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Abstract The subtidal rocky reefs are home to a

diverse range of marine animals, including small

cryptic fishes, characterised by a bipartite life cycle,

with benthic adults and pelagic larval stage that lasts

from several days to several months. Using the otolith

microstructure analysis, this study determines the

hatching and larval growth patterns of the abundant

triplefin Helcogrammoides chilensis (Pisces: Trip-

terygiidae). Fish larvae were collected during Sep-

tember–October 2010 and between July 2012 and

April 2013 in nearshore waters (\500 m) of central

Chile. Nearshore time series of ichthyoplankton

samples showed that large abundance of this species

occurs during early austral spring and autumn seasons.

Body lengths ranged from 3.11 to 16.57 mm

(1–57 days old). Sagittal microincrement analyses

estimate that during the main reproductive season,

larval growth rates are slow, varying between 0.145

and 0.156 mm day-1 at a weekly scale. Back-calcu-

lated hatch days and circular statistics indicate a major

hatch pulse occurring near full moon of the lunar

cycle. These results suggest that reproduction occurs

coupled with the upwelling season, which reduces the

probability of starvation, and hatching occurs during

spring tides (full moon), which increases larval

dispersion and population connectivity.
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Introduction

The nearshore subtidal rocky reef assemblages in

temperate waters harbour a large number of small

invertebrates and fish species which derive food and/or

shelter from the reef substratum (Jones, 1988). Addi-

tionally, assemblages that occur sympatrically with

large brown kelps, such as mussel beds and sponge

gardens, as well as the kelps itself, can be considered

as settlement substrate for numerous cryptic fish with

pelagic larval stages lasting from several days to

several months (Palma and Ojeda 2002;
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Pérez-Matus et al. 2012; Plaza et al. 2013). Among

them, tripterygiids, commonly known as triplefins,

encompass 29 genera and 163 species (Kohn and

Clements 2011) and are found in tropical, temperate

and polar regions (Nelson 2006). They are character-

ised by the spawning of benthic eggs attached by

filaments to the rocky substrate in a single layer in the

subtidal zone (Ruck 1973, 1980). During this devel-

opmental period, the males guard and protect their

territory and the eggs, providing them with oxygenated

water while cleaning them of detritus. This parental

care occurs until the hatching of 3–6-mm-long plank-

tonic larvae with pigmented eyes, small yolk sacs and

open mouths (Ruck 1973, 1980). Hatchlings have a

pelagic larval duration of approximately 2–4 months

(Smith and Shima 2011; Plaza et al. 2013), and after

that, they settle to the fronds of several different

macroalgae (McDermontt and Shima 2006). The

triplefin Helcogrammoides chilensis occurs along the

coast of Chile from 20�180S to 36�450S in the southern

Pacific, inhabiting shallow waters along exposed rocky

coasts (Williams and Springer 2001; Cancino et al.

2010). Pelagic larval stages are found throughout the

year in nearshore waters (Pérez 1979; Hernández-

Miranda et al. 2003; Landaeta et al. 2009). However,

there still are important gaps in the knowledge of the

early life history of this species.

Otolith microstructure has become an important

indicator of the early life traits of fishes because otoliths

are indicators of not only age and growth patterns, but

also hatching times, settlement, metamorphoses, migra-

tion and condition (Landaeta and Castro 2006; Gagli-

ano and McCormick 2007; Sponaugle 2010). Also,

otoliths of fish larvae may provide information on

biophysical interactions such as the effects of low-

salinity plumes in coastal waters (Landaeta et al. 2012),

ocean acidification (Munday et al. 2011), vertical

mixing and ice melting (Zenteno et al. 2014); the

information obtained through the analysis of daily fish

otoliths microstructure has been a critical component of

fisheries management and of ecological and oceano-

graphic processes (Sponaugle 2010).

For the reasons stated above, H. chilensis can be

used as a model species, because its life traits (e.g.

benthic eggs, parental care, pelagic larvae and slow

growth) are similar to other cryptic species that inhabit

rocky reef habitats of temperate waters. Therefore,

through the use of otolith microstructure analysis, the

aim of the current study was to reveal the early life

history traits of triplefin H. chilensis larvae from

nearshore rocky reef habitat. For this purpose, daily

ages, growth patterns and back-calculated hatch dates

were estimated to determine the relationship between

hatching patterns and the lunar cycle.

Materials and methods

Fieldwork

Fish larvae were collected from nearshore waters at

two locations along the central Chilean coast (Fig. 1).

Three oceanographic samplings were performed dur-

ing September and October 2010 on-board the RV Ilán

from Pontificia Universidad Católica de Chile. Ich-

thyoplankton samples were collected using a Bongo

net (60-cm mouth diametre, 300-lm mesh size),

equipped with a TSK flow meter (The Tsurumi-Seiki

Co., Ltd., Tsurumi-ku, Yokohama, Japan) to quantify

the filtered seawater, from surface to near-bottom

depths (*20 m) during the dawn and night hours

(1900–2300 h) at one nautical mile off of El Quisco

Bay (33�240S, 71�430W). During the study period,

dawn occurred around 2000 h and sunrise at 0730 h.

Five to eight trawls at 1–2 knots were conducted

during each oceanographic sampling at the same

location. Filtered seawater by net ranged from 34.1 to

316.4 m3 [mean ± one standard deviation (SD)

201.5 ± 76.5 m3]. All of the plankton samples

(n = 38) were initially fixed with 5 % formalin and

buffered with sodium borate, and after 12 h, they were

preserved in 96 % ethanol. This methodology reduces

initial dehydration of larvae and has previously been

demonstrated not to significantly affect otolith struc-

ture (Santos et al. 2005).

Additionally, from October 2012 to April 2013, 23

cruises were carried out\500 m off Montemar, in the

northern area of Bahı́a Valparaı́so. A total of 160

ichthyoplankton samples were collected from these

surveys, using the same methodology previously

described. Filtered seawater by net ranged from 18.8

to 322.2 m3 (173.7 ± 59.5 m3).

Laboratory analysis

Fish larvae from 2010 were sorted from the plankton

samples in the laboratory. Identification of larval H.

chilensis was performed following the criteria
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described by Ciechomski (1975) and Pérez (1979).

Larval densities were expressed as individuals/

1,000 m3. Developmental stages of larvae were clas-

sified into two groups: preflexion and postflexion

(flexion and postflexion larvae pooled together into the

latter group).

The left and right sagittae otoliths were removed

using dissecting needles from 189 randomly selected

larval H. chilensis (3.11–16.57 mm SL), collected at

El Quisco Bay during 2010. Larvae were previously

measured (notochord length, NL, larvae measuring

3.11–6.50 mm or standard length, SL, larvae measur-

ing 6.50–16.57 mm) to the nearest 0.01 mm under an

Olympus SZ-61 stereomicroscope (Olympus Corpo-

ration, Shinjuku-ku, Tokyo, Japan) using a Moticam

2500 (5.0 Mpixel) video camera (Motic Instrument,

Inc., Richmond, BC, Canada) that was connected to a

PC containing the Moticam Image Plus 2.0 software

(Motic China Grup, Co., Xiamen, China). Otoliths

were embedded in epoxy resin on a glass slide. Age

was determined by counting the number of daily

increments from a dark prominent increment (the

hatch mark, Fig. 3) to the otolith edge using a Motic

BA310 light microscope (Motic Instrument, Inc.,

Richmond, BC, Canada) at 1,0009 magnification

under oil immersion. Hatch marks that formed on the

first day after hatching have not been validated for H.

chilensis. However, a similar hatch mark has been

described in recently hatched larvae of triplefin

Forsterygion nigripenne (Kohn and Clements 2011).

Image analysis software (Moticam Image Plus 2.0)

was used to obtain the mean values, resulting in three

independent measurements, for both the longest radius

of the sagitta and increment width.

Fig. 1 Sampling locations. 2010 cruises were carried out in El Quisco bay at the South of Valparaı́so, and the times series cruises were

performed in Montemar, at the north of the bay
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Three separate readings were performed on both

sagittae. In cases where the increment counts between

the three readings were within 5 % of each other,

modes (or averages, if all counts were different) were

calculated and utilised for the analyses. If the readings

varied from [5 % of each other, the otolith was

discarded (13 otoliths were discarded from the total

otolith analyses). Only sagittae were used for the

analyses because they were the larger pair of otoliths

and we found that age estimates using the left and right

sagittae within individuals were the same (Wilcoxon

signed-rank test, P = 0.71), so right sagittae were

utilised for the analyses. Recently, the daily period-

icities of the growth increments have been validated

for juvenile stages of H. chilensis and H. cunninghami

(Mansur et al. 2013) and even in other tripterygiid

species (Forsterygion capito, F. varium, Ruanoho

whero) (Kohn and Clements 2011) as well.

Data analysis

Least-square linear regression analyses were per-

formed between microincrement counts (age) and

larval lengths separately for each cruise of 2010,

where the slope corresponds with the larval growth

rate and the intercept to the estimated hatch size. To

compare the temporal variability in the larval growth

rates, slopes were compared using a one-way

ANCOVA (Zar 1999).

The back-calculated hatching dates were related to

the lunar cycle. For each sampling date, the days since

the new moon (DNM) were counted and assigned

DNM values from 0 to 29 for each date, where 0

represents the new moon. The DNM values were

converted to angles (�) by dividing by 29 (the length in

days of the lunar cycle) and then multiplying by 360�
so that the data could be analysed using circular

statistics. To assess whether the hatching events

showed lunar periodicity, we analysed the data using

the Rao’s spacing test (Batschelet 1981). This test is

more powerful and robust than many other circular

goodness-of-fit tests (Russell and Levitin 1995), being

able to analyse bimodal and multimodal distributions,

whereas other tests, such as the Rayleigh, are not

(Bergin 1991). Additionally, the Rayleigh test was

used to maintain comparability with other studies that

used circular statistics. The null hypothesis that

hatching events would be equally or randomly spaced

throughout the lunar cycle was tested for the overall

data. The angular mean and 95 % confidence intervals

were also calculated using the software PAST (Pale-

ontological Statistics, Hammer et al. 2001).

Results

Abundance and larval size distribution

A total of 847 larval H. chilensis were collected during

the three 2010 spring cruises, with abundances varying

from 3.5 to 2,344.4 ind. 1,000 m-3 (mean ± SD

202.7 ± 440.3 ind. 1,000 m-3). Larval sizes varied

from 3.11 to 16.57 mm (mean ± SD 6.45 ± 2.45 mm),

and they differed significantly among the cruises from

2010 (Kruskal–Wallis test, H = 291.84, P\ 0.01;

Table 1); the larvae from the second cruise in El Quisco

(2010) were the smallest (mean 5.41 mm) (Tukey’s test,

P \0.01) compared to lengths obtained from the first

(mean 7.25 mm) and third cruise (men: 8.39 mm). In the

nearshore time series 2012–2013, larval abundance

varied from 3.4 to 546.9 ind. 1,000 m-3 (47.4 ± 85.7

ind. 1,000 m-3). Two abundance peaks were observed,

the major during early austral spring (October 2012;

mean ± SE 283.36 ± 15.89) and another in April 2013

(mean ± SE 133.96 ± 55.04) (Fig. 2).

Otolith microstructures, ages and growth of larvae

Sagitta microincrement widths (i.e. the distance

between two consecutive opaque bands) ranged from

0.60 to 2.01 lm (mean ± SD 1.28 ± 0.24 lm). The

hatch marks that were observed in the sagitta otoliths

of the larval H. chilensis collected from September to

October 2010 (Fig. 3) ranged from 10.11 to 16.90 lm

(13.94 ± 1.31 lm). The sagitta radii ranged from

14.76 to 100.90 lm (32.47 ± 14.29 lm).

The microincrement counts (ages) ranged from 1 to

57 days. The linear models estimated the larval

growth rates between 0.145 and 0.156 mm day-1

and hatch sizes from 5.39 to 6.23 mm BL. However,

there were no significant differences in the growth

rates (slopes) among samplings (one-way ANCOVA,

homogeneity of slopes, F = 0.36, P = 0.70), so a

global model was established (Linear regression,

intercept: 5.684 mm, slope: 0.152 mm day-1,

P \ 0.01) (Fig. 4). Nevertheless, the size-at-age was

significantly larger for larvae captured during early

October (one-way ANCOVA, F = 10.38, P = 0.05).
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Hatching patterns and lunar periodicity

The raw record of H. chilensis hatchings at El Quisco Bay

began on July 17 (day 198 of a Julian year) and finished

on October 3 (day 276). The circular statistics of the back-

calculated hatching days fitted in a lunar cycle (of

29 days per month) and revealed a large pulse of hatching

just after full moon and a second one prior full moon

(Fig. 5). In fact, the mean angle vector occurred at day

13 of the lunar cycle (90 % confidence = 11.4–

14.91 days). The Rayleigh (R = 0.451, P\ 0.001) and

Rao’s spacing tests (U = 240.9, P \0.001) indicated

that the hatching patterns of larval H. chilensis were not

uniform over the lunar cycle.

Discussion

Off central Chile, our results suggest that reproduction of

H. chilensis occurs throughout the year, with a main pulse

during early austral spring season. Otolith microincre-

ment analysis indicates growth rates around

0.15 mm day-1 during the first 2 months of the larval

pelagic phase of the species and back-calculated hatch

days suggest a main pulse around full moon, a period

characterised by spring tides.

The peak abundances of larval H. chilensis occurred

during September 2010 and October 2012 (austral early

spring season). This period is characterised by the

increase in southerly winds, which induce upwelling

events of cold waters in the area (Hernández-Miranda

et al. 2003; Narváez et al. 2004). In these upwelling

zones, subtidal and intertidal fishes are larger and in better

condition (i.e. higher RNA/DNA ratios) compared with

those of non-upwelling zones (Pulgar et al. 2013).

Therefore, the temporal match of hatching events and the

upwelling season may have a positive impact on the

survival of early life stages of H. chilensis.

Larval growth rates of H. chilensis estimated using

the linear models were 0.15 mm day-1, similar to

Fig. 2 Mean abundance of

larval Helcogrammoides

chilensis (ind. 1,000 m-3) in

nearshore waters off central

Chile from July 2012 to

April 2013. Bars correspond

to one SD

Table 1 Larval size (mm) and least-square linear models of larval Helcogrammoides chilensis growth rates for each sampling cruise

and for all season (global model)

Size range (mm) Intercept SE Slope SE F P df

2 September 2010 3.64–11.42 5.435 0.332 0.145 0.016 86.48 \0.01 34

9 September 2010 3.11–15.06 5.396 0.160 0.156 0.008 347.84 \0.01 60

4 October 2010 4.20–16.57 6.230 0.206 0.147 0.010 213.79 \0.01 46

Global model 3.11–16.57 5.684 0.126 0.152 0.006 594.09 \0.01 174

The intercepts correspond to the hatch sizes (mm) and the slopes to growth rates (mm day-1) estimated for the models

SE one standard error, df degrees of freedom
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those of other demersal species from Chilean waters

with pelagic larvae, such as the mote sculpin Norma-

nichthys crockeri (0.15–0.20 mm day-1)

Fig. 3 Helcogrammoides chilensis a larvae, b sagitta otolith microstructure, where HM hatch mark, MI microincrements, and c Sagitta

otolith close up which shows the HM and each MI

Fig. 4 Larval growth of Helcogrammoides chilensis in three

different sampling dates. The continuous line corresponds to the

larval growth rate of the global model including the larvae from

the three cruises Fig. 5 Distribution of hatching abundances over the lunar cycle

of H. chilensis during 2010. Filled circles represent new moons

and open circles full moons. The perpendicular line corresponds

to the angular mean and the curved line to the 95 % confidence

interval. The numbers on the figure correspond to the

proportional fish larval abundance
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(Landaeta et al., 2010), rockfish Sebastes oculatus

(0.15 mm day-1) (Landaeta and Castro, 2006) and

lightfish Maurolicus parvipinnis (0.136 mm day-1)

(Landaeta et al. 2012). These characteristics differ

completely from those of species with life cycles that

are exclusively pelagic and exhibit faster growth, such

as the engraulids and clupeids, including Engraulis

ringens (0.47 mm day-1) (Hernández and Castro

2000), Sardinops sagax (0.40–0.66 mm day-1) (Ca-

stillo et al. 1985) and the Falkland sprat Sprattus

fuegensis (0.448 mm day-1) (Landaeta et al. 2012).

The synchronising of reproduction, including

hatching patterns, to a lunar cycle (29 days) (Grant

et al. 2009), has been observed in several species,

including sponges, corals, mollusks, polychaetes,

crabs, echinoids (Sponaugle and Pinkard 2004), fishes

(Mizushima et al. 2000), amphibians, birds and

mammals (Grant et al. 2009). Periodicity in moon-

related cues appears to be related to changes in the

intensity of moonlight, time of moonrise, solar cycle

and movement pattern of the moon across the night

sky (Leatherland et al. 1992). All of these changes

provide a set of environmental cues that assure

advection, foraging and reproduction in favourable

environmental conditions (deBruyn and Meeuwig

2001; Takemura et al. 2010). In addition, it is likely

that fishes respond to gravitational (tidal) and geo-

physical forces that occur as a result of the changing

position of the earth relative to the moon and sun

(Takemura et al. 2010).

It has been suggested that the synchrony of larval

release with a lunar cycle during full moon is related to

the improved defence of broods in colonial nesting

species, such as H. chilensis, with consequent reduc-

tions in mortality rates and decreased costs of parental

care for offspring (Robertson et al. 1990). In the current

study, H. chilensis showed a lunar pattern with a hatch

peak in the full moon phase. This situation may favour

larval dispersion and population connectivity given the

larger tidal currents that characterise the full moon

phase (Robertson et al. 1990; Christy 2003; Takemura

et al. 2010; Grant et al. 2009). On the other hand, high

luminosity makes the recently hatched larvae more

evident to the predators (Robertson et al. 1990).

There is a lack of information regarding the

reproductive biology and early life history of H.

chilensis; therefore, it is important to continue studies

and analysis of the larval stage to fully understand the

dynamics of the population and estimate the larval

supply that is settling and eventually recruiting to the

adult population, through studies of otolith micro-

chemistry and fluctuating asymmetry to determine the

condition of presettlement larvae.
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Descripción de los complejos estructurales óseos en Hel-
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