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ESCUELA DE INGENIERÍA
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ABSTRACT

Topology optimization is a technique to solve the material distribution problem. How-

ever, consideration for manufacturing constraints within the algorithm can be challenging.

A type of manufacturing constraint that has not been thoroughly addressed is the ability

to optimally select among a set of design subdomains. Examples of situations that may

require such constraint in their design process are: the optimal location and shape of the

openings in a castellated beam, the design and optimal location of a bridge pier, and the

design and location of an outrigger system for a high-rise building, to name a few. This

paper presents a novel formulation to address the optimal subdomain selection and de-

sign problem which is based on an extension to the well-known SIMP formulation. The

proposed formulation optimally selects the design subdomains in (2D and 3D) structures,

which are topology optimized in parallel with the rest of the design domain that does not

belong to any subdomain.

Keywords: Topology optimization, structural optimization, design subdomian, multiple

load cases, building outrigger.
viii



RESUMEN

La optimización topológica es una técnica para resolver el problema de distribución de

materiales. Sin embargo, la consideración de las restricciones de fabricación dentro del al-

goritmo puede ser un desafı́o. Un tipo de restricción de fabricación que no se ha abordado

a fondo es la capacidad de seleccionar de manera óptima entre un conjunto de subdomin-

ios de diseño. Ejemplos de situaciones que pueden requerir tal restricción en su proceso

de diseño son: la ubicación y forma óptimas de las aberturas en una viga alveolada, el

diseño y ubicación óptima de una cepa de puente, y el diseño y ubicación de un sistema de

outriggers para un edificio de gran altura, por mencionar algunos. Este artı́culo presenta

una formulación novedosa para abordar el problema de selección y diseño de subdominios

óptimos que se basa en una extensión de la conocida formulación SIMP. La formulación

propuesta selecciona de manera óptima los subdominios de diseño en estructuras (2D y

3D), las cuales son topológicamente optimizadas en paralelo con el resto del dominio de

diseño que no pertenece a ningún subdominio.

Palabras Clave: Optimización topológica, optimización estructural, subdominio de diseño,

multiples casos de carga, edificio con outriggers .
ix



1. INTRODUCTION

A frequent design problematic in engineering is to find the optimal distribution of ma-

terials that deliver the best structural performance based on a specific performance metric.

Density-based topology optimization is a computational technique to iteratively solve this

optimal material distribution problem. This requires an objective function (or performance

metric) that measures the fitness of a proposed design and is therefore minimized by the

algorithm while subjected to a set of design constraints. The objective function is based

on the structural performance of a given design (or behavior), which is typically analyzed

by means of the finite element method (or FEM). There are various different topology op-

timization approaches to solve the material distribution problem such as: homogenization

(Bendsøe & Kikuchi, 1988; Suzuki & Kikuchi, 1991), SIMP1 (Bendsøe, 1989; Zhou &

Rozvany, 1991; Mlejnek, 1992; Sigmund, 2001), level-set (Wang et al., 2003; Allaire et

al., 2004), phase-field (Wang & Zhou, 2004; Gain & Paulino, 2012), ESO/BESO2 (Xie &

Steven, 1997; X. Huang & Xie, 2007), to name a few.

The SIMP (or power-law) approach assumes that the material properties within each

finite element are constant and dependent on a single design variable (Bendsøe, 1989;

Zhou & Rozvany, 1991; Mlejnek, 1992; Sigmund, 2001). Specifically, the elastic modulus

of the i-th element is defined by the density ρi to the power of a penalization parameter

p. The problem is sensitive to the value of p: the case of p = 1 can be shown to be

equivalent to the variable thickness sheet problem (Petersson, 1999) and is convex; the

case of p > 1 is attractive since it approximates the 0–1 (void–solid) solution by penalizing

the intermediate densities. The problem however, becomes non-convex for values of p > 1

and the optimization is prone to converge towards local minima (Bendsøe & Sigmund,

2003; Sigmund & Maute, 2013).

Real engineering problems that make use of topology optimization are often subjected

to manufacturing constraints, which introduce challenges in their implementation. Pattern

1Solid Isotropic Material with Penalization.
2Evolutionary Structural Optimization and Bi-directional Evolutionary Structural Optimization.
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repetition and symmetry are frequent manufacturing constraints in large-size engineering

problems such as buildings (Almeida et al., 2010; Stromberg et al., 2011). Casting and

milling are common manufacturing processes that require material to be added or removed

along an axis, which has been addressed with the use of a Heaviside projection (Guest &

Zhu, 2012). Additive manufacturing is a fabrication process that allows for (very) com-

plicated geometries. Nonetheless, even additive manufacturing is subjected to some type

of manufacturing constraint which is dependent on the specific subtype of 3D printing

technology being used, introducing limitations such as: minimum feature size (Tang &

Chang, 2001), manufacturable inclination angle (Leary et al., 2013), hollow solid inca-

pability (Kumar, 2003; Melchels et al., 2010; J. Huang et al., 2020), efficient use of the

“support material” used in the printing (Leary et al., 2014), to name a few. Vatanabe et

al. (Vatanabe et al., 2016) developed a unified projection-based method that considers

a design domain and a pseudo-density domain where results are projected using a pro-

jection function to obtain the optimal solution. This method can consider manufacturing

constraints such as milling, minimum hole size, turning, casting, etc.

This work focuses on a manufacturing constraint that has not yet been addressed: to

optimally choose the design subdomains. Density-based topology optimization can then

be used to optimize the material layout within the selected subdomains. In addition, ap-

plied problems often include an active design subdomain that must be part of the structure,

i.e., the subdomain selection does not apply to an active subdomain. Thus, a method that

can optimize the active design domain, but at the same time design and choose specific

subdomains is needed. Engineering projects that require a method of this kind are: the

optimal location and shape of the openings in a castellated beam, the optimal location and

design of a bridge pier, and the optimal location and design of an outrigger system for a

high-rise building, to name a few. This manuscript presents a formulation and algorithm

to solve the problem of optimal subdomain selection and optimization through the use of

a modified SIMP formulation.
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2. FORMULATION

This work considers a total of three formulations, which are progressively more com-

plicated yet offer more user flexibility. They are all based on a the SIMP formulation,

which is presented here for completion purposes.

2.1. SIMP formulation

The SIMP formulation (Bendsøe, 1989; Zhou & Rozvany, 1991; Mlejnek, 1992; Sig-

mund, 2001) using a two-field density filter (Bruns & Tortorelli, 1998; Bourdin, 2001;

Sigmund & Maute, 2013) is as follows:

min
x

J = uT Ku

s.t.
∑N

i=1 ρi vi ≤ f0 v0

E(i) = Emin + (E0 − Emin) ρ
p
i

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

with Ku = f

(2.1)

where J = uT Ku is the objective function, which in this case is the (commonly used)

compliance of the structure yet a different objective could be used, u are the nodal dis-

placements, and K is the global stiffness matrix built from the assembly of allN elements.

In addition, the two-field SIMP algorithm defines x as a vector of the N element-wise de-

sign variables, ρ is the vector of the N element-wise (filtered) densities, and H is a filter

matrix which applies a convolution operation over the design variables (Zegard & Paulino,

2016). This filter imposes an implicit size control over the resulting topology, which ad-

dresses the illposedness of the problem and prevents the checkerboard phenomenon from

plaguing the solution (Dı́az & Sigmund, 1995; Jog & Haber, 1996; Sigmund, 2007). The

3



power-law defines the elastic modulus of the i-th element E(i) where, Emin is a very small

elastic modulus associated with the Ersatz material used to represent the void phase in the

topology, E0 is the elastic modulus of the solid phase, K(i)
0 is the stiffness matrix of the

i-th element calculated with an unit elastic modulus (i.e. with E = 1), and p is the SIMP

penalization parameter which prevents intermediate densities.

A volume constraint is necessary since quite often the optimal solution will use as

much material as is available (the case with compliance as the objective and no material

self-weight). Hence, not enforcing a volume limit for the solid phase will result on a trivial

solution consisting of pure solid. The standard formulation in Equation (2.1) imposes a

volume constraint through the volume fraction f0, a scalar parameter in the range 0 ≤

f0 ≤ 1, with v0 being the total volume of the design domain equal to
∑N

i=1 vi, and vi

being the volume of the i-th element.

The optimization problem in Equation (2.1) is based on structural analysis (mechanics

of solids), which is formulated through the embedded (or nested) Ku = f system of

equations, where f is the nodal force vector.

The optimization problem presented in Equation (2.1) is one of many techniques used

to solve the solid–void (1 or 0, respectively) problem. Most of these techniques, like

SIMP, require a relaxation of the design variable allowing intermediate values between 0

and 1. In the specific case of SIMP, the solution is driven close to a 0 or 1 solution by

means of the penalization parameter p, where experimentally it has been shown that p = 3

yields acceptable results. However, even with higher values of penalization the solution

will still exhibit some intermediate values which often require rationalization from the

user before becoming a final design. For additional details on the SIMP formulation,

variations, shortcomings and uses, the reader can refer to (Sigmund, 2001; Bendsøe &

Sigmund, 2003; Andreassen et al., 2011).
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2.2. SIMP with subdomain selection

The design domain can be divided into an active domain and several design subdo-

mains which cannot all be used in the final design. The number of subdomains that can be

selected and used are defined by the user and will depend on the specific problem require-

ments. Within the optimization algorithm, the subdomain selection is a binary variable

µj , with values 0 or 1 for unselected and selected subdomain, respectively. However, for

the same reason the design variable xi is continuous in Equation (2.1), this subdomain

selection variable will be continuous. In other words, the optimization algorithm uses a

subdomain selection variable 0 ≤ µj ≤ 1. Thus, it is essential to find a way to penalize

the subdomain selection variable to force the optimization to drive µj towards a 0 and 1

solution. Computational experimentation proved this penalization to be far from trivial

and throughout this study, three different (related and increasingly robust) formulations

were developed.

The subdomain selection algorithm is based on a modified SIMP power-law, where

a new penalization parameter q is used to drive the subdomain selection towards 0 or

1 values. Analogous to the standard SIMP penalization, the penalization parameter q

becomes effective for values q > 1 and is user-defined. Elements that do not belong to

any selectable subdomain Ωj are subjected to the standard SIMP power-law, where no µj

5



variable is involved. The resulting optimization problem is as follows:

min
x,µ

J = uT Ku

s.t.
∑N

i=1 ρi vi ≤ f0 v0∑Ns
j=1 µj ≤ N0

E(i) = Emin + (E0 − Emin) ρ
p
i µ

q
j ∀ i ∈

Ns⋃
j=1

Ωj

E(i) = Emin + (E0 − Emin) ρ
p
i ∀ i ∈ Ω−

Ns⋃
j=1

Ωj

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

0 ≤ µj ≤ 1 ∀ j = 1 . . . Ns

with Ku = f

(2.2)

where Ω is the total design subdomain including the selectable subdomains, and Ωj is the

j-th selectable design subdomain out of the total Ns selectable subdomains. The integer

N0 is the user-defined maximum number of design subdomains that the final solution can

utilize.

The optimization problem in Equation (2.2) does succeed in solving the problem from

the mathematical point of view. However, computational experimentation poses chal-

lenges and a relatively high penalization parameter q is necessary to drive the optimization

algorithm towards a desirable 0 or 1 selection of subdomains. Unfortunately, this approach

creates an ill-conditioned problem resulting in poor convergence and exhibiting numerical

issues for relatively large problems.

The optimization problem described in Equation (2.2) requires improvement. In an

effort to improve the numerical issues plaguing the method, a different approach to drive

the subdomain parameter µj towards a 0 or 1 solution is taken: the penalization on inter-

mediate values for µj is applied in the constraint associated with the maximum number of

6



subdomains. The resulting formulation is as follows:

min
x,µ

J = uT Ku

s.t.
∑N

i=1 ρi vi ≤ f0 v0∑Ns
j=1 µ

1/q
j ≤ N0

E(i) = Emin + (E0 − Emin) ρ
p
i µj ∀ i ∈

Ns⋃
j=1

Ωj

E(i) = Emin + (E0 − Emin) ρ
p
i ∀ i ∈ Ω−

Ns⋃
j=1

Ωj

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

0 ≤ µj ≤ 1 ∀ j = 1 . . . Ns

with Ku = f

(2.3)

where the penalization parameter q is now acting over the constraint that limits the number

of subdomains. Like all SIMP-like penalization parameters, the penalization parameter q

becomes effective for values q > 1 and is user-defined.

The optimization problem described in Equation (2.3) alleviates the conditioning prob-

lem by shifting the penalization on the µj variables to the subdomain constraint. This re-

sults in a global stiffness matrix K with almost the same conditioning as with the standard

SIMP formulation and is therefore significantly better from a numerical perspective.

2.3. ε–relaxation

The initial guess of µj in the iterative optimization procedure will often be taken as:

µ =
N0

Ns

1

where 1 is a vector of ones. As an example, if there are 7 subdomains to choose from

and only 2 can be active in the final solution, the initial guess on the subdomain selection

7



variables will be µj = 2/7. This initial guess could be problematic since the penalized

constraint
∑Ns

j=1 µ
1/q
j ≤ N0 in the formulation of Equation (2.3) will be violated for any

q > 1. This (violated) constraint will trigger a response from the optimizer. Computational

experimentation has shown that this (somewhat aggressive) optimizer response can make

the optimization unstable in some tests.

Alternatively, the initial value could be taken as:

µ =

(
N0

Ns

)q
1

This value would not trigger a violated-constraint response from the optimizer, but would

cause the subdomains to begin from a very low effective stiffness which may cause diffi-

culties selecting the design subdomains, hence yielding similar problems.

Relaxing the subdomain constraint in the initial stages of the optimization gives the

optimizer more freedom to choose among the available optimal subdomains early in the

optimization process. For that purpose, an ε–relaxation approach was implemented in the

constraint (Stolpe & Svanberg, 2001). This results in:

Ns∑
j=1

µ
1/q
j ≤ N0 (1 + ε) (2.4)

where ε ≥ 0 is the constraint relaxation parameter. The ε value is progressively decreased

throughout the optimization process until the original subdomain constraint is enforced. It

should be noted that, as it was implied before, the ε–relaxation is not always necessary to

ensure good convergence.

2.4. Volume fraction constraints

The volume constraint is an upper limit on the solid phase volume fraction which is

often defined as f . This work considers three different volume constraints that the user

might need to employ for the specific problem at hand:

8



(i) Volume constraint over all N finite elements in the domain:

N∑
i=1

ρi vi ≤ f0 v0 ∀ i ∈ Ω

(ii) Volume constraint over the N1 finite elements that do not belong to any subdo-

main:
N1∑
i=1

ρi vi ≤ f1 v1 ∀ i ∈ Ω−
Ns⋃
j=1

Ωj

(iii) Volume constraint over the N2 finite elements that belong to the subdomains:

N2∑
i=1

ρi vi ≤ f2 v2 ∀ i ∈
Ns⋃
j=1

Ωj

where f0, f1, and f2 are the (scalar) volume fractions in the range 0 . . . 1, and v0, v1, and

v2, are the domain volumes associated with the complete domain, the domain minus the

subdomains, and the subdomains, respectively. In addition, the number of finite elements

satisfies N1 +N2 = N and the volumes also satisfy v1 + v2 = v0.

The volume constraint can all simultaneously be considered in the optimization, yet

there is no guarantee that they will all be active at the optimum. Any volume constraint

can be deactivated for a specific optimization problem by specifying f = 1 on them.

9



2.5. Final subdomain selection formulation

Considering all the previous discussions the final optimization formulation for density-

based topology optimization with design subdomain selection is:

min
x,µ

J = uT Ku

s.t.
∑N

i=1 ρi vi ≤ f0 v0 ∀ i ∈ Ω∑N1

i=1 ρi vi ≤ f1 v1 ∀ i ∈ Ω−
Ns⋃
j=1

Ωj∑N2

i=1 ρi vi ≤ f2 v2 ∀ i ∈
Ns⋃
j=1

Ωj∑Ns
j=1 µ

1/q
j ≤ N0 (1 + ε)

E(i) = Emin + (E0 − Emin) ρ
p
i µj ∀ i ∈

Ns⋃
j=1

Ωj

E(i) = Emin + (E0 − Emin) ρ
p
i ∀ i ∈ Ω−

Ns⋃
j=1

Ωj

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

0 ≤ µj ≤ 1 ∀ j = 1 . . . Ns

with Ku = f

(2.5)

The contributions of the present work are the subdomain selection technique which is

here embodied by the µ variable, and the various volume constraints f0, f1, and f2. The

optimization problem in Equation (2.5) is a nested optimization problem (Christensen &

Klarbring, 2009), and has multiple constraints which may or may not be active in the

optimum.
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2.6. Continuation of p and q

The optimization problem described in Equation (2.1) is convex for a penalization

value of p = 1 and can be shown to be equivalent to the variable thickness sheet problem

(Petersson, 1999). This also applies to the optimization problem developed in this work

and shown in Equation (2.5).

The optimization problem becomes non-convex for values p > 1 and presents multi-

ple local minima. Numerical experimentation has shown that a continuation scheme over

the penalization parameter p tends to converge towards better results. The continuation

scheme consists of initially optimizing for a penalization value of p = 1 and then slowly

increase to the desired penalization value. A final penalization of p > 3 is desired to ap-

propriately approximate a clean 0 or 1 solution (void or solid). The continuation scheme

not only improves the optimization history but also allows to reach higher p values with-

out having numerical stability issues and avoiding convergence towards a low-performing

solution (local minimums).

The newly introduced subdomain penalization parameter q has a similar purpose and

behavior as the parameter p. Thus, a continuation scheme over the scalar q is also advised.

The continuation scheme for p and q are tweaked for each example here presented.

That said, in general, the minimum value is 1.25 and the maximum target value is 4.5,

which is approached in increments of 0.25.

2.7. Passive elements

The computational implementation of the formulation allows for passive elements.

Passive elements can either be passive-solid (ρi = 1); or passive-void (ρi = ρmin). Both

elements give the user capabilities to appropriately model situations where parts of the

structure (or voids) are known, e.g. structural slabs, building cores, to name a few.
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A discussion could be made where passive-void elements are unnecessary, since a bet-

ter approach would be to remove them from the analysis mesh. The passive-void capability

is useful when different design options involving voids at different locations need to be ex-

plored. The passive-void elements eliminate the need to re-mesh or remove elements (and

nodes) from the analysis mesh. In the examples shown in the present manuscript, only

passive-solid elements are used, yet the capability for passive-void exists in the proof-of-

concept implementation used here.

2.8. MMA optimizer

To iteratively solve this problem, we have made use of the method of moving asymp-

totes (or MMA) to optimize this problem (Svanberg, 1987). The MMA algorithm requires

that certain optimization parameters be appropriately scaled for it to correctly optimize

the problem. The objective function f0(x) should be scaled in such that 1 ≤ f0(x) ≤ 100.

The MMA coefficients ci should avoid “extremely large” values such as 1010. The MMA

author recommends the value ci = 1000 or 10000 if all of the other parameters have

been scaled correctly. In addition, if the optimal solution given by the algorithm does not

make all of the “artificial optimization variables” yi = 0, the author recommends to “in-

crease the corresponding values of ci by e.g. a factor of 100 and solve the problem again”

(Svanberg, accessed December 20, 2022).

2.9. Sensitivity calculation

The iterative solution scheme used is a gradient-based optimization. In order to solve

Equation (2.5) we need to calculate the gradients of the objective function J . The sensi-

tivity calculation for density-based topology optimization is a typical requirement for this

and other methods, and the reader can refer to (Bendsøe & Sigmund, 2003; Tortorelli &

Michaleris, 1994; Christensen & Klarbring, 2009) for more details on this topic. Nonethe-

less, for the sake of completeness and to highlight some differences of the subdomain

selection formulation, the complete derivation will be presented.
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Taking the derivative of J with respect to ρi and µj we obtain the following:

dJ

dρi
=
∂J

∂ρi
+
∂J

∂u

T ∂u

∂ρi
(2.6a)

dJ

dµj
=

∂J

∂µj
+
∂J

∂u

T ∂u

∂µj
(2.6b)

The partial derivatives ∂u
∂ρi

and ∂u
∂µj

are obtained from the equilibrium equation Ku = f ,

to obtain:

∂K

∂ρi
u + K

∂u

∂ρi
=
�
�
��7

0
∂f

∂ρi

∂K

∂µj
u + K

∂u

∂µj
=
�
�
��7

0
∂f

∂µj

Here it is assumed that the nodal forces do not depend on the design variables. This is

not always true as is the case with self-weight. The case of self-weight and others can be

handled provided that the sensitivity is recalculated to account for that1. Solving for the

derivatives of u we arrive at:

∂u

∂ρi
= −K−1 ∂K

∂ρi
u

∂u

∂µj
= −K−1 ∂K

∂µj
u

which substituted in Equation (2.6) yields:

dJ

dρi
=
∂J

∂ρi
− ∂J

∂u

T

K−1 ∂K

∂ρi
u (2.7a)

dJ

dµj
=

∂J

∂µj
− ∂J

∂u

T

K−1 ∂K

∂µj
u (2.7b)

1Topology optimization with self-weight has a tendency to exhibit numerical issues which fall outside the
scope of the present work.
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For the specific case where the objective function is the structural compliance, i.e. J =

uT Ku, the resulting sensitivities with respect to u, ρi, and µj , are as follows:

∂J

∂u
= 2Ku

∂J

∂ρi
= uT

∂K

∂ρi
u

∂J

∂µj
= uT

∂K

∂µj
u

which is then plugged into Equation (2.7) to obtain:

dJ

dρi
= uT

∂K

∂ρi
u− 2uT KK−1 ∂K

∂ρi
u

dJ

dµj
= uT

∂K

∂µj
u− 2uTKK−1∂K

µj
u

Simplifying the former equation, we arrive at the following sensitivities for the specific

(yet common) case of compliance as the objective function:

dJ

dρi
= −uT ∂K

∂ρi
u = −uTi K

(i)
0

∂E(i)

∂ρi
ui (2.8a)

dJ

dµj
= −uT ∂K

∂µj
u = −

∑
i∈Ωj

uTi K
(i)
0

∂E(i)

∂µj
ui (2.8b)

where ui is the (global) displacement vector associated with the i-th element. We note that

the sensitivity of J with respect to µj is quite similar to the standard sensitivity with respect

to ρi. The key difference is that the sensitivity for j-th µ variable sums the contributions

from all the elements belonging to the subdomain Ωj . The final missing piece are the

derivatives of E(i) with respect to ρi and µj . It is important to differentiate between the
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elements that are part of a subdomain and those which are not. Based on the SIMP power-

law, the derivatives result in:

∂E(i)

∂ρi
=

 (E0 − Emin) p ρp−1
i µj ∀ i ∈ Ωj

(E0 − Emin) p ρ
p−1
i otherwise

(2.9a)

∂E(i)

∂µj
= (E0 − Emin) ρpi (2.9b)

Finally, substituting into Equation (2.8) the sensitivity of the compliance using a SIMP

material interpolation law is:

dJ

dρi
= −p (E0 − Emin) ρ

p−1
i µj u

T
i K

(i)
0 ui ∀ i ∈ Ωj (2.10a)

dJ

dρi
= −p (E0 − Emin) ρ

p−1
i uTi K

(i)
0 ui ∀i ∈ Ω−

Ns⋃
j=1

Ωj (2.10b)

dJ

dµj
= −

∑
i∈Ωj

(E0 − Emin) ρ
p
i u

T
i K

(i)
0 ui (2.10c)

In the event that an objective function other than compliance is used, the sensitivities are

derived following the same procedure. It should be noted that for most objectives other

than compliance, the second term in Equation (2.7) may require an additional linear solve

to compute the sensitivities; two actually in our case, one for ρi and one for µi.

2.10. Multiple load cases

The addition of multiple load cases require slightly different treatment involving a

modification of the single load case optimization problem in Equation (2.5). Without any

loss of generality, the multiple load case derivation here presented considers three different
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load scenarios. The ideal optimization problem becomes:

min
x,µ

max
{
J1 = uT1 Ku1 , J2 = uT2 Ku2 , J3 = uT3 Ku3

}
s.t.

∑N
i=1 ρi vi ≤ f0 v0 ∀ i ∈ Ω∑N1

i=1 ρi vi ≤ f1 v1 ∀ i ∈ Ω−
Ns⋃
j=1

Ωj∑N2

i=1 ρi vi ≤ f2 v2 ∀ i ∈
Ns⋃
j=1

Ωj∑Ns
j=1 µ

1/q
j ≤ N0 (1 + ε)

E(i) = Emin + (E0 − Emin) ρ
p
i µj ∀ i ∈

Ns⋃
j=1

Ωj

E(i) = Emin + (E0 − Emin) ρ
p
i ∀ i ∈ Ω−

Ns⋃
j=1

Ωj

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

0 ≤ µj ≤ 1 ∀ j = 1 . . . Ns

with Ku1 = f1

Ku2 = f2

Ku3 = f3

(2.11)

where f1, f2, and f3, are the nodal load vectors associated with the first, second, and third

load cases, respectively. This situation is analogous with the nodal displacements u1, u2,

and u3; as well as with the objectives J1, J2, and J3.

The max operator is continuous, yet not continuously differentiable, making the op-

timization of said objective rather difficult. Therefore, the previous formulation can be

relaxed by a similar objective function using the p–norm. In this case, we use the con-

stant β to avoid confusion with SIMP power-law penalization constant p. The resulting
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optimization model is:

min
x,µ

(
Jβ1 + Jβ2 + Jβ3

)1/β

s.t.
∑N

i=1 ρi vi ≤ f0 v0 ∀ i ∈ Ω∑N1

i=1 ρi vi ≤ f1 v1 ∀ i ∈ Ω−
Ns⋃
j=1

Ωj∑N2

i=1 ρi vi ≤ f2 v2 ∀ i ∈
Ns⋃
j=1

Ωj∑Ns
j=1 µ

1/q
j ≤ N0 (1 + ε)

E(i) = Emin + (E0 − Emin) ρ
p
i µj ∀ i ∈

Ns⋃
j=1

Ωj

E(i) = Emin + (E0 − Emin) ρ
p
i ∀ i ∈ Ω−

Ns⋃
j=1

Ωj

ρ = Hx

K =
N

A
i=1

E(i) K
(i)
0

0 ≤ xi ≤ 1 ∀ i = 1 . . . N

0 ≤ µj ≤ 1 ∀ j = 1 . . . Ns

with Ku1 = f1

Ku2 = f2

Ku3 = f3

(2.12)

Note that the p–norm optimization problem becomes equivalent to the original problem in

Equation (2.11) when β →∞. In this work, the value of β was taken as β = 4.

The manner in which the different objectives are considered can be generalized by

means of a combination function f(·) such that J = f(Ji). That is, for the specific case

of the formulation presented in Equation (2.11) we have:

J = f(J1 , J2 , J3 . . .) = max
i

(Ji)
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whereas for the case presented in Equation (2.12) the combination function is:

J = f(J1 , J2 , J3 . . .) =

(∑
i

Jβi

)1/β

Alternative multi-objective formulation, techniques, approaches, and additional combina-

tion functions have been historically used (e.g. convex combination, abs–sum, to name a

few) but the discussion on these fall out of the scope of the present work. Maintaining the

generality on the combination function f(·) chosen, the sensitivity for the multiple load

case objective is:

df

dρi
=

∂f

∂J1

(
∂J1

∂ρi
+
∂J1

∂u1

T ∂u1

∂ρi

)
. . .

+
∂f

∂J2

(
∂J2

∂ρi
+
∂J2

∂u2

T ∂u2

∂ρi

)
. . .

+
∂f

∂J3

(
∂J3

∂ρi
+
∂J3

∂u3

T ∂u3

∂ρi

)
(2.13a)

df

dµj
=

∂f

∂J1

(
∂J1

∂µj
+
∂J1

∂u1

T ∂u1

∂µj

)
. . .

+
∂f

∂J2

(
∂J2

∂µj
+
∂J2

∂u2

T ∂u2

∂µj

)
. . .

+
∂f

∂J3

(
∂J3

∂µj
+
∂J3

∂u3

T ∂u3

∂µj

)
(2.13b)

For the case of the p–norm the derivatives of the objective function with respect to each

Ji are:

∂f

∂J1

=
(
Jβ1 + Jβ2 + Jβ3

) 1−β
β
Jβ−1

1 (2.14a)

∂f

∂J2

=
(
Jβ1 + Jβ2 + Jβ3

) 1−β
β
Jβ−1

2 (2.14b)

∂f

∂J3

=
(
Jβ1 + Jβ2 + Jβ3

) 1−β
β
Jβ−1

3 (2.14c)

The partial derivatives of u with respect to ρi and µj are the same as with the single load

case scenario (again assuming the loads are not design-dependent). Substituting these in
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Equation (2.13) for each load case and expanding we arrive at:

df

dρi
=

∂f

∂J1

(
uT1

∂K

∂ρi
u1 − 2uT1 KK−1∂K

∂ρi
u1

)
. . .

+
∂f

∂J2

(
uT2

∂K

∂ρi
u2 − 2uT2 KK−1∂K

∂ρi
u2

)
. . .

+
∂f

∂J3

(
uT3

∂K

∂ρi
u3 − 2uT3 KK−1∂K

∂ρi
u3

)
(2.15a)

df

dµj
=

∂f

∂J1

(
uT1

∂K

∂µj
u1 − 2uT1 KK−1 ∂K

∂µj
u1

)
. . .

+
∂f

∂J2

(
uT2

∂K

∂µj
u2 − 2uT2 KK−1 ∂K

∂µj
u2

)
. . .

+
∂f

∂J3

(
uT3

∂K

∂µj
u3 − 2uT3 KK−1 ∂K

∂µj
u3

)
(2.15b)

These sensitivities can be further simplified and expanded using each finite element’s

contribution:

df

dρi
=

∂f

∂J1

(
−uT1iK

(i)
0

∂Ei
∂ρi

u1i

)
. . .

+
∂f

∂J2

(
−uT2iK

(i)
0

∂Ei
∂ρi

u2i

)
. . .

+
∂f

∂J3

(
−uT3iK

(i)
0

∂Ei
∂ρi

u3i

)
(2.16a)

df

dµj
=

∂f

∂J1

−∑
i∈Ωj

uT1iK
(i)
0

∂Ei
∂µj

u1i

 . . .

+
∂f

∂J2

−∑
i∈Ωj

uT2iK
(i)
0

∂Ei
∂µj

u2i

 . . .

+
∂f

∂J3

−∑
i∈Ωj

uT3iK
(i)
0

∂Ei
∂µj

u3i

 (2.16b)

It is then clear, that analogous to the single load case, the sensitivity with respect to ρi

associated with the i-th element, is calculated using element local information of that spe-

cific element. On the other hand, the sensitivity with respect to µj adds the contributions
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of all elements that belong to the j-th subdomain, which is also analogous in the single

load case scenario.

2.10.1. αi constants

Optimized structures subjected to multiple load cases do not always perform equally

under each one of them. A trivial proof of this occurs when a second load case is equal

to a scaled-down version of the first one. Another example of this happens in high-rise

building design; the design of these structures is more sensitive to load combinations that

include wind in them. Similarly, buildings with an asymmetric footprint2 buildings are

prone to high torsional drifts due to seismic loads.

The multiple load case formulation previously presented takes into account the per-

formance of the structure towards each load case by multiplying the sensitivities of each

load case by a constant αi, which is the derivative of the combined p–norm objective with

respect to Ji, as defined in Equation (2.14). The relative value of these constants is associ-

ated with the sensitivity of the design for each load case. Therefore, the final values of the

constants αi illustrate the relative importance of each load case in the resulting topology.

2.11. Alternative objective functions

The structural compliance is a convenient objective function which is very commonly

used in structural topology optimization. Its popularity is explained by two facts: its

physical outcome is to minimize the displacements associated with the load points (stiffest

structure), and the sensitivity calculation is trivial since it is a self-adjoint function. The

derivations carried out in the previous sections are often developed for the specific case

of compliance, which makes the explanations simpler. However, the work here presented

2An asymmetric building footprint will cause the center of mass and the center of stiffness to be relatively
far from each other. This results in an accidental torsion on the building when subjected to a transverse
seismic acceleration.
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can all be extended to consider objectives other than compliance, and one such relevant

case is derived below.

Building design, for example, often involves objectives (and restrictions) associated

with drift or specific displacements (Taranath, 2016). To minimize the top-floor drift, is

equivalent to minimizing the square of said value, which is the dot product of a vector

containing the drift in the x̂ and ŷ directions. In this case, the objective function is J =

uT DT Du. Here D is a transformation matrix of 2 × Ndof which calculates the average

roof displacement in the x̂ and ŷ directions (hence the two rows) from the displacement

vector u of length equal to Ndof (number of degrees of freedom).

The sensitivities for this new objective use the adjoint method (Tortorelli & Michaleris,

1994; Christensen & Klarbring, 2009). First, we define an augmented objective function:

J?(x) = uT DT Du + λTJ (Ku− f) (2.17)

Here λJ is the adjoint vector and is an arbitrary vector. Note that nothing is really added to

the objective since structural equilibrium is enforced in the nested problem and is therefore

equal to 0. The partial derivatives dJ?

dρi
and dJ?

dµj
are:

dJ?

dρi
=
∂uT

∂ρi
DT Du + uT DT D

∂u

∂ρi
. . .

+ λTJ

(
∂K

∂ρi
u + K

∂u

∂ρi
− ∂f

∂ρi

)
(2.18a)

dJ?

dµj
=
∂uT

∂µj
DT Du + uT DT D

∂u

∂µj
. . .

+ λTJ

(
∂K

∂µj
u + K

∂u

∂µj
− ∂f

∂µj

)
(2.18b)
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Simplifying and assuming that the nodal forces do not depend on the design variables we

obtain:

dJ?

dρi
= 2uT DT D

∂u

∂ρi
+ λTJ

(
∂K

∂ρi
u + K

∂u

∂ρi
− ∂f

∂ρi

)
(2.19a)

dJ?

dµj
= 2uT DT D

∂u

∂µj
+ λTJ

(
∂K

∂µj
u + K

∂u

∂µj
− ∂f

∂µj

)
(2.19b)

Since λJ is arbitrary, we one that cancels ∂uT

∂ρi
and ∂uT

∂µj
. This results in the following

adjoint problem:

2uT DT D + λTJ K = 0 (2.20)

, and solving for λJ we obtain:

λJ = K−1
(
−2DT Du

)
(2.21)

Substituting the value of λJ into Equation (2.19):

dJ?

dρi
= K−1

(
−2DT Du

) ∂K
∂ρi

u (2.22a)

dJ?

dµj
= K−1

(
−2DT Du

) ∂K
∂µj

u (2.22b)

The remaining derivation follows the same procedure shown for compliance as the objec-

tive function; the sensitivity using a SIMP material interpolation law becomes:

dJ?

dρi
= λJ

[
p (E0 − Emin) ρ

p−1
i µj u

T
i K

(i)
0 ui

]
∀ i ∈ Ωj (2.23a)

dJ?

dρi
= λJ

[
p (E0 − Emin) ρ

p−1
i uTi K

(i)
0 ui

]
∀i ∈ Ω−

Ns⋃
j=1

Ωj (2.23b)

dJ?

dµj
=
∑
i∈Ωj

λJ

[
(E0 − Emin) ρ

p
i u

T
i K

(i)
0 ui

]
(2.23c)

where λJ is the value obtained from solving the adjoint problem (Equation (2.21)). It

should be noted that the adjoint method requires a single additional solution of the state

equation (Equation (2.21)) to calculate the objective function sensitivities for all design

variables (regardless of their number). The exception being compliance as an objective,
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where the adjoint problem is equivalent to the equilibrium equation (i.e. compliance is

self-adjoint). From this point onward, considering multiple load cases is analogous to the

previously shown case (compliance).

The formulation constraints are dealt in a similar fashion. For any given constraint

g(x) ≤ c, with c being some scalar constant, the augmented adjoint form becomes:

g?(x) = g(x) + λTg (Ku− f) ≤ c (2.24)

The partial derivative dg?

dρi
becomes:

dg?

dρi
=

∂g

∂ρi
+
∂g

∂u

∂u

∂ρi
+ λTg

(
∂K

∂ρi
u + K

∂u

∂ρi
− ∂f

∂ρi

)
(2.25)

Thus, assuming the loads do not depend on the design variables, the adjoint problem

associated with this constraint becomes:

λg = K−1

(
− ∂g
∂u

)
(2.26)

After the adjoint vector λg is solved for, it can be replaced in Equation (2.25) where it

is clear that the dependency of the sensitivity with respect to the displacements u is no

longer an issue. Finally, the sensitivity sought for is:

dg

dxi
=

dg

dρ

dρ

dxi

Analogous to the previous case of the objective function; the adjoint method requires a

single additional solution of the state equation (Equation (2.21)) to calculate the constraint

sensitivities for all design variables (regardless of their number). The volume constraint is

a trivial situation since ∂g
∂u

= 0, and therefore no adjoint solution is necessary. This is not

the case, however, for a displacement limit; e.g. a drift limit on a building. The sensitivity

with respect to the subdomain design variables µ follows the same procedure described

above.
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3. EXAMPLES

The following examples aim to highlight the capabilities and limitations of the pro-

posed method. The examples include 2D and 3D problems: the 2D examples use Q4

(4-noded quadrilateral) finite elements, whereas the 3D examples make use of a plane

quadrilateral shell element. The plane shell element is based on the superposition of a

Q4D4 membrane element with a P4 plate element (Oñate, 2013).

3.1. Leaning towers

This example considers two cantilever towers connected by a series of consecutive

subdomains. Symmetry is enforced within each tower and among both towers along the

vertical axis. In addition, the subdomains have enforced symmetry with respect to their

central vertical axis. The goal of the subdomains is to offload the lateral force to the second

(unloaded) tower such that the overall behavior is optimal. Because the problem is linear-

elastic and there is only one load case, the magnitude of the distributed load applied is

irrelevant (only the shape of the diagram matters). The applied distributed load is uniform

with a value q = 1. On the other hand, the domain has a thickness t = 1 and elastic

modulus E0 = 105 GPa. The relative dimensionality of the load, thickness, and elastic

modulus is only relevant within the context of the parameters used by the MMA algorithm

(optimizer).

This problem has a limit on the volume fraction f0 for the complete domain, and a

limit on the volume fraction f2 of the subdomains. The volume fraction f1 for the elements

outside of the subdomains is unrestricted (i.e. f1 = 1). The lateral edges of the towers

consider a vertical passive-solid column of two elements in width to support and distribute

the applied load. The loads and supports are presented in Figure 3.1, whereas the design

domain with all the possible subdomains is presented in Figure 3.2.

Results are obtained for two distinct sets of optimization parameters. The element

size, density filter, and penalizations p and q are the same in both cases. The structure in
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Figure 3.1. Leaning towers loads and supports.
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Figure 3.2. Leaning towers design domain (including subdomains).

Figure 3.3(a) was run with a desired total number of subdomains N0 equal to three and

with the following volume fractions: f0 = 0.3, f1 = 1, and f2 = 0.03. The finite elements

have a size equal to 0.6250× 0.2500. The density filter has an initial radius rmin = 1.75,

and is reduced through a continuation scheme to a final value of rmin = 0 (no filter) in the
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last set of iterations. The penalization p of the element density ρ and the penalization q

of the subdomains µ started at 1.25 and 1.75, respectively, and a continuation was applied

until they reached 4.5 and 4.0, respectively. On the other hand, the results in Figure 3.3(b)

were obtained using a desired total number of subdomains N0 equal to four and with the

following volume fractions: f0 = 0.3, f1 = 1, and f2 = 0.1.

(a) (b)

Figure 3.3. Optimized structure for the leaning towers: (a) case with three
available subdomains (i.e. N0 = 3); and (b) case with four available sub-
domains (i.e. N0 = 4).

It can be seen that for both sets of parameters, the algorithm correctly chooses the

desired number of subdomains, with three in Figure 3.3(a) and four in Figure 3.3(b). The

solution in Figure 3.3(a) utilizes the subdomains µ7, µ8, and µ9. The towers are connected

by a large X-brace spanning all three subdomains. On the other hand, the solution pre-

sented in Figure 3.3(b) shows that the optimal subdomains are µ7, µ8, µ9, and µ15. In this

case, the towers are also connected by a large brace spanning three subdomains, but in
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addition to this, there is a head-truss at the top level of the towers. The intersection of the

cross is not central as in the previous solution, but it is rather displaced towards the top,

which is also known to be quite optimal (Zegard et al., 2014).

The solutions obtained for this example exhibit a large concentration of material to-

wards the base. This behavior is expected and documented in literature: the lack of a third

out-of-plane dimension causes the material to concentrate near the base resulting in a near

solid topology (Stromberg et al., 2012). Moreover, in engineering practice, it is not advis-

able to link two towers as the solutions suggest. However, this rather simplistic problem

showcases the capability of the proposed method to simultaneously select the subdomains

and optimize the structure. The results obtained are not always intuitive and depend on

the number of subdomains available for the algorithm to use.

3.2. 2D bridge

This example considers a 2D bridge where the subdomains correspond to possible

support piers. For this problem, the bridge’s deck is pinned at both ends and is modeled as

a passive-solid element over which a uniform distributed downwards load is applied. The

base of the subdomains are also pinned to the ground. The goal is to find the optimal pier

location (or locations), as well as their topological design. Because the problem is linear-

elastic and there is only one load case, the magnitude of the distributed load q applied is

irrelevant. Therefore, the applied load is q = 1 and also the elastic modulus E0 is E0 = 1

and the thickness t of the Q4 elements is t = 1.

The loads and supports are presented in Figure 3.4, while the design domain with all

the possible subdomains is presented in Figure 3.5.

Results are obtained for two distinct sets of optimization parameters. The element

size, density filter, and penalizations p and q are the same in both cases. The structure in

Figure 3.6(a) was run with a desired total number of subdomainsN0 equal to two and with

the following volume fractions: f0 = 0.2, f1 = 0.35, and f2 = 0.15. The finite elements
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Figure 3.4. 2D bridge loads and supports.
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Figure 3.5. 2D bridge design domain (including subdomains).

have a size equal to 0.0150× 0.0167. The density filter has an initial radius rmin = 0.07,

and is reduced through a continuation scheme to a final value of rmin = 0.03 in the last

set of iterations. The penalization p of the element density ρ and the penalization q of

the subdomains µ started at 1.25 and 1.75, respectively, and a continuation was applied

until they reached 4.5 and 4.0, respectively. On the other hand, the results in Figure 3.6(b)

were obtained using a desired total number of subdomains N0 equal to four and with the

following volume fractions: f0 = 0.2, f1 = 0.25, and f2 = 0.15.

It can be seen that for both sets of parameters, the algorithm correctly chooses the

desired number of subdomains, with two in Figure 3.6(a) and four in Figure 3.6(b). Both

solutions are similar to one another. The solution with two subdomains in Figure 3.6(a)

suggests that the optimal location of the piers is at the middle. The resulting piers are
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(a)

(b)

Figure 3.6. Optimized structure for the 2D bridge: (a) case with two avail-
able subdomains (i.e. N0 = 2); and (b) case with four available subdo-
mains (i.e. N0 = 4).

inclined to better receive the loads from the two arches above. On the other hand, the

solution with four subdomains presented in Figure 3.6(b) selects the optimal subdomains

µ4, µ5, µ6, and µ7. It can be seen that the algorithm builds on the previous solution in

order to solve the problem using four subdomains by reducing the span of the arches. The

optimal pier locations and the number of spans depend on the problem’s geometry (mainly

height and span), and the loading conditions. In that regard, it can be said that the optimal

solution structure will also depend on the number of subdomains (piers) available for the

algorithm to use.

3.3. Castellated beam

In this example, we model a 3D version of a castellated steel I-beam, which is inspired

in Example 1 of AISC Steel Design Guide 31 (Fares et al., 2016). Here the subdomains
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are associated to the potential web openings in the beam. In this case, the interest is placed

on the pair of openings (due to symmetry) that when filled will benefit the beam behavior

the most.

This problem includes passive-solid elements that correspond to the web (minus the

openings) and flanges. With respect to the supports: the web at both endpoints are sup-

ported on both ŷ and ẑ directions; the web center node at a single end is also supported

on the x̂ direction. These support conditions approximate a shear-only connection of the

beam. However, in order to reduce computational costs, the symmetry of the problem is

considered. This reduces the problem to only one-half of the original beam. The nodes

originally located at the middle of the beam are supported on the x̂ direction and rotations

in ŷ and ẑ are also prevented (symmetry condition).

The loads follow those defined within Example 1 of AISC Steel Design Guide 31.

The live load L is 100 lb/ft while the dead load D is 139 lb/ft, which includes beam

self-weight. These loads are applied on the center nodes of the top flange of the beam.

Therefore, the load combination to be used is 1.2D + 1.6L.

The loads and supports are presented within a repeatable unit cell of the complete

domain in Figure 3.7 using a relatively coarse mesh. Figure 3.8 presents the mesh used in

a single cell (repeatable unit) of the complete design domain. The fully assembled design

domain is shown in Figure 3.9 and repeats the unit cell 36 times, in addition to a solid

margin near the endpoints. It is important to mention that due to symmetry, only half of

the problem is relevant: there are only 18 combinations of selectable subdomains.

This problem was run with one set of parameters. The structure in Figure 3.10 was run

with a desired total number of subdomains N0 equal to one, which considering symmetry

is eventually two subdomains. The following volume fractions were used: f0 = 0.7, f1 =

1, and f2 = 0.1. The density filter has an initial radius rmin = 0.5, and is reduced through

a continuation scheme to a final value of rmin = 0 (no filter) in the last set of iterations.

The penalization p of the element density ρ and the penalization q of the subdomains µ
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Figure 3.7. Castellated beam unit cell with loads and supports using a
coarse mesh.
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Figure 3.8. Castellated beam cell mesh (repeatable unit).

0 50 100 150 200 250 300 350 400 450
-5
0
5

Pas
siv

e 
Soli

d

Acti
ve

 (n
o 

su
bD

) 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Figure 3.9. Castellated beam design domain with the unit cell repeated 36
times.

started at 1.75 and a continuation was applied until they both reached 4.5 at the same

iteration.
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Figure 3.10. Optimized structure for castellated beam with N0 = 2.

It can be seen that the algorithm correctly chooses the desired number of subdomains,

with two (after symmetry is applied) in Figure 3.10. The solution shows that the opti-

mal subdomain is µ2, which is symmetrically replicated on the right side. Also, all the

openings are completely empty and do not have material in them, except for the chosen

subdomain. It is important to mention that the chosen subdomains are near the ends of

the beam. This is most likely because the shear force in a simply supported beam with

a distributed load along its span is maximum at the ends. Therefore, by including more

material in the web, the shear force can be better addressed.

3.4. 3D bridge

This example considers a three-dimensional bridge supported by a finite number of

piers along its length. The bridge is composed of a deck, four longitudinal beams, and

12 piers. The subdomains correspond to the piers of the structure. The piers have five

shear keys each, which are passive solid elements that sit between the four deck beams.

The deck and beams are also passive-solid elements which also do not belong to any

subdomain. This structure has three load cases applied:

(i) Distributed pressure load on the right half the deck loaded.

(ii) Distributed pressure load on the left half of the deck loaded.

(iii) Distributed pressure load over the entire deck.

All loads are pressures of magnitude q = 1. The structure is supported at the bridge

endpoints by constraining displacement on the ẑ direction. The same restriction is applied

to both ends of the four deck beams. The center line of the endpoint nodes at deck level

have their displacement in the x̂ direction constrained. The piers have all their nodes at

the base with a fixed boundary condition. These load cases and support conditions are
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illustrated in Figures 3.11(a), 3.11(b), and 3.11(c). While the design domain with all the

possible subdomains is presented in Figures 3.12 and 3.13.

X
Y

Z

(a)

X
Y

Z

(b)

X
Y

Z

(c)

Figure 3.11. 3D bridge load cases: (a) right lane loaded; (b) left lane
loaded; and (a) both lanes loaded.

This problem was run with one set of parameters. It was run with a desired total

number of subdomains N0 equal to four and with the following volume fractions: f0 =

f1 = 1 and f2 = 0.2. The density filter has an initial radius rmin = 0.5, and is reduced

through a continuation scheme to a final value of rmin = 0.01 in the last set of iterations.

The penalization p of the element density ρ and the penalization q of the subdomains

µ started at 1.25 and 1.75, respectively, and a continuation was applied until they both

reached 4.0.
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Figure 3.12. 3D bridge domain isometric view.
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Figure 3.13. 3D bridge domain front view.

As mentioned before, this problem considers three load cases. Each load case has an

associated coefficient αi which correspond to the objective weights in Equation (2.14) and

further described in Section 2.10.1. The final values for the coefficients αi are:[
α1 α2 α3

]
=
[
0.5756 0.5756 0.0934

]
(3.1)

The final values of the constants αi suggest that the algorithm decided to prioritize load

cases presented in Figure 3.11(a) and Figure 3.11(b), rather than the load case with both

lanes loaded. This result is expected because loading only one of the two lanes generates
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a larger overturning moment on the deck than loading both lanes at the same time. The

optimized structure for the three load cases is presented in Figure 3.14.

Figure 3.14. P-norm structure for 3D bridge using N0 = 4.

It can be seen that the algorithm correctly chooses the desired number of subdomains,

with 4 in Figure 3.14. The solution shows that the optimal subdomains are µ3, µ6, µ7

and µ10. The two central piers possess a different shape than the two external piers. The

two external piers collect the bridge deck using three arms, two external and one central,

whereas the two central piers require 4 distinct arms. Also, the columns and arms in the

external piers use more material than the ones in the 2 central piers.

3.5. High-rise building with outriggers

In this example, we model a three-dimensional 84-story high-rise tower with a pris-

matic floor-plan of dimension 27 × 18 m, with a total building height of 269.2 m. The

high-rise tower is designed with outriggers to improve performance and they are the key

component in the design optimization. The structural model is composed of a core, slabs,

12 perimeter columns, and the outrigger system. The outrigger system has 8 panels per

floor that connect the vertices of the square core with corresponding 8 perimeter columns

(the corner columns are not connected to the outrigger system directly). A single design

subdomain is considered as three consecutive floors; the 84-story tower has 28 subdo-

mains. The core and slabs are passive-solids elements making the outrigger panels the

only design domains. The loads applied are dead, live, and wind loads. The live loads

correspond to office live loads and roof live loads, which are applied directly on the slabs.
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The dead loads correspond to the self-weight of the concrete slabs and core 1. The out-

riggers do not have loads applied because they correspond to the design domain and their

self-weight load (design dependent) is ignored for the sake of simplicity. Finally, the wind

load is modeled using the ASCE7-22 wind loads and is applied at the edge of the slabs,

which is a reasonable assumption considering the cladding. The tower has a fixed bound-

ary condition at the base, which also applies to the column base. The material considered

for the outrigger is steel, whereas the slabs, core, and columns are reinforced concrete.

The concrete used for the slabs has a compressive strength of 35 GPa, while the core and

columns use concrete with a strength of 60 GPa.

The tower is divided into four vertical sections, each section having a different core

wall thickness and perimeter column size. In other words, the column and core change

cross-sections every 21 stories. The outriggers and slabs have a constant thickness of 0.8 m

and 0.2 m, respectively. The core thicknesses tc from bottom to top are the following:

tc =
[
0.70 , 0.50 , 0.35 , 0.20

]
m (3.2)

The core thickness sizing follows a rule-of-thumb that maintains the gravity load stresses

under 35% of the available compressive strength. Arguments could be made on this de-

cision, yet this discussion falls outside the scope of the present work. On the other hand,

the perimeter columns are square and with cross-section tb distributed along the 4 sections

from bottom to top as:

tb =
[
7.29 , 3.61 , 1.56 , 0.56

]
m2 (3.3)

These column sizes are based on the recommendations of Section 22.4.2.2 of ACI318-19

(ACI Committee 318, 2019).

1For the sake of simplicity, no superimposed dead load (SDL) or cladding load was considered in this
example.
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3.5.1. Dead and live loads

The gravity loads depend on the materials and building use. The material used for the

core and slabs is reinforced concrete, which has a self-weight of γc = 24.5 kN/m3. Also,

the building is meant to be an office building with a live load equal to L = 2.4 kN/m2,

and with a roof live load of Lr = 0.96 kN/m2 in accordance with the recommendations

of ASCE7-22 (ASCE, 2022). These loads are applied directly on the quadrilateral ele-

ments of the slab. Figure 3.16(b) illustrates how the gravitational loads are applied to the

structural model.

3.5.2. Wind load

The wind load is applied on the exterior nodes of the slabs. The wind load acts as

a pressure load on the exterior envelope of the building, which is distributed to the slab

edges by the cladding system.

The velocity pressure evaluated at height z above ground (qz) using Equation 26.10-

1.SI from ASCE7-22 (ASCE, 2022), which is reproduced here:

qz = 0.613KzKztKdKe V
2
(
N/m2

)
The value of the topographic factor Kzt was taken as Kzt = 1. The directionality factor

Kd was taken as Kd = 0.85 for buildings where the wind is applied on the main wind

force resisting system (MWFRS). The ground elevation factor Ke was taken as Ke = 1.

The exposure for the building was taken as a “category B”. Finally, the basic wind speed

V was taken as V = 40 m/s, which is associated with a 50-year MRI (annual probability

of 0.02).

The design wind pressures p acting the MWFRS also requires the values of the gust-

effect factor G, the external pressure coefficient Cp, and the internal pressure coefficient

GCPi. To determine the value of the gust-effect factor, we need to know the natural

frequency of the building. This is obtained using the (global) stiffness matrix K and
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the mass matrix M of the structure. The stiffness matrix is already calculated at each

optimization iteration. The mass matrix is a requirement that the previous examples did

not require, yet it only needs to be calculated once: the outrigger does not contribute

towards a design-dependent load (self-weight) and therefore a varying mass matrix. The

mass matrix is defined as the seismic weight of the structure, which is taken as D+0.25L,

where the dead and live loads are calculated in accordance with Section 3.5.1.

The mass matrix used in this example corresponds to the mass matrix of a flat S4 shell

element: a superposition of a Q4D4 (membrane with drilling degrees of freedom) and a

P4 (plate) element. The interpolation scheme used in a Q8 element (parent of a Q4D4) is:

N =

N1 0 N2 0 . . . 0

0 N1 0 N2 . . . N8


The mass matrix MQ8 of the Q8 element is known to be:

MQ8 =

∫
Ω̂e
ρ (ξ) N̂T (ξ) N̂ (ξ) |detJ| dΩ̂ (3.4)

To obtain the mass matrix of a Q4D4 element, we use the transformation matrix TQ4D4 on

MQ8:

MQ4D4 = TT
Q4D4MQ8TQ4D4 (3.5)

On the other hand, the interpolation scheme of a P4 element is (Ferreira & Fantuzzi, 2020):

Nw =
[
N1 0 0 . . . N4 0 0

]
Nθx =

[
0 N1 0 . . . 0 N8 0

]
Nθy =

[
0 0 N1 . . . 0 0 Nn

]
, where Nw corresponds to the shape functions for the transverse displacement w of the

plate, and Nθx and Nθy correspond to the shape functions for the rotations θx and θy,
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respectively. The mass matrix MP4 can be calculated as:

MP4 =

∫
Ω̂e
ρ (ξ) N̂T (ξ)


t 0 0

0 t3

12
0

0 0 t3

12

 N̂ (ξ) |detJ| dΩ̂ (3.6)

where t is the thickness of the plate and t3

12
is the rotary inertia. We then assemble the mass

matrix M(local)
S4 using both mass matrices MQ4D4 and MP4 and adding their contributions

on the corresponding degree-of-freedom. Finally, a transformation is required to change

from the local (flattened) coordinate systems into the structure’s global coordinate system:

MS4 = TT
S4 M

(local)
S4 TS4 (3.7)

The M matrix of the building must also consider the contribution of the columns. The

mass matrix of columns corresponds to that of an Euler-Bernoulli beam (Craig & Kurdila,

2006). This global mass matrix M has associated mass for all degrees of freedom of the

structure. To solve the eigenvalue problem towards obtaining the natural frequency of the

building, we need to obtain M and K associated with the unsupported (free) degrees of

freedom.

Once the building’s natural frequency n1 is known, we can define whether the structure

is rigid (n1 ≥ 1) or flexible (n1 < 1). If the structure is rigid, the value of the gust effect

constant G is calculated following Section 26.11.4 of ASCE7-22 (ASCE, 2022), whereas

if it is flexible Section 26.11.5 is followed instead. If the structure is flexible, its damping

ratio is also necessary to calculate the wind load. Since the structure is made of composite

material, the damping ratio (ζ) used in this case is ζ = 0.015 (International Organization

for Standardization, 2009). The value of the internal pressure coefficient is taken from

Table 26.13-1 in ASCE7-22 (ASCE, 2022), where for a completely enclosed building

a value of GCpi = ±0.18 is taken. The sign depends on the face of the building in

which the wind pressure is being calculated. Finally, the values of the external pressure

coefficient are taken from Figure 27.3-1 in ASCE7-22 (ASCE, 2022), which also depends

on the slenderness of the building in the direction of the wind. When the wind acts in
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the x̂ direction, the slenderness is 1.5, resulting in Cp = 0.8 for the windward wall and

Cp = 0.4 for the leeward wall. On the other hand, for the wind acting in the ŷ direction, the

slenderness is 0.67, so for the windward wall Cp = 0.8 and for the leeward wall Cp = 0.5.

With these parameters, the design wind pressure p for the MWFRS of the building is

calculated using Equation 27.3-1 in ASCE7-22 (ASCE, 2022), which is reproduced here:

p = q GCp − qi (GCpi)

The value of q for windward walls is qz, while for leeward walls is qh, which is the velocity

pressure evaluated at height z = h, where h is the mean roof height of the building.

The wind load, as mentioned before, is applied directly on the perimeter nodes of each

slab. The resulting force is obtained assuming the cladding is simply supported between

two consecutive slabs. This results in a slightly higher contribution towards to top slab

which is most significant near the ground level, because the wind profile varies more near

the ground. This process is repeated for every story height and direction in which the wind

force is applied. The wind pressure p is applied over the building envelope following cases

1 and 3 of Figure 27.3-8 in ASCE7-22 (ASCE, 2022). These load cases are here illustrated

in Figures 3.15(a) and 3.15(b) for completeness.

PWX PLX

PWY

PLY

(a)

0.75 PWX 0.75 PLX

0.75 PLY

0.75 PWY

(b)

Figure 3.15. Design wind load cases according to ASCE7-22: (a) design
load case 1; and (b) design load case 3.
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A floor-plan view of the tower can be seen in Figure 3.16(a), with section cuts A-A

and B-B also shown in Figures 3.16(b) and 3.16(c), respectively. These section cuts also

illustrate how all loads, gravitational and wind loads, are applied to the structure.
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269.2
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Y

Z

269.2

18

(c)

Figure 3.16. High-rise building with outriggers: (a) typical floor-plan; (b)
section along A–A illustrating the application of the gravity and wind loads
along the x̂ direction; and (c) section along B–B illustrating the application
of the gravity and wind loads along the ŷ direction.

The fundamental natural frequency of the building is calculated using Ritz vectors.

For this calculation, we use the natural vibration modes as the corresponding Ritz vectors,

both, for the x̂ and ŷ directions. Since the matrix K changes with every iteration, the

fundamental natural frequency of the structure also changes. Therefore, the wind loads in

the x̂ and ŷ directions should be recalculated in every iteration. That said, the variations

on this frequency variation are relatively small and decrease as the solution converges

(iterations advance). Because of this, the natural frequency, and therefore the wind load,
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is only recalculated at iterations following a Fibonacci sequence (i.e. iterations 1, 2, 3, 5,

8, 13. . . ). This captures the rapid variations on the topology at the initial iterations while

saving computations towards the end, but still ensuring an accurate calculation of the wind

load throughout the optimization process.

3.5.3. Results using compliance

The following results use compliance as the objective function. The design domain

with all the possible subdomains is shown in Figure 3.17. The load cases used are taken

from Appendix CC of ASCE 7-22 (ASCE, 2022):

(i) D + 1.0Wx + 0.5L+ 0.5Lr

(ii) D + 1.0Wy + 0.5L+ 0.5Lr

(iii) D + 0.75Wx + 0.75Wy + 0.5L+ 0.5Lr

The optimization problem considers all three load cases and follows the procedure for

multiple objectives outlined in Section 2.10.

The problem’s symmetry was enforced, and the domain was quarterly meshed and

replicated throughout all four quadrants. Results for one and two subdomains (N0) were

obtained, both associated with different volume fractions. For the case of a single subdo-

main, the volume fractions are the following: f0 = 1 = f1 and f2 = 3 · 1.2 · N0/Nf =

0.0179. On the other hand, the volume fractions for the case of two design subdomains

are: f0 = 1 = f1 and f2 = 3 ·1.2 ·N0/Nf = 0.0357. The density filter has an initial radius

rmin = 2.5, and is reduced through a continuation scheme to a final value of rmin = 0

(no filter) in the last set of iterations. The penalization p of the element density ρ and

the penalization q of the subdomains µ began both at 1.75 and 1.75, respectively. The

continuation scheme on p and q took both values to 4.5. Figure 3.18(a) shows the results

for one desired subdomain, whereas Figure 3.18(b) does it for two subdomains.
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Figure 3.17. Outrigger tower domain.

It can be seen that the proposed method and its implementation succeed in both cases

at selecting only the user-specified number of subdomains. For the case of a single sub-

domain, the chosen one is µ8; whereas for two subdomains µ8 and µ9 were chosen. This

last case creates a 6-story high outrigger structure. Direct outriggers connect the core

with the perimeter columns using trusses or walls oriented in vertical planes (Choi et al.,

2017). Also, both outrigger design types accomplish the same goals: reinforce the perime-

ter columns and transfer core loads. In addition, a lesser objective of these is to hold the

gravity loads of the slab above. From the results, it can be concluded that the outrigger

in the Y Z plane requires more material than the one in the XZ plane. This is expected

since the Y Z plane has the lowest aspect ratio, and therefore the fundamental period is in

the ŷ direction, resulting in the weakest plane. From a design engineer’s point of view:

the bulkier topology in the Y Z direction suggests that these outrigger trusses could be

considered as outrigger walls.

43



(a) (b)

Figure 3.18. Three-dimensional isometric, XZ, and YZ section views of
the optimized high-rise building using compliance as the objective func-
tion: (a) case of a single subdomain (i.e. N0 = 1); and (b) case with two
available subdomains (i.e. N0 = 2).

Each load case has an associated coefficient αi which correspond to the objective

weights in Equation (2.14) and further described in Section 2.10.1. The final values for

each αi for the case N0 = 1 (single subdomain) are:[
α1 α2 α3

]
=
[
0.3057 0.5559 0.4423

]
On the other hand, the values for N0 = 2 are:[

α1 α2 α3

]
=
[
0.3118 0.5506 0.4426

]
The final values of the constants αi suggest that the algorithm decided to prioritize load

cases 2 and 3, with a bigger emphasis on load case 2. This result is expected because ŷ is

the weak direction of the structure which dominates the final design.
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3.5.4. Results using drift

In this case, the following examples use J = uT DT Du as the objective function.

Here, matrix D returns the average of the drift in the x̂ and ŷ directions (as explained in

Section 2.11). The tower was run using the same load cases as before, enforcing symmetry,

and the same optimization parameters as with compliance.

Results for one and two subdomains (N0) were obtained, both associated with dif-

ferent volume fractions. For the case of a single subdomain, the volume fractions are

the following: f0 = 1 = f1 and f2 = 3 · 1.2 · N0/Nf = 0.0429. On the other hand,

the volume fractions for the case of two design subdomains are: f0 = 1 = f1 and

f2 = 3 · 1.2 · N0/Nf = 0.0857. The density filter has an initial radius rmin = 0.7,

and is reduced through a continuation scheme to a final value of rmin = 0 (no filter) in the

last set of iterations. The penalization p of the element density ρ and the penalization q of

the subdomains µ began at 1.25 and 2.25, respectively. The continuation scheme on p and

q took both values to 5.0 and 4.5, respectively. Figure 3.19(a) shows the results for one

desired subdomain, whereas Figure 3.19(b) does it for two subdomains.

It can be seen that the proposed method and its implementation succeed in both cases

at selecting only the user-specified number of subdomains. For the case of a single subdo-

main, the chosen one is µ10; whereas for two subdomains µ10 and µ15 were chosen.

These results significantly differ from the results using compliance as the objective

function. This suggests that the conceptual design of high-rise buildings, more specifically

the outrigger location, is likely to be different if the objective is to obtain the stiffest

structure (minimal compliance) or minimize the top-floor drift. Additionally, the outrigger

topology designs for minimal structural compliance are different than those obtained for

minimal drift.

Each load case has an associated coefficient αi which correspond to the objective

weights in Equation (2.14) and further described in Section 2.10.1. The final values for
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(a) (b)

Figure 3.19. Three-dimensional isometric, XZ, and YZ section views of
the optimized high-rise building using the top (roof) drift as the objective
function: (a) case of a single subdomain (i.e. N0 = 1); and (b) case with
two available subdomains (i.e. N0 = 2).

each αi for the case N0 = 1 (single subdomain) are:[
α1 α2 α3

]
=
[
0.0010 0.9011 0.2159

]
On the other hand, the values for N0 = 2 are:[

α1 α2 α3

]
=
[
0.0009 0.9022 0.2142

]
Like before (compliance case), the final values of the constants αi suggest that the algo-

rithm decided to prioritize load cases 2 and 3, with a bigger emphasis on load case 2. This

result is expected because ŷ is the weak direction of the structure which dominates the

final design.

46



4. CONCLUSIONS

This manuscript develops a formulation for topology optimization with optimal design

subdomain selection and the examples shown here indicates that the method is successful

at its intended purpose. The algorithm can optimally choose and design subdomains in

2D and 3D structures. The user specifies the maximum number of subdomains that can

be selected (or used) in the final optimal structure. Additionally, there is a fine control

over the amount of material (volume fraction) available for each; the total design domain,

the active domain, and the subdomains. This grants the user a flexibility often necessary

in real-life optimization problems of this kind. This work considers multiple load cases

acting over the structure as is usual in applied real-life problems.

The formulation and algorithm is not free of issues, some of which were highlighted

in this manuscript. First, the algorithm is sensitive to the type of penalization used on

the subdomains. Some trial-and-error to adjust the penalization parameters (and their

continuation scheme) is often necessary. Secondly, the optimal solution depends on the

number of subdomains available and thus the user must make an apriori decision. This

might not be an issue in applied problems where this matter is well justified, but this

decision might trouble more purist researchers in the field with the question of how many

selectable subdomains are necessary. Finally, since the optimization is nonlinear, results

differ with variations on the continuation schemes for the penalization parameters p and q.
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A. NOMENCLATURE

E(i) Elastic modulus of the i-th element

Emin Elastic modulus associated with Ersatz material

E0 Elastic modulus of the solid phase

fi Nodal force vector of the i-th load case

f0 Volume fraction of complete domain

f1 Volume fraction of complete domain minus

subdomains

f2 Volume fraction of subdomains

H Filter matrix

Ji Objective function of the i-th load case

K
(i)
0 Stiffness matrix of the i-th element using E = 1

K Global stiffness matrix

Ndof Number of degrees of freedom

N Number of elements in the complete domain

Ns Number of selectable subdomains

N0 Maximum number of design subdomains

N1 Number of elements in the complete domain

minus the subdomains

N2 Number of elements in subdomains

p Density penalization parameter

q Subdomain penalization parameter

rmin Filter size

ui Nodal displacement vector of the i-th load case

v0 Volume of complete domain

v1 Volume of complete domain minus the subdomains

v2 Volume of subdomains

x Vector of the N element-wise design variables
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αi Contribution constant of i-th load case

β P-norm constant

ε Relaxation parameter

λ Adjoint vector

µ Vector of Ns subdomains design variables

ρ Vector of the N element-wise densities
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