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Ionization waves in electron-beam-assisted, shielded capillary discharge
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A theory of propagation of cathode-directed ionization waves during the early stages of an electrical break-
down in a shielded, low-pressure capillary is developed. The discharge process occurs due to the ionization of
the low-density gas in the capillary by an electron beam that is emanating from a hollow cathode. Due to the
strong electric field in the capillary the electrons are in the fast acceleration regime. Consequently, the full
momentum equation for the electrons is employed, rather than the electron drift velocity approach. The
smallness of the ratio of the capillary radius to the characteristic length of the electric potential variation in the
axial direction allows the construction of a quasi-one-dimensional model. The latter retains the important
two-dimensional nature of the electron flow as well as the electrodynamic boundary conditions at the capillary
wall and the conducting shield and results in a set of one-dimensional, time-dependent partial differential
equations for the on-axis distributions of the physical quantities. It is shown that those equations admit
self-similar solutions that represent ionization waves propagating with constant velocities. The resulting set of
ordinary differential equations is solved numerically for various initial conditions representing a nonperturbed
steady state ahead of the ionization front and the resulting features of the ionization waves are investigated and
discussed. The obtained solutions describe both ionization growth and virtual anode propagation and represent
fast ionization waves in plasma waveguides, for which the maximum value of the mean electron velocity is
much higher than the wave velocity. The space-charge distribution associated with the ionization waves is
found in the form of plasma oscillations with a continuously increasing frequency and a solitary envelope. The
calculated wave velocity increases with the gas pressure and this tendency is in agreement with corresponding
experimental observations.

PACS number~s!: 52.35.Mw, 52.25.Jm, 52.75.Kq
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I. INTRODUCTION AND BACKGROUND

Long-term experimental studies of electrical breakdo
of gas-filled discharge gaps have shown that in many ca
the ionization growth starts with the propagation of ioniz
tion waves~IWs!. IWs are observed in shielded dischar
tubes with a large length-to-radius ratio@1–5# as well as in
planar gaps between parallel electrodes. For various exp
mental conditions two different kinds of IWs may be o
served in planar discharge gaps, quasiplanar IWs that
weakly nonuniform in directions parallel to the electro
walls @6,7# and streamers representing highly nonunifo
filaments oriented parallel to the applied electric field a
growing rapidly in both anode and cathode directions@8,9#.
Most of the theoretical models describing the propagation
quasiplanar IWs@10,11#, IWs in long discharge tubes@11#,
and streamers@12,13# use the local-field approximatio
which allows calculating the mean ionization frequency a
the mean electron velocity as functions of the local elec
field.

The local-field approximation, which is appropriate for

*Present address: Physics Department, NRCN, POB 9001,
Sheva, Israel.
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wide range of parameters of pulse discharge at moderate
high pressures, becomes invalid for low-pressure discha
(p,1 Torr) at sufficiently high values of the electric field
to-gas density ratioE/N. Thus, the experiments with tran
sient hollow cathode discharge@14,15# and hollow-cathode-
assisted capillary discharge@16,17# deal with such high
values ofE/N, for which neither the Townsend ionizatio
coefficient nor the electron drift velocity approach can
used. Both kinds of low-pressure discharge mentioned ab
admit propagation of IWs at the prebreakdown stage, wh
are stimulated by an electron beam injected to the ano
cathode gap from the cathode hole. The modeling of s
IWs is important for determining the time delay of the ele
trical breakdown and for a better understanding of the tr
sition to a high-current stage of the discharge resulting in
creation of a hot, fully ionized plasma.

The objective of the present paper is to develop a mo
for the propagation of cathode-directed IWs and to exam
its relation to the concept of virtual anode propagation in
electron-beam-assisted fast capillary discharge~FCD!, whose
total operation time is in the range 10–100 ns. Such a
charge can be used in various applications as a high bri
ness source of vacuum-ultraviolet and soft-x-ray emissi
To achieve fast formation of the discharge plasma, the ini
on-axis ionization path is prepared through the transient h
low cathode effect@16,17#.
er
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We consider the process of ionization growth leading
an electrical breakdown of a hollow-cathode-assisted ca
lary that represents a narrow discharge tube 0,x,L,0,r
,a with the large aspect ratio (L/a@1). The capillary is
filled with a low-pressure electropositive gas with initial pa
ticle densityN0(x). The ends of the capillaryx50 and x
5L are inserted into the gas-filled hollow cathode and h
low anode cavities, respectively. With the exception o
short near-anode part, the discharge tube is surrounded
conducting shieldr 5a1h(x) having the cathode potentia
(w50) as is shown in Fig. 1. The anode potential is cons
ered as a given function of timeU(t). The regiona,r
,R(x)5a1h(x) is filled with a dielectric medium with a
given dielectric permittivity«. If the capillary wall material
differs from the dielectric spacer between the outer wall o
tube and the conducting shield then such a two-layered
electric shell will be characterized by the effective permitt
ity «eff5«(x). The discharge is assumed to be axially sy
metric: in cylindrical coordinates the electric field as well
the parameters of the discharge plasma does not depen
the azimuth angle.

The expected scenario of the ionization growth in a FC
is as follows. When a high-voltage pulse is applied to
anode, it creates an inhomogeneous electric fieldE in the gas
and in the dielectric region. At the instant when the ano
potential reaches its maximum value, the electric field in
gaseous medium is maximal in the region which is close
the anode end of the capillary and decreases to the cat
end due to the presence of the conducting shield.

If the gas in the capillary is not initially ionized but som
amount of initial electrons is produced by triggering the h
low cathode, as was done in experiments@16,17#, the ioniza-
tion by the electron-atom impact begins in the hollow ca
ode region~HCR!. The electrons created in the HCR move
the cathode hole and enter into the capillary where they
dergo fast acceleration by a strong electric field and tra
tion to the runaway regime. The ionization by a fast elect
beam in the capillary results in the creation of positive sp
charge in the near-anode domain since the fast electron
moving to the anode, while the relatively slow ions rema
close to the place of their birth. The space charge is grow
in the direction to the anode and after some time this lead
the screening of the electric field near the anode and to
shift of the field maximum closer to the cathode end. This
the stage of propagation of IWs transferring the anode
tential to the cathode hole. The structure of IWs may cont
plasma oscillations, whose frequency increases across
wave due to continuous ionization growth.

When the ionization front reaches the cathode hole,

FIG. 1. Sketch of a shielded capillary discharge:A, anode;C,
cathode; HCR, hollow cathode region;a, the capillary radius;L, the
capillary length;R, the shield radius.
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plasma behind the IWs is not yet fully ionized. The distrib
tions of the electric field and the electron and ion densitie
this instant can be used as initial conditions for the model
of further stages of the capillary discharge evolution, inclu
ing the transition to full ionization, the rapid increase of t
total electric current, the discharge constriction by ponde
motive force~micro-z pinch!, the creation of multicharged
ions, and soft-x-ray emission.

The HCR is characterized by relatively low values of t
ratio E/N, for which the local-field approximation can b
employed for calculating the mean~drift! electron velocity
and the ratio of the ionization frequency to the concentrat
of neutral atomsn i /N that can be considered as given fun
tions of E/N @18,19#. Unlike the HCR where the electric
field is much less than the average axial field in the capill
EU5U/L, the capillary domain is characterized by large v
ues ofE/N which provide very fast acceleration of near-ax
electrons. This situation is similar to the electron runaw
that was considered for fully ionized plasma in@20# and was
observed also in high-overvoltage electric breakdown wh
the plasma is weakly ionized and the electron-neutral a
collisions dominate@7#. In the presence of fast electrons th
electron drift velocity approach as well as the local-field a
proximation for the ionization rate cannot be used for t
modeling of ionization growth in the capillary. Here we me
conditions when the inertial term in the momentum equat
for electrons must be taken into account and the ioniza
occurs mainly due to collisions of the fast electrons with t
atoms in the ground state.

The paper is organized as follows: In Sec. II the ioniz
tion source and the effective friction force due to elastic a
ionizing electron-atom collisions are derived with the aid
the Boltzmann equation for electrons. When calculating
integrals in the velocity space representing the source
friction terms, the approximation of a monoenergetic beam
used for the electron distribution function. In Sec. III a sy
tem of quasi-one-dimensional~Q1D! macroscopic equation
for determining the on-axis distributions of the plasma p
rameters and the on-axis electric potential is obtained. I
shown that the electron velocity can be approximated a
potential field. A complete Q1D description is achieved
introducing the radial profiles of the electric potential and
the electron velocity potential and by using the electrod
namic boundary conditions at the plasma-dielectric wall
terface and at the conducting shield. In Sec. IV numeri
solutions of the Q1D equations in the form of steady-st
cathode-directed waves propagating with constant velo
are presented. The wave velocity has been found to be
increasing function of the gas pressure. It has been sh
that the obtained solutions describe both the ionization w
and virtual anode propagation and represent fast IWs
plasma waveguides, for which the maximum value of t
mean electron velocity is much higher than the wave vel
ity. The space-charge distribution associated with the
represents plasma oscillations characterized by a cont
ously increasing Langmuir frequency with a solitary env
lope. The main results are discussed in Sec. V.

II. BEAM APPROXIMATION FOR THE IONIZATION
SOURCE AND EFFECTIVE FRICTION

The macroscopic equations describing the ionizat
growth in the capillary at the prebreakdown stage include
rate equation for electrons
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]ne

]t
1div~neV!5S ~1!

and for single-charged positive ions

]ni

]t
5S. ~2!

Here ne and ni are the concentrations of electrons a
ions, respectively,V is the mean electron velocity, andS is
the ionization source, which can be presented in the form

S5 n̄ ine ,

n̄ i5E
uwu5A2I /m

`

n i~K ! f̄ ~w,r ,t !dw, ~3!

n i~K !5NS i~K !A2K/m.

In Eq. ~3! n i is the ionization frequency,I is the first
ionization potential,m is the electron mass,w and K
5mw2/2 are the random values of the electron velocity a
the kinetic energy, respectively,S i5S i(K) is the ionization
cross section, andf̄ 5 f /ne is the normalized electron distri
bution function, i.e., the integral off̄ over the whole velocity
space equals one. For complex atoms Eq.~3! takes into ac-
count only direct ionization from the outer shell. Direct io
ization from inner shells contributes to the ionization fr
quency in a similar way: the single integral in Eq.~3! is
replaced by the sum of integrals containing the ionizat
potentialsI s and the ionization cross sectionS is for various
shells. The mean ion velocity is neglected in Eq.~2! since it
is much less than the electron velocityV and the ionization
wave velocityW and thus the contribution of the ion motio
to the electric current density is small. The form of t
source term~3! reflects the fact that the dominant proce
determining the ionization growth at the prebreakdown st
of the capillary discharge is direct ionization of atoms in t
ground state by electron impact. The indirect~step! ioniza-
tion is neglected due to relatively low populations of excit
atomic levels. Recombination is also neglected since
characteristic time of ionization growth is much shorter th
the time needed to achieve ionization equilibrium.

Taking into account the inertial term in the electron m
mentum equation is necessary when the electrostatic forceE
is much larger than the dynamic frictionF provided by the
mean loss of momentumm of an electron in the field direc
tion due to elastic and inelastic collisions of electrons w
atoms. This condition is fulfilled if

E/N@KSm~K !/ueu, ~4!

whereSm is the total cross section of the momentum trans
in electron-atom collisions,e,0 is the electron charge. In
equality~4! means that the characteristic time of the elect
acceleration by the electric field is much less than the ch
acteristic time of the electron-atom collisions. The expe
mental data for the total cross section of the electron-a
collisions in argon, including elastic scattering, ionizing c
lisions, and excitation of atomic levels@21,22# indicate that
for K,10 keV the right-hand side of Eq.~4! does not exceed
d

n

e

e
n

-

r

n
r-
-
m

3310213V cm2. Therefore, for a rarefied gas with th
atomic densityN of the order of 1016cm23 an electric fieldE
of the order of 10 kV/cm is large enough to provide fa
acceleration of the near-axis electrons. This is confirmed
the results of numerical simulation of IWs presented in S
IV.

To take into account the loss of energy and momentum
the electron gas in the complete range of energies that
responsible for ionizing collisions (K.I ), the following ap-
proach is employed. The macroscopic momentum equa
for the gas of electrons in the axial direction on the axisr
50) is presented in the form

]~ne0u!

]t
1div~neuV!r 505

eE0ne02~F inel1Fel!ne0

m
.

~5!

Here ne05ne(x,r 50,t) is the concentration of electron
on the axis,E05Ex(x,r 50,t) and u5Vx(x,r 50,t) are the
electric field and the mean electron velocity on the axis,
spectively,F inel andFel are the effective friction forces pro
vided by inelastic and elastic electron-atom collisions,
spectively. The friction force due to electron-ion collisions
not included in Eq.~5! since the expected ionization degre
at the prebreakdown stage of FCD is small, while the en
gies of electrons are large. These circumstances resu
relatively low effective frequency of the Coulomb collision
The electron momentum equation~5! can be obtained from
the Boltzmann equation for the electron distribution functi
f (w,x,r ,t), in which the terms representing both elastic a
inelastic electron-atom collisions are taken into account

] f

]t
1w•“ f 1

eE

m
•

] f

]w
5Cel~ f !1Cinel~ f !, ~6!

whereCel( f ) andCinel( f ) are operators of elastic and inela
tic collisions; both are linear inf. The operatorCel is the
Boltzmann collision integral, in which the Maxwellian dis
tribution function for the atomsf a(wa) is assumed@23#,

Cel~ f !5E E @ f ~w8! f a~wa8!2 f ~w! f a~wa!#

3uw2wauSd~ uw2wau,x!dV dwa , ~7!

wherew andw8 are the velocities of the electron,wa andwa8
are the velocities of the atom before and after the electr
atom collision, respectively,x is the angle between the vec
tors w2wa andw82wa8 , Sd is the differential cross section
of the electron scattering by atoms,dV52p sinxdx is the
solid angle corresponding to the interval of scattering (x,x
1dx). For the sake of brevity the radius vectorr and the
time t are not shown in Eq.~7! as additional arguments of a
distribution functions. The operator of inelastic collision
can be presented as follows:

Cinel~ f !5Cinel
2 ~ f !1Cinel

1 ~ f !. ~8!

Here 2Cinel
2 ( f )dw is the density rate of electrons in th

random velocity spacew which leaves the volumedw due to
excitation and ionization. For this term a simple relaxatio
type model can be used@24#
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Cinel
2 ~ f !52n* ~w! f ~w5uwu!. ~9!

Heren* (w) is the total frequency of the electron ener
loss by inelastic collisions and, therefore, it depends on
cross sections of ionization and excitations of electronic l
els corresponding to discrete atomic states. The quan
n* (w) is zero forK,I 12 whereI 12 is the energy of the firs
excitation level. The quantityCinel

1 ( f )dw is the density rate
of the electrons that appear in a small volumedw of the
velocity space due to inelastic collisions. Neglecting the
ergy of such new free electrons in comparison with the
ergy of fast incident electrons, we present the termCinel

1 ( f )
as

Cinel
1 ~ f !5~ n̄ i1 n̄* !ned~w!,

n̄* ne5E
uwu.A2I 12 /m

n* ~w! f ~w,r ,t !dw. ~10!

Here n̄ i is the mean ionization frequency defined in E
~3! and d(w) is the Dirac delta function. The form of th
inelastic collision operators assumed in Eqs.~9! and ~10!
allows us to obtain the electron rate equation~1! by integrat-
ing the Boltzmann equation~6! over the whole velocity
space: the integral ofCinel

2 is canceled by the integral of th
second term inCinel

1 , while the integral of the termCel al-
ways results in zero. The electron momentum equation
obtained by multiplying Eq.~6! by the random momentum
mw and integrating over the velocity space. Then the te
mwCinel

1 ( f ) will not contribute to the mean momentum o
the electron gas and the friction terms in Eq.~5! will be
presented as

Felne0

m
52E wxCel@ f ~w,x,r 50,t !#dw,

F inelne0

m
5E

uwu.A2I 12 /m
wxn* ~w! f ~w,x,r 50,t !dw.

~11!

Since at the prebreakdown stage of the evolution of F
the electrostatic force is much larger than the total frictio
the mean electron trajectories are weakly perturbed by c
sions, and a beamlike electron distribution function can
used for calculating the integrals representing such cha
teristics of the electron gas as the mean ionization freque
and the mean friction force. Calculating the integrals in E
~3! and in the second of Eqs.~11! with

f ~w,r ,t !5ne~r ,t !d~w2V~r ,t !! ~12!

results in the following formulas for the mean ionizatio
frequencyn̄ i0 on the axis:

n̄ i05NuS i~Ku!, Ku5mu2/2 ~13!

and for the inelastic force

F inel /m5un* ~ uuu!. ~14!

To obtain an expression for the inelastic part of the fr
tion force that could be used in the rangeKu.I we start with
e
-

ity

-
-

.

is

D
,
li-
e
c-
cy
.

-

the model in which only one type of inelastic collision
taken into account, namely, the ionization from the ou
electronic shell of the atom by an electron impact. Assum
the beamlike form~12! for the electron distribution function
we can derive a simple relation between the valuesn̄ i0 and
F inel /m. Since the rate of the electron energy loss by ioni
tion at r 50 should be equal toI n̄ i0ne0 , this results in

I n̄ i0ne05E
uwu.A2I /m

K~w!n* ~w!ne0d~w2uex!dw

5Kun* ~ uuu!ne0 . ~15!

Then from Eqs.~14! and ~15! we obtain

F inel /m5 n̄ i0uI/Ku . ~16!

In order to calculate the elastic part of the friction for
we insert the elastic collision operator~7! into the integral on
the right-hand side of the first of Eqs.~11!, we use the dis-
tribution ~12! for both functionsf (w) and f (w8), and we
perform triple integration over the variablesw, wa , andx.
Taking into account that~i! for the elastic collisions the Ja
kobian](w,wa)/](w8,wa8) equals one,~ii ! for w85uex thex
component of the vectorw is wx5u cosx, and ~iii ! the
changes of the atomic velocity due to elastic collisions w
electrons can be neglected and, thus,uw2wau5uw82wa8u,
we obtain the following expression forFel /m:

Fel

m
5n~ uuu!u,

n~ uuu!5NuuuSel~ uuu!,

Sel~ uuu!52pE
0

p

Sd~ uuu,x!~12cosx!sinx dx. ~17!

Here Sel(uuu) represents the total elastic cross sect
with respect to momentum transfer for azimuthally symm
ric elastic scattering@23#.

The formula for the mean friction force on the tube ax
which takes into account the loss of the mean momen
due to ionizing the elastic collisions, may now be derive
For that purpose, the rate equation for electrons~1! at r 50 is
presented in the form

]ne0

]t
1div~neV!r 505~S!r 505 n̄ i0ne05

F inelKune0

muI
,

~18!

where the expression for the on-axis ionization source
been obtained with the aid of Eq.~16!. Inserting Eq.~18! into
the left-hand side of Eq.~5! allows us to calculate the mea
acceleration on the axis

du

dt
5

]u

]t
1u

]u

]x
5

eE02Feff

m
,

Feff

m
5S 11

Ku

I D F inel

m
1

Fel

m

5Nu2@~11I /Ku!S i~Ku!1Sel~Ku!#, ~19!
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whereFeff is the effective friction. As is seen from Eq.~19!,
the inelastic part of the effective friction force differs fro
the termF inel related to the inelastic scattering of a sing
electron by a large factor 11Ku /I . The additional term tha
is proportional toKu /I appears due to the ionization proce
which increases the electron density and thus results in
lowering of the electron fluid velocityu that is the mean
velocity calculated per one electron. When the direct ioni
tion by electron-atom impact from the inner electronic she
is taken into account in calculating the effective friction,
single term associated with ionization is replaced by the s
of the terms (11I s /Ku)S is(Ku). When investigating IWs,
whose structure is characterized by the conditionI s /Ku!1,
the above-mentioned sum with an appropriate accuracy
be replaced by (11I /Ku)S i ,tot whereS i ,tot(Ku) is the total
ionization cross section which takes into account ionizat
from all shells.

Finally, the effective friction forceFeff used in our nu-
merical simulations was determined by Eq.~19!, in whichS i
was replaced byS i ,tot(Ku). For the total ionization cross sec
tion S i ,tot(K) an analytical fit of experimental data for argo
~see Fig. 2! given in@21# for K,4 keV and in@25# for higher
energies has been performed. An analytical fit was used
for the experimental cross sectionSel(K) of the elastic scat-
tering of electrons by atoms of argon~Fig. 3!. The experi-
mental data forSel(K) presented in@21,22# and in@26# were
employed in the range of energies 20 eV,K,6 keV and for
K,20 eV, respectively.

In our numerical calculations the quantityKu never ex-
ceeded 10 keV. No experimental data forSel(K) in argon
were found in the literature forK.6 keV. It was noticed that
the Thomas-Fermi approximation@27#, for which Sel(K) de-
creases as 1/K2 for largeK, is not applicable in the interva
6 keV,K,10 keV. For example, atK56 keV the Thomas-
Fermi approximation results in the value ofSel which is
much lower than the experimental value. This allowed
use of the simplest extrapolation of the curve shown in Fig

FIG. 2. Ionization cross section by electron-atom impactS i for
argon normalized by its maximal experimental value (S i)max

52.94310216 cm2 as a function of the electron energy K given
eV and presented on a logarithmic scale. The signs~1! represent
the experimental data of@21#. The solid curve is the analytical fi
for S i given by Eq.~68!.
he

-
s
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an
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e
3

assuming thatSel5const for higher values ofK up to 10
keV. Although such an extrapolation overestimates the
tual values ofSel(K) in the domain 6 keV,K,10 keV and
thus leads to the overestimation of the effective friction
that domain, it is appropriate when the parameters of
IW’s are calculated numerically. Thus, it was checked t
employing the power lawSel(K)5Sel(K0)(K0 /K)2 for K
.K056 keV practically did not change the numerical r
sults. The reason is that for high electron energies the ef
tive friction is much smaller than the electrostatic force. T
same reason allowed us to neglect the loss of the elec
momentum by the excitation of atomic levels. In the range
energiesK.100 eV the total excitation cross section for a
gon does not exceed 20% of the total ionization cross sec
@21#, while the latter is about two times smaller than the to
elastic cross section~compare Figs. 2 and 3!. Therefore, the
contribution of excitation to the effective friction force ma
be neglected in calculating the main characteristics of IWs
argon FCD.

III. QUASI-ONE-DIMENSIONAL MODEL
OF PREBREAKDOWN STAGE OF FCD

In this section a closed system of equations is derived,
calculating the distributions of the electron and ion densit
@ne0(x,t) and ni0(x,t), respectively#, the electric field
E0(x,t), and the electron velocityu(x,t) on the capillary
axis at the prebreakdown stage of a FCD. It is assumed
the characteristic lengthl of the electric potential variation
in the axial direction is much larger than the inner radius
the capillarya. Since the radial electric field and the radi
electron velocity vanish atr 50, the smallness of the ratio

a/l5a!1 ~20!

results in small values ofEr /Ex andVr /Vx inside the capil-
lary. This allows the formulation of a quasi-one-dimension

FIG. 3. Elastic electron scattering cross section for argonSel

normalized by its maximal experimental value (Sel)max52.3
310215 cm2 as a function of the electron energyK given in eV and
presented in the logarithmic scale. The circles and the signs~1!
represent the experimental data of@21# and @26#, respectively. The
solid curve is the analytical fit forSel given by Eq.~69!.
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5608 PRE 62RUTKEVICH, MOND, KAUFMAN, CHOI, AND FAVRE
~Q1D! model for calculating the prebreakdown processes
a narrow capillary. The Q1D model should take into acco
the two-dimensional~2D! nature of the field and the electro
flow as well as the electrodynamic boundary conditions
the capillary wall and at the conducting shield~see the simi-
lar approach for IWs in shielded discharge tubes in@11#!.
Clearly, the Q1D approach will result in more complicat
equations in comparison with a strictly one-dimensio
theory that ignores all radial effects. The advantage of
Q1D description is in the fact that it is based on a 1D syst
of partial differential equations~PDEs! instead of 2D PDEs.

We start with a full two-dimensional and time-depende
system of equations, which includes Eqs.~1! and~2! for the
concentrations of electrons and ions, the Poisson equatio
the electric potentialw(x,r ,t)

]2w

]x2 1
1

r

]

]r S r
]w

]r D5
e~ni2ne!

«0
, ~21!

and the electron momentum equation for the electron ve
ity V(x,r ,t)

]V

]t
1~V•“ !V52

~e¹w1Feff!

m
, ~22!

whereFeff is given by vector generalization of the formu
~19!

Feff /m5P~V!V,

P~V!5N@~11I /KV!S i~KV!1Sel~KV!#V,

KV5mV2/2. ~23!

Unlike the electrostatic force, the friction force that
given by Eq.~23! is not a potential vector, i.e.,“3FeffÞ0,
and it may generate vorticityv5“3V5v(x,r ,t)eu in the
electron fluid. However, the vortex part of the velocity fie
V is small in comparison with its potential part as is sho
below.

A. Irrotational approximation for the electron velocity field

The equation for the distribution of vorticityv satisfies an
equation that can be obtained by applying the curl oper
on both sides of the momentum equation~22!. The result is

]v

]t
1V•“v1S ]Vx

]x
1

]Vr

]r
1P~V! Dv

5
dP

dV S Vx

]V

]r
2Vr

]V

]x D . ~24!

The right-hand side of Eq.~24! represents the source o
vorticity, which vanishes identically in the case of a 1D flo
The total 2D velocity field can be expressed as a sum
potential and vortex parts by

V5V~p!1V~v!, V~p!5“F, V~v!5“3~Ceu!,
~25!
n
t

t

l
e

t

for

c-

or

f

whereF is the velocity potential andC is the stream func-
tion for the vortex component of the velocity field. The latt
is determined by the equation

¹2C2
C

r 2 [
]2C

]x2 1
1

r

]

]r S r
]C

]r D2
C

r 2 52v. ~26!

It is shown now that within the approximation employe
in the current work, the vorticity may be neglected. As a fi
step toward that goal it is noticed that ifv50 at t50 and if
there is no vorticity influx to the capillary from the hollow
cathode region, i.e.,v50 at x50, thenv becomes nonzero
for x.0 only due to the source on the right-hand side of E
~24!. The vorticity generated in a narrow capillary can
presented as

v5A~x,t !r 1O~r 2!, A~0,t !50. ~27!

For the construction of a Q1D model a correct appro
mation for the radial velocityVr is needed. Since in a
shielded capillary the total radial velocity itself is small
comparison with the axial velocity, we have to che
whether the vortex part of the radial velocityVr

(v) will be
small in comparison with the potential partVr

(p) . Expression
~27! is inserted into Eq.~26! whose solution is then approxi
mated as

C52A~x,t !r 3/81O~r 4! ~28!

and, therefore,

Vr
~v!52]C/]x5~]A/]x!r 3/81O~r 4!. ~29!

To evaluate the functionA and thus the magnitude ofVr
(v)

we consider the structure of the source term. The quant
]V/]r and Vr vanish on the axis and for small values ofr
they behave linearly inr ~as well as the radial electric field!.
Then, from Eq.~24! follows thatv50 on the axis and thus
we may expect maximum vorticity near the wall. The deriv
tive dP/dV is of the order of the inverse length of the ele
tron momentum transferNSm51/lc @see Eq.~23!#. There-
fore, for a narrow capillary filled with a low-density gas th
source of vorticity is proportional to the small parameter

ac5a/lc!1. ~30!

To estimateVr
(v) the source term in Eq.~24! is calculated

to first approximation for the potential velocity fieldV
5V(p). For a narrow capillary the 2D velocity potentialF
can be presented as

F5F0~x,t !@12b~x,t !r 21O~r 3!#. ~31!

HereF0 is the velocity potential on the axis andb is of
order of 1/l2, wherel is the characteristic axial length o
both electric and velocity potentials variation. Then from t
second of Eqs.~25! we obtain

Vx
~p!5

]F0

]x
2

]~bF0!

]x
r 21O~r 3!,

Vr
~p!522bF0r 1O~r 2!, ~32!
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and thus, the ratioVr
(p)/Vx

(p) is of the order of the paramete
a defined in Eq.~20!. Using approximation~32!, the coeffi-
cients as well as the source term of Eq.~24! can be calcu-
lated. Inserting Eqs.~27! and ~32! into Eq. ~24! and collect-
ing the terms linear inr lead to a first-order PDE~the
transport equation! for the functionA(x,t)

]A

]t
1u~x,t !

]A

]x
1G~x,t !A5G~x,t !, ~33!

where

u5
]F0

]x
, G5

]u

]x
22bF01P~ uuu!,

G52S dP

dVD
V5uuu

F uuu
]~bF0!

]x
2bF0

]uuu
]x

12b2F0
2 sgn~u!G .

~34!

In principle, the solutionA(x,t) of Eq. ~33! satisfying the
conditions A(x,0)5A(0,t)50 can be obtained by th
method of characteristics~see, for instance,@28#!. Applying
that method would result in an expression forA(x,t) in
terms of integrals along the axial electron trajectoriesx(t)
given by dx/dt5u(x,t). However, such a detailed calcula
tion is not needed for evaluation of the order of magnitude
the solutionA(x,t). For transient processes associated w
the propagation of IWs the second term on the left-hand s
of Eq. ~33! is of the order of the right-hand side term. Ther
fore, the order of magnitude ofA is given by

uAu'
luGu
uuu

'UdP~u!

du UbF0'
bF0

lc
. ~35!

From Eqs.~29! and ~35! we obtain

uVr
~v!u'0.1

bF0r 3

llc
. ~36!

Finally, the ratio of the vortex radial velocity to its poten
tial counterpart can be estimated now from Eq.~36! and the
second of equations~32! as

UVr
~v!

Vr
~p!U,0.1r 2

llc
<0.1aac!1. ~37!

The vortex axial velocityVx
(v) vanishes on the axis (r

50). This is obtained from the equation divV(v)50 with
the aid of Eq.~29!. Therefore, in a narrow capillaryVx

(v) is
much less than its potential counterpartVx

(p) . This result
together with Eq.~37! means that the electron velocity ca
be described in the potential approximation. Neglecting
vorticity allows us to neglect the vortex part of the frictio
force and retain only its potential part, which is given by

Feff
~p!/m5¹H. ~38!

HeremH is the force potential that can be found from t
equation
f
h
e

-

e

¹2H[
]2H

]x2 1
1

r

]

]r S r
]H

]r D5q,

q5
div Feff

m
5P div V1

dP

dV
V•“V. ~39!

The source term in Eq.~39! can be calculated with the ai
of Eqs.~23! and~32! and consequently the 2D solution forH
can be obtained as a power series inr. Instead, a more simple
1D approximation forH is used below,

H5H~x,t !5E
x0

x

P~ uu~x8,t !u!u~x8,t !dx8. ~40!

The justification of this approximation is as follows. Sinc
at the prebreakdown stage of the FCD the electrostatic fo
is much larger than the friction force, we may expect that
condition

uFeffu
ueEu

'g5
lE

lc
!1, lE5

K~u!

ueEu
, lc5

1

NSm
~41!

is satisfied at the leading edge of an IW. HerelE is the
characteristic length of the collisionless electron accele
tion, on which the kinetic energy acquired by the electron
of the order of the electric potential drop, andlc is the char-
acteristic mean free path length of the electron. Numer
simulations presented in Sec. IV show that at the lead
edge of an IW the parameterg is of the order of 0.1 or less
A small g does not mean that the friction force can be n
glected since it is strongly coupled with the ionization effe
Clearly, in the Q1D approximation the friction force shou
be taken into account in the axial projection of the mome
tum equation. At the same time, due to the conditi
Vr /Vx!1 that follows from Eq.~20! the radial component o
the friction force may be neglected. Taking the latter in
account would result in a higher order (aac!a) correction
to the radial velocity. At the trailing edge of an IW the fric
tion and the electrostatic force are in equilibrium and t
parameterg becomes of order one. In spite of this, the rad
component of the friction force can be neglected also at
trailing edge since behind the IW both radial field and rad
velocity practically vanish due to high plasma conductivi
Thus, the force potentialH is given by Eq.~40! that repre-
sents the solution of Eq.~39!, in which the source term is
replaced by its value on the axisq(x,r 50,t).

For the electron momentum equation~22! presented in the
form

]V

]t
1~V•“ !V52“S ew

m
1H D . ~42!

with V5“F, the following integral that couples of all thre
potentialsF, w, andH may be obtained:

]F

]t
1

~¹F!2

2
1

ew

m
1H5g~ t !, ~43!
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whereg(t) is an arbitrary function of time. Since an arbitra
function of time can be added to the velocity potentialF
without any changes in the velocity field, we may assu
g(t)50. The relationship~43! is of the same type as th
Cauchy-Lagrange integral that appears in the theory of ti
dependent irrotational flows in the presence of poten
forces ~see, for instance,@29#!. Equation~43! will be used
below for calculating the functionb(x,t) and coupling the
radial velocity with on-axis distributions.

B. Waveguide approach for the electric potential

Consider now the structure of the 2D electric poten
and the electrodynamic boundary conditions. For a nar
capillary the electric potential can be presented as

w~x,r ,t !5w0~x,t !J0@k~x,t !r #

5w0~x,t !@12k2~x,t !r 2/41O~r 3!#

~0<r<a, k2a2!1!. ~44!

HereJ0 is the Bessel function of zero order,k(x,t) is an
unknown function which will be determined from the boun
ary conditions at the plasma-dielectric interface (r 5a) and
at the conducting shield (r 5R). In the plasma domain the
electric fieldE52“w is calculated from Eq.~44!

Ex52
]w0

]x
J0~kr !52

]w0

]x
1O~r 2!,

Er5w0kJ1~kr !5
k2w0r

2
1O~r 2! ~0<r ,a!. ~45!

In the dielectric spacer the electric potential distributi
satisfies the Laplace equation with boundary conditio
w(x,a10,t)5w(x,a20,t) andw(x,R,t)50. As a result, the
following approximation is employed:

w~x,r ,t !5w0~x,t !J0~ka!
N0~kR!J0~kr !2J0~kR!N0~kr !

N0~kR!J0~ka!2J0~kR!N0~ka!

~a<r<R!, ~46!

whereN0 is the Neumann function of zero order. Notice th
k is still unspecified. It will be later determined by the co
tinuity of the total normal current density atr 5a.

The radial profiles for the electric potential in the form
~44! and~46! are chosen by the same reasons as in the th
of ionization waves in long shielded discharge tubes fil
with a weakly ionized plasma@see Chap. 4 in@11# for de-
tails#. The leading edge of an IW actually represents a lin
potential wave propagating in a shielded tube as in a pla
waveguide, for which the electric field decays in space
ponentially towards the cathode. The presence of the c
ducting shieldr 5R having the cathode potential is the cau
of the field decay from the anode to the cathode. In the li
of an infinitely long tube when the cathode position is ax
52`, the linear potential wave propagating in the negat
x direction is described by Eqs.~44! and~46! with a constant
waveguide parameterk5 k̃ and with w0}exp@k(x1Wt)#,
whereW.0 is the wave velocity. Therefore, the parametek
e
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represents also the inverse characteristic length of the ele
field decay at the leading edge of an IW. The linear poten
waves are exact solutions of the Laplace equation for b
plasma and dielectric domains. Expressions~44! and ~46!
satisfy the condition for continuity of the electric potential
the plasma-dielectric interface as well as at the conduc
shield. The second boundary condition that should be sa
fied at the plasma-dielectric interface has the form

~ j r1«0]Er /]t !r 5a205««0~]Er /]t !r 5a10 . ~47!

Here j r is the radial component of the conduction curre
density. Equation~47! represents the condition for continuit
of the total radial current density atr 5a, including the dis-
placement radial current in both domains. It describes
process of charging the distributed capacitor formed by
plasma-dielectric interface and the conducting shield. In
linear theory the quantityj r is related toEr as

j r5eneEr /@m~kW1n!#. ~48!

Heren is the mean frequency of the elastic electron-at
collisions in the nonperturbed plasma. It is assumed that
ahead of the ionization front the mean energy of the el
trons is low and the inelastic collisions can be neglected. T
dispersion relation@30# that guarantees the existence of no
trivial solutions in the form of exponential waves}exp@k(x
1Wt)# may be derived from Eqs.~44!–~48!,

L~ka,R/a![
J0~ka!@J1~ka!N0~kR!2J0~kR!N1~ka!#

J1~ka!@J0~ka!N0~kR!2J0~kR!N0~ka!#

5Q~kW!,

Q~kW!5
kW~kW1n!1vp

2

«kW~kW1n!
, vp

25
e2ne

m«0
. ~49!

Herevp is the plasma frequency ahead of the ionizati
front; J1 and N1 are the Bessel and Neumann functions
first order, respectively. For a given wave velocityW relation
~49! is a transcendental equation fork. This equation has an
infinite number of roots corresponding to all possible wav
~the eigenmodes! that may propagate in a plasma wavegui
in the absence of applied external field. The eigenmo
which describes the leading edge of an IW, has the low
radial nonuniformity of the electric potential in the plasm
domain and it is determined by the minimal positive root
Eq. ~49!. To construct a Q1D model of IWs in an inhomo
geneous plasma we assume that in each cross section o
capillary (x5const) the radial profile of the electric potenti
is similar to the profile prescribed by the linear theory. Ho
ever, now the on-axis potentialw0(x,t) is not presented by
some exponential function and the waveguide parameterk is
not a constant as in the case of linear waves. Inserting
~44! into the Poisson equation~21! and collecting the terms
that are independent of the radial coordinater results in a
differential equation for the on-axis potential

]2w0

]x2 2k2~x,t !w05
e~ni02ne0!

«0
, ~50!
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which contains an unknown waveguide parameterk(x,t).
Both functionsw0(x,t) andk(x,t) should be calculated self
consistently from the Q1D theory that takes into acco
ionization and all relevant nonlinear phenomena. Insert
Eqs.~44!–~46! into Eq.~47! results in a differential equation
that can be considered as a generalization of the disper
relation ~49! to the case of nonexponential wave solution

]@kJ1~ka!@«L~ka,R/a!21##

]k

]k

]t
1kJ1~ka!

3@12«L~ka,R/a!#
] ln w0

]t
1

j rw

«0w0
50. ~51!

Here j rw is the radial component of the conduction cu
rent in the plasma atr 5a determined by

j rw522enwbaF0 , ~52!

wherenw(x,t) is the concentration of electrons on the inn
wall of the capillary andb(x,t) is the parameter in expan
sion ~31! for the velocity potential. The parameterb appears
in the Q1D model not only in Eq.~51! for the waveguide
parameterk but also in Eq.~18! for the on-axis concentration
of electrons since the latter contains the value of divV on the
axis. Inserting this quantity calculated from Eq.~32! into Eq.
~18! results in

]ne0

]t
1u

]ne0

]x
1S ]u

]x
24bF0Dne05

F inelKune0

muI
. ~53!

The equation for the on-axis concentration of ions
given by

]ni0

]t
5

F inelKune0

muI
. ~54!

In the particular case of linear potential waves, for whi

k5 k̃5const,
] ln w0

]t
5 k̃W5const, b5

k̃2

4
,

j rw5
e2ñw~Er !r 5a20

m~ k̃W1n!
, ~Er !r 5a205 k̃J1~ k̃a!w0 ,

ñw5const, ~55!

Eq. ~51! is reduced to Eq.~49!. Hereñw is the electron den-
sity on the inner wall of the capillaryr 5a20.

Equation ~49! is used for the formulation of the
asymptotic conditions at the leading edge of the IW. It
lows calculating the wave velocityW in terms of the
asymptotic value of the waveguide parameterk̃ and the pa-
rameters of weakly ionized plasma at the leading edge of
IW. The latter are determined by the characteristics of
electron beam at the cathode end of the capillary. Repla
k in Eq. ~49! by k̃ and multiplying that equation by (k̃W
1n)W results in a quadratic equation forW, whose positive
solution is given by
t
g

on

r

-

e
e
g

W52
n

2k̃
1A n2

4k̃2
1

ṽp
2

k̃2@«L~ k̃a,R/a!21#
, ṽp

25
e2ñw

m«0

.

~56!

Equation~56! is used only ifk̃ belongs to the interval 0
, k̃,km which corresponds to the first~large-scale! wave-
guide eigenmode. Only such large-scale eigensolutions
relevant for the modeling of IWs within the framework o
the Q1D approach. The quantitykm that is the upper permit-
ted value ofk̃ depends on the dielectric permittivity of th
tube’s wall « and on both geometric parametersa and R.
This limiting value is defined as the minimal positive root
the equation

«L~kma,R/a!2150. ~57!

The quantitykma, which depends on two parameters,«
and R/a, increases with« and decreases withR/a. In the
interval 0, k̃,km the wave velocityW increases monotoni
cally with the wave numberk̃. The wave velocity increase
also with the increase of the electron densityñw . Typical
behavior ofW( k̃) calculated numerically from Eq.~56! for
various values ofñw is shown in Fig. 4, wherek0 is identi-
fied with k̃. It should be noted that Eq.~56! predicts an infi-
nite wave velocity fork̃5km . This result is a consequence o
the potential approximation for the electric field (E5
2¹w) used in the present model. This approximation fa
when the wave velocity approaches the velocity of elect
magnetic wave propagation in a dielectric medium a
therefore, in that range of velocities the dispersion relat
~49! should be modified. The potential approximation
valid if «W2/c2!1, wherec is the vacuum speed of light
Actually this condition is satisfied for all values ofW ob-
tained in numerical simulations of IWs. For a given value
k̃a, the wave velocityW increases with the increase of th
ratio R/a of the shield radius to the inner

FIG. 4. The wave velocityW normalized byuc5A2I /m52.36
3108 cm/s as a function of the parameterk0a for a cylindrical
plasma waveguide with«55, R/a54, b/a50.63 filled with an
argon plasma at pressurep5600 mTorr. Curves 1, 2, and 3 corre
spond to initial concentrations of electronsne051010 cm23, 3
31010 cm23 and 531010 cm23, respectively.
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capillary radius. For a given geometry and for a fixed va
of ñw the quantityW decreases with the increase of the fr
quency of elastic collisionsn, i.e., with the increase of the
initial densityN0 of the gas. However, it does not mean th
the velocity of an IW is expected to be a decreasing funct
of N0 since for low initial gas densities the electron dens
of a beam injected to the capillary from the HCR does
remain constant but increases with the increase ofN0 .
Analysis of Eq.~56! shows that a linear or more rapid in
crease ofñw with N0 provides an increasing dependence
the wave velocity onN0 , i.e., on the initial pressure of th
gas in the HCR. Actually for a given pressure of the gas a
for a given applied voltage the wave velocity can be cal
lated only from the solution of the full nonlinear problem
Although the quantityW can be calculated from Eq.~56!, the
asymptotic value of the waveguide parameterk̃ entering into
this formulais not given a prioriand it is determined by the
maximal value of the on-axis potential obtained in the no
linear solution~see Sec. IV, in which the solutions for IW
are presented!.

In the present model the ratio of the on-wall electron co
centrationnw to the on-axis concentrationne0 should be
given as an additional parameter. It can be related to
effective electron beam radiusb if a Gaussian distribution o
the electron density in the radial direction is assumed

ne~x,r ,t !5ne0~x,t !exp~2r 2/b2!,

nw /ne05exp~2a2/b2!. ~58!

The quantityb can be taken from experiment or from
calculations performed for the HCR. To complete the syst
of Q1D equations, an equation for the parameterb should be
obtained. This can be done by inserting Eqs.~31! and ~44!
into Eq. ~43!. Collecting the terms of Eq.~43! that are inde-
pendent ofr results in an equation for the on-axis veloci
potentialF0 , whose derivative with respect tox leads to Eq.
~19! for the on-axis velocityu. Collecting the terms of Eq
~43! that are proportional tor 2 leads to the needed equatio
for b

S 12
mu2

2ew0
Db2

k2

4
5

mF0

ew0
S ]b

]t
1u

]b

]x
2

Hb

mF0
22b2F0D .

~59!

The parameters of the expected solutions that describe
IWs satisfy the conditions

lu /lb!1, ubulu
2!1, ~60!

wherelu is the characteristic length of the electron accele
tion and lb is the characteristic length of variation of th
parameterb. Conditions~60! mean that the right-hand sid
of Eq. ~59! is small and, therefore, a local approach relat
b to the waveguide parameterk can be used

b5
k2

4~11Ku /ueuw0!
, Ku5

mu2

2
. ~61!

Thus, a closed system of Q1D equations has been der
This system contains three 1D first-order partial differen
equations~19!, ~53!, and~54! for the on-axis distributions o
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the electron velocity, electron and ion concentrations, resp
tively, a second-order ordinary differential equation~50! for
the on-axis electric potential, and a first-order ordinary d
ferential equation~51! for the parameterk. An additional
ordinary differential equation is needed for calculating t
on-axis velocity potentialF0

]F0 /]x5u. ~62!

The functionF0 appears in Eq.~53! for the electron den-
sity and in Eq.~51! for the parameterk through the radial
current density on the wall that is given by Eq.~52!. The
on-axis electric field that is needed for the solution of t
electron momentum equation~19! is determined by

E052]w0 /]x. ~63!

The ionization source in Eqs.~53! and ~54! is calculated
with the aid of Eqs.~16! and ~13!. The effective friction
force in the electron momentum equation is given by
second of Eqs.~19!. The functionb(x,t) is calculated from
Eq. ~61!. Other parameters, such as the capillary radiusa, the
shield radiusR, the beam radiusb, the dielectric permittivity
« of the capillary wall, and the concentration of atomsN
should be specified as well as the initial and boundary c
ditions.

The system of QID equations obtained in the present s
tion allows calculating various transient processes relate
electron fluid dynamics in a self-consistent electric field a
to ionization growth in a FCD. If such parameters as t
initial particle density of the background gasN0 , the capil-
lary radiusa, the effective beam radiusb, the shield radiusR,
and the dielectric permittivity« are constant, the coefficient
of QID equations do not depend explicitly on the coordina
x. In this case the QID equations admit self-similar solutio
in the form of traveling waves that are described in the n
section.

IV. NUMERICAL SIMULATION OF STATIONARY
IONIZATION WAVES

In the present section the self-similar solutions of a s
tem of QID equations are considered. Such solutions dep
only on one variable

j5x1Wt, ~64!

where W.0 is a constant wave velocity. The self-simila
solutions represent steady-state waves, whose form doe
change in the process of wave propagation. Solutions
sought that describe a simultaneous propagation of the
tual anode and the ionization front in a FCD from the ano
to the cathode hole. Although mathematically self-similar s
lutions are defined in the whole range2`,j,`, they may
describe IWs propagating in a capillary with a finite length
the latter is much larger than the characteristic thickness
the ionization front. To calculate self-similar solutions w
have to solve a system of ordinary differential equatio
~ODEs! that is obtained from a QID system of PDEs if in th
latter the partial derivatives with respect to coordinatex and
time t are replaced by

]/]x5d/dj, ]/]t5Wd/dj. ~65!
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Employing relations~65! in the QID equations results in
seventh-order system of ODEs for seven unknown functi
of the variablej—the on-axis electric fieldE0 and the elec-
tric potentialw0 , the on-axis velocity of electronsu and its
potentialF0 , the on-axis concentrations of ionsni0 and elec-
trons ne0 , and the waveguide parameterk. Since only on-
axis distributions will be considered in this section, the su
script ‘‘zero’’ referred to these distributions will be omitte
henceforth. Defining the vector solutiony(j), whose compo-
nents are the seven unknown functions

y~j!5~E,w,u,F,ni ,ne ,k! ~66!

and the constant vectorh containing the parametersN0 , a, b,
R, and«, we present the system of ODEs in the form

dy

dj
5q~y;h,W!, ~67!

whereq is a known vector function. The components of t
vector q are derived from the QID equations and describ
by quite cumbersome formulas, which are not presen
here.

As an example, the properties of IWs in argon were
vestigated. The ionization cross sectionS i and the elastic
cross sectionSel as functions of electron energy were fitte
analytically to experimental data for argon as

S i53.545310216
ln z10.97 ln2z

z10.003 906z2 cm2

~1<z,500, z5Ku/15.8! ~68!

and

Sel52.29310215B~z! cm2 @z5 ln~Ku/12!#,

B~z!5H 110.9955(ez21) (z,0)

120.6333z2/(120.3065z10.7842z220.02024z3)

~0,z,6.3!. ~69!

In Eqs.~68! and~69!, Ku is the electron energy in eV. Th
experimental curves as well as their analytical fits are sho
in Figs. 2 and 3.

The system of ODEs~67! was integrated numerically in
the interval 0,j,L515 mm for a50.4 mm, b50.19 mm,
R51.6 mm, «55, and various initial pressures of argon
the range of 450–900 mTorr. The initial conditions for t
system~67! were specified for all components of the vectoy
at j50

y~j50!5y0 . ~70!

The initial conditions~70! specify the values of the elec
tric field as well as the parameters of the weakly ioniz
plasma at the cathode end of the capillary, i.e., ahead of
ionization front when the virtual anode begins to propaga
Such initial conditions are formulated with the aid of th
linear theory of electric potential waves propagating in
plasma waveguide. The linear potential wave, for which
electric potential behaves as exp(kj), describes the leading
s

-

d
d

-

n

d
he
.

e

edge of the ionizing nonlinear potential wave propagat
with the same velocityW. To switch-on the ionization pro-
cess in the beginning of the numerical calculation, it w
assumed that both the kinetic energy of the incoming e
trons and the electric potential are equal to the ionizat
potentialI 515.8 eV. This value is very small in compariso
with the electric potential of the virtual anode, which is
order of 10 keV, so that the linear theory is applicable a
thus, the electric field is related to the electric potential aj
50 as

E052k0w0 . ~71!

The initial electron and ion concentrationsne0'ni0 were
chosen in the range 1010– 1011cm23, which is expected for
the initial beam electrons ejected to the capillary from t
cathode hole. It was assumed that the initial electron den
increases linearly with the initial gas pressure (ne0 /N0
5const). In the numerical calculations the initial wavegui
parameterk0 was varied in the vicinity of the maximum
permitted valuekm calculated from Eq.~57!. For each se-
lected value ofk0 the wave velocityW was calculated from
Eq. ~56! with k̃5k0 and that value ofW was used in the
numerical integration. Both parametersk0 andW were deter-
mined by the nonlinear solution describing IW, for which
given maximum value of the electric potentialwm was
achieved. Thus, the calculated wave velocity was determi
as a function of the gas pressure and the maximal pote
wm .

To avoid calculations of the Bessel and Neumann fu
tions at each step of the integration and to reduce compu
time, the functionD5kaJ1(ka)@«L(ka,R/a)21# that ap-
pears in Eq.~51! was calculated for given values ofa, R, and
« as a function ofk. For «55, R/a54 it was found that
D(ka) in the interval 0,(ka)2,(kma)250.436 is well ap-
proximated by a simple rational function

D'D̃~ka!5
4.16@~kma!22~ka!2

120.279~ka!2 ~72!

and this function was used for integrating Eq.~51!.
Typical distributions of the physical parameters as fun

tions of the variablej5x1Wt obtained in the numerica
simulations of the steady-state IWs are shown in Figs. 5–
As mentioned before, all distributions are on axis. The
propagates from right to left: The pointsj50 and j5L
515 mm correspond to the leading and trailing edges of
IW, respectively. The distributions shown in Figs. 5–12 a
calculated for the wave velocityW523108 cm/s which cor-
responds to the virtual anode potential, i.e., the maxim
value of the on-axis electric potentialw~j! within the IW
structure, wm'12 kV for the initial gas pressurep
5600 mTorr (N05231016cm23! and for the initial concen-
tration of electrons ahead of the IW frontne056
31010cm23.

The peak of the distribution ofw~j! which is seen in Fig.
5 is created due to the reversal of the direction of the a
electric fieldE(j). The distributionE(j) is shown in Fig. 6,
where the reversal of the electric field and the train of hig
frequency oscillations ended by a low constant residual fi
are seen. The on-axis distribution of the space charge is
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sented in Fig. 7, which shows a long positively charged
main adjoining to the leading edge of the IW and a we
defined wave packet of high-frequency oscillations with
solitary envelope. The distribution of the on-axis electr
velocity u(x) is shown in Fig. 8, which demonstrates th
stages of the electron acceleration at the leading edge
deceleration within the structure of IW. The deceleration
mainly due to the sign reversal of the electric field.

Figure 9 demonstrates the distribution of ion densityni(j)
which has a steplike shape. Figures 9 and 5 together dem
strate that the obtained solution indeed represents an IW
is accompanied by virtual anode propagation. Figure
shows the distribution of the parameterh(j)51
2ne(j)/ni(j), which characterizes the deviation of th
electron-ion gas from quasineutrality. As is clearly seen fr

FIG. 5. The on-axis electric potentialw as a function of the
variable j5x1Wt for a cathode-directed IW propagating in
shielded capillary witha50.4 mm, b50.19 mm, R51.6 mm, «
55 filled with argon at pressurep5600 mTorr, andne056
31010 cm23. The virtual anode peak propagates to the left with
velocity W523108 cm/s.

FIG. 6. The on-axis distribution of the axial electric fieldE(j).
The distributions shown in this figure and in Figs. 7–12 have b
calculated for the same IW, whose parameters are indicated in
caption to Fig. 5.
-
-

nd
s

n-
at
0

this figure, a strong violation of quasineutrality takes place
the leading edge of the IW, while the electron-ion gas at
trailing edge represents a regular plasma system chara
ized by the conditionuhu!1. Figure 11 shows the distribu
tion of the total axial electric currentJ(j), which includes
both conduction and displacement components. The cur
increases at the leading edge, undergoes high-frequenc
cillations within the IW structure, and finally reaches a co
stant value at the trailing edge where the displacement
rent is very small. The behavior of the waveguide parame
k(j) is shown in Fig. 12. This parameter decreases mo
tonically and vanishes at the trailing edge of the IW. Suc
behavior ofk(j) indicates that the two-dimensional nature
the electric field at the leading edge of IW changes and
comes purely axial and one dimensional at the trailing ed

The main features of the IW structure do not chan
within the investigated range of the initial gas pressurep.
The increase ofp results in the increase of the wave veloci
W and in the lowering of the maximum velocity of the a
celerated electronsum . The ion density behind the ionizatio

n
he

FIG. 7. The on-axis distribution ofni(j)2ne(j) demonstrating
the behavior of the space charge within the IW structure.

FIG. 8. The on-axis distribution of the electron velocityu(j)
normalized byuc for the IW.
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PRE 62 5615IONIZATION WAVES IN ELECTRON-BEAM-ASSISTED, . . .
front ni(L) and the electric current at the trailing edge of t
IW, J(L), increase with the increase of the gas pressure.
plasma behind the IW is not yet fully ionized. The ionizatio
degree at the trailing edgeni(L)/N0 is close to 0.02 and it
slightly increases with pressure in the rangep
5450– 900 mTorr. The characteristic values of the m
physical parameters of the IWs calculated for various val
of p are given in Table I.

For a given value of the gas pressure, the wave velo
increases very weakly with the increase of the virtual an
potential wm . It was found that in the rangewm
510– 20 kV the wave velocity practically does not depe
on wm .

V. DISCUSSION AND CONCLUSIONS

The theoretical approach developed in the present pap
intended for the modeling of cathode-directed IWs propag
ing in shielded capillaries. The model is applicable to t
range of relatively high values ofE/N, for which the char-

FIG. 9. The on-axis distribution of the ion densityni(j) for the
IW.

FIG. 10. The distribution ofh(j)512ne(j)/ni(j) describing
the deviation from quasineutrality within the IW structure.
e

n
s

ty
e

is
t-
e

acteristic time of the electron acceleration in the electric fi
is much shorter than the characteristic time of the electr
neutral particle collisions. This allows calculating both t
ionization source and the dynamic friction in the beamli
approximation for the electron distribution function. In add
tion, it is assumed in the present model that not only
capillary aspect ratio is large (L/a@1) but also the ratio of
the characteristic length of the axial variation of the elect
potential to the capillary radius is a large parameter. T
allows the formulation of a quasi-one-dimensional model
calculating IWs in a fast capillary discharge. Within th
framework of the validity of the model, typical parameters
IWs can be seen from the results of numerical calculati
performed for argon and presented in Sec. IV.

The theoretical study of IWs presented in this pap
shows that the qualitative properties of IWs propagating
an electron-beam-assisted FCD are quite different from
properties of IWs investigated for other kinds of pulse d
charge. Although some common features of IWs in FCD a

FIG. 11. The total axial electric currentJ(j) transferred by the
IW. The functionJ(j) represents the integral of the sumeneVx

1«0]Ex /]t over the capillary cross section 0,r ,a.

FIG. 12. The distribution of the quantity (ka)2 within the IW
structure. The waveguide parameterk(j) is calculated from Eq.
~51!.
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in preionized shielded discharge tubes described in@11# are
revealed, such as the two-dimensional nature of the ele
field at the leading edge of the IW, some distinct features
IWs in FCD are evident. The first of them is the stro
acceleration of the near-axis electrons in the electric field
the leading edge of the IW followed by a strong decelerat
in the reversed field~see Fig. 8!. The wave velocity is much
less~about 20 times! than the peak value of the mean ele
tron velocity. Such conditions never were achieved in c
ventional fast IWs propagating in discharge tubes at low
values ofE/N. The role of the inertial term which was re
tained in the electron momentum equation is very import
for the formation of the electron velocity distributionu(j)
shown in Fig. 8. Unlike the electric field distributionE(j),
which after the first sign reversal oscillates with the incre
ing plasma frequency and changes direction many times
fore a small constant cathode-directed field is establishe
the trailing edge of the IW~see Fig. 6!, the amplitude of the
electron velocity oscillation is very small. This small osc
lation is superimposed on a slowly varying average elect
velocity that exceeds the critical velocityuc5A2I /m corre-
sponding to the ionization switch on. As a result, the dir
tion of the electron velocity is not reversed as it might be
the velocity would have been calculated in the drift appro
mation.

The space-charge distribution in the structure of the
has three characteristic parts, the leading-edge distribu
with a positive space charge, the solitary wave field w
plasma oscillations within the region of rapid ionization, a
the trailing edge with zero space charge. At the leading ed
a positive space charge is created due to ionization and
celeration of electrons in the cathode-directed external fi
whose magnitude increases in the positivex direction. The
space-charge distribution plays the key role in the proces
the IW formation. When the electrons of an initial electr
beam accelerate and ionize the neutral gas on their way
produce the positive space charge that is accumulated in
near-anode region. This space charge grows until its o
electric field cancels the electric field at the anode. At t
instant the maximum of the electric potential starts to pro
gate to the cathode and it is the beginning of the simu
neous propagation of both the IW and virtual anode.

TABLE I. Characteristic parameters of IWs for a given virtu
anode potentialwm512 kV and for various gas pressuresp. HereW
is the wave velocity,umax is the maximum value of the on-axi
electron velocity,ni(L) is the ion density at the anode end of th
capillary (j5L) behind the ionization front,ni(L)/N0 is the ion-
ization degree achieved behind the IW,J(L) is the total axial elec-
tric current behind the IW,uE1u is the magnitude of the first peak o
the electric field within the IW structure.

p ~mTorr! 450 600 900

W ~cm/s! 1.43108 2.03108 3.13108

umax ~cm/s! 5.23109 4.93109 4.13109

ni(L) ~cm23! 3.131014 4.631014 7.631014

ni(L)/N0 0.021 0.023 0.025
maxuni2neu ~cm23! 2.731013 1.131013 2.231012

J(L) ~A! 12 19 31
uE1u ~kV/cm! 45 47 43
ric
f

at
n

-
r

t

-
e-
at

n

-
f
-

on

e,
c-

d,

of

ey
he
n
t
-
-
t

should be noted that the distribution of the space charg
responsible also for the formation of fast IWs in weakly pr
ionized plasma at lower values ofE/N, for which the elec-
tron velocity can be calculated in the drift approximatio
However, the condition of quasineutrality is fulfilled withi
the whole structure of such IWs@11#, while for IWs in FCD
a strong violation of quasineutrality occurs at the lead
edge as is clearly seen in Fig. 10. A comparison of the
solute space-charge density~Fig. 7! and the parameterh~j!,
which indicates the deviation from quasineutrality and re
resents the same difference normalized by the local con
tration of ionsni(j) ~Fig. 10!, shows opposite trends in the
behavior. At the leading edge, where the positive spa
charge density is much less than the amplitude of the sp
charge solitary wave, the quasineutrality condition is not f
filled, while the large-amplitude solitary wave of the spa
charge is localized in the domain whereuh(j)u!1 and hence
propagates in a quasineutral plasma.

It is worth noting that the solitary waves of the spa
charge, whose typical structure is shown in Fig. 7, dif
from the classical Langmuir solitons in a collisionle
plasma@31,32# in several respects. Unlike regular Langmu
solitons, for which plasma oscillations are localized in a d
main with a reduced plasma density~sometimes such soli
tons are termed cavitons!, the space-charge solitary wave
associated with IWs exist in a partially ionized plasm
whose mean electron density increases across the ioniz
front. The increasing plasma density results also in an in
mogeneous filling of space-charge wave packets with os
lations since the plasma frequency increases across the
The regular Langmuir solitons are created due to modula
instability of plasmons and the balance of nonlinear se
constriction and dispersion. The solitary wave packets
space-charge oscillations associated with IWs are create
other mechanisms. The increase of the amplitude of sp
charge oscillations occurs due to ionization growth at
leading edge of the IW, while the lowering of the amplitud
at the trailing edge is provided by the relaxation of spa
charge in well-conducting plasma.

The calculated velocity of the IWs increases with the g
pressure~see Table I!. This result agrees with experimen
@17#, in which the reduction of the time delay for electric
breakdown with the increase of the gas pressure was
served in a FCD. In the experiment@17# an alumina capillary
with the inner radiusa50.4 mm and the lengthL51.5 cm
filled with argon was used. An electron beam originated
the HCR assisted the on-axis discharge initiation. The d
charge operated at applied voltage 10–30 kV and the
pressure in the HCR was 100–700 mTorr. The time delay
breakdown was determined as the length of timeDt5t2
2t1 between the first registration~at t5t1! of the electron
beam signal behind the anode measured by a Faraday
and a scintillator-photomultiplier assembly and the instant2
when the total current began to increase rapidly. For the
pressure in the HCRp5500 mTorr the experimental time
delay for breakdown wasDt510 ns. According to our esti-
mate~see also Fig. 5 for the electric potential distribution!,
the time for the virtual anode formation is remarkably shor
than the time of its propagation from the anode to the ca
ode end of the capillarytW5L/W. Therefore, we may com
pare the value oftW calculated by our model of IW propa
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gation with the experimental time delay. First, it should
mentioned that the experimental time delay is weakly
fected by the magnitude of applied voltage and this fact is
agreement with the weak theoretical dependence of the w
velocity on the virtual anode potential. The theoretic
traverse time forp5500 mTorr is about 9 ns, which is clos
but less than the experimental time delay for breakdo
Even though the values ofDt and tW have been found to be
very close, it may only be concluded that the present mo
predicts reasonable order of magnitude for the time dela
the relevant range of parameters used in a FCD. This is
.

d

-

m.

E.

a
l
,
0

C.
f

-
n
ve
l

.

el
in
ue

to the fact that some features of the experimental setup~such
as variable radius of the shield and the axial pressure gr
ent in the capillary! cannot be reflected by steady-state so
tions for IWs.
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