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A theory of propagation of cathode-directed ionization waves during the early stages of an electrical break-
down in a shielded, low-pressure capillary is developed. The discharge process occurs due to the ionization of
the low-density gas in the capillary by an electron beam that is emanating from a hollow cathode. Due to the
strong electric field in the capillary the electrons are in the fast acceleration regime. Consequently, the full
momentum equation for the electrons is employed, rather than the electron drift velocity approach. The
smallness of the ratio of the capillary radius to the characteristic length of the electric potential variation in the
axial direction allows the construction of a quasi-one-dimensional model. The latter retains the important
two-dimensional nature of the electron flow as well as the electrodynamic boundary conditions at the capillary
wall and the conducting shield and results in a set of one-dimensional, time-dependent partial differential
equations for the on-axis distributions of the physical quantities. It is shown that those equations admit
self-similar solutions that represent ionization waves propagating with constant velocities. The resulting set of
ordinary differential equations is solved numerically for various initial conditions representing a nonperturbed
steady state ahead of the ionization front and the resulting features of the ionization waves are investigated and
discussed. The obtained solutions describe both ionization growth and virtual anode propagation and represent
fast ionization waves in plasma waveguides, for which the maximum value of the mean electron velocity is
much higher than the wave velocity. The space-charge distribution associated with the ionization waves is
found in the form of plasma oscillations with a continuously increasing frequency and a solitary envelope. The
calculated wave velocity increases with the gas pressure and this tendency is in agreement with corresponding
experimental observations.

PACS numbegps): 52.35.Mw, 52.25.Jm, 52.75.Kq

I. INTRODUCTION AND BACKGROUND wide range of parameters of pulse discharge at moderate and
high pressures, becomes invalid for low-pressure discharge
Long-term experimental studies of electrical breakdown(P<<1 Torr) at sufficiently high values of the electric field-
of gas-filled discharge gaps have shown that in many casd§-gas density rati&/N. Thus, the experiments with tran-
the ionization growth starts with the propagation of ioniza-Sient hollow cathode discharg#4,15 and hollow-cathode-

; : ; ; assisted capillary dischargel6,17] deal with such high
tion waves(IWs). IWs are observed in shielded dISChargevalues ofE/N, for which neither the Townsend ionization

tubes with a large length-to-radius rafib-5] as wgll asin = coefficient nor the electron drift velocity approach can be
planar gaps .b.etween pafa”e' eIec_trodes. For various expetfise “Both kinds of low-pressure discharge mentioned above
mental f:OﬂdItIOI’]S t.WO different kinds Of IWs may be ob- admit propagation of IWs at the prebreakdown stage, which
served in planar discharge gaps, quasiplanar IWs that aige stimulated by an electron beam injected to the anode-
weakly nonuniform in directions parallel to the electrode -5thode gap from the cathode hole. The modeling of such
walls [6,7] and streamers representing highly nonuniformyys is important for determining the time delay of the elec-
filaments oriented parallel to the applied electric field andrical breakdown and for a better understanding of the tran-
growing rapidly in both anode and cathode directif8®].  sition to a high-current stage of the discharge resulting in the
Most of the theoretical models describing the propagation otreation of a hot, fully ionized plasma.
quasiplanar IWg410,11, IWs in long discharge tubgd1], The objective of the present paper is to develop a model
and streamerd12,13 use the local-field approximation for the propagation of cathode-directed IWs and to examine
which allows calculating the mean ionization frequency andits relation to the concept of virtual anode propagation in an
the mean electron velocity as functions of the local electricelectron-beam-assisted fast capillary dischdRfeD), whose
field. total operation time is in the range 10—100 ns. Such a dis-
The local-field approximation, which is appropriate for a charge can be used in various applications as a high bright-
ness source of vacuum-ultraviolet and soft-x-ray emission.
To achieve fast formation of the discharge plasma, the initial
*Present address: Physics Department, NRCN, POB 9001, Beemn-axis ionization path is prepared through the transient hol-
Sheva, Israel. low cathode effecf16,17.
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C plasma behind the IWs is not yet fully ionized. The distribu-
tions of the electric field and the electron and ion densities at
R this instant can be used as initial conditions for the modeling
¢ \ of further stages of the capillary discharge evolution, includ-
a x ing the transition to full ionization, the rapid increase of the
’P 0 total electric current, the discharge constriction by pondero-
o=U() motive force (microz pinch), the creation of multicharged
p=0 | ions, and soft-x-ray emission.
The HCR is characterized by relatively low values of the
FIG. 1. Sketch of a shielded capillary discharges, anode;C, ratio E/N, for which the local-field approximation can be
cathode; HCR, hollow cathode regiam;the capillary radiust., the ~ employed for calculating the meddrift) electron velocity
capillary length;R, the shield radius. and the ratio of the ionization frequency to the concentration
of neutral atoms; /N that can be considered as given func-
We consider the process of ionization growth leading totions of E/N [18,19. Unlike the HCR where the electric
an electrical breakdown of a hollow-cathode-assisted capilfield is much less than the average axial field in the capillary
lary that represents a narrow discharge tubex8L,0<r Ey=U/L, the capillary domain is characterized by large val-
<a with the large aspect ratioL{(a>1). The capillary is ues ofE/N which provide very fast acceleration of near-axis
filled with a low-pressure electropositive gas with initial par- electrons. This situation is similar to the electron runaway
ticle densityNy(x). The ends of the capillary=0 andx  that was considered for fully ionized plasma[#0] and was
=L are inserted into the gas-filled hollow cathode and hol-observed also in high-overvoltage electric breakdown when
low anode cavities, respectively. With the exception of athe plasma is weakly ionized and the electron-neutral atom
short near-anode part, the discharge tube is surrounded bycgllisions dominaté7]. In the presence of fast electrons the
conducting shield =a+h(x) having the cathode potential €lectron drift velocity approach as well as the local-field ap-
(¢=0) as is shown in Fig. 1. The anode potential is consigProximation for the ionization rate cannot be used for the

ered as a given function of timel(t). The regiona<r modeling of ionization growth in the capillary. Here we meet
<R(x)=a-+h(x) is filed with a dielectric medium with a conditions when the inertial term in the momentum equation

given dielectric permittivitys. If the capillary wall material for electrons must be taken into account and the ionization

. . . occurs mainly due to collisions of the fast electrons with the
differs from the dielectric spacer between the outer wall of & toms in the ground state

tube and the conducting shield then such a two-layered di- The paper is organized as follows: In Sec. Il the ioniza-

electric shell will be characterized by the effective permittiv- jon source and the effective friction force due to elastic and
ity ec=#(x). The discharge is assumed to be axially sym-jonizing electron-atom collisions are derived with the aid of
metric: In Cyllnd”cal COO.I‘dInateS the e|ectrIC f|e|d as We” a.Sthe Bo|tzmann equation for e|ectrons_ When Ca'cu'ating the
the parameters of the discharge plasma does not depend piiegrals in the velocity space representing the source and
the azimuth angle. friction terms, the approximation of a monoenergetic beam is
The expected scenario of the ionization growth in a FCDused for the electron distribution function. In Sec. lll a sys-
is as follows. When a high-voltage pulse is applied to thetem of quasi-one-dimension&D1D) macroscopic equations
anode, it creates an inhomogeneous electric figllthe gas  for determining the on-axis distributions of the plasma pa-
and in the dielectric region. At the instant when the anodeameters and the on-axis electric potential is obtained. It is
potential reaches its maximum value, the electric field in sshown that the electron velocity can be approximated as a
gaseous medium is maximal in the region which is close tgootential field. A complete Q1D description is achieved by
the anode end of the capillary and decreases to the cathodiéroducing the radial profiles of the electric potential and of
end due to the presence of the conducting shield. the electron velocity potential and by using the electrody-
If the gas in the capillary is not initially ionized but some Namic boundary conditions at the plasma-dielectric wall in-
amount of initial electrons is produced by triggering the hol-terface and at the conducting shield. In Sec. IV numerical
low cathode, as was done in experimei,17), the ioniza-  Solutions of the Q1D equations in the form of steady-state
tion by the electron-atom impact begins in the hollow cath-cathode-directed waves propagating with constant velocity

ode regionHCR). The electrons created in the HCR move to are presented. The wave velocity has been found to be an

the cathode hole and enter into the capillary where the uni_ncreasing fu_nction of .the gas pressure. It hgs .beefn shown
prary y that the obtained solutions describe both the ionization wave

dergo fast acceleration by a strong electric field and transi- d virtual d i d t fast IWs i
tion to the runaway regime. The ionization by a fast electrorfiN1d Virtual anocde propagation and represent 1as s In
lasma waveguides, for which the maximum value of the

beam in the capillary results in the creation of positive spac@ lect locity i h hiaher than th |
charge in the near-anode domain since the fast electrons agean electron velocity 1s much fugher than theé wave veloc-
moving to the anode, while the relatively slow ions remain'ty: The space-charge distribution associated with the IW

close to the place of their birth. The space charge is growingpresents plasma oscillations characterized by a continu-

HCR

in the direction to the anode and after some time this leads t usly Increasing Langmuir ffeq“ency .W'th a solitary enve-

the screening of the electric field near the anode and to thi@P€- The main results are discussed in Sec. V.

shift of the field maxim_um closer to the ca;hode end. This is Il. BEAM APPROXIMATION EOR THE IONIZATION

the stage of propagation of IWs transferring the anode po- SOURCE AND EFEECTIVE FRICTION

tential to the cathode hole. The structure of IWs may contain

plasma oscillations, whose frequency increases across the The macroscopic equations describing the ionization

wave due to continuous ionization growth. growth in the capillary at the prebreakdown stage include the
When the ionization front reaches the cathode hole, theate equation for electrons
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MNe . 3x10 ¥Vcem?. Therefore, for a rarefied gas with the
—; Tdiv(neV)=S (1) atomic densityN of the order of 16°cm ™3 an electric fieldE
of the order of 10 kV/cm is large enough to provide fast
and for single-charged positive ions acceleration of the near-axis electrons. This is confirmed by
the results of numerical simulation of IWs presented in Sec.
ﬁni V.
—=S. (2

To take into account the loss of energy and momentum of
the electron gas in the complete range of energies that are

Here n, and n; are the concentrations of electrons andresponsible for ionizing collisionsK(>1), the following ap-
ions, respectivelyV is the mean electron velocity, arglis ~ proach is employed. The macroscopic momentum equation
the ionization source, which can be presented in the form for the gas of electrons in the axial direction on the axis (
=0) is presented in the form

at

S=ving,
d(NgoU eEgngg— (Fiet Fepn
. B (;to )+div(neuV),:0= EO e0 ( inel el) eO.
V= J yi(K)F(w,r,t)dw, (3) m
lw|= /2T7Tm 6)
yi(K)=N3;(K) PK/m. Here ngo=ng(Xx,r=04) is the concentration of electrons

on the axisEy=E,(x,r =0t) andu=V,(x,r=0}) are the

In Eq. (3) v, is the ionization frequencyl, is the first ~ electric field and the mean electron velocity on the axis, re-
ionization potential,m is the electron massw and K  Spectively,Fi, andFg are the effective friction forces pro-
=mw?/2 are the random values of the electron velocity andvided by inelastic and elastic electron-atom collisions, re-
the kinetic energy, respectively,;=3,;(K) is the ionization spe(_:tively. The friction force due to electro_n—ipn cpllisions is
cross section, anfl=f/n, is the normalized electron distri- not included in Eq(5) since the expepted |on|zat'|on degree

. T © — . at the prebreakdown stage of FCD is small, while the ener-
bution function, i.e., the integral df over the whole _velocny gies of electrons are large. These circumstances result in
space equals one. For complex atoms @9j.takes into ac-  rg|atively low effective frequency of the Coulomb collisions.
_cou_nt only dlr_ect ionization fron_1 the outer she_:ll. _Dlrgct I0N- The electron momentum equati¢s) can be obtained from
ization from inner shells contributes to the ionization fre- e goltzmann equation for the electron distribution function
quency in a similar way: the single integral in EQ) iS¢« x r t), in which the terms representing both elastic and

replaced by the sum of integrals containing the ionizatione|astic electron-atom collisions are taken into account
potentialsl ; and the ionization cross secti@h for various

shells. The mean ion velocity is neglected in E2).since it

is much less than the electron velocifyand the ionization o tw Vit o =Ca(f) + Cine(f), (6)
wave velocityW and thus the contribution of the ion motion

to the eleCtriC current density iS Sma”. The fOI’m Of thewherecel(f) andCinel(f) are operators of e|astic and ine|as_
source term(3) reflects the fact that the dominant processtic collisions; both are linear ii. The operatorCy, is the
determining the ionization growth at the prebreakdown stag@oltzmann collision integral, in which the Maxwellian dis-

of the capillary discharge is direct ionization of atoms in theyipution function for the atoms,(w,) is assumed23],
ground state by electron impact. The indiréstep ioniza-

tion is neglected due to relatively low populations of excited ,

atomic levels. Recombination is also neglected since the Cel(f ):f f [Fw) fa(wa) = f(W)fa(wa)]
characteristic time of ionization growth is much shorter than

the time needed to achieve ionization equilibrium. X W= w,| 2 g(|w—wy|, x)dQ dwy, (7

Taking into account the inertial term in the electron mo-

mentum equation is necessary when the electrostatic &ce Wherew andw’ are the velocities of the electrow, andw,
is much larger than the dynamic frictida provided by the —are the velocities of the atom before and after the electron-

mean loss of momentum of an electron in the field direc- atom collision, respectivelyy is the angle between the vec-
. . . . P . ! ! H H . H
tion due to elastic and inelastic collisions of electrons withtorsw—w, andw’ —wy;, 24 is the differential cross section

atoms. This condition is fulfilled if of the electron scattering by aton() =2 sinydy is the
solid angle corresponding to the interval of scatteripg)(
E/IN>K2 (K)/|g], (4)  +dy). For the sake of brevity the radius vectorand the

timet are not shown in Eq.7) as additional arguments of all
whereX , is the total cross section of the momentum transferistribution functions. The operator of inelastic collisions
in electron-atom collisionse<<0 is the electron charge. In- can be presented as follows:
equality(4) means that the characteristic time of the electron
acceleration by the electric field is much less than the char- Cinel(f)=Cire(f)+Cif (). (8)
acteristic time of the electron-atom collisions. The experi-
mental data for the total cross section of the electron-atom Here —C;(f )dw is the density rate of electrons in the
collisions in argon, including elastic scattering, ionizing col- random velocity space which leaves the voluméw due to
lisions, and excitation of atomic level&1,27 indicate that excitation and ionization. For this term a simple relaxation-
for K<10keV the right-hand side of E¢4) does not exceed type model can be usd@4]
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Crel(f)=—v*(W)f (w=|w|). (9)  the model in which only one type of inelastic collision is
taken into account, namely, the ionization from the outer

Here v* (w) is the total frequency of the electron energy electronic shell of the atom by an electron impact. Assuming
loss by inelastic collisions and, therefore, it depends on théhe beamlike form(12) for the electron distribution function,
cross sections of ionization and excitations of electronic levwe can derive a simple relation between the valugsand
els corresponding to discrete atomic states. The quantiti;,.//m. Since the rate of the electron energy loss by ioniza-
v*(w) is zero forK <l,, wherel ;5 is the energy of the first tion atr=0 should be equal tbrv;yngg, this results in
excitation level. The quantitZ;-(f )dw is the density rate
of the electrons that appear in a small voluahe of the
velocity space due to inelastic collisions. Neglecting the en-
ergy of such new free electrons in comparison with the en-
ergy of fast incident electrons, we present the t€fq(f)

as Then from Eqs(14) and(15) we obtain
Ci-:;el(]c ):(7i+7*)ne5(w);

1V gNeg= K(w)v* (W)ngd(w—ue,)dw
Violleo Jw>\m (w)v*( )eo( ex)

:KUV*(|U|)neO- (15

Fine|/m:7i0U|/Ku. (16)

In order to calculate the elastic part of the friction force
we insert the elastic collision operat@ into the integral on
the right-hand side of the first of Eg&ll), we use the dis-

Herev; is the mean ionization frequency defined in Eqg. tribution (12) for both functionsf(w) and f(w'), and we
(3) and 8(w) is the Dirac delta function. The form of the perform triple integration over the variables w,, and y.
inelastic collision operators assumed in E@®. and (10)  Taking into account thafi) for the elastic collisions the Ja-
allows us to obtain the electron rate equatihby integrat-  kobiand(w,wg)/d(w’,w}) equals one(ii) for w’' = ue, thex
ing the Boltzmann equatiori6) over the whole velocity component of the vectow is w,=ucosy, and (iii) the
space: the integral o€, is canceled by the integral of the changes of the atomic velocity due to elastic collisions with
second term irCjl,, while the integral of the ternC, al-  electrons can be neglected and, thjvg—w,|=|w’—w/],
ways results in zero. The electron momentum equation isve obtain the following expression fét./m:
obtained by multiplying Eq(6) by the random momentum

?nezf v*(w)f(w,r,t)dw. (10
[w|> 2T 57m

mw and integrating over the velocity space. Then the term F_e|: v(|ul)u
mwC;ir(f) will not contribute to the mean momentum of m '
the electron gas and the friction terms in E§) will be
presented as v(|up)=NJu[Zg(|ul),
FelNeo _ _ . .
— === | wCelf(w,x,r=01]dw, Selluh=27 | Sq(lulx)(1-cosy)siny dy. (17)
FineNeo . B Here X (Ju|) represents the total elastic cross section
m e /WWXV (W) f(w,x,r=0\)dw. with respect to momentum transfer for azimuthally symmet-
v

(12) ric elastic scattering23].
The formula for the mean friction force on the tube axis,
Since at the prebreakdown stage of the evolution of FCDwhich takes into account the loss of the mean momentum
the electrostatic force is much larger than the total friction,due to ionizing the elastic collisions, may now be derived.
the mean electron trajectories are weakly perturbed by colliFor that purpose, the rate equation for electidnstr =0 is
sions, and a beamlike electron distribution function can begresented in the form
used for calculating the integrals representing such charac-

teristics of the electron gas as the mean ionization frequency ~ 9Neo AV 0= (S), o= Trong= FineKuNeo

and the mean friction force. Calculating the integrals in Eq. ot V(NeV)r=0=(S)r=0=VioNeo=—1 17—

(3) and in the second of Egsll) with (18
f(w,r,t)=ng(r,t)S(w—V(r,t)) (12 where the expression for the on-axis ionization source has

) . ~ been obtained with the aid of E(L6). Inserting Eq(18) into
results in the following formulas for the mean ionization the |eft-hand side of Eq5) allows us to calculate the mean

frequencyv;, on the axis: acceleration on the axis
Vio=NUZ(Ky), Ky=mu/2 (13 du du  du eEy—Fey
—_—— u —_— _—,
and for the inelastic force dt  at IX m
FineI/mZUV*(|U|)- (14) E: 1+ﬁ I:inel_}_E
m | m m

To obtain an expression for the inelastic part of the fric-
tion force that could be used in the rangg>| we start with =NU(1+1/K)Zi(Ky)+2e(KWT, (19
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FIG. 2. lonization cross section by electron-atom im@gcfor FIG. 3. Elastic electron scattering cross section for arggn

argon normalized by its maximal experimental valuB;)(,.x  Nnormalized by its maximal experimental value)ma=2.3

=2.94x 10 8¢cn? as a function of the electron energy K given in X 10 **cn? as a function of the electron enerffygiven in eV and
eV and presented on a logarithmic scale. The signsrepresent  presented in the logarithmic scale. The circles and the signs
the experimental data ¢21]. The solid curve is the analytical fit represent the experimental data[@f] and[26], respectively. The
for 3; given by Eq.(68). solid curve is the analytical fit foE ¢ given by Eq.(69).

whereF ¢ is the effective friction. As is seen from E€L9),  assuming tha .= const for higher values oK up to 10
the inelastic part of the effective friction force differs from kev. Although such an extrapolation overestimates the ac-
the termF;,¢ related to the inelastic scattering of a single tual values ofs .(K) in the domain 6 ke¥:K<10keV and
electron by a large factor#K,/I. The additional term that thus leads to the overestimation of the effective friction in
is proportional toK,, /I appears due to the ionization processthat domain, it is appropriate when the parameters of the
which increases the electron density and thus results in thgv’s are calculated numerically. Thus, it was checked that
lowering of the electron fluid velocity that is the mean employing the power lavB o(K)=3 o(Ko)(Ko/K)? for K
velocity calculated per one electron. When the direct ioniza=>K,=6 keV practically did not change the numerical re-
tion by electron-atom impact from the inner electronic shellssults. The reason is that for high electron energies the effec-
is taken into account in calculating the effective friction, ative friction is much smaller than the electrostatic force. The
single term associated with ionization is replaced by the surgame reason allowed us to neglect the loss of the electron
of the terms (}15/Ky)2is(K,). When investigating IWs, momentum by the excitation of atomic levels. In the range of
whose structure is characterized by the conditiph,<1,  energiesK>100eV the total excitation cross section for ar-
the above-mentioned sum with an appropriate accuracy cagon does not exceed 20% of the total ionization cross section
be replaced by (*1/K,)Z; s WhereX; o(K,) is the total  [21], while the latter is about two times smaller than the total
ionization cross section which takes into account ionizatiorelastic cross sectiofcompare Figs. 2 and)3Therefore, the
from all shells. contribution of excitation to the effective friction force may
Finally, the effective friction forceF« used in our nu-  be neglected in calculating the main characteristics of IWs in
merical simulations was determined by Ef9), in which X, argon FCD.
was replaced b¥; ,(K,). For the total ionization cross sec-
tion X 1o(K) an analytical fit of experimental data for argon
(see Fig. 2given in[21] for K< 4 keV and in[25] for higher
energies has been performed. An analytical fit was used also
for the experimental cross sectian,(K) of the elastic scat- In this section a closed system of equations is derived, for
tering of electrons by atoms of argdRig. 3. The experi- calculating the distributions of the electron and ion densities
mental data fol o (K) presented 121,22 and in[26] were  [nego(X,t) and nio(X,t), respectively, the electric field
employed in the range of energies 20 <6 keV and for  Ey(x,t), and the electron velocity(x,t) on the capillary
K<20eV, respectively. axis at the prebreakdown stage of a FCD. It is assumed that
In our numerical calculations the quantik, never ex- the characteristic lengtk of the electric potential variation
ceeded 10 keV. No experimental data ®g(K) in argon in the axial direction is much larger than the inner radius of
were found in the literature fd€ > 6 keV. It was noticed that the capillarya. Since the radial electric field and the radial
the Thomas-Fermi approximati¢@7], for whichS o(K) de-  electron velocity vanish at=0, the smallness of the ratio
creases as KP for largeK, is not applicable in the interval
6 keV<K<10keV. For example, & =6 keV the Thomas- alN=a<l1 (20
Fermi approximation results in the value &f;, which is
much lower than the experimental value. This allowed theresults in small values &, /E, andV, /V, inside the capil-
use of the simplest extrapolation of the curve shown in Fig. 3ary. This allows the formulation of a quasi-one-dimensional

IIl. QUASI-ONE-DIMENSIONAL MODEL
OF PREBREAKDOWN STAGE OF FCD
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(Q1D) model for calculating the prebreakdown processes irwhere® is the velocity potential an® is the stream func-
a narrow capillary. The Q1D model should take into accountion for the vortex component of the velocity field. The latter
the two-dimensional2D) nature of the field and the electron is determined by the equation

flow as well as the electrodynamic boundary conditions at

the capillary wall and at the conducting shig¢te the simi- S A R ( 5‘1’) v

TW —FZ—w. (26)

lar approach for IWs in shielded discharge tubed id]). VW=t oo

Clearly, the Q1D approach will result in more complicated

equations in comparison with a strictly one-dimensional It is shown now that within the approximation employed

theory that ignores all radial effects. The advantage of thén the current work, the vorticity may be neglected. As a first

Q1D description is in the fact that it is based on a 1D systenstep toward that goal it is noticed thataf=0 att=0 and if

of partial differential equation€PDES instead of 2D PDEs. there is no vorticity influx to the capillary from the hollow
We start with a full two-dimensional and time-dependentcathode region, i.e=0 atx=0, thenw becomes nonzero

system of equations, which includes E¢b. and(2) for the  for x>0 only due to the source on the right-hand side of Eq.

concentrations of electrons and ions, the Poisson equation f¢24). The vorticity generated in a narrow capillary can be

the electric potentiap(x,r,t) presented as
e 1 ﬁ( &go)_e(ni—ne) 21 w=A(X,t)r+0(r?), A(0})=0. (27)
ox2 o roar\ ar g For the construction of a Q1D model a correct approxi-

. mation for the radial velocityV, is needed. Since in a
and the electron momentum equation for the electron velocshielded capillary the total radial velocity itself is small in

ity V(x,r,t) comparison with the axial velocity, we have to check
whether the vortex part of the radial velocit§f® will be
N (V- V)V=— (eVe+Fer) 22 small in comparison with the potential paft” . Expression
ot m ' (27) is inserted into Eq(26) whose solution is then approxi-
mated as
whereF4 is given by vector generalization of the formula
(19) ¥=—A(x,t)r¥/8+0(r (28)

For/m=P(V)V, and, therefore,
VI = — 9w/ gx=(9A ax)r3/8+O(r?). (29)
P(V)=N[(1+1/Ky)Zi(Ky) +Ze(Ky) ]V,
To evaluate the functioA and thus the magnitude ¥*)
Ky=mV?/2. (23 we consider the structure of the source term. The quantities
dVIgr andV, vanish on the axis and for small values rof
Unlike the electrostatic force, the friction force that is they behave linearly in (as well as the radial electric field
given by Eq.(23) is not a potential vector, i.eV X Fg;#0, Then, from Eq.(24) follows thatw=0 on the axis and thus
and it may generate vorticitw=V XV=w(x,r,t)e, in the = we may expect maximum vorticity near the wall. The deriva-
electron fluid. However, the vortex part of the velocity field tive dP/dV is of the order of the inverse length of the elec-
V is small in comparison with its potential part as is showntron momentum transfeNs ,=1/\. [see Eq.(23)]. There-
below. fore, for a narrow capillary filled with a low-density gas the
source of vorticity is proportional to the small parameter

A. Irrotational approximation for the electron velocity field ag=alN <1. (30)

The equation for the distribution of vorticiiy satisfies an
equation that can be obtained by applying the curl operator To estimatev!*) the source term in Eq24) is calculated
on both sides of the momentum equati@?2). The result is  to first approximation for the potential velocity fiels!
=V®). For a narrow capillary the 2D velocity potentid
IVx n IV n P(V)) © can be presented as
ox ar

0 N Vet
gt ve

D=Do(x,t)[1—B(x,1)r2+0(rd]. (31)

dpP Vv NV
W2 "

=av| Vo Vrax Here d, is the velocity potential on the axis arglis of

order of 1h?, where\ is the characteristic axial length of

The right-hand side of Eq24) represents the source of both electric and velocity potentials variation. Then from the
vorticity, which vanishes identically in the case of a 1D flow. S€cond of Eqs(25) we obtain
The total 2D velocity field can be expressed as a sum of oD o BD
potential and vortex parts by vy =""0 (BPo) r2+0(r),

X X X

V=V(p)+v(“’>, V(p)zvq), V(‘“):VX(\Peg), )
(25) VP =—28®r+0(r?), (32)
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and thus, the ratizv(?/V{") is of the order of the parameter L, PH 19 oH
a defined in Eq(20). Using approximatior{32), the coeffi- VH= a7+ T\t ar =1,
cients as well as the source term of Eg4) can be calcu-
lated. Inserting Eq927) and (32) into Eq. (24) and collect- divE dp
ing the terms linear inr lead to a first-order PDHthe _ Vet b v Ve vy
transport equatignfor the functionA(x,t) v m div dv vV (39
e e _ The source term in Eq39) can be calculated with the aid
EJFU(X’I)WJFF(X’UA_G(X’U’ (33 of Egs.(23) and(32) and consequently the 2D solution fdr
can be obtained as a power series.iimstead, a more simple
where 1D approximation foH is used below,
D u X
u=— = I'=o —2BPo+P(u]), H=H(x,t)=f P(Ju(x’,Hhu(x’ . hdx’.  (40)
Xo
G= Z(d_P) |ul a(ﬁq)")_,gq)oﬂ +2p2d2 sgr(u) |. The justification of this approximation is as follows. Since
dv/y i 28 X at the prebreakdown stage of the FCD the electrostatic force

(34)  is much larger than the friction force, we may expect that the
condition
In principle, the solutiorA(x,t) of Eq. (33) satisfying the

conditions A(x,0)=A(0t)=0 can be obtained by the |Fed A
method of characteristidsee, for instancd28]). Applying eff E
that method would result in an expression #(x,t) in
terms of integrals along the axial electron trajectoriés
given by dx/dt=u(x,t). However, such a detailed calcula- is satisfied at the leading edge of an IW. Hexg is the
tion is not needed for evaluation of the order of magnitude otharacteristic length of the collisionless electron accelera-
the solutionA(x,t). For transient processes associated withtion, on which the kinetic energy acquired by the electron is
the propagation of IWs the second term on the left-hand sidef the order of the electric potential drop, angis the char-
of Eq. (33) is of the order of the right-hand side term. There- acteristic mean free path length of the electron. Numerical

=—<I1 )\—K(U) A
B VTR Ml e

NI, (41)

fore, the order of magnitude & is given by simulations presented in Sec. IV show that at the leading
edge of an IW the parametsris of the order of 0.1 or less.

NG| [dP(u) BPy A small y does not mean that the friction force can be ne-

|Al~ W* “du oY N (39 glected since it is strongly coupled with the ionization effect.

¢ Clearly, in the Q1D approximation the friction force should

From Egs.(29) and (35) we obtain be taken into account in the axial projection of the momen-

tum equation. At the same time, due to the condition
BD,r3 V, V<1 that follows from Eq(20) the radial component of

[Vi“)~0.1 (36)  the friction force may be neglected. Taking the latter into

Mo account would result in a higher orde# f.<<«) correction

to the radial velocity. At the trailing edge of an IW the fric-
tion and the electrostatic force are in equilibrium and the
parametery becomes of order one. In spite of this, the radial
component of the friction force can be neglected also at the
2 trailing edge since behind the IW both radial field and radial
<ﬂ$0_mac< 1. (37) velocity practically vanish due to high plasma conductivity.
ANc Thus, the force potentiafl is given by Eq.(40) that repre-
sents the solution of Eq39), in which the source term is
The vortex axial velocityV{*) vanishes on the axisr( replaced by its value on the axi¥(x,r =01).
=0). This is obtained from the equation dif) =0 with For the electron momentum equati(@®) presented in the
the aid of Eq.(29). Therefore, in a narrow capillary!®) is ~ form
much less than its potential counterpaff”). This result
together with Eq(37) means that the electron velocity can
be described in the potential approximation. Neglecting the
vorticity allows us to neglect the vortex part of the friction
force and retain only its potential part, which is given by

Finally, the ratio of the vortex radial velocity to its poten-
tial counterpart can be estimated now from E26) and the
second of equation@?2) as

‘V(rw)
VI(’P)

N vviv=-v i h 42
L Vvv=-v[En) @2

with V=V &, the following integral that couples of all three

Fé@?/szH. (38) potentials®, ¢, andH may be obtained:

HeremH is the force potential that can be found from the IP  (VP)* ep g(t) 43)

equation at 2 m
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whereg(t) is an arbitrary function of time. Since an arbitrary represents also the inverse characteristic length of the electric
function of time can be added to the velocity potentlal field decay at the leading edge of an IW. The linear potential
without any changes in the velocity field, we may assumevaves are exact solutions of the Laplace equation for both
g(t)=0. The relationship43) is of the same type as the plasma and dielectric domains. Expressiddd) and (46)
Cauchy-Lagrange integral that appears in the theory of timesatisfy the condition for continuity of the electric potential at
dependent irrotational flows in the presence of potentiathe plasma-dielectric interface as well as at the conducting
forces (see, for instancg,29]). Equation(43) will be used shield. The second boundary condition that should be satis-
below for calculating the functioB(x,t) and coupling the fied at the plasma-dielectric interface has the form
radial velocity with on-axis distributions.

(JrtegdE [dt)—a o=eeo(dE/It);—a40- (47)

B. Waveguide approach for the electric potential

Herej, is the radial component of the conduction current
nsity. Equatiori47) represents the condition for continuity
the total radial current density at=a, including the dis-
placement radial current in both domains. It describes the

Consider now the structure of the 2D electric potentialde
and the electrodynamic boundary conditions. For a narrovyc
capillary the electric potential can be presented as

(X1, 1) = @o(X, 1) Ig[K(X, )] process of charging the distributed capacitor formed by the
v ' ’ plasma-dielectric interface and the conducting shield. In the
= po(X,)[1—k2(x,t)r2/4+O(r3)] linear theory the quantity, is related toE, as
(0<r=<a, k’a’<1). (49 ir=enE, /[[mkW+v)]. (48)
Here J is the Bessel function of zero ordés(x,t) is an Here v is the mean frequency of the elastic electron-atom

unknown function which will be determined from the bound- ¢jisions in the nonperturbed plasma. It is assumed that far
ary conditions at the plasma-dielectric interface=@) and  ghead of the ionization front the mean energy of the elec-
at the conducting shieldrR). In the plasma domain the ons is low and the inelastic collisions can be neglected. The

electric fieldE=— V¢ is calculated from Eq(44) dispersion relatiof30] that guarantees the existence of non-
P P trivial solutions in the form of exponential wavesexgk(x
E,=— %Jo(kr): - %Jro(ﬂ)’ +W?1] may be derived from Eqg44)—(48),
Jo(ka)[J1(ka)No(kR) —Jo(kKR)N;(ka
Kot A(ka,Rla)= o(ka)[J1(ka)Ng(kR) = Jo(kR)N;(ka) ]
Er=gokdy(kn)=— +0(r3) (0<r<a). (45 Ji(ka)[Jo(ka)No(kR) =Jo(kR)Ng(ka) ]
=0(kw),
In the dielectric spacer the electric potential distribution
satisfies the Laplace equation with boundary conditions KW(KWH ) + w2 e?n
o(x,a+01)=¢(x,a—0;t) ande(x,R,t)=0. As a result, the O (kW)= — oo P wi=—= (49)
following approximation is employed: ekW(kW+v)
No(kR)Jo(kr) —Jo(KR)Ng(Kr) Here w, is the plasma frequency ahead of the ionization

P(X,r. ) =o(x,)Jo(ka) (KR)Jo(ka) = Jo(KR)No(Ka) front; J, and N, are the Bessel and Neumann functions of
0 0 0 0 first order, respectively. For a given wave velodityrelation
(a<r=R), (46) (49 is a transcendental equation flarThis equation has an
infinite number of roots corresponding to all possible waves
whereNj is the Neumann function of zero order. Notice that (the eigenmodesthat may propagate in a plasma waveguide
k is still unspecified. It will be later determined by the con- in the absence of applied external field. The eigenmode,
tinuity of the total normal current density ata. wh|ph descrlbes the leading edgg of an W, 'has the lowest
The radial profiles for the electric potential in the forms adial nonuniformity of the electric potential in the plasma
(44) and(46) are chosen by the same reasons as in the theo/§omain and it is determined by the minimal positive root of
of ionization waves in long shielded discharge tubes filledEd- (49). To construct a Q1D model of IWs in an inhomo-
with a weakly ionized plasmfsee Chap. 4 ifi11] for de- 9eneous plasma we assume that_ in each cross section _of the
tails]. The leading edge of an IW actually represents a lineafapillary (x=const) the radial profile of the electric potential
potential wave propagating in a shielded tube as in a plasm'& similar to the proﬁ[e prescnped by the linear theory. How-
waveguide, for which the electric field decays in space ex&Ver, now the on-axis potential(x,t) is not presented by
ponentially towards the cathode. The presence of the cori®me exponential function and the waveguide paranieter
ducting shield =R having the cathode potential is the causeNOt @ constant as in the case of linear waves. Inserting Eq.
of the field decay from the anode to the cathode. In the limi44) into the Poisson equatiof21) and collecting the terms
of an infinitely long tube when the cathode position isxat that are independent of the radial coordinateesults in a
= —x, the linear potential wave propagating in the negativedifferential equation for the on-axis potential
x direction is described by Eq&t4) and(46) with a constant 5
waveguide parametek=k and with ggxexgk(x+Wp], " %o K2(x,t) o=

e(niO_ neO)
! ) 2 .
whereW>0 is the wave velocity. Therefore, the paraméter X

(50
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which contains an unknown waveguide paramedér,t). 0.7
Both functionsgy(x,t) andk(x,t) should be calculated self-

consistently from the Q1D theory that takes into account 0.6}
ionization and all relevant nonlinear phenomena. Inserting
Eqgs.(44)—(46) into Eq.(47) results in a differential equation 0.5p
that can be considered as a generalization of the dispersior
relation (49) to the case of nonexponential wave solutions §0.4-

d kJi(ka)[eA(ka,R/a)—1]] ok 0.3}
Ik E + le(ka)
I . 0.2} ,
dIn¢q Jrw
X[1— + =0.
[1-eA(aRi)] =+ om0 6D | /J
Here j,, is the radial component of the conduction cur- 0 Z '
rent in the plasma at=a determined by 0 0.1 0.2 03 ka 0.4 0.5 06 07
[o}
Jrw=—2en,Bady, (52 FIG. 4. The wave velocityV normalized byu.= y21/m=2.36

. . . x10° cm/s as a function of the parametega for a cylindrical
wheren,,(x,t) is the concentration of electrons on the INNer yjasma waveguide witl =5, Ria=4, b/a=0.63 filled with an

wall of the capillary and8(x,t) is the parameter in expan- grgon plasma at pressupe=600 mTorr. Curves 1, 2, and 3 corre-
sion(31) for the velocity potential. The parametgrappears  spond to initial concentrations of electromg=10cm ™3, 3
in the Q1D model not only in Eq51) for the waveguide  x101°cm™2 and 5<10°cm 3, respectively.

parametek but also in Eq(18) for the on-axis concentration

of electrons since the latter contains the value o¥/don the v 2 w2 e,
axis. Inserting this quantity calculated from E§2) into Eq. W=——+\/—+= — ) Z)f,= .
(18) results in 2k 4k? KleA(ka,R/a)—1] Mme
(56)
dNeo dNeo du F'neIK Neo . . i .
Sotu— S o 4,8(1)0) neo=ﬁ (53) Equation(56) is used only ifk belongs to the interval 0

<k<k,, which corresponds to the firglarge-scale wave-
guide eigenmode. Only such large-scale eigensolutions are
relevant for the modeling of IWs within the framework of
the Q1D approach. The quantity, that is the upper permit-
o FineKuNeo ted value ofk depends on the dielectric permittivity of the
o mul (54)  tube’s wall ¢ and on both geometric parametersand R.

This limiting value is defined as the minimal positive root of

The equation for the on-axis concentration of ions is
given by

In the particular case of linear potential waves, for WhiChthe equation
eA(kpa,R/a)—1=0. (57

~ (9 In (Po
k=k=const,
ot

~ k2
=kW=const, B= R The quantityk,a, which depends on two parametess,
and R/a, increases withe and decreases witR/a. In the

o interval 0<k<k,, the wave velocityW increases monotoni-
E
. ey, ( r)r=a70

jwg=————————, (E/)r—a_o=kJ;(ka) e, cally with the wave numbek. The wave velocity increases
m(kW+ v) also with the increase of the electron dengity. Typical
behavior ofW(k) calculated numerically from Eq56) for
T,,= const, (55  various values ofi,, is shown in Fig. 4, wherd, is identi-

fied with k. It should be noted that E§56) predicts an infi-

Eqg. (51) is reduced to Eq49). Here,, is the electron den- pjte wave velocity folk=k,,. This result is a consequence of
sity on the inner wall of the capillary=a—0. the potential approximation for the electric fieldE£
Equation (49) is used for the formulation of the _v¢) used in the present model. This approximation fails
asymptotic conditions at the leading edge of the IW. It al-yhen the wave velocity approaches the velocity of electro-
lows calculating the wave velocityV in terms of the magnetic wave propagation in a dielectric medium and,
asymptotic value of the waveguide parameéteand the pa- therefore, in that range of velocities the dispersion relation
rameters of weakly ionized plasma at the leading edge of thé19) should be modified. The potential approximation is
IW. The latter are determined by the characteristics of thevalid if eW?/c?<1, wherec is the vacuum speed of light.
electron beam at the cathode end of the capillary. Replacingctually this condition is satisfied for all values &Y ob-
k in Eq. (49) by k and multiplying that equation bykgv ~ tained in numerical simulations of IWs. For a given value of
+ )W results in a quadratic equation fa, whose positive ka, the wave velocityW increases with the increase of the
solution is given by ratio R/a of the shield radius to the inner
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capillary radius. For a given geometry and for a fixed valuethe electron velocity, electron and ion concentrations, respec-
of A, the quantityW decreases with the increase of the fre-tively, a second-order ordinary differential equati@®) for
quency of elastic collisiong, i.e., with the increase of the the on-axis electric potential, and a first-order ordinary dif-
initial densityN, of the gas. However, it does not mean thatferential equation(51) for the parametek. An additional
the velocity of an IW is expected to be a decreasing functiorordinary differential equation is needed for calculating the
of N since for low initial gas densities the electron densityon-axis velocity potentiadb
of a beam injected to the capillary from the HCR does not
remain constant but increases with the increaseNgf dPo/IX=U. (62)
Analysis of Eq.(56) shows that a linear or more rapid in-
crease ofi,, with Ny provides an increasing dependence of
the wave velocity orNg, i.e., on the initial pressure of the urrent density on the wall that is given by E&2). The
?oarsa:ng}cganyz)F;iieA(;:t\l/nglltz;grtﬁegi/\\llz\?ep:/zslggirtf/ ggahzgisalzﬂfgn—axis electric field that i; nee_ded for the solution of the
A ; electron momentum equatid9) is determined by

lated only from the solution of the full nonlinear problem.
Although the quantityVV can be calculated from E¢6), the Eo=— dgo/dX. (63)
asymptotic value of the waveguide paramét@ntering into
this formulais not given a prioriand it is determined by the ~ The ionization source in Eq$53) and (54) is calculated
maximal value of the on-axis potential obtained in the non-with the aid of Egs.(16) and (13). The effective friction
linear solution(see Sec. 1V, in which the solutions for IWs force in the electron momentum equation is given by the
are presented second of Egs(19). The functionB(x,t) is calculated from

In the present model the ratio of the on-wall electron con-Eg. (61). Other parameters, such as the capillary radjube
centrationn,, to the on-axis concentration,, should be shield radiusR, the beam radiub, the dielectric permittivity
given as an additional parameter. It can be related to the of the capillary wall, and the concentration of atomNs
effective electron beam radilsif a Gaussian distribution of should be specified as well as the initial and boundary con-

The function®, appears in Eq53) for the electron den-
sity and in Eq.(51) for the parametek through the radial

the electron density in the radial direction is assumed ditions.
The system of QID equations obtained in the present sec-
Ne(X,1,t) = Neg(X,t)exp( —r?/b?), tion allows calculating various transient processes related to
electron fluid dynamics in a self-consistent electric field and
Ny /Neo=exp —a’/b?). (58  to ionization growth in a FCD. If such parameters as the

) . initial particle density of the background ghk, the capil-
The quantityb can be taken from experiment or from |5y radiusa, the effective beam radius the shield radiug,
calculations performed for the HCR. To complete the systemyq the dielectric permittivity are constant, the coefficients
of Q1D equations, an equation for the paramg@should be 4t | equations do not depend explicitly on the coordinate
obtained. This can be done by inserting EGEL) and (44) | this case the QID equations admit self-similar solutions

into Eq. (43). Collecting the terms of Eq43) that are inde- i the form of traveling waves that are described in the next
pendent ofr results in an equation for the on-axis velocity gaction.

potential®,, whose derivative with respect ideads to Eq.
(19) for the on-axis velocityu. Collecting the terms of Eq.
(43) that are proportional to? leads to the needed equation
for B

IV. NUMERICAL SIMULATION OF STATIONARY
IONIZATION WAVES

In the present section the self-similar solutions of a sys-

mu k2 mdo(dB B HB ) tem of QID equations are considered. Such solutions depend
- ——=— = tU———=—28D,]|. i
2eq@q 4  egqy |\ dt ax mdg only on one variable
(59
£=x+Wt, (64)
The parameters of the expected solutions that describe the
IWs satisfy the conditions where W>0 is a constant wave velocity. The self-similar
solutions represent steady-state waves, whose form does not
No/Np<1, |BIN2<1, (600  change in the process of wave propagation. Solutions are

sought that describe a simultaneous propagation of the vir-

where) , is the characteristic length of the electron acceleratyal anode and the ionization front in a FCD from the anode
tion and A is the characteristic length of variation of the to the cathode hole. Although mathematically self-similar so-

parameterB. Conditions(60) mean that the right-hand side |utions are defined in the whole ranger< £¢<, they may

of Eqg. (59) is small and, therefore, a local approach relatingdescribe IWs propagating in a capillary with a finite length if

B to the waveguide parametkrcan be used the latter is much larger than the characteristic thickness of
2 ) the ionization front. To calculate self-similar solutions we

B= K _muw (61) have to solve a system of ordinary differential equations

4(1+K,/|el¢g)’ “o2 (ODES that is obtained from a QID system of PDEs if in the

) ~latter the partial derivatives with respect to coordiratnd
Thus, a closed system of Q1D equations has been deriveflme t are replaced by

This system contains three 1D first-order partial differential
equationq19), (53), and(54) for the on-axis distributions of dlox=d/d&, oalot=Wd/dé. (65)



PRE 62 IONIZATION WAVES IN ELECTRON-BEAM-ASSISTED. . . 5613

Employing relationg65) in the QID equations results in a edge of the ionizing nonlinear potential wave propagating
seventh-order system of ODEs for seven unknown functionsvith the same velocity’V. To switch-on the ionization pro-
of the variableé—the on-axis electric fiel€, and the elec- cess in the beginning of the numerical calculation, it was
tric potential ¢y, the on-axis velocity of electronsand its  assumed that both the kinetic energy of the incoming elec-
potential®, the on-axis concentrations of iong, and elec- trons and the electric potential are equal to the ionization
trons ng, and the waveguide parameter Since only on-  potentiall =15.8 eV. This value is very small in comparison
axis distributions will be considered in this section, the subwith the electric potential of the virtual anode, which is of
script “zero” referred to these distributions will be omitted order of 10 keV, so that the linear theory is applicable and,
henceforth. Defining the vector solutigfié), whose compo- thus, the electric field is related to the electric potentiaf at

nents are the seven unknown functions =0 as
y(f)Z(E,(p,U,CD,ni,ne,k) (66) EO:_kO(pO' (71)
and the constant vectbrcontaining the parametel, a, b, The initial electron and ion concentrations,~n;, were
R, ande, we present the system of ODEs in the form chosen in the range 18-10"cm™3, which is expected for
the initial beam electrons ejected to the capillary from the
= a(vh'W 6 cathode hole. It was assumed that the initial electron density
acy;h,w), 67 . : L
dé increases linearly with the initial gas pressumeg/Ng

=const). In the numerical calculations the initial waveguide

whereq is a knqwn vector function. The components of_the arameterk, was varied in the vicinity of the maximum
vectorq are derived from the QID equations and described,qmitted valuek,, calculated from Eq(57). For each se-
by quite cumbersome formulas, which are not presente

here cted value ok, the wave velocityW was calculated from

: . . Eq. (56) with k=k, and that value ofN was used in the
As an example, the properties of IWs in argon were in numerical integration. Both parametdgsandW were deter-

vestigated. The ionization cross sectidn and the elastic mined by the nonlinear solution describing IW. for which a
cross sectiork ¢ as functions of electron energy were fitted ! y ! utl Ibing TV, whi

. . i lue of the electric potential,, was
analytically to experimental data for argon as given maximum va ) m .
y y P 9 achieved. Thus, the calculated wave velocity was determined

Inz+0.97 Irfz as a function of the gas pressure and the maximal potential
3,;=3.545% 10’16mcmz Pm-
£ e To avoid calculations of the Bessel and Neumann func-
_ tions at each step of the integration and to reduce computing
(1=2<500, z=K,/15.8) (68) o the functionD =kad,(ka)[sA (ka,R/a)— 1] that ap-
and pears in Eq(51) was calculated for given values af R and
e as a function ofk. For e=5, R/a=4 it was found that
3=2.29¢10B(¢) en?  [{=In(K/12)], D(ka) in the interval 6<(ka)2< (kya)2=0.436 is well ap-
proximated by a simple rational function
1+0.9955€¢—1) (£<0)

— 2_ 2
| 1-0.6333%/(1—0.3065 +0.78422—0.020243) D%f)(ka)=4'1Q(kma) (ka)

1-0.279ka)?

B({)

(72)

(0<{<6.3. (69 and this function was used for integrating E§1).

In Egs.(68) and(69), K, is the electron energy in eV. The Typical distributions of the physical parameters as func-

experimental curves as well as their analytical fits are showfOnS ©of the variableg=x+Wt obtained in the numerical
in Figs. 2 and 3. simulations of the steady-state IWs are shown in Figs. 5-12.

The system of ODE$67) was integrated numerically in As mentioned before, all distributions are on axis. The IW
the interval 0<é<L=15mm fora=0.4mm,b=0.19mm, Propagates from right to left: The poin&=0 and {=L

R=1.6mm, =5, and various initial pressures of argon in _ 15mm co_rrelsponhd to.th(_a Iegding ﬁnd trgiling edges of the
the range of 450—900 mTorr. The initial conditions for the IW, respectively. The distributions shown in Figs. 5-12 are

system(67) were specified for all components of the vegror c@lculated for the wave veloci/=2x 10° cm/s which cor-
at é=0 responds to the virtual anode potential, i.e., the maximum

value of the on-axis electric potentigl(¢) within the IW
y(§=0)=yo. (70)  structure, ¢,~12kV for the initial gas pressurep
=600 mTorr Ny=2x% 10cm 3) and for the initial concen-
The initial conditions(70) specify the values of the elec- tration of electrons ahead of the IW fronhg,=6
tric field as well as the parameters of the weakly ionizedx 10*%cm™3,
plasma at the cathode end of the capillary, i.e., ahead of the The peak of the distribution af(¢) which is seen in Fig.
ionization front when the virtual anode begins to propagate5 is created due to the reversal of the direction of the axial
Such initial conditions are formulated with the aid of the electric fieldE(&). The distributionE(¢) is shown in Fig. 6,
linear theory of electric potential waves propagating in awhere the reversal of the electric field and the train of high-
plasma waveguide. The linear potential wave, for which therequency oscillations ended by a low constant residual field
electric potential behaves as ek§)( describes the leading are seen. The on-axis distribution of the space charge is pre-
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FIG. 5. The on-axis electric potentigl as a function of the
variable é{=x+Wt for a cathode-directed IW propagating in a
shielded capillary witha=0.4 mm, b=0.19 mm, R=1.6 mm, ¢
=5 filled with argon at pressurgpg=600mTorr, andng =6 this figure, a strong violation of quasineutrality takes place at
X 10t°cm™3. The virtual anode peak propagates to the left with thethe leading edge of the IW, while the electron-ion gas at the
velocity W=2x 10° cm/s. trailing edge represents a regular plasma system character-

ized by the condition)»|<1. Figure 11 shows the distribu-
sented in Fig. 7, which shows a long positively charged dotion of the total axial electric currert(&), which includes
main adjoining to the leading edge of the IW and a well-both conduction and displacement components. The current
defined wave packet of high-frequency oscillations with aincreases at the leading edge, undergoes high-frequency os-
solitary envelope. The distribution of the on-axis electroncillations within the IW structure, and finally reaches a con-
velocity u(x) is shown in Fig. 8, which demonstrates the stant value at the trailing edge where the displacement cur-
stages of the electron acceleration at the leading edge amdnt is very small. The behavior of the waveguide parameter
deceleration within the structure of IW. The deceleration isk(£) is shown in Fig. 12. This parameter decreases mono-
mainly due to the sign reversal of the electric field. tonically and vanishes at the trailing edge of the IW. Such a

Figure 9 demonstrates the distribution of ion dengij{y£) behavior ofk(£) indicates that the two-dimensional nature of
which has a steplike shape. Figures 9 and 5 together demothe electric field at the leading edge of IW changes and be-
strate that the obtained solution indeed represents an IW thabmes purely axial and one dimensional at the trailing edge.
is accompanied by virtual anode propagation. Figure 10 The main features of the IW structure do not change
shows the distribution of the parametem(§)=1  within the investigated range of the initial gas presspre
—ne(€)/ni(§), which characterizes the deviation of the The increase op results in the increase of the wave velocity
electron-ion gas from quasineutrality. As is clearly seen from\W and in the lowering of the maximum velocity of the ac-

celerated electrons,,. The ion density behind the ionization

60} A 1 25
4ot / H :

[ 20}
20f / ‘

FIG. 7. The on-axis distribution af;(£) —n.(£) demonstrating
the behavior of the space charge within the IW structure.
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FIG. 6. The on-axis distribution of the axial electric fidg¢). £ (mm)

The distributions shown in this figure and in Figs. 7—12 have been
calculated for the same IW, whose parameters are indicated in the FIG. 8. The on-axis distribution of the electron velocitf¢)
caption to Fig. 5. normalized byu, for the IW.
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FIG. 9. The on-axis distribution of the ion density(£) for the FIG. 11. The total axial electric curred{¢) transferred by the
IW. The functionJ(&) represents the integral of the suem.V,

IW.
+eqdE, /dt over the capillary cross sectiorn<Q <a.

front n;(L) and the electric current at the trailing edge of the S o o
IW, J(L), increase with the increase of the gas pressure. Thacteristic time of the electron acceleration in the electric field

p|asma behind the IW is not yet fu”y jonized. The ionization is much shorter than the characteristic time of the electron-
neutral particle collisions. This allows calculating both the

degree at the trailing edgg(L)/N, is close to 0.02 and it heutral IOWS Calcl !
ionization source and the dynamic friction in the beamlike

slightly increases with pressure in the rangp on s mic Tric ! \
=450—900 mTorr. The characteristic values of the mair@Pproximation for the electron distribution function. In addi-

physical parameters of the IWs calculated for various value§0n, it is assumed in the present model that not only the
capillary aspect ratio is largd_(a>1) but also the ratio of

of p are given in Table I. - . o :
For a given value of the gas pressure, the wave velocityn€ characteristic length of the axial variation of the electric

increases very weakly with the increase of the virtual anoddotential to the capillary radius is a large parameter. This
potential ¢,. It was found that in the rangep, allows the formulation of a quasi-one-dimensional model for

=10-20kV the wave velocity practically does not dependcalculating IWs in a fast capillary discharge. Within the
framework of the validity of the model, typical parameters of

on ¢m- IWs can be seen from the results of numerical calculations
performed for argon and presented in Sec. IV.
The theoretical study of IWs presented in this paper
The theoretical approach developed in the present paperI ows that the qualltzmve properties of_IWs_ propagating in
intended for the modeling of cathode-directed IWs propagatf’ln elec_tron-beam—gssstgd FCD are qwtg different from .the
ing in shielded capillaries. The model is applicable to theProperties of IWs investigated for other kinds Of. pulse dis-
range of relatively high values d&/N, for which the char- charge. Although some common features of IWs in FCD and

V. DISCUSSION AND CONCLUSIONS
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FIG. 12. The distribution of the quantitk&)? within the IW
structure. The waveguide parametdf¢) is calculated from Eq.

FIG. 10. The distribution ofp(&)=1—ng(&)/n;(&¢) describing

the deviation from quasineutrality within the IW structure. (51).
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TABLE I. Characteristic parameters of IWs for a given virtual should be noted that the distribution of the space charge is
anode potentiap,,= 12 kV and for various gas pressuggsHereW  responsible also for the formation of fast IWs in weakly pre-
is the wave velocityUnm,y is the maximum value of the on-axis jgnize(d plasma at lower values &N, for which the elec-
electron velocityn;(L) is the ion density at the anode end of the oy velocity can be calculated in the drift approximation.
_cap_|llary (€=L) be_hlnd the lonization fron_mi(L)/No 1S tl_1e 1o However, the condition of quasineutrality is fulfilled within
ization degree achieved behind the WL ) is the total axial elec- . .
tric current behind the IWE,| is the magnitude of the first peak of the whole strugture of SUCh. IV\[&]']'. while for IWs in FCD .
the electric field within the IW structure. a strong _V|0Iat|on of qu_'clsm_eutrallty occurs at the leading

edge as is clearly seen in Fig. 10. A comparison of the ab-

p (mTor) 450 600 900 solute space-charge densifig. 7) and the parameten(é),
which indicates the deviation from quasineutrality and rep-
W (cm/s 14x10°  2.0x10°  3.1x10° resents the same difference normalized by the local concen-
Umax (CM/9) 5.2x10° 4.9x10° 4.1x10° tration of ionsn; (&) (Fig. 10, shows opposite trends in their
ni(L) (cm™9) 3.1x10"  46x10%  7.6x10% behavior. At the leading edge, where the positive space-
n;(L)/Ng 0.021 0.023 0.025 charge density is much less than the amplitude of the space-
maxn,—ng (cm3) 2.7x10%  1.1x108  2.2x10% charge solitary wave, the quasineutrality condition is not ful-
J(L) (A) 12 19 31 filled, while the large-amplitude solitary wave of the space
|E4| (kVicm) 45 47 43 charge is localized in the domain wheng £)|<1 and hence

propagates in a quasineutral plasma.

It is worth noting that the solitary waves of the space
in preionized shielded discharge tubes describeld il are  charge, whose typical structure is shown in Fig. 7, differ
revealed, such as the two-dimensional nature of the electritom the classical Langmuir solitons in a collisionless
field at the leading edge of the IW, some distinct features oplasma[31,32 in several respects. Unlike regular Langmuir
IWs in FCD are evident. The first of them is the strongsolitons, for which plasma oscillations are localized in a do-
acceleration of the near-axis electrons in the electric field atnain with a reduced plasma densigometimes such soli-
the leading edge of the IW followed by a strong deceleratiortons are termed cavitojjsthe space-charge solitary waves
in the reversed fieldgsee Fig. 8 The wave velocity is much associated with IWs exist in a partially ionized plasma,
less(about 20 timesthan the peak value of the mean elec- whose mean electron density increases across the ionization
tron velocity. Such conditions never were achieved in confront. The increasing plasma density results also in an inho-
ventional fast IWs propagating in discharge tubes at lowemogeneous filling of space-charge wave packets with oscil-
values ofE/N. The role of the inertial term which was re- lations since the plasma frequency increases across the IW.
tained in the electron momentum equation is very importanihe regular Langmuir solitons are created due to modulation
for the formation of the electron velocity distributiar(£) instability of plasmons and the balance of nonlinear self-
shown in Fig. 8. Unlike the electric field distributide( &), constriction and dispersion. The solitary wave packets of
which after the first sign reversal oscillates with the increasspace-charge oscillations associated with IWs are created by
ing plasma frequency and changes direction many times bether mechanisms. The increase of the amplitude of space-
fore a small constant cathode-directed field is established &harge oscillations occurs due to ionization growth at the
the trailing edge of the IWsee Fig. &, the amplitude of the leading edge of the IW, while the lowering of the amplitude
electron velocity oscillation is very small. This small oscil- at the trailing edge is provided by the relaxation of space
lation is superimposed on a slowly varying average electroigharge in well-conducting plasma.
velocity that exceeds the critical velocity,= \/2I/m corre- The calculated velocity of the IWs increases with the gas
sponding to the ionization switch on. As a result, the direcfressure(see Table )l This result agrees with experiment
tion of the electron velocity is not reversed as it might be if[17], in which the reduction of the time delay for electrical
the velocity would have been calculated in the drift approxi-breakdown with the increase of the gas pressure was ob-
mation. served in a FCD. In the experimdrif7] an alumina capillary

The space-charge distribution in the structure of the Ivwwith the inner radiusa=0.4mm and the length =1.5¢cm
has three characteristic parts, the leading-edge distributiofiiled with argon was used. An electron beam originated in
with a positive space charge, the solitary wave field withthe HCR assisted the on-axis discharge initiation. The dis-
plasma oscillations within the region of rapid ionization, andcharge operated at applied voltage 10-30 kV and the gas
the trailing edge with zero space charge. At the leading edggressure in the HCR was 100—700 mTorr. The time delay for
a positive space charge is created due to ionization and abreakdown was determined as the length of tike=t,
celeration of electrons in the cathode-directed external field;-t; between the first registratiofat t=t,) of the electron
whose magnitude increases in the positivdirection. The beam signal behind the anode measured by a Faraday cup
space-charge distribution plays the key role in the process afnd a scintillator-photomultiplier assembly and the instant
the IW formation. When the electrons of an initial electronwhen the total current began to increase rapidly. For the gas
beam accelerate and ionize the neutral gas on their way theyressure in the HCR=500mTorr the experimental time
produce the positive space charge that is accumulated in thielay for breakdown wadt=10ns. According to our esti-
near-anode region. This space charge grows until its owmate(see also Fig. 5 for the electric potential distribujion
electric field cancels the electric field at the anode. At thathe time for the virtual anode formation is remarkably shorter
instant the maximum of the electric potential starts to propathan the time of its propagation from the anode to the cath-
gate to the cathode and it is the beginning of the simultaode end of the capillari,=L/W. Therefore, we may com-
neous propagation of both the IW and virtual anode. Itpare the value of, calculated by our model of IW propa-




PRE 62 IONIZATION WAVES IN ELECTRON-BEAM-ASSISTED. . . 5617

gation with the experimental time delay. First, it should beto the fact that some features of the experimental setuph
mentioned that the experimental time delay is weakly af-as variable radius of the shield and the axial pressure gradi-
fected by the magnitude of applied voltage and this fact is irent in the capillary cannot be reflected by steady-state solu-
agreement with the weak theoretical dependence of the wavgns for IWs.

velocity on the virtual anode potential. The theoretical

traverse time fop=500 mTorr is about 9 ns, which is close

but less than the experimental time delay for breakdown. ACKNOWLEDGMENTS
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