of users and operators. There are two motivations for generating a multi-
objective transit frequency model. The first one is based on the fact that the frequency setting problem
arises at the strategic and tactical planning levels of public transportation systems. In these contexts,
especially in the strategic one, the planner may be interested in exploring a range of different solutions.
For example, if the transit agency is planning to deploy more resources (buses and drivers) to the
system, the hypothetical new (optimized) frequencies and their effect over the level of service is likely
to be analyzed for different levels of resources. Moreover, because the transit frequency optimization
problem is computationally hard to solve, heuristics have been identified as efficient methods to obtain
near-optimal solutions [9]. Multi-objective metaheuristics [29] take advantage of the exploration of the
search space in order to generate efficiently an entire set of trade-off solutions in a single execution
of the algorithm. This is particularly useful in the context of multi-objective transit frequency
optimization because it reduces the time taken by the method to deliver solutions to the planner.
Concerning the case study, we use data from the city of Puerto Montt, Chile. This is a medium-

sized city of 230 000 inhabitants approximately, with a transit system comprising 20 lines. We
use data provided by SECTRA (the transportation planning agency of Chile), which allow building
very realistic scenarios because the corresponding information is systematically updated and
validated. We use morning-peak and off-peak data, which are not usual in studies concerning transit
frequency optimization. It is worth mentioning that we do not attempt to model a multi-period
problem, instead we illustrate the application and capabilities of the proposed methodology for different
demand scenarios.
The article is structured as follows. Section 2 provides a description of the methodology, including

both model and solution algorithm. In Section 3, we describe the main characteristics of the case
study, present the experiments performed, and discuss their results. Finally, Section 4 draws some
conclusions and lines for future research.

2. METHODOLOGY

The setting of transit frequencies is modeled as a combinatorial optimization problem, where we must
assign a frequency value (taken from a given discrete set) to every line given as input data. In the
single-objective variant of the problem, any setting of frequencies must respect an upper limit on the
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available fleet size, while the objective is the minimization of the overall travel time of the users. Each
solution is evaluated according to an assignment sub-model, in order to compute its objective value. In
[9], this problem is formulated as a mixed-integer linear programming one, which can be solved to
optimality for small-sized instances. For larger instances, a Tabu Search metaheuristic was proposed
and implemented, and it is the base methodology applied in this work. As an extension of the existing
methodology, we propose a variation of the heuristic that solves efficiently a multi-objective version of
the problem, considering the conflicting objectives of users and operators.
In the following, we state the main hypothesis considered with respect to the transit system. This

includes the representation of demand and supply, as well as the relevant aspects of the assignment
sub-model. Then, we formally state the transit frequency optimization problem and the main concepts
of the metaheuristic approach used to solve it. Sections 2.1 to 2.3 present concepts and notation already
introduced in our previous paper [9]. Finally, we present a more detailed description of the extension
proposed in this work.

2.1. Transit system and passenger behavior

We model the underlying structure of the transit system as a directed graph G = (N, A). The set of
nodes N represents either bus stops, endpoints of street segments, or zone centroids (fictitious points
that concentrate the demand). The arcs in A are classified in three types:

• Travel arcs that represent the bus movements along street segments and the on-board component of
the passengers’ trips.

• Walking arcs that represent passenger paths between stop nodes or to/from centroids.
• Boarding and alighting of passengers to/from the bus, which represent connections between the
places where demand is generated and the transit network.

Both travel and walking arcs are labeled by a fixed (deterministic) cost that represents an average
time value taken by both buses and users to traverse the corresponding arc. Boarding and alighting arcs
are labeled by the frequency of the corresponding bus line. Figure 1 illustrates this structure. A transit
line consists of forward and backward routes or a single route if it is circular. Each route is a sequence
of contiguous arcs in G. Moreover, the demand is represented as an OD matrix, where each non-null
entry (called OD pair) has origin and destination centroids (nodes of G) and the number of trips per
time unit within a specific time horizon. Trip rates represent mean values in steady state. Moreover,
this demand is fixed over the entire horizon under consideration.
The assignment sub-model takes as input the graph representing the transit lines with a setting of

frequencies and the OD demand. Its output is a distribution of demand flows representing trajectories
between origins and destinations, obtained by applying the hypothesis about the passenger behavior
with respect to the given lines and frequencies. We adopt the optimal strategies assignment sub-model
[10]. A strategy is defined as a set of rules that when applied, enables the user to reach his destination.
In terms of the graph G and for a given OD pair, a strategy can be seen as a subset of arcs in A that
represents all the lines that the user identifies a priori, for traveling from its origin to its destination.
The model assumes that a given user selects the strategy that minimizes his total travel time. To do this,
he will select a priori (i.e., before leaving the place where the trip originates) a set of attractive lines
among all the possible lines that connect its origin and destination bus stops (even including transfers).
While waiting at the bus stop, the user will take the first bus passing by that stop, belonging to the set
of attractive lines determined a priori. An application of the aforementioned model for a single OD
pair over a graph G computes

• The distribution of the corresponding demand, as an assignment of flows va for each arc a ∈ A.

Figure 1. Representation of the transit system.
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• The waiting time WTn at each stop node n, calculated as WTn = 1/Σ l ∈ L(n) fl where L(n) is the set of
lines passing by n, corresponding to the attractive set identified a priori by the user and fl is the
frequency (buses per time unit) of line l.

As a consequence, the result of the assignment sub-model enables computing the total travel time of
the system, which is a performance measure of such a system from the point of view of the users. Note
that both flows and waiting times depend on the frequencies, which are decision variables of our
problem. Thus, the assignment sub-model must be applied to every new setting of frequencies. It is
worth to mention that the adopted assigned sub-model does not consider the effect of congestion over
the users’ travel time. Congestion may occur because of traffic conditions, boarding/alighting times,
and lack of bus capacity. In our model, we assume the system is isolated from the traffic, dwell time
due to boarding and alighting is negligible, and the bus capacity is sufficient to load every passenger
who wants to board each bus.

2.2. Multi-objective optimization problem

We start from the single-objective mixed-integer linear programming formulation proposed in [9], and
we consider its multi-objective variant resulting from casting the fleet size constraint into a conflicting
objective with respect to the original objective function. This new model is aimed to provide more
flexibility to the decision maker and (as it is explained in Section 2.4) allows for a more efficient
implementation of the solution method. Regarding the multi-objective characteristic of the model, note
that in transit frequency optimization, an increase in the line frequencies always has a positive impact
over the users (waiting time decreases) and a negative impact over the operators (the number of
required resources increases). This is true under hypothesis of inelastic demand (therefore, constant
revenue) and no congestion (sufficient bus capacity and constant travel time over the network), which
is part of the framework of this study. Also, note that we assume sufficient capacity in the
infrastructure (streets or corridors) to potentially accommodate several lines with high frequencies.
According to [25], the solution of (1)–(8) is not a single optimal one. Instead, it is a set of non-

dominated solutions in the space of objectives (1) and (2). This set is usually referred as Pareto front.
There are different alternatives for arriving to a single solution of a multi-objective problem, namely, a
priori, a posteriori, and interactive methods [29]. The a priori method fixes the parameters that
determine a concrete trade-off between the conflictive objectives, and then it solves a single-objective
problem. The a posteriori method finds the complete Pareto front, and then selects a single solution
from it. The interactive method incorporates into the optimization method the information that guides
the selection of the desired trade-off level. In every case, that information is an additional input, usually
provided by the decision maker. In this work, we adopt the a posteriori method.
Table I summarizes the notation used in formulation (1)–(8), which assumes a given set of lines L

and a predetermined set of frequencies Θ = {θ1,…,θm}, which is a discrete domain of values that

Table I. Symbols used in the mathematical formulation.

Symbol Meaning

A (AB) Set of arcs (boarding arcs) with generic element a
N (NP) Set of nodes (stop nodes) with generic element n
K Set of OD pairs with generic element k
L Set of lines with generic element l
Θ Set of frequencies indexed by f in the range 1..m
out(n), in(n) Set of outgoing and incoming arcs of node n, respectively
δk Amount of demand corresponding to OD pair k
bnk Constant value equal to 1 (�1) if node n is the origin (destination) of OD pair k and 0 otherwise
ca Cost of arc a
vak Flow of OD pair k over arc a
wnk Waiting time multiplied by flow of OD pair k in node n
ylf Equal to 1 if frequency f is assigned to line l
l(a), f(a) Line and frequency corresponding to arc a, respectively

OD, origin–destination.
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can be assigned to each line. This set can contain reasonable values identified by the decision maker,
for example, those values that are suitable for coordinating transfers. Also, the first and last values of
the set impose implicitly the lower and upper bounds respectively on the frequencies.
Objective function (1) states the minimization of the total travel time of users, accumulated for

all OD pairs. Its value is computed by the assignment sub-model once the frequencies are determined.
Note that frequencies by themselves impact directly over the user waiting time. But because
passengers consider all the travel time components to decide the lines to board, a change in the line
frequencies also impacts over the whole travel time of each passenger.
Objective function (2) is a proxy for operators’ cost. Several transit planning models adopt this

expression [30], because the real operator cost depends on each particular case. For example, there
can be subsidies and revenues based on the tickets effectively sold. Moreover, because our model is
not conceived for operational planning, changes of buses among different lines are not considered; that
characteristic is usually taken into account in vehicle scheduling models [1]. Our proxy for operators’
cost is the number of buses required to travel simultaneously in the network. Note that this measure
can be fractional, and it is directly proportional to the vehicle operation cost by distance unit and
the driver cost by time unit. We assume the same cost for all the buses in the system; therefore, we
are considering a homogenous fleet.
Constraint (3) states that exactly one value of θ is assigned to each line, while constraint (4) is a

conservation flow expression that ensures the demand is routed from origin to destination. Constraint
(5) is a flow-splitting expression coming from the optimal strategies assignment sub-model; it states
the frequency-share rule [31] that distributes the passenger flow at bus stops, among the common lines
that lead to destination. Constraint (6) is a technical one, which states that demand can flow only
through arcs enabled according to the frequency assigned to the corresponding line. Finally, constraint
(7) states the non-negative nature of flow values, and constraint (8) states the binary nature of variables
that indicate the setting of frequencies. For more details concerning the reasoning and justification of
this formulation, we refer to [9].

min y,v,w Σ k ∈ K (Σ a ∈ A ca vak + Σ n ∈ N
P wnk) (1)

min y,v,w Σ l ∈ L Σ f ∈ 1..m θf ylf Σ a ∈ l ca) (2)
s.t. Σ f ∈ 1..m ylf = 1 ∀ l ∈ L, (3)

Σ a ∈ out(n) vak – Σ a ∈ in(n) vak = bnk ∀ n ∈ N, k ∈ K, (4)
vak ≤ θf(a) wnk ∀ n ∈ NP, a ∈ out(n), k ∈ K, (5)
vak ≤ δk yl(a)f(a) ∀ a ∈ AB, k ∈ K, (6)
vak ≥ 0 ∀ a ∈ A, k ∈ K, (7)
ylf ∈ {0,1} ∀ l ∈ L, f ∈ 1..m. (8)

2.3. Metaheuristic solution method

The combinatorial aspect of the problem denoted by (1)–(8) is approached through a metaheuristic
solution method based on Tabu Search [32]. The original implementation [9] performs a local search
on the discrete domain determined by Θ|L| looking for the best possible values of y in the context of the
single-objective problem. The search advances according to a compound move (which defines a
neighborhood structure) that changes the frequencies of two lines in L: one decrease and one increase.
A line can change its frequency only to a value that is contiguous in Θ to its current frequency. Thus,
the compound move can be seen as a redistribution of the available buses among the lines of the
system. Note this is an intuitive procedure that has a direct link with the real problem. Also, systematic
methods like the Hook and Jeeves algorithm have been applied to transit frequency optimization [11],
performing similar operations to the ones adopted by our method. However, this intuitive move in the
space of frequencies has the challenge of avoiding getting trapped in local optima. Therefore, we apply
tabu concepts to the basic local search performed through compound increase and decrease moves, in
order to escape from local optima and to increase the chances of reaching the global optimum. Tabu
Search is a metaheuristic that has been successful in solving several optimization problems [33],
particularly the transit frequency optimization problem [11]. Moreover, the local search based on the
proposed moves can be easily extended to include the specific features of Tabu Search.
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In order to tailor the general framework of Tabu Search to our particular problem, we implement a
tabu list that records the last iteration of the search where each line has increased or decreased its
frequency. These tabu-active statuses expire once a number of iterations is reached or when there is
a reason to generate more valid moves (aspiration criteria). Moreover, we should note that the
evaluation of each new solution entails an invocation to the assignment sub-model, which may slow
down the performance of the overall algorithm when it is invoked repeatedly. Taking into account
these observations, we implemented the aspiration plus strategy [34] that explores a reasonable
number of neighbors (settings of frequencies) considering that too few may constrain the search and
too many may slow down the process.

2.4. Multi-objective solution method

The Tabu Search explained in Section 2.3 and implemented in [9] for solving the single-objective
variant of the transit frequency optimization problem was successful in finding near-optimal solutions
for a small-sized test case. Its extension to the multi-objective case seems very natural once we include
the long-term memory feature, which relaxes the fleet size constraint in order to search into a wider set
of alternatives.
Our basic Tabu Search uses a short-term memory to record moves that should be avoided in

subsequent iterations. In this work, in a first step we introduce an extension by introducing a long-term
memory [34]. This type of memory is expected to bring the opportunity to the algorithm of learning
from its achievements in a wider horizon. Thus, the long-term memory can enhance the single-
objective Tabu Search by exploring solutions not ordinarily found, and by intensifying the search in
regions of promising solutions. Let us define sol1 (solm) as the solution in which every line frequency
has value θ1 (θm). Note that sol1 (solm) has the lowest (highest) fleet size and the highest (lowest) travel
time. Also, note that we can reach sol1 (solm) by applying a finite number of decrease (increase)
operations to any solution s and vice-versa.
We consider an oscillation boundary determined by the fleet size expression (2). By using

exclusively operations increase and decrease, we may potentially explore the whole solution space
between sol1 and solm, whose trajectory may cross the oscillation boundary several times. Whenever
the boundary is reached, an intensification phase is applied, by staying in the corresponding fleet size
level until a given number of iterations has passed without improvement. At each iteration, the short-
term memory strategies are applied (Figure 2a). We also maintain a critical event memory that records
the history of the most recent critical events (crossings of the oscillatory boundary) that happened over
the search. The critical events corresponding to the first feasible solution found and every new best
solution are recorded in this memory. Thus, we have a measure of the most recent and frequent values
of the frequencies of the critical events. Every time sol1 or solm has been reached, we bias the search to
take the least frequent solutions using this memory, by penalizing the path to the most frequent
solutions over a defined number of iterations. This is intended to guide the search to regions little
explored or unexplored in the boundary level (feasible solutions in terms of fleet size), where we
repeatedly apply the short-term memory strategy (intensification phase) and we update the critical
event memory accordingly. With the combined use of the oscillatory strategy and critical event
memory, we diversify the search in an explicit manner, while we intensify implicitly using the local
search. We call this variation as long-term memory Tabu Search.
Using the algorithmic component described previously, we extend the methodology in order

to handle a multi-objective variant of the problem. The proposed solution method performs the
following steps:

(1) Find a set of initial solutions using the long-term memory Tabu Search.
(2) Construct some statistic solutions from the initial solutions.
(3) Find new solutions by searching the path between the solutions from steps 1 and 2.
(4) With all the solutions found in previous steps, select the non-dominated ones.

To find the initial solutions we extend the long-term memory Tabu Search to manage multiple
critical levels (equal to the number of different frequencies: m). As an initial solution for level i, we
select the one having all frequencies equal to θi (note that the only solution for level 1 is sol1 and
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for level m is solm). After the execution of the long-term memory Tabu Search, we obtain a set of m
best solutions, one for each level (including sol1 and solm). To construct the statistic solutions, we
use the mean, mode, and median of the best solutions of each level found in the previous step. At step
3, we build paths between the solutions of contiguous levels obtained in the steps 1 and 2. Starting
from the solution of level 1, we search towards the solution of level 2, then towards the solution of
level 3 and so on, until level m (forward path). Similarly, we search in a downward path (beginning
at level m). At each step of both paths, an exhaustive search of all the neighbors is done to select
the best one (Figure 2b). Because the fleet size upper limit is set to the fleet size of the current solution,
both paths are different (Figure 3). The paths are explored for each type of solution one at a time: best,
mean, mode, and median. The potential set of Pareto-optimal solutions is made by the solutions best,

Figure 3. Forward and backward paths in the multi-objective long-term memory Tabu search.

Figure 2. Long-term memory Tabu Search. (a) single oscillatory boundary; (b) multiple oscillatory boundaries.
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mean, mode, and median for each level (obtained by the short-term memory Tabu Search) and the
whole forward and backward paths (obtained by applying only increase and decrease moves). A
simple filtering process is performed in step 4, in order to discard dominated solutions.
Notice that the algorithm explained earlier produces an entire set of non-dominated solutions that

are either

• Good approximations to optimal solutions in terms of total travel time for different values of fleet
size. These solutions are obtained by applying the already existing short-term memory Tabu Search,
whose accuracy is evaluated in previous work [9].

• Solutions that connect the previous ones by performing small changes on their frequencies, therefore
we can expect they are also good in terms of both objectives.

For the reasons explained previously, we can say that in a single run of the algorithm, we can obtain
an approximation to the optimal Pareto front of problem (1)–(8). This is particularly relevant from the
computational point of view, because it does not imply solving a single-objective problem several
times. Thus, it is a multi-objective metaheuristic [29].

3. EXPERIMENTS AND RESULTS

We tested the methodology proposed in this work, using a real case corresponding to the city of Puerto
Montt, Chile. The city has a public transportation system comprising 20 bus lines, each one having
forward and backward itineraries, with headways (inverse of frequency) in the range [1.5, 16.1]
minutes. All the buses of the transit system have the same capacity, which is consistent with the
hypothesis of homogenous fleet of our model. Data were provided by SECTRA, the transportation
planning agency of Chile. The underlying graph G comprises 733 nodes and 1662 arcs, including
70 zone centroids and corresponding access (walk) links. Figure 4 shows the bus network of the city.
We consider two scenarios corresponding to peak and off-peak conditions, where the first one
comprises 3780 OD pairs and 8595 trips per hour while the second one comprises 4335 OD pairs
and 3802 trips per hour. As we can expect, the peak scenario entails more trips, concentrated in fewer
OD pairs. Although we use two time horizons in the numerical experiments, our proposed
methodology is not conceived to deal with a multi-period scenario. Note that issues like transitions
between periods belong to the operational plan, while our context is the strategic and tactical planning.
According to the aims of our proposed methodology, we performed a set of validating experiments

using the real case study of Puerto Montt. We configured the predetermined set of frequencies as
Θ = {1/20, 1/12, 1/6, 1/4, 1/3} (values expressed in 1/minute), which are representative values with
respect to the current frequencies of the real system. Notice that there are many different values of
frequencies in the current solution, so we restricted the predetermined set to a manageable size,
because the execution time of the Tabu Search algorithm grows in direct proportion to this size.
Figure 5 plots the objective values (total travel time and fleet size) of the obtained results for the peak
and off-peak scenarios, according to the following references:

Figure 4. The bus network of Puerto Montt.
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• Real: current solution of the city, evaluated using exactly its frequencies.
• Case: current solution, evaluated using the frequencies of Θ that are more similar to the real ones.
• SOTS: solution of the short-term memory Tabu Search for the single-objective problem, proposed
and implemented in [9].

• MOTS: solutions of the multi-objective Tabu Search proposed and implemented in this work.

Note that solutions of MOTS are intended to provide a picture of the different trade-off levels
between objectives of users and operators, while SOTS solutions seek to improve the current system
(in terms of total travel time) for a fixed value of fleet size. In the single-objective approach [9], the
independent (decision) variables are the frequencies, while the fleet size can be considered as a factor
that has to be varied in order to obtain different (optimized) values of travel time. But in the multi-
objective approach, both fleet size and travel time are outputs of the model, both depending on
frequencies. Concerning the obtained non-dominated sets, we can observe that the slopes of both
curves are similar for high values of fleet size. This means that an increase in the fleet size (which
represents an increase in the resources delivered to the transit system) does not have a strong impact
in the level of service represented by the total travel time. For medium and low values of fleet size,
the impact of an increase has a stronger positive impact on travel time. Note that in this analysis
(and in the whole study), we are considering inelastic demand with respect to the frequencies.
Moreover, we are not taking into account the effects of the bus capacity neither on the passenger
behavior nor in the computation of the system performance.
Concerning the performance of the methodologies, the first observation is that they produce

solutions that dominate the current solution of the system. Moreover, we can observe that the SOTS
solution lies over the Pareto front of MOTS; this is an expectable result because the multi-objective

Figure 5. Objective values of current and optimized solutions. (a) morning peak; (b) off-peak.
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variant of the algorithm is based on the single-objective one (Section 2.4). Table II reports the
percentage of improvement in total travel time for a fixed fleet size (column 3), with respect to the
current solution (the Case solution, evaluated using the same discrete domain of frequencies used in
the optimization methods). Column 4 shows improvements with respect to the other objective, that
is, the fleet size; note the comparison in this column is against a different solution of the Pareto front,
the one which has the same total travel time as the Case solution. Also, we report the number of
solutions found by each algorithm as well as their execution times in seconds (in a Core i5 computer).
Regarding improvements in total travel time, we observe small gains, which are consistent with
values reported in the literature for this problem [8, 9]; however, the reductions in fleet size for a fixed
total travel time are significant. In the peak period, the fleet is reduced from 201 to 169 buses, while in
the off-peak period, the fleet is reduced from 176 to 133 buses, almost one quarter of resources. Note
that Table II states that the comparison in terms of travel time reduction is valid for both approaches
(single and multi-objective); on the other hand, comparison in terms of fleet size is only valid for
the multi-objective approach, because the single-objective one only obtains a single solution for a fixed
fleet size.
In terms of computational efficiency, a direct comparison of execution times shows a reduction of

70% for the algorithm proposed in this work, with respect to its original variant. Note that this
comparison is made between different algorithms whose implementations are based on the same
assignment sub-model, the operation that mostly determines the overall execution time; the same
approach for comparison has been used in previous studies [27]. Furthermore, given that a single
execution of MOTS produces an entire Pareto front that includes the solution delivered by SOTS
(as it can be seen in Figure 5), the relative efficiency of the multi-objective metaheuristic is much
greater. Note that if we want to obtain different trade-off solutions using the SOTS algorithm, we have
to perform different runs, for different values of maximum fleet size. Moreover, given that the SOTS
algorithm has proven to be capable of finding solutions very close to the global optimum for the single-
objective problem [9], we may expect that solutions found for Puerto Montt are also close to the
optimal ones. The exact model proposed in [9] cannot be used to compute optimal values for Puerto
Montt, because of the size of the corresponding model. Moreover, in order to explore the variation
of the execution time of the MOTS algorithm with respect to problem size, we ran several iterations
of the algorithm with the case of Montevideo, main city of Uruguay. This case was previously used
in [9]; it comprises 133 bus lines with an underlying network of 4945 nodes, 14 672 arcs, and 7425
OD pairs (Puerto Montt has 733 nodes, 1662 arcs, and around 4000 OD pairs). We observed an
increase factor in the order of several hundred times. This means that because the execution of MOTS
for Puerto Montt takes about 20 minutes (Table II), a complete execution for Montevideo could take
more than 1 day. This is an expectable result, because all algorithms have polynomial (super linear)
order of execution time in terms of problem size (underlying graph and OD matrix). Nevertheless,
in the context of tactical and strategic planning, and taking into account that the result is a full Pareto
front of different trade-off solutions, it can be considered as a manageable execution time.
Table III shows the headways (inverse or frequencies, values taken from set Θ) of the current

solution (the Case one, as explained previously) and optimized solutions for peak and off-peak
scenarios. The optimized solutions are taken from the Pareto front produced by MOTS in the following
way: opt (tt) is the solution that optimizes total travel time for the fleet size equal to the current
solution, while opt (fs) is the one that optimizes fleet size for the total travel time equal to the current

Table II. Performance of the methodologies.

Scenario
Solution
method

Per cent reduction
in total travel time

Per cent reduction
in fleet size

No. of
solutions

Time
(seconds)

Peak SOTS 1.9 NA 1 4223
MOTS 1.9 16.1* 241 1235

Off-peak SOTS 4.1 NA 1 4565
MOTS 4.1 24.0* 266 1227

NA, not applicable.
*We compare versus the MOTS solution with the same total travel time as the Case solution.
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solution. We reported values for both forward and backward itineraries for each one of the 20 lines, in
order to be consistent with the current solution, which has this characteristic. We can observe that in
general terms, the changes suggested by the optimization method are consistent between both
scenarios, but the specific suggested (optimized) values are different. Particularly, the optimized
solutions for the off-peak scenario exhibit more changes of headways with respect to the current
solution, because there is more room for improvement in such scenario, as can be seen on Figure 5.
In all cases, redistribution of resources among bus lines are observed. These results also contribute
to validate the proposed methodology as well it shows the relevance of performing the study for
different demand scenarios in the context of tactical and strategic planning. The differences between
the optimized frequencies of peak and off-peak are explained by the different demand patterns of
the respective periods, which exhibit trips between different origins and destinations. Note that because
our model assumes sufficient capacity in the buses, peak flows do not influence the values of the
resulting frequencies. Finally, it is worth noting that if we fix the fleet size, because the model
optimizes total travel time over the whole set of OD pairs, the optimized solution redistributes the
available resources. Thus, for some passengers, the service may improve while for some others the
service may worsen. As it is currently implemented, our formulation favors travel time reductions
on high-demand OD pairs. In transit frequency optimization, an upper limit on travel time increase
can be implemented at the level of set of services or at the level of each line. Note that because the
assignment sub-model adopted in our work takes into account the effect of combined frequencies in
the users’ waiting time (the common lines problem), a constraint of maximum allowable waiting time
could be included for each OD pair at each bus stop. This is not included in our model, instead we
guarantee maximum waiting time by imposing minimum allowable frequencies on individual routes.
This constraint is implicitly enforced by the discrete set of possible frequency values.
To close the experimental section, we note that data for transit frequency optimization models are

usually subject to variations and errors, particularly OD matrices. Therefore, methodologies for
optimizing frequencies should be robust under these conditions. In this context, robustness refers to
the ability of the solution method to provide similar results under changes in the input data. Taking into
account this observation, we performed a sensitivity analysis by perturbing the values of the OD matrix
and observing the results. Particularly, we perturbed each OD value v by choosing a random value in
the range [v(1 � p), v(1 + p)] where p is a parameter in the range [0,1]. We set p = 0.2 meaning that
20% of random increase or decrease in trip rates is assumed. Then, we generated two random OD
matrices that are given as input to the solution algorithm, obtaining Pareto fronts S1 and S2,
respectively. We perform the analysis in terms of both objective and decision space. In the first case,
we plot objective values of S1 and S2 as well as the values generated with the original matrix for both
morning-peak and off-peak scenarios, labeled as MOTS (Figure 6). We can observe that objective
values are very similar in general terms. In the peak scenario, variations exhibit a higher magnitude
because they occur over higher OD values. For the analysis in terms of decision space (i.e. frequency

Table III. Current and optimized headways in minutes.

Line 1 2 3 4 5 6 7 8 9 10

Peak current 4 3 3 3 4 4 3 4 3 3 4 4 20 4 12 4 4 4 4 3
opt(tt) 6 4 4 3 3 3 4 4 4 3 3 3 20 3 6 3 6 6 3 3
opt(fs) 3 3 3 3 3 3 4 6 4 3 4 4 20 4 6 4 6 6 4 3

Off-peak current 4 6 6 3 4 4 3 4 4 3 4 4 20 4 20 4 4 4 20 4
opt(tt) 12 20 12 12 3 3 12 12 6 3 4 4 12 6 12 12 4 4 3 3
opt(fs) 6 6 6 12 12 12 6 12 4 4 4 4 6 6 6 6 12 12 4 3

Line 11 12 13 14 15 16 17 18 19 20

Peak current 4 6 4 20 4 4 4 4 3 4 3 3 6 20 4 4 4 4 4 4
opt(tt) 3 4 3 12 3 3 4 4 6 3 3 3 3 4 20 6 6 12 12 20
opt(fs) 3 4 3 12 4 4 4 4 12 4 4 4 3 6 20 6 6 12 12 20

Off-peak current 4 4 6 20 4 4 4 4 12 4 3 6 12 20 4 4 4 4 4 4
opt(tt) 3 6 4 12 3 3 3 3 6 12 3 3 4 12 4 4 4 4 4 4
opt(fs) 4 6 6 12 6 6 4 4 6 6 4 4 4 4 12 6 6 6 6 12
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values), we select a single solution from each Pareto front (MOTS, S1, and S2) and we count the
number of lines in which their frequencies change to values at different distances in the set Θ. The
distance between two frequency values is the difference between their positions in the set Θ. Note that
the possible values of distances for a set Θ composed by five different frequencies can be 0, 1, 2, 3, or
4. As an example, for the peak scenario, we consider solutions having a fleet size equal to the current
system, that is, 201 buses. Then, line 1 of Table IV states that the solution of S1 having 201 buses
differs from the one of MOTS having 201 buses in the following way: 12 lines have the same
frequency, 15 differ one step in Θ (contiguous values of frequencies), 13 two steps, and there are no
higher differences. The total weighted counts represent the number of changes in frequencies (steps)
from one solution to another. As we can see, in the peak scenario, the total number of changes (41
for S1 and 42 for S2) is very similar to the total number of lines (40), meaning that there is in average
one change of frequency to a contiguous value in Θ per line when the demand is perturbed. In general
terms, this can be considered as an indicator of robustness, because variations of 20% in demand OD

Table IV. Sensitivity in decision space under variations in demand data.

Steps 0 1 2 3 4 Total (weighted)

Peak S1 12 15 13 0 0 41
S2 13 14 11 2 0 42

Off-peak S1 15 13 8 4 0 41
S2 14 8 12 6 0 50

Figure 6. Sensitivity in objective space under variations in demand data. (a) morning peak; (b) off-peak.
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values cause (in average) one change of frequency at each line, to a contiguous value in Θ. This
situation changes for the off-peak scenario, where for the fleet size level of 176 buses, the total number
of changes for S2 is 50, which can be explained by the (already identified) higher opportunities for
improving the system.

4. CONCLUSIONS

In this work, we have proposed a new method for optimizing transit frequencies. We considered a
multi-objective variant of an existing model, and we have extended its solution method. Both model
and algorithm proposed in this work take advantage of the multi-objective nature of the problem to
propose a computationally efficient solving method that produces in a single run of the algorithm, a
set of different frequency configurations representing different trade-off levels between the interests
of users and operators. Although the proposed algorithm is heuristic, its accuracy is inferred from
previous results that show its ability of producing near-optimal solutions.
The proposed method solves a case corresponding to a real system in acceptable execution time.

Special effort has been made in solving the multi-objective variant, which entails finding an entire
set of non-dominated solutions. The computational efficiency is very relevant in a case such as Puerto
Montt, in which there are both a dense network and a dense OD matrix. In this case study, the proposed
method improves current solutions in terms of both total travel time and fleet size. The optimized
frequencies are not the same for the peak and off-peak scenarios, which show the relevance of
performing the optimization for each scenario separately. The approach is mainly conceived for
tactical and strategic planning, where usually a less detailed modeling is performed when compared
with operational planning. This enables for applying the methodology to large problem instances in
an efficient manner. That is the case of the test scenario used in this work, which fulfils the hypothesis
of the model. Once the proposed multi-objective methodology is tested, it could be extended and
adapted in further research in order to include more detailed modeling that captures more operational
aspects of transit systems.
An interesting future study would be the application of transit network optimization methods to the

case of Puerto Montt. Reported travel time improvements for medium-sized cities reach 23% [35],
which is much higher than the improvements obtained in this work. Nevertheless, we have to mind that
transit network optimization methods are more complex and their results usually are harder to implement
in practice, given the potential disruptions they may cause in users because of system usability concerns.

ACKNOWLEDGEMENTS

This paper was presented at TRB 2015, Washington, DC, and an earlier version appears in the
electronic proceedings of that conference. We would like to thank SECTRA for providing the data
used to build the case study. We also thank to Comisión Sectorial de Investigación Científica
(UdelaR), Programa de Desarrollo de las Ciencias Básicas (UdelaR – MEC), and the Latin American
and Caribbean Collaborative ICT Research (LACCIR, project RFP-1212LAC002) for the financial
support. Ricardo Giesen would like to thank also the support by CEDEUS, CONICYT/FONDAP
15110020, and the BRT Centre of Excellence funded by VREF.

REFERENCES

1. Desaulniers G, HickmanMD. Public transit. In Transportation(Eds) Laporte G, Barnhart C. Elsevier: North-Holland,
2008 69–127.

2. Ibarra-Rojas O, Delgado F, Giesen RMuñoz JC. Planning, operation, and control of bus transport systems: A
literature review. Transportation Research Part B 2015; 77: 38–75. https://doi.org/10.1016/j.trb.2015.03.002.

3. Hurdle VF. Minimum cost schedules for a public transportation route – I. Theory. Transportation Science 1973;
7(2): 109–137. https://doi.org/10.1287/trsc.7.2.109.

4. Kocur G, Hendrickson C. Design of local bus service with demand equilibration. Transportation Science 1982;
16(2): 149–170. https://doi.org/10.1287/trsc.16.2.149.

5. Jansson JO. A simple bus line model for optimization of service frequency and bus size. Journal of Transport
Economics and Policy 1980; 14(1): 53–80.

2336 GIESEN R. ET AL.

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2323–2337
DOI: 10.1002/atr

https://doi.org/10.1016/j.trb.2015.03.002
https://doi.org/10.1287/trsc.7.2.109
https://doi.org/10.1287/trsc.16.2.149


6. Newell GF. Dispatching policies for a transportation route. Transportation Science 1971; 5(1): 91–105. https://doi.
org/10.1287/trsc.5.1.91.

7. Schéele S. A supply model for public transit services. Transportation Research Part B 1981; 14: 133–146. https://
doi.org/10.1016/0191-2615(80)90039-9.

8. Constantin I, Florian M. Optimizing frequencies in a transit network: a nonlinear bi-level programming approach.
International Transactions in Operational Research 1995; 2(2): 149–164. https://doi.org/10.1016/0969-
6016(94)00023-M.

9. Martínez H, Mauttone AUrquhart ME. Frequency optimization in public transportation systems: formulation and
metaheuristic approach. European Journal of Operational Research 2014; 236(1): 27–36. https://doi.org/10.1016/
j.ejor.2013.11.007.

10. Spiess H, Florian M. Optimal strategies: a new assignment model for transit networks. Transportation Research Part
B 1989; 23(2): 83–102. https://doi.org/10.1016/0191-2615(89)90034-9.

11. Dell’Olio L, Ibeas ARuisánchez F. Optimizing bus-size and headway in transit networks. Transportation 2012; 39:
449–464. https://doi.org/10.1007/s11116-011-9332-2.

12. Ruisánchez F, Dell’Olio LIbeas A. Design of a Tabu Search algorithm for assigning optimal bus sizes and
frequencies in urban transport services. Journal of Advanced Transportation 2012; 46: 366–377. https://doi.org/
10.1002/atr.1195.

13. Herbon A, Hadas Y. Determining optimal frequency and vehicle capacity for public transit routes: a generalized
newsvendor model. Transportation Research Part B: Methodological 2015; 71: 85–99. https://doi.org/10.1016/j.
trb.2014.10.007.

14. Chien S, Tsai C. Optimization of fare structure and service frequency for maximum profitability of transit systems.
Transportation Planning and Technology 2007; 30(5): 477–500. https://doi.org/10.1080/03081060701599961.

15. Ceder A. Bus frequency determination using passenger count data. Transportation Research Part A: General 1984;
18(5): 439–453. https://doi.org/10.1016/0191-2607(84)90019-0.

16. Hadas Y, Shnaiderman M. Public-transit frequency setting using minimum-cost approach with stochastic demand
and travel time. Transportation Research Part B: Methodological 2012; 46(8): 1068–1084. https://doi.org/
10.1016/j.trb.2012.02.010.

17. Ferguson E, Duthie J, Unnikrishnan AWaller T. Incorporating equity into the transit frequency-setting problem.
Transportation Research Part A: Policy and Practice 2012; 46(1): 190–199. https://doi.org/10.1016/j.tra.2011.06.002.

18. Verbas IÖ, Frei C, Mahmassani HSChan R. Stretching resources: sensitivity of optimal bus frequency allocation to
stop-level demand elasticities. Public Transport 2015; 7(1): 1–20. https://doi.org/10.1007/s12469-013-0084-6.

19. Verbas IÖ, Mahmassani HS. Integrated frequency allocation and user assignment in multi-modal transit networks:
methodology and application to large-scale urban systems. Transportation Research Record: Journal of the Trans-
portation Research Board 2015; 2498: 37–45. https://doi.org/10.3141/2498-05.

20. Ulusoy Y, Chien S. Optimal bus service patterns and frequencies considering transfer demand elasticity with genetic
algorithm.Transportation Planning and Technology 2015; 38(4): 409–424. https://doi.org/10.1080/03081060.2015.1026101.

21. Verbas Ö, Mahmassani H. Exploring trade-offs in frequency allocation in a transit network using bus route patterns:
methodology and application to large-scale urban systems. Transportation Research Part B: Methodological 2015;
81(2): 577–595. https://doi.org/10.1016/j.trb.2015.06.018.

22. Han AF, Wilson NM. The allocation of buses in heavily utilized networks with overlapping routes. Transportation
Research Part B 1982; 13(3): 221–232. https://doi.org/10.1016/0191-2615(82)90025-X.

23. Gao Z, Sun HShan LL. A continuous equilibrium network design model and algorithm for transit systems.
Transportation Research Part B 2004; 38(3): 235–250. https://doi.org/10.1016/S0191-2615(03)00011-0.

24. Yu B, Yang ZYao J. Genetic algorithm for bus frequency optimization. Journal of Transportation Engineering
2010; 136(6): 576–583.

25. Ehrgott M. Multicriteria Optimization, Springer: Berlin Heidelberg, 2005.
26. Israeli Y, Ceder A. Transit route design using scheduling and multiobjective programming techniques. In

Proceedings of the Sixth International Workshop on Computer-Aided Scheduling of Public Transport (Eds) Daduna
J, Branco I, Paixão J. Lecture Notes in Economics and Mathematical Systems: Berlin Heidelberg, 1995 56–75.

27. Mauttone A, Urquhart M. A multi-objective metaheuristic approach for the transit network design problem. Public
Transport 2009; 1(4): 253–273. https://doi.org/10.1007/s12469-010-0016-7.

28. Giesen A, Martínez H, Mauttone A, Urquhart ME. Multi-objective transit frequency optimization: solution method and
its application to a medium-sized city. Presented at the 94th AnnualMeeting of the Transportation Research Board, 2015.

29. Ehrgott M, Gandibleux X. Multiobjective combinatorial optimization. In Multiple Criteria Optimization: State of
the Art Annotated Bibliographic Surveys(Eds) Ehrgott M, Gandibleux X. Springer: US, 2002 369–444.

30. Baaj MH, Mahmassani H. An AI-based approach for transit route system planning and design. Journal of Advanced
Transportation 1991; 25(2): 187–210. https://doi.org/10.1002/atr.5670250205.

31. Chriqui C, Robillard P. Common bus lines. Transportation Science 1975; 9(2): 115–121. https://doi.org/10.1287/
trsc.9.2.115.

32. Glover F. Tabu Search – Part I.ORSA Journal on Computing 1989; 1(3): 190–206. https://doi.org/10.1287/ijoc.1.3.190.
33. Gendreau M, Potvin J-Y. Tabu Search. In Handbook of Metaheuristics(Eds) Gendreau M, Potvin J-Y2010 41–59.
34. Glover F, Laguna M. Tabu Search, Springer: US, 1998.
35. Szeto W, Wu Y. A simultaneous bus route design and frequency setting problem for Tin Shui Wai, Hong Kong.

European Journal of Operational Research 2011; 209(2): 141–155. https://doi.org/10.1016/j.ejor.2010.08.020.

2337MULTI-OBJECTIVE FREQUENCY OPTIMIZATION

Copyright © 2017 John Wiley & Sons, Ltd. J. Adv. Transp. 2016; 50:2323–2337
DOI: 10.1002/atr

https://doi.org/10.1287/trsc.5.1.91
https://doi.org/10.1287/trsc.5.1.91
https://doi.org/10.1016/0191-2615(80)90039-9
https://doi.org/10.1016/0191-2615(80)90039-9
https://doi.org/10.1016/0969-6016(94)00023-M
https://doi.org/10.1016/0969-6016(94)00023-M
https://doi.org/10.1016/j.ejor.2013.11.007
https://doi.org/10.1016/j.ejor.2013.11.007
https://doi.org/10.1016/0191-2615(89)90034-9
https://doi.org/10.1007/s11116-011-9332-2
https://doi.org/10.1002/atr.1195
https://doi.org/10.1002/atr.1195
https://doi.org/10.1016/j.trb.2014.10.007
https://doi.org/10.1016/j.trb.2014.10.007
https://doi.org/10.1080/03081060701599961
https://doi.org/10.1016/0191-2607(84)90019-0
https://doi.org/10.1016/j.trb.2012.02.010
https://doi.org/10.1016/j.trb.2012.02.010
https://doi.org/10.1016/j.tra.2011.06.002
https://doi.org/10.1007/s12469-013-0084-6
https://doi.org/10.3141/2498-05
https://doi.org/10.1080/03081060.2015.1026101
https://doi.org/10.1016/j.trb.2015.06.018
https://doi.org/10.1016/0191-2615(82)90025-X
https://doi.org/10.1016/S0191-2615(03)00011-0
https://doi.org/10.1007/s12469-010-0016-7
https://doi.org/10.1002/atr.5670250205
https://doi.org/10.1287/trsc.9.2.115
https://doi.org/10.1287/trsc.9.2.115
https://doi.org/10.1287/ijoc.1.3.190
https://doi.org/10.1016/j.ejor.2010.08.020

