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RESUMEN 

Grandes cantidades de materiales peligrosos (MP) son generados como materias primas 

o como subproducto de la actividad industrial. En la gran mayoría de las zonas urbanas que 

contienen industrias, estos materiales deben ser transportados transformándose en una 

fuente de peligro para la población frente a posibles eventos de liberación del material. Se 

reconoce la existencia de múltiples agentes implicados en la toma de decisiones, quienes se 

caracterizan por presentar un rango de prioridades y puntos de vista divergentes: los 

transportistas tratan de minimizar sus costos de transporte; las agencias gubernamentales 

intentan minimizar el riesgo impuesto a la población distribuyendo en forma equitativa 

este riesgo sin amenazar la viabilidad económica de la actividad; finalmente el público 

intentará evitar cualquier actividad peligrosa en su entorno cercano, guiado principalmente 

por su propia percepción respecto de las actividades que involucran MP. En zonas urbanas 

este problema se acrecienta producto de la alta población potencialmente expuesta a los 

peligros de esta actividad, principalmente de aquellos grupos poblacionales que presentan 

dificultades para ser evacuados. En vista de esto, es razonable prestar especial atención a 

esta población en situación de riesgo al momento de diseñar las rutas para el transporte de 

MP. 

El principal objetivo de esta tesis es desarrollar una metodología que permita resolver el 

problema de transporte de MP en zonas urbanas de tal forma de proteger a la población 



 

xii 

 

más vulnerable. Para ello, se presentan dos nuevos enfoques de enrutamiento, en los cuales 

la distancia es un proxy del peligro al cual están expuestos los centros, de modo que a 

menor distancia, mayor peligro, y se propone nuevos objetivos que consideran el peligro y 

el tiempo de exposición.  

El primer enfoque se centra en el problema de ruteo de MP desde un origen a un 

destino, ambos al interior de una zona urbana, minimizando el peligro sobre el centro 

vulnerable más expuesto. Se propone el maximin hazmat routing problem (MmHRP) que, 

como proxy del peligro, maximiza la distancia entre la ruta y su centro vulnerable más 

cercano, ponderado por la población del centro. El MmHRP es formulado sobre una red de 

transporte como un problema de programación entera y, adicionalmente, se presenta un 

procedimiento de resolución óptima en tiempo polinomial. 

El segundo enfoque aborda el problema de transporte de MP entre múltiples pares 

origen-destino. En primer lugar, se presenta el maxisum hazmat routing problem (MsHRP) 

el cual maximiza la suma de las distancias ponderadas desde todos los centros vulnerables 

a su punto más cercano en las rutas utilizadas. En segundo lugar, se presenta el maximin-

maxisum hazmat routing problema (MmMsHRP), el cual combina los criterios maximin y 

maxisum. Mediante el criterio maximin se buscan soluciones eficientes en términos de 

proteger al centro vulnerable más afectado, pero el efecto sobre el resto de la población no 

se considera y en las soluciones, se genera un gran número de centros expuestos. Mediante 

el criterio maxisum se obtienen soluciones que minimizan la exposición promedio de los 

centros vulnerables, pero sin considerar la magnitud del peligro impuesto sobre cada centro 

individual. La consideración de ambos objetivos permite soluciones en las cuales ambos 

criterios son razonablemente tomados en cuenta. Se formula un modelo exacto para cada 

problema, y se propone un procedimiento heurístico que permite resolver de manera 

eficiente ambos problemas para instancias de gran tamaño. 

Finalmente, en vez de usar la distancia como proxy, se propone un estimador de peligro 

general para cualquier centro poblado y se incorpora el tiempo de exposición de la 
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población como otro proxy de peligro. El nivel de peligro al que está expuesto un centro es 

una función de la distancia entre el centro poblado y cada punto de los arcos al interior de 

su área de peligro. Se formula y resuelve un problema de diseño de rutas que integra estos 

nuevos objetivos. 

Todos los modelos fueron probados en un caso real para el transporte de HAZMAT 

sobre la red de transporte de la ciudad de Santiago de Chile. 
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ABSTRACT 

 

Large quantities of hazardous materials (HAZMAT) are generated as raw material or 

by-products of industrial activity. In the great majority of urban areas that contain 

industries, this type of material must be transported in trucks, which becomes a source of 

hazard for the population. The HAZMAT transport decision-making process also includes 

multiple agents, each with different priorities. Freighters seek transportation cost 

minimization, regulators risk minimization subject to equity and economical concerns, and 

population hopes avoiding HAZMAT activity, guided by their own perception of hazard. 

In urban zones, these issues are stressed out, because of the high population density, 

especially of groups that cannot be easily evacuated. It is reasonable then, to take special 

care of these groups when designing HAZMAT transportation routes. 

The main objective of this thesis is to develop a methodology to solve the HAZMAT 

transportation problem in urban zones, in order to protect the most vulnerable population. 

In the first place, we present two different approaches. These use the distance as a proxy of 

the danger to which vulnerable population centers are exposed, corresponding a lesser 

distance to a higher danger. Secondly, we propose a new objective that explicitly measures 

the danger, as well measuring the exposure time as an estimator of danger. 
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The first approach studies the HAZMAT routing problem for a single origin-destination 

pair in an urban zone, minimizing the highest danger to which a population center is 

exposed. We present the maximin hazmat routing problem (MmHRP), which maximizes 

the distance between the route and its closest vulnerable center, weighted by the population 

of the center. The MmHRP is formulated as an integer problem, and an optimal 

polynomial procedure is presented. 

The second approach studies the HAZMAT transportation problem between multiple 

origin-destination pairs. First, we present the maxisum hazmat routing problem (MsHRP), 

which maximizes the sum of the population-weighted distances from all vulnerable centers 

to their closest point on the routes. Second, we present the maximin-maxisum hazmat 

routing problem (MmMsHRP), which combines the maximin and maxisum criteria. The 

maximin criteria provides solutions that are efficient in protecting the most affected 

vulnerable center, but it is unable to take into account the effect over the rest of the 

population. As a consequence, a high proportion of the vulnerable centers is exposed. The 

maxisum criterion, on the other hand, obtains solutions that minimize the average exposure 

of all population centers, but ignores the danger to which each individual center is 

exposed. We formulate an exact model for each problem, and we propose a heuristic 

procedure to solve efficiently large instances. 

Finally, we explicitly consider a general danger estimator for population centers, and we 

propose considering the exposure time as another danger estimator. The level of hazard to 

which a center is exposed, is a function of the distance between the center and each point 

on the link within its hazard circle. We formulate and solve a mathematical programming 

model that considers these objectives. 

All the models were tested in a real case study for HAZMAT transportation, 

considering Santiago of Chile transportation network. 
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1. INTRODUCTION 

 This thesis aims to model and solve the HAZMAT (Hazardous Material) 

Transportation Problem in urban zones. We develop three new techniques to solve the 

problem, stressing out population protection in case of HAZMAT release events during 

transport. The first technique focuses on the protection of population groups that are 

vulnerable or hard to evacuate, through the maximization of the distance between the 

closest vulnerable center and the designed route. We name it the maximim HAZMAT 

routing problem. The second technique maximizes the sum of the distances between every 

vulnerable center and its closest route, and it is denoted the maxisum HAZMAT routing 

problem. In these approaches, the distance is used as an estimator of the danger to which 

the vulnerable centers are exposed. In other words, the lesser the distance, the higher the 

danger. The third technique explicitly considers a general danger estimator for every 

populated center, incorporating also the population exposure time as another proxy. The 

resulting models were tested in a real case study of HAZMAT transport in Santiago de 

Chile. 

1.1. The Hazardous Material Transportation Problem 

A hazardous material is defined as one which can cause damage to people, property or 

environment [UN (2015)]. These materials can be classified in nine classes [UN (2015), 

NCh382 (1998)]: explosive, flammable, carburant, organic peroxides, poisonous (toxic) 

and infectious, corrosive, radioactive, and other dangerous substances. In most of the large 

urban areas, HAZMATs must be transported between different generation/attraction points 

using trucks. This action exposes the population to possible material release events, where 

both risk and danger are implied.  

Despite the efforts of governments, overseers and private agents, accidents during the 

HAZMAT transport still occur. A HAZMAT liberation event could cause multiple 

consequences, such as property and environment damage, people injured, deaths, 
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evacuation and cleaning costs. In Santiago, Chile, data shows that during 2013, 12 

HAZMAT release events occurred, affecting 2,279 people with 137 injured of different 

severity. It also implied the evacuation of thousands of people and high cleaning cost [INE 

(2015)]. This evidence suggests that both practitioners and researchers must do their best, 

in order to develop new methodologies for the urban HAZMAT transport. These efforts 

must be oriented toward protection of the population in case of HAZMAT release events. 

The development of new methodologies must also consider all difficulties of HAZMAT 

transport, such as the evaluation of risk estimators, and the existence of multiple 

stakeholders in the decision making process. 

1.2. Multiple stakeholders 

There are multiple agents implied in the HAZMAT management and transport decision 

making activities, with different priorities and viewpoints.  

First, the carriers aim to minimize their transportation cost, while following the 

regulations. Each carrier must solve an independent routing problem for every shipment. 

This is a minimum cost route between origin and destination (OD), for a single product 

and type of vehicle. Minimizing transportation costs is their main goal, although they also 

follow the regulations, which ensures not putting population at a high risk. The literature 

on this topic is profuse, and it is mainly oriented to the HAZMAT routing problem for one 

OD pair, using deterministic models [Batta and Chiu (1988)], stochastics models [Miller-

Hooks and Mahmassani (1998), Erkut and Ingolfsoon (2000), Hall (1986), Fu and Rilett 

(1998), and  Miller-Hooks (2001)], one objective models [Erkut and  Verter (1998), Erkut 

and  Ingolfsson (2005)] and  multiobjective models [Sherali et al. (1997), Marianov and  

ReVelle (1998)]. 

At the other extreme are the government agencies, who get involved in the system to 

minimize the public and environmental risk, but taking care not to threaten the economic 

viability of the activity, and establishing equitable distribution of risk. Their view must 
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consider all shipments within their jurisdiction, transforming routing decisions in a multi-

product and multi-pair origin-destination problem. The literature about these problems has 

increased in the last decades. It has been oriented toward the risk distribution  [Gopalan et 

al. (1990b), Lindner-Dutton et al. (1991), Marianov and ReVelle (1998) and Iakovou et al. 

(1999)], selection of a route set for an OD pair [Akgün et al. (2000) and Dell'Olmo et al. 

(2005)] and the design of a HAZMAT transportation network [Kara and Verter (2004), 

Gzara (2013)]. 

Finally, there is the population, which is guided by their own perception on the 

activities involving HAZMAT. They aim to avoid any dangerous activity in their 

closeness. The public perception is usually not fully aligned with the authorities’ objective 

of minimizing risk. A first reason is that overall risk is not the same as individual risk. 

Another reason is related to the concept of social amplification of risk, which states that 

public assessment of a risk not only depends on the magnitude, but also the subjective 

perceptions of the population [Kasperson et al. (1988)]. So, HAZMAT release events have 

a higher perceived risk, as compared to other kinds of events. Few articles in the literature 

of operations research consider the public perspective on perceived risk in the HAZMAT 

transport [ReVelle et al. (1991), Abkowitz et al. (1992)]. Interesting sources of knowledge 

that can be used in this area, are the literature on risk and danger perceived by the public 

from the location of undesirable and obnoxious facilities [Hung and Wang (2011), Elliott 

et al. (1999), Brody et al. (2004) and Lima (2004)] and the literature on natural disasters 

[Lindell and Perry (2000), Arlikatti et al. (2006), Wachinger et al. (2013), Miceli et al. 

(2008), Heitz et al. (2009) y Brilly et al. (2005)]. 

1.3. Evaluation of Risk Estimators 

The main difference between HAZMAT transport and other transportation problems is 

the existence of undesirable health, environmental and property effects, in case of a 
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HAZMAT release event during transportation. However, there is still no agreement among 

researchers on how to properly estimate these unwanted effects. 

The literature has addressed this problem mainly through vehicle routing models that 

minimize some risk estimator for the population. Mostly, risk is a probability function of a 

HAZMAT release event during transportation, or the consequence associated to the event, 

or a combination of both. Nevertheless, the estimation of these factors is difficult. First, the 

techniques used to estimate the release event probabilities, based on historic frequency or 

logic diagrams (failure trees and event trees) assume that the past events can be used to 

predict the future [Saccomanno and Shortreed (1993)]. Even more, given that the 

HAZMAT release events have low probabilities, long periods of data gathering are 

required. During this period, the data obtained become less reliable, because the road 

characteristics, the transport technology and the population behavior change over the time 

horizon. 

Focusing on consequences, these are a function of the area affected by the release 

material, the population, properties and environmental conditions inside this area at the 

time of the event, and the amount of material released. In turn, the shape and size of the 

impact area not only depend on the substance to be transported, but also on other factors 

such as weather conditions, topology, speed and wind direction. Although it is appealing, 

from the theoretical point of view, it is infeasible to estimate precisely the consequences of 

a particular event/incident, requiring strong assumptions to estimate the consequences 

[Erkut and Verter (1998) y Kara et al. (2003)]. 

Most of the risk estimation methodologies in HAZMAT transportation consider the 

computing of the exposed population. These assume that the effects of the event reach a 

maximum distance , which depends on the physical and chemical properties of the 

transported HAZMAT. A very popular approach, because of its simplicity, consist in 

summing the population exposed to HAZMAT transportation within a -neighborhood of 

the arc or semicircular exposure zone. The assumption done is that all this population is 



 

5 

 

equally exposed to the transportation danger. The resulting shape is a rectangle with 

semicircles in the opposed ends (“stadium”). This technique also assumes that both the 

event probability and the population density are uniform along every arc of the network 

(see examples in Figure 1-1). 
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Figure 1-1: (a) Overlap of exposure zones (“stadiums”) of two adjacent links in a route, 

with uniform population density along the link; (b) Overlap with unconnected links; (c) 

Overlap with non-uniform population density. 

This method produces estimation errors of more than one type. Consider Figure 1-1a, 

which depicts a route including two links (i,j) and (j,k). Assuming uniform density, the 

population within the -neighborhood of each link represents the exposed population. 

However, as shown in Figure 1-1a, the population within the shaded area will be double-

counted due to overlap of the links’ exposure zones. Kara et al. (2003) compute the 

resulting error and propose a link-labeling shortest-route algorithm to correctly find the 

route that minimizes exposed population when density is uniform. A second type of 

overlap error, which may arise with nearby but disconnected links, is indicated by the 

shaded area in Figure 1-1b. There are as yet no developed correctives for this source of 

overestimation. If the density of the population is not uniform or it is concentrated at 

discrete points, as in Figure 1-1c where it is concentrated at points A, B and C, the 

methodology of Kara et al. cannot be applied, as it could incorrectly eliminate a non-

existing population double-count. Again, the consequence can be either underestimated or 
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overestimated, depending on whether the population is concentrated as shown in Figure 

1-1c, or in the shaded area of the same Figure 1-1c. 

Erkut and Verter (1998) propose a second method of risk estimation, considering 

potential effects or consequence, rather than population or environment exposure. They 

assume that if a spill occurs during HM transport over link (i,j), the material will disperse 

uniformly and thus create a danger circle of radius λ. Each individual within that circle will 

be subject to the same undesirable effects, regardless of their distance from the incident. 

Both the incident probability and the population density are assumed to be uniform over 

the entire length of each network link. Thus, the affected population (or area) is just a 

proportion of the population contained in the stadium (  / 2l   , where l is the length 

of the arc.) This method must be applied only when population density is indeed 

homogeneous, otherwise it can lead to errors. In the heterogeneous density case, it can 

either overestimate or underestimate the consequence. This is illustrated in Figure 1-2a, 

where population is concentrated in point A.  
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Figure 1-2: (a) Overestimation of the consequence on segment (q,j) and underestimation 

of consequence at population center A when population is concentrated at that point; (b) 

division of link (i,j) into two links (i,k) and (k,j) of equal length; (c) population centers v1 

and v2 within the semi-circular exposure zone of link (i,j). 

Because of the uniform density assumption, the danger circle methodology will spread 

the population of A over the whole link, and will assign a non-existent consequence 

(overestimation) to segment (q,j) of link (i,j), while for segment (i,q), the consequence will 

be underestimated. The danger circle method may also generate an error in the case where 

an intermediate node k is added to the link, as illustrated by the case in Figure 1-2b with 
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three population concentrations denoted A, B and C. This occurs because part of the 

population affected by an incident over link (i,j) is now considered again as affected by 

incidents on two possible links, (i,k) and (k,j), and population center B will be counted 

twice (i.e., once for each link). This error, which can be very significant, has not been 

solved in the literature on the danger circle method, although an alternative design similar 

to that of Kara et al. (2003) may be possible. 

A third methodology [Batta and Chiu (1988)], considering two variations, lacks of some 

of the errors induced by the previously explained methodologies. The first variation 

computes the sum of the total length of arc segments that are within the -neighborhood of 

some population center, weighting them according to their amount of population. The 

second variation add a multiplication of every arc segment by the unitary event probability 

(per length unit) on this segment. The result is the risk of using the arc. 

Even though this methodology produces no errors, the indicators have certain 

limitations. One of them is that there is no consideration of the time each population center 

is exposed to a danger. Although in their exposure indicator the link length can be thought 

of as a proxy for exposure time, since the former was defined as a link attribute rather than 

a population center attribute, the exposure times of a given center to different links cannot 

be added together. Another limitation of these indicators is that they do not take account of 

the distance between each population center and the link affecting it. There are three 

exceptions that do consider the distance between the population center and the HAZMAT 

route [Carotenuto et al. (2007), List and Mirchandani (1991) and Erkut and Verter (1995)] 

which are described in section 2.2.1.    

To illustrate the effects of distance to the link and exposure time, consider Figure 1-2c 

in which two units (v1 and v2) of equal population are located at different distances from a 

route. If we assume that a hazmat vehicle travel speed and incident probability are 

homogeneous along the entire length of the link, a hazard along (i,j) will not only expose 

population center v1 to the associated risks for a longer period of time, but also, if we 
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suppose that danger is as well a function of nearness to a possible incident, the danger it 

exposes the center to is greater. 

Common to all of the methods described so far is that consequence or risk are always 

the attributes of a link rather than a population center. In other words, each link is assigned 

the undesired effect it produces and the amount of population it affects. In transport route 

designs, two or more links may affect the same population center, a double impact none of 

these methods can account for. The only way to incorporate the effects of multiple links on 

the population is to use an approach that assigns the impacts not to links but rather to 

population centers. 

In light of the foregoing observations, in this Thesis, we use a new approach that 

specifies danger and risk as attributes of the relationship of each population center with 

each link that affects it. Each population center is represented as a point in a plane around 

which a circular danger zone of radius λ is defined, as shown in Figure 1-3a. The links 

consist of straight line sections of a path while the population v is represented as 

concentrated at point k. Since the danger zone is confined to the circle of radius λ, segment 

(a,b) of link (i,j) is the part that exposes the population to danger and is therefore denoted 

the exposure segment. 
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Figure 1-3: (a) Population v represented by its geometric center k, together with its 

circular danger zone and exposure segment (a,b); (b) Exposure segments (a,b) and (e,d) 

within danger zone of population center k. 

Figure 1-3b depicts how a population center can be affected by more than one link, 

especially in urban areas. By expressing adverse effects as attributes of a center rather than 
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a link, we can account for the aggregate effect of all links on a given center. In cases such 

as the one shown in Figure 1-3b, the consequence is always the population concentrated at 

k no matter how many links cross its danger zone. The risk and the danger imposed on k 

are the respective sums of the individual risk and danger values imposed by each of the 

two link segments (a,b) and (e,d).  

In some cases, the population v in an area Zv is represented as concentrated at its central 

point (Figure 1-3a). Strictly speaking, this does not introduce significant errors since 

population data are usually presented as discrete figures (e.g., in census publications) and 

therefore already contain aggregation errors that cannot be corrected by any model. 

Furthermore, it is impossible to include into any model the actual location of each person. 

Of course, if the model uses a higher level of aggregation than the source data, errors will 

indeed be introduced. A review of the literature on aggregation errors may be found in 

Sadigh and Fallah (2009) and Francis et al. (2004). Methods for reducing them have been 

proposed by Current and Schilling (1990) and Emir-Farinas and Francis (2005). Although 

most of these studies focus on the problem as it arises in location modeling, the principles 

involved here are the same. 

1.4. Minimization of the individual danger of population centers in urban zones 

In an urban zone, the population is distributed across all the urban surface of a more or 

less continuously. It implies that it is inevitable to expose part of the population to the 

HAZMAT transport, independently of the selected route. The population must also be 

evacuated in a short enough period of time, in order to avoid the consequences of most of 

the HAZMAT release events. Some population groups are particularly hard to evacuate, by 

the high concentration of people in small areas (for example schools, large buildings and 

commercial centers), or because the people has difficulties to be evacuated (patients in 

hospitals, elders, etc.). In summary, it is reasonable to give special attention to this 

component of the population when designing HAZMAT transportation routes. 
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One approach to solve this problem is to represent every vulnerable center as a point in 

the plane, where all its population is concentrated. Then, it is possible to compute a 

circular danger zone (Figure 1-3), which is where, if an event occurs, the center would be 

affected. From this point of view, every route segment within this danger zone around a 

center would generate danger to its population. It is assumed that danger is the potential to 

generate an undesirable consequence, independent of the occurrence probability 

[Rasmussen (1991)]. It is considered that within the danger zone, the danger is a function 

of the distance between the vulnerable center and the route segment used for the HAZMAT 

transportation (danger function). This danger function can have multiple functional forms. 

We propose the inverse of the squared distance between the vulnerable center and the 

danger source; the inverse of an exponential function of the square Euclidian distance 

between the population and the danger source; and the inverse of the distance between the 

vulnerable center and the danger source. The function to be used depends on the material 

and context considered. To estimate the total danger imposed to a population center, the 

danger function is multiplied by the population of the center.  

Any of these functions can be used to minimize the danger imposed to every vulnerable 

center, in order to assure that the HAZMAT activities are done as far as possible from 

them. In order to achieve this goal, the danger indicator can be integrated into one of the 

routing approaches studied in this thesis: maximin and maxisum. The maximin approach 

maximizes the minimum weighted distance between the HAZMAT transportation route 

and its closest vulnerable center. It is efficient in protecting the most affected vulnerable 

center, but it is not able to measure the effect on the rest of the population. As a 

consequence, in the obtained solution, a great number of centers could be exposed. The 

maxisum approach, on the other hand, maximizes the weighted sum of the distances 

between every vulnerable center and its closest arc of the route within its danger zone. 

Minimizing the total impact over the population, the maxisum approach offers routes that 

minimize the average exposure, but it does not take into account the maximum danger that 

impacts individual centers. A third approach is to combine the maximin and maxisum 
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approaches. Under the maximin criteria, we can obtain routes that minimize the negative 

impact to the most affect center, and with the maxisum criteria, we can obtain routes that 

minimize the negative effect over all the vulnerable centers considered. Multiobjective 

modeling allows generating a set of efficient solutions that can be proposed to the decision 

makers to choose among. 

1.5. Thesis contributions 

The main contributions of this thesis are three: 

First, we formulate and solve up to optimality the maximin HAZMAT routing problem 

in urban zones, over a transportation network, considering both vulnerable and hard-to-

evacuate population protection. The resulting model maximizes the minimum weighted 

distance between the route and the closest vulnerable center. It minimizes the 

consequences to the most exposed part of the population. 

Second, we formulate and solve efficiently the maxisum HAZMAT routing problem and 

the maximin-maxisum HAZMAT routing problem. The first method maximizes the 

weighted sum of distance between vulnerable zones and arcs used for HAZMAT 

transportation. The second method combines the maximin HAZMAT routing problem and 

the maxisum HAZMAT routing problem using a bi-criteria approach. We generate a set of 

non-dominated solutions that are options for the decision makers. 

Third and final, we propose a methodology that incorporates the population exposure 

time and danger level as new objectives to be considered in the HAZMAT routing problem 

in urban zones. 
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The rest of the thesis is organized as follows. Chapter 2 contains the article "The 

maximin hazmat routing problem"1. Chapter 3 presents the article "The maxisum and 

maximin-maxisum hazmat routing problems", submitted to Transportation Research Part E. 

Chapter 4 is the paper "Incorporation of hazard and period of exposure as objectives in 

HM transportation", to be submitted. Instead of a separate conclusion chapter, every 

chapter ends with specific concluding remarks and future lines of research. 

                                                 

1 Bronfman, A., V. Marianov, G. Paredes-Belmar and A. Lüer-Villagra (2015). "The maximin 

HAZMAT routing problem." European Journal of Operational Research 241(1): 15-27. 
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2. THE MAXIMIN HAZMAT ROUTING PROBLEM 

The hazardous material routing problem from an origin to a destination in an urban area 

is addressed. We maximize the distance between the route and its closest vulnerable center, 

weighted by the center’s population. A vulnerable center is a school, hospital, senior 

citizens’ residence or the like, concentrating a high population or one that is particularly 

vulnerable or difficult to evacuate in a short time. The potential consequences on the most 

exposed center are thus minimized. Though previously studied in a continuous space, the 

problem is formulated here over a transport (road) network. We present an exact model for 

the problem, in which we manage to significantly reduce the required variables, as well as 

an optimal polynomial time algorithm. The integer programming formulation and the 

algorithm are tested in a real-world case study set in the transport network in the city of 

Santiago, Chile. 

2.1. Introduction 

The hazardous material (HAZMAT) routing problem has been extensively studied in 

recent decades. For the most part it has been treated as a least cost routing problem 

between an origin and a destination, in which cost is a combination of transport costs and a 

risk function. 

Although there is no consensus on the best way to model risk, it is generally agreed that 

any formulation will include two elements: the probability of an accidental HAZMAT 

release, and its associated consequences. Very few of the risk measures take into account 

the distance between a population center and the HAZMAT route except in order to define 

distance thresholds within which the consequence or risk is total and beyond which it is 

non-existent. In reality, however, the closer a HAZMAT vehicle passes to a population 

center within such a threshold, the greater is the center’s exposure to hazard (where hazard 

is understood as the potential for producing an undesired consequence without regard to 

the probability of its occurrence). This observation also fits with public perceptions, 
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strongly suggesting that the distance between routes and populated centers warrants greater 

attention in HAZMAT route modelling, since it is a good proxy for hazard. 

Our contribution is oriented to propose an approach oriented to the protection of 

vulnerable centers, together with a new model and an optimal algorithm for HAZMAT 

transportation in urban areas. The approach assumes that population in residential or low-

rise commercial areas is easier to evacuate, but there are vulnerable centers concentrating 

high populations of children, senior citizens or ill people, for which is difficult to evacuate 

or can slowly do so. These vulnerable centers are represented as points on a plane. We 

incorporate in a new model, the distance between a vulnerable center and a HAZMAT 

transport route. A maximin objective is used here that, to the best of our knowledge, has 

not previously been used in the HAZMAT or routing literature in a network context. This 

objective maximizes the minimum Euclidean distance between the route and the nearest 

vulnerable center, the distance being weighted by the center’s population. We remark that 

any other distance and hazard measure could be trivially used, as long as it is non-

increasing with distance. Since we explicitly assume that hazard is an attribute of each 

vulnerable center and depends on the center’s distance from a HAZMAT route, by using 

this maximin approach we minimize the hazard facing the center closest to the route (the 

most exposed center). By using this approach, we obviate the need to set risk or risk 

difference thresholds, or to compute probabilities. Moreover, the formulation we develop 

designs a route instead of choosing one from a set.  

Maximal values of risk or hazard have seldom being minimized in the HAZMAT 

literature. In general, the average or total risk or hazard has been the objective to be 

minimized. Exceptions are some works that locate either straight or broken lines in a plane. 

However, HAZMAT transport in practice takes place over a network. Modelling the 

routing problem in a network context, with an integer programming formulation, requires 

the application of constraints that will relate each population center to its closest link in the 

route (i.e., the link imposing the greatest hazard). This type of constraints is used in 
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discrete location problems, e.g., assigning customers to the closest plant of a multi-plant 

firm. 

The new exact model we formulate here (our first solution method) potentially requires 

a large number of closest assignment constraints. Normally, this would also mean a large 

number of decision variables, significantly complicating the solution of the problem. Since 

the route is not known a priori, a variable associating each vulnerable center with each 

network link has to be added, implying a total of O(mq) variables where m is the number 

of network links and q the number of vulnerable centers. In our exact model, however, 

each vulnerable center needs only a subset of these variables identified by the sections of 

route within the center’s danger area. The result is a major reduction in the required 

number of variables and constraints. Although the problem can be solved using an optimal 

algorithm also presented here, we offer both procedures, as the variable reducing technique 

could be applied to harder problems. 

Our second approach corresponds to an optimal algorithm, which solves the problem in 

polynomial time and can be used easily for large real instances. 

The remainder of this article is organized into four sections. In Section 2.2, we offer a 

Literature review. Section 2.3 formulates the maximin problem for hazardous materials 

routing as an exact formulation and includes an optimal algorithm; Section 2.4 describes a 

practical application of the proposed methodology and analyses the results; and finally, 

Section 2.5 presents our conclusions and some possibilities for future research. 

2.2. Literature review 

2.2.1. Risk and distance dependent danger 

Erkut et al. (2007) have identified nine different risk estimators: the exposed population 

ReVelle et al. (1991); the probability of an accident [Saccomanno and Chan (1985), 

Abkowitz et al. (1992) and Marianov and ReVelle (1998)]; the expected consequence, 
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defined as the product of the probability of an accident and its associated consequences 

[Pijawka et al. (1985), Batta and Chiu (1988), Alp (1995) and Erkut and Verter (1995)]; 

the expected consequence given that an accident has occurred along the route [Sivakumar 

et al. (1993), Sivakumar et al. (1995) and Sherali et al. (1997)]; risk aversion, the 

perceived risk along a link being measured as pCq, where p is the probability of an accident 

on the link, C is the consequence of an accident and q is a risk preference parameter 

[Abkowitz et al. (1992)]; a demand satisfaction model proposed by Erkut and Ingolfsson 

(2005) in which an accident terminates a trip, necessitating a new shipment to fulfil 

demand; the maximum exposed population [Erkut and Ingolfsson (2000)]; simultaneous 

consideration of the expected value and variance of the number of people affected by an 

accident [Erkut and Ingolfsson (2000)]; and expected disutility, using a disutility function 

of the form u(X) = exp(X) where X is the affected population and  > 0 a constant 

measuring catastrophe aversion [Erkut and Ingolfsson (2000)]. 

In addition to these nine estimators, Jin and Batta (1997) propose six ways of modelling 

risk based on expected consequence in terms of the number of HAZMAT shipments or 

trips S to be made and the threshold number of accidents Q. In these formulations, 

shipments cease once a number Q of accidents have occurred or when S trips have been 

made, whichever comes first. The shipments are considered as a sequence of independent 

Bernoulli trials and a trip terminates if either an accident occurs or the destination is 

reached. 

Some authors incorporate equity into the spatial distribution of risk in HAZMAT 

routing. For example, Zografos and Davis (1989) include the concept indirectly by placing 

flow capacity constraints on the various links in the transport network. Marianov and 

ReVelle (1998) propose stipulating an upper bound on the total risk associated with each 

link. Gopalan et al. (1990a) consider a route defined by an origin-destination pair to be 

equitable if the difference between the risk levels imposed on any pair of zones in the 

neighborhood of the route stays below a present threshold. They calculate the risk 
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associated with a link in the route as the sum of the risks imposed on the various zones in 

the link’s neighborhood, an approach that could double-count part of the population. The 

same authors extend their model in Gopalan et al. (1990b) to identify a set of routes for 

making T trips between a single origin-destination pair. They minimize the total risk over 

the T trips while maintaining the difference in total risk between every zone pair under a 

certain equity threshold, the latter given for any pair by the differences in risk summed 

over the T trips. Lindner-Dutton et al. (1991) take this model further, focusing on the 

search for an equitable sequence for the T trips. They minimize the sum of the maximum 

differences in risk between any zone pair accumulated over t trips (t = 1,...,T). Other 

approaches to the equitable risk distribution for a set of trips between a given origin-

destination pair may be found in Dell'Olmo et al. (2005) and Caramia et al. (2010). 

All of the above-mentioned works use subjective risk thresholds without defining any 

standard. Moreover, they all consider risk as an attribute of the route links rather than the 

population centers along it. This approach, if not used carefully, could lead to under-or 

overestimation of both risk itself and the differences in risk between population centers. 

Risk measures do not incorporate distance. However, hazard, defined by Rasmussen 

(1981) as the potential for producing an undesired consequence without regard to the 

probability of its occurrence does depend on distance. The phenomenon is acknowledged 

by Saccomanno and Shortreed (1993), Jonkman et al. (2003), Fernández. et al. (2000) and 

Karkazis and Boffey (1995), who note that distance should be a factor to incorporate in 

models dealing with HAZMAT transportation.  

Three studies which do incorporate distance into their formulations are Erkut and Verter 

(1995), Carotenuto et al. (2007) and List and Mirchandani (1991). In the first one, two 

models are proposed. The first model assumes population concentrated at points on a 

plane, while the second treats population centers as two-dimensional objects. Both models 

use probabilities (of an accident, of an incident given an accident, and probability of a 

material release) that are difficult to estimate. In the paper, the models are used to choose 
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among several routes. In Carotenuto et al. (2007), assuming the population is located on 

the transport network links (populated links), the authors calculate, for each unit-length 

segment x of a link, the risk imposed by its use for HAZMAT transport on each populated 

segment y in the network. The calculation is made only within a threshold distance 

measured from the center of segment x. For each populated segment y within that distance, 

the authors multiply the population along that segment by a function that decreases 

exponentially with the distance between the two segments and the probability of an 

incident on segment x. The sum of the risks imposed by the use of each segment x of a link 

gives the total risk associated with that link, and by the same token, the total risk imposed 

by a route is the sum of the risks imposed by each of its constituent links. Heuristic 

procedures are applied to generate a set of alternative routes between an origin–destination 

pair and the total risk is then minimized, with a preset upper limit on the total risk over the 

populated links. Note, however, that this methodology could generate a risk overestimation 

whose magnitude increases with the density of the network.  

Finally, List and Mirchandani (1991) also take into account the distance from a 

HAZMAT route to a population. They calculate, for each population center, the integral 

over the entire route of a function of the distance between a point representing that center 

and each point on the route, said distance being weighted by the size of the population 

center and the probability of an incident at the route point. The authors define the risk 

associated with each route and each population point as a function of the integral, but do 

not propose any specific functional form. The total risk imposed by a route is the sum of 

the individual risks it imposes on each population centers. However, in their case study 

List and Mirchandani (1991) recognize the complexities of their method and instead of the 

function as just described they employ the expected fatalities. Furthermore, as with 

Carotenuto et al. (2007) their formulation requires that the candidate routes be explicitly 

enumerated.  
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Following List and Mirchandani (1991) and Bronfman and Marianov (2013) propose 

two new objectives for HAZMAT transport: the hazard or danger a population center 

located near a route is exposed to (danger exposure) and the length of time it is exposed 

(time exposure). The level of danger is a function of the distance between a population 

center and each point on the route segment in its danger area. But neither pair of authors 

consider possible differences in the spatial distribution of the danger or total imposed risk 

even though the perception of risk inequity often leads to public opposition to HAZMAT 

transport along nearby routes Erkut et al. (2007).  

We remark that there are at least two approaches to risk mitigation. In the first one, 

which most of the literature follows, routes are prescribed by authorities, while in the 

second approach, rules are defined that the vehicles carrying HAZMAT must respect. 

Using this indirect approach, Kara and Verter (2004), Erkut and Gzara (2008) and Amaldi 

et al. (2011) formulate the hazmat network design problem, as a bi-level mathematical 

programming problem that explicitly captures the leader–follower nature of the 

relationship between authorities and transportation operators. In the first level, authorities 

restrict the routes to a subset of the network arcs, which is found by minimizing a risk 

function. On a second level, operators find cost-minimizing routes over the restricted 

network. Erkut and Alp (2007) solve the hazmat network design problem for a large urban 

center. The problem is formulated as a selection of minimum risk Steiner trees. Verter and 

Kara (2008) approach the same problem by generating a set of feasible routes for 

HAZMAT transportation. Each route represents a point on the risk-cost trade-off 

boundary. Marcotte et al. (2009) propose the use of tolls to redirect the routes through less 

populated areas. Again, a bi-level problem is formulated, which can be reduced to a mixed-

integer single-level problem. Bianco et al. (2009) minimize both risk and risk equity, 

assuming that authorities limit the amount of HAZMAT traffic over network arcs. A 

different approach was adopted by Bruglieri et al. (2014), who propose to reroute 

HAZMAT through compulsory control points or gateways. The problem consists of 
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locating a fixed number of gateways and their assignment to trucks, so that the total risk of 

the minimum cost route of each truck through gateways is minimized.  

2.2.2. Maximin in the plane  

Maximin objectives have been considered in previous works, although mostly over a 

continuous space (in a plane). For example, Drezner and Wesolowsky (1989), determine 

an obnoxious route through a restraining polygonal region containing a set of points such 

that the minimum weighted distance between the route and the points is maximized. They 

also locate a straight-line route that maximizes the minimum weighted distance to the 

points in a region circumscribed by the points’ convex hull. Díaz-Báñez et al. (2005) 

consider both the route cost and the minimization of risk in a continuous space. Their 

approach finds a route between an origin–destination pair whose length does not exceed a 

preset value (the route cost objective) while maximizing the minimum distance to a set of 

population centers or points (the minimum risk objective). Barcia et al. (2003) solve the 

fixed-length obnoxious anchored segment location problem by maximizing the minimum 

Euclidean distance between n points and a route segment with one fixed endpoint. Díaz-

Báñez and Hurtado (2006) locate an obnoxious route made up of two links joined at a 

corner with fixed endpoints at the route origin and destination. Also, for a given set of 

points and a positive value l0, the authors calculate an obnoxious 1-corner polygonal chain 

of maximum length l0 that maximizes the minimum distance to the points. Díaz-Báñez et 

al. (2007) assume demand is concentrated in polygonal regions instead of at points and 

then solve the maximin line problem, that is, the problem of locating the straight line that 

maximizes the minimum weighted distance between the set of polygons and the line. They 

also address the extension of the problem to three dimensions (Díaz-Báñez et al. (2006), 

Dı́az-Báñez et al. (2004), Díaz-Báñez et al. (2002)), as do Follert (1995) and Follert et al. 

(1997). 
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2.2.3. Closest assignment constraints 

Closest assignment constraints have been used in many location problems (see Gerrard 

and Church (1996) and Espejo et al. (2012)), including the ordered capacitated facility 

location problem [Kalcsics et al. (2010)], r-interdiction median problems [Church et al. 

(2004) and Liberatore et al. (2011)], the budget constrained median problem [Rojeski and 

ReVelle (1970)], the competitive location problem [Dobson and Karmarkar (1987)], the 

plant location problem with order [Cánovas et al. (2007)], the obnoxious p-median 

problem [Belotti et al. (2007)], the location with equitable load problem [Berman et al. 

(2009)], models for locating regional energy facilities [Church and Cohon (1976)] and 

location models for maximizing social welfare or consumer surplus [Wagner and Falkson 

(1975)]. Further applications of closest assignment constraints may be found in Plastria 

(2002), Hanjoul and Peeters (1987) and Marín (2011), and finally in Lei and Church 

(2011), who discuss their use in the context of multi-level assignments. We have not found 

literature on the use of these constraints in routing. 

2.3. Formulation of the problem 

2.3.1. The base model 

Let a transport network be defined by a directed graph G(N, A), where N = {1 ,…, n} is 

the set of nodes and A = {1,…, m} the set of links. There is a cost cij associated with the 

use of link (i,j)  A and a set of vulnerable zones or centers, each of which is represented 

by a point p  P = {1,…, q} in the plane at which the population pD is assumed to be 

concentrated. A HAZMAT load is to be transported between a known origin-destination 

pair O-D along a route that maximizes its minimum distance to the vulnerable centers, 

weighted by the reciprocal of each center’s population. Note that, depending on what type 

of HAZMAT is being considered, any estimator of danger or risk could be used instead, as 

long as it is non-decreasing with distance, without changing the structure of the model. In 

this case, by using the reciprocal of the population, the most populated centers become 
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more important to protect. Other estimators are the distance itself; functions of the distance 

and the risk, and so on. Let p

ijd  be the Euclidean distance between vulnerable center p and 

its closest point on link (i, j)  A. 

The decision variables are: 

1 if link ( , )  is used for HAZMAT transport

0 if not
ij

i j A
x


 


 

1 if link ( , ) ,  used for HAZMAT transport, is the closest link to   

0 if not

p

ij

i j A p P
z

 
 


 

w: minimum weighted distance from the route to a vulnerable center at p  P. 

 

The basic model of the problem, M1, is formulated as follows: 

 

1)M Max w          (2.1) 

 s.t. 

( , )

1 p p

ij ijp
i j A

w d z p P
D

 
   

 
    (2.2) 

( , )

1p

ij

i j A

z p P


      (2.3) 

 ( , ) /

, ( , )
p p

ijkl

p p

ij ij kl

k l A d d

z x z p P i j A
 

        (2.4) 

, ( , )p

ij ijz x p P i j A       (2.5) 

   /( , ) /( , )

1 if

1 if

0 otherwise

ij ji

j i j A j j i A

i O

x x i D i N
 




     



   (2.6) 

0w            (2.7) 
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 0,1 ( , )ijx i j A      (2.8) 

 0,1 , ( , )p

ijz p P i j A       (2.9) 

 

The objective (2.1) maximizes the minimum weighted distance w between a vulnerable 

center and its assigned link. Constraint set (2.2) equates w to the shortest weighted distance 

between the route and any vulnerable center p  P. Constraint set (2.3) ensures that only 

one link on the route is assigned to any vulnerable center, constraint set (2.4) imposes that 

this single assigned link is the closest one and constraint set (2.5) prevents any vulnerable 

center from being assigned to a link that is not part of the route. Finally, the network flow 

conservation conditions are given by (2.6) and the nature of the variables is defined by 

(2.7), (2.8) and (2.9).  

The above formulation contains (mq + n +1) decision variables and (2q + 2mq + n + 1) 

constraints, requiring large amounts of computational memory and execution time to solve 

even small instances of the problem. We therefore propose the following reformulation, 

which significantly reduces the number of required variables and constraints.  

2.3.2. Reduction of required variables and constraints 

Let  be the threshold (maximum) distance from the HAZMAT route to a vulnerable 

center p  P beyond which the effects on the center of a HAZMAT release event occurring 

on the route are insignificant. Since p is a point,  is also the radius of a circle bounding 

the area within which the center is exposed to danger. This implies that variables and 

constraints relating a center to links at distances greater than  can be eliminated. Decision 

variables 
p

ijz  are therefore defined only for combinations center p-link (i, j) such that 

p

ijd  . In other words, for a center located at p, 
p

ijz  = 0 for all links ( , ) / p

iji j A d   . 

Also, for each center p a variable 
pz  is defined that is equal to 1 if the distance to the 

closest link is greater than , and 0 otherwise. This variable replaces all of the variables 
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assigning p to links ( , ) / p

iji j A d   . If, in the solution of the problem, pz is equal to 1, 

the corresponding center p suffers no consequences of an event along the route. 

The model with the number of variables thus reduced, which we name M2, is formulated 

as follows: 

2)M Max w          (2.10) 

s.t. 

 ( , ) |

1

p
ij

p p p

ij ijp

i j A d

w d z z p P
D D







 

 
    

 
     (2.11) 

 ( , ) |

1
p

ij

p p

ij

i j A d

z z p P

 

        (2.12) 

 ( , ) |

, ( , ) |
p p

ijkl

p p p

ij ij kl ij

k l A d d

z x z p P i j A d 
 

         (2.13) 

, ( , ) |p p

ij ij ijz x p P i j A d         (2.14) 

 ( , ) |
p

ij

p

ij

i j A d

z x p P

 

       (2.15) 

 ( , ) |

1
p

ij

p p

ij

i j A d

z z p P

 

        (2.16) 

   /( , ) /( , )

1 if

1 if

0 otherwise

ij ji

j i j A j j i A

i O

x x i D i N
 




     



   (2.17) 

0w           (2.18) 

 , , 0,1 , ( , )p p

ij ijx z z p P i j A         (2.19) 

 

Constraint set (2.11) is equivalent to (2.2) in M1 but contains an additional term for the 

case where , the route used, has no link sections within the danger area of a given center. 

This term consists of the variable 
pz  weighted by the distance  and divided by a factor 
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D such that w D only if no center has a route link within a distance . For this to be 

so, it must be true that  max min{ } min{ }p p p

ij
p P p P

D d D D 
 

  . If these conditions are 

satisfied and w D in the solution of the problem, then no center is located within 

distance  of the route and none will suffer any consequences of a HAZMAT event along 

it. 

Constraint set (2.12) imposes that each vulnerable center p is assigned no more than one 

link, which will be either the closest one if ( , ) | p

iji j d    , or a link representing routes 

beyond distance . Constraint set (2.13) ensures that if there is more than one link 

( , ) | p

iji j d   , the link assigned to p will be the closest one. 

Constraints sets (2.14) and (2.15) prevent an inactive link from being assigned to a 

center within or beyond the threshold distance, respectively. Constraint set (2.16) stipulates 

that if no ( , ) | p

iji j d    exists, then the weighted distance D  must be assigned to 

center p. (Note here that although constraint sets (2.12) and (2.16) could be formulated as a 

single set with an equal sign, they have been expressed separately for the sake of clarity.) 

Finally, constraint set (2.17) states the network flow conservation conditions, and 

constraints (2.18) and (2.19) define the nature of the decision variables. 

Since the goal of the model is to find routes that stay clear of vulnerable areas whenever 

it is possible, it is reasonable to think that the better the value of the objective, the longer 

are the route and the distance travelled by a vehicle. This is more so as the threshold 

distance η (and therefore the center danger area) increases. Consequently, the maximin 

objective is attractive to the resident population and the regulatory authorities, but not for 

the carrier attempting to minimize operating costs and therefore route length.  

The exact model can be easily modified to include the minimization of the carrier’s 

operating costs, in a bi-objective model. Using the same notation and definitions presented 

above, the bi-criteria HAZMAT routing problem is set out below as model M3: 
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3 1 2

( , )

)    ,    ij ij

i j A

M Min f w f c x


 
  

 


      

(2.20)

 

s.t.   (2.11)-(2.19) 

 

To generate the set of efficient solutions, the two objectives i are each multiplied by a 

non-negative weighting factor θi and then summed in a single objective function. By 

parametrically varying the weighting factor vector the efficient set can be generated, or at 

least approximated [Cohon (1978)]. A possible formulation that normalizes the values of 

the objectives is the following parametric linear program, denoted M4:
 

2

4

1

)    i i
i

i i i

I f
M Max

I AI




 
 

 


       

(2.21) 

s.t.  (2.11)-(2.19) 

1f w

          

(2.22)

 
2

( , )

ij ij

i j A

f c x


  

        

(2.23)

 

The normalization is performed by subtracting the objective i from its best achievable 

value Ii and then dividing the result by (Ii - AIi), where AIi is the worst value the objective 

can attain. The values are thus transformed into percentage deviations, thereby 

sidestepping problems of dimensional homogeneity and solutions biased towards the 

objective with the highest absolute value.  

This bi-criteria approach would be particularly useful in practical HAZMAT routing 

decisions. Instead of selecting just one of the objectives, a decision-maker could apply the 

bi-criteria approach to generate a set of efficient alternatives and then choose a solution 

based on the interrelationship between the two criteria and their relationships with other 

attributes such as the value of the distance threshold η.  
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2.3.3. An optimal algorithm 

Let p p p

ij ijd D   be the weighted distance between an arc ( , )i j A  and a node p  P. 

This weighted distance is defined only for arcs ( , ) | p

iji j A d   , since beyond η the 

consequences of an accident for the population at p are negligible. The minimum weighted 

distance 
ij between any arc ( , )i j A  and any center p  P is   

 
 p

ij ij
p P

Min . Given a 

route Rk between an O-D pair over the network G(N,A), the minimum weighted distance 


kR between the route Rk and any point  p  P is 

 
 

( , )
 

 


k
k

R ij
i j R
Min . 

Maximin Obnoxious Route algorithm 

Step 0: Initialisation 

a. k = 0.  given.  

b. , ( , ) | p

ijp P i j A d      , compute p

ij . , ( , ) | p

ijp P i j A d      , set p

ij   . 

c. For all ( , )i j A , compute ij . 

Step 1: First route 

a. Find a route R0 connecting the pair O-D, e.g., using a shortest path heuristic.  

i. If there is no possible route, the graph is disconnected and the problem is 

unfeasible. Stop.  

ii. If there is a route R0, compute 
0R .  

- If 
0R = ∞,  R0 is an optimal solution for the given , and w = . Stop.  

- If 
0R < , continue to Step 2. 

Step 2: Improving the route 

a. Compute {( , ) | }
kk ij RA A i j A      . If k = 0, 1 kA A . ( , )k kG N A is the graph 

containing all nodes, and arcs in
kA . 

b. k = k + 1. 

c. Find a route Rk over 
1 1( , )k kG N A 

 connecting the pair O-D. 

i. If there is no possible route Rk, the graph is disconnected. Rk-1 is an optimal 

solution for the given , and w = 
1kR 
. Stop.  

ii. If there is a route Rk, compute 
kR . Repeat Step 2. 
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The algorithm is optimal by construction. It suffices to prove that it converges, and that 

it converges to the solution in a finite number of steps. Convergence is proved noting that 

at each iteration, all arcs (i,j) are eliminated such that
kij R  , which makes 

kR increasing 

with k. Since 
kR  is bounded by the maximum distance between an arc and a center on the 

network, convergence follows. The algorithm is finite, because the number of arcs to be 

eliminated is finite, and arcs must be eliminated at each step. It converges to the optimum, 

because it either finds a route with w = , or there is no best possible solution than the last 

route found right before the problem becomes unfeasible. It is polynomial, because at 

every iteration a shortest path algorithm is used, which is polynomial, and at most, the 

number of iterations is equal to the number of arcs, m.  

Note that, if a shortest path algorithm is used within the algorithm to find the routes, not 

only the optimal solution to the minimax problem is found: the algorithm minimizes, as a 

secondary objective, the length of the route. Furthermore, the heuristic finds the 

nondominated solutions to the bi-objective problem, for a given .  

2.4. A practical application 

We applied the proposed formulations to two real-world instances, both considering the 

road network of the city of Santiago, Chile. This city has an area of 641 sq km (247.6 sq 

mi). Model M2 and the algorithm were applied first to an instance involving the entire 

urban area of the city. A smaller instance, covering a relatively large section of the city, 

was used for showing how the bi-objective model M4 can be used to obtain compromise 

solutions, between public and government objectives, and those of carriers.  
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2.4.1. Model M2 and algorithm 

We solved the single-objective M2 model, and compared run times with the algorithm. 

The model was slightly modified by adding the term 
( , )

ij ij

i j A

l x


  to the objective, where 
ijl  

is the length of link (i,j), and  is a constant sufficiently small so as to guarantee that the 

added term is a secondary objective, i.e., its minimization will not worsen the optimal 

value of w in the solution. This secondary objective plays two roles: it helps the model 

choosing the shortest route among all the available routes with the same value of w and, at 

the same time, avoids arc variables xij not corresponding to links of the route, unnecessarily 

taking the value 1 in the solution.  

Both solution methods were applied to the city of Santiago, shown in Figure 2-1, which 

is crisscrossed by a road system we call Transport Network 1 containing 6,681 directed 

links and 2,212 nodes. In this area there are 244 vulnerable centers (schools with over one 

thousand students) with a total of 386,254 people (students). Each school has from 1,070 to 

nearly 4,500 students. HAZMAT shipments are to be transported between three O-D pairs 

located in industrial zones and shown in the Figure as O1-D1, O2-D2 and O3-D3. 
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Figure 2-1: Transport network 1 and 244 schools with over a thousand students 

(vulnerable centers). 

Tables 2-1 and 2-2 illustrate the reduction in the number of constraints and variables, 

respectively, for Transport Network 1, by using the formulation M2 instead of M1. The 

figures are shown for three different values of . As the Tables show, formulation M1 

requires 1,636,846 such variables and 3,262,289 constraints while M2 with η = 1,000 needs 

only 19,698 and 28,533 constraints respectively. This significant reduction is maintained 

for all values of η. 

The instance was solved on a personal computer running Ubuntu 12.04 LTS with a 3.40 

GHz Intel ® Core™ i7-2600 processor and 16 GB of RAM. The implementation was 

developed in AMPL Cplex 12.5. 
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Model M1 

 

Model M2 

Constraint 

set 

Number of 

constraints 
 

Constraint 

set 

Number of constraints 

 

η=100 η=500 η=1000 

2 244 

 

11 244 244 244 

3 244 

 

12 244 244 244 

4 1,630,164 

 

13 505 3,823 12,772 

5 1,630,164 

 

14 505 3,823 12,772 

-   

 

15 244 244 244 

-   

 

16 244 244 244 

6 2,012 

 

17 2,012 2,012 2,012 

7 1 

 

18 1 1 1 

Total 3,262,829 

 

Total 3,999 10,635 28,533 

Table 2-1: Number of constraints for models M1 and M2  

Model M1 

 

Model M2 

Variable 

Number of 

variables 
 

Variable 

Number of variables 

 

η=100 η=500 η=1000 

ijx  
6,681 

 

ijx  
6,681 6,681 6,681 

p

ijz  
1,630,164 

 

p

ijz  
505 3,823 12,772 

pz
 

- 

 

pz
 

244 244 244 

w 1 

 

w 1 1 1 

Total 1,636,846 

 

Total 7,431 10,749 19,698 

Table 2-2: Number of variables in M1 and M2. 

The results obtained by M2 and the algorithm, for different values of η and different O-

D pairs are identical, except for the CPU times, and they are set forth in Tables 2-3 to 2-5. 

The first column shows the value of . The second and third columns display the value of 

w and the route length, respectively, obtained by both methods. An entry "-" in the second 

column indicates that the route does not expose any vulnerable center, i.e., stays out of the 

danger areas of all points. The fourth and fifth columns show the CPU times for each 

method. The algorithm never exceeded 1.1 seconds, while the exact model required 374.92 

seconds (6.2 minutes) in the worst case. Note that for small values of η, as this parameter 

increases, the route becomes longer, so that it stays outside of all danger areas (this 

happens for η = 100 to 400 for pair O1-D1, η = 100 to 300 for pair O2-D2 and η = 100 to 

400 for pair O3-D3), until it is not possible to stay clear of the centers.  
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η 

(m) 

w  

(m/person) 

Route 

length  

(km) 

CPU time, 

M2 

CPU time, 

algorithm 

100 - 16.9 9.38 1.09 

200 - 17.0 11.37 1.09 

300 - 17.2 12.68 1.07 

400 - 18.3 14.11 1.08 

500 0.39 27.7 26.30 1.06 

600 0.35 26.2 42.88 1.04 

700 0.35 26.2 138.78 1.01 

800 0.35 26.2 127.88 0.99 

900 0.35 26.2 218.17 0.97 

1,000 0.35 26.2 231.23 0.96 

Table 2-3: Values obtained for pair O1-D1 and different values of η. Transport Network 

1, model M2 and algorithm. 

η 

(m) 

 

w (m/ 

person) 

Route 

length  

(km) 

CPU time, 

M2 

CPU time, 

algorithm 

100 - 27.3 10.64 1.10 

200 - 27.8 12.24 1.10 

300 - 31.0 13.74 1.09 

400 0.25 31.1 20.67 1.08 

500 0.25 31.1 33.70 1.07 

600 0.25 31.1 63.34 1.04 

700 0.25 31.1 94.92 1.01 

800 0.25 31.1 227.06 1.00 

900 0.25 31.1 166.55 0.97 

1,000 0.25 31.1 374.92 0.96 

Table 2-4: Values obtained for pair O2-D2 and different values of η. Transport Network 

1, model M2 and algorithm. 

η 

(m) 

 

w (m/ 

person) 

Route 

length  

(km) 

CPU time, 

M2 

CPU time, 

algorithm 

100 - 27.44 8.37 1.09 

200 - 28.29 10.32 1.08 

300 - 28.86 10.91 1.07 

400 - 30.69 12.42 1.08 

500 - 33.05 12.94 1.07 

600 0.52 40.99 18.90 1.07 

700 0.45 43.47 36.95 1.06 

800 0.44 44.68 63.12 1.04 

900 0.44 78.17 95.47 1.02 

1,000 0.44 78.17 83.05 1.00 

Table 2-5: Values obtained for pair O3-D3 and different values of η. Transport Network 

1, model M2 and algorithm. 
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Figure 2-2 to 2-4 show the paths for each one of the O-D pairs for selected values of η. 

In the figure, the circles represent the danger area of each vulnerable center, and the grey 

circles represent the danger areas exposed by the selected path. 

 

 
(a) η = 400 

 

 
(b) η = 500 

 

 
(c) η = 600 

 

 
(d) η = 1000 

Figure 2-2: Routes for pair O1-D1 (a), η = 400 m, (b) η = 500 m, (c) η = 600 m, (d) η = 

1,000 m. 
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(a) 100 

 

 
(b) 300 

 

 
(c) 400 

 

 
(d) 500 

 

 
(e) 700 

 

 
(f) 1000 

Figure 2-3: Routes for pair O2-D2 (a) η = 100 m, (b) η = 300 m, (c) η = 400 m, (d) η = 

500 m, (e) η = 700 and (f) η = 1,000. 
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(a) 300 

 

 
(b) 500 

 

 
(c) 600 

 

 
(d) 1,000 

Figure 2-4: Routes for pair O3-D3 (a) η = 300 m, (b) η = 500 m, (c) η = 600 m, (d) η = 

1000 m. 

Note in Figures 2-2 to 2-4, how once it is not possible for the route to stay out of the 

danger areas, it starts crossing one danger area and then, it reaches a point at which it stays 

the same no matter how large is η. However, as η increases beyond that point, the number 

of affected centers also increases. 

In Figure 2-4, the route for η = 1,000 needs to be extremely long to maintain the value 

of w. 
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When η = 400 to 1,000 m, the corresponding values of p

ijd  and pD  for each vulnerable 

center p and each route obtained are as shown in Table 2-6 to Table 2-8, corresponding to 

each one of the O-D pairs. The entries “-” in the tables indicate that ( , )  p

ijd i j , 

i.e., the route stays clear of the centers. 

     η = 400   η = 500   η = 600   η = 700   η = 800   η = 900   η = 1000  

 Vulnerable 

center 
 pD  

(students)  

 p

ijd  

(m)  

 /p p

ijd D    p

ijd  (m)  /p p

ijd D   p

ijd  (m)   /p p

ijd D   p

ijd  (m)   /p p

ijd D  
 p

ijd  

(m)  

 /p p

ijd D  
 p

ijd  

(m)  

 /p p

ijd D  
 p

ijd  

(m)  
/p p

ijd D  

50 1,820 - - - - - - 671 0.369 671 0.369 671 0.369 671 0.369 

62 1,695 - - - - 593 0.350 593 0.350 593 0.350 593 0.350 593 0.350 

63 1,683 - - - - - - - - - - 877 0.521 877 0.521 

80 1,618 - - - - - - - - - - - - 942 0.582 

98 1,551 - - - - - - - - - - - - 970 0.625 

99 1,547 - - - - 541 0.349 541 0.349 541 0.349 541 0.349 541 0.349 

115 1,469 - - - - - - - - 757 0.516 757 0.516 757 0.516 

118 1,440 - - - - - - - - - - 861 0.598 861 0.598 

133 1,375 - - - - - - - - - - 859 0.624 859 0.624 

160 1,286 - - - - 596 0.464 596 0.464 596 0.464 596 0.464 596 0.464 

167 1,263 - - - - - - - - - - 892 0.706 892 0.706 

180 1,219 - - - - - - - - - - 839 0.688 839 0.688 

182 1,217 - - - - 553 0.454 553 0.454 553 0.454 553 0.454 553 0.454 

186 1,207 - - - - - - 643 0.533 643 0.533 643 0.533 643 0.533 

203 1,178 - - - - - - - - - - - - 784 0.666 

219 1,132 - - - - 439 0.388 439 0.388 439 0.388 439 0.388 439 0.388 

237 1,089 - - 424 0.389 - - - - - - - - - - 

238 1,088 - - - - - - - - 787 0.723 787 0.723 787 0.723 

Table 2-6: Values of w in objective function for η = 400 to 1,000. Transport Network 1, 

par O1-D1. 
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     η = 400   η = 500   η = 600   η = 700   η = 800   η = 900   η = 1000  

 Vulnerable 

center 
 pD  

(students)  

 p

ijd  

(m)  

 /p p

ijd D    p

ijd  (m)  /p p

ijd D   p

ijd  (m)   /p p

ijd D   p

ijd  (m)   /p p

ijd D  
 p

ijd  

(m)  

 /p p

ijd D  
 p

ijd  

(m)  

 /p p

ijd D  
 p

ijd  

(m)  
/p p

ijd D  

46 1,900 0 - 473 0.249 473 0.249 473 0.249 473 0.249 473 0.249 473 0.249 

80 1,618 0 - 0 - 0 - 0 - 0 - 0 - 942 0.582 

102 1,518 0 - 0 - 0 - 0 - 745 0.491 745 0.491 745 0.491 

103 1,518 373 0.246 373 0.246 373 0.246 373 0.246 373 0.246 373 0.246 373 0.246 

115 1,469 0 - 0 - 511 0.348 511 0.348 511 0.348 511 0.348 511 0.348 

116 1,454 0 - 466 0.321 466 0.321 466 0.321 466 0.321 466 0.321 466 0.321 

118 1,440 0 - 0 - 0 - 0 - 0 - 861 0.598 861 0.598 

119 1,429 0 - 0 - 0 - 0 - 787 0.551 787 0.551 787 0.551 

157 1,295 0 - 0 - 0 - 689 0.532 689 0.532 689 0.532 689 0.532 

158 1,290 0 - 0 - 0 - 636 0.493 636 0.493 636 0.493 636 0.493 

160 1,286 0 - 0 - 596 0.464 596 0.464 596 0.464 596 0.464 596 0.464 

177 1,225 0 - 450 0.368 450 0.368 450 0.368 450 0.368 450 0.368 450 0.368 

186 1,207 0 - 0 - 0 - 643 0.533 643 0.533 643 0.533 643 0.533 

216 1,137 0 - 483 0.424 483 0.424 483 0.424 483 0.424 483 0.424 759 0.667 

219 1,132 0 - 439 0.388 439 0.388 439 0.388 439 0.388 439 0.388 439 0.388 

241 1,085 0 - 0 - 0 - 0 - 703 0.647 703 0.647 703 0.647 

Table 2-7: Values of w in objective function for η = 400 to 1,000. Transport Network 1, 

par O2-D2. 

 

     η = 400   η = 500   η = 600   η = 700   η = 800   η = 900   η = 1000  
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 p
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ijd  
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ijd D  

48 1,831 0 - 0 - 0 - 0 - 0 - 0 - 961 0.525 

68 1,664 0 - 0 - 0 - 0 - 734 0.441 734 0.441 734 0.441 

76 1,635 0 - 0 - 0 - 0 - 743 0.455 743 0.455 743 0.455 

91 1,580 0 - 0 - 0 - 0 - 0 - 0 - 915 0.579 

106 1,495 0 - 0 - 0 - 689 0.461 0 - 0 - 0 - 

111 1,482 0 - 0 - 0 - 0 - 0 - 0 - 865 0.584 

137 1,365 0 - 0 - 0 - 631 0.463 631 0.463 631 0.463 631 0.463 

145 1,326 0 - 0 - 0 - 681 0.514 600 0.453 600 0.453 600 0.453 

152 1,310 0 - 0 - 0 - 0 - 0 - 858 0.655 858 0.655 

153 1,310 0 - 0 - 0 - 0 - 0 - 857 0.654 857 0.654 

168 1,255 0 - 0 - 0 - 0 - 783 0.624 783 0.624 783 0.624 

179 1,221 0 - 0 - 0 - 0 - 0 - 661 0.541 661 0.541 

184 1,209 0 - 0 - 0 - 0 - 0 - 0 - 958 0.792 

188 1,200 0 - 0 - 0 - 0 - 673 0.561 576 0.480 576 0.480 

203 1,178 0 - 0 - 0 - 0 - 784 0.666 0 - 0 - 

205 1,173 0 - 0 - 0 - 532 0.454 532 0.454 532 0.454 532 0.454 

211 1,149 0 - 0 - 0 - 0 - 702 0.611 702 0.611 702 0.611 

215 1,137 0 - 0 - 592 0.520 568 0.500 568 0.500 561 0.494 568 0.500 

224 1,128 0 - 0 - 0 - 0 - 670 0.594 670 0.594 670 0.594 

225 1,123 0 - 0 - 0 - 0 - 733 0.653 733 0.653 733 0.653 

240 1,085 0 - 0 - 0 - 0 - 0 - 691 0.637 691 0.637 

Table 2-8: Values of w in objective function for η = 400 to 1000. Transport Network 1, 

par O3-D3. 
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The effect of η on the value of w and the route length can be seen, for example, for the 

pair O1-D1 on Table 2-6. When η = 600 m, centers 62, 99, 160, 182 and 219 are exposed, 

with center 99 being the most affected, as 99 99/ijd D  is the lowest weighted distance. In this 

case, w = 99 99/ijd D = 0.349. Note that, even though center 219 is closer to the route ( 219

ijd  = 

439 m) than center 99 ( 99

ijd  = 542 m), its population is smaller, which results in a value of 

219 219/ijd D = 0.388, above the minimum figure. The route obtained is shown in Figure 2-2c. 

When η = 700, 800, 900 and 1000 m, the number of exposed centers increases. Center 99 

with 
99 99/ijd D = 0.349 is the one that remain setting the value of w.  

2.4.2. Bi-objective model  

In order to show the effects of different policies, assigning higher weights on either the 

public concerns (routes farther away from most populated centers) or carrier’s issues (cost 

of the routes), model M4 was applied to a network representing part of the Santiago 

network, shown in Figure 2-5.  

 

Figure 2-5: Transport Network 2 and vulnerable centers. 
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The road system serving this area, denoted Transport Network 2, contains 1,521 links, 

504 nodes and 30 vulnerable centers with 81,434 inhabitants. Centers have between 308 

and 6,074 people each.  

We assume without loss of generality that the cost cij of using link (i,j)  A is 

proportional to its length. The threshold distance η was set to 700 m. To determine the best 

and worst values (Ii and AIi, respectively) for the two objectives, each one was optimized 

separately, using M2 and a shortest path algorithm. The results, shown in Table 2-9, reveal 

the essential conflict between the two objectives: When optimizing the value of w, the 

route length was 22.61 Km, a 21.7% longer than the shortest route, while the value for w 

was about 5 times the figure of 55.65 m/person obtained when minimizing the length of 

the route.  

Attribute  (maximin)  (minimum  distance) 

w (m/person) 0.279 = I1 0.055 = AI1 

Length (m) 22.61 = AI2 18.58 = I2 

Table 2-9: Model M2 versus shortest path Model (η = 700) 

The efficient frontier between the two objectives was generated by varying the values of 

parameter θi (with θ1 = 1- θ2) in M4. The results are displayed in Table 2-10, the frontier is 

shown in Figure 2-6, and the routes obtained depicted in Figure 2-7. Each point in Figure 

2-6 represents a different route. The lowest cost solution is equivalent to the one obtained 

when the model is solved with θ1 = 0.1 (Figure 2-7a). With values of θ1 between 0.2 and 

0.6, the route is as shown in Figure 2-7b (point B in Figure 2-6) while values 0.7 and 0.8 

yield the route in Figure 2-7c (point C in Figure 2-6). Finally, the solution attained with θ1 

= 0.9 (see Table 2-10) dominates the route produced by M2 (see Table 2-10). For both 

formulations w = 0.279 but the route generated by M2 is longer, measuring 22.61 Km 

versus 21.67 Km for M4, the latter with θ1 = 0.9 (Figure 2-7d).  
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θ1 
w 

(m/person) 
cij (km) 

CPU 

time, M4 

0.1 0.055 18.58 1,41 

0.2 0.237 19.04 4,34 

0.3 0.237 19.04 2,16 

0.4 0.237 19.04 4,07 

0.5 0.237 19.04 4,36 

0.6 0.237 19.04 3,32 

0.7 0.254 19.71 3,52 

0.8 0.254 19.71 5,00 

0.9 0.279 21.67 1,18 
 

Table 2-10: Approximation of efficient frontier for M4 obtained by varying parameter 

θ1. Transport Network 2, η = 700. 
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Figure 2-6: Efficient frontier for M4.Transport Network 2, η = 700. 
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Figure 2-7: Routes obtained for η = 700 m: (a) Min f2; (b) θ1 = 0,2; (c) θ1 = 0,7; (d) Min 

f1. Transport Network 2, model M4. 

2.5. Conclusions and extensions 

An approach was proposed for addressing the hazardous materials routing problem on a 

transport network. The proposed approach maximizes the weighted distance between the 

route and its closest vulnerable center in order to minimize the potential consequences for 

the most exposed population. This weighted distance can be replaced by any measure of 

risk or danger, as long as it is a non-decreasing function of the distance.  
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Though this maximin objective has been treated in a continuous space setting, it has not 

been previously studied for an actual road network. A basic formulation of the problem 

requires a large number of closest assignment constraints and decision variables, making it 

very difficult to solve. A practical first alternative was therefore developed that required a 

significantly reduced subset of the variables and constraints for each vulnerable center. The 

reduction is achieved by replacing a large number of variables by a single variable for each 

vulnerable center.  

A second alternative solution method, also presented here, is an algorithm that is 

capable of solving large real sized instances to optimality, in a polynomial time. The 

algorithm is easily implemented and it can be extended to multiple variants of the problem.  

Both the exact method and the algorithm were tested by applying them to the transport 

network in the city of Santiago, Chile. The results illustrated how the solution varies with 

danger areas of different radii. This problem is easily solved by using the proposed 

algorithm.  

Though the objective of avoiding such areas is attractive for the resident population and 

the regulatory authorities, it is not necessarily so for the carrier seeking to minimize 

operating costs. A bi-criteria problem was therefore formulated that captures the 

relationship between the maximin and minimum cost objectives. The model was applied to 

a smaller area of the Santiago road network and the efficient frontier between the two 

objectives was estimated, as a way to show the effects of different policies. The approach 

proved capable of generating a set of efficient alternatives for different threshold values, in 

a real-sized instance, suggesting it could be applied also in other real-world situations by 

decision-makers to find an appropriate HAZMAT route based on assigned priorities. 

This study could be extended in various directions. The population’s hazard aversion 

could be represented in the proposed formulation as a function of the distance to the route 

travelled by means of danger areas and danger function variables that could be modelled to 
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depend on the vulnerable center, with multiple HAZMAT shipments between multiple 

origin-destination pairs. 

An additional objective could be added to the problem, as a way to take into 

consideration the fact that the maximin objective does not allow controlling how many 

vulnerable centers are being put in danger.  

The approach developed could also be expanded to address a multi-criteria HAZMAT 

routing problem incorporating criteria such as expected consequences, time exposure, 

population exposure or total danger, which could be satisfied jointly with the maximization 

of the minimum weighted distance and minimum operating cost for both single and 

multiple shipments between multiple origin-destination pairs. 
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3. THE MAXISUM AND MAXIMIN-MAXISUM HAZMAT ROUTING 

PROBLEMS 

 We design routes for transportation of hazardous materials (HAZMAT) in urban areas, 

with multiple origin-destination pairs. First, we introduce the maxisum HAZMAT routing 

problem, which maximizes the sum of the population-weighted distances from vulnerable 

centers to their closest point on the routes. Secondly, the maximin-maxisum HAZMAT 

routing problem trades-off maxisum versus the population-weighted distance from the 

route to its closest center. We propose efficient IP formulations for both NP-Hard 

problems, as well as a polynomial heuristic that reaches gaps below 0.54% in a few 

seconds on the real case in the city of Santiago, Chile. 

3.1. Introduction 

Large quantities of hazardous materials (HAZMAT) are generated as raw material or 

by-products of industrial activity. These materials may be explosive, flammable, oxidizing, 

toxic, poisonous, infectious, corrosive and radioactive. In the great majority of urban areas 

that contain industries, this type of material must be transported in trucks, which becomes 

a source of hazard for the population. In spite of the efforts made by governmental 

agencies and transportation industry, accidents happen. Statistics for the city of Santiago, 

Chile, indicate that during 2013 there were 12 events of liberation of hazardous materials, 

affecting 2,279 people, 137 of whom suffered some type of injuries. Thousands of people 

had to be evacuated and the costs of removing the spills were very high [INE (2015)]. The 

U.S. Department of Transportation et al. (2016) reported that, during 2014, there were 

3,599 incidents related to HAZMAT transportation, not including loading and unloading, 

with a total cost of US$ 50,081,168. These facts suggest a need for stronger efforts on part 

of researchers and practitioners, to develop better methodologies for the protection of both 

population and environment against the consequences of HAZMAT transportation 

accidents, especially those occurring in urban areas.  
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The literature has mainly addressed this problem through vehicular routing models that 

minimize some risk function for the population. In practically all of the cases, the risk is a 

function of the likelihood of an event of release of the material in the process of transport 

or the consequence associated with such an incident, or a combination of the two factors. A 

common practice is to trade off the risk indicators against a measure that represents the 

operational costs of the vehicle such as travel time or distance traveled, representing in this 

way both the public interests (risk) and the private interests (transport cost). 

In an urban environment, the population is distributed in a more or less continuous 

manner. As such, it is inevitable that the routes used to transport these materials could 

potentially affect part of the population, regardless of the route chosen. On the other hand, 

the general population can be evacuated in a short enough period of time to ensure that 

they do not suffer consequences from most accidents (with the exception of explosive 

ones). This is not the case with certain at-risk populations or those that are difficult to 

evacuate, such as large concentrations of people in small surface areas (schools and large 

buildings, for example), or those that have difficulty evacuating (patients in hospitals, 

residents of long-term care facilities, etc.). In view of this, it is reasonable to pay extra 

attention to this at-risk population when designing HAZMAT transport routes. 

We present a new method for solving the problem of HAZMAT transport in urban 

areas. As opposed to dealing with risk, it is designed to decrease the hazard or danger 

posed by this activity to a set of vulnerable centers located in a large urban area. It can be 

used as complementary, or instead of risk models, especially if public opposition or 

evacuations are concerns. Each vulnerable center is represented as a point on the map in 

which its population is concentrated. With a center at that point, we calculate a circular 

zone of danger, which is the zone such that, if there were an accident within it, the center 

would be affected. Thus, the placement of any segment of the route inside of this circular 

zone would pose a hazard for the population. Hazard is defined as the potential for an 

undesirable consequence regardless of the likelihood of its occurrence [Rasmussen 
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(1981)]. The majority of the literature assumes an equal risk for the center, no matter 

where in the circle an accident occurs. In contrast, we consider that within the circular 

zone, the hazard is a function of the distance between the vulnerable center and the 

segment of a route used for HAZMAT transport. So we are able to minimize the hazard 

that vulnerable centers face, by ensuring that hazardous activities are developed as far 

away as possible from them.  

Our first contribution is a model with a single objective, the maxisum HAZMAT 

routing problem (MsHRP) for multiple origin-destination (OD) pairs, which consists of 

maximizing the sum of the population-weighted distances between all vulnerable centers 

and their closest links belonging to the set of routes used for HAZMAT transportation, 

whenever these links enter the danger zones of the vulnerable points. This method 

addresses a shortcoming of the model proposed in Chapter 2 (the maximin HAZMAT 

routing problem). The maximin approach is efficient protecting the most affected 

vulnerable center, but it does not allow to measure the effect on the rest of the population 

and, in the solutions, a large number of centers are exposed. By minimizing the total 

impact on affected population, our maxisum approach provides routes that expose fewer 

centers. The MsHRP is NP-Hard (Hakimi et al. 1993), and as such, besides using a fast 

exact model, our second contribution is proposing a polynomial heuristic procedure that 

allows MsHRP to be solved efficiently for large instances.  

By focusing on protection of the entire population, MsHRP leaves aside the closest 

vulnerable center. Our third contribution is combining the maxisum and maximin criteria 

in the maximin-maxisum HAZMAT routing problem (MmMsHRP). Through the maximin 

criterion, we seek routes between different pairs OD to minimize the negative impact on 

the most affected center. Using the maxisum criterion, we seek routes between different 

pairs OD to minimize the negative effect on all vulnerable centers that could be affected. 

This bi-objective problem inherits from the maxisum the characteristic of being NP-Hard. 
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Finally, we conduct a comparative analysis of the results obtained with transportation 

costs. 

Note that in these models the theoretical contribution comes from their novelty in 

transportation, as well as the proposed solution methods, while their practical significance 

is the protection of all the vulnerable points, not only the most affected one.  

The rest of the chapter is organized as follows: In Section 3.2, we present a review of 

relevant literature. In Section 3.3, we formulate the Maxisum HAZMAT Routing Problem 

MsHRP and describe the heuristic. In Section 3.4 we formulate the Maximin-Maxisum 

version of the problem, MmMsHRP. Section 3.5 describes the application of the proposed 

methodology to an instance with real data and a detailed analysis of the results. Finally, 

Section 3.6 presents the conclusions and possible extensions of the research. 

3.2. Literature Review  

The HAZMAT transport problem has been widely addressed over the past few decades. 

Authors have focused mainly on solving a problem of routing vehicles carrying HAZMAT 

between two points –an origin-destination pair, minimizing an estimator of risk. This 

estimator depends on the likelihood of an accident in which the transported HAZMAT is 

released or the consequences of such an incident, or a combination of those factors. Erkut 

and Verter (1998) and Erkut et al. (2007) discuss different forms of modeling risk in 

HAZMAT transport. One of the most frequently used risk estimators is the expected 

consequence, which consists of multiplying the likelihood of an incident by the associated 

consequence Batta and Chiu (1988), Pijawka et al. (1985), Alp (1995) y Erkut and Verter 

(1995). Erkut and Ingolfsson (2005) consider the full expected consequence of all of the 

trips necessary to meet the demand. The authors assume that an incident ends a trip and 

that a new shipment must be sent to meet the demand. Sivakumar et al. (1993) and Sherali 

et al. (1997) minimize the expected consequence by supposing that there is certainty that 

an accident will occur on the route. This approach is similar to that of considering risk. 
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Sivakumar et al. (1995) minimize the expected risk of the first accident, also considering 

equity in the spatial distribution of risk over the region studied. Jin et al. (1996) and Jin 

and Batta (1997) explore diverse objective functions based on the minimization of the 

expected result given that a specific number of trips will be made and given a maximum 

number of accidents accepted before the shipments are stopped. 

Erkut and Ingolfsson (2000) propose three alternatives for evaluating risk in HAZMAT 

transport: minimizing the maximum population exposed; simultaneously minimizing the 

expected value and the variance of the number of people affected by an incident; and 

minimizing the expected disutility, expressed as the exponential of the size of the affected 

population, multiplied by a constant that measures aversion to catastrophe. Abkowitz et al. 

(1992) minimize risk aversion where the perceived risk on a link is defined as the product 

of the likelihood of an incident over the link and the consequence of that incident raised to 

a risk preference parameter. Other techniques for estimating risk are based on the 

minimization of the likelihood of an incident [Saccomanno and Chan (1985)] or the 

exposed population as an estimator of the consequences [ReVelle et al. (1991)]. Using risk 

estimators, some authors address the problem of equity in spatial distribution of risk 

among the population [Current and Ratick (1995), Gopalan et al. (1990), Gopalan et al. 

(1990), Lindner-Dutton et al. (1991), Carotenuto et al. (2007) and Caramia et al. (2010)]. 

Another line of research recognizes the multi-objective nature and participation of 

multiple agents in HAZMAT transport decision-making. Zografos and Davis (1989) offer 

a solution that considers the population at risk, the risk of special categories of the 

population, property damage, and travel time as proxies of the vehicle operating costs. 

ReVelle et al. (1991) combine the exposure of the population and the cost of transportation 

of spent nuclear fuel. Marianov and ReVelle (1998) propose a model of linear optimization 

for the routing of vehicles through hazardous environments or for the routing of the 

vehicles that transport HAZMATs. The authors minimize the cost and likelihood of an 

accident. Li and Leung (2011) consider six criteria for HAZMAT routing: travel time, 
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likelihood of an incident, users of the highway at risk, population at risk, people with 

special needs at risk, and possible damages caused to property around the incident. Other 

studies with multiple objectives include those authored by Wijeratne et al. (1993), 

Zografos and Androutsopoulos (2008), Dell'Olmo et al. (2005) y Caramia et al. (2010). 

More recently, researchers have directly considered the relationship between material 

carriers and regulatory agents. Officials determine certain rules of use of the transport 

network which must be respected by HAZMAT materials carriers in their selection of 

routes [Kara and Verter (2004), Erkut and Gzara (2008), Verter and Kara (2008), Marcotte 

et al. (2009), Erkut and Alp (2007), Gzara (2013), Wang et al. (2012) Bruglieri et al. 

(2014) and Xin et al. (2013)]. 

In the literature described, there are various ways to consider distance. The majority of 

the authors define a threshold distance within which the risk (or, in general, the effects) has 

a constant value for the entire population and outside of which the risk does not exist. 

However, researchers have recognized that the danger posed by hazardous activities is a 

function of the proximity of the population to the source of the hazard [Hung and Wang 

(2011), Elliott et al. (1999), Brody et al. (2004), Lima (2004), Lindell and Perry (2000), 

Arlikatti et al. (2006), Wachinger et al. (2013), Miceli et al. (2008), Heitz et al. (2009) and 

Brilly et al. (2005). Saccomanno and Shortreed (1993), Jonkman et al. (2003) and 

Fernández. et al. (2000) also point to this fact, arguing that possible consequences for the 

population in the case of HAZMAT release events vary in function of the distance from the 

event. 

There are some exceptions that do consider the distance between the population center 

and the HAZMAT route. Carotenuto et al. (2007) assume that the population is found only 

over the links of the transportation network (populated links). The risk that a route segment 

imposes on a populated segment corresponds to the product of the population of the 

populated segment within the threshold distance of the route segment, the likelihood of an 

incident in the route segment, and a function that decreases exponentially with the square 
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of the Euclidean distance between the two segments. List and Mirchandani (1991) propose 

calculating the integral, on the complete route, of a theoretical function of the distance 

between the populated point and each point of the route, weighted by the population of the 

populated point and by the likelihood of occurrence of incidents on the point of the route. 

However, to solve a practical problem they simplify the method considerably. Carotenuto 

et al. (2007) and List and Mirchandani (1991) require the explicit enumeration of candidate 

routes and use probabilities to estimate risk. Erkut and Verter (1995) evaluate risk for a 

populated area within a given distance from the route, assuming uniform population 

density. The risk to any individual within this area of impact is estimated as the product of 

the likelihood of an incident over a segment of the road and the length of the segment. The 

methodology is used to assess routes.  

In this paper, we add an objective that integrates the average exposure of the set of 

centers (maxisum objective), which results in an NP-hard problem. The consideration of 

this objective as well as its combination with the maximin criterion are new in 

transportation network routing problems even though both criteria have been used when 

undesirable or hazardous facilities are located. Note that the modeling in that case is very 

different [see Church and Garfinkel (1978), Tamir (1991), Erkut and Neuman (1989), 

Melachrinoudis (1999), Zhang and Melachrinoudis (2001), Moreno-Pérez and Rodríguez-

Martín (1999), Saameño Rodríguez et al. (2006)]. For a more detailed review of models of 

location of undesirable facilities and the use of different objectives, see Melachrinoudis 

(2011), Hosseini and Esfahani (2009), Farahani et al. (2010) and Colebrook and Sicilia 

(2013). 

3.3. The Maxisum HAZMAT Routing Problem (MsHRP)  

3.3.1. Integer programming formulation 

Let a transport network be represented by a graph G(N,A) where N = {1,…, n} is the set 

of nodes and A = {1,…, m} the set of links. Consider that a HAZMATs shipment requires 
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being transported between different OD (origin-destination) pairs of nodes such that the 

average distance (or the sum of the distances) between the population centers and their 

closest route links, weighted by the inverse of the population of each center, is maximized. 

The main parameters of the model are as follows: 

Q : set of population centers 

qD  : Population concentrated at point or population center  q  Q. 

q

ijd
 

: Euclidian distance between the population center q  Q y and its closest point on 

the link (i, j)  A. 

G : Set of origin-destination pairs. G = {1, …, g}. 

 : The distance from a center at point q, beyond which the effects on q of an event of 

release of a HAZMAT are negligible. 

Let the following decision variables be defined: 

1 if link ( , )  is used for HAZMAT transport between pair 

0 otherwise

od

ij

i j A od G
x

 
 


 

1 if link ( , ) ,  used for HAZMAT transport, is the closest link to 

0 otherwise

q

ij

i j A q Q
z

 
 


 

if the arc closest to center  is beyond a distanc1

0 Other i

e 

w se

q
q Q

z


 


     

The formulation for the maxisum HAZMAT routing problem is as follows: 
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 ( , ) |

)
q
ij

q

ij q q

ijq
q Q i j A d

d
Max z z

D
MsHRP 




  

 
 
 
 

       (3.1) 

s.t. 

 ( , ) |

1
q
ij

q q

ij

i j A d

z z q Q

 

        (3.2) 

 ( , ) |
q
ij

q od

ij

od Gi j A d

z x q Q

  

        (3.3) 

, ( , ) |q od q

ij ij ij

od G

z x q Q i j A d 


        (3.4) 

 ( , ) |

, ( , ) | ,
q q

ijkl

q od q q

ij ij kl ij

k l A d d

z x z q Q i j A d od G
 

          (3.5) 

 ( , ) |

1
q
ij

q q

ij

i j A d

z z q Q

 

        (3.6) 

   /( , ) /( , )

1 if

1 if ,

0 otherwise

od od

ij ji

j i j A j j i A

i o

x x i d i N od G
 




       



    (3.7) 

 , , 0,1 , ( , ) ,od q q

ij ijx z z q Q i j A od G          (3.8) 

 

In this formulation, maximizing q q

ijd D is a proxy for minimizing an estimate of danger. 

Any estimator or proxy of risk or danger can be used without changing the structure of the 

model. The objective (3.1) maximizes the sum of the weighted distance between each 

vulnerable center q and its closest link if it falls within its danger zone (sum within the 

parentheses), or the number of vulnerable centers with all route segments outside their 

danger zone (second term inside the parentheses).  is a small pre-defined parameter that 

ensures dimensional homogeneity of the two terms in the objective function. The set of 

constraints (3.2) establishes that only one link can be assigned as closest link to the center 
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q, and it may or may not be inside of the danger zone. The constraints (3.3) and (3.4) 

ensure that only a link belonging to an active route can be considered as the closest to q, 

whether inside or outside of its danger zone. The set (3.5) ensures that, among all links 

inside the danger zone of the center q, the closest one is the one considered for danger 

effects. Set (3.6) establishes that if there is no active link within the danger zone of q, it has 

still a link assigned, but it is not in danger. The constraints (3.7) are network flow 

conservation constraints, while the set (3.8) defines the nature of the decision variables. 

Hakimi et al. (1993) show that this problem is NP-Hard. 

This model preserves to some extent the risk aversion of a maximin model, as it 

maximizes the sum of the weighted distances between each center and its closest link. 

However, if required, the model can be easily extended to a more risk-neutral formulation 

(The RNMsHRP, Risk Neutral MsHRP), by considering not only the effect over each 

center of the closest link, but the effect of all the links that fall within its danger zone. In 

this case the decision variables q

ijz  and qz  are not required, resulting in the following 

problem:  

 ( , ) |

)    
q
ij

q

ij od

ijq
q Q od Gi j A d

RNMsHRP
d

Max x
D

  

        (3.9) 

s.t. 

   /( , ) /( , )

1 if

1 if ,

0 otherwise

od od

ij ji

j i j A j j i A

i o

x x i d i N od G
 




       



    (3.10) 

 0,1 ( , ) ,od

ijx i j A od G         (3.11) 

If this formulation is to be used, a term 
 ( , ) |

q
ij

od

ij

od G i j A d

x
  

   weighted by a very small factor 

can be added to avoid the appearance of disconnected arcs in the solution.  



 

54 

 

3.3.2. A Heuristic  

Note that the RNMsHRP (3.9) – (3.11) can be optimally solved in polynomial time, as it 

is equivalent to a shortest path problem with non-negative link attributes, when the 

objective is rewritten as: 

   ( , )( , ) |

    
q
ij

q
od q od

ij ij ijq
q Q od G q Q i j A od Giji j A d

D
Min x x

d



     




          (3.12) 

where  is a small parameter that avoids indetermination of the estimate when the center 

is on the arc, and  

0

q
q

ijqq
ijij

q

ij

D
d

d

d









 
 

       (3.13) 

is a proxy of the danger exerted by the arc (i,j) over the vulnerable center q, 

Using the RNHsHRP with objective (3.12) as an approximation, we developed an 

efficient polynomial heuristic for the MsHRP.  

Maxisum Route Heuristic 

Step 0: Initialization 

k = 0; , a set of feasible routes = ; use equation (3.13) to compute 

   , ( , ) /q q

ij ijq Q i j A d      . 

Step 1: Search for routes 

Solve RNMsHRP using a shortest path algorithm, for a set Rk of routes, 

 1 ,...,k k k

gR r r , i.e., one route for each origin-destination pair. 

i. (for k = 0) If there is no route for some OD pair, the network is not 

connected and the problem is unfeasible. STOP. 
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(for k > 0) If there is no route for some OD pair, go to Step 2. 

 

ii. If routes can be found for all OD pairs, compute 

 
0( , ) ( , )

k

q

ija b q Q i j rr R

Max Max Max 
 

 . Note that  ( , )
( , ) arg k

k

a b
a b   is the arc that 

exposes a populated center to the maximum danger.  

a. If 
( , )

0ka b
   then the routes constitute no danger and the solution is 

optimal. STOP. 

b. If 
( , )

0ka b
  ,  kR  ; k = k + 1; 

( , )
0   sa b

x s k    ; repeat Step 

1. 

Step 2: Selection of the solution 

Define 
k

qa  = 1 if, for center q, there are no route arcs within its danger zone, 

and 0 otherwise. Compute  
( , )

   k
k

q

ijR i j rr R
q Q

Max Max k 




  
  

 , i.e., the danger to 

which the set Rk of routes exposes the population, and 1/    k k qR R
q Q

a k  


    

i.e., the corresponding objective value if this set were chosen. Choose the set Rk of 

routes for which kR
 is the maximum (that is, minimum danger).  

End 

 

We remark that both RNMsHRP and the heuristic are separable by OD pairs. Note also 

that the heuristic requires a polynomial number of operations.  

3.4. The maximin-maxisum HAZMAT routing problem (MmMsHRP) 

Note that by minimizing the average effect over all of the population centers (maxisum 

objective), the magnitude of hazard posed to each individual population center is not being 
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considered, which allows some centers to be highly exposed. On the other hand, a maximin 

criterion minimizes the impact on only the most affected center. Optimized separately, the 

maximin and maxisum objectives can generate low quality solutions, assessed by the 

complementary criterion. Optimizing both concurrently appears then, as a valuable action. 

We formulate the maximin-maxisum HAZMAT routing problem (MmMsHRP) 

combining the maxisum and maximin objectives. 

We have chosen to generate a subset of the set of efficient solutions for the problem 

normalizing the values of each objective and using the weighting method [Cohon (2013)], 

which consists of multiplying each objective i (normalized in this case) by a non-negative 

weight i such that 1ii
  , and then adding the weighted objectives. Parametrically 

varying the values of i, a representative subset of the set of efficient or Pareto-optimal 

solutions is generated. The normalization is achieved by subtracting the objective function 

i from its best possible value, if
 , and then dividing it by ( if

 - if
 ), where if

  is its worst 

value. 

Let the decision variable w be the weighted distance from the set of routes to its closest 

vulnerable center q  Q. Note that w is a proxy for hazard that can be replaced by other 

indicators of risk or hazard as long as they are non-decreasing with the distance. 

Using the same notation and definitions presented above, the MmMsHRP for multiple 

pairs OD can be formulated as follows: 

1 1 2 2
1 2

1 1 2 2

)
f f f f

MmMsHRP Max
f f f f

 
 

   

    
   

    
    (3.14) 

s.t.   (3.2)-(3.8) 

1f w        (3.15) 
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 
2

( , ) |

1

q
ij

q q q

ij ijq
q Q i j A d

f d z z
D






  

 
  

 
       (3.16) 

 ( , ) |

1

q
ij

q q q

ij ijq

i j A d

w d z z q Q
D D







 

 
    

 
     (3.17) 

0w         (3.18) 

Expression (3.14) maximizes both objectives (3.15) and (3.16). Note how, although they 

look alike, both objectives are different. Objective f1 is defined by (3.17). For each q  Q, 

there is at most one term in the sum on the right-hand side that is nonzero: the term 

corresponding to the arc (i,j) in the HAZMAT route that is closest to q. If none of the arcs 

of the route is within distance , then all the terms in the sum are zero and 1qz  . In other 

words, for each q, w is 

( , )

if ( , ) closer to  than 

otherwise

q

ij

p
closest
i j

d
i j q

D
w

D





 
  
  




 

As this constraint is formulated for each q  Q, the variable w will take the smallest value 

among all the q’s, i.e. the shortest population-weighted distance between a vulnerable point 

and an arc of the HAZMAT route. In order for w to take the value D  only when there 

are no links inside of a danger zone,  max min{ }q q

ij
q Q

D d D


  must hold or, equivalently, 

min{ }q

q Q
D D


 .  

To the contrary, in objective f2, expression (3.16), again there is only one nonzero term in 

each inner sum (the sum over arcs (i,j).) However, now the outer sum adds all the terms 

corresponding to all q’s, i.e., it adds all weighted shortest distances between a vulnerable 

point q and its closest arc.  

The set of constraints (3.18) determines the non-negativity of the w variables.  

Given that MmMsHRP is a generalization of MsHRP, it is NP-Hard, as long as α2 > 0.   
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3.5. Application 

The proposed models were applied to a real HAZMAT transport case between different 

origin-destination pairs in the city of Santiago de Chile. This case covers 244 vulnerable 

centers (schools with over 1,000 students) in a large urban area and a transport network 

composed of 6,681 links and 2,212 nodes that establish the connectivity of the area under 

study (Figure 3-1).  

The instances were solved on a personal computer running Ubuntu 12.04 LTS with a 

3.40 GHz Intel® Core™ i7-2600 processor and 16 GB of RAM. The implementation was 

developed in AMPL Cplex 12.5. 

3.5.1. The maxisum HAZMAT routing problem (MsHRP) applied to the Santiago 

case 

We solve the MsHRP using the integer programming formulation and the heuristic 

procedure for various OD pairs and for different values of . In the IP formulation, we 

consider  = 1 m/person and incorporate the term 
( , )

od

ijod G i j A
x

    as a secondary 

objective where  is a constant small enough to guarantee that its minimization does not 

affect the value of the main objective, i.e., the maxisum. This second objective pushes link 

variables that do not belong to the route, to take a value 0. 

Table 3-1 shows the results of MsHRP for different values of  and the four OD pairs. 

We do not show the rows with small values of  in which the routes do not expose any 

vulnerable center. In the table, the left block of columns shows the results of the IP 

formulation, while the right side block, those of the heuristic. The first column indicates 

the OD pairs considered. The second column, the value of the threshold distance  beyond 

which the effects of release of HAZMATs are negligible. The first column of the IP 

results, shows the value of the maximum danger to which a vulnerable point is exposed, in 

m/person (distance to the closest link in meters, divided by the population at the center). 
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The remaining columns of the IP block display the value of the objective, number of 

exposed centers, exposed students, the route length in kilometers and the CPU time in 

seconds. The same results are shown in the heuristic block, on the right side of the Table.  

The IP formulation finds the optima in less than 35 seconds for all instances in which 

the routes are taken one by one. In these cases, the heuristic found very good 

approximations to the solutions, never exceeding differences of 0.532%, within 2.5 

seconds. When multiple OD pairs are considered (see the lowermost block of solutions), 

the IP formulation requires a much longer time, reaching the 3,000 seconds, while the 

heuristic still runs in a time that is barely longer than that required for a single pair.  

Note that the number of exposed students is almost always higher in the heuristic 

solutions for large values of . This is due to the fact that, although both the IP and the 

heuristic aim at maximizing the sum of the dij/D
q ratios, both reach their targets at different 

values of numerator and denominator: the IP formulation exposes less students at shorter 

distances, while the heuristic exposes more students, but the average distances are longer. 

It could even happen that a decision maker could prefer the heuristic approach.  

For larger instances, although the IP formulation can still be fast for a single OD pair 

case, as the number of OD pairs increases, it could become intractable, particularly if the 

problem has to be solved repeatedly. In this case, the heuristic provides an efficient and 

fast method.  
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Figure 3-1: Transportation network of the city of Santiago, Chile, and 244 vulnerable 

centers.   
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MsHRP results, IP formulation 

 

MsHRP results, heuristic procedure 


 (m)

Max 

Danger 

Value 

Obj 

Vulnerable 

centers 

exposed 

Students 

exposed 

Route 

Length 

CPU 

Time 
Obj 

Vulnerable 

centers 

exposed 

Students 

 exposed 

Route 

Length 

CPU 

Time 
O

D
 P

a
ir

 1
 

500 0.389 243.39 1 1,089 27.67 15.37 243.39 1 1,089 29.40 2.40 

600 0.153 243.15 1 1,820 19.37 17.69 243.15 1 1,820 21.74 1.05 

700 0.153 243.15 1 1,820 20.34 18.48 243.15 1 1,820 22.79 1.12 

800 0.153 242.28 3 4,502 21.98 21.04 242.24 3 4,631 22.05 1.09 

900 0.044 242.10 3 4,539 21.86 23.16 242.02 3 5,188 24.26 0.95 

1000 0.044 241.85 4 5,803 21.91 26.5 241.75 4 6,452 25.00 1.14 

O
D

 P
a
ir

 2
 600 0.496 243.01 2 2,236 31.51 16.29 243.02 2 2,236 32.10 0.89 

700 0.196 242.69 2 2,577 33.97 15.79 242.69 2 2,577 36.15 4.13 

800 0.196 241.80 4 5,380 43.41 19.45 241.77 4 5,509 39.74 3.93 

900 0.041 241.04 6 7,716 38.93 26.33 241.03 6 7,879 40.94 4.26 

1000 0.041 240.84 8 10,054 39.16 23.03 240.74 6 8,511 39.50 5.76 

O
D

 P
a
ir

 3
 

400 0.246 243.24 1 1,518 31.07 13.37 243.25 1 1,518 34.60 0.95 

500 0.191 242.47 2 3,236 36.96 13.57 242.48 2 3,236 40.05 0.98 

600 0.222 241.85 3 3,897 33.18 16.97 241.86 3 3,897 34.07 1.25 

700 0.023 241.64 3 3,674 34.23 18.77 241.24 4 5,940 33.83 1.21 

800 0.023 241.30 4 4,852 33.66 20.92 240.25 6 8,335 41.17 1.17 

900 0.006 240.98 5 6,788 32.80 21.19 240.34 7 8,730 41.34 1.35 

1000 0.006 240.17 8 11,225 34.17 34.98 238.89 12 14,556 33.62 1.34 

O
D

 P
a

ir
 4

 600 0.520 243.52 1 1,137 41.00 11.91 243.52 1 1,137 45.66 3.82 

700 0.213 243.21 1 1,478 39.74 12.78 243.21 1 1,478 43.85 4.53 

800 0.213 242.66 2 3,146 41.75 13.43 242.66 2 3,146 42.25 3.70 

900 0.213 242.09 3 5,159 45.93 16.39 241.56 4 6,215 36.40 2.43 

1000 0.213 241.64 4 6,804 46.07 19.22 241.12 5 7,860 36.67 5.71 

O
D

 p
a

ir
s 

1
, 

2
, 
 3

 400 0.246 243.23 1 1,518 95.30 44.27 243.25 1 1,518 77.94 1.06 

500 0.246 241.91 3 4,061 101.92 58.04 241.87 3 4,325 93.52 3.44 

600 0.112 240.58 5 6,591 91.88 61.35 240.03 6 7,953 87.92 3.19 

700 0.023 239.47 6 8,071 93.10 66.94 239.08 7 10,337 92.76 6.46 

800 0.023 238.54 8 11,332 107.78 142.08 236.01 12 18,475 102.96 6.19 

900 0.041 237.66 10 13,909 106.29 3,059.95 236.63 12 21,978 106.54 6.56 

1000 0.041 236.83 15 19,824 106.54 1,674.99 233.28 22 33,334 98.13 8.25 

Table 3-1: MsHRP results for different values of . 

Figure 3-2 depicts a graphic representation of some of the results in Table 3-1. We show 

only O4-D4 and pairs 1, 2 and 3 together. The circles represent the danger zones for each 

vulnerable center and the grey circles identify the danger zones exposed by the routes. We 

observe how the number of vulnerable centers and exposed students increases as the value 

of  increases. In order to minimize the average effect on vulnerable centers, MsHRP 

avoids, wherever possible, the use of links within any danger zone along the route. As the 

value of  increases, the number of feasible routes not entering any danger zones 

decreases, exposing more population centers and students to danger.  

Now, as an example of the effects of considering both objectives taken separately, we 

compare the results of MsHRP with the Maximin HAZMAT Routing Problem (MmHRP) 

using the O1-D1 and O3-D3 pairs and different values of . Table 3-2 shows the results of 

the MmHRP.  
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(a) Pair O4-D4,  = 400 

 

 
 

(b) Pair O4-D4,  = 600 

 

 

 
 

(c) Pair O4-D4,  = 800 

 

 

 
 

(d) Pair O4-D4,  = 1,000 

 

 

 
 

(e) Pairs O1-D1, O2-D2 and O3-D3, = 700 

 

 

 
 

(f) Pairs O1-D1, O2-D2 and O3-D3, = 1,000 

 

Figure 3-2: Routes obtained by the IP formulation for pair O4-D4 and pairs 1, 2 and 3 

together, for different values of . 
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In Table 3-2, a value “-” indicates that the route does not expose any vulnerable centers. 

As Tables 3-1 and 3-2 show when compared, for the same values of , the optimal solution 

of MsHRP always exposes a lower or at most equal number of students and vulnerable 

centers than MmHRP. Consider the pair O1-D1 and  = 600 m. In this case, MmHRP 

exposes 6,877 students and five vulnerable centers. This is 3.8 times the number of 

students as the route designed using MsHRP (1,820 students and just one school exposed). 

The results are similar for the others pairs OD. These results suggest that there could be 

intermediate, non-dominated solutions that could be more appealing to the decision maker. 

   

(meter) 

 MmHRP  

Value  

(w)  

MsHRP 

Value 

Vulnerable  

centers  

exposed 

Students  

exposed 

CPU Time 

MmHRP 

O
D

 P
a

ir
 1

 

100 - 244.00 0 0 1.09 

200 - 244.00 0 0 1.09 

300 - 244.00 0 0 1.07 

400 - 244.00 0 0 1.08 

500 0.389 243.39 1 1,089 1.06 

600 0.349 241.01 5 6,877 1.04 

700 0.349 239.91 7 9,904 1.01 

800 0.349 239.15 9 12,461 0.99 

900 0.349 237.28 14 19,441 0.97 

1000 0.349 236.16 17 23,788 0.96 

O
D

 P
a

ir
 3

 

100 - 244.00 0 0 1.10 

200 - 244.00 0 0 1.10 

300 - 244.00 0 0 1.09 

400 0.245 243.25 1 1,518 1.08 

500 0.245 240.00 6 8,366 1.07 

600 0.245 238.81 8 11,121 1.04 

700 0.245 237.37 11 14,913 1.01 

800 0.245 236.05 14 18,945 1.00 

900 0.245 235.65 15 20,385 0.97 

1000 0.245 235.48 16 22,003 0.96 

Table 3-2: MmHRP results for different values of . 

Figure 3-3 shows the routes associated with the results listed in Table 3-1 and Table 3-2 

for  = 800 and 1,000 m and pairs O1-D1 y O3-D3. In the figure, the solid line represents 

the route selected by MsHRP while the dotted line shows the route obtained with MmHRP. 

The grey circles identify the danger zones exposed by the route of the MsHRP, and the 

circles with a mesh filling, the zones that are exposed by the MmHRP route. The circles 

that have both fillings represent danger zones affected by both routes. 
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(a) Pair O1-D1,  = 800 

 

 
(b) Pair O1-D1   = 1,000 
 

 

 
(c) Pair O3-D3  = 800 

 

 

 
(d) Pair O3-D3  = 1,000 

 

Figure 3-3: Routes for pairs O1-D1 and O3-D3, MsHRP and MmHRP with  = 800 and 

1,000 m. 

On the other hand, the danger proxy w of the vulnerable center closest to the selected 

route is considerably greater with the MsHRP for each OD pair. For O1-D1 and values of  

between 600 and 800 m, the weighted distance from the route to the closest vulnerable 

center is 2.3 times smaller (the hazard is higher) in the MsHRP, with values of w = 0.153 

in MsHRP and w = 0.349 in MmHRP. Intuitively, the first of these values could mean 

1,000 people having a potential HAZMAT spill at 153 meters, while the second would 

represent the same 1,000 people exposed to an incident occurring at 349 meters, more than 

double the distance. For  = 900 and 1,000 m, w is eight times lower in MsHRP, with 
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values of 0.044 in MsHRP and 0.349 in MmHRP. For O3-D3, w remains a constant value 

equal to 0.245 for  ≥ 400 m, and this value decreases in MsHRP as the value of  

decreases until it reaches w = 0.006. In other words, in this case the weighted distance from 

the route to the closest vulnerable center is 40.8 times lower (more hazardous). 

The results also show that as  increases and when it is no longer possible for the route 

selected by MmHRP to remain outside the danger zones of the vulnerable centers, a point 

is reached at which its objective value remains the same regardless of how large  is. 

Naturally, as  increases beyond that point, the number of centers and people affected 

increases, but the MmHRP does not recognize this. The contrary effect happens with 

MsHRP, in which as  increases the risk posed to the closest vulnerable center to the route 

increases but fewer people and vulnerable centers are exposed compared to MmHRP. 

In order to conduct a more detailed analysis, we compiled Tables 3-3 and 3-4, which 

show the values of qD  and q

ijd  for each vulnerable center and for each OD pair obtained 

after solving MsHRP and MmHRP for  = 800 and 1,000 m. As before, the values “-” in 

the table indicate that the vulnerable center is not exposed. 
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Maximin HAZMAT routing problem  

(MmHRP)   

Maxisum HAZMAT routing problem  

(MsHRP) 

 Vulnerable  

Center  

 
qD   

(students)  

   η = 800     η = 1000  

 

   η = 800     η = 1000  

 

 
q

ijd  (m)   /q q

ijd D  

 

 
q

ijd  (m)   /q q

ijd D  

 

  
 

q

ijd  (m)   /q q

ijd D  
  

 
q

ijd  (m)   /q q

ijd D  

50 1,820 
 

671 0.369 
 

671 0.369 
 

  279 0.153   80 0.044 

62 1,695 
 

593 0.350 
 

593 0.350 
  

- - 
 

- - 

63 1,683 
 

- - 
 

877 0.521 
  

- - 
 

- - 

80 1,618 
 

- - 
 

942 0.582 
  

- - 
 

- - 

98 1,551 
 

- - 
 

970 0.625 
  

- - 
 

- - 

99 1,547 
 

541 0.349 
 

541 0.349 
  

713 0.461 
 

713 0.461 

115 1,469 
 

757 0.516 
 

757 0.516 
  

- - 
 

- - 

118 1,440 
 

- - 
 

861 0.598 
  

- - 
 

- - 

133 1,375 
 

- - 
 

859 0.624 
  

- - 
 

- - 

160 1,286 
 

596 0.464 
 

596 0.464 
  

- - 
 

- - 

166 1,264 
 

- - 
 

- - 
  

- - 
 

795 0.629 

167 1,263 
 

- - 
 

892 0.706 
  

- - 
 

- - 

180 1,219 
 

- - 
 

839 0.688 
  

- - 
 

- - 

182 1,217 
 

553 0.454 
 

553 0.454 
  

- - 
 

- - 

186 1,207 
 

643 0.533 
 

643 0.533 
  

- - 
 

- - 

203 1,178 
 

- - 
 

784 0.666 
  

- - 
 

- - 

206 1,172 
 

- - 
 

- - 
  

- - 
 

842 0.718 

217 1,135 
 

- - 
 

- - 
  

756 0.666 
 

- - 

219 1,132 
 

439 0.388 
 

439 0.388 
  

- - 
 

- - 

237 1,089 
 

- - 
 

- - 
  

- - 
 

- - 

238 1,088   787 0.723   787 0.723     - -   - - 

Table 3-3: Values of q

ijd , qD  and /q q

ijd D  to MsHRP and MmHRP,  = 800 and 1,000 m, 

pair O1-D1.  

From Table 3-3, we observe that for the pair O1-D1 and  = 800 m, the route obtained 

through MsHRP exposes vulnerable centers 50, 99 and 217 with a total of 4,502 students. 

Vulnerable center 50, with a total of 1,820 students, is the most populated and also faces 

the greatest hazard as it is situated a weighted distance from the route of w = 50 50/ijd D = 

0.153. Of the vulnerable centers exposed, the least populated (vulnerable center 217, with 

1,135 students) is the one that is exposed to the least amount of risk, with a value of w 

= 217 217/ijd D = 0.666. For its part, MmHRP exposes 9 centers with a total of 12,461 students. 

Vulnerable center 99, with 1,547 students, is the most exposed with a value of w 

= 99 99/ijd D = 0.349. We observe that considering the distribution of the hazard posed to the 

population, the MsHRP allows the most population centers to face the greatest risk, when 

that contributes to the objective. 

This result is repeated for the other OD pairs analyzed and for the different values of . 

Table 3-4 shows the same phenomenon for pair O3-D3. 
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Maximin HAZMAT routing problem  

(MmHRP)   

Maxisum HAZMAT routing problem  

(MsHRP) 

 Vulnerable  

Center  

 
qD   

(students)  

   η = 800     η = 1000  

 

   η = 800     η = 1000  

 

 
q

ijd  (m)   /q q

ijd D  

 

 
q

ijd  (m)   /q q

ijd D  

 

  
 

q

ijd  (m)   /q q

ijd D  
  

q

ijd    

(m)  
 /q q

ijd D  

34 2,028 

 

- - 

 

- - 

 

  - -   11 0.006 

46 1,900 

 

473 0.249 

 

473 0.249 

  

- - 

 

- - 

53 1,782 

 

- - 

 

- - 

  

- - 

 

341 0.191 

80 1,618 

 

- - 

 

942 0.582 

  

- - 

 

- - 

102 1,518 

 

745 0.491 

 

745 0.491 

  

- - 

 

- - 

103 1,518 

 

373 0.245 

 

373 0.245 

  

- - 

 

- - 

108 1,489 

 

- - 

 

- - 

  

- - 

 

546 0.366 

115 1,469 

 

511 0.348 

 

511 0.348 

  

- - 

 

- - 

116 1,454 

 

466 0.321 

 

466 0.321 

  

- - 

 

- - 

118 1,440 

 

- - 

 

861 0.598 

  

- - 

 

- - 

119 1,429 

 

787 0.551 

 

787 0.551 

  

- - 

 

- - 

157 1,295 

 

689 0.532 

 

689 0.532 

  

293 0.227 

 

760 0.587 

158 1,290 

 

636 0.493 

 

636 0.493 

  

29 0.023 

 

- - 

160 1,286 

 

596 0.464 

 

596 0.464 

  

- - 

 

- - 

177 1,225 

 

450 0.368 

 

450 0.368 

  

- - 

 

902 0.736 

186 1,207 

 

643 0.533 

 

643 0.533 

  

- - 

 

- - 

190 1,198 

 

- - 

 

- - 

  

- - 

 

834 0.696 

216 1,137 

 

483 0.424 

 

759 0.667 

  

- - 

 

- - 

217 1,135  - -  - -   756 0.666  759 0.669 

219 1,132  439 0.388  439 0.388   439 0.388  - - 

237 1,089 

 

- - 

 

- - 

  

- - 

 

- - 

241 1,085 

 

703 0.647 

 

703 0.647 

  

- - 

 

- - 

243 1,073   - -   - -     - -   993 0.925 

Table 3-4: Values of q

ijd , qD  and /q q

ijd D  to MsHRP and MmHRP,  = 800 and 1,000 

m, pair O3-D3.  

Finally, we analyze a different objective, which is of a great importance for the party in 

charge of the transportation of HAZMAT: cost. We solve the shortest path problem for all 

OD pairs and, for the obtained routes, compute the values of the maxisum and maximin 

criteria. The figures are shown in Table 3-5, for   = 1,000. We take the link length as its 

travel cost. Table 3-5, together with Table 1, confirms the conflict between the route cost 

(or length) and the danger criteria. It is interesting to remark that rather than significant 

changes in the danger objectives, the differences in route length have a strong effect over 

the number of centers and students exposed. 

Pair 

MsHRP 

Value 

MmHRP 

Value 

Vulnerable 

centers 

exposed 

Students 

exposed 

Route 

Length 

(kilometre) 

O1-D1 234.97 0.135 16 21,740 17.13 

O2-D2 229.40 0.035 23 33,921 29.66 

O3-D3 232.84 0.005 16 21,694 27.03 

O4-D4 228.62 0.122 28 43,720 28.73 

Table 3-5: Shortest path problem results,  = 1,000. 
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3.5.2. Compromise maximin-maxisum solutions for Santiago 

We now apply the two-objective MmMsHRP to the network of Figure 3-1 and for 

different values of  under two scenarios: only one OD pair and three OD pairs. The best 

and worst value ( if
  and if

 , respectively) of both objectives were obtained separately by 

solving MsHRP and MmHRP. For simplicity, we will only analyze the results for  = 800 

to 1,000 meters.  

Table 3-6 shows the solutions of the MmMsHRP for three OD pairs and different values 

of . In all cases, the method found four non-dominated routes. The MmHRP objective 

ranges between 0.022 and 0.246.  

Value  

Weight  

over 

Maximin 

 MsHRP 

Value 

MmHRP  

Value 

(w) 

Vulnerable 

centers 

exposed 

Students 

exposed 

CPU Time, 

MmMsHRP 

 = 800 ≈ 0.0-0.2 239.08 0.022 7 10,233 635.3 

 

0.3-0.6 238.74 0.153 8 11,612 2,384.7 

 

0.7-0.9 237.72 0.213 10 14,719 5,754.4 

  ≈ 1 223.30 0.246 36 50,295 671.6 

 = 900 ≈ 0.0-0.5 237.78 0.112 10 14,823 4,055.2 

 

0.6-0.7 237.40 0.174 11 15,955 5,893.0 

 

0.8-0.9 236.78 0.213 12 17,983 7,649.3 

  ≈ 1 221.56 0.246 41 56,967 482.2 

 = 1000 ≈ 0.0-0.5 236.62 0.112 15 21,281 6,125.9 

 

0.6-0.7 236.31 0.153 16 22,568 20,802.1 

 

0.8-0.9 235.09 0.213 19 26,755 112,194.0 

  ≈ 1 219.99 0.246 45 63,927 2,653.3 

Table 3-6: MmMsHRP results, pairs O1-D1, O3-D3 and O4-D4 together ( = 800, 900 

and 1,000). 

Table 3-6 shows, as expected, that there are some compromise solutions that could be of 

interest to the decision maker. Take  = 800 for example. The MmHRP objective ranges 

between 0.022 and 0.246, values obtained with both objectives independently. However, 

slightly decreasing the MsHRP value from 239.08 to 238.74, allows increasing the 

MmHRP value from 0.022 to 0.153. This last solution will most probably be very 

appealing for some decision maker. If we observe what happens with  = 1,000, going 

from the maximin solution in which w = 0.246 and the maxisum value is 219.99, to the 

next non-dominated solution, in which the respective values are pretty close (0.213 and 

235.09) means reducing the number of exposed centers from 45 to 19, and students from 
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63,927 to 26,755. Again, an appealing change, due merely to the joint consideration of 

both objectives. 

Figure 3-4 shows the trade-off graphs for Table 3-6. Each point represents a different 

route. The routes associated with each point of the efficient frontier are shown in Figure 

3-5. 

220.00

225.00

230.00

235.00

240.00

0.000 0.050 0.100 0.150 0.200 0.250

M
ax

is
u

m
 V

al
u

e 
(m

/p
er

so
n

)

Maximin Value (m/person)

Efficient frontier for MmMsHRP (Pairs O1-D1, O3-D3 and 

O4-D4),  = 800

 

220.00

225.00

230.00

235.00

240.00

0.100 0.150 0.200 0.250M
ax

is
u

m
 V

al
u

e 
(m

/p
er

so
n

)

Maximin Value (m/person)

Efficient frontier for MmMsHRP (Pairs O1-D1, O3-D3

and O4-D4),  = 900

 

215.00

220.00

225.00

230.00

235.00

240.00

0.100 0.150 0.200 0.250M
ax

is
u

m
 V

al
u

e 
(m

/p
er

so
n

)

Maximin Value (m/person)

Efficient frontier for MmMsHRP (Pairs O1-D1, O3-D3

and O4-D4),  = 1000

 

Figure 3-4: MmMsHRP efficient frontier for different values of , pairs O1-D1, O3-D3 

and O4-D4 together . 
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(a)   = 800, α = 0.2 

  
(b)  = 800, α = 0.4 

 

 
(c)  = 800, α = 0.8 

 

  
(d)  = 800, α  1 

Figure 3-5: Routes for MmMsHRP with  = 800, pairs O1-D1, O3-D3 and O4-D4 

together. 
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3.6. Conclusions 

We present and solve a new approach to the transport of HAZMAT between multiple 

pairs OD in urban areas, which focuses on the protection of population that is vulnerable or 

difficult to evacuate, and is aligned with the public perception of hazard or danger. The 

method, called maxisum HAZMAT routing problem (MsHRP), maximizes the sum of the 

weighted distances between vulnerable centers and their closest routes links. Furthermore, 

we merge this method with the previously published Maximin HAZMAT Routing 

Problem, to propose the maximin-maxisum HAZMAT routing problem (MmMsHRP), a 

bi-criterion approach that considers the two objectives. In both cases, maximizing 

weighted distance is a proxy for minimizing hazard. Both the maxisum and the maximin-

maxisum methods are adequate for finding a route over a transport network that is “as far 

as possible” from existing vulnerable centers. Our contribution is the consideration of these 

objectives, which are new in transport network routing problems.  

Despite the fact that the maximin objective in and of itself can be solved in polynomial 

time, the new MsHRP as well as the MmMsHRP problems are NP-Hard, and we propose 

(as a further contribution) a tractable and fast IP formulation and an efficient polynomial 

heuristic procedure that allows us to solve large instances of the problems, especially for 

cases in which there are multiple OD pairs.  

Finally, we apply these methods to a real network with multiple pairs OD in the city of 

Santiago de Chile, and analyze for managerial insight. 

The results show that the MsHRP minimizes the hazard posed to the entire population, 

reducing the number of vulnerable centers and students exposed, but allows highly 

populated vulnerable centers to be exposed to a higher degree of hazard. The bi-criterion 

formulation (MmMsHRP) allows this shortcoming to be addressed. We use the weight 

method to generate the efficient frontier between the two objectives, presenting different 
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alternatives for the decision-maker, some of them seemingly more appealing for decision 

makers. 

A last word about different objectives: travel time and probability are important 

indicators when dealing with HAZMAT transportation. However, not all authors use these 

parameters as proxies for risk or danger, and we have chosen the same approach. A large 

number of publications consider a combination of consequence (i.e., number of deaths or 

injured people, areas of contaminated zones) and probability of an incident, without taking 

into account travel time or travel speed (see Erkut et al. (2007) and Erkut and Verter 

(1995), for a review of the most common objectives in the literature.) 

The approach we use, rather than considering overall risk, is focused on evacuation of 

individual vulnerable centers, something that usual risk indicators are not able to do. 

Secondly, we align the objective with what population perceives: danger. We use 

consequence (population) and distance between a possible incident and the vulnerable 

point. This indicator considers that people in general fears an accident happening, no 

matter how low the probabilities are. Thus, should it happen, they want it happening as far 

as possible, so the damage decreases, or at least, there is opportunity of evacuating. A clear 

example is the usual perception about nuclear plants. Our danger indicator increases with 

the population (consequence) and decreases with distance. There are authors that take the 

consequence as a proxy of risk, as ReVelle et al. (1991), but we have not seen a 

combination between consequence and distance. 

Note, however, that the indicator we use can be easily modified to accommodate 

probability as well as other parameters. In fact, concerning probabilities, they could be 

added in the denominator of the weighted distance in our model. In other words, the 

population-weighted distances could be easily become a population-and-probability-

weighted distances: 



 

73 

 

( )

q

ij

q

ij
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f p D
 

Where ( )ijf p  is a function of the probability of an incident on arc (i, j), chosen to 

neither cause scaling problems nor indetermination of the weighted distances. Similarly, 

the indicator could be multiplied by the travel time, to consider the fact that, the longer the 

time the vehicles spend close to the point, the higher the danger. 

A different alternative is to use, in addition to the maxisum and maximin objectives, 

independent objectives that consider both probability and travel time. 
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4. INCORPORATION OF HAZARD AND PERIOD OF EXPOSURE AS 

OBJECTIVES IN HM TRANSPORTATION  

A model for hazardous materials (HM) route design between multiple origin-destination 

pairs is proposed in which public concerns are taken into account, measured for the first 

time as a level of perceived or real hazard. Population is assumed to be distributed in 

discrete points in a plane, denoted population centers, each of which is surrounded by a 

circular hazard area. The hazard area is defined by the public perception about, or the 

actual reach of an accident involving HMs. The use of a route segment that falls within a 

hazard area for HM transportation exposes the corresponding population center to the 

associated hazard. The proposed methodology incorporates a population center’s exposure 

in terms of time and level of hazard as new objectives. The level of hazard to which a 

center is exposed, is a function of the distance between the center and each point on the 

link within its hazard circle. A mathematical programming problem integrating these new 

objectives is formulated and solved. Finally, the methodology is applied in a real case to 

define an optimal HM transport route for the city of Santiago, Chile. 
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4.1. Introduction 

The general public typically opposes any dangerous activity in its neighborhood, 

seeking to minimize hazard –no matter what the probability of an accident is– and 

individual or community period of exposure. These (hazard and period of exposure) are 

two measures of danger that the general public understands. This is not the only possible 

point of view on HM transport, though: government bodies intervene to reduce the risk to 

the public and the environment, thus attempting to minimize some risk indicator 

representing the possible consequence of an incident weighted by the probability of its 

occurrence, and must do so without threatening the economic viability of the dangerous 

activity. Truck companies or other operators involved in transporting these materials are 

concerned with minimizing transport costs. 

Thus, the various agents that are involved in HM transport have different outlooks and 

divergent objectives, and a proper balance between transport cost, risk, hazard and period 

of exposure would be the key to designing HM transport routes that take into account the 

interests of all stakeholders.  

Cost and risk have been dealt with in the literature and practice: the definition of 

transportation cost is standard, and estimators of risk have been calculated in a variety of 

ways and used as an estimate of the disutility imposed on the population. Erkut et al. 

(2007) identify nine different models of risk for HM routing, each using its own method of 

combining the likelihood or probability of an incident on route segments with the 

associated potential consequences, or one of these factors alone.  

However, very little research has been dedicated to hazard and period of exposure, 

which are the concerns of the population, and they are the subject of the present study.  

Hazard, according to Rasmussen (1981), is the potential of an undesirable consequence 

without regard of how likely it is. On the other hand, any estimator of risk takes into 
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consideration the probability of an incident. The announcement of the opening of a nuclear 

plant, for example, will generate strong public opposition, because such a plant is 

perceived as very hazardous by the public (high hazard), in spite of the fact that the risk to 

which this population will be exposed is very low, because the probability of an accident is 

also very low. In other words, when dealing with hazardous activities, people do not care 

about probabilities, just about hazard. In their minds, people implicitly consider that sooner 

or later an accident could happen, and the likelihood of such success does not matter much. 

Another characteristic of hazard is that it is perceived by the public as decreasing with 

distance. People prefer hazardous activities being carried as far as possible from their 

places. In spite of this, not all estimators of risk in the literature are explicit functions of 

distance. Rather, the risk, with a few exceptions, is computed considering that all people 

within certain distance of a segment of the route are equally affected. By combining this 

population with a probability, a risk estimator is computed and assigned to the 

corresponding route segment. Because of this, risk estimators not necessarily capture 

population’s concerns, and we argue that these concerns seem to be better represented by 

an indicator of hazard.  

The period of exposure is another indicator of adverse effects that is easily understood 

by the public, as opposed to what happens with probability. In people’s minds, the longer 

they are exposed to a dangerous activity, the higher the likelihood of something bad 

happening to them. In synthesis, we propose to represent people’s concern by indicators of 

hazard and period of exposure. Both indicators can also be adopted by government 

agencies in an attempt to represent the danger perceived by the population. In turn, the 

measure of hazard is attractive from the standpoint of damage control, given that an 

accident release with HM can occur in the transport process.  

When applied to urban areas, as it is not possible to keep all population far from hazard, 

we minimize hazard and period of exposure of those places that are more vulnerable, as 

hospitals and clinics, schools, and senior homes, all places difficult to evacuate. 
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We represent the vulnerable places as points in the plane. In our formulation, instead of 

hazard being an attribute of the route segments, it is an attribute of the populated or 

vulnerable points. This allows to upper-bound the hazard to which each vulnerable point is 

exposed, which we do in one of the proposed models. The formulation is intended for 

designing the routes for HM, as opposed to choosing a route from a set of predetermined 

routes. It can be used in practice and several objectives can be easily combined, if desired, 

including risk, consequence and even probability, if there is an adequate estimator for it.   

After developing our approach, we apply it to a real case of an HM routing problem 

with multiple origin-destination pairs in an urban area, evaluating the different objectives 

and alternative models that combine the estimators. The urban area in our case study is the 

city of Santiago, Chile. The implementation of study is supported by a geographic 

information system (GIS). 

The remainder of the paper is organized as follows: Section 2 reviews the related 

literature. Section 3 introduces the estimators of hazard and period of exposure. The 

formulation of models using these new objectives is contained in Section 4, while Section 

5 is devoted to a real case in Santiago. We conclude in Section 6. 

4.2. Literature Review 

A range of objectives have been used to minimize adverse effects on the transport of 

HM. ReVelle et al. (1991) minimize exposed population; Saccomanno and Chan (1985) 

and Abkowitz et al. (1992) minimize incident probability; Pijawka et al. (1985), Batta and 

Chiu (1988), Alp (1995) and Erkut and Verter (1995) minimize the product of incident 

probability and incident consequence; Sivakumar et al. (1993), Sivakumar et al. (1995), 

and Sherali et al. (1997) minimize the expected consequence given that an accident occurs 

on the route; Erkut and Ingolfsson (2000) propose diverse objectives: minimization of the 

maximum population exposure; simultaneous minimization of expected value and the 

variance of the number of people affected by an incident, with both factors represented as 
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attributes of each route link; and minimization of the expected disutility, defined as u(X) = 

exp(X) where X is the population affected and  > 0 a constant that measures catastrophe 

aversion. Abkowitz et al. (1992) minimize perceived risk imposed by a link, measured as 

qpC  where p is the probability of an incident on a link, C the incident consequence and q a 

risk preference parameter; and finally, Erkut and Ingolfsson (2005) assume that the 

occurrence of an incident terminates a trip so that a new shipment must be sent to satisfy 

the original demand, and thus use the total expected consequence of all the necessary trips.  

The above objectives are used in various approaches for modeling HM transportation. 

For example, some works recognize the multiple actors involved in decision making and 

the multi-objective nature of the HM routing problem, such as Zografos and Davis (1989), 

Marianov and ReVelle (1998) and Li and Leung (2011). Considering the relationship 

between the carrier and the regulatory agency is a concern in Kara and Verter (2004), 

Erkut and Gzara (2008), Verter and Kara (2008), Bianco et al. (2009) and Bruglieri et al. 

(2014). Another group of works also addresses the issue of population risk equity. For 

example, Gopalan et al. (1990), Lindner-Dutton et al. (1991), Carotenuto et al. (2007) and 

Caramia et al. (2010) develop models that consider equity in the spatial distribution of risk 

along the generated routes. Finally, Abkowitz et al. (1990), Lepofsky et al. (1993), Lovett 

et al. (1997), Chang et al. (1997), Brainard et al. (1996), Frank et al. (2000), Chen et al. 

(2008) and Kim et al. (2011) use GIS tools to support the calculation, comparison and 

visualization of the attributes of alternative routes, as well as to compare different risk 

modeling techniques and serve as a decision support system for HM transport. 

In all of the above approaches, the consequence or the risk are always attributes of a 

link of the route followed by the HM, rather than measured at the population centers. If 

two or more links affect a single center, however, the magnitude of the effect over that 

particular center will not be captured when a route is designed following these approaches. 

This was recognized by List and Mirchandani (1991), Erkut and Verter (1995) and 

Bronfman et al. (2015). List and Mirchandani (1991) begin by calculating, for each 
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population center, the integral over the whole route of a hypothetic function of the distance 

between a point representing the population center location and each point on the route. 

The risk associated with each route and population point is defined as a function of that 

integral, although they do not propose any specific functional form. The total risk posed by 

a given route is thus the sum of the risks each point on it poses to the various population 

centers. However, in their case study the authors use not this estimator but the expected 

fatalities as a substitute for it. Furthermore, their formulation requires that the candidate 

routes be explicitly enumerated and the risk posed by the use of each one of them be 

calculated. As it stands, it can be used only for choosing routes, not designing them. In a 

very complete work by Erkut and Verter (1995), a first model assumes population 

distributed in points (populated points) in the plane, surrounded by a danger area. The risk 

to which a populated point is exposed is computed as the product of the length of the route 

segment that falls within its danger area, times the population of the center and the 

probability of an incident (liberation of HM). Their second model assumes population 

distributed continuously and uniformly over the plane. A route segment has a rectangular 

hazard area around it, with a width of twice the reach of an incident (which, in turn, 

depends on the material being transported). For this representation to be valid, the whole 

area is decomposed so that all route segments are straight, and the population density is 

uniform around each route segment. An individual within the rectangle is exposed to a risk 

that is computed as in the first model, and the risk is integrated over the rectangle and 

assigned to the segment as an attribute of it. Both models are applied to the selection of 

one of a set of existing routes, rather than the design of a route composed by segments.  

Hazard has not been used as an objective for HM transportation, although it has been 

studied in relation to dangerous activities or natural events. In those cases, it has been 

recognized that the hazard a population is exposed to is a function of the distance, an 

observation that accords with the perception of the general public for hazardous facilities 

(Hung and Wang (2011), Elliott et al. (1999), Brody et al. (2004) and Lima (2004), 

earthquakes [Lindell and Perry (2000)], hurricanes [Arlikatti et al. (2006)] and flooding 
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[Wachinger et al. (2013), Miceli et al. (2008), Heitz et al. (2009) and Brilly et al. (2005)]. 

Saccomanno and Shortreed (1993), Jonkman et al. (2003) and Fernández. et al. (2000) also 

point to this fact in their argument that the possible consequences for the population in the 

case of an HM spill incident vary as a function of the distance from the event.   

We next propose an explicit hazard function. Our approach is similar to that of List and 

Mirchandani; however, we provide explicit functions of hazard, and we formulate a model 

that allows designing a route, as opposed to choosing one. 

4.3. Proposed estimators of adverse effects  

Each population or vulnerable center is represented as a point k in a plane around which 

a circular hazard zone of radius λ is defined, as shown in Figure 4-1. The links of the route 

consist of straight-line sections of it. Segments (a,b) of link (i,j) and (d,e) of link (j,l) are 

the parts of a hypothetical route that expose the population to hazard and are therefore 

denoted the exposure segments. 



l

i ja b

d

e

k

 

Figure 4-1: Population or vulnerable center k, with its circular hazard zone and exposure 

segments (a,b) and (d,e) 

 

Figure 4-1 depicts how a population center can be affected by more than one link, 

especially in urban areas. By expressing adverse effects as attributes of the affected center 

rather than of a link, we can account for the aggregate effect of all links on a given center. 

The hazard imposed on k is the sum of the individual hazard values imposed by each of the 

two link segments (a,b) and (e,d). The period of exposure of the population of center k is 
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the sum of the times during which it is exposed due to the use for HM transport of either 

link.  

Note that, in most cases, a vulnerable center can be represented by a point on the plane. 

If however, population is continuously distributed over the region, strictly speaking, 

representation of a populated area by its central point does not introduce significant errors 

since population data are usually presented as discrete figures (e.g., in census publications) 

and therefore already contain aggregation errors that cannot be corrected by any model. Of 

course, if the model uses a higher level of aggregation than the source data, errors will 

indeed be introduced. Aggregation errors are out of the scope of this paper, and reviews of 

the literature on aggregation errors may be found in Sadigh and Fallah (2009) and Francis 

et al. (2004). Methods for reducing aggregation errors have been proposed by Current and 

Schilling (1990) and Emir-Farinas and Francis (2005). Although most of these studies 

focus on the problem as it arises in location modeling, the principles involved here are the 

same. 

4.3.1. Hazard exposure of a population center  

Let a transport network be represented by a directed graph G(N,A), where N is the set of 

nodes and A the set of links. To derive a formal expression for the concept of hazard 

exposure, let f k(x) be the hazard to each individual in population center k emanating from a 

point x on link (i,j). f k(x) is a non-increasing function of the distance ( )kr x  between x on 

link (i,j) and k, and the form of the function depends on the type of material being 

transported. Then let 
k

ijf  be the hazard each individual in k is exposed to by the use of 

exposure segment (a,b) of link (i,j). To determine the value of 
k

ijf , we divide the exposure 

segment (a,b) into a finite number n of intervals of equal length x (see Figure 4-2). Each 

interval represents a separate hazard to k that depends on the distance between them. Thus, 

the contribution to the hazard to k of an HM vehicle travelling each interval in (a,b) is 
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given by ( )k

qf x x , where q = 1, 2, … n = 
| |b a

x




. Summing the hazard represented by 

each interval in segment (a,b), we obtain the following approximation: 

1 2

1

( ) ( ) ... ( ) ( )
n

k k k k

n q

q

f x x f x x f x x f x x


         

The value of 
k

ijf  is the limit of this sum as x tends to 0. Thus, 

 
0

1

lim ( ) ( )

bn
k k k

ij q
x

q a

f f x x f x dx
 



          (4.1) 

The hazard function ( )kf x  can take various forms. Some of such forms used in 

modeling real situations of hazardous materials dispersion involve quadratic and 

exponential functions, as follows.  

Example 1: Hazard is inversely proportional to the square of the Euclidean distance 

between the population unit and the location of the HM vehicle: 

2 2

1
( )

( ) 

  

k

k
f x

r x
 ,          (4.2) 

where ε  0 is a constant that ensures ( )kf x  is not undefined when ( ) 0kr x .  

Substituting (4.2) into (4.1) and solving the integral, we obtain 

2 2 2 2 2 2

1

  

    
     

       

k

ij

b a
f ArcTg ArcTg

h h h
   (4.3) 

where h is the distance between population unit k and link (i,j), measured along a line 

that is perpendicular to the link. 
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i j

k

h

x

rk(x)

xx
bx1a x2 xn-1x3 xi j

k

h

x

rk(x)

xx
bx1a x2 xn-1x3 x

ji

f k(x)

f k(x1)

x xx
bx1a x2

xn-1x3 x ji

f k(x)

f k(x1)

x xx
bx1a x2

xn-1x3 x

 

Figure 4-2: Calculation of the hazard k is exposed to by use of segment (a,b) of link (i,j) 

Example 2: Hazard is an exponential function of the square of the Euclidean distance 

between the population unit and the location of the HM vehicle: 

2
( )

( )
kr xkf x e

  
   

Substituting this expression into (4.1) and solving the integral, we obtain 

2 2

2

k

ijf erf h x





  
 

 

 2 2 2 2

2

k

ijf erf h b erf h a


 


       
     

 

where erf (z) is the integral of the normal distribution: 

2

0

2
( )

z

terf z e dt


 
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Example 3: Hazard is a logistic function, that is, the exponential of the Euclidean 

distance between the population unit and the location of the HM vehicle: 

 ( )

1
( )

1
k

k

r x
f x

e
 





,  

where  and  > 0 are parameters to be estimated.  

Substituting this expression into (4.1) and solving the integral, we obtain 

   2 2 2 2

2 2 2 2

log 1 log 1
h b h a

k

ij

e e

f h b h a

 

 

         
       

           
   
   
   

 

This function can model different intensities of hazard to represent the transport of 

different types of HM. The smaller is the value of , the greater is the hazard the 

population is exposed to, and the larger is the value of , the greater is the decrease in the 

hazard as the distance to the link increases.  

The total population-weighted hazard k

WF  facing a population center k due to the use of 

a route W for HM transport is given by the following formula, where Gk is the population 

of center k:  

( , )

 k k k

W ij

i j W

F f G          (4.4) 

If the travel speed of HM transport over the link segment (a,b) in Figure 4-2, assumed 

to be constant over the segment’s entire length, is doubled, the vehicle’s travel time on 

(a,b) will be reduced by half. Although the hazard to which k is exposed to, does not 

change, the period of exposure of the population does. Including the additional indicator 

we propose next can capture this effect. 
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4.3.2. Period of exposure of the population 

The period of exposure of the population (hereafter simply “period of exposure”) 

depends on the length of the route segments that intercept the hazard zone of the 

population center k, and on the speed sij of the HM vehicles over each link (i,j). Thus, the 

period of exposure k

ijt
 
for k due to the use of link segment (i,j)  A is given by 

/k k

ij ij ijt l s           (4.5) 

Where 
k

ijl  is the length of the segment of link (i,j) which exposes population center k. 

Assuming sij is uniform over each link, the period of exposure k

WT  for k due to the use of 

route W to transport a load of HM is given by the following formula: 

( , )

k k

W ij

i j W

T t


 
         (4.6)

 

4.4. HM Routing Models with Multiple OD Pairs 

In what follows we formulate two models for using and comparing two different 

objectives consisting of the indicators proposed in the previous section. These objectives 

can be easily combined with cost and risk objectives. 

The first model, M1, is bi-objective, and minimizes both total period of exposure and 

total hazard. The second model, M2, minimizes total hazard, while constraining both period 

of exposure and individual hazard to which each vulnerable point k is exposed. 

Let Nq be the set of HM shipments between the origin-destination pair q  Q. We define 

the following binary variables: 

 if arc , s used for shipment  between the origin-destination pair1  i

0 otherwis

   

e

tq

j

q

i

i j t N q Q
x

 
 


 



 

86 

 

The first model is formulated as follows: 

 
2

1

1

)    i i
i

i i i

f I
M Min

AI I




 
 

 


        

(4.7) 

Subject to:  

 1

( , )

=   
q

k tq k

ij ij

k K i j A q Q t N

f f x G
   

 
 
 

   

       

(4.8)

 

 2

( , )

= 
q

k tq k

ij ij

k K i j A q Q t N

f t x G
   

 
 
 

   

       

(4.9)

 

   /( , ) /( , )

1 if

1 if , ,

0 otherwise

q

tq tq q q

ij ji

j i j A j j i A

i O

x x i D i N q Q t N
 

 


         



 

 

(4.10) 

 0,1 ( , ) , ,tq q

ijx i j A q Q t N      
    

(4.11) 

Expression (4.7) corresponds to a normalized linear combination of expressions (4.8) 

and (4.9), which are the population-weighted hazard and period of exposure objectives, 

respectively. In (4.7), Ii is the best (lowest) possible value of objective fi, and AIi is its 

worst (highest) value. By normalizing the objectives, we avoid scaling problems. Each 

objective is multiplied by a weight factor i between 0 and 1, with 1 + 2 = 1 which is 

changed in successive runs of the problem, to find an approximation of the efficient 

frontier [Cohon (1978)]. Constraint set (4.10) represents flow conservation while (4.11) 

defines the nature of the variables. 

Note that M1 is separable by origin-destination pairs. As in this model the adverse 

effects (or perceptions) are aggregated over the whole network, this model does not take 

into account the fact that for a particular center, the hazard or the period of exposure can be 
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very high. Our second model M2, addresses the issue. In M2, one of the objectives is 

minimized. Alternatively, it is possible to minimize a weighted sum of both objectives. Or 

only one of them. Without loss of generality, we have chosen to minimize the total hazard. 

M2 is as follows: 

 2

( , )

)    
q

k tq k

ij ij

k K i j A q Q t N

M Min f x G
   

 
 
 

   
      

 

 

 Subject to: (4.10)-(4.11) 

 

 
( , )

 
q

k tq k k

ij ij

i j A q Q t N

f x G k K
  

 
   

 
 

  

(4.12) 

 

 
( , )

 
q

k tq k k

ij ij

i j A q Q t N

t x G k K
  

 
   

 
 

  

(4.13) 

Where βk and αk can be set by the decision maker to represent different “protection 

levels,” e.g., for centers k of different vulnerability. 

4.5. Application 

The models were applied to the real case of the transport of hazardous industrial solid 

waste (HW) between five origin-destination pairs in the city of Santiago, Chile (see Figure 

4-3 and Table 4-1). The road network and vulnerable centers data are the same as those 

used in chapter 2 and 3, consisting of 6,681 links, 2,212 nodes and 244 vulnerable centers 

(schools with over a one thousand seventy students) populated by 386,254 people 

(students,) distributed as shown in Figure 4-3. The hazard zone radius of an HM incident is 

 = 800 m. For each network link, the data include its length, travel speed for different 

times of day (morning peak, evening peak and off-peak period) and geographic 

coordinates. The transport of HM is evaluated during the morning peak period, because 

students are at schools at these times.  
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Figure 4-3: Transport network and 244 schools with over a one thousand seventy 

students (vulnerable centers). 

Origin-destination 

pair 
Shipments 

O1-D1 2 

O2-D2 1 

O3-D3 1 

O4-D4 3 

O5-D5 1 

Table 4-1: HM shipments by origin-destination pair, at morning peak period 

The students in each school are assumed to be concentrated at its center. We identified 

the intersections of links with the hazard circles (exposure segments) of each school center 
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k using simple geometry and a GIS. We then applied equations (4.3) and (4.5) to evaluate 

the hazard and period of exposure for each population center due to HM transport on each 

network link. The hazard function was assumed to be the inverse of the square of the 

distance as in equation (4.2) above, with  = 10-10. To calculate the hazard exposure for 

each k, k

ijf  as given by equation (4.3) was divided by Max{ | }k k K   , where  

 
( , )
max

k

k k k

ij
i j U

f G


  and Uk is the set of links (i,j)  A with segments within the hazard circle 

of k. The resulting hazard values are dimensionless. The instance was solved on a personal 

computer running Ubuntu 12.04 LTS with a 3.40 GHz Intel ® Core™ i7-2600 processor 

and 16 GB of RAM. The models were coded and solved using AMPL Cplex 12.5. 

4.5.1. Results for M1, including the effects of the new objectives on transportation 

costs  

We solve M1 for different values of the weight 1 and approximate the efficient frontier. 

As this version of the problem takes into account only the public point of view, we then 

analyze the effect of considering each one of the new objectives on the transportation costs 

the transportation company concern represented by the total distance traveled 

( , ) q

tq

ij ij

i j A q Q t N

l x
  

 
 
 

   , where lij is the length of arc (i,j). Bi-objective model M1* uses as 

objectives the total exposure time and the transportation cost, while Bi-objective model 

M1** trades off the total hazard imposed on the population against the total transportation 

cost. 

The values of Ii and AIi shown in Table 4-2 to Table 4-4 were obtained by solving each 

bi-objective model with extreme values of the weights 1. Table 4-2 to Table 4-4 and 

Figure 4-4 to Figure 4-6 show the efficient frontier approximations for the three versions 

of M1. Also shown are the corresponding values of 1.   
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1 
 

Hazard 

Period of 

Exposure 

(hours-person) 

 0.0 52.9 = AI1 1,221.5 = I2 

0.1 36.7 1,231.7 

0.2 34.4 1,248.0 

0.3 32.4 1,286.3 

0.4 32.4 1,286.3 

0.5 32.4 1,286.3 

0.6 23.2 1,819.2 

0.7 22.5 1,900.9 

0.8 22.5 1,900.9 

0.9 22.3 1,943.3 

 1.0 21.8 = I1 2,784.4 = AI2 

Table 4-2: Approximation of the 

efficient frontier for M1. 
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Figure 4-4: Approximation of the efficient frontier for 

M1. 

 

 

  

1 

Period of 

Exposure 

(hours-person) 

Length (km) 

 0.0 12,340.3 = AI2 201.94 = I3 

0.1 8690.7 203.1 

0.2 6575.1 205.6 

0.3 4577.3 211.0 

0.4 4113.8 213.1 

0.5 2043.2 224.6 

0.6 2008.3 224.9 

0.7 1833.7 227.1 

0.8 1479.9 233.8 

0.9 1444.7 234.9 

 1.0 1,221.5 = I2 278.60 = AI3 

Table 4-3: Approximation of the 

efficient frontier for M1*. 
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Figure 4-5: Approximation of the efficient frontier for 

M1*. 

 



 

91 

 

 

  

1 Hazard Length (km) 

 0.0 1502.6 = AI2 201.94  = I3 

0.1 270.0 202.5 

0.2 256.3 202.7 

0.3 223.2 203.4 

0.4 167.5 205.6 

0.5 143.4 207.2 

0.6 143.4 207.2 

0.7 78.2 217.4 

0.8 65.1 220.3 

0.9 43.2 228.6 

 1.0 21.8 = I2 311.0 = AI3 

Table 4-4: Approximation of the 

efficient frontier for M1**. 
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Figure 4-6: Approximation of the efficient frontier for 

M1**. 

Table 4-2 shows how, going from 1  1 to 1  0 in M1, the total hazard goes from 

21.82 to 52.87, an increase of 2.4 times, while the period of exposure decreases from 2,874 

to 1,222 hours-person, a reduction of 57%. Good compromise solutions can be found in the 

efficient frontier, e.g., hazard can be reduced from its maximum at 52.9 to only 32.4, by a 

small increase in time of exposure (from 1,222 to 1,286 hrs-person). 

Table 4-3 shows that a reduction of a 38% in the total transportation cost corresponds to 

an increase in the period of exposure from 1,221.5 a 12,340.3 hours-person, more than 10 

times. Again, if transportation cost is increased from its minimum value by only a 4.5%, 

the period of exposure decreases to a 37% of its initial value (1 = 0.3). Finally, Table 4-4 

shows how an increase of a 54% of the transportation cost corresponds to an increase in 

hazard from 21.8 to 1,502.6, equivalent to 68.9 times. A small increase of the 

transportation cost of a 7.1%, reduces hazard in 19 times. 

The Figure 4-7 show the transportation paths for the extreme values of 1 for each bi-

objective model. Origins and destinations are marked in the Figures, except for O3, which 

is out of the limits of the drawings.  
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(a)  

 

 
(b)  

 

 
(c)  

Figure 4-7: HM flows (a) Model M1 with 11, (b) Model M1 with 10, (c) Model M1* 

and M1** with 11 (shortest paths) 

The hazard areas marked in gray are those intersected by the route, for one or more HM 

shipments.  

Finally, these three Tables allow choosing a strategy of good compromise between 

hazard, period of exposure and transportation cost.  

4.5.2. Model M2  

Analysis of M2 for different values of k and k 

We solved M2 for different values of k y k, setting the value of k at a value high 

enough (k = 30  kK), to leave constraint (4.12) inactive. The parameter k was given 

values in the range (132.23; 414,99), in steps representing increases of 10% over the 

previous value. For k < 132.23 hours-person  kK, there is no feasible solution and for 

k > 414.99 hours-person  kK, we obtain the unconstrained solution for minimum 

hazard. Table 4-5a and Figure 4-8a show the results. In this instance, an increase of a 33% 

in the maximum period of exposure of each populated or vulnerable center (132.23 to 

176.00 hours-person), the total hazard is reduced in 25.45%. Table 4-5b and Figure 4-8b 
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show the results of a similar exercise, when leaving k fixed at 460 hours-person and 

changing now the value of k by steps of a 10% starting from its minimum feasible value. 

In this case, a tighter constraint on the individual hazard does not increase total hazard in a 

significant amount (just 12.09%).  

 

k Hazard 

Period of 

Exposure 

(hours-

person) 

CPU 

Time 

132.23 33.41 2,621.61 441.52 

145.45 26.85 2,091.55 13.62 

160.00 26.21 2,250.79 44.38 

176.00 24.91 2,191.14 9.59 

193.60 23.77 2,366.81 5.09 

212.96 23.00 2,215.55 4.60 

234.26 23.00 2,258.52 7.24 

257.68 22.39 2,297.96 2.83 

283.45 22.18 2,602.25 6.09 

311.80 22.18 2,602.25 3.38 

342.97 21.87 2,691.68 1.58 

377.27 21.87 2,691.68 1.77 

414.99 21.82 2,784.42 1.26 

 
(a) M2 with k = 30  kK and different values 

of k 

 

k Hazard 

Period of 

Exposure 

(hours-

person) 

CPU 

Time 

2.20 24.83 3,807.32 8.25 

2.42 23.65 3,382.72 2.58 

2.66 23.60 3,475.46 2.20 

2.93 23.60 3,475.46 2.47 

3.22 23.60 3,475.46 3.12 

3.54 23.60 3,475.46 2.80 

3.90 23.18 3,096.51 2.66 

4.29 22.71 3,129.94 2.11 

4.72 22.71 3,129.94 2.17 

5.19 22.71 3,129.94 2.80 

5.71 22.52 2,734.28 2.49 

6.28 21.82 2,784.42 1.08 

6.90 21.82 2,784.42 1.06 

 
(b) M2 with k = 460 hours-person  kK and 

different values of k 

Table 4-5: Hazard and total period of exposure for different values of k and k. 
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Figure 4-8: Hazard and total period of exposure for different values of k and k. a) 

varying k and k = 30  kK; b) varying k and k = 460 hours-person  kK. 
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Effects of constraining hazard and period of exposure at individual points 

The effects of incorporating the constraints on individual hazard and period of exposure 

are shown in Table 4-6, Table 4-7 and Figure 4-9. These Tables and Figure show the 

results of M2, compared with the results of M1 for 1  1 and 1  0. The first column of 

Table 4-6 displays the identification of each vulnerable center exposed to one or more arc 

segments of the HM routes. The second column shows the number of students in each 

School. The third, fourth and fifth columns show the hazard and, in parenthesis, the period 

of exposure of each School for model M1 with 1  1, M1 with 1  0, M2 without 

constraints (4.13) and M2, respectively. The chosen values of k and αk are indicated in the 

top of each column. 
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Vulnerabl

e center 

No. Of 

students 

M1 with 1  1 

(Minimum 

hazard) 

 M1 with 1  0 

(Min period of 

exposure) 

M2 without 

(4.13) and k = 

2.2 

M2 with k = 2.2 

and αk = 160 

(hours-person) 

16 2,612 0 (0) 4.14 (136.5) 0 (0) 0 (0) 

27 2,094 0 (0) 0.73 (18.8) 0 (0) 0 (0) 

39 1,940 0 (0) 0 (0) 0 (0) 2.02 (153.6) 

44 1,922 0 (0) 0 (0) 0 (0) 0.57 (94.0) 

46 1,900 1.01 (274.7) 0 (0) 1.01 (274.7) 0.22 (120.8) 

48 1,831 0 (0) 0 (0) 1.58 (264.6) 1.66 (101.0) 

50 1,820 0.88 (210.5) 5.49 (128.2) 0.88 (210.5) 1.61 (128.8) 

56 1,750 0.69 (71.5) 0 (0) 1.38 (259.2) 0.80 (67.1) 

63 1,683 0 (0) 0 (0) 0 (0) 0.44 (47.4) 

66 1,668 0.39 (31.0) 0.39 (31.0) 0.13 (10.3) 0.13 (154.7) 

68 1,664 0 (0) 0 (0) 1.30 (113.9) 1.30 (113.9) 

85 1,602 2.01 (94.0) 2.01 (94.0) 2.01 (94.0) 2.01 (94.0) 

91 1,580 0 (0) 0 (0) 0 (0) 0.03 (4.6) 

99 1,547 0.32 (150.0) 0.87 (88.0) 1.26 (197.4) 0.32 (150.0) 

106 1,495 0 (0) 0.38 (16.4) 0 (0) 0 (0) 

109 1,487 0.92 (70.2) 0 (0) 0.92 (70.2) 0.92 (70.2) 

114 1,478 6.17 (318.1) 17.1 (263.9) 2.06 (106.0) 2.06 (87.6) 

116 1,454 0.72 (153.2) 0 (0) 0.72 (153.2) 0.19 (100.0) 

118 1,440 0 (0) 0 (0) 0 (0) 0.55 (65.7) 

122 1,414 0 (0) 0 (0) 0 (0) 0.41 (34.4) 

123 1,412 0 (0) 0.45 (13.3) 0 (0) 0 (0) 

131 1,379 0 (0) 0.51 (13.0) 0 (0) 0.51 (13.0) 

140 1,359 0 (0) 0.15 (7.1) 0 (0) 0 (0) 

137 1,365 0.25 (129.6) 0 (0) 0.64 (300.2) 1.82 (138.1) 

145 1,326 0 (0) 0 (0) 0.86 (71.1) 0.43 (35.5) 

148 1,320 0 (0) 0 (0) 0 (0) 2.00 (144.9) 

153 1,310 0.58 (80.0) 0 (0) 1.37 (146.1) 0.39 (33.0) 

157 1,295 1.36 (77.5) 1.36 (77.5) 1.36 (77.5) 1.36 (77.5) 

158 1,290 0.66 (79.2) 6.71 (22.7) 0.66 (79.2) 1.63 (61.7) 

166 1,264 0.07 (329.7) 0.27 (22.1) 0.07 (329.7) 0.31 (111.5) 

168 1,255 0.02 (31.9) 0 (0) 0.34 (335.7) 0.16 (151.9) 

174 1,237 0 (0) 0 (0) 0 (0) 0.83 (74.9) 

179 1,221 0.13 (45.2) 0 (0) 0.13 (45.2) 0.13 (45.2) 

205 1,173 0 (0) 0 (0) 0.73 (95.7) 0.45 (37.1) 

206 1,172 0 (0) 2.02 (51.1) 0 (0) 0 (0) 

215 1,137 0.89 (180.2) 0 (0) 1.55 (255.1) 2.06 (145.9) 

216 1,137 0 (0) 0 (0) 0 (0) 0.35 (92.0) 

219 1,132 2.66 (411.2) 4.25 (86.3) 1.77 (271.1) 0.89 (131.0) 

223 1,128 0 (0) 0 (0) 0 (0) 0.69 (78.6) 

224 1,128 0 (0) 0 (0) 0 (0) 0.30 (71.0) 

225 1,123 0 (0) 0 (0) 0 (0) 0.63 (66.3) 

228 1,110 0 (0) 0.93 (18.3) 0 (0) 0 (0) 

233 1,099 2.09 (46.7) 2.09 (46.7) 2.09 (46.7) 2.09 (46.7) 

237 1,089 0 (0) 0 (0) 0 (0) 0.98 (147.4) 

240 1,085 0 (0) 3.06 (86.6) 0 (0) 0 (0) 

      

Total 64,927 
21.,82 

(2,784.4) 
52.87 (1,221.5) 24.82 (3,807.3) 33.26 (3,291.1) 

Table 4-6: Values obtained for M1 with 11, M1 with 10, and M2, broken down by 

vulnerable center exposed 

Attribute 
M1 with 1  

1 (Minimum 

hazard) 

 M1 with 1  0 

(Min period of 

exposure) 

M2 without 

(4.13) 

(k = 2,2) 

M2 

(k = 2,2 and 

αk = 160  
hours-person) 

Exposed students 27,074 27,913 33,068 52,588 

% Exposed students 7.0% 7.2% 8.6% 13.6% 

Total affected vulnerable 

centers 
19 19 23 37 

CPU Time (seconds) 1.13 1.08 9.89 121.30 

Table 4-7: Values obtained for M1 with 11, M1 with 10, and M2. 

Table 4-7 shows an apparent dominance of model M1 over M2 in terms of exposed 

students and affected schools. However, when the results are analyzed by vulnerable 
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center, as in Table 4-6, hazard and period of exposure are concentrated in a few vulnerable 

centers. For example, when 1  1, schools 114 (1,478 students) and 219 (1,132 students) 

concentrate the 40.5% of the total hazard, and are exposed during long periods (318.1 and 

411.2 hours-person, respectively). In this case, the average period of exposure per person is 

2.57 minutes.  

When M1 is solved with 1  0, schools 16, 50 and 114 (representing a 9.1% of the 

students) concentrate the 43.3% of the total period of exposure. However, the average 

period of exposure per person drops to 1.13 minutes, a decrease of 56.1%. At the same 

time, school 158 is exposed to the 12.7% of the total hazard during a 1.9% of the total 

period of exposure. 

 

 
(a) M2 

 

 
(b) M2 without (13) 

Figure 4-9: HM flows (a) Model M2, 
k = 2.2 and αk = 160 (hrHab)  kK; (b) Model 

M2, 
k = 2.2  kK; 

When considering M2 without constraints (4.13), hazard is shared among more schools, 

and none of them is overexposed. However, the period of exposure can increase 
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significantly for some centers, e.g., 56, 137 and 168, which together increase from a 8.4% 

to a 23.5% of the total period of exposure, when compared with M1 with 1  1. The 

average period of exposure per student increases also, to 3.52 minutes. When constraints 

(4.13) are incorporated, this increase in period of exposure is controlled.  

Naturally, there is no free improvement of the individual indicators: the imposed limit 

on the individual hazard and period of exposure, in this case, is obtained at the expense of 

an increase of a 52.4% in the aggregated hazard and an increase of a 169.4% in the total 

period of exposure, as well as an increase of 62.8% in the average period of exposure per 

student. Also, the number of exposed schools and total number of exposed students 

increase.  

These results are mainly due to the selected very tight values for αk = 160 hours-person 

and k = 2.2. Recall that the smallest value that αk and k can take are 130 hours-person 

and 2.2, respectively. For higher values of these parameters, the observed increases in 

hazard and total exposure period will be naturally lower. 

The point here is, however, that the decision maker can find an adequate compromise 

between total hazard and period of exposure and individual values of both, i.e., equity of 

exposure, while keeping transportation costs within reasonable values. The models we 

propose are a useful tool for evaluating each strategy.   

4.6. Conclusions and future research 

We present an approach to the HM transport route design problem that can be applied to 

real-world situations. Population in our approach is distributed in discrete points or centers 

in a plane, with a circle of radius  around each one determining the associated hazard 

zone. The use by HM transport of any link segment within that zone constitutes a hazard to 

the population center.  
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A general hazard function is defined and a period of exposure function is added, both 

independent of incident consequence and probability. Both the hazard and the period of 

exposure of the population, represent the interests of the general public. The indicators are 

formulated as attributes of the population centers rather than the network links, thus 

allowing the hazard and period of exposure imposed by several route links to be adequately 

added for a single populated point, and upper-bounded.  

The proposed methodology was applied to a real instance of HW transport in Santiago, 

Chile. The results demonstrate that hazard exposure is satisfactory as an objective when it 

is minimized together with the period of exposure. Both objectives can be traded off 

against transportation costs. 

Trading off total hazard and total period of exposure in a two-objective model exposes 

some of the vulnerable centers to high levels of both hazard and period of exposure. 

Consequently, we propose a second model that minimizes the total hazard subject to limits 

on the hazard and exposure period on each population center. We conclude that the 

incorporation of such thresholds can control the maximum hazard and period of exposure 

for each population center, naturally at the expense of increased total hazard and total 

exposure period of the population. The adequate compromise can be easily explored by the 

decision maker.  

The proposed objectives can be combined with other objectives, as risk. Probabilities of 

events can be included in the models if desired. If speed statistics are known over the 

network, they can be used to improve the estimations of periods of exposure. The models 

can be solved for different times of the day, to consider the different distributions of the 

population along the day.   

Yet other possibilities opened up by the proposed approach of representing the 

undesirable effects of HM transport as attributes of population centers rather than network 
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links, would be to include emergency response center locations and HM routing as a 

combined factor in HM transport network design. 
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5. CONCLUSIONS 

We address the Hazardous Material (HAZMAT) Transportation Problem in urban areas 

with high population density through three novel techniques, focusing on population 

protection. 

We consider that the relevant population, i.e. most vulnerable or hard to evacuate, is 

concentrated in points or centers of the plane. We determine a circular danger zone around 

each of these centers. If an accident occurs inside the danger zone, the respective(s) 

center(s) would be affected. Then, using an arc that is (partially or completely) within a 

danger zone must imply danger to the center. Using this representation, we are able to 

determine both risk and danger that affects individual population centers, calculation that 

previous risk indicators in literature are unable to do. 

In order to represent the interests of the population, we focus our attention to the mainly 

perceived objective: danger. We use as danger indicator the consequence (population) and 

distance between the incident and the population center. This indicator considers that the 

population is insensitive to probabilities, and is only concerned with the fear of an 

accident. Then, we aim to maximize the distance between HAZMAT shipments and the 

population centers, minimizing the perceived danger, together with the potential 

consequences of a HAZMAT liberation event. 

From a different point of view, our focus is different from the usual risk minimization, 

in what it cares about consequences once an accident has occurred and evacuation must be 

performed of the population in danger. That is the reason why we take into account 

vulnerable and difficult to evacuate people, as opposed to what is regularly done, which is 

minimizing population risk, without making any distinction between different classes of 

population. Both approaches are valid, and complementary.  
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Based on these considerations, we first aim to maximize the weighted distance between 

HAZMAT route and the closest population center. The goal is to reduce the possible 

consequences for the most exposed population center (maximin objective). Although the 

maximin objective has been addressed on continuous problems, it has not been studied 

before in real transportation networks. We propose an exact model and a heuristic 

procedure, able to solve large size instances up to optimality. Both methods were tested in 

a real case study for HAZMAT transportation in the transportation network of Santiago, 

Chile. The results of the exact model show how the solutions change depending on the 

radio of the danger zones. This problem is easily solved using the proposed heuristic. 

Note that avoiding danger zones is attractive both for population and regulators. From 

an opposite side of the road, freighters aim for operating cost minimization. Because of 

that, we then formulate a bi-criteria problem that captures the relationship between the 

maximin and minimum cost objectives. The approach is able to generate a set of efficient 

solutions in a real-size instance, to show the effects of different policies. 

The second proposed approach considers HAZMAT transportation between multiple 

OD pairs in urban zones. It also focuses on the protection of vulnerable and hard-to-

evacuate population. The method, denoted maxisum HAZMAT routing problem (MsHRP), 

maximizes the weighted sum of the distances between vulnerable centers and the arcs of 

the closest routes (maxisum objective). Then, we combine the maximin and maxisum 

objectives in the maximin-maxisum HAZMAT routing problem (MmMsHRP), as a bi-

criteria approach that considers both objectives. In both cases, maximizing the weighted 

distances is a proxy of minimization of the danger. The maxisum and maximin-maxisum 

methods are appropriate to find a route over the transportation network that is ‘as far as 

possible’ from the existing vulnerable centers. 

As both the MsHRP and the MmMsHRP belong to the class of NP-Hard problems, we 

propose MIP formulations and heuristic procedures. These procedures allow us to solve 

large instances of these problems, which is particularly relevant when multiple OD pairs 
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are considered. Results show that the MsHRP minimizes the danger to which all the 

population is exposed, reducing the number of vulnerable centers and potentially exposed 

individuals. On the other hand, there are vulnerable centers that are exposed to a large 

danger. This issue is addressed by the bi-criteria formulation (MmMsHRP). 

In our third approach, we define a general danger function, adding population exposure 

as a new estimator. The results show that adding both the total danger and exposure time in 

a bi-objective model allow the appearance of solutions where some vulnerable centers 

experience high danger levels and exposure periods. Then, we propose a second model that 

minimizes the total danger to which population is exposed, subject to that both the 

exposure period and danger for every population center are lower than some predefined 

upper bounds. We conclude that adding these upper bounds allow us to control the 

maximum danger and exposure time of every population center. As a trade-off, the total 

danger and exposure period increased for all the population.  

We highlight that the objectives proposed in this thesis can be combined with other risk 

and danger estimators from the literature. Finally, the modeling approaches proposed on 

this thesis allow us to support the HAZMAT transportation decision making. We are able 

to protect the most vulnerable or hard-to-evacuate population, if a HAZMAT incident 

occurs. Using our approaches, the stakeholders involved in decision making could have a 

set of efficient solutions. These represent their preferences and interests, but also the 

consequences (danger) to the population. Then, our approaches are attractive to support 

decision making from a danger-control perspective. 
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