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abstract: Intertidal mussels usually form complex multilayered
matrices with density-dependent effects on survival and growth, and
self-thinning scaling between biomass (B) and density (N) is ex-
pected. This article develops a tridimensional model of space-driven
self-thinning that in addition to B-N explicitly includes the degree
of packing of the mussels, measured as the number of layers (L).
The structure of our model (B-N-L) encompasses previous bi-
dimensional models (B-N) of self-thinning as special cases and en-
ables comparisons between mono- and multilayered populations. We
contrast the predictions of the bi- and tridimensional models using
data obtained from Perumytilus purpuratus mussel beds on the rocky
shores of central Chile monitored during a 28-mo period. The tri-
dimensional model suggests that density dependence is much more
frequent than hitherto indicated by bidimensional models. We pro-
pose that our space-driven tridimensional model may be applied not
only to mussels but also to other species where spatial overlapping
configurations occur.

Keywords: self-thinning, mussel, scaling, rocky shore, food driven,
space driven, intraspecific competition.

Thinning processes that occur in crowded animal and
plant populations play an important role in determining
population dynamics and community structure (Westoby
1984; Weller 1987a; Marquet et al. 1990, 1995; Bohlin et
al. 1994; Fréchette and Lefaivre 1995; Petraitis 1995a;
Fréchette et al. 1996). As individuals grow at high pop-
ulation density, negative relationships between individuals
per area (N) and average individual mass (m) or biomass
per area (B) are expected (Westoby 1984). This self-thin-
ning process can be represented by the power equation
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b2B = k N , (1)2

or equivalently by , where .b 212m = k N B = N # m2

Theoretical and experimental evidence of self-thinning
has been reported mostly for plants (Fréchette and Lefaivre
1995), where the classical exponent has beenb = 21/22

suggested (Westoby 1984). The usual explanation for self-
thinning involves competition for space (space-regulated
self-thinning) based on packing theory, which assumes
isometric growth where shape does not change with in-
creasing size of the growing individuals (Weller 1987b).
The exponent (b2) may take other values considering dif-
ferent criteria of similarity, such as changes in shape with
size (i.e., allometric growth; Weller 1987b) and/or elastic
characteristics (Weller 1987b; Norberg 1988a, 1988b). Be-
gon et al. (1986) proposed that the self-thinning process
would be best described as reflecting food limitations for
mobile animals (food-regulated self-thinning) and sug-
gested (see also Norberg 1988a; Elliot 1993;b = 21/32

Bohlin et al. 1994; Latto 1994; Armstrong 1997; Dunham
and Vinyard 1997). Furthermore, Fréchette and Lefaivre
(1990) suggested that both space and food regulate self-
thinning (see also Dunham and Vinyard 1997).

By analogy with plants, it is expected that space-regu-
lated self-thinning models should also apply to sessile an-
imals such as mussels and barnacles (Hughes and Griffiths
1988). Mussel populations, however, usually form highly
dense multilayered beds. For example, Suchanek (1986)
reported that the beds of Mytilus californianus were often
five or six layers deep; Hosomi (1985) estimated the oc-
currence of up to four strata in Mytilus galloprovincialis;
and Alvarado and Castilla (1996) counted up to three
layers in Perumytilus purpuratus beds. Multilayering affects
the self-thinning in mussel beds (Hosomi 1985; Hughes
and Griffiths 1988; Fréchette and Lefaivre 1990; Ardisson
and Bourget 1991). Hughes and Griffiths (1988) suggested
that multilayered packing changes the relationships be-
tween density and the area (or surface) occupied per in-
dividual in Choromytilus meridionalis, and Fréchette and
Lefaivre (1990) formalized this proposition in a space-
driven self-thinning model that incorporated multilayering
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through the indirect effect of density and surface, but they
did not explicitly address multilayering packing.

The mussel P. purpuratus is a dominant species that
inhabits rocky intertidal hard substrata along the south-
eastern Pacific coast of South America (Castilla 1981). It
forms multilayered matrices (beds) and shows strong in-
traspecific competition with increased packing (Alvarado
and Castilla 1996; Guiñez 1996). Therefore, these popu-
lations are expected to show self-thinning.

In this article, we present a tridimensional model that
incorporates the number of P. purpuratus layers (L), as-
suming that the thinning relationships arise from the ge-
ometry of space filling (spatial or geometric constraints),
with space as the regulating factor (Hughes and Griffiths
1988; Norberg 1988a; Fréchette and Lefaivre 1990). We
explore its consequences for the B-N scaling in beds of
this mussel and compare the self-thinning exponent fol-
lowing two approaches: the classical bidimensional B-N
diagram model proposed for multilayered populations
(Fréchette and Lefaivre 1990) and the tridimensional
model (B-N-L diagram) developed below. We show that
the B-N-L approach explains more variance and that the
B-N diagram tends to overestimate the self-thinning ex-
ponent when applied to multilayered populations. De-
partures of empirical estimations from theoretical expec-
tations under space restrictions are discussed.

Tridimensional Model

Basic Assumptions

Population Mean Allometry. We develop a model based on
population mean allometry rather than on individual al-
lometry. This distinction is relevant to maintain appro-
priate dimensions in the models. Consider, for example,
that the individual mass (mi) is allometrically related to
the individual length (li) by an exponent vi and coefficient
qi, such that (the individual allometry), and letvim = q li i i

v and q represent exponent and coefficient, respectively,
of the population mean mass (m) versus population mean
length (l), such that (the population mean allom-vm = ql
etry). Mean mass (m) is expressed as

lmax

vim = q l f(l)dl, (2)i E
lmin

where lmin and lmax are minimum and maximum length of
individuals within the population, and f(l) is the prob-
ability density function for the distribution of individual
length in a population. Then and if all thev = v q = qi i

individuals in a population have the same length; other-

wise, they are not necessarily the same (Osawa and Allen
1993).

Multilayered Populations. Bidimensional models, initially
developed for plant populations and applied to sessile an-
imals (Hughes and Griffiths 1988; Fréchette and Lefaivre
1990), assume that density (N) is inversely proportional
to the average area projected onto the substrate (S), given
that organisms occupy the substrate as a monolayer. How-
ever, in modeling self-thinning for multilayered popula-
tions, this assumption is violated (see appendix). The as-
sumption that (eq. [A1]) is only correct if the21N ∝ S
individuals are strictly monolayered and occupy 100% of
the substrate. If we define L as the number of layers, then
L represents the height of the mussel bed. We assume that
mussel beds show tight geometrical packing (Hughes and
Griffiths 1988) and that there is a critical or maximum
volume determined by space competition. In Perumytilus
purpuratus, packing geometry consists of a more or less
regular pattern of mussels within the matrix (Alvarado
and Castilla 1996), usually with the anterior-posterior axes
of individuals positioned perpendicular to the substrate
(fig. 1). If the mussels in the matrix reach the critical
volume determined by space competition, discussed above,
we expect that (eq. [A7]). This means that den-21N ∝ LS
sity (N) is inversely proportional to the average area pro-
jected onto the substrate (S) and directly proportional to
the number of layers (L). Observe that when , theL = 1
situation for monolayered populations, then equation (A7)
equals equation (A1). We use equation (A7) as a formal
approach to modeling self-thinning in the multilayered
mussel P. purpuratus.

Number of Layers. Two approaches have been used to mea-
sure the degree of packing in mussels (Hosomi 1985; Al-
varado and Castilla 1996). We follow Hosomi (1985) and
estimate the number of layers as a stratum index, in which
the total area (T) that would be occupied by individuals
if they formed a monolayer is divided by the sampling
area (As): . This definition is similar to the21L = T # A s

leaf area index used in plant ecology (Hosomi 1985), and
as such, the index does not take into account the differ-
ential interlayer structure of the bed (e.g., size distribu-
tion). The number of layers (L) reflects an increase in the
layer packing of individuals and enables us to incorporate
explicitly the number of layers into the derivation of a
model of self-thinning (see appendix), accounting for mul-
tilayering with spatial constraints.

Space-Driven Self-Thinning Model

If self-thinning in a mussel bed is determined by the ge-
ometry of packing and allometric growth (Hughes and
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Figure 1: Representation of the disposition of the mussels in the beds
with respect to the substrate. If it is assumed that maximum length (l)
is perpendicular to the substrate, then the area projected onto the sub-
strates is estimated by multiplying the maximum width (W) by maximum
height (H). The parallelepiped represents the exclusive individual space
occupied per mussel, and p is the proportion occupied with mass
(appendix).

Griffiths 1988), and assuming that the volume of the space
occupied per mussel is a rectangular parallelepiped (fig.
1), then the self-thinning dynamics may be described by
the following equation in a tridimensional model (appen-
dix):

12b b3 3B = k L N . (3)3

The subscript 3 is used to distinguish the parameters of
the tridimensional model from the parameters of bi-
dimensional models with subscript 2 (eq. [1]). Our model
is based on the assumptions that mussels are packed with
geometrical regularity into the bed and that the relation-
ships among density, average area projected onto substrate,
and the number of layers are determined by competitive
restrictions according to equation (A7). For the space-
driven model (eqq. [3] and [A13]), the geometrical tri-
dimensional model represents the population mean allom-
etry of growth only through its effects on the exponent

b3. The constant k3 changes with the proportion (p) of the
average volume (v) that is filled with biomass, the inter-
cepts of the mean surface-length ratio, and the population
mean allometry of surface growth (see appendix). It fol-
lows that only changes in mussel mean shape affect the
exponent b3, while the constant k3 is affected by both shape
and size (Somers 1986).

A log transformation of the bidimensional model (eq.
[1]) predicts a linear function according to

log B = log k 1 b log N, (4)2 2

and a log transformation of the tridimensional model (eq.
[3]) predicts a plane according to

log B = log k 1 (1 2 b ) log L 1 b log N. (5)3 3 3

Observe that when (monolayered population), equa-L = 1
tion (1) is equal to equation (3) and equation (4) is equal
to equation (5), showing that the bidimensional model is
a special case of the tridimensional one. Another rela-
tionship can be demonstrated between both models using
the log version of the tridimensional model (eq. [5]) ex-
pressed as , wherelog B = log k 1 g log L 1 l log N l = b3

and . Suppose that the tridimensional modelg = 1 2 b3

can be represented in a bidimensional B-N diagram as
, then the expectation of t islog B = log k 1 t log No

, where bL2N is the slope of the linearE(t) = l 1 g # bL2N

regression of log L on log N (Snedecor and Cochran 1980),
representing the changes in number of layers per individ-
ual in the population. Therefore, the expected adjusted
equation for the bidimensional model derived from
the tridimensional one is log B = log k 1 (l 1 g #0

, and because and , the ex-b ) log N l = b g = 1 2 bL2N 3 3

pectation of t becomes

E(t) = b (1 2 b ) 1 b = b . (6)3 L2N L2N 2

This means that for nonzero values of bL2N, the expected
b2 exponent derived from a two-dimensional B-N diagram
applied to a multilayered population will be a biased es-
timate of the value that would be obtained from a B-N-
L diagram. According to equation (6), with multilayering
b2 will be always greater than b3, at least for andb ! 13

.0 ! b ! 1L2N

Material and Methods

From May 1992 to September 1994 we monitored mussel
beds of Perumytilus purpuratus located on rocky platforms
from the middle-upper intertidal fringe (Castilla 1981) at
three sites at Punta de Tralca, Chile (337269S, 717439W).
The three sites were along a gradient of wave exposure,
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ranging from 3.0 to 5.7 m/s of maximum wave velocity
(Guiñez 1996). At each site, three mussel matrices were
randomly selected. The matrices were numbered M1–M3
at the exposed site, M4–M6 at the semiexposed site, and
M7–M9 at the sheltered site. Two of the nine matrices
initially selected for this study went extinct during the
period of sampling. One went extinct after the first sam-
pling (May 1992) and was replaced by another matrix
(M1) in September 1992, and the other (M4) went extinct
before February 1994 and was not replaced.

Two mussel samples per matrix were taken in May 1992,
September 1992, February 1993, February 1994, and Sep-
tember 1994. Each sample was taken by removing all the
individuals from an area of cm, chosen where the10 # 10
rock surface was homogeneous and without crevices. Be-
fore sampling, the outer mussel layer was painted so that
we would be able to recognize the individuals belonging
to the first layer (Alvarado and Castilla 1996). Samples
were frozen at 2207C until processed, and no attempt was
made to measure the physiological status of the individ-
uals. Dead mussels recognized by empty shells were present
in low percentages in the samples and were discarded from
analyses. Individuals !1.5 mm were assumed to be recruits
and were discarded from the analyses because observa-
tional and experimental data suggested they do not ex-
perience the effects of intraspecific competition (Alvarado
and Castilla 1996; Guiñez 1996). All the collected mussels
were counted, and those 11.5 mm were measured by re-
cording the total length using a digital caliper (50.005
mm). Total dry weight (50.05 mg) for each sample was
estimated after drying at 707C for 24 h. Density (N) and
biomass (B) per sample were expressed as the number of
individuals and the total dry weight (g) per unit area (m2)
for individuals 11.5 mm. Additional samples of P. pur-
puratus were taken in February ( ) and Septembern = 12
1994 ( ) at the same three sites at Punta de Tralcan = 12
for estimating individual and population allometries.

Analyses of regression (model 1), covariance
(ANCOVA), and variance (ANOVA) were run using PROC
GLM and PROC REG (SAS Institute 1988); PROC NLIN
was used for nonlinear regressions by maximum likelihood
least square methods. For functional regressions (model
2), we used reduced major axis (RMA) regression, follow-
ing LaBarbera (1989). For comparison of model 2 regres-
sions, we used a T-test (after Clarke 1980) or the 95%
confidence intervals (CIs) of slopes. For individual or pop-
ulation mean allometric relationships, variables were log-
arithmically transformed before application of the regres-
sion analyses, with correction for log transformation
(LaBarbera 1989). Model 2 and nonlinear regressions were
applied when estimation of scaling exponents and con-
stants were needed, and model 1 was used when the goal

was to describe the data set or to enable prediction of
expected values, as suggested by LaBarbera (1989).

The projected area to the substrate was determined from
length measures using regression equations of individual
area on length obtained from a subsample of the additional
1994 data. It was assumed that density does not affect the
individual area/length allometry. Total area occupied (T)
by a sample was estimated as the sum of the individual
area of all mussels collected 11.5 mm. Finally, the number
of layers (L) of each sample was determined by dividing
T by the sampling area ( cm2). Hence, the numberA = 100s

of layers may be interpreted as the expected number of
layers if all the mussels followed a perfect geometric ar-
rangement, as illustrated in figure 1.

Density (N), biomass per unit of area (B), and the num-
ber of layers (L) were used to assess observed self-thinning
relationships, considering that they were parent (random)
variables rather than derived variables (Scrosati 1996).
Spurious correlation arises when a derived ratio (derived
from two random variables) is plotted against its own
denominator as a common term, as could be the case if
we were using mean mass (biomass divided by density)
instead of biomass per area, or the number of layers es-
timated as the mean area projected to the substrate mul-
tiplied by density instead of summing the areas for all the
individuals (for discussion, see Scrosati 1996 and Petraitis
1995b).

The proposition that for multilayered populations a
plane in a log B-N-L diagram (eq. [5]) is a better repre-
sentation of the scaling than a line in a B-N diagram (eq.
[4]) was tested applying linear regressions to the log trans-
formation of B, N, and L, using log B as the dependent
variable in both equations. Two validation criteria were
used to select the best model: the adjusted determination
coefficient (R2) and the value of F (Sokal and Rohlf 1989).
The space-driven tridimensional model (eq. [3]) predicts
that the parameter b3 determines the exponent of both L
and N, being and b3, respectively. This cannot be1 2 b3

accomplished with the linear regression used above but
requires a nonlinear regression protocol. So, we use equa-
tion (3) as the model in the nonlinear regression for fitting
the data and to determine the value of b3.

The expected (b2 and b3) theoretical exponents were
obtained from population allometries using data from the
separate samples obtained in February and September
1994 and applying RMA regression. The b2 exponent for
the bidimensional model according to space constraints
and growth allometry models was estimated following
equation (A3), where the allometric index (a) was ob-
tained from the mean mass on mean length regression and
the allometric effect of multilayering («) from the mean
size-density relationships. For the tridimensional model,
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Table 1: Three-way ANOVA: sites, matrix, and date of sam-
pling on biomass, density, and number of layers

Source of variation df
Sum of
squares F P

Biomass:
Site 2 .00032 .03 .973
Matrix within site 6 .03488 .75 .615
Date 4 .14576 4.68 .003
Interaction date # site 8 .04494 .72 .671
Error 42 .32690

Density:
Site 2 .23053 2.24 .187
Matrix within site 6 .30822 6.91 !.001
Date 4 .56731 19.07 !.001
Interaction date # site 8 .07329 1.23 .305
Error 42 .31241

Number of layers:
Site 2 .03523 2.06 .209
Matrix within site 6 .05137 1.47 .210
Date 4 .16239 6.99 !.001
Interaction date # site 8 .05305 1.14 .356
Error 42 .24381

Note: Sites and dates were considered fixed factors, and matrix was

considered a random factor nested within sites. The error term for sites

was the effect of matrix within site.

the expected b3 exponent was obtained following equation
(A14) but using the following relationship:

z/y z/ym = c # (c # p) # S , (7)z y

derived from equations (A5) and (A6), given that m =
(appendix). The exponent z/y was obtained from RMApv

regression applied on log transformation of m and S, and
b3 was estimated as . The observed exponents (b21 2 z/y
and b3) and the expected values according to the bi- and
tridimensional models were compared to test whether the
observed exponents agreed with the predictions of the
space-driven models.

Results

A total of 17,287 Perumytilus purpuratus individuals were
sampled, of which 57.2% were larvae, postlarvae, or ju-
veniles !1.5 mm. The frequency distribution of mussel
maximum length for the five collection dates had two
modes: one corresponding to juveniles under 1.5 mm and
the other to adults from 21.5 to 27.5 mm, confirming
previous results (Alvarado and Castilla 1996).

The slopes of the fitted regression of (log) individual
projected area (Si) on (log) individual length (li) between
dates (February 1994 vs. September 1994) within sites were
not significantly different ( ) and not affected byP 1 .21
density ( , , ). The predictive re-F = 0.09 df = 1, 23 P = .77
gression equations fitted for the relationship Si versus li,
when dates were pooled within sites, were S = 0.350 #i

( , , ) for the exposed site,1.972 2l R = 0.990 P ! .001 n = 334i

( , , ) for the2.015 2S = 0.298 # l R = 0.989 P ! .001 n = 276i i

semiexposed site, ( , ,2.012 2S = 0.301 # l R = 0.990 P ! .001i i

) for the protected site, and 1.997n = 308 S = 0.318 # li i

( , , ) for the pooled data. The2R = 0.995 P ! .001 n = 918
slopes among sites were significantly different (ANCOVA,

, , ). Slopes of the sheltered andF = 4.23 df = 2, 912 P = .015
semiexposed sites were not statistically different (t =

, ), but these two were significantly steeper than0.05 P = .96
that at the exposed site ( ). The frequency distri-P ! .001
bution of the estimated number of layers (L) for all sam-
ples had a mean of 1.4 and ranged from 0.6 to 2.2, with
a normal distribution ( , Kolmogorov-SmirnovP = .48
test). Only four samples out of 84 had an estimated num-
ber of layers !1, which implies that if they adopted the
assumed geometrical arrangement, the mussels could not
have covered all the area sampled. Biomass, density, and
the number of layers showed statistically significant tem-
poral changes, but there were no significant variations as-
sociated with sites and their interaction with dates (table
1; fig. 2). The maximum ranges of variables expressed as
pWR, the log of the ratio of maximum to minimum values

(LaBarbera 1989), were 0.57 for density, 0.32 for biomass,
and 0.31 for the number of layers.

Comparisons of Self-Thinning Models Predictions

B-N versus B-N-L Representations. Figure 3 shows the data
and the adjusted regressions for the bi- and tridimensional
model representations (A and B, respectively). The ad-
justed determination coefficients between the bi- and tri-
dimensional models were significantly different (F =s

, ). The tridimensional model (fig. 3B) ex-162.9 P ! .001
plains more variance with correspondingly larger F values
( ) than the bidimensional model ( ; fig.F = 140.5 F = 24.9
3A), using either all the data pooled or the samples av-
eraged by mussel bed and date. The residuals of the tri-
dimensional model were normally distributed (fig. 3C),
and they do not show heterogeneity of variance.

Table 2 (columns in pt. A) shows the slopes obtained
from adjusted regressions for the bidimensional model (B-
N diagram) of the nine matrices, pooled data, and sites,
wherein the number of layers (L) was not considered. All
the slopes for each matrix, pooled data, and sites were
positives except for matrix M4, whose lower confidence
interval was negative. The average slope across the nine
matrices (average , ) was not signif-slope = 0.72 SE = 0.07
icantly different from the value obtained from pooled data
( ).P 1 .5

The regressions for the nine matrices using the B-N-L
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Figure 2: Means (11 SE) of the log of mussel biomass (log B), density (log N), and number of layers (log L) among the three sites and five dates
of sampling at Punta de Tralca. The sites were located in a gradient of wave exposure: , , and .E = exposed SE = semiexposed S = sheltered
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Figure 3: Comparison of the graphical representation of the data between (A) the bidimensional model and (B, C) the tridimensional model. A,
Graph of log B on log N for the data with replicated samples averaged. The continuous line represents the adjusted regression (model 2), but the
statistics (R2 and P) are from model 1. B, Tridimensional graph (log-log-log) representing the self-thinning relationships among mussel biomass
(log B), density (log N), and number of layers (log L) for the data with replicated samples averages. The plane represents the linear regression
adjusted (model 1). C, Residuals versus number of layers (log L) for the adjusted regression from the tridimensional model. The residuals were
normally distributed ( , Kolmogorov-Smirnov test).P 1 .5
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Table 2: Summary of observed exponents for each mussel matrix, pooled data for sites, and all data
pooled (95% confidence limits in brackets) fitted by regression for bi- and tridimensional models

Matrix

A. b2B = k N2 B. C DB = kN L C. b 12b3 3B = k N L3

n b2 [95% CI] R2 C D R2 b3 [95% CI]

M1 10 .66 [.16, 1.17] .14 2.26 1.36 1.00 2.26 [2.36, 2.16]
M2 10 .76 [.22, 1.30] .14 2.08 1.18 .91 2.09 [2.31, .13]
M3 10 1.25 [.70, 1.80] .71 2.06 1.11 .99 2.11 [2.29, .08]
M4 6 .71 [2.02, 1.43] .46 2.12 1.18 .94 2.08 [2.44, .22]
M5 10 .69 [.33, 1.06] .59 2.02 .99 .98 2.03 [2.14, .09]
M6 10 .70 [.31, 1.09] .94 2.08 1.11 .86 .03 [2.31, .36]
M7 10 .61 [.27, .95] .53 2.13 1.14 .93 2.10 [2.29, .10]
M8 10 .46 [.08, .84] .00 2.18 1.17 .98 2.18 [2.25, 2.12]
M9 8 .61 [.23, .98] .62 2.01 1.05 .96 .01 [2.16, .19]
Site:

Exposed 30 .87 [.58, 1.17] .34 2.16 1.21 .97 2.17 [2.26, 2.09]
Semiexposed 26 .66 [.46, .85] .52 2.09 1.08 .92 2.07 [2.19, .05]
Sheltered 28 .50 [.34, .66] .41 2.15 1.14 .94 2.15 [2.21, 2.08]

Pooled data 84 .62 [.50, .73] .35 2.18 1.17 .92 2.16 [2.21, 2.11]

Note: A: Bidimensional model fitted by functional regression. B: Tridimensional model fitted by linear regression on

log transformed data. C: Tridimensional model fitted by nonlinear regression.

representation (table 2, columns in pts. B and C) were all
statistically significant ( ), b3 ranged from 10.03 toP ! .02
20.26, with a mean across matrices of 20.09 ( ),SE = 0.03
not significantly different from the slope obtained from
pooled data ( ). The explained variance ranged fromP 1 .1
86% to 100%. In addition, the B-N-L representation
showed no statistical differences in the slopes of log N and
log L among sites with different wave exposure (table 2,
columns in pt. B; table 3). Nevertheless, when we corrected
for differences in log N and log L, using multiple
ANCOVA, the exposed site showed the smaller adjusted
biomass (table 3).

Nonlinear Regression Fits. The regressions fitted for the
tridimensional model using nonlinear methods were B =

for the samples averaged by bed and1.088 20.0882,192.8 # L N
date ( ), and when1.160 20.160b = 20.088 B = 2,192.8 # L N3

all samples were included ( ; table 2, columnsb = 20.163

in pt. C). Table 2 (columns in pt. C) includes the b3 values
fitted for all the matrices and the three sites. The com-
parisons of the intercepts and exponents from these re-
gressions and those estimated through linear regression
(table 2, columns in pt. B; fig. 3B), showed no statistical
differences ( ).P 1 .1

Biased Estimations. Comparisons of the fitted observed b2

exponents (using model 1 linear regression) and the ex-
pected values E(t) from equation (6) were accomplished
to test the prediction that b2 is a biased estimator of b3.
The bL2N regression coefficient was estimated for each of
the nine mussel beds studied; values ranged from 0.1 to
11.0 (fig. 4A). The higher the regression coefficient, the

larger was the overestimation. Figure 4B shows that equa-
tion (6) can be used to predict the observed b2 exponent
(B-N diagram) from the b3 exponent (B-N-L diagram).

Mean Mussel Allometries. All the allometric estimations
that follow were obtained from the separate 1994 data
samples, where dates (February and September) were
pooled within sites because we did not find significant
differences ( ) in the exponents between both datesP 1 .5
within sites for all the comparisons. The estimated values
of the allometric exponents by RMA of log m on log l
(fig. 5A) were 2.31 with 95% CI (1.89, 2.72; )2R = 0.84
for the pooled data; 2.74 with 95% CI (0.24, 5.25; 2R =

) for the exposed site; 2.53 with 95% CI (1.46, 3.59;0.17
) for the semiexposed site; and 1.95 with 95%2R = 0.82

CI (1.50, 2.40; ) for the sheltered site. There were2R = 0.95
not significant differences between sites, as shown by the
overlap of the confidence intervals of the allometric ex-
ponents. The allometric index (a) for the pooled data was
0.23, and it increases as the exposure of the sites decreases:
0.09, 0.16, and 0.35, for the exposed, semiexposed, and
sheltered sites, respectively.

The estimated values of the allometric exponents by
RMA of log N on log l (fig. 5B) were: 22.51 with 95%
CI (23.74, 21.28; ) for the pooled data; 23.882R = 0.23
with 95% CI (28.34, 0.59; ) for the exposed site;2R = 0.10
1.88 with 95% CI (0.02, 3.73; ) for the semiex-2R = 0.31
posed site; and 21.70 with 95% CI (23.24, 20.16; 2R =

) for the sheltered site. The exponents between the0.18
exposed and the sheltered sites are negatives and do not
differ significantly, but both differ significantly with the
positive value estimated for the semiexposed site. The al-
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Table 3: Test for equality of slopes and ANCOVA of the biomass at three sites
with different wave exposure

Source of variation df
Sum of
squares F P

Model 8 .7081 175.01 !.001
Error 75 .0379
Corrected total 83 .7461
Equality of slopes:

C 2 .0006 .56 .573
D 2 .0009 .91 .405

ANCOVA:
Sites 2 .0193 19.56 .001
Error 79 .0391

Exposed Semiexposed Sheltered

Adjusted mean log biomass 4.1021 4.1387 4.1308

Note: ( , semiexposed, and sheltered). The covariates are log N and log L,Site = exposed

to control for differences in log biomass at different densities and number of layers. Italicized

values are adjusted means that are not significantly different (Tukey-HSD, ). (C andP 1 .05

D as in the regression equation: ).log B = log K 1 C log N 1 D log L

lometric effect of multilayering («) was 20.26 for the
pooled data and ranged from 20.94 to 1.94 to 0.15 for
the exposed, semiexposed, and the sheltered site,
respectively.

The estimated values of the allometric exponents by
RMA of log m on log S (eq. [7]; fig. 5C) were 1.30 with
95% CI (1.14, 1.46; ) for the pooled data; 1.522R = 0.92
with 95% CI (0.46, 2.58; ) for the exposed site;2R = 0.52
1.30 with 95% CI (0.93, 1.68; ) for the semiex-2R = 0.92
posed site; and 1.19 with 95% CI (1.05, 1.32; )2R = 0.99
for the sheltered site. The confidence intervals overlap be-
tween the sites, showing that the exponents are not sig-
nificantly different between sites.

Space-Driven Self-Thinning Model

Bidimensional Model. The theoretical expectation of the b2

self-thinning exponent according to the bidimensional
model was estimated from the exponents of the m versus
l and the N versus l relationships, dividing the first by the
second, which gave values of 0.08 for the pooled data and
0.29, 2.35, and 20.15 for the exposed, semiexposed, and
sheltered sites, respectively. For pooled data and all sites,
the differences between expected and observed values were
significant (table 2, columns in pt. A). With the exceptions
of two matrices (M1 and M2), the exponents of the ma-
trices were significantly different from the expected values.

Tridimensional Model. The theoretical expectation of the
b3 self-thinning exponents obtained as 1 2 the slope from
the regression of log m on log S (eq. [7]; fig. 5C) gave
values of 20.30 for the pooled data and 252, 230, and

219 for the exposed, semiexposed, and sheltered sites,
respectively. Only the observed value for the sheltered site
overlapped with the confidence interval of the expected
value for that site. The observed values for the other sites
and for the pooled data were greater than the correspond-
ing expected values. The confidence intervals of the ob-
served values for four matrices (M4, M6, M7, and M8)
overlapped with the expected value for their corresponding
site, and the others differed from the expected values.

Discussion

B-N and B-N-L Representations

Variance Explained. When comparing the data fitted with
the B-N and B-N-L models, we showed that more of the
variation, 86%–99%, of log B can be explained with the
tridimensional B-N-L model. The small variance explained
by the bidimensional model could be attributed to the lack
of resolution of our empirical measurements of density
and biomass, which at most cover half an order of mag-
nitude measured by the pWR statistic. In this case, it is
expected that there would be a high probability that the
scaling exponents and coefficients could be distorted by
sampling error (LaBarbera 1989). But this consideration
also would be valid for the tridimensional model, where
the problem was not seen. However, in the tridimensional
model the increase in the variance explained could also
be due to statistical artifacts produced by the noninde-
pendence of the variables. Lack of independence could
result from violation of the assumption that density does
not affect the individual allometry when estimating L from
the area/length allometry; nevertheless, density did not
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Figure 4: Perumytilus purpuratus observed and predicted values for b2. A, Using a B-N diagram, b2 overestimates the values of b3; thus, the larger
the regression coefficient (bL2N) of log L on log N, the larger the overestimation. The line represents the adjusted regression (model 1). B, Relationship
between the expected value of b2 according to equation (6) and the observed b2 in a B-N diagram. The slope is not different from 1 ( ),P = .155
indicating that the observed b2 exponent in a B-N diagram can be predicted from the b3 estimation obtained from the B-N-L regression.

significantly affect allometry ( , ,F = 0.09 df = 1, 23 P =
). Spurious correlations might also be produced if L.77

were estimated as the mean area projected to the substrate
(S) multiplied by density, but this is not the case (see
“Material and Methods”).

Although there have been several studies of layering
effects and their consequences for the population dynam-
ics of mussels (Hosomi 1985, 1987; Hughes and Griffiths
1988; Fréchette and Lefaivre 1990; Alvarado and Castilla
1996; Guiñez 1996), we are not aware of approaches in
bivalves aiming to separate the effect of both density and
layering. For example, consider two experimental treat-
ments with equal density and all other conditions equal,
but in one case the mussels are configured in one layer
while in the other they are in two or more layers. If dif-
ferences (e.g., growth rate or mortality) between both

treatments were observed, the results might be explained
by the layering but not by the density effects. Differences
of mussel size structure or other traits between layers might
suggest evidences for layering effects. To test this, we rean-
alyzed our data of maximum mussel length at Punta de
Tralca and found significant differences between layers
( , , , using the interaction termF = 167.1 df = 1, 6 P ! .001

within sites as the error term). The musselslayer # matrix
from the upper layer were larger (mean length = 19.44
mm, ) than those from the lower layer (meanSD = 8.86

mm, ). This result supports thelength = 13.55 SD = 8.10
findings of Hosomi (1987) and Alvarado and Castilla
(1996) regarding the existence of different mussel size
structure between layers. In addition, Hosomi (1987) sug-
gested growth rate differences between mussel layers. The
evidence suggests that an increase in the number of layers
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Figure 5: Allometric relationships for the separate mussel samples from 1994, with fitted functional regression lines when the slopes for the different
sites (exposed, semiexposed, and sheltered) were not statistically significant ( ). A, Between mean mass (log m) and mean maximum lengthP 1 .05
(log l). B, Between density (log N) and mean maximum length (log l). C, Between mean mass (log m) and mean area projected to the substrate
(log S).

in mussel beds means not only an increase in substrate
heterogeneity (as the mussels are substrate for others, in-
cluding recruits) but also an increase in the level of in-
traspecific competition, whether by physical interference
and/or food limitation. The degree of the competitive ef-
fects are likely differential according to the position of the
individuals within the matrix; the mussels in the lower
strata will be more affected than those at the upper layer.
But an increase in the layering will also be associated with
an increase in the average effects of the competition on
all the mussels. So it is not unexpected that multilayered
packing (measured as the number of layers) can improve
the fit in B-N relationships in mussels.

Our theoretical effort has been oriented to explore the
possible differential consequences for the mussel popu-
lation dynamics of both density and layering. The tridi-

mensional model permits us to separate both components,
the former representing the effects of changes in mussel
number on the biomass and the latter the packing con-
figuration. For example, in our data we can evaluate the
relative importance of density and layering on biomass
through the properties of the model 1 regression with Type
III partial sum of squares (SS3) (PROC GLM-SAS), using
as the statistical model the log version of the tridimensional
model (eq. [5]). The SS3 quantifies the percentage of var-
iance explained by each variable not involving parameters
of other effects because it holds the effects of the other
variables constant and the sequence by which variables are
analyzed does not affect the partial sums of squares. Con-
sequently, the resulting sums of squares reflect the relative
correlation of density and number of layers with biomass.
Layering explained 50% ( ) and density only 3%P ! .001
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( ) of the variance in biomass. This suggests thatP ! .005
the dynamics of Perumytilus purpuratus matrices may be
driven by overcrowding effects and layering effects rather
than by density per se. We conclude that in mussel matrices
showing multilayering packing, the inclusion of the num-
ber of layers improves significantly the fit in relationships
between biomass and population density.

Biases. It was shown, theoretically and empirically, that the
self-thinning exponent (b2) obtained from a B-N diagram
overestimates the value for the self-thinning exponent (b3)
of the B-N-L diagram. So, when inferences are obtained
from multilayered populations using the bidimensional
approach, the self-thinning exponent is overestimated.
This suggests caution when inference is used as a criterion
to provide evidence regarding the nature of the limiting
factor. For example, in our case almost all the values of
the exponents are positive, which does not suggest self-
thinning scaling at all. This could be used to conclude that
there is no evidence for density dependence. Nevertheless,
we propose that for species showing multilayering packing
the occurrence of density dependence is likely to be much
more frequent than reported. Accordingly, because of this
bias it would not be unexpected that the theoretical thin-
ning exponent (b2) was statistically different from empir-
ical exponents obtained from P. purpuratus.

We suggest that the B-N-L approach developed here
enables comparisons among mussel populations not only
of b3 exponents but also of density and the added effect
of the degree of packing both intra- and interspecifically.
Consequently, when interpreting B-N scaling or self-thin-
ning, we recommend consideration of the degree of pack-
ing in addition to density. The B-N-L approach may be
used in other animal taxa where overlapping spatial con-
figuration (i.e., home range) is present, such as in salm-
onids (Mason and Chapman 1965; Puckett and Dill 1985;
Grant and Kramer 1990; Grant 1993), herbivorous mam-
mals (Damuth 1981), and Hemiptera (Latto 1994, as sug-
gested by Fréchette and Lefaivre [1995]). In salmonids
with overlapping territories, the percent habitat saturation
(Grant and Kramer 1990) may be considered as an equiv-
alent to the number of layers (L) in mussels.

Assumptions

As model expectations disagree with some empirical re-
lationships, it is possible that there may be a violation of
key assumptions related to (1) inappropriate use of pop-
ulation parameters or (2) invasion of exclusive space by
neighbors. We address these points.

1. Population Parameters. First, we have consistently used
population means as one of the principal assumptions for

the theoretical and empirical approach. This is not only
to maintain appropriate dimensions of variables but also
because the individual allometries and the population
mean allometries are not necessarily the same (see eq. [2]).
This implies that individual allometries could not be used
to test the self-thinning theory (Osawa and Allen 1993).
Second, population mean allometries must be obtained
using independent data from those used for the empirical
data of self-thinning relationships (but see Weller 1987b;
Osawa and Allen 1993). In our study, the allometries of
population parameters were obtained from separate sam-
ples at the same sites of study but coetaneous with only
two dates (February and September 1994). Population
changes observed between 1992 and 1994 (fig. 2), where
variations occurred with biomass, density, and number of
layers, may explain the differences between observed and
expected values.

2. Invasion of Exclusive Space. The significantly smaller
adjusted biomass observed (i.e., k3, the B-intercept at the
exposed site; table 3) could be explained by changes in
the degree of overlap as a consequence of the invasion of
the exclusive space by neighbors, which could be associated
with site characteristics (e.g., wave exposure). Also, it is
possible that beds may be near to the saturation packing
level (i.e., the maximum biomass per layer; eq. [A16]) since
the results indicated that the observed b3 values for some
matrices are near 0 (table 2, columns in pt. C). The extent
of multilayer packing could be determined by the degree
of overlap between neighboring individuals that the mus-
sels can tolerate, probably a species-specific characteristic.
For example, Choromytilus meridionalis is usually mono-
layered, whereas Aulacomya ater, Mytilus galloprovincialis,
Mytilus californianus, and P. purpuratus form dense, mul-
tilayered beds (Hosomi 1985; Suchanek 1986; Van Erkom
Schurink and Griffiths 1993; Alvarado and Castilla 1996;
Guiñez 1996). Also, it has been observed that multilayering
varies among different sites and populations in P. pur-
puratus and in M. californianus (Alvarado and Castilla
1996; Guiñez 1996; Connolly and Roughgarden 1998).

Geometrical Constraints

Our tridimensional model was developed under the as-
sumption that space drives the competition in multilayered
populations because it is expected that mechanical inter-
ference among individuals within the matrix will increase
as the crowding increases (Bertness and Grosholz 1985;
Fréchette and Lefaivre 1990). We have observed that, in
P. purpuratus, increases in the number of layers are as-
sociated with an increase in the exponent of the dry tissue
weight/length allometry equation (Guiñez 1996, and un-
published results); this is expected in the case of interfer-
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ence-driven competition affecting the growth rate asym-
metrically with respect to the size of the individuals
(Fréchette et al. 1992). However, in our data only the
observed exponent (b3) at the sheltered site agrees with
the theoretical expectations, and when all matrices are con-
sidered, only four of nine agree with the expectations (see
above). Therefore, the tridimensional allometric model at
most can explain the empirical relationships at local scales.
The lack of generality of the allometric model may be
related to the existence of other competition-driven forces
such as consumption or trophic regulation, but how phys-
iological constraints affect the B-N-L self-thinning rela-
tionships for multilayered populations remains a problem
to be solved. Alternatively, it is possible that physical and
biological perturbations may be affecting our study system.
In fact, in our sampling design we used natural beds lo-
cated in a gradient of wave velocity and did not attempt
to exclude predators, such as crabs, muricid gastropods,
or sea stars (Castilla and Durán 1985; Paine et al. 1985;
Navarrete and Castilla 1988; Castilla et al. 1989, 1994).
Therefore, we may not offer any assurance that compe-
tition is the only cause of mortality.

Thinning may be dictated by a compromise between
perturbation (biological and physical) and competition.
With monolayered populations, biological and physical
perturbations can generate open patches that increase
mortality and relax intraspecific competition. But with
multilayered populations, only intense and persistent per-
turbations could open up patches (Paine and Levin 1981;
Castilla and Durán 1985; Guiñez 1996). These effects may
explain the extinction of two of our matrices. But under
less intense and/or persistent perturbations, the mussel
biomass, density, and the number of layers could be af-
fected without losses in ground-projected cover. Intraspe-
cific competition could eventually be relaxed, allowing for
the arrival of recruits, and thus their faster growth could
ameliorate the effects of predation or physical disturbance
on the bed and bring it back to the previous level of
intraspecific competition (see Petraitis 1995a for a similar
proposition in monolayer populations). The simultaneous
decreases and increases of both density and biomass in
our matrices (fig. 2) may represent the effect of mortality,
recruitment, and growth resulting from the compromise
between disturbance and intraspecific competition. This
could explain the fact that the mussel matrices are main-
tained in a plane according to a self-thinning tridimen-
sional diagram and ensuing expectations. More theoretical
and experimental work is needed to improve our under-
standing of population regulation in multilayered species.

Conclusions

Our tridimensional self-thinning model is a general one
that incorporates previous bidimensional models devel-

oped for sessile organisms as special cases (Hughes and
Griffiths 1988; Fréchette and Lefaivre 1990, 1995). The
tridimensional space-driven self-thinning model devel-
oped may be further improved by incorporating compet-
itive constraints, such as consumption or food. The model
may be used to compare scaling processes both intra- and
interspecifically and for different crowding and packing
strategies, whether the target population is monolayered
or multilayered. The B-N-L approach may be used in other
animal taxa where tridimensional spatial configuration is
found. Self-thinning models, including those of Hughes
and Griffiths (1988), Fréchette and Lefaivre (1990, 1995),
Fréchette et al. (1992), and the one discussed in this article,
are the first steps leading to the development of a theory
of space occupation as a function of size for multilayered
organisms.
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APPENDIX

Derivation of the Space-Driven Self-Thinning Models
with Allometric Growth and Geometrical Constraints

Bidimensional Model

Models of geometrical similarity have been developed for
individuals arranged on a surface in a monolayer with
100% cover of the substrate. In this condition it is expected
that the density (N) should be inversely proportional to
the average area occupied by individuals or average surface
area projected to the substrate (S), implying that

21N ∝ S . (A1)

If individuals grow isometrically (sensu Weller 1987b), and
mean mass (m) and S are proportional to the cube and
the square of a linear dimension (l), respectively, then it
follows that . Furthermore, since the total bi-23/2m = k N2

omass B per area is equal to , this leads toN # m B =
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Table A1: Variables and definitions

Variable Definition Dimensions

l Mean (maximum) length Length/individual
H Mean (maximum) height Length/individual
W Mean (maximum) width Length/individual
S Mean area projected to the substrate Area
As Sampling area Area
T Total area projected to the substrate occupied by

the n individuals in a sample ( )nT = S Si=1 i

Area

L Number of layers or T/As )
N Density (individuals per unit area) Individuals/area
m Mean mass Mass/individual
B Biomass per unit area = N # m Mass/area
v Mean spatial volume Volume/individual
p Proportion of mean mussel spatial volume occu-

pied with biomass
)

h Exponent for height/length relationships )
ch Coefficient for height/length relationships Length/[individuals # (length # individuals21)h]
w Exponent for width/length relationships )
cw Coefficient for width/length relationships Length/[individuals # (length # individuals21)w]
y Exponent for surface/length relationships )
cy Coefficient for surface/length relationships Area/[individuals # (length # individuals21)y]
z Exponent for spatial volume/length relationships )
cz Coefficient for spatial volume/length relationships Volume/[individuals # (length # individuals21)z]
b2 Self-thinning exponent for a B-N diagram )
k2 Self-thinning coefficient for a B-N diagram Mass/[area # (individuals # ]21 b2area )
b3 Self-thinning exponent for a B-N-L diagram )
k3 Self-thinning coefficient for a B-N-L Mass/[area # (individuals # ]21 b3area )
a Allometric index for weight/length relationships

such as z = 3(1 2 a) (a = 0 for isometric
growth)

)

q Allometric index for surface/length relationships
such as y = 2(1 2 q) (q = 0 for isometric
growth).

)

« Allometric effect of multilayering on density/
length relationships (« = 0 for monolayering;
« 1 0 for multilayering)

)

k1 Coefficient for the density/length relationships (Individuals/area)21# (length/individual)22(1 2 «)

′′k3 Maximum biomass per layer Mass/area

. However, because growth is123/2 21/2N # m = k N = k N2 2

generally allometric (sensu Weller 1987b), the population
length-mass relationship may be rewritten as m =

; here is used as an index for measuring3(12a)k l a ( 02

the deviation from isometry due to allometric effect, and
k2 is a constant (Fréchette and Lefaivre 1995). This equa-
tion may be also expressed as: ; and, because1/[3(12a)]l = k m2

, this leads to or, expressed21 2 2[3(12a)]/2N ∝ S ∝ l m = k N2

in the B-N diagram representation,

12[3(12a)/2]B = k N . (A2)2

Then the self-thinning exponent is .b = 1 2 3(1 2 a)/22

This implies that allometric growth may produce different
b2 exponents in relation to those expected under isometry
( ).a = 0

Hughes and Griffiths (1988) suggested that multilayer
packing in mussels resulted in density increases with re-
spect to average surface area at a faster rate than expected
under allometric growth. The suggestion was formalized
by Fréchette and Lefaivre (1990) as 21 (12«)N ∝ S ∝

, with , where the parameter «2 (12«) 2(12«)(l ) = k l 0 ≤ « ≤ 11

would take values proportional to the multilayered
packing.

Then, according to the reasoning used for growth al-
lometry (eq. [A2]) and further incorporating the effect of
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multilayered packing (Fréchette and Lefaivre 1990, 1995),
the following scaling relationship is obtained: m =

or, in terms of the B-N representation,3(12a)/2(12«)k N2

3(12a)
12B = k N , (A3)2(12«)2

implying that in this case the self-thinning exponent is

3(1 2 a)
b = 1 2 . (A4)2 2(1 2 «)

For simplicity, we do not consider the effect of substrate
roughness here, as incorporated by Fréchette and Lefaivre
(1990).

Tridimensional Model

We assume the mean spatial volume of mussels could be
described as a rectangular parallelepiped, assuming an ar-
rangement as in figure 1. The mean width (W) and height
(H) are related to mean (maximum) length (l), as W =

and . The average area projected to the sub-w hc l H = c lw h

strate (S) is

w h yS = WH = c c l l = c l , (A5)w h y

and the mean spatial volume occupied by mussel is

y zv = l # S = l # c l = c l . (A6)y z

When a critical total volume becomes limited by com-
petitive constraints, and if L represents the number of
layers, the following relationship is expected:

21N = L # S . (A7)

Replacing S from (A5) into (A7) gives

y 21 21 2yN = L # (c l ) = c # L # l . (A8)y y

Rearranging for l, we obtain

21/y 1/y 21/yl = c # L # N . (A9)y

Replacing l into (A6) leads to

2z/y z/y 2z/yv = c # c # L # N . (A10)z y

Following Norberg (1988a), if p is the proportion of the
spatial volume of the parallelepiped ( ) that is occupiedv
with biomass, then the volume of the individual biomass,
estimated as the mean weight (m), is . Substi-m = p # v
tuting from (A10) givesv

z/y 2z/ym = k L # N , (A11)3

with

2z/yk = p # c # c . (A12)3 z y

The population mean allometries of growth on weight and
surface area projected to the substrate (represented by the
exponents z and y, respectively) are expressed as z =

with and with .3(1 2 a) a ( 0 y = 2(1 2 q) q ( 0
Then (A11) may be rewritten as: m =

. In the B-N-L notation,3(12a)/2(12q) 23(12a)/2(12q)k L N3

3(12a) 3(12a)
12B = k L N . (A13)2(12q) 2(12q)3

Then, for space-driven self-thinning in multilayered pop-
ulations, b3 is given by

3(1 2 a)
b = 1 2 , (A14)3 2(1 2 q)

so the scaling equation can be expressed by the following
geometrically trivariate model:

12b b3 3B = k L N . (A15)3

Under a high degree of packing in mussel beds, it is ex-
pected that the individuals will invade the exclusive space
( ) of neighbors (fig. 1), increasing the overlapping1 2 p
between neighbors and permitting more shared space, but
the average volume (v) and proportion occupied with mass
(p) will remain the same. The average area occupied per
mussel will decrease and more individuals will be allowed,
increasing the density (N) and/or the number of layers
(L). Displacement of the plane by changing the intercept
k3 is expected, even though the mussels maintain the same
average form, structure, and volume. If the increase in the
overlap between neighbors affects the allometry for
growth, it is expected that both the self-thinning coefficient
(k3) and the exponent (b3) will change (eq. [3]).

When all of the shared space is filled with individuals
and the maximum mechanical packing per layer is
achieved (an extreme situation of overlapping between
neighbors), the biomass per layer is saturated. The vari-
ation of B will be determined only by the variation in L,
no matter how many individuals by layer are present. Ac-
cordingly, the model (eq. [A15]) becomes

′′ 1 0B = k L N , (A16)3

where is the maximum biomass per layer (i.e., the sat-′′k 3

uration packing biomass by layer is not amenable to de-
scription with a bidimensional model).
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