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ABSTRACT 

 

In addition to reducing the well-known problems in labor shortage, the use of robots 

for precision viticulture in the wine and table grape industry could help increase the 

efficiency in crop monitoring, fertilization, management, phenotyping and 

harvesting.  However, one of the main challenges is the automated detection of grape clusters, 

problem that has slowed down the adoption of robotic units. This work presents a method 

that employs visible spectrum cameras for robust grape berries recognition and grape bunch 

detection on vineyards in different illumination and occlusion scenarios. A comparative study 

of different feature vector and support vector classifiers is presented for grape recognition. 

Three different gradient information features (Histogram of Oriented Gradients, Dense Scale 

Invariant Feature Transform and Daisy) and one texture descriptor (Local Binary Pattern) 

were tested, along with the study of Support Vector Machine (SVM) and one-class Support 

Vector Data Descriptor (SVDD) classifiers. A HOG+LBP feature fusion and SVM-RBF 

kernel classifier, show better results with an average accuracy of 96%, average precision of 

99% and average recall of 93% in grape/non-grape image recognition. The proposed method 

for grape bunch detection in field images, uses a Fast Radial Symmetry Transform as salient 

point detector. Then, feature extraction and classification are computed in each salient point 

with a multiscale approach. Afterwards, a DBSCAN method defines cluster number and 

allows to create the non-convex envelop using Alpha Shape algorithm. Each cluster’s spatial 

distribution and shape is analyzed for an improved cluster segmentation. Grape bunch 

detection and a comparison of berry and non-berry pixels was studied, using a hand labeled 

ground-truth. Four different datasets, with diverse illumination and acquisition protocol were 

tested, with an average precision of 83% and average recall of 82% in bunch detection and 

an average precision of 81% and average recall of 71% in area classification. Results show 

good performance with no need of special illumination, no color feature used which allows 

recognition for red and green grapes and a bunch detection scheme working in varying 

scenarios.    

Keywords: grape cluster, grape detection, precision viticulture, histogram of oriented 

gradients, local binary pattern, support vector machine.   
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RESUMEN 
 

Además de reducir los conocidos problemas de escasez de mano de obra, el uso de 

robots para la viticultura de precisión en la industria vitivinícola podría ayudar a aumentar la 

eficiencia en el control de los cultivos, la fertilización, la gestión, el fenotipado y la cosecha. 

Sin embargo, uno de los principales retos es la detección automatizada de racimos de uva, lo 

que ha frenado la adopción de unidades robóticas. Por lo tanto, este trabajo presenta un 

método que emplea cámaras de espectro visible para el reconocimiento de uvas y la detección 

de racimos de uva en terreno en diferentes escenarios de iluminación. Se presenta un estudio 

comparativo de diferentes descriptores y clasificadores para el reconocimiento de bayas, 

junto con un método para la detección del racimo de uva utilizando imágenes obtenidas en 

terreno. Se probaron tres descriptores de información de gradiente (Histogram of Oriented 

Gradients, Dense Scale Invariant Feature Transform y Daisy) y un descriptor de textura 

(Local Binary Pattern), junto con la comparación de clasificación entre Support Vecto 

Machine (SVM) y Support Vector Data Descriptor (SVDD) para el reconocimiento de bayas. 

La mezcla de descriptores HOG + LBP, junto al clasificador SVM, supera a los otros 

descriptores con una accuracy de 96%, precision de 99% y recall de 93% en clasificación 

de imágenes en categoría uva o no-uva. Se propone un método para la detección de racimo 

de uva usando imágenes, aplicando el método Fast Radial Symmetry Transform como 

detector de puntos claves. Luego, la extracción y clasificación de características tiene lugar 

en cada punto de interés en múltiples escalas. Posteriormente, un método DBSCAN define 

el número de clúster y permite crear la envolvente no convexo para cada racimo, utilizando 

la técnica de Alpha Shapes, para consecutivamente analizar la distribución espacial y separa 

racimos vecinos. Los resultados se compararon con imágenes clasificadas manualmente, 

obteniéndose 83% de precisión y 82% de recall en la detección de racimos de uvas. A su vez 

se analizó el área clasificada obteniéndose accuracy del 96%, precision 81% y un recall de 

71%. Los resultados muestran un buen desempeño sin la necesidad de iluminación externa, 

sin utilizar información de color y detectando racimos cercanos en ambientes variables.  

Palabras Claves: detección de uva, racimos de uva, vitivinicultura de precisión, 

histograma de gradientes orientados, máquina de soporte de vectores. 
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1 INTRODUCTION 

 

1.1 Motivation 

 

The industry of fresh table and wine grapes represent a major economic activity 

worldwide, being the fruit crop with highest value, with a market size of approximately 

70 billion dollars; see Figure 1  (FAO-OIV, 2016). The International Organization of Vine 

and Wine report that during 2015, more than 75 million tonnes of grape were harvested in 

7.1 million hectares in surface, shown in Figure 2 (OIV, 2015b). Almost 50% of 

production goes to alcohol (270 million hectoliters of wine), while 33% of the production 

is used in fresh grape while the rest is divided between juice and dried grapes. Chile is one 

of the major wine producers, with 5% of the global production (OIV, 2015a), and world’s 

leading fresh table grape exporter (USDA, 2014), increasing both surface and production 

each year. Nevertheless, the world viticulture industry is facing several difficulties 

concerning qualified fieldworkers due to the increase in employment costs and labor 

shortage (Canadian Agricultural Human Resource Council, 2016; Quackenbush, 2017; 

Subercaseaux & Contreras, 2013; Timmins, 2009), affecting productivity, quality, 

harvesting on time and crop monitoring. Additionally, current agricultural tasks and 

practices are manually done, destructive, expensive and highly time consuming, as well 

as inaccurate and subjectively influenced or bias by workers (Grossetête et al., 2012; 

Nuske et al., 2014). Because of these problems, the agricultural sector needs to include 

new technology aimed at helping the producers in different aspects such as productivity 

and quality.    

The use of technology in the grape and wine industry has been an important research 

topic due to the relevance of precision viticulture. This area of study looks for the 

monitoring of relevant variables and data in order to obtain repeatable process, real time 

information for rapid response and improving the grape quality, while also reducing the 

environmental impact and operational costs (Fernández, Montes, Salinas, Sarria, & 
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Armada, 2013). The data obtained by sensors may help growers make more informed 

decision and manage in a better way their field, handling the high variability in their crops.  

 

 

Figure 1. Top fruit value of agricultural production. Source: (FAO, 2017) 

 

 

 

Figure 2. Top fruit harvested area. Source: (FAO, 2017) 
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The use of robotic systems for the automation of several grape and wine related 

processes on field is one of these technologies that may help increase the efficiency in 

crop monitoring, management, and assist in solving the existing problems of labor 

shortage and increasing labor costs. Robotic units in agricultural applications involve three 

main components: mobility algorithms and hardware (guidance and mapping), perception 

system, and end effector action stage (Auat Cheein & Carelli, 2013; Bachche, 2015). This 

research focuses on the perception or detection and recognition of grape bunches on field. 

For any robotic or automation process, the sensing stage is crucial for the correct 

performance of the unit. The detection of grape bunches in vineyards has been an 

important challenge that still has not been completely solved.  

Related studies have shown that segmentation using color features is not robust for 

detecting white berries. Although color based features yield good results in red grape 

varieties (Liu, Whitty, & Cossell, 2015b), this is only applicable near harvesting, after the 

fruit has matured and changed color, limiting the number of tasks in which an autonomous 

unit could operate. Depending on light reflection for grape recognition (Grossetête et al., 

2012; Nuske et al., 2014) may produce different results because of the varying 

pruinescence some grapes present  (Diago et al., 2014) or different light reflections caused 

by weather, rain over the fruit, or spraying, generating multiple reflection points. To tackle 

problems caused by changes in natural illumination conditions some methods employ 

specialized illumination hardware to operate at nighttime (Nuske et al., 2014), which may 

imply higher operational costs. Skrabanek and Runarsson (2015) suggest the use of a 

sliding window that sweeps the entire image. The problem with this approach is the 

computational time needed to cover an entire high-resolution image, multiple times for 

every scale, with a small sliding window, and extracting the features and recognizing each 

window as grape or not. Therefore, studies show that there is still room for improvement 

in the detection of grape bunches using color images with natural illumination, which 

could be very useful to growers. 
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1.2 Potential Applications of Automatic Grape Detection  

 

The automatic recognition of grapes and grape bunches could be employed to 

automate, manage and optimize current agricultural tasks such as harvesting (Luo, Tang, 

Zou, Ye, et al., 2016), spraying (Berenstein, Shahar, Shapiro, & Edan, 2010), grape and 

pixel counting for yield estimation models (Diago et al., 2014; Dunn & Martin, 2004; 

Grossetête et al., 2012; Liu, Marden, & Whitty, 2013; Liu et al., 2015b; Nuske, Achar, 

Bates, Narasimham, & Singh, 2011; Nuske, et al., 2014), evaluating grape quality, size 

and grapevine phenotyping (Cubero et al., 2014; Kicherer et al., 2015; Klodt, Herzog, 

Töpfer, & Cremers, 2015; Roscher et al., 2014), detecting disease in clusters, predicting 

harvest time, quantifying and standardizing crop thinning and basal leaf removal tasks, all 

by using non-destructive visible spectrum cameras. The current industry practices are 

discussed in the following sections, were state-of-the-art of machine vision could be 

employed in these tasks. 

 

1.2.1 Harvesting 

 

Nowadays grape harvesting is done using man power or by harvesting machines that 

strike the vine; see Figure 3. The problem with manual harvesting is the large number of 

workers and time needed, in addition to the rising costs of labor and the fact that many 

seasonal fieldworkers are moving to longer term position in other industries. Thus, farmers 

must face frequent problems to harvest on time.  

On the other hand, machine harvesting is not suitable for all type of grapes, 

especially harvesting of table grapes and champagne grapes were the fruit damage causes 

accelerated oxidation, affecting the final product’s quality (Chamelat et al., 2006; Reis et 

al., 2012). Machine harvesting also collects excessive unwanted materials that wine 

makers must remove before the crush and press stage. Moreover, machine harvesting is 

not able to inspect the quality of the grape, ripeness or damage, where sorting is a key 

activity in the production of champagne and some premium wines. 
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(a) (b) 

 

Figure 3. Example of methods of grape harvesting. (a) Manual Harvesting. (b) Mechanical Harvesting 

Source: (Benito Saez, 2010; Manfull, 2012) 

 

1.2.2 Spraying 

 

Spraying of nutrients, hormones, pesticides and fertilizers is an important task that 

must be done during the different growth stages of the plant, and must be done on time to 

protect the crop from pest, diseases and to feed them with the necessary nutrients for 

ensuring high quality grape. Nowadays, mechanical spraying is done in a homogenous 

way along all the rows, a method that generates a high amount of wasted resources, which 

can be reduced by targeted spraying bunches of grapes or the canopy as needed 

(Berenstein et al., 2010). Alternatively, hand spraying is done by fieldworkers carrying on 

their backs the equipment. Hand spraying is highly time consuming and less efficient. In 

addition, hand spraying is dangerous for the fieldworkers because of possible contact with 

toxic chemical agents. 

 

1.2.3 Yield Estimation 

 

Accurate and early yield estimation is a relevant task in agriculture because it is the 

input for other logistic operations and production processes, such as harvest time, storage, 

transport and sales (Grossetête et al., 2012; Liu et al., 2013, 2015b). Accurate yield 
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estimation by automated means is still not a fully solved problem, which has a relevant 

economic impact on most parts of the value chain (Dunn & Martin, 2004; Herrero-Huerta, 

González-Aguilera, Rodriguez-Gonzalvez, & Hernández-López, 2015). Nowadays 

counting is done manually for estimation and forecast, counting grapes on selected grape 

bunches of random rows, and then extrapolating the results to the whole field (Nuske et 

al., 2011). The accuracy of the results depends on the number of samples taken in the field, 

which are usually insufficient to precisely quantify the variation that takes place on the 

vineyard. Growers also use historical data to obtain a more accurate yield prediction, 

taking into account such variables as temperature, watering, and historical production. 

Despite the additional variables considered, the approach is not completely accurate, and 

is also time consuming and labor demanding in data acquisition (Liu et al., 2013). 

 

1.2.4 Crop Thinning and Leaf Removal  

 

Other important practices include crop thinning, which is the removal of grape 

bunches from the grapevine in order to improve or control grape quality and yield (Creasy 

& Creasy, 2009; Vance, Reeve, & Skinkis, 2013). Thinning allows growers to control the 

leaf area to fruit ratio, which is important to ensure that grapes ripe with a better 

distribution of sugar contents along with giving open space and light to the clusters to 

develop properly. In addition, crop thinning allows to increase the grape size, phenolic 

and aroma compounds, variables essential for grape quality. Nowadays this labor is done 

analyzing manually some rows and trying to repeat the results to the entire vineyard. The 

problem is that no easy measurement can be done through the whole field, and since every 

vineyard is different due to weather, grape variety, water availability, sun light orientation 

and terroir, no standard rule applies.     

In order to control grape quality, leaf removal is also a labor done by growers. The 

removal of leaf near the grape cluster region helps the vine increase air circulation, better 

spraying, pest control and expose fruit to sunlight (Pence & Grieshop, 1991; Vance et al., 

2013). The amount of leaf removal depends on the vineyard practices and climate, but no 
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standard measure is used, only guided by the grape grower opinion and experience, 

making this process difficult to reproduce through the entire field. 

 

1.3 Objectives 

 

The main objective of this research is to develop an algorithm capable of detecting 

grape bunches using lateral digital images of the vine and pattern recognition techniques 

under various occlusion, different foliar density and varying illumination. To this end, a 

SVM-based classifier will be trained and tested using different datasets and feature 

descriptors in order to determine the configuration that yields highest detection rates with 

low misdetections and low false positives. 

 

1.4 Contributions 

 

The contributions of this research can be summarized in:  

i. An experimental and comparative study of grape recognition feature 

descriptors with no use of color information.  

ii. A novel approach for detecting grape bunches in outdoor images, tested in 

four different vineyard image datasets with varying levels of occlusion and 

foliar density for white and red grapes, capable of recognizing neighbor 

grape clusters.  

 

1.5 Thesis Outline 

 

Chapter 2 presents a review of the literature and discusses the related work.  Chapter 

3 introduces the theoretical background. Chapter 4 presents the proposed method for grape 

bunch detection explaining the features, algorithms and classifiers used. Chapter 5 states 



 8 

the experimental methodology along with the results and analysis. Finally, in Chapter 6 

the conclusions and future work are state 

 

2 RELATED WORKS 

 

Most of the related research involving machine vision applications in viticulture is 

aimed at solving the problem of yield estimation. Color features in different color spaces 

(RGB, HSV, L*a*b*) have been used to detect red grapes and white grapes. Recognition 

using color descriptors typically shows better results for red grape near harvest than white 

grape because of the color similarity white grapes have with leaves and background.  

Color thresholding of the RGB channels is employed in Dunn & Martin (2004) for 

yield estimation of Cabernet Sauvignon grapes, correlating the pixel area with kilograms 

of grape. The authors use a white screen placed behind the canopy to help in the 

segmentation. Cabernet Sauvignon grapes, stems, leaves and background pixels are 

classified using color and multispectral images from a natural environment with K-means 

clustering in Fernández et al.,(2013). 

Classification of different parts of the Tempranillo grapes is presented in Diago et 

al. (2012) using RGB features and the Mahalanobis distance for classification. In this 

research, different classes including grape, wood, background and leaves were classified 

from an image with a white screen as background. The user must provide reference input 

pixels for each class. A similar approach for yield estimation is presented in Font et al. 

(2015) using artificial illumination, high resolution images and a Bayesian classifier. Red 

and white grapes are detected in (Reis et al., 2012) using color limits and morphological 

image operations.  

A more sophisticated method is proposed in Chamelat et al., (2006) where HSV 

channel information along with Zernike moments are used to describe grape shapes and 

train a Support Vector Machine classifier in order to identify grapes in images using a 

sliding windows. The purpose of automatic detecting grapes in this research is to 

implement a robotic harvesting system.  
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The novel approach by Nuske et al. (2014) for counting grapes and yield estimation, 

introduces a calibration model that relates number of individual grapes with kilograms of 

harvested crop. The proposed approach extracts interest points in images acquired in the 

fields and compares performance of Invariant Maximal Detector (IMD) and Fast Radial 

Symmetry Transform (FRST) (Loy & Zelinsky, 2003) as key-point detectors.  Patches 

around the points of interest are analyzed extracting color features in RGB and L*a*b* 

color space, Gabor filter responses in 6 orientations and 4 scales, along with SIFT and 

FREAK descriptors. After the extraction of the features is done, each patch is classified 

as grape or not, using a previously trained KD-forest algorithm. The grape key-points 

recognition metrics varies for each dataset due to differences in image illumination and 

variability of the field. Key-point detection has recall rates of 61% for IMD and 79% for 

FRST. The SIFT descriptor yields the highest detection rates across all the datasets. In 

Grossetête et al. (2012) a similar analysis is done looking for pixels with light peaks in 

order to count grapes and have an early yield estimation. The novelty of that research is 

the use of a smartphone for the image processing. 

Liu et al (2013) analyze the relationship between several variables such as pixel 

area, perimeter, grape number and size, and their correlation with the actual weight of the 

grape bunch, in order to determine which metric has the best yield prediction. Later the  

same authors proposed a method for detecting bunches of red grapes employing a color 

segmentation in the HSV space (Liu et al., 2015b). Finally, a feature vector containing 

information of bunch location, texture and bounding box pixel distribution is passed to a 

previously trained SVM classifier. A similar study proposed by Luo, Tang, Zou, Wang, 

& Zhang (2016) present a grape cluster detection based in color and an AdaBoost 

framework for classification. They present an adjoining cluster separator based on the 

calculation of the barycenter of the binary detection mask.  

Vineyard yield estimation by 3D bunch reconstruction is done in Herrero-Huerta et 

al., (2015), considering the volume, mass and number of grapes in each bunch. The 

approach employs images from five different angles to reconstruct the grape bunch. A 

similar study is presented in Liu, Whitty, & Cossell, (2015a), where the reconstruction of 
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a grape bunch is done using only one image, under laboratory conditions. Here color 

segmentation is used to identify the bunch from the background and circular Hough 

Transform is used to identify individual grapes and start creating the 3D model. In Ivorra, 

Sánchez, Camarasa, Diago, & Tardaguila, (2015) a 3D surface is obtained using stereo 

cameras under ideal conditions in order to assess grape bunch components related to yield, 

mainly compactness (which affects the quality of the grapes that do not receive enough 

sunlight in the interior of the bunch).                         

Škrabánek and Runarsson (2015) designed a white grape recognition method using 

a sliding window algorithm on photos of vineyard rows. Four classification strategies 

combining linear SVM or RBF SVM with HOG or pixel intensities. Results show that 

HOG feature and SVM-RBF combination show better results. 

Other studies involving grapevine detection include grape recognition and 

measuring fruit diameter, in images of grapevine, for precision phenotyping for future 

plant breeding. Roscher, et al. (2014) use the circular Hough transform for detecting points 

of interest and then extracting features around the center that include color, HOG and gist, 

which are later passed to a conditional random field classifier. Ripeness and sizing are 

important variables when monitoring the grapevine. For measuring these variables vision 

cameras are used in some studies (Rodriguez-Pulido et al., 2012; Zeng, Liu, Miao, Fei, & 

Wang, 2008). 

Vision algorithms that detect grape and foliage are presented in (Berenstein et al., 

2010) for selective spraying of hormones and pesticides. Three grape bunch detection 

algorithms are evaluated, examining high density edge areas, color channels in RGB and 

HSV and comparing an individual grape mask using a 2D convolution response. 

Discrimination of plant elements is done in (Correa, Valero, & Barreiro, 2012; Fernández 

et al., 2013) using color and clustering algorithms.  

The above literature review shows that the critical and common step between the 

methods discussed is the correct segmentation and detection of the grape bunches, as this 

is the basis for different applications. This research contributes in the study of different 
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feature descriptors and two types of support vector classifiers for grape recognition, 

proposing a feature fusion of HOG+LBP with a SVM-RBF classifier.  

Several studies have used color information to initially segment the potential grape 

bunch area, showing better results in red grapes after veraison. Segmenting white grapes 

using color information still shows results correlating with leaves. This study presents a 

color independent approach which results in a robust approach independent of 

illumination or external factors possibly seen in a variable scenario as a vineyard, tested 

in both red and white grapes.  

Subsequently a proposed method for robust grape bunch detection under different 

illumination and foliar conditions is presented, capable of detecting bunches and 

separating neighbor grape bunches that are closely together. The proposed method does 

not need special illumination hardware, capable of working during daylight. This novel 

method may be used for different application on vineyards, giving growers a powerful 

tool for standardizing their tasks.   
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3 PRELIMINARY NOTIONS  

 

3.1 Digital Images and Color Spaces  

 

A digital image 𝐼 is a quantized and sampled numerical representation of the light 

emitted by a scene. An image is defined as a mapping that associates coordinates (𝑖, 𝑗) of 

a discrete optical plane Ω with discrete intensity values corresponding to the quantization 

of light photons received by the detecting element.  

 

𝐼: (𝑖, 𝑗)  𝜖  Ω ⊂  ℕ2  →  𝐼(𝑖, 𝑗)  𝜖  𝐿 ⊂  ℤ+   , 

 

The image domain Ω is a set of 𝑀 ∙ 𝑁 coordinates, where 𝑀 is the number of rows 

and 𝑁 is the number of columns of the imaging sensor. The intersection of any row with 

a column, Ω(𝑖, 𝑗), is denominated a picture element, or better known as pixel. The pixel 

intensity values lie in a range 𝐿𝑟𝑎𝑛𝑔𝑒 = [0,  2𝑏 − 1], where 𝑏 𝜖 ℕ is the number of bits 

employed to quantize the intensity into  2𝑏 levels.  

 

Ω = {(𝑖, 𝑗) 𝜖 ℕ2: 1 ≤ 𝑖 ≤ 𝑀, 1 ≤ 𝑗 ≤ 𝑁} 

 

Typically, 𝑏 = 8 bits, representing 256 different levels of intensity. Color images are 

formed by measuring the light intensity in three wavelengths corresponding to the three 

primary colors, red, green and blue. These images are formed using band-pass filters that 

only allows one of the primary colors component to be sampled by the light detection 

element. Commonly the so-called Bayer filter arrangement is employed with a single 

detector array to obtain an 𝑀𝑥𝑁𝑥3 image representation, containing the intensity values 

in the three primary color channels, hence the name RGB image. The combination of the 

three channels and the  2𝑏 levels, results in  23∙𝑏. For 𝑏 = 8 bits, this corresponds to more 

than 16.7 million colors. RGB images is just one of several color spaces that may be used 

to represent digital images; see Figure 4a.  
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Another commonly used color space is the Hue, Saturation and Value or HSV 

model. This representation originates from psychophysical theories of color perception by 

humans (Pratt, 2007) and thus is more intuitive in the domain of the arts and graphic 

design, because hue is related to color wavelength, saturation is related to color intensity 

relative to a colorless light (white-gray-black) and value is associated to the overall 

intensity, therefore is easier to interpret than a color formed by the RGB model. The HSV 

space is defined by a non-linear model in terms of a cylindrical coordinate system; see 

Figure 4b. Hue or color component, is represented as the angular coordinate from [0, 360], 

the Saturation or Chroma is defined by the radial distance from [0, 1] representing the 

pureness of the color. Value is defined as the height of the coordinate system, representing 

the brightness ranging from [0, 1]. This model has the advantage that a color region can 

be easily defined with only the Hue parameter regardless of the color brightness or purity 

levels.  

A third color model usually used is the CIELab or L*a*b* color space 

representation. This model can be visualized as a sphere, where L* represents the lightness 

raging from [0, 100]. The a* component represents the green/red plane and b* moves from 

blue/yellow axis both variables raging from [-128, +127]; see figure 4c.        

 

 (a) 

  

(b) (c) 

 

Figure 4. Example of common color spaces. (a) Red, Green, Blue (RGB). (b) Hue, Saturation, Value 

(HSV). (c) L*a*b*.  Source:(International Virag, 2016; SharkD, 2010, 2015)  
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3.2 Histogram Equalization  

  

Often luminous intensity information needs to be normalized to exploit the full 

range of values and make posterior analysis independent of scene illumination. Some 

processes such as edge extraction, shape and texture analysis rely on grayscale image with 

adequate contrast and do not need color information. One popular technique to improve 

image contrast is to perform an equalization of the intensity histogram to ensure all 

intensity levels are equally represented and thus reduce the possibility that intensity values 

in an image are concentrated in a small portion of the range 𝐿. The equalization of the 

intensity histogram is achieved by linearizing the cumulative distribution function (CDF) 

of the original image. Given an image 𝐼, the probability density function for gray level 𝑖, 

with 𝑖 in the range of  0 ≤ 𝑖 < 𝐿, is defined as 

   

ℎ𝐼[𝑖] =
𝑛𝑖

∑ 𝑛𝑖
𝐿−1
0

       ∀ 𝑖 𝜖 𝐿,                                          (3.2) 

 

with 𝑛𝑖 the number of occurrences of pixel with gray level 𝑖. The CDF is then defined as 

 

𝐻𝐼[𝑗] = ∑ℎ𝐼[𝑖]

𝑗

𝑖=0

       ∀ 𝑗 𝜖 𝐿,                                        (3.3) 

 

which ranges in the values from 0 to 1. To linearize the CDF, i.e. obtain a uniform 

probability density function for the luminous intensity of the transformed image, a pixel 

with intensity 𝑗𝑖𝑛 has to be mapped to a pixel with intensity 𝑗𝑜𝑢𝑡 given by (Pratt, 2007): 

 

𝑗𝑜𝑢𝑡 = (𝑗𝑚𝑎𝑥 − 𝑗𝑚𝑖𝑛) ∙ 𝐻𝐼[𝑗𝑖𝑛] + 𝑗𝑚𝑖𝑛  ,                                     (3.4) 

 

where 𝑗𝑚𝑖𝑛 and 𝑗𝑚𝑎𝑥 are the minimum and maximum values of the intensity range. An 

example of histogram equalization is shown in Figure 5.   
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(a)   (b) 

(c)   (d) 

 

Figure 5. Example of histogram equalization for contrast enchantment. (a) Original grayscale image Portugal 

Dataset. (b) Original Image Histogram. (c) Image after Histrogram Equalization. (d) Output of Histogram 

Equalization. 

 

3.3 Pattern Recognition  

 

Pattern recognition are the set of tools and algorithms for classification of feature 

descriptors computed from measurements into groups or classes that share some 

characteristics. Two key aspects of the pattern recognitions process will be discussed next. 

First the construction of a vector of features which jointly constitute a descriptor of a given 

class of object. The second important part is the construction of a model that defines the 

rules for categorizing or labeling the features data. 
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3.3.1 Feature Vectors  

 

A feature vector is a vector 𝒙𝒑 = [𝑥1, … , 𝑥𝑛]
𝑇 containing scalar values 𝑥𝑖 , 𝑖 =

1, . . , 𝑛, which represent a measure of some property of an image location or region  𝑝 =

(𝑖, 𝑗) such as color, texture or shape among others, which can be computed for objects of 

a given class. These vector is a numerical representation of an object or class, which is 

used in the learning and prediction/classification stage of a pattern recognition strategy.  

 

3.3.2 Classifiers  

 

Let  𝒞 = {𝑐1, … , 𝑐𝑚}  denote a set of class labels of object categories. Given a feature 

vector 𝒙𝑝 the classification problem consists in finding a function or process 𝑔: 𝒙𝒑 → 𝑐𝑝 

that returns a correct class label 𝑐𝑝 𝜖  𝒞 of the image element of region 𝑝. In board terms, 

the pattern recognition process involves estimating density functions from samples of 

descriptor vectors 𝒙𝒊,𝒄  for the different classes 𝑐 𝜖 𝒞  in a high-dimensional space 

(typically 𝑛 ≫ 𝑚) and obtaining a so-called discriminant function that divides the space 

into categories or classes. The analysis of the distribution of 𝒳𝒊,𝒄 for each category 𝑐 𝜖 𝒞  

and finding a discriminant function to design the classifier is called learning or training; 

see (Duda, Hart, & Stork, 2001; Fukunaga, 1990)     

Supervised learning is a type of pattern recognition system that has been trained 

from labeled data, explicitly been tough through experience. Unsupervised learning, also 

known as clustering, is a machine learning system that has the objective of finding 

similarities to form and label groups or clusters, given a set of feature vectors without their 

corresponding label or class. Since there is no label data, there is no training stage.  
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4 PROPOSED METHOD 

 

The proposed grape bunch detection approach is shown in the block diagram of 

Figure 6. The first step consists in preprocessing the images to convert the RGB color 

image into grayscale images and equalizing the histogram of intensity values, as explained 

in section 3.2, to improve the extraction of salient-points and grape recognition.  

The equalized images are down-sampled to speed up the detection of salient points 

on grape bunches. Image areas around salient points are analyzed at larger resolution 

scales.  The detection of salient-points is implemented using the Fast Radial Symmetry 

Transform (FRST) due to the results shown in previous studies for finding circular shaped 

points of interest with a less computational time than the Circular Hough Transform.  

Descriptor vector containing HOG and LBP features are computed at different 

resolution scales centered at the salient point and evaluated with a SVM-RBF classifier to 

sort them as grape or non-grape. The cloud of points identified as grapes are then grouped 

using the DBSCAN clustering algorithm, allowing to number the grape bunches. This 

method, contrary to the popular k-means, does not need as input the number of clusters to 

find, allowing any number of grape bunch on one image.   

The boundary of a grape bunch is finally obtained using the alpha-shape algorithm 

for non-convex shapes. This method allows to detect the non-convex shapes of the grape 

bunch boundary, which will be later analyzed to correct the grape bunch counting and 

detection. Finally, the grape bunch’s shape and spatial distribution is analyzed in order to 

improve the grape bunch detection, by computing a neighboring bunch separation method. 

The next sections discuss in further detail the salient point detection, feature computations 

and classification, grape clustering, bunch detection and grape mask creation using the 

alpha-shape method. 
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Figure 6. Proposed Method Framework 

 

4.1 Salient Point Detection 

 

Several authors have proposed the use of symmetric measures for the detection of 

points of interest (Nuske et al., 2014; Rahman & Hellicar, 2014; Roscher et al., 2014). 

Here the Fast Radial Symmetry Transform (FRST) proposed in (Loy & Zelinsky, 2003) 

and employed by (S. Nuske et al., 2014) was chosen for salient point detection. However 

unlike (S. Nuske et al., 2014) here FRST is applied on a down-sampled image to gain 

computational speed. This transform detects radially symmetric salient points, which are 
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good grape candidates. FRST gives each pixel a score for radial symmetry at a distance 

𝑟𝑖 𝜖 ℛ = {𝑟1, . . , 𝑟𝑛}, where ℛ is a set of possible radius values. The score in each pixel is 

computed by first using the gradients information at a radius 𝑟 from the center pixel of an 

image 𝐼 of size 𝑀𝑥𝑁. At each pixel 𝑝 = (𝑖, 𝑗), 0 ≤ 𝑖 ≤ 𝑀 , 0 ≤ 𝑗 ≤ 𝑁, of the gradient 

image 𝑔(𝑝) = ∇𝐼(𝑝), a positive affected pixel, 𝑝+, and negative affected pixel, 𝑝−, at a 

distance 𝑟 from 𝑝 is defined; see equation (4.1) and figure 7.  

 

𝑝±(𝑝) = 𝑝 ± 𝑛𝑖𝑛𝑡 (
𝑔(𝑝)

‖𝑔(𝑝)‖
𝑟)                                           (4.1) 

 

Using this information, the orientation image matrix, 𝑂𝑟 , and magnitude image 

matrix, 𝑀𝑟 , at a radius 𝑟 , are created using a recursion loop, where for each pixel  

𝑝(𝑖, 𝑗): 1 ≤ 𝑛 ≤ (𝑀 ∙ 𝑁), the related 𝑝+(𝑝−) is increased (decreased) by 1 and ‖𝑔(𝑝)‖, 

throughout all pixels; see equation (4.2) and (4.3) (Loy & Zelinsky, 2003; Ni, Singh, & 

Bahlmann, 2003). Starting values of the gradient image matrixs are defined as 𝑂𝑟
0 =

0⃗ ,  𝑀𝑟
0 = 0⃗ . 

 

𝑂𝑟
𝑛(𝑝±(𝑝)) = 𝑂𝑟

𝑛−1(𝑝±(𝑝)) ± 1                                            (4.2) 

 

𝑀𝑟
𝑛(𝑝±(𝑝)) = 𝑀𝑟

𝑛−1(𝑝±(𝑝)) ± ‖𝑔(𝑝)‖                                      (4.3) 

 

Figure 7. FRST affected pixels. Source (Loy & Zelinsky, 2003) 
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Using the orientation image matrix 𝑂𝑟 and magnitude image matrix 𝑀𝑟 along with 

two parameters 𝛼 and 𝜅𝑟, radial strictness and a scaling factor for distance 𝑟 respectively, 

the matrix 𝐹𝑟 is defined; see equation (4.4). Finally, the symmetry transform matrix at 

radius 𝑟,  𝑆𝑟 is obtained by convoluting 𝐹𝑟 with a two-dimensional Gaussian function 𝐴𝑟. 

See equations (4.5).   

 

𝐹𝑟(𝑝) =
𝑀𝑟(𝑝)

𝜅𝑟
(
𝑎𝑏𝑠(𝑂𝑟(𝑝))

𝜅𝑟
)

𝛼

                                        (4.4) 

 

𝑆𝑟(𝑝) = 𝐹𝑟(𝑝) ∗ 𝐴𝑟                                                     (4.5) 

 

The absolute value of 𝑆𝑟 will give a transform image with each pixel a symmetry 

score, independently of its orientation, pixel symmetry from dark to light or vice versa. 

To consider all the radius 𝑟𝑖 𝜖 ℛ, the final transform image 𝑆 is defined as the average of 

all 𝑆𝑟; see equation (4.6). 

 

𝑆 =
1

|ℛ| 
 ∑ 𝑆𝑟

𝑟 𝜖 ℛ 

                                                       (4.6) 

     

In order to keep the relevant scores and then define the possible grape center, a non-

maximal suppression algorithm is run through the score matrix 𝑆. An application example 

of FRST is shown in Figure 8, which represents a grape in Figure 8 (a), the score image 

matrix 𝑆 in Figure 8 (b), and the maximum score selected after non-maximal suppression 

in Figure 8 (c). In the NMS stage, the image 𝑆 with the score of the FRST is analyzed 

using a sliding window to find the local maximum value in each window, that is above a 

minimum threshold. Pixels with scores below the threshold are set to zero even if the score 

is a local maximum value within the window. Therefore, the role of this step is to carry 

out the so called non-maximal suppression to remove spurious information from the image 

and keep the best salient points that potentially match the center of the grapes. The size of 
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the sliding window is set to the half of the size of the average grape size found in the image 

given the camera parameters (focal length, resolution, working distance).  

 

 

 

 

 

 

 

 

 

 

  

Figure 8. Fast Radial Symmetry Transform and Non-maximal suppression example. (a) Original Image. (b) 

FRST output. (c)NMS output. Source of Original Grape: Cropped from (Reis et al., 2012) 

 

4.2 Grape Recognition (Feature and Classifier Selection)  

 

Once salient points have been detected it is necessary to remove many points that 

are not part of grape centers. Thus, the neighborhood around each salient point is analyzed 

using a shape and texture descriptor built from HOG and LBP features together with a 

SVM in order to classify the descriptor as grape or non-grape. The implementation of the 

SVM requires a training dataset containing pairs of feature vectors and labels in a two-

class set (grape and non-grape), 𝒯 = {(𝑥1, 𝑦1),… (𝑥𝑚, 𝑦𝑚)}. The training dataset was 

created by computing the feature vectors on hand-labeled regions of the grapevine. 

The descriptors considered for the grape recognition process are the Histogram of 

Oriented Gradients (HOG), Local Binary Patterns (LBP), DAISY and Dense Scale of 

Invariant Feature Transforms (DSIFT). The relevant aspects of these descriptors are 

discussed next. The performance of two classifiers, a Support Vector Machines (SVM)  

classifier and a Support Vector Data Descriptor (SVDD), using the different feature 

(a) (b) (c) 
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vectors is presented in the next chapter to identify the most accurate and reliable grape 

detector. 

A multiscale analysis is used, which allows the detection of several sizes of berries 

by analyzing the patches around salient points in different scales. The multiscale analysis 

consists of creating a dense image pyramid, which means resizing and blurring the image 

several times. To keep the edges well defined, only the subsample of the image in a range 

considering the size of possible grapes is computed. This allows the usage of scale variant 

feature detectors. 

 

4.2.1 Features 

 

The different feature descriptors evaluated for the development of the grape 

recognition strategy, which include Histogram of Oriented Gradients, Local Binary 

Pattern, Dense Scale Invariant Feature Transform and DAISY, are briefly explained in the 

next sections. 

 

4.2.1.1 Histogram of Oriented Gradients 

 

Histogram of Oriented Gradients (HOG) is a feature descriptor used to define shape 

and appearance based on gradient orientation of its intensity values, where the number of 

occurrences are counted in a locally spaced histogram (Dalal & Triggs, 2005).  To 

compute the feature vector, first the image gradient is calculated by convolving a 

derivative mask, [−1, 0, +1] and [−1, 0, +1]𝑇 with the image in grayscale. The image is 

divided into groups of cells or bins (see Figure 8) where the gradient orientation at each 

pixel is counted in one of the orientation bins or added to the nearest bins weighted by the 

corresponding magnitude (called soft binning). A group of cells defines a block, on which 

histogram normalization and spatial binning is done. 
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Finally, histograms from overlapping blocks are concatenated to define the feature 

vector of an image. This work employs a variant of the original Dalal Triggs HOG feature 

called UoCTTI HOG proposed in (Felzenszwalb, Girshick, Mcallester, & Ramanan 

2010). The UoCTTI HOG incorporates a strategy for reducing the dimensionality of the 

descriptor vector. A visualization of this feature is presented in Figure 9, where the local 

histograms are presented in the image, showing the dominant orientations bins. 

 

(a) (b) 

 

Figure 9. Example of Histogram of Oriented Gradients. 

 (a) Input Image. (b) A visualization of HOG descriptor 

 

4.2.1.2 Local Binary Patterns 

 

Local Binary Patterns or LBP descriptor is useful for texture classification. Each 

input image is divided in cells of nxn pixels, each pixel in a cell is compared with a central 

neighbor in a mxm m<n arrange, typically m=3. If the center pixel value is smaller than 

the neighbor value, the neighbor is coded as a 1, otherwise 0. The binary pattern is 

computed by comparing the central pixel with its neighbors within a cell. More 

specifically, following the neighborhood clockwise or counter-clockwise, a binary code 

is created by appending 0 or 1 to the code whenever the central pixel is greater or smaller 

than the neighbor pixel, respectively (Guo, Zhang, & Zhang, 2010). This process is 

repeated for each nxn pixel cells within the image. Using 8 neighbors yields an 8-bit 
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number; see Figure 10, which allows to compute a 256 bins histogram by counting the 

occurrences of each binary number in a cell. Finally, each histogram is concatenated in 

order to form the feature vector of a whole image (Ahonen, Hadid, & Pietika, 2006). 

An extension of LBP called Uniform LBP allows to reduce the 256 possible values 

to a subset of 59 values, by counting only the patterns that have at most two transitions 

(from 0 to 1 or viceversa) in the binary code. This form of lossy encoding is based on the 

fact that some binary patterns occur more frequently than others and that uniform patterns 

account for about 90% of the patterns when using 8 neighbors (Ojala, Pietikäinen, & 

Mäenpää, 2002; Pietikäinen, 2010).  

 

18 33 30 

20 50 70 

62 55 80 

(a) 

-32 -27 -20 

-30  +20 

+12 +5 +30 

(b) 

0 0 0 

0  1 

1 1 1 

(c) 

   

 11110000  

   

(d) 

 

 

Figure 10. Example of a Local Binary Pattern. (a) The 3x3 arange. (b) Comparison with the central 

pixel. (c) Codification. (d) Binary Pattern 

 

4.2.1.3 Dense Scale Invariant Feature Transform 

 

In its original form, Scale Invariant Feature Transform (SIFT) is a descriptor for 

image matching which was composed of two main parts, an interest point detector and an 

image descriptor (Lowe, 2004). One of its variants, which omits the interest point detector, 

and instead densely samples the image, constructs a descriptor called Dense SIFT 

(DSIFT). This variant has been used for image classification and object recognition. 

Differently from SIFT, DSIFT computes on one scale and does not include the dominant 
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orientation on its descriptor, meaning that it is not scale invariant or orientation invariant. 

On each point, image gradient, including magnitude and orientation, are computed on a 

16x16 pixel neighborhood. This neighborhood is divided in a 4x4 block, where histogram 

of 8 orientations, weighted by magnitude and a spatial Gaussian, is created for each spatial 

bin, resulting in 16 histograms of 8 orientations bins, forming a 128-dimension feature 

vector, for each interest point in an image (Vedaldi & Fulkerson, 2010). A visualization 

of this feature is presented in Figure 11.    

 

(a) (b) (c) 

 

Figure 11. Visualization of DSIFT. (a) Input Image. (b) DSIFT feature geometry. (c) DSIFT feature grid.  

 

4.2.1.4 DAISY 

 

The DAISY also employs histograms of gradients like SIFT, but can be computed 

densely and faster (Tola, Lepetit, & Fua, 2010). Its original purpose was to estimate depth 

maps from image pairs, but this descriptor has shown good performance in classification 

and detection problems (Velardo & Dugelay, 2010). Unlike HOG or SIFT, the DAISY 

descriptor computes the gradients orientations on concentric circles (see Figure 12), for 

which the radiusm number of rings, number of histograms per ring, and number of bins in 

the histogram define the geometry and size of the descriptor in each point. The descriptor 

vector is built with the values resulting from convolutions between the gradient of the 

input image along a set of directions and Gaussian kernel with different standard 
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deviations σ on each circular region. Even though the descriptor is meant to be densely 

applied to the entire image, it can also be used on a grid of fixed points as shown in Figure 

12. 

 

(a) (b) 
(c) 

 

Figure 12. Daisy feature vector geometry in spatial grid. (a) Input Image. (b) DAISY feature geometry 

(c) DAISY feature on a 2x2 grid. Source: (Tola et al., 2010) 

 

4.2.2 Classifiers 

 

Once the feature vector is computed for grape and non-grape images, the following 

step is to determine whether a region contains a grape bunch or not by evaluating the 

feature vector in a discriminant function, i.e. comparing the features against the model. 

To this end, two classifiers are considered in the implementation of the grape detection 

scheme. The first approach is a standard Support Vector Machine (SVM). The second 

classifier strategy is a one-class SVM known as Support Vector Data Descriptor (SVDD). 

A support vector approach was chosen because of its fewer parameters selection to tune 

compared to other classifiers such as Artificial Neural Networks. Also, this classifier is 

capable of handling highly dimensional feature vectors differently from decision trees. 

Additionally, support vector classifiers do not show problems with decision boundaries, 

avoiding overfitting. Furthermore, the computational cost of support vectors is lower than 
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deep learning classifiers. The fundamentals of support vector classifiers are explained 

next. 

  

4.2.2.1 Support Vector Machine 

 

SVM is a supervised learning classifier that builds an optimal hyperplane from a set 

of features vectors corresponding to elements of a labeled dataset. Let 𝒳 = {𝒙1, … , 𝒙𝑘}, 

denote a set of feature vectors 𝒙𝑖𝜖 ℝ
𝑛, corresponding to images 𝑰𝒊 , 𝑖 𝜖 [1, 𝑘] and let 𝒴 =

{𝑦1, … , 𝑦𝑘}  denote the set of class labels. The problem is to find an optimal linear 

hyperplane 𝒘 ∙ 𝒙 + 𝑏 = 0, where 𝒘 is the normal to the hyperplane and 𝑏 the translation 

constant, that bests separates the classes in 𝒴 i.e. is such that maximizes the distance of 

the feature vector to the dividing hyperplane and minimizes the number elements 

incorrectly assigned to the wrong class (incorrect side of the dividing hyperplane). In the 

case that data is not linearly separable, a cost parameter 𝐶 and a misclassification variable 

𝜉𝑖 

 

𝜉𝑖 = max(0, 1 − 𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏)) ≥ 0,                                        (4.7) 

 

which represents the distance to the correct region. 

 This allows to relax the problem when data is not strictly separable by introducing 

a misclassification penalty to the sought hyperplane, see Figure 13. Considering the 

misclassification penalty, and that in the context of grape detection 𝑦𝑖 𝜖 {1, −1}, because 

images can be either of class grape or non-grape, the classifier training problem can be 

formulated as that of finding 𝒘 and 𝑏 such that: 

 

𝒘 ∙ 𝒙𝒊 + 𝑏 ≥ 1 − 𝜉𝑖 ,                                                   (4.8) 

𝒘 ∙ 𝒙𝒊 + 𝑏 ≤ −1 + 𝜉𝑖 ,                                                 (4.9) 

𝜉𝑖 ≥ 0   ∀𝑖 ,                                                          (4.10) 
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for 𝑦𝑖 = 1 and 𝑦𝑖 = −1 respectively. Using the class labels, these inequalities can be 

combined into one equation: 

  

𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) − 1 + 𝜉𝑖 ≥ 0    ∀𝑖                                (4.11) 

 

The objective function is defined by finding the maximum distance between the 

parallel hyperplanes (see Figure 13), on which the restrictions are active and the 

penalization error is minimum. The distance between both hyperplanes is given by 

2/‖𝒘‖, then the optimal distance is found by maximizing 2/‖𝒘‖, which is equivalent to 

minimizing 
1

2
‖𝒘‖2. Finally, the optimization problem can by written: 

𝑚𝑖𝑛𝑤,,𝑏    
1

2
‖𝒘‖2 + 𝐶 ∑𝜉𝑖

𝑘

𝑖

                                      (4.12) 

𝑠. 𝑡.     𝑦𝑖(𝒘 ∙ 𝒙𝒊 + 𝑏) − 1 + 𝜉𝑖 ≥ 0    ∀𝑖                               (4.13) 

 

𝜉𝑖 ≥ 0   ∀𝑖                                                    (4.14)  

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Support Vector Machine Classifier. Source: (Saavedra, 2015)       
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To solve the optimization problem stated above, it is convenient to use the Lagrange 

multipliers approach and solve the dual problem. This allows the problem to be computed 

more efficiently (Lin, 2006; Burges, 1997). The reformulated problem is expressed as: 

 

𝑚𝑎𝑥𝛼    ∑𝛼𝑖

𝑘

𝑖

−
1

2
∑∑𝛼𝑖𝛼𝑗𝑦𝑖𝑦𝑗(𝒙𝒊 ∙ 𝒙𝒋) 

𝑘

𝑗

𝑘

𝑖

                       (4.15) 

𝑠. 𝑡.     0 ≤ 𝛼𝑖 ≤ 𝐶    ∀𝑖                                                (4.16) 

∑𝑦𝑖𝛼𝑖 = 0

𝑘

𝑖

                                                         (4.17) 

 

where 𝛼𝑖 the Lagrange multipliers. Using a linear discriminant function with data that is 

a not linearly separable will inevitably result in misclassification of samples. In order to 

achieve a better decision boundary, a non-linear kernel function can be used. The main 

idea of this is to map the n-dimensional feature vector onto a higher dimensional space 

where the data is linearly separable, see Figure 14. The advantage is that the mapping 

Φ:ℝ𝑛 → ℝ>𝑛 in the solution presented above, only depends on the inner product of the 

training data, so given a kernel function such that Φ(𝒙𝒊) ∙ Φ(𝒙𝒋) = 𝑘(𝒙𝒊, 𝒙𝒋), it would 

only be necessary to replace 𝒙𝒊 ∙ 𝒙𝒋 with 𝑘(𝒙𝒊, 𝒙𝒋), without any need to compute the data 

in the higher dimensional space, but rather compute the inner product between the feature 

vectors in the feature space (Burges, n.d.). To this end, a Radial Basis Function is 

employed as kernel: 

 

Φ(𝒙𝒊) ∙ Φ(𝒙𝒋) = 𝑘(𝒙𝒊, 𝒙𝒋) = 𝑒
−

1

2𝜎2‖𝑥𝑖−𝑥𝑗‖
2

= 𝑒−𝛾‖𝑥𝑖−𝑥𝑗‖
2

               (4.18) 

 

For the model to be complete and perform well, adequate values of 𝐶 and the 

parameter 𝛾 must selected. The correct selection is performed by k-fold cross-validation. 

This technique allows to estimate how accurate the prediction model is, by using the 

training data. The main idea is to divide the training dataset into k equal subsets. One of 
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these subsets is used for validation, while the k-1 reaming is used for training. This process 

is repeated k times, in each iteration using a different subset. Afterwards, the results are 

averaged. A grid search is performed to find the correct 𝐶 and 𝛾  parameters. Each 

parameter is tested in a range of values and then k-fold cross-validation takes place on 

each update of the parameters. 

 

 

 

Figure 14. RBF kernel trick. Source: (Alisneaky, 2011) 

 

4.2.2.2 Support Vector Data Descriptor  

 

Another method of classification is the Support Vector Data Description (SVDD), 

which is a one-class support vector classifier. Classic SVM tries to label new descriptor 

vectors according to two or more known classes. However, when there is only one class, 

assigning the label to objects that are of the class and rejecting everything else is 

complicated, as in this case in which the decision has to be made between grape and 

everything else that is not a grape. The initial objective of SVDD classifiers was to detect 

outliers in a process, where obtaining normal state training data is simple, but gathering 

non-normal state training data might be practically impossible. The one class classification 

scheme was developed to employ only positive class data in order to find an optimal 

decision boundary. 
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SVDD proposed by Tax & Duin (2004) searches for the optimal hypersphere that 

encloses the descriptor vectors of all positive data, while trying to minimize the volume 

of the decision boundary in order to not include outliers. Given 𝒳 = {𝒙1, … , 𝒙𝑘}, as the 

set of feature vector of 𝑘  positive data images, with 𝒙𝑖  the i-th feature vector of n-

dimensions, 𝒙𝑖𝜖 ℝ
𝑛, the center 𝒂 and the radius 𝑹 > 0 is defined, which characterizes the 

optimal hypersphere. A new query is classified as positive if the distance from the data 

point 𝒙𝑖 to the center 𝒂 is smaller than 𝑹, see Figure 15. To obtain a soft margin boundary, 

some outliers can be accepted by introducing a penalty parameter 𝐶 and an error variable 

𝜉𝑖 ≥ 0. The optimization problem can be written as: 

 

𝑚𝑖𝑛𝑎,𝑅  𝑹𝟐 + 𝐶 ∑𝜉𝑖

𝑘

𝑖=1

                                              (4.19) 

 

𝜉𝑖 = max(0, ‖𝒙𝑖 − 𝒂‖2 − 𝑹𝟐)                                    (4.20) 

 

𝑠. 𝑡.    ‖𝒙𝑖 − 𝒂‖2 ≤ 𝑹𝟐 + 𝜉𝑖      ∀𝑖                                  (4.21) 

 

𝜉𝑖 ≥ 0      ∀𝑖                                                   (4.22) 

 

𝑹 > 0                                                          (4.23) 

 

The problem above can be solve using Lagrange multipliers and the dual 

formulation. The kernel trick can also be applied here to achieve a better decision 

boundary. Finding the optimal parameters is done by a grid search, since no cross-

validation can be done using only positive example training data. 
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Figure 15. Support Vector Data Descriptor. Source: (Huang et al., 2016) 

 

Once all the features and classifiers are compared, the best performing combination 

is chosen to create the model to be used to detect grape bunches in vineyards. In order to 

recognize the grape berries, patches of the same size as the training dataset must be 

sampled to extract the feature vector and to be classified.  

After grape recognition is done in several scales, all results are transform to the 

original image size. This results in an image with several patches containing grape berries 

and some false positive results. Since some patches overlap, and they include a 

classification score given by SVM, a non-maximal suppression algorithm is used only in 

the classification output patches, eliminating redundant information. 

 

4.3 Clustering 

 

Next, in order to identify each grape bunch in an image, a clustering technique called 

Dense-Based Spatial Clustering of Applications with Noise, DBSCAN, is used. DBSCAN 

algorithm is capable of clustering points based on density, not needing as an input 

parameter the number of clusters like k-means. Also, this method classifies isolated points 
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as outliers, handling false positive from the classification stage. Both advantages help in 

the grape bunch detection problem, given the variability of the number of clusters and 

possible shapes due to occlusion. The main objective of this algorithm is to group near 

grape berry patches as a cluster. 

Given a set of points in a space, a point 𝑞 is considered part of a cluster if a minimum 

number of points are reachable at a distance 𝜀. An edge or border point is considered part 

of the cluster if it is reachable but cannot reach more points. All points that are not 

reachable and do not fulfil the minimum number of points restriction are consider outliers. 

Both distance 𝜀 and minimum number of points are parameters that depend on the camera 

and distance to the object, defined by the average berry size in pixels.    

 

 

 

Figure 16. DBSCAN algorithm example. Source: (Chire, 2011) 

 

4.4 Cluster Boundary 

 

Once the 𝑥, 𝑦 coordinates of grapes and their belonging cluster are obtained, it is 

needed to define the boundary of the cluster and surround the inner points, assuming those 
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pixels belong to grapes pixels. Several researcher propose using a convex hull approach 

(Herrero-Huerta et al., 2015; Liu et al., 2015b; Nuske et al., 2014). The problem with this 

approach is that the convex area created may include non-berry pixels and spatial 

information might be lost, counting several grape bunches as one. An alternative method 

would be to create a non-convex area, using the boundary of the identified berries. Using 

the alpha shape method, the shape or boundary of the grape bunch can be defined using 

the finite set of grape centers for each cluster. 

A formal definition for alpha shape method is: given a group of points 𝒮, two points 

𝑝, 𝑞 ∈ 𝒮 are boundary points, if a disk of radius 𝛼, with 𝑝 and 𝑞 on its circumference, lies 

in the space not containing any other point from 𝒮. If the condition is true, an edge segment 

is computed connecting 𝑝  and 𝑞.  The 𝛼 -shape of 𝒮  is the group of straight-lines 

connecting all the boundary points (Kirkpatrick & Seidel, 1983). Then, the binary mask 

is created from all the pixels inside 𝛼-boundary, defining the area and location of the grape 

cluster. 

 

4.5 Neighboring Grape Bunch Separation 

 

If two or more clusters are close together, the DBSCAN algorithm may classify 

them as one grape bunch, affecting the detection performance. To improve the detection, 

a novel method that analyses the shape and spatial distribution of each cluster in the binary 

mask is proposed. The proposed method divides the cluster into smaller two new groups 

if an area of a cluster has enough inter-separation in the vertical and horizontal axis. To 

achieve this, using the binary image, the distance between inner cluster separation is 

measured, by studying the number of pixels were transitions from 1 to 0 and 0 to 1 occur 

in a row. If more than one low to high edge occurs in a row, a separation exists. If the 

separation in the row and column is bigger than the size of two berries, we assume another 

grape bunch exists, creating a new detection. The novel method is presented in Algorithm 

1. An example of the complete proposed process is presented in Figure 17. This approach, 

compared to (Liu et al., 2015b) and (Luo, Tang, Zou, Wang, et al., 2016), is independent 
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of color, being able to detect grape bunches of red and white grapes, and is able to separate 

two or more adjoining grape bunches since the method searches for changes in the binary 

image boundary and not the barycenter.  

 

Algorithm 1: Neighboring Grape Bunch Separation 

1: Let 𝐵𝑊 be the binary image of the grape bunch after DBSCAN 

2: Let 𝑟 be the radius in pixels of the grape  

3: 𝑦𝑚𝑖𝑛 ← minimum row from 𝐵𝑊 

4: 𝑦𝑚𝑎𝑥 ← maximal row from 𝐵𝑊 

5: for 𝑦 between 𝑦𝑚𝑖𝑛 and 𝑦𝑚𝑎𝑥 

6:      𝑒𝑑𝑔𝑒𝑟𝑎𝑖𝑠𝑖𝑛𝑔  ← find rising edges in the row 𝑦 of  𝐵𝑊 

7:     𝑒𝑑𝑔𝑒𝑓𝑎𝑙𝑙𝑖𝑛𝑔  ← find falling edges in the row 𝑦 of  𝐵𝑊 

8:     if length of 𝑒𝑑𝑔𝑒𝑟𝑎𝑖𝑠𝑖𝑛𝑔 < 2 

9:         Continue to next 𝑦 

10:     Else 

11:         for 𝑖 = 1 to length 𝑒𝑑𝑔𝑒𝑟𝑎𝑖𝑠𝑖𝑛𝑔 − 1 

12:             𝑥𝑠𝑒𝑝𝑎𝑎𝑡𝑖𝑜𝑛[𝑖] ← 𝑒𝑑𝑔𝑒𝑓𝑎𝑙𝑙𝑖𝑛𝑔[𝑖] − 𝑒𝑑𝑔𝑒𝑟𝑎𝑖𝑠𝑖𝑛𝑔[𝑖 + 1]  

13:             if 𝑥𝑠𝑒𝑝𝑎𝑎𝑡𝑖𝑜𝑛[𝑖] > 4 ∗ 𝑟 

14:                 𝑥𝑛𝑒𝑤[𝑖] ← (𝑒𝑑𝑔𝑒𝑓𝑎𝑙𝑙𝑖𝑛𝑔[𝑖] + 𝑒𝑑𝑔𝑒𝑟𝑎𝑖𝑠𝑖𝑛𝑔[𝑖 + 1])/2 

15:                 𝑦𝑠𝑒𝑝𝑎𝑎𝑡𝑖𝑜𝑛[𝑖] ← calculate the vertical distance to the cluster 

16:                 if 𝑦𝑠𝑒𝑝𝑎𝑎𝑡𝑖𝑜𝑛[𝑖] > 4 ∗ 𝑟 

17:                     Calculate the new bounding boxes 

18:                 end if 

19:             end if 

20:         end for 

21:     end if 

22: end for 

 



 36 

(a) (b) 

(c) (d) 

(e) (f) 

 

Figure 17. Example from Portugal dataset, images showing the output of the different stages of the framework. 

(a) Input image. (b) Salient points of potential berries. (c) Output of the multiscale HOG+LBP SVM-RBF 

classifier. (d) Output of the DBSCAN eliminating isolate berries. (e)Initial bounding box of the cluster. (f) 

Output of the neighboring grape bunch.  

 

Figure 18 shows the final detection binary mask and its comparison with the hand 

labeled ground-truth. This metric allows to understand the real percentage of detected 

pixel area of each identified cluster.  
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(a) (b) 

 

Figure 18.  Example of the detection mask to study the spatial distribution and the area of the grape cluster. (a) 

Binary detection mask of the cluster region after applying the method. (b) Comparison with ground truth, 

white=TP, black=TN, Green=FN, magenta=FP. 
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5 EXPERIMENTAL METHODOLOGY AND RESULTS 

 

5.1 Methodology 

 

The different descriptors and classification strategies were implemented in 

MATLAB® using the computer vision and pattern recognition libraries as LibSVM 

(Chang & Lin, 2013), VLFeat (Vedaldi & Fulkerson, 2010), DBSCAN (Inglese, 2015) 

and MATLAB® implementations of Fast Radial Symmetry Transform, Non-maximal 

suppression and DAISY (Kovesi, 2004; Malisiewics, n.d.; Tola et al., 2010). The 

algorithms and proposed grape detection strategy were executed on a computer with an 

Intel Core i5-3317U 1.70GHz CPU with 2 cores and 16 GB RAM. 

The dataset made available by Pavel & Runarsson (2015) was employed to train and 

test the berry classifier. This dataset consists of single white grape images and images of 

background patches, all of them size 40x40 pixels. Datasets T-3 and T-X, made available 

by Pavel & Runarsson (2015), were used in the training stage. The T-3 training set consists 

of 576 images (288 non-berries and 288 berry images) while T-X dataset consists 11,332 

images created by rotating by 90, 180, and 270 degrees all T-N, N={1,..5} examples 

available. The amount of true positive and true negatives in the T-X dataset are equal. On 

the other hand, the testing dataset has a total of 4000 images. Examples of this dataset are 

shown in Figure 19.      

 

    

    

 

Figure 19. Examples of Pavel & Runarsson (2015) training and testing dataset. 
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Evaluating the proposed grape detection strategy and testing the different descriptors 

was done employing four different lateral vid image datasets; Israel Dataset (Berenstein 

et al., 2010), Iceland Dataset (Pavel & Runarsson, 2015), Portugal Dataset (Reis et al., 

2012) and the Chile Dataset. Number of images and image size are shown in Table 6. 

Only visible spectrum cameras were used. It is to be noted that each dataset was acquired 

under different illumination and camera-grape distances, listed in Table 6, thus the data 

covers a representative range of real world situations. Examples of these datasets are 

shown in Figure 22. The datasets were hand-labeled to obtain the ground truth. 

The performance of the approaches for single berry and grape bunch detection is 

evaluated using the standard confusion matrix summarized in Table 1 and the 

corresponding true/false positive/negative rates, as well as Accuracy (Acc), Precision 

(Prc), and Recall metrics indices together with the corresponding Confidence Intervals 

(𝐶𝐼) with 𝛼 = 95%. 

The HOG is computed here using UoCTTI variant with an 8x8 cell size; 2x2 block 

size, 9 orientation bins, without bilinear interpolation. The LBP descriptor implemented 

employs 10x10 sliding blocks with; 3x3 pixel neighborhood, and uniform binning 

histogram. The parameters of the DAISY descriptor are; 15 pixel radius; 3 rings; 8 

histograms in each ring level; 8 bins in each histogram and 16 fixed points. Finally, the 

DSIFT descriptor uses a bin cover size of 5 pixels, a step of 10 pixels, and a geometry of 

4x4 bins with 8 orientations. 

 

 

Predicted Condition 

Grape Non-Grape 

T
ru

e 
C

o
n
d

it
io

n
 

Grape True Positive (TP) False Negative (FN) 

Non-Grape False Positive (FP) True Negative (TN) 

 

 

Table 1. Confusion Matrix for Grape Recognition 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
 ∙ 100                                        (5.1) 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∙ 100                                                  (5.2) 

 

𝑅𝑒𝑐𝑎𝑙𝑙 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
∙ 100                             (5.3) 

 

𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒 =  
𝐹𝑃

𝐹𝑃 + 𝑇𝑁
∙ 100                                     (5.3) 

 

𝐶𝐼 = 𝑝̂ ± 𝑍1−
𝛼

2
 √

𝑝̂(1 − 𝑝̂)

𝑛
                                                 (5.4) 

 

5.2 Results 

 

The results for grape recognition using the different datasets and classifiers are 

presented in Tables 2 to 5.  Tables 2 and 3 summarize the results obtained with the 

different descriptors using the SVM classifier applied to the T-3 and T-X datasets, while 

Tables 4 and 5 summarize the results for the same datasets, but employing the SVDD 

classifier.  A comparison of the results shows that regardless of the dataset, the HOG+LBP 

descriptor yields the highest accuracy, precision and recall rates when using the SVM 

classifier.  When the SVDD is employed for the detection of berries in the T-X dataset, 

the HOG+LBP descriptor outperforms the other. The results show that the HOG feature 

shows the best results from the three gradient based features. This can be attributed to the 

size of the feature vector and the feature geometry, where HOG analyses 8x8 windows, 

while the other features use bigger windows on a fixed grid.   

 Comparing the results for the SVM classifier with those of the SVDD, it is possible 

to observe that the latter has 15-25% lower accuracy, precision and recall values. This 
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values can be interpreted as that the high variability on field affects the decision boundary 

of a classifier, where a classifier that has examples of non-grape images will give a better 

result.  In summary, the combined HOG+LBP descriptor together with the SVM classifier 

provide a high accuracy of 95.98 ± 0.61%, a very high precision of 99.41 ± 0.23%, and a 

good recall rate of 92.50 ± 0.82%.  These results shown an improvement with respect to 

other approaches reported in the literature (Pavel & Runarsson, 2015), where a different 

cell size of hog combined with texture information helps in the hyperplane decision 

boundary.  In terms of computational time, the best descriptor is LBP, which takes 25-

35% less time than the HOG+LBP approach.  Nonetheless, the HOG+LBP is at least 2 to 

3 times faster than DSIFT, DSIFT+LBP or DAISY+LBP.  Therefore, the HOG+LBP 

descriptor and the SVM classifier provide the best berry detection approach in terms of 

effectiveness and speed. 

The Receiver Operational Characteristic (ROC) curves for grape recognition using 

the SVM classifier are shown in Figure 20. The performance curves of the feature 

descriptors evaluated above are compared, studying the True Positive Rate or Recall 

(fraction of correctly labeled positive) against the False Positive Rate (fraction of labeled 

negatives classified as positive) at several SVM decision thresholds. Figure 21 presents 

the Precision-Recall (PR) curves for the feature descriptors at various values of SVM 

decision threshold. 

 

T-3 HOG LBP HOG+ LBP DSY DSY+ LBP DSIFT DSIFT+LBP 

SVM Param 
C=2 

γ=3e-2 

C=2 

γ=6e-2 

C=2 

γ=1e-2 

C=2 

γ=2e-2 

C=2 

γ=2e-2 

C=4 

γ=3e-2 

C=2 

γ=1e-2 

Acc. % 91.0 ± 0.87 87.88 ± 1.01 91.57 ± 0.86 86.18 ± 1.07 86.32 ± 1.07 88.53 ± 0.99 89.30 ± 0.96 

Prc.. % 98.88 ± 0.33 98.65 ± 0.36 98.99 ± 0.31 96.35 ± 0.58 96.48 ± 0.57 98.49 ± 0.38 98.64 ± 0.34 

Rec. % 83.75 ± 1.14 76.80 ± 1.31 84.00 ± 1.13 75.20 ± 1.33 75.40 ± 1.34 78.25 ± 1.28 79.70 ± 1.25 

Avg. Time 

per image 
0.0034 0.0025 0.0038 0.0148 0.0154 0.0095 0.0099 

 

Table 2. Grape recognition results using the SVM classifier and the T-3 training set. 
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T-X HOG LBP HOG+ LBP DSY DSY+ LBP DSIFT DSIFT+LBP 

SVM Param 
C=2 

γ=3e-2 

C=2 

γ=6e-2 

C=2 

γ=1e-2 

C=2 

γ=2e-2 

C=2 

γ=2e-2 

C=4 

γ=3e-2 

C=2 

γ=1e-2 

Acc. % 95.38 ± 0.65 95.03 ± 0.67 95.98 ± 0.61 92.5 ± 0.82 94.13 ± 0.73 93.73 ± 0.75 94.53 ± 0.71 

Prc. % 99.62 ± 0.19 99.51 ± 0.22 99.41 ± 0.23 99.30 ± 0.26 99.44 ± 0.23 99.72 ± 0.17 99.50 ± 0.22 

Rec. % 91.10 ± 0.88 90.50 ± 0.91 92.50 ± 0.82 85.60 ± 1.09 88.75 ± 0.98 87.70 ± 1.02 89.50 ± 0.95 

Avg. Time 0.0039 0.0044 0.0059 0.0194 0.0224 0.0111 0.0129 

 

Table 3. Grape recognition results using the SVM classifier and the T-X training set. 

 

 

T-3 HOG LBP HOG+LBP DSY DSY+ LBP DSIFT 
DSIFT + 

LBP 

SVDD 

Param 

C=5e-1 

γ=2e-3 

C=3e-1 

γ=2e-2 

C=5e-1 

γ=2e-3 

C=4e-3 

γ=6e-2 

C=1e-3 

γ=3e-2 

C=2e-3 

γ=6e-2 

C=2e-3 

γ=3e-2 

Acc. % 72.33±1.39 68.65 ± 1.44 70.13 ± 1.42 59.50 ± 1.52 60.68 ± 1.49 63.93 ± 1.49 65.88 ± 1.47 

Prc. % 92.56 ± 0.81 88.45 ± 0.99 96.00 ± 0.61 82.31 ± 1.18 89.69 ± 0.98 90.66 ± 0.90 89.94 ± 0.93 

Rec. % 48.55 ± 1.55 42.90 ± 1.54 42.00 ± 1.53 24.20 ± 1.33 24.35 ± 1.41 31.05 ± 1.43 35.75 ± 1.48 

Avg. Time 0.0049 0.0025 0.004 0.015 0.0161 0.0089 0.009 

 

Table 4. Grape recognition results using the SVDD classifier and the T-3 training set. 

 

 

 

T-X HOG LBP HOG+ LBP DSY DSY+ LBP DSIFT 
DSIFT+ 

LBP 

SVDD 

Param 

C=5e-1 

γ=2e-3 

C=3e-1 

γ=2e-2 

C=5e-1 

γ=2e-3 

C=4e-3 

γ=6e-2 

C=1e-3 

γ=3e-2 

C=2e-3 

γ=6e-2 

C=2e-3 

γ=3e-2 

Acc. % 79.15±1.26 73.83±1.36 81.00±1.21 65.00±1.48 66.75±1.46 74.25 ±1.35 76.54±1.31 

Prc. % 93.06±0.79 89.22±0.96 89.95±0.93 87.04±1.04 81.84±1.19 85.56±1.09 84.85±1.11 

Rec. % 63.00±1.50 54.20±1.54 69.80±1.42 35.25±1.48 43.05±1.53 58.35±1.53 64.40±1.48 

Avg. Time 0.0055 0.0027 0.0069 0.0169 0.0249 0.0107 0.0126 

 

Table 5. Grape recognition results using the SVDD classifier and the T-X training set. 
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(a) (b) 

 

Figure 20. ROC curves and AUC of grape recognition using SVM classifier. (a) Using T-3 training set. 

(b) Using T-X training set 

 

 

(a) (b) 

 

Figure 21. PR curve and AUC of grape recognition using SVM classifier. (a) Using the T-3 training set. 

(b) Using the T-X training set. 

 

Size and variability of the training sets influence on results, showing a better 

performance the T-X dataset. This is due to the larger number of images that better 

represent the grape and non-grape classes.  
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Considering the previous results for the grape recognition stage, a combined 

HOG+LBP feature descriptor was chosen together with the SVM classifier trained with 

the T-X dataset to implement the grape bunch detection strategy. The evaluation of the 

proposed grape bunch detection scheme considers four different datasets. Examples of 

each dataset are shown in Figure 22. Results of the novel method for grape bunch detection 

are summarized in table 6. Area classification is also studied comparing hand labeled 

ground truth against the outcome of the proposed algorithm, results are shown in table 7.  

 

 
 Israel Dataset Iceland Dataset 

Portugal 

Dataset 
Chile Dataset 

 

 # of Images 129 3 15 16  

 

Illumination 

Daytime 

Artificial 

Illumination 

Daytime 

Natural 

Illumination 

Nighttime 

Artificial 

Illumination 

Daytime 

Natural 

Illumination 

 

 Camera-Object 

Distance [m] 
~ 1.0 ~ 1.5 ~ 0.5  ~ 1.0 

 

 Original 

Resolution 
800 x 600 3888x2592 3648x2736 5472x3648 Average 

Grape Bunch 

Detection 

Avg. Prc % 88.46% ±4.34 83.02% ±8.80 96.67% ±7.04 86.28% ±3.95 88.61% 

Avg. Recall % 82.43% ±5.03 81.63% ±8.94 76.22% ±14.52 81.06% ±4.42 80.34% 

 

Table 6. Grape bunch detection results for each dataset. 

 

 
 Israel Dataset Iceland Dataset 

Portugal 

Dataset 
Chile Dataset 

 

 # of Images 129 3 15 16  

 Original 

Resolution 
800 x 600 3888x2592 3648x2736 5472x3648 Average 

Grape Area 

Recognition 

Avg. Acc. % 92.64% ±0.01 97.40% ±0.01 95.80% ±0.01 95.97% ±0.01 95.45% 

Avg. Prc. % 75.68% ±0.03 79.92% ±0.06 87.93% ±0.01 80.06% ±0.02 80.90% 

Avg. Recall % 64.08% ±0.03 66.65% ±0.08 84.75% ±0.02 67.79% ±0.02 70.82% 

 

Table 7. Grape bunch area results for each dataset. 
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The results of the proposed grape bunch detection method show an average 

precision of 88.61% and an average recall of 80.34%. Results show the correct 

performance of the proposed method, including the novel neighborhood grape bunch 

separator. By analyzing the results, it can be noticed that errors may be consequence of 

the not detected salient points, misclassification by SVM or not clustered in the DBSCAN 

stage. 

Grape bunch detection shows an 88.6% precision and 80.3% recall on average 

through different datasets, presenting a novel method for correctly detecting neighboring 

grape bunches. Pixel or area classification is also studied in order to understand the correct 

classification and completeness of the grape bunch detection. 

Concerning the detection of the centroid of each berry in the grape bunch, the 

analysis of the images shows that centroid misdetections occurs more often in image 

regions that contain shadows of where the contrast is insufficient for the FRST+NMS 

stage to yield good symmetry scores. In the current implementation of the proposed 

approach, the FRST thresholds were set to permissive levels in order to detect berries with 

low contrast, although this increases the amount of false positive points and computation 

time because of the larger number of pixels that have to be evaluated by the classifier. The 

results show that clustering stage is very effective in the identification of grape bunches.  

The only challenge to a successful clustering are the highly occluded areas where only a 

couple of berries can be seen. Since the clustering procedure removes isolated points and 

there are constraints for the minimum number of single grape detected in connected 

regions, this occluded grape bunch are not detected by the proposed method. Also, when 

grape bunches are closed together in a vertical orientation, the proposed method is not 

able to correctly cluster them in different groups since no spatial analysis and 

segmentation is done in this orientation.   

The performance of the area recognition of the grape bunch detection is also shown 

in Table 7. The accuracy of the proposed approach is on average 95.5% for grape pixel 

detection.  However, this high value is in part due to the high true negative detection and 

not only due to a high rate or correctly labeled pixels.  The average precision of the 
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approach applied to the different datasets is 80.9±0.03%. Analyzing the location of the 

false positives pixels, most of them occur in the neighborhood of the grape bunches.  

Therefore, even if the false positive rate is high, due to the location of occurrence of the 

false positive, the results of grape bunch detection are not afected.  On the other hand, the 

average recall rate considering the different datasets is 70.8±0.03%.  The recall rate can 

be interpreted as the rate of detection.  Even if this rate is below ideal rates in the range 

95-99%, it is to be noted that this rate considers the number of pixels within grape bunches 

that were not labeled correctly as belonging to the corresponding grape bunch due to 

clustering errors.   

It is to be noted that the grape detection results obtained may be improved by 

training the classifier with a larger number of datasets.  Unfortunately, it is difficult to 

obtain large datasets from different vineyards and grape varieties.  The T-X dataset only 

contains white grapes under natural illumination with a fixed camera-plant distance, while 

the test datasets includes red and white grapes under natural and artificial illumination.   

The proposed grape bunch detection strategy can be employed for diverse purpose in 

the different vineyard management tasks. For example, FRST can be computed again on 

the detected grape bunch region to refine the count of single grapes in the bunch and 

improve yield estimation, as shown in Figure 23.  Another application is the measurement 

of leaf removal and light exposure levels as shown in Figure 24. This would allow growers 

to standardize their leaf removal processes throughout the whole field. This same 

information is also useful for controlled crop thinning. 
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Figure 22. Image examples of the different datasets. In white=TP, green=FN, magenta=FP black=TN. (a) Israel Dataset. (c) 

Iceland Dataset. (e) Chile Dataset. (f) Portugal Dataset. 

(a) (b) 

(c) (d) 

(e) (f) 

(g) (h) 
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(a) (b) 

 

Figure 23. Example of berry counting for yield estimation models. 

 

 

(a) (b) 

(c) (d) 

 

Figure 24. Example of leaf removal application to measure grape exposure level. Images from Chile Dataset. (a) Before leaf 

removal. (b)After leaf removal. (c) Grape mask from image before leaf removal. (d) Grape mask from image after leaf 

removal. 
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6 CONCLUSIONS AND FUTURE WORK 

 

This work presented a grape recognition and grape bunch detection strategy that 

employs the HOG+LBP descriptor together with a SVM-RBF classifier and the DBSCAN 

clustering.  The proposed approach capable of detecting both red and white berries, under 

different illumination conditions, levels of occlusion and distances between the camera 

and the vine.  The approach was compared with other detection strategies using alternative 

descriptors that are among the most effective for different recognition applications such 

as are DAISY and DSIFT.  The use of combined shape and texture information proved to 

yield better results than the shape or texture information provided individually by HOG 

and LBP, respectively.  Also, an alternative one-class SVDD formulation of the SVM was 

implemented and compared to the traditional SVM-RBF classifier. However, results show 

that the traditional SVM-RBF yields a better grape bunch detection.   

Grape bunch detection shows an 88.6% precision and 80.3% recall on average 

through different datasets, presenting a novel method for correctly detecting neighboring 

grape bunches. Pixel or area classification is also studied in order to understand the correct 

classification and completeness of the grape bunch detection. 

At the pixel level, the SVM classifier with HOG+LBP feature vectors yields an 

average accuracy of 95.5%, average precision of 80.9% and average recall of 70.8% in 

grape/non-grape recognition with the SVM trained for white grapes under natural daylight 

illumination tested on grapes of other varieties and illumination conditions including red 

grapes with artificial illumination.   

Size and variability of training dataset showed to have an influence on the results.  

The larger datasets allowed better overall performance, increasing all three metrics, but 

especially accuracy and recall when comparing results trained with T-3 and T-X. 

The approach presented performs a multiscale analysis.  This makes the approach 

more robust to variations in grape size and distance variations between the camera and the 

vine, but at the cost of more processing time. Also, the clustering stage employing 

DBSCAN filters out false positives on isolated locations, thus improving further the 

accuracy, recall and precision performance indices.  The clustering approach together with 
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the alpha-shape method produce non-convex boundaries, which combined with the 

proposed grape bunch segmentation algorithm allow the identification of individual grape 

bunches even when there might be some overlap among some of them.  This can be very 

useful for the development of robotic harvesting, leaf removal, plant thinning or selective 

spraying, as well as help to improve yield estimations, critical for an efficient vineyard 

management. 

Ongoing research is concerned with a longitudinal study of the impact of automated 

grape detection on the vineyard production tasks, and compare precision robotic 

harvesting with manual harvesting by hand or mechanical harvesters.  For robotic 

harvesting, one of the challenges is peduncle detection and adequate tool design. 

Other aspects specific to the proposed grape detection method that are part of future 

studies is the use of adaptive local histogram equalization and its effect on the FRST for 

better detection of grape centroids, and compare this with other interest point selectors. 
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