

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

ESCUELA DE INGENIERIA

UPDATING SPARQL FEDERATED

QUERIES TO INTEGRATE JSON API

SOURCES

 MATTHIEU MOSSER

 Proyecto para optar al grado de

Magister en Ingeniería UC.

 Profesor Supervisor:

JUAN REUTTER

 Santiago de Chile, (Agosto, 2017)

© 2017, Matthieu MOSSER

ACKNOWLEDGEMENTS

First, I would like to thank Juan L. Reutter, Assistant Professor in the Pontificia Universidad

Catolica de Chile, for his proposition to collaborate on this interesting project, his

availability, suggestions and understanding relative to my situation as international student.

Then, I’m also truly thankful to Adrián Andrés Soto Suarez, PhD student in the Pontificia

Universidad Catolica de Chile, for our weekly meetings and the continual help about

technical requirements. Working with them has been a real pleasure.

Finally, I also want to thank Daniela Bahamondes Vidal from the Pregrado administration

and Danisa Herrera Campos from the Postgrado administration, who helped me in the

administrative procedures of my double-degree between the Pontificia Universidad Catolica

de Chile and the Ecole Centrale. I wouldn’t have managed to produce this work without their

attention to help me in the process.

CONTENTS

Page.

ACKNOWLEDGEMENTS ... 3

CONTENTS ... 4

TABLES INDEX ... 1

FIGURES INDEX .. 2

RESUMEN ... 3

ABSTRACT ... 4

1. INTRODUCTION .. 5

2. NOTATIONS.. 7

2.1 RDF Graphs .. 7

2.2 SPARQL Syntax and Semantics .. 7

2.3 JSON documents and navigation instructions .. 9

2.4 Federation extension in SPARQL 1.1 .. 9

3. UPDATING THE FEDERATED QUERIES IN APACHE JENA 11

3.1 Antecedents .. 11

3.2 Methodology .. 13

3.3 Extending the JSON incorporation abilities ... 14

3.4 Implementation of the federated query update ... 19

4. EXPERIMENT AND OPTIMIZATION .. 23

4.1 Dynamic programming to reduce the API Calls 23

4.2 Streaming the results to optimize the processing times 29

4.3 Experimental results ... 31

5. CONCLUSION AND FUTURE WORK ... 36

BIBLIOGRAFY ... 39

APPENDICES .. 41

APPENDIX A: JAYWAY JSONPATH DOCUMENTATION 42

APPENDIX B-1 : SOURCE CODE – CROSS PRODUCT IMPLEMENTATION . 44

APPENDIX B-2 : SOURCE CODE – PARSER OF API SERVICE QUERY 46

APPENDIX B-3 : SOURCE CODE – PARSE TRIPLETS GROUPED BY BLOCK49

APPENDIX B-4 : SOURCE CODE – API OPTIMIZATION 54

APPENDIX B-5 : SOURCE CODE – PIPELINE IMPLEMENTATION 61

APPENDIX C-1 : CONSTRUCTION METHOD – TESTING RDF DATABASE . 66

APPENDIX C-2 : SOURCE CODE - TESTING JSON API 67

APPENDIX D : PRACTICAL USE CASE – QUERY & RESULTS DETAILS 68

1

TABLES INDEX

Page.

Table I-1: Parsing of the pre-incorporation SPARQL query into triples grouped by blocs.

Each line corresponds to one bloc. ... 26

Table II-1: Results details for the comparison of the 4 execution methods. 69

Table II-2: Results mean values (obtained from details) for the comparison of the 4 execution

methods. .. 69

Table II-3: Results details for the comparison of the classic and streaming methods while

using a LIMIT optional bloc ... 69

Table II-4: Results details for the comparison of the queries over a single API instead of

both. .. 69

2

FIGURES INDEX

Page.

Figure 1.1: Description of the standard SPARQL query used in the project. 8

Figure 3.1: Cross-product between arrays extracted from a JSON document 17

Figure 3.2: Algorithm to incorporate the JSON objects’ values into the results of the pre-

incorporation SPARQL query. ... 19

Figure 4.1: Representation of a SPARQL query as a graph pattern 25

Figure 4.2: Example of application of the algorithms of optimization……………...28

Figure 4.3: Comparison of the classic execution chain and the pipeline one……….29

Figure 4.4: Comparison of the processing times of the Twitter API and the

Openweather one……………………………………………………………...32

Figure 4.5: Comparison of the processing times of the query execution methods….33

Figure 4.6: Comparison of the processing times of the classic and streaming query

execution methods with the LIMIT option…………………………………...35

3

RESUMEN

 Si la publicación de datos semánticos en el formato RDF explotó en los años pasados

(Bizer, Heath & Berners-Lee, 2009), la mayoría de los datos disponibles en el Web queda

inaccesible a los servicios del Web Semántico (Junemann, Reutter, Soto & Vrgoc, 2016).

Este proyecto propone lograr acercarse de la visión del W3C gracias a la conexión de las

tecnologías y bases de datos del Web con el formato estandarizado RDF. Los datos

disponibles a través de Web APIs en el formato JSON están más específicamente

considerados por su alta presencia en el Web que implica numerosos casos de uso asociados.

Primero, se busca a través del proyecto extender las capacidades de incorporación de los

documentos JSON en las respuestas a las consultas SPARQL, respeto a la implementación

de Junemann, Reutter, Soto and Vrgoc (2016). Al fin de lograrlo se propone la integración

de un módulo existente de navegación en el documento JSON en vez del uso de una

implementación propia. Segundo, proponemos implementar la extensión como una

actualización de las consultas federadas, accesibles por la palabra clave SERVICE según el

estándar SPARQL 1.1, en vez del operador BIND propuesto por Junemann, Reutter, Soto

and Vrgoc (2016). Finalmente, presentamos dos optimizaciones del módulo al fin que tenga

una mejor usabilidad. Las características claves evaluadas son el número de llamadas a las

APIs por las limitaciones que muchas Web APIs existentes tienen, y el tiempo de proceso

de la consulta que suma el tiempo de proceso de la base de datos con el de la llamada a la(s)

API(s).

Palabras Claves: Web Semántico, Consultas federadas, Web API, Incorporación de data,

SPARQL 1.1

4

ABSTRACT

Even with the explosion of semantic data over the past years through the publication of

billions of data in the RDF format (Bizer, Heath & Berners-Lee, 2009), the W3C’s vision is

still far to be accomplished as most of data available on the Web remains out of reach to

Semantic Web services (Junemann, Reutter, Soto & Vrgoc, 2016). That’s why further

advancements are proposed in this work to achieve and create Linked Data by making

available existing technologies and databases for the RDF common format. The data

exposed by Web APIs in a JSON format is more specifically addressed for its common use

in the Web, so the numerous associated use cases.

First, the project includes new capacities to incorporate JSON into the SPARQL queries

responses respecting to the implementation of Junemann, Reutter, Soto and Vrgoc (2016).

One way to do it is to use an existing JSON management library instead of using a proper

one. Second, we propose to integrate the module as un update for the federation extension

of SPARQL 1.1, accessible by the SERVICE keyword, instead of extending the BIND

operator as proposed by Junemann, Reutter, Soto and Vrgoc (2016). Finally, we present two

optimizations to improve the module’s usability. The key performance indicators which are

evaluated are the number of API calls made by the query execution and the total processing

time. First indicator is justified by the limitations imposed by numerous Web APIs. The

second sums the DB processing time and the API processing time and impacts directly the

usability of the implementation as huge amounts of data are susceptible to be queried by the

Web Semantics users.

Keywords: Semantic Web, Federated Queries, Web API, Data Incorporation, SPARQL 1.1

5

1. INTRODUCTION

Semantic Web, also called Web 3.0, refers to W3C’s vision of a machine-readable Web of

data communicating cross multiple distinct sources1. Its purpose is to lead the Web to its full

potential (Berners-Lee, Hendler & Lassila, 2001). It has been founded on three main

standards. The Resource Description Framework (RDF)2 enables publishing and connecting

the data in the Web (e.g. A is married to B will link A to B by the “is married” relation)

following the best practices referred by the term of “Linked Data”. The Web Ontology

Language (OWL)3 associates understandable meanings to the information (e.g. A is married

to B means that B is married to A). The Service Protocol and RDF Query Language

(SPARQL)4 allows to retrieve those data as easily as SQL does for relational databases (e.g.

Select the name of A which is married to B will look for the linked property “name” of the

entities A linked to entities B by the relation “is married”).

In this work, we propose some advancements to achieve and create Linked Data5 by making

available current Web technologies to the RDF format. Indeed, even with the explosion of

semantic data over the past years (Bizer, Heath & Berners-Lee, 2009), the W3C’s vision is

still far to be accomplished as most of data on the Web remains out of reach to Semantic

Web services (Junemann, Reutter, Soto & Vrgoc, 2016). We address more specifically the

data exposed by Web APIs in a JSON format. Its common use in the Web allows to develop

numerous use cases. The final output is a second version of the SPARQL extension

1 https://www.w3.org/standards/semanticweb/
2 https://www.w3.org/RDF/
3 https://www.w3.org/OWL/
4 https://www.w3.org/2009/sparql/wiki/Main_Page
5 https://www.w3.org/standards/semanticweb/data

6

developed by Junemann, Reutter, Soto and Vrgoc for the 15th International Semantic Web

Conference in Kobe, Japan (2016).

In a first section, we explicit the notations which are going to be used. Then, the second

section describes the core of this investigation. It consists in updating the Apache Jena

implementation of the SPARQL federation extension to manage queries on JSON Web

APIs. This extension has been included in SPARQL 1.1 to deal with the inherent

distributivity of semantic data over the multiple SPARQL endpoints (Buil-Aranda, Arenas

& Corcho, 2011). It is consequently a logical step to update it to address the distributivity

and variety of the whole data present in the Web. The last section exposes the experiments

and optimizations which have been produced to improve the usability of the component.

Finally, this document is concluded by the identification of further works.

7

2. NOTATIONS

In this section, we explain some notations relative to the Web Semantics and the JSON

language that are going to be used in the next sections.

2.1 RDF Graphs

An RDF triple is defined as the composition of a subject “s”, a predicate “p” and an object

“o”. If we take back the relation “A is married to B” from the introduction, the triple would

consequently be: (“s”: “A”, “p”: “is married to”, “o”: “B”). The subject and the object can

be IRIs (I), literals (L) or blank nodes (N), while the predicate is necessarily an IRI. The set

of RDF terms T is I∪L∪B. An RDF graph is defined as a finite set of RDF triples. Following

the approximation done by Junemann, Reutter, Soto and Vrgoc (2016), it is assumed here

that an RDF database consists of a single RDF graph.

2.2 SPARQL Syntax and Semantics

It is assumed that the reader is familiar with the syntax and semantics of SPARQL 1.1 query

language. The structure of SPARQL patterns, and its semantics as used in this work, are

described to help the reader better understand it. The focus is on the SELECT queries, which

are built over terms T and an infinite set V = {?x,?y,...} of variables, disjoint from T. The

queries are formed by blocks which can be inserted the ones into the others. In this work, it

is assumed that each SPARQL query is a concatenation of a set of blocks, where each block

is either a SPARQL structural block (PREFIX, SELECT, WHERE, OPTIONS) or a subset

of restrictions.

8

Figure 1.1: Description of the standard SPARQL query used in the project.

As shown in the previous figure, the WHERE block is composed by sub-blocks. This work

introduces the API SERVICE block. It is an update of the SERVICE feature defined by the

SPARQL 1.1 standard to query data from remote SPARQL endpoints. The API SERVICE

block allows to query JSON Web APIs instead of SPARQL endpoints. The WHERE

restrictive block concatenates consequently:

• classic restrictive blocks composed by triples of T∪{?x1,…?xn} which are separated

the ones from the others by the dot or the dot-coma ;

• SPARQL SERVICE and API SERVICE blocks ;

9

• VALUES block following the pattern: VALUES (?x1 ?x2 ... ?xn){(l1)(l2) ... (lm)}

with ?x1 ?x2 ... ?xn as a list of variables and l1 l2 ... lm as lists of elements from

T∪{UNDEF}, each of size n.

VALUES pattern allows to restrict the variables of a query to values stored into

mappings. A mapping would be for example: (“x”: “value1”, “y”: “value2”, “z”:

“value3”). We define the concept of Mapping Set as a list of mappings and the list of the

variables of the mappings. In the continuation, the notion of section of a SPARQL query

will also refer to the notion of block.

2.3 JSON documents and navigation instructions

The JSON documents are structured with keys which refer to values such as {“key”:

“value”}. To navigate in a document, we start from its root which is the level 0 of keys and

return the whole document. Then, we navigate between the different levels of keys and

arrays elements by calling them. It is also possible to filter values through numerical filters

or regular expressions.

2.4 Federation extension in SPARQL 1.1

For the inherent distribution of data over SPARQL endpoints, the problematic of federated

queries disposes already from a consistent background of investigations produced by the

Semantic Web Research community (e.g. Görlitz & Staab, 2011; Rakhmawati, Umbrich,

Karnstedt, Hasnain & Hausenblas, 2013). It has been recently integrated to the SPARQL 1.1

standard through the keyword SERVICE which allows to query a specified SPARQL

10

endpoint while imposing constraints to the linked variables. However, few works focused

on the federation extension and its optimization (Buil-Aranda, Arenas & Corcho, 2011).

The Apache Jena Framework includes also the SERVICE feature through the Jena-arq

library to execute query to make a SPARQL protocol to another SPARQL endpoint. The

documentation specifies however that it is “not a general solution to the issues in distributed

query evaluation” (The Apache Jena Manual, 2017). Indeed, the use of the feature affects

considerably the speed of execution.

Considering the similarities between, in one side, the format and functions (URI call,

authentication, timeouts, endpoint configuration) associated to the existing SERVICE

feature, and on the other side, the needed functionalities and proposed grammar to

incorporate data from Web APIs, we identified an interest to revisit the implementation of

the BIND_API extension as an extension of the SERVICE feature, allowing to execute calls

to Web APIs in addition to the remote SPARQL endpoints. Indeed, the proposition also

makes sense at a problematical level, as the project can be considered as a trial to federate

RDF data and JSON data from Web APIs while executing the SPARQL queries.

11

3. UPDATING THE FEDERATED QUERIES IN APACHE JENA

In this section, we first describe the antecedents of this work with a focus on the paper

“Incorporating API data into SPARQL query answers” presented by Junemann, Reutter,

Soto and Vrgoc during the 15th International Semantic Web Conference in Kobe, Japan

(2016). Then, we detail the methodology which has structured this investigation. Finally, we

describe separately the improvements of JSON incorporation capabilities and the

implementation of the proposed SPARQL federation query update.

3.1 Antecedents

In their paper, Junemann, Reutter, Soto and Vrgoc (2016) identified an interest in

incorporating Web API data into RDF data while querying it. Indeed, the principal

limit to W3C’s vision remains the minority of data accessible by Web Semantic

services comparing to the whole amount of data generating by the Web. Addressing

in a first time JSON Web API, the authors proposed a new approach to include those

inaccessible data by binding it to RDF data while processing the SPARQL queries.

There has been a lot of work to enable SPARQL as an API through usable endpoints6

and some investigations to convert the data from JSON to RDF format (e.g. Kobayashi

et al., 2011). However, Battle and Benson (2008) are the only ones to have proposed

a similar way to access API data, which do not depend on a codification into RDF but

on an on-call RDF wrapper. The strength of the Junemann, Reutter, Soto (2016) and

6 https://open-data.europa.eu/en/linked-data

12

Vrgoc extension is to be less restrictive on the return format of API calls, and so,

compatible with modern JSON APIs as the Apache Jena framework.

Although their proposition doesn’t allow to achieve completely the vision of the Web

Semantic as described by Berners-Lee, Hendler and Lassila (2001), as the no-RDF

data will remain poorly structured and meaningful in the sense of the Web Semantic,

it is an important step for the field to develop concrete and complex use cases based

on the RDF and SPARQL standards. It could finally represent an issue to the

complexity of producing good RDF data which limits the expansion of the Web of

data.

Concretely, the researchers proposed to extend the BIND operator with the new

grammar: BIND_API <URL> { (JSON_PATHS) AS (ALIASES) }. The

implemented strategy can be resumed by a recursive decomposition of the query in

three sub-queries: what comes before the BIND_API block, the BIND_API block,

what comes after. The first sub-query corresponds to a classic SPARQL query which

should be run before the API call to retrieve the JSON data. The second one produces

an on-call conversion of the JSON data requested from the API to a Mapping Set. The

Mapping Set is then readable in a VALUES block by the final SPARQL query.

This work attempts to develop a second version of the proposed extension to allow a

better incorporation of JSON APIs data in the results of the SPARQL grammar, and

so, increase the number of relative use cases. The only part of the implementation

13

which has been used but kept unchanged is the management of authentication

strategies to access the distinct APIs.

3.2 Methodology

The whole project was executed under an agile methodology of computation. It started

with a step of capacitation and code appropriation and followed with three “Sprints”.

The first Sprint focused on the improvement of JSON incorporation capacities (see

section 3.3), the second Sprint on the test of the SERVICE feature with Apache Jena

Framework, the design and the implementation of the proposed update (see section

3.4), and the last Sprint on the experiment and optimization of the implementation (see

section 4).

We structured the developments with a Test & Learn approach. The cyclical execution

of design, implementation and testing tasks allowed us to develop robust functions

facing the multiple use cases in a short time. Under that perspective, we implemented

two testing tools: an RDF local database containing triples extracted from the DBPedia

endpoint, and a local JSON API programmed in NodeJS. The construction query of

the RDF database tool and the source code of the JSON API tool are respectively

exposed in the appendix C-1 and the appendix C-2. Those tools allowed us to deploy

easily the scalable tests of our strategy.

Our battery of test on the implementation of the SPARQL federation query update was

composed by queries including the next items:

14

• A simple API: <http://localhost:3000/api>

• A simple SPARQL remote endpoint: <http://dbpedia.org/sparql>

• Multiple APIs

• Combinations of API/remote endpoint:

API – sparql

Sparql – API

API – sparql – API

• Load test with local API: 9216 mappings

Total time processing: 591.370505972 API: 3.602020148 DB: 587.768485824

We also tested all the potential cases of the product cross while calling an API

(described in the next section), and different paths including sequences of character

susceptible to trouble the algorithm.

Finally, we made a consistent effort to produce code following the best practices of

programming that are:

• the documentation of the functions through clear standardized commentaries ;

• the traceability of the code using git and github ;

• the modularization of the functionalities.

3.3 Extending the JSON incorporation abilities

Integration of a JSON navigation library

The first version of the extension developed by Junemann, Reutter, Soto and Vrgoc

(2016) included its proper navigation method inside the JSON document. In a first

15

time, this method has been extended in the current work to be able to return complete

arrays from the JSON document thanks to the key [*], and not only one indexed

element at a time. However, if the proper method had for advantage a great flexibility

to prove the concept, we needed something more powerful in this second step in terms

of scalability and robustness. That’s why we chose to integrate an existing module.

Until March 2017, no W3C standards had been defined to navigate or query JSON

data. However, the W3C referred to three main query languages under development

which are JSONpath, Jaql and JSONiq7. JSON Path is defined as a Xpath-like tool to

navigate in the JSON document with no need to convert to or from XML. Jaql has

been initially developed by IBM and is oriented to deal with Big Data problematic.

Finally, JSONiq is based on the XQuery standard to query JSON data instead of XML

data. All JSONiq functionalities were included in the XQuery 3.1 version in March

20178, so the W3C query language standard handles now JSON data in addition to the

XML ones. The standard XPath was also released in March 2017 to include JSON

navigation in its version 3.19. These recent advancements for the JSON manipulation

standardization have great implications for the project. The use of XPath or XQuery

would depend on the levels of liberty and complexity that the project is looking for the

manipulation of data from APIs. Both would allow to easily incorporate XML data in

a recent future.

7 https://www.w3.org/standards/webarch/metaformats
8 https://www.w3.org/TR/xquery-31/
9 https://www.w3.org/TR/xpath-31/

16

Nevertheless, the last releases of those standards still do not offer simple and trustable

implementations for Maven Java Projects which could be integrated to the Apache

Jena framework. Indeed, the universal Java Xpath engine called Jaxen was last

released on December 2013 and the XQJ API was last released on October 2016. On

the contrary, the JSONpath disposes from the Java DSL Jayway Jsonpath10 available

under an Apache License 2.0 which can be easily integrate to Maven projects, offers

all the navigation functionalities needed at this step of the project, is accompanied by

a clear documentation and a good community responsiveness. for the chosen

implementation of the project over the Apache Jena framework, we chose to use this

DSL at this step of project, despite its unstandardized characteristic.

The appendix A provides an extract of the Jayway Jsonpath documentation which

exposes how to integrate it in the pom.xml of a Maven Project, the operators to

navigate in the JSON document, the available functions to manipulate the numerical

values, and the operators to filter the values as the regex one, for example. The DSL

also offers the opportunity to run a Filter API, to develop its one predicate, to choose

to return paths instead of values, to tweak the configuration. It is shipped with three

different JSON Provider SPI and allows API consumers to configure path caching. At

this step, we only occupied the basic navigation operators to return values associated

to simple key or arrays.

10 https://github.com/json-path/JsonPath

17

Implementation of the cross-product

The code source is available in the appendix B. The cross-product implementation

refers to the incorporation of the data from two JSON-extracted arrays into the results

of the SPARQL query. It takes two JSON arrays as inputs and produces a Mappings

set as output. The next figure illustrates the attended result.

Figure 3.1: Cross-product between arrays extracted from a JSON document

The final Mappings Set should include the RDF data which had been answered by the

pre-incorporation query. We defined consequently a local array of mappings which is

completed and merged into the final mapping at each iteration over the results of the

pre-incorporation sub-query.

Four cases need to be differentiated to complete the mapping array. First, the object

returned by the path into the JSON document can be a simple JSON value, or a JSON

array. The object’s type has implementational consequences that need to be

considered. Independently of the type, the behavior of the algorithm also changes if

we are incorporating values of the JSON document for the first alias or the next ones.

18

Indeed, if we consider that there are n values in the returned object associated to the

alias. For the first alias, n new mappings should be added in the local array of

mappings, while for the next ones, m x (n-1) mappings should be added to the array

(m the number of mappings already in the array).

The next figure illustrates the algorithm and the mentioned considerations. The relative

query of the illustration could be written as:

SELECT ?value ?girl ?boy WHERE {

 ?value <http://example.com.isPartOf> <http://example.com.valuesSet> .

 BIND_API <http://localhost:3000/q={value}> (([“girls”][*], [“boys”][*]) AS

(?girl, ?boy))

}

19

Figure 3.2: Algorithm to incorporate the JSON objects’ values into the results of

the pre-incorporation SPARQL query.

Note: The strong values represent the new values added to the mapping at the given step.

The mappings in grey represent the new mappings added to the local mapping array.

3.4 Implementation of the federated query update

The main part of the updated implementation consists in a parser capable to identify a

SERVICE bloc calling a Web API instead of a SPARQL endpoint in the queries. The

source code of the parser is exposed in the appendix B-2. We updated the grammar

proposed by Junemann, Reutter, Soto and Vrgoc (2016) with the keyword SERVICE

20

and the use of the Java DSL Jayway Jsonpath. Then, a select query including one or

more API SERVICE follows the format:

SELECT variables WHERE {

first constraints and options

SERVICE <url> { (paths) AS (aliases) }

last constraints and options

}

Another grammatical rule is that the paths start with the root operator “$.” as defined

by the Java DSL Jayway Jsonpath and are separated by comas. The aliases start with

an interrogation point, contain then only alphanumerical symbols and are separated by

comas.

All this grammar allowed us to define a regex capable to match only the blocs

following those rules, so the program executes the algorithm of the extension instead

of the classic SPARQL protocol. The algorithm proposed by Junemann, Reutter, Soto

and Vrgoc (2016) which is described in section 3.1 separates recursively the query into

three sub-queries. So, the parser needs to identify distinct sections of the query to

execute correctly the algorithm. The SELECT section of the query contains the

selected variables to return at the end. The FIRST section contains the constraints to

apply on the selected and unselected variables before calling the API. This section can

be one unique block or a combination of several blocks including constraints to apply

to the local data and constraints to apply to the data from a remote SPARQL endpoint

accessed thanks to the feature SERVICE from SPARQL 1.1. The URL, PATH and

21

ALIAS sections contain together all the information to call the Web API through the

URL. They allow to look for the data to return from the JSON document and associate

a variable name to the extracted values while mapping them. Finally, the LAST section

is submitted to the recurrence, so the algorithm looks for another API SERVICE bloc

which could come later in the query.

If the parsing of the URL and ALIASES is quite easy for their constrained format. The

parsing of the PATH is more complicated as it can include a regex allowing to access

the data of the JSON document. So it can include all characters, sequenced in ways

which could conduce to unwanted matches. That’s why we chose not to run one unique

regex matcher but to use several splits on the more constrained parts of the query, until

we had only the paths left. On their side, the sections PATH and ALIAS are parsed

into arrays containing the several paths and aliases so the precedingly mentioned

method to map the JSON objects into a Mapping Set takes them directly as parameters.

The separation of the query into sub-queries is allowed using the VALUES operator

of the SPARQL grammar. Indeed, the results of the intermediate queries are stocked

into a Mapping Set which is serialized and transmitted to the next query thanks to this

operator. It is important to notify that the Mapping Set needs to contain all the values

of the variables on which the next queries depend. It means that the used but unselected

variables should be selected in these queries.

The final query to be run don’t include any API SERVICE bloc and takes the format:

22

SELECT variables WHERE {

VALUES (used variables) { (mappings) }

last constraints and options

}

We also added in this updating the management of prefixes and improved the

behaviour of the algorithm when escape characters are used to format the query, could

it be in a good or a wrong way.

23

4. EXPERIMENT AND OPTIMIZATION

The query processing is evaluated through two principal key performance indicators. The

first one corresponds to the total time processing of the query, which is the sum of the API

and Database processing times. As users are susceptible to query huge amount of data, the

indicator is essential for the usability of the extension. The second one is the number of API

Calls. Web APIs limit generally the number of requests that a user can make. It is

consequently essential to avoid making useless requests over those APIs. In addition, the

API time processing has been identified as a limiting factor which needs to be optimized

(Junemann, Reutter, Soto & Vrgoc, 2016). This section exposes some obtained results and

describes two optimizations proposed to improve the performance of the updating according

to those indicators.

4.1 Dynamic programming to reduce the API Calls

We propose to use an optimization strategy called “Dynamic programming”. It ensures in

traditional relational databases to find the optimal query execution plan for any given query.

In our case, the optimal query execution plan corresponds to the one which minimize the

number of API Calls.

A first basic approach is to change the pre-incorporation SPARQL query to identify and

select only the variables which are inserted in the URL of the API as parameters. We avoid

then to have useless results over which the algorithm of incorporation would iterate and call

the API. However, this strategy imposes to copy the constraints of the pre-incorporation

query and to paste them in the post-incorporation one. Otherwise, information are lost and

24

the results of the query are changed. Because of the copy/paste, this approach has the

inconvenient to increase the query processing times as the first query is duplicated.

Considering that the time processing is also defined as a key performance indicator, and that

the SERVICE feature of SPARQL 1.1 isn’t optimized in Apache Jena so its duplication in

the query can potentially alter seriously the indicator, an optimization of this method would

be more than welcome.

One challenge here is so to identify which constraint of the pre-incorporation SPARQL

query should be processed before the incorporation, which ones should be processed after

the incorporation and which ones need to be processed in both. To do so, we designed and

implemented two graph algorithms that we run on the pre-incorporation SPARQL query.

The next figure illustrates how the constraints of a SPARQL query can be modelized as a

graph pattern. Before explaining the two algorithms of optimization, we propose some

definitions about the variables and triples of a given graph pattern P. V(P) is the set of

variables of P.

Strongly bounded variables: We propose the notation (? 𝑥 =? 𝑦)𝑃 for ?x strongly bounded

to ?y in P. Considering ? 𝑥, ? 𝑦 ∈ 𝑉(𝑃), (? 𝑥 =? 𝑦)𝑃 is defined as:

∃𝑝 ∈ 𝐼 ∪ 𝑉, (? 𝑥, 𝑝, ? 𝑦) ∈ 𝑃

 Bounded variables: We propose the notation (? 𝑥−? 𝑦)𝑃 for ?x bounded to ?y in P.

Considering ? 𝑥, ? 𝑦 ∈ 𝑉(𝑃), (? 𝑥−? 𝑦)𝑃 is defined as:

∃? 𝑧𝑛 ∈ 𝑉(𝑃)𝑛+1, (? 𝑥−? 𝑧0)𝑃, ∇𝑖 ∈ [0, 𝑛 − 1], (? 𝑧𝑖 =? 𝑧𝑖+1)𝑃, (? 𝑦 =? 𝑧𝑛)𝑃

25

We assume that n can be null and we retrieve so the strong boundedness in P.

Independent variables: We propose the notation (? 𝑥|? 𝑦)𝑃 for ?x independent to ?y in P.

Considering ? 𝑥, ? 𝑦 ∈ 𝑉(𝑃), (? 𝑥|? 𝑦)𝑃 is defined as: ! (? 𝑥−? 𝑦)𝑃

Unbounding triple: T is an unbounding triple for ?x in P ↔ 𝑉(𝑃) ∩ 𝑇 = {? 𝑥}

Figure 4.1: Representation of a SPARQL query as a graph pattern

Note: The circles represent nodes and the continue lines represent the links of the graph pattern

P. The pointed line represents a link created using an API SERVICE bloc. A symbol (circle or

line) in red represents a variable of V(P) and a symbol in black represents an element of T.

26

We implemented a new class to enable the transformation of the constraints from a pre-

incorporation SPARQL query to a graph pattern. The source code of the class and its relative

methods is exposed in the appendix B-3. The query is parsed into triples which are grouped

by blocks. A block can be a basic SPARQL block or a SPARQL 1.1 SERVICE block which

keeps the information of the remote endpoint’s URI. Options such as a FILTER operator are

also kept at the level of the block.

Table I-1: Parsing of the pre-incorporation SPARQL query into triples

grouped by blocs. Each line corresponds to one bloc.

Type URI Triplets Options

SERVICE http://dbpedia.

org/sparql

?place dbp:country <http://dbpedia.org

/resource/Chile>

<http://dbpedia.org/

resource/Chile>

geo:lat ?latCountry

<http://dbpedia.org/

resource/Chile>

geo:long ?longCountry

BASIC ?place geo:lat ?lat

?place geo:long ?long

SERVICE http://dbpedia.

org/sparql

?place rdfs:label ?label FILTER(lang

(?label) = 'es')

.

Both algorithms of optimization start from the basic case which duplicates all the triples of

the pre-incorporation SPARQL query into the post-incorporation query, grouped by blocs.

27

Then, the first one eliminates the triples which are not needed from the pre-incorporation

query and the second one does the same with the post-incorporation query.

Unwanted triples in the pre-incorporation query correspond to all triples that contain one or

more variables independent from the inserted variables. Indeed, those triples have no

influence on the result of the query selecting the inserted variables and can consequently be

included only after the incorporation. The algorithm recognizes recursively the variables

which are bounded to the inserted variables. At each iteration, it recognizes the variables

which are strongly bounded to the previously recognized variables and eliminates the

relative bounding triples from the triples to browse. Once there is no more triple to browse

or once there is no new recognized variable, the iteration stops and all triples which had not

been eliminated are eliminated from the pre-incorporation query. If a block has no more

triple, it is eliminated. Else, the bloc is kept with all its relative information less the

eliminated triples. If we take back the example of the figure 5.1, the variables ?longCountry

and ?latCountry are independent from the variable ?label. The two triples inside of the first

SERVICE bloc which include those variables should consequently be eliminated from the

pre-incorporation query, but not the entire bloc as it still contains one triple.

Unwanted triples for the duplication into the post-incorporation query are the unbounding

triples which contain an inserted variable. Indeed, as those triples do not implicate another

variable, all their restricting information is already transferred to the post-incorporation

query through the operator VALUES. The second algorithm looks consequently for the

triples which contain the inserted variables. If they don’t contain another variable, they are

28

eliminated from the triples to add to the last query. As explained for the previous algorithm,

a block is eliminated only if it has no more triple.

Figure 4.2: Example of application of the algorithms of optimization

This global method also identifies the inserted variables before applying the described

algorithms. It is exposed in the appendix B-4. All optimization methods relative to the API

calls have been grouped in a separate ApiOptimizer java class. It also includes the cache

method which had been implemented by Junemann, Reutter, Soto and Vrgoc (2016) and has

been tested and maintained in this version.

29

4.2 Streaming the results to optimize the processing times

The first version implemented the execution of the SPARQL query as a chain of sub-

queries and calls to the mapping method which use the results of the precedent chain

link as parameters for the next one. This choice can have serious implication for the

time processing performance indicator if large intermediate results are produced or some

data sources (Web APIs or SPARQL endpoint) have bad response times. That’s why we

propose in this section a new method of execution which allows to stream the results of

the complete query. Concretely, we execute the first sub-query of the chain and, instead

of waiting for all its results to be generated before calling the next method, this one is

immediately executed taking as parameter only one result. The process is recursive so

the whole chain execution is completed over one result before starting again with the

next result. The source code of the function is exposed in the appendix B-5.

Figure 4.3: Comparison of the classic execution chain and the pipeline one.

30

The class ResultSet which is the format in which Apache Jena returns the results

of a SPARQL query doesn’t allow to merge two sets in once. That’s why the

pipeline execution method returns a MappingSet which has been completed at each

iteration. For the consistence of the results with the ones obtained by the classic

method, we convert at the end the MappingSet into a ResultSet to be print. To do

so, we execute a final SPARQL query using the operator VALUES which contains

all the mappings.

The streaming (or pipeline) method is particularly interesting for the query using

the operator LIMIT as it allows to stop the recursive algorithm once the number of

results is reached. On the contrary, the classic execution method would process all

the results in a first time, and applies the LIMIT in a second one. That’s why even

if we implemented both execution methods and chose to let the control to the final

user on which method he or she wants to use, we also took the decision to force the

choice of the “pipeline” method when a LIMIT operator is used on the global

query. Indeed, the time processing are significantly reduced doing so as exposed

in the next section.

For the case of a SELECT DISTINCT query using the LIMIT option, we

implemented a new method in the class MappingSet to be able to add only the

distinct mappings from one MappingSet to another one while executing the

recursive function. So, when we convert the MappingSet into the ResultSet with

31

the ultimate SPARQL query, all the mappings serialized as a VALUES block are

already distinct and we get correctly the amount of results equals to the limit.

4.3 Experimental results

This section analyses the results of the distinct methods applied to a practical use case.

The results details and the executed query are exposed in the appendix D. The query

was constructed over the Twitter API and the Openweather API. The first one needs

an authentication to be accessed while the second one only needs a valid parameter

called “appId” in the URL. We propose a query which returns the number of retweets

of the 15 most recent tweets, and the current weather, both relative to the 52 cities of

Chile which are stored in yago with the type “Capital108518505”. We also use the

remote SPARQL endpoint of DBpedia to access the labels of the cities as they are not

kept in our local database (see appendix C-1).

To better understand the behaviour and results to attempt for both APIs, we ran in a

first time the query keeping only one of the two API SERVICE blocs. The next figure

allows to observe that a call to the Twitter API consumes more time than the one to

the Openweather API, as it was predictable for their respective access strategy. Both

queries count 52 API calls, one for each city. The query with the Twitter API call

returns 633 results, instead of the 52 x 15 = 780 attended results. This is caused by an

error of connection to the API for some cities which returns one undefined number of

retweets instead of the 15 mappings. The query with the Openweather API responds

32

52 results: one weather description is assigned to each city, although it could be more

as the API returns an array of descriptions.

Figure 4.4: Comparison of the processing times of the Twitter API and the

Openweather one.

Then, we ran three times a battery of 4 tests to compare the key performance indicators

of each execution method. The classic method refers to the execution without

optimization, the min API method refers to the activation of the dynamic programming

over the query plan to minimize the number of API calls, the pipeline method refers

to the streaming execution, and the last method combines the activation of both

optimization algorithms.

33

Figure 4.5: Comparison of the processing times of the query execution methods.

We can observe in the results of the previous figure that the optimization to minimize

the number of API calls reduces drastically the number of calls in comparison with the

classic method. We have indeed 104 calls, that means 1 for each city and for each API,

while the classic method multiplies the API calls for the incorporation of twitter data

which generates new mappings before the call to the Openweather API. A significant

reduction of the API processing time is associated to the reduction of API calls.

However, the increase in the DB processing time is much bigger and makes the total

processing time more than 3 times higher than the classic one. That can be explained

by the duplication of restrictions in pre-incorporation and post-incorporation SPARQL

queries. The method generates huge VALUES blocks which impact the DB processing

time.

34

The pipeline execution method gets values approximatively equal to the ones of the

classic execution method for the key performance indicators. However, we observe

that combining both the minimization of API calls and the streaming generates better

performance than using just the minimization. Indeed, the number of API calls remains

the same and there is a significative reduction of the DB processing time. This can be

explained by the fact that the streaming method allows to manage smaller VALUES

blocks as one value after the other is processed. That would mean that SPARQL

queries are faster processed with numerous simple queries than with a complex one.

Finally, we made two tests with the same query to compare the classic method and

the pipeline method while using the LIMIT option (putting to 100 results). The

result justifies the choice to force the use of the pipeline method in this case. The

classic method has the same processing times as without the LIMIT option because

it executes the complete query and applies the limit only once all the results have

been produced. In comparison, the streaming method allows to inform the system

when the limit is reached and to short it so. The time processing is reduced and the

number of API calls as well. We chose to apply a limit equals to 100 results so the

difference between the two methods is obvious. It could however be even bigger

while querying huge amounts of data.

35

Figure 4.6: Comparison of the processing times of the classic and streaming

query execution methods with the LIMIT option.

36

5. CONCLUSION AND FUTURE WORK

This work proposes a second version of the SPARQL extension for on-call incorporations

of JSON API data into the results of SPARQL query, developed by Junemann, Reutter, Soto

and Vrgoc and published for the 15th International Semantic Web Conference in Kobe, Japan

(2016). We followed three axes of improvement which correspond to the addition of new

incorporation capacities, the re-orientation of the strategy for the module integration into the

SPARQL grammar, the implementation and test of optimizations to make the module better

fit with its potential contexts of use.

The integration of an existing JSON navigation library for Java to the module allows to

extend the capacities of incorporation, and to gain in robustness and scalability. If the choice

of the Jayway Jsonpath appeared to be the best opportunity at this step of the project, it could

be interesting in the future to consider preferring to this DSL the integration of Xpath or

Xquery for being both standardized, dealing with the JSON documents thanks to their recent

release, and generating an immediate possibility to incorporate XML API data. The JAQL

project initiated by IBM researchers is also an alternative to further investigate for its

capacity to query XML, CSV, flat files, structured SQL and Hadoop unstructured data in

addition to JSON data. Indeed, one next step of the project is to start considering

incorporating more types of data. The meta-format JSON, Yaml and XML are hugely

generated by Web APIs and their incorporation should only change at the level of the

navigation in the document. Incorporating data from relational database has also a big

potential in terms of use cases generation.

37

We chose to implement the module as an update of the SERVICE feature for federated

queries in SPARQL 1.1. It would be interesting to further investigate the possibilities to

merge the API SERVICE implementation with the classic SERVICE feature. As explained,

this project didn’t focus on the authentication which is dealt by our module through the out-

of-query addition of parameters. However, the Apache Jena implementation of SERVICE

allows to manage a basic authentication to the SPARQL endpoint using srv:queryAuthUser

and srv:queryAuthPwd. So, it could be considered to develop an update of those

functionalities to manage extending authentication capacities enabling the API calls. Those

considerations lead to consider also the optimization of the classic SERVICE feature to keep

progressing in the usability of the federation queries and the Web Semantic. The state of the

art survey about querying over federated SPARQL endpoints from Rakhmawati, Umbrich,

Hasnain and Hausenblas (2013) concludes indeed with the need to further improvements to

make current frameworks more effective in a broader range of applications.

Although the proposed implementations have passed successfully a large range of tests, we

recommend more tests against practical use cases to identify problems and keep improving

the module. Some limitations to resolve in the future have already been notified relative to

the use of the method to minimize the API calls. Despite the proposed over-optimizations to

reduce the time processing, the improvement is not sufficient as much of the constraining

triples are kept duplicated in the pre-incorporation queries and the post-incorporation

queries. Huge VALUES blocks are consequently manipulated and have a significant impact

on the time processing of the query. A new optimization could be thought around the

dependence of the variables used by distinct API calls. The purpose would be to identify

38

when a VALUES block generated by an incorporation should be pasted in the pre-

incorporation query for another API call. As an API call has no impact on the values of the

variables used as parameters (it adds data but do not alter the previously selected data), the

VALUES block should be necessary in the first query only if the new incorporated variables

are used as parameters in the next API SERVICE block. Finally, under the light of the

exposed results, the caching strategy is for now the best option to use to reduce the number

of API calls.

We identified a problem to take in consideration with the storage of float result values, such

as the latitude and the longitude, in a SPARQL VALUES bloc. It implies an approximation

of the values which makes incompatible the use of new (or copied/pasted) restrictions

implicating them in the post-incorporation query. This problem appears especially with the

minimization of API calls method as the constraining triples which allows to construct the

VALUES bloc are copied and pasted in the last query. It could also appear in wrong

formulations of queries. The user should however be aware that asking the query in the right

order matters also a lot with the standardized SERVICE feature.

Finally, the experimental results reveal that the streaming method generates always similar

or better performance indicators than the classic method. Its implementation as a definitive

method and not only an optional one should consequently be considered and investigated

with further comparative tests. The ultimate step which transforms the final Mapping Set

into a Results Set needs to be reviewed to generate a correct streaming method.

39

BIBLIOGRAFY

W3C (2015). Linked data. https://www.w3.org/standards/semanticweb/

Junemann, M., Reutter, J. L., Soto, A., & Vrgoc, D. (2016). Incorporating API Data into

SPARQL Query Answers. In International Semantic Web Conference (Posters & Demos).

Bizer, C., Heath, T., & Berners-Lee, T. (2009). Linked data-the story so far. Semantic

services, interoperability and web applications: emerging concepts, 205-227.

Görlitz, O., & Staab, S. (2011). Federated data management and query optimization for

linked open data. In New Directions in Web Data Management 1 (pp. 109-137). Springer

Berlin Heidelberg.

The Apache Jena Manual (2017). http://jena.apache.org, 2015.

Rakhmawati, N. A., Umbrich, J., Karnstedt, M., Hasnain, A., & Hausenblas, M. (2013).

Querying over Federated SPARQL Endpoints---A State of the Art Survey. arXiv preprint

arXiv:1306.1723.

Buil-Aranda, C., Arenas, M., & Corcho, O. (2011). Semantics and optimization of the

SPARQL 1.1 federation extension. The Semanic Web: Research and Applications, 1-15.

Berners-Lee, T., Hendler, J., & Lassila, O. (2001). The semantic web. Scientific american,

284(5), 28-37.

Kobayashi, N., Ishii, M., Takahashi, S., Mochizuki, Y., Matsushima, A., & Toyoda, T.

(2011). Semantic-JSON: a lightweight web service interface for Semantic Web contents

integrating multiple life science databases. Nucleic acids research, 39(suppl_2), W533-

W540.

Battle, R., & Benson, E. (2008). Bridging the semantic Web and Web 2.0 with

representational state transfer (REST). Web Semantics: Science, Services and Agents on

the World Wide Web, 6(1), 61-69.

W3C (2017). Xquery 3.1. release specifications. https://www.w3.org/TR/xquery-31/

W3C (2017). Xpath 3.1. release specifications. https://www.w3.org/TR/xpath-31/

W3C (2015). Metaformats. https://www.w3.org/standards/webarch/metaformats

Open Data Portal (2017). https://open-data.europa.eu/en/linked-data

Discovery Team (2017). Wikidata query service / User Manual.

https://www.mediawiki.org/wiki/Wikidata_query_service/User_Manual#Federation

https://www.w3.org/standards/semanticweb/
https://www.w3.org/TR/xpath-31/
https://open-data.europa.eu/en/linked-data
https://www.mediawiki.org/wiki/Wikidata_query_service/User_Manual#Federation

40

Coombs, K. (2016). Federated Queries with SPARQL.

https://www.oclc.org/developer/news/2016/federated-queries-with-sparql.en.html

Cagle, K. (2016). Why the Semantic Web has failed. https://www.linkedin.com/pulse/why-

semantic-web-has-failed-kurt-cagle

Goessner, S. (2007). JSONPath - XPath for JSON. http://goessner.net/articles/JsonPath/

Robie, J., Fourny, G., Brantner, D. F., Westmann, T. and Zaharioudakis, M. (2017).

JSONiq, the JSON query language. http://www.jsoniq.org/

https://www.linkedin.com/pulse/why-semantic-web-has-failed-kurt-cagle
https://www.linkedin.com/pulse/why-semantic-web-has-failed-kurt-cagle
http://goessner.net/articles/JsonPath/
http://www.jsoniq.org/

41

APPENDICES

42

APPENDIX A: JAYWAY JSONPATH DOCUMENTATION

Source
https://github.com/json-path/JsonPath

Getting Started
JsonPath is available at the Central Maven Repository. Maven users add this to your POM.

<dependency>

 <groupId>com.jayway.jsonpath</groupId>

 <artifactId>json-path</artifactId>

 <version>2.3.0</version>

</dependency>

If you need help ask questions at Stack Overflow. Tag the question 'jsonpath' and 'java'.

 JsonPath expressions always refer to a JSON structure in the same way as XPath

expression are used in combination with an XML document. The "root member object" in

JsonPath is always referred to as $ regardless if it is an object or array.

JsonPath expressions can use the dot–notation

$.store.book[0].title

or the bracket–notation

$['store']['book'][0]['title']

Operators

Operator Description

$ The root element to query. This starts all path

expressions.

@ The current node being processed by a filter

predicate.

* Wildcard. Available anywhere a name or numeric

are required.

.. Deep scan. Available anywhere a name is required.

.<name> Dot-notated child

['<name>' (,

'<name>')]
Bracket-notated child or children

[<number> (,

<number>)]
Array index or indexes

[start:end] Array slice operator

[?(<expression>)] Filter expression. Expression must evaluate to a

boolean value.

https://github.com/json-path/JsonPath
http://stackoverflow.com/questions/tagged/jsonpath

43

Functions

Functions can be invoked at the tail end of a path - the input to a function is the output of

the path expression. The function output is dictated by the function itself.

Function Description Output

min() Provides the min value of an array of numbers Double

max() Provides the max value of an array of numbers Double

avg() Provides the average value of an array of numbers Double

stddev() Provides the standard deviation value of an array of numbers Double

length() Provides the length of an array Integer

Filter Operators

Filters are logical expressions used to filter arrays. A typical filter would be [?(@.age >

18)] where @ represents the current item being processed. More complex filters can be

created with logical operators && and ||. String literals must be enclosed by single or

double quotes ([?(@.color == 'blue')] or [?(@.color == "blue")]).

Operator Description

== left is equal to right (note that 1 is not equal to '1')

!= left is not equal to right

< left is less than right

<= left is less or equal to right

> left is greater than right

>= left is greater than or equal to right

=~ left matches regular expression [?(@.name =~ /foo.*?/i)]

in left exists in right [?(@.size in ['S', 'M'])]

nin left does not exists in right

subsetof left is a subset of right [?(@.sizes subsetof ['S', 'M', 'L'])]

size size of left (array or string) should match right

empty left (array or string) should be empty

44

APPENDIX B-1 : SOURCE CODE – CROSS PRODUCT IMPLEMENTATION

Function extracted from the file DatabaseWrapper.java

/*
 * FUNCTION: Update a mapping_array by mapping a new jsonValue
 * @param {ArrayList<HashMap<String, String>>} mapping_array
 * @param {Object} jsonValue
 * @param {String} bindName
 * @param {int} bindName_index
 * @param {HashMap<String, String>} initial_mapping
 * @return {ArrayList<HashMap<String, String>>}
 */
public ArrayList<HashMap<String, String>>
updateMappingArray(ArrayList<HashMap<String, String>> mapping_array, Object
jsonValue, String bindName, int bindName_index, HashMap<String, String>
initial_mapping) {
 int mapping_array_size = mapping_array.size();
 // CASE 1: value.class = Array of Elements
 if (jsonValue.getClass().equals(net.minidev.json.JSONArray.class)){
 for (int j=0; j<((net.minidev.json.JSONArray)jsonValue).size();
j++){
 // CASE 1.A: json_nav = first argument
 if(bindName_index==0){
 Object mapping_clone = initial_mapping.clone();
 mapping_array.add((HashMap<String,
String>)mapping_clone); // I initiate by cloning the mapping I had built into
all the mapping_array mappings
 mapping_array.get(mapping_array.size()-
1).put(bindName,
serializeValue(((net.minidev.json.JSONArray)jsonValue).get(j))); // I add to
the mapping_array mappings the relative JSON of the JSONArray
 }
 // CASE 1.B: json_nav = next arguments
 else {
 // I assign to each element of mapping_array the first
value of the new argument
 if(j==0){
 for (int k=0; k<mapping_array.size(); k++){
 mapping_array.get(k).put(bindName,
serializeValue(((net.minidev.json.JSONArray)jsonValue).get(j))); // I add to
the mapping_array mappings the relative JSON of the JSONArray
 }
 }
 // For each next values, I first "duplicate" the
original mapping_array and then assign the value to the duplicate
 else {
 for (int k=0; k<mapping_array_size; k++){
 Object mapping_clone =
mapping_array.get(k).clone();
 mapping_array.add((HashMap<String,
String>)mapping_clone);

45

 mapping_array.get(mapping_array.size()-
1).put(bindName,
serializeValue(((net.minidev.json.JSONArray)jsonValue).get(j)));
 }
 }
 }
 }
 }
 // CASE 2: value.class = Single Element
 else {
 // CASE 2.A: json_nav = first argument
 if(bindName_index==0){
 initial_mapping.put(bindName, serializeValue(jsonValue));
 mapping_array.add(initial_mapping); // the ArrayList has a
size=1
 }
 // CASE 2.B: json_nav = next arguments
 else {
 for (int k=0; k<mapping_array.size(); k++){
 mapping_array.get(k).put(bindName,
serializeValue(jsonValue));
 }
 }
 }
 return mapping_array;
}

46

APPENDIX B-2 : SOURCE CODE – PARSER OF API SERVICE QUERY

public class SPARQLSonParser {
 /*
 * FUNCTION: Parse a SPARQL query into the sections PREFIX, SELECT,
FIRST, URL, PATH, ALIAS, LAST
 * @param {String} queryString
 * @param {Boolean} replace
 * @return {HashMap<String, Object>}
 */
 public static HashMap<String, Object> parseSPARQLSonQuery(String
queryString, boolean replace) {
 String[] firstParse = getSelectSection(queryString, replace);
 HashMap<String, Object> querySections =
getAPIServiceSection(firstParse[2]);
 querySections.put("PREFIX", firstParse[0]);
 querySections.put("SELECT", firstParse[1]);
 return querySections;
 }

 /*
 * FUNCTION: Get the Prefix, Select, and PostSelect parts of the query
 * @param {String} queryString
 * @param {Boolean} replace
 * @return {String[]}
 */
 public static String[] getSelectSection(String queryString, boolean
replace) {
 // Eliminate the multi-spaces before and after the query
 String newQueryString = queryString.trim();
 if(replace) {
 //Eliminate the line breaks which are not quoted
 newQueryString =
newQueryString.replaceAll("\\\\n(?=((\\\\[\\\\\"]|[^\\\\\"])*\"(\\\\[\\\\\"]|[^
\\\\\"])*\")*(\\\\[\\\\\"]|[^\\\\\"])*$)", " ");
 //Eliminate the multi-spaces which are not quoted into the
request
 newQueryString =
newQueryString.replaceAll("\\s+(?=((\\\\[\\\\\"]|[^\\\\\"])*\"(\\\\[\\\\\"]|[^\
\\\\"])*\")*(\\\\[\\\\\"]|[^\\\\\"])*$)", " ");
 }
 // Separate what is before the WHERE from what comes after
 int cutIndex = newQueryString.indexOf('{');
 String preSelectSection = newQueryString.substring(0, cutIndex +
1);
 String postSelectSection = newQueryString.substring(cutIndex + 1,
newQueryString.length());

 // Separate the PREFIX section from the SELECT section
 String prefixSection = "";
 String selectSection = "";
 String navigation_string = "(.*)(SELECT.*)$";
 Pattern pattern_variables = Pattern.compile(navigation_string);
 Matcher m = pattern_variables.matcher(preSelectSection);

47

 if (m.find()) {
 prefixSection = m.group(1);
 selectSection = m.group(2);
 }
 else {
 System.out.println("ERROR : No select querry");
 }
 String[] retArray = {prefixSection, selectSection,
postSelectSection};
 return retArray;
 }

 /*
 * FUNCTION: Get the sections of the PostSelect part of the query which
are: FIRST, URL, PATH, ALIAS, LAST
 * @param {String} postSelectSection
 * @return {HashMap<String, Object>}
 */
 public static HashMap<String, Object> getAPIServiceSection(String
postSelectSection) {
 /*
 * Regex to match the format of a SERVICE call to an API:
 * This format is: FIRST SERVICE <URL> {($.PATH1, $.PATH2) AS
(ALIAS1, ALIAS 2)} LAST
 * Matched groups are: Group 1: URL Group 2: $.PATH1,
$.PATH2) AS (ALIAS1, ALIAS 2)} LAST
 * regexr.com: +SERVICE +<([\w\-\%\?\&\=\.\{\}\:\/\,]+)> *\{ *\(
(\$.$)
 */
 // LAST
 String api_url_string = " +SERVICE +<([\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+)> *\\{ *\\(*(\\$.*$)";
 Pattern pattern_variables = Pattern.compile(api_url_string);
 Matcher m1 = pattern_variables.matcher(postSelectSection);
 HashMap<String, Object> bindSections = new HashMap<String,
Object>();
 // Divide the query to keep the FIRST section, which comes before
the word 'SERVICE'
 String[] dividedQuery = postSelectSection.split(api_url_string, 2);
 bindSections.put("FIRST", dividedQuery[0]);

 if (m1.find()) {
 bindSections.put("URL", m1.group(1));
 /*
 * Regex to match the sections which come after the word
'AS' which are ALIAS and LAST
 * Matched groups are: Group 1: ALIAS1, ALIAS 2
 Group 2: LAST
 * regexr.com: \) *AS *\(((?: *\?[\d\w]+ *,* *)*)\) *\}(.*)$
 */
 String post_api_url_string = "\\) *AS *\\(((?: *\\?[\\d\\w]+
, *)*)\\) *\\} *\\.*(.*)$";

48

 // Divide the Group 2 of m1 to keep only the PATH section of
the query
 dividedQuery = m1.group(2).split(post_api_url_string, 2);
 String json_nav_string = dividedQuery[0];
 // Split the different paths which are separated by the
unquoted chain of character: , $
 String[] json_navs = json_nav_string.split(",
\\$(?=((\\\\[\\\\\"]|[^\\\\\"])\"(\\\\[\\\\\"]|[^\\\\\"])*\")*(\\\\[\\\\\"]|[
^\\\\\"])*$)");
 for (int i=1 ; i<json_navs.length ; i++) {
 json_navs[i] = "$"+json_navs[i];
 }
 bindSections.put("PATH", json_navs);

 pattern_variables = Pattern.compile(post_api_url_string);
 Matcher m2 = pattern_variables.matcher(postSelectSection);
 if (m2.find()) {
 String aliases_string = m2.group(1).trim();
 // Split the different aliases which are separated by
a ,
 String[] aliases = aliases_string.split(", *");
 for (int i = 0; i < aliases.length; i++) {
 // Eliminate the ? which is in front of the
alias
 aliases[i] = aliases[i].substring(1);
 }
 bindSections.put("ALIAS", aliases);
 String post_aliases_string = m2.group(2).trim();
 String options_regex = "(.*\\})([^\\}]*$)";
 String options_section = "";
 pattern_variables = Pattern.compile(options_regex);
 Matcher m =
pattern_variables.matcher(post_aliases_string);
 if (m.find()) {
 bindSections.put("LAST", m.group(1));
 bindSections.put("OPTIONS", m.group(2));
 }
 /*
 * Show the distinct sections of the query
 */
 System.out.println("Request to the URL: " +
bindSections.get("URL"));
 System.out.println("FIRST: "+
bindSections.get("FIRST"));
 System.out.println("PATH: "+ json_nav_string);
 System.out.println("ALIAS: "+ aliases_string);
 System.out.println("LAST: "+
bindSections.get("LAST"));
 }
 }
 return bindSections;
 }
}

49

APPENDIX B-3 : SOURCE CODE – PARSE TRIPLETS GROUPED BY BLOCK

public class TripletParser {

 /*
 * PROPERTIES
 */
 public String section_type;
 public ArrayList<String[]> triplets;
 public String service_uri;
 public String options;

 /*
 * CONSTRUCTORS
 */

 public TripletParser(String service_uri, String[] triplet, String
options) {
 if(service_uri!=null) {
 this.section_type = "sparql_service";
 this.service_uri = service_uri;
 }
 else {
 this.section_type = "basic";
 this.service_uri = null;
 }
 this.triplets = new ArrayList<String[]>();
 this.triplets.add(triplet);
 this.options = options;
 }

 public TripletParser(String service_uri, String queryPart) {
 if(service_uri!=null) {
 this.section_type = "sparql_service";
 this.service_uri = service_uri;
 }
 else {
 this.section_type = "basic";
 this.service_uri = null;
 }
 this.triplets = new ArrayList<String[]>();
 // Match ?a ?b ?c ; ?d ?e . and transform into ?a ?b ?c . ?a ?d ?e
.
 String triplet_regex = "((<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+)) *;(.*$)";
 Pattern pattern_triplet = Pattern.compile(triplet_regex);
 Matcher matcherTriplet = pattern_triplet.matcher(queryPart);
 while(matcherTriplet.find()) {
 queryPart = matcherTriplet.group(1) + " . " +
matcherTriplet.group(2) + " " + matcherTriplet.group(5).trim();
 matcherTriplet = pattern_triplet.matcher(queryPart);
 }

50

 // Match the triplets add them to the TripletParser
 triplet_regex = "(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) *\\.*(.*$)";
 pattern_triplet = Pattern.compile(triplet_regex);
 matcherTriplet = pattern_triplet.matcher(queryPart);
 while(matcherTriplet.find()) {
 String[] triplets = new String[]{matcherTriplet.group(1),
matcherTriplet.group(2), matcherTriplet.group(3)};
 this.triplets.add(triplets);
 queryPart = matcherTriplet.group(4);
 matcherTriplet = pattern_triplet.matcher(queryPart);
 }
 this.options = queryPart.trim();
 }

 public TripletParser(String queryPart) {
 this.section_type = "basic";
 this.service_uri = null;
 this.triplets = new ArrayList<String[]>();
 // Match ?a ?b ?c ; ?d ?e . and transform into ?a ?b ?c . ?a ?d ?e
.
 String triplet_regex = "((<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+)) *;(.*$)";
 Pattern pattern_triplet = Pattern.compile(triplet_regex);
 Matcher matcherTriplet = pattern_triplet.matcher(queryPart);
 while(matcherTriplet.find()) {
 queryPart = matcherTriplet.group(1) + " . " +
matcherTriplet.group(2) + " " + matcherTriplet.group(5).trim();
 matcherTriplet = pattern_triplet.matcher(queryPart);
 }
 // Match the triplets add them to the TripletParser
 triplet_regex = "(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) *\\.*(.*$)";
 pattern_triplet = Pattern.compile(triplet_regex);
 matcherTriplet = pattern_triplet.matcher(queryPart);
 while(matcherTriplet.find()) {
 String[] triplets = new String[]{matcherTriplet.group(1),
matcherTriplet.group(2), matcherTriplet.group(3)};
 this.triplets.add(triplets);
 queryPart = matcherTriplet.group(4);
 matcherTriplet = pattern_triplet.matcher(queryPart);
 }
 this.options = queryPart.trim();
 }

 /*
 * METHODS
 */

51

 /*
 * FUNCTION: Add a triplet
 * @param {String[]} triplet
 * @return {}
 */
 public void addTriplet(String[] triplet) {
 this.triplets.add(triplet);
 }

 /*
 * FUNCTION: Parse SPARQL Query constraints into a list of TripletParsers
corresponding to the relative SPARQL blocks
 * @param {String} sparqlQuerySection
 * @return {ArrayList<TripletParser>}
 */
 public static ArrayList<TripletParser> getParsedSPARQLBlocks(String
sparqlQuerySection) {
 // Match ?a ?b ?c ; ?d ?e . and transform into ?a ?b ?c . ?a ?d ?e
.
 String triplet_regex = "(.*)((<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+)) *;(.*$)";
 Pattern pattern_triplet = Pattern.compile(triplet_regex);
 Matcher matcherTriplet =
pattern_triplet.matcher(sparqlQuerySection);
 while(matcherTriplet.find()) {
 sparqlQuerySection = matcherTriplet.group(1) +
matcherTriplet.group(2) + " . " + matcherTriplet.group(3) + " " +
matcherTriplet.group(6).trim();
 matcherTriplet =
pattern_triplet.matcher(sparqlQuerySection);
 }

 ArrayList<TripletParser> parsedFirstQuery = new
ArrayList<TripletParser>();
 String api_url_string = "(.*) *SERVICE +<([\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+)> *\\{([^\\}]*)\\} *(.*$)";
 Pattern pattern_variables = Pattern.compile(api_url_string);
 triplet_regex = "(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) +(<[\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+>|\\?\\w+|\\w+:\\w+) *\\.*(.*$)";
 pattern_triplet = Pattern.compile(triplet_regex);
 String query_string = sparqlQuerySection;
 Matcher m = pattern_variables.matcher(query_string);
 while(m.find()) {
 matcherTriplet = pattern_triplet.matcher(m.group(4));
 if(matcherTriplet.find()) {
 TripletParser basic_section = new
TripletParser(m.group(4));
 parsedFirstQuery.add(0, basic_section);
 }

52

 TripletParser sparql_service_section = new
TripletParser(m.group(2), m.group(3));
 parsedFirstQuery.add(0, sparql_service_section);

 query_string = m.group(1);
 m = pattern_variables.matcher(query_string);
 }
 matcherTriplet = pattern_triplet.matcher(query_string);
 if(matcherTriplet.find()) {
 TripletParser basic_section = new
TripletParser(query_string);
 parsedFirstQuery.add(0, basic_section);
 }
 return parsedFirstQuery;
 }

 /*
 * FUNCTION: Add a triplet to a list of TripletParsers representing a
query
 * @param {String} sparqlQuerySection
 * @return {ArrayList<TripletParser>}
 */
 public static void addTripletToParsedQuery(ArrayList<TripletParser>
list_parsed_triplets, TripletParser parsed_triplets, int index_triplet) {
 // The triplet is added to a new section
 if (list_parsed_triplets.size()==0) {
 TripletParser new_section = new
TripletParser(parsed_triplets.service_uri,
parsed_triplets.triplets.get(index_triplet), parsed_triplets.options);
 list_parsed_triplets.add(new_section);
 }
 else if (parsed_triplets.service_uri !=
list_parsed_triplets.get(list_parsed_triplets.size()-1).service_uri) {
 TripletParser new_section = new
TripletParser(parsed_triplets.service_uri,
parsed_triplets.triplets.get(index_triplet), parsed_triplets.options);
 list_parsed_triplets.add(new_section);
 }
 // The triplet is added to the last created section
 else {
 list_parsed_triplets.get(list_parsed_triplets.size()-
1).addTriplet(parsed_triplets.triplets.get(index_triplet));
 }
 }

 /*
 * FUNCTION: Transform a list of TripletParsers into a SPARQL Query
section
 * @param {ArrayList<TripletParser>} parsedTriplets
 * @return {String}
 */
 public static String reverseParsedSPARQLBlocks(ArrayList<TripletParser>
parsedTriplets) {
 String query= "";

53

 for (int i=0; i<parsedTriplets.size();i++) {
 String triplets_string = "";
 for (int j=0; j< parsedTriplets.get(i).triplets.size(); j++)
{
 for (int k=0; k<3; k++) {
 triplets_string +=
parsedTriplets.get(i).triplets.get(j)[k] + " ";
 }
 triplets_string += ". ";
 }
 if(parsedTriplets.get(i).section_type == "sparql_service" &&
triplets_string!="") {
 query += "SERVICE <" +
parsedTriplets.get(i).service_uri + "> {" + triplets_string +
parsedTriplets.get(i).options + "} " ;
 }
 else if (triplets_string!=""){
 query += triplets_string +
parsedTriplets.get(i).options;
 }
 }
 return query;
 }
}

54

APPENDIX B-4 : SOURCE CODE – API OPTIMIZATION

public class ApiOptimizer {

 /*
 * PROPERTIES
 */

 int apiCalls;
 long timeApi;
 ArrayList<String> cacheKeys;
 HashMap<String, Object> cache;
 static final int CACHE_SIZE = 400;

 /*
 * CONSTRUCTORS
 */

 public ApiOptimizer() {
 this.cacheKeys = new ArrayList<String>();
 this.cache = new HashMap<>();
 this.timeApi = 0;
 this.apiCalls = 0;
 }

 /*
 * METHODS
 */

 /*
 * FUNCTION: Apply the cache option to retrieve the JSON response
 * @param {String} url_req
 * @param {HashMap<String, String>} params
 * @param {GetJSONStrategy} strategy
 * @return {Object}
 */
 public Object retrieve_json(String url_req, HashMap<String,String>
params, GetJSONStrategy strategy) throws JSONException, Exception {
 if (params.containsKey("cache") &&
params.get("cache").equals("true")) {
 if (cache.containsKey(url_req)) {
 return cache.get(url_req);
 }
 else {
 this.apiCalls += 1;
 Object json = ApiWrapper.getJSON(url_req, params,
strategy);
 if (cacheKeys.size() < CACHE_SIZE) {
 cacheKeys.add(url_req);
 cache.put(url_req, json);
 }
 else {
 String removed_key = cacheKeys.remove(0);
 cache.remove(removed_key);

55

 cache.put(url_req, json);
 }
 return json;
 }
 }
 else {
 this.apiCalls += 1;
 return ApiWrapper.getJSON(url_req, params, strategy);
 }
 }

 /*
 * FUNCTION: Transform the parsed query to minimize the number of calls
to API by Service
 * @param {HashMap<String, Object>} parsedQuery
 * @return {HashMap<String, Object>}
 */
 public HashMap<String, Object> minimizeAPICall(HashMap<String, Object>
parsedQuery) {
 // Look for inserted variables in the URL of the API-Service call
and keep them
 String variable_in_URL = "(.*)=\\{([^\\}]+)\\}.*$";
 ArrayList<String> inserted_variables = new ArrayList<String>();
 Pattern pattern_variables = Pattern.compile(variable_in_URL);
 Matcher m =
pattern_variables.matcher((String)parsedQuery.get("URL"));
 while(m.find()){
 inserted_variables.add(m.group(2));
 m = pattern_variables.matcher(m.group(1));
 }
 for (int i=0; i<inserted_variables.size(); i++) {
 inserted_variables.set(i, "?" + inserted_variables.get(i));
 }

 // Separate an eventual values_section from the rest of the FIRST
section
 String values_regex ="(.*)(*VALUES *\\([^\\)]*\\) *\\{[^\\}]* *\\}
)(.$)";
 String values_section = "";
 pattern_variables = Pattern.compile(values_regex);
 m = pattern_variables.matcher((String)parsedQuery.get("FIRST"));
 while(m.find()){
 values_section += m.group(2);
 parsedQuery.put("FIRST", m.group(1) + " " + m.group(3));
 m =
pattern_variables.matcher((String)parsedQuery.get("FIRST"));
 }

 // Parse the first section into a list of TripletParsers
corresponding to the relative SPARQL blocks
 ArrayList<TripletParser> triplets_to_put_first =
TripletParser.getParsedSPARQLBlocks((String)parsedQuery.get("FIRST"));
 ArrayList<TripletParser> triplets_to_put_last = new
ArrayList<TripletParser>();

56

 if (inserted_variables.size()>0) {

 // Eject the triplets constraining the inserted variables
(no other variable in the triplet)
 triplets_to_put_last =
ejectConstrainingTriplets(inserted_variables, triplets_to_put_first);

 // Eject the triplets which are independent from the
selected_variables from the first query part
 ejectIndependantTriplets(inserted_variables,
triplets_to_put_first);

 // Remove from the first part of the query the useless
triplets which are called later
 parsedQuery.put("FIRST", values_section + " " +
TripletParser.reverseParsedSPARQLBlocks(triplets_to_put_first));
 // Add to the last part of the query the triplets which are
needed to Select the other variables later
 parsedQuery.put("LAST", values_section + " " +
TripletParser.reverseParsedSPARQLBlocks(triplets_to_put_last) +
(String)parsedQuery.get("LAST"));
 }
 else {
 // Put all the FIRST section after the API call
 triplets_to_put_last = triplets_to_put_first;
 parsedQuery.put("FIRST", "");
 parsedQuery.put("LAST", values_section + " " +
TripletParser.reverseParsedSPARQLBlocks(triplets_to_put_last) +
(String)parsedQuery.get("LAST"));
 }
 // Stock in a String the variables to Select before calling the API
 String needed_variables_string = "";
 for (String var: inserted_variables) {
 needed_variables_string += var + " ";
 }
 // Add to the parsed Query the variables to Select before calling
the API through Service
 parsedQuery.put("VARS", needed_variables_string);
 return parsedQuery;
 }

 /*
 * FUNCTION: Eject the triplets constraining the specified variables (no
other variable in the triplet)
 * @param {ArrayList<String>} vars
 * @param {ArrayList<TripletParser>} list_parsed_triplets
 * @return {ArrayList<TripletParser>}
 */
 public ArrayList<TripletParser>
ejectConstrainingTriplets(ArrayList<String> vars, ArrayList<TripletParser>
list_parsed_triplets) {

57

 ArrayList<TripletParser> selected_triplets = new
ArrayList<TripletParser>();
 // Iterate over the linked variables
 for (String var: vars) {
 // Iterate over the (basic and SPARQL-Service) sections of
the first part of the query
 for (int section=0; section< list_parsed_triplets.size();
section++) {
 // Iterate over the list of triplets in the section
 for (int triplet=0;
triplet<list_parsed_triplets.get(section).triplets.size(); triplet++) {
 int element = 0;
 boolean constraint_triplet = false;
 // Iterate over the elements of the triplet
 while (element<3) {

 if(var.equals(list_parsed_triplets.get(section).triplets.get(triplet)[ele
ment])) {
 constraint_triplet = true;
 for (int other_element=0;
other_element<3; other_element++) {
 if(other_element!=element &&
list_parsed_triplets.get(section).triplets.get(triplet)[other_element].startsWi
th("?")) {
 // The linked
variable is linked to another variable in the triplet
 constraint_triplet =
false;
 }
 }
 element = 3;
 }
 else {
 element +=1;
 }
 }
 // The triplet does not contain only the linked
variable as a variable
 if (!constraint_triplet) {

 TripletParser.addTripletToParsedQuery(selected_triplets,
list_parsed_triplets.get(section), triplet);

 }
 }
 }
 }
 return selected_triplets;
 }

 /*
 * FUNCTION: Eject the triplets which are not linked in the data graph
with the specified variables
 * @param {ArrayList<String>} vars

58

 * @param {ArrayList<TripletParser>} list_parsed_triplets
 * @return {ArrayList<TripletParser>}
 */
 public void ejectIndependantTriplets(ArrayList<String> vars,
ArrayList<TripletParser> list_parsed_triplets) {
 // Create a local list of variables
 ArrayList<String> local_vars = new ArrayList<String>();
 local_vars.addAll(vars);
 // Initialize the loop
 HashMap<String, Object> opt = ejectIncludingTriplets(local_vars,
list_parsed_triplets);
 ArrayList<TripletParser> triplets_to_eject = new
ArrayList<TripletParser>();
 boolean loop = true;
 // Loop which excludes the triplets linking variables to anterior
linked variables from the triplets to eject
 while (loop) {
 triplets_to_eject =
(ArrayList<TripletParser>)opt.get("selected_triplets");
 if
(!local_vars.containsAll((ArrayList<String>)opt.get("linked_variables"))) {

 local_vars.addAll((ArrayList<String>)opt.get("linked_variables"));
 opt =
ejectIncludingTriplets((ArrayList<String>)opt.get("linked_variables"),
triplets_to_eject);
 }
 else {
 loop = false;
 }
 }
 for (int section=0; section< triplets_to_eject.size(); section++) {
 for (int triplet=0;
triplet<triplets_to_eject.get(section).triplets.size(); triplet++) {
 for (int s=0; s<list_parsed_triplets.size(); s++) {
 for (int t=0;
t<list_parsed_triplets.get(s).triplets.size(); t++) {
 if
(list_parsed_triplets.get(s).triplets.get(t)==triplets_to_eject.get(section).tr
iplets.get(triplet)
 &&
list_parsed_triplets.get(s).service_uri==triplets_to_eject.get(section).service
_uri) {

 list_parsed_triplets.get(s).triplets.remove(t);
 }
 }
 }
 }
 }

 }

 /*

59

 * FUNCTION: Eject the triplets including the specified variables and
stock the other variables linked by those triplets
 * @param {ArrayList<String>} vars
 * @param {ArrayList<TripletParser>} list_parsed_triplets
 * @return {HashMap<String, Object>}
 */
 public HashMap<String, Object> ejectIncludingTriplets(ArrayList<String>
vars, ArrayList<TripletParser> list_parsed_triplets) {
 ArrayList<String> linked_variables = new ArrayList<String>();
 ArrayList<TripletParser> selected_triplets = new
ArrayList<TripletParser>();
 // Iterate over the inserted variables
 for (String var: vars) {
 // Iterate over the (basic and SPARQL-Service) sections of
the first part of the query
 for (int section=0; section< list_parsed_triplets.size();
section++) {
 // Iterate over the list of triplets in the section
 for (int triplet=0;
triplet<list_parsed_triplets.get(section).triplets.size(); triplet++) {
 int element = 0;
 boolean include = false;
 // Iterate over the elements of the triplet
 while (element<3) {

 if(var.equals(list_parsed_triplets.get(section).triplets.get(triplet)[ele
ment])) {
 for (int other_element=0;
other_element<3; other_element++) {
 if(other_element!=element &&
list_parsed_triplets.get(section).triplets.get(triplet)[other_element].startsWi
th("?")) {
 // Stock the
variables linked to inserted variables by a triplet

 linked_variables.add(list_parsed_triplets.get(section).triplets.get(tripl
et)[other_element]);
 }
 }
 element=3;
 include = true;
 } else { element +=1; }
 }
 // Add the triplet which doesn't contain an
inserted variable to the selected triplets
 if (!include) {

 TripletParser.addTripletToParsedQuery(selected_triplets,
list_parsed_triplets.get(section), triplet);

 }
 }
 }
 }

60

 HashMap<String, Object> result = new HashMap<String, Object>();
 result.put("linked_variables", linked_variables);
 result.put("selected_triplets", selected_triplets);
 return result;
 }
}

61

APPENDIX B-5 : SOURCE CODE – PIPELINE IMPLEMENTATION

Functions extracted from the file DatabaseWrapper.java

/*
 * FUNCTION: One mapping after the other, map the JSON data from the API with
the RDF data from the complete sparql query
 * @param {HashMap<String, Object>} parsedQuery
 * @param {ArrayList<GetJSONStrategy>} strategy
 * @param {ArrayList<HashMap<String, String>>} params
 * @param {int} limit
 * @return {MappingSet}
 */
public MappingSet execQueryPipeURL(HashMap<String, Object> parsedQuery,
 ArrayList<GetJSONStrategy> strategy, ArrayList<HashMap<String,
String>> params, int limit)
 throws JSONException, Exception {
 String firstQuery = retrieve_firstQuery (parsedQuery, params.get(0));
 System.out.println(firstQuery);
 Boolean distinctQuery =
retrieve_distinct((String)parsedQuery.get("SELECT"));
 String[] bindName = (String[])parsedQuery.get("ALIAS");
 String[] jpath = (String[])parsedQuery.get("PATH");
 Query query = QueryFactory.create(firstQuery);
 QueryExecution qexec;
 Dataset dataset;
 if(!FUSEKI_ENABLED) {
 dataset = TDBFactory.createDataset(this.TDBdirectory);
 qexec = QueryExecutionFactory.create(query, dataset);
 }
 else {
 qexec =
QueryExecutionFactory.sparqlService("http://localhost:3030/ds", query);
 }
 MappingSet ms = new MappingSet();
 ArrayList<String> ms_varnames = new ArrayList<String>();
 try {
 // Assumption: it's a SELECT query.
 ResultSet rs = qexec.execSelect() ;
 // Materialize the results to be able to free the system resources
for the next query executions
 rs = ResultSetFactory.copyResults(rs) ;
 // QueryExecution objects should be closed to free any system
resources
 qexec.close();

 List<String> vars_name = rs.getResultVars();
 for (String vn: vars_name) {
 ms_varnames.add(vn);
 }
 for (String bn: bindName) {
 ms_varnames.add(bn);
 }

62

 // The order of results is undefined.
 while (rs.hasNext() && this.mappingCount < limit) {
 MappingSet ms_temp = new MappingSet();
 ms_temp.set_var_names(ms_varnames);

 QuerySolution rb = rs.nextSolution() ;
 HashMap<String, String> mapping = mappQuerySolution(rb,
vars_name);
 String url_req =
ApiWrapper.insertValuesURL((String)parsedQuery.get("URL"), rb,
params.get(0).get("replace_string"));
 Object json = null;
 try {
 long start = System.nanoTime();
 json = this.apiOptimizer.retrieve_json(url_req,
params.get(0), strategy.get(0));
 long stop = System.nanoTime();
 this.apiOptimizer.timeApi += (stop - start);
 }
 catch (Exception name) {
 System.out.println("ERROR: " + name);
 for (int i = 0; i < bindName.length; i++) {
 mapping.put(bindName[i], "UNDEF");
 }
 }
 if (json != null) {
 ArrayList<HashMap<String, String>> mapping_array = new
ArrayList<HashMap<String, String>>();
 for (int i = 0; i < bindName.length; i++) {
 try {
 Object value =
JsonPath.parse(json).read(jpath[i]);
 mapping_array =
updateMappingArray(mapping_array, value, bindName[i], i, mapping);

 }
 catch (Exception name) {
 System.out.println("ERROR: " + name);
 // CASE 0.A: json_nav = first argument
 if(i==0){
 mapping.put(bindName[i], "UNDEF");
 mapping_array.add(mapping); // the
ArrayList has a size=1
 }
 // CASE 0.B: json_nav = next arguments
 else {
 for (int k=0;
k<mapping_array.size(); k++){

 mapping_array.get(k).put(bindName[i], "UNDEF");
 }
 }
 }
 }

63

 // Add all the mappings relative to the result rb to
the MappingSet to return
 for (int k=0; k<mapping_array.size(); k++){
 ms_temp.addMapping(mapping_array.get(k));
 }
 }
 // Recursive condition is that the LAST section of
parsedQuery includes another API service section
 String api_url_string = " +SERVICE +<([\\w\\-
\\%\\?\\&\\=\\.\\{\\}\\:\\/\\,]+)> *\\{ *\\(*(\\$.*$)";
 Pattern pattern_variables = Pattern.compile(api_url_string);
 Matcher m = pattern_variables.matcher(" " + (String)
parsedQuery.get("LAST"));
 String recursive_query_string = ((String)
parsedQuery.get("PREFIX")) + ((String) parsedQuery.get("SELECT")) +
ms_temp.serializeAsValues() + (String) parsedQuery.get("LAST") + (String)
parsedQuery.get("OPTIONS");
 if (m.find()) {
 strategy.get(1).set_params(params.get(1));
 ms_temp =
execQueryPipeURL(SPARQLSonParser.parseSPARQLSonQuery(recursive_query_string,
false),
 new
ArrayList<GetJSONStrategy>(strategy.subList(1, strategy.size())),
 new
ArrayList<HashMap<String,String>>(params.subList(1, params.size())),
 limit);
 }
 else {
 ms_temp = mappPostBindQuery(recursive_query_string,
limit);
 }
 ms.set_var_names(ms_temp.var_names);
 if(distinctQuery) {
 int ms_size = ms.mappings.size();
 ms.addDistinctMappingsFromMappingSet(ms_temp);
 // We reduce the mappingCount as the no-distinct
mappings are not added
 this.mappingCount += ms.mappings.size() - ms_size -
ms_temp.mappings.size();
 }
 else {
 for (int k=0; k<ms_temp.mappings.size(); k++){
 ms.addMapping(ms_temp.mappings.get(k));
 }
 }
 }
 }
 finally
 {
 if(!FUSEKI_ENABLED) {
 dataset.close();
 }
 }

64

 return ms;
}

/*
 * FUNCTION: Retrieve a SELECT DISTINCT query
 * @param {HashMap<String, Object>} parsedQuery
 * @param {HashMap<String, String>} params
 * @param {String} selectQuery
 * @return {Boolean}
 */
public Boolean retrieve_distinct(String selectQuery) {
 String regex = "SELECT DISTINCT";
 Pattern pattern_variables = Pattern.compile(regex);
 Matcher m = pattern_variables.matcher(selectQuery);
 if (m.find()) {
 return true;
 }
 else {
 return false;
 }
}

/*
 * FUNCTION: Transform a sparql queryString into a MappingSet
 * @param {String} queryString
 * @param {int} limit
 * @return {MappingSet}
 */
public MappingSet mappPostBindQuery(String queryString, int limit) {
 System.out.println(queryString);
 Query query = QueryFactory.create(queryString);
 QueryExecution qexec;
 Dataset dataset;
 if(!FUSEKI_ENABLED) {
 dataset = TDBFactory.createDataset(this.TDBdirectory);
 qexec = QueryExecutionFactory.create(query, dataset);
 }
 else {
 qexec =
QueryExecutionFactory.sparqlService("http://localhost:3030/ds", query);
 }
 MappingSet ms = new MappingSet();
 ArrayList<String> ms_varnames = new ArrayList<String>();
 try {
 // Assumption: it's a SELECT query.
 ResultSet rs = qexec.execSelect() ;
 rs = ResultSetFactory.copyResults(rs) ;
 // QueryExecution objects should be closed to free any system
resources
 qexec.close();

 List<String> vars_name = rs.getResultVars();
 for (String vn: vars_name) {
 ms_varnames.add(vn);

65

 }
 ms.set_var_names(ms_varnames);
 // The order of results is undefined.
 while (rs.hasNext()) {
 QuerySolution rb = rs.nextSolution() ;
 System.out.println("--DEBUG-- "+rb);
 HashMap<String, String> mapping = mappQuerySolution(rb,
vars_name);
 ms.addMapping(mapping);
 this.mappingCount += 1;
 }
 }
 finally
 {
 if(!FUSEKI_ENABLED) {
 dataset.close();
 }
 }
 return ms;
}

66

APPENDIX C-1 : CONSTRUCTION METHOD – TESTING RDF DATABASE

Query that we ran on the DBPedia endpoint with the online tool virtuoso:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xmlns: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

construct {?place xmlns:type <http://dbpedia.org/class/yago/Capital108518505> .

?place <http://dbpedia.org/ontology/country> ?country .

?place geo:long ?long .

?place geo:lat ?lat .

}

where {?place xmlns:type <http://dbpedia.org/class/yago/Capital108518505> .

?place <http://dbpedia.org/ontology/country> ?country .

?place geo:long ?long .

?place geo:lat ?lat .

}

The results were added to a file input.ttl which has been used as parameter of the LoadTDB.

The next error appeared while loading the database:

1619 [main] ERROR org.apache.jena.riot - [line: 5527, col: 14] Failed to find
a prefix name or keyword: –(8211;0x2013)

The cause was the use of the “-“ character in the next triple that we chose so to delete:

dbr:Phan_Rang–Tháp_Chàm rdf:type yago:Capital108518505 ;
 geo:lat "11.566666603088378906"^^xsd:float ;
 geo:long "108.98332977294921875"^^xsd:float ;
 dbo:country dbr:Vietnam .

➔ DELETE 1 entity

67

APPENDIX C-2 : SOURCE CODE - TESTING JSON API

Language : NodeJS

var express = require('express');

var app = express();

var object1 =

 {

 "value_1": ["el_a", "el_b", "el_c"],

 "value_2": ["el_1", "el_2", "el_3"],

 "version": ["v1", "v2"]

 };

app.get('/api', function (req, res) {

 res.send(object1);

});

app.get('/:variable', function (req, res) {

 var result = {};

 result.variable = req.params.variable;

 result.object = object1;

 res.send(result);

});

app.listen(3000, function () {

 console.log('Example app listening on port 3000!')

});

68

APPENDIX D : PRACTICAL USE CASE – QUERY & RESULTS DETAILS

The executed query is:

PREFIX geo: <http://www.w3.org/2003/01/geo/wgs84_pos#>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>

PREFIX xmlns: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>

PREFIX dbo: <http://dbpedia.org/ontology/>

PREFIX dbr: <http://dbpedia.org/resource/>

PREFIX yago: <http://dbpedia.org/class/yago/>

SELECT ?label ?retweet ?weather WHERE {

 ?place dbo:country dbr:Chile ;

 xmlns:type yago:Capital108518505 .

 SERVICE <http://dbpedia.org/sparql> {

 ?place rdfs:label ?label .

 FILTER(lang(?label) = 'es') .

 } .

 SERVICE <https://api.twitter.com/1.1/search/tweets.json?

 q={label}&result_type=recent>{

 ($.statuses[*].retweet_count) AS (?retweet)}

SERVICE <http://api.openweathermap.org/data/2.5/weather?

 q={label},Chile&appid=99ac6530dcbd78fa4c02d08ec5297a52>{

 ($.weather[*].description) AS (?weather) }
}

In the “query” column of the next tables, the value “T&W” refers to the execution of the

whole query while the values “Weather” and “Tweets” refer respectively to the execution of

the query without the SERVICE bloc calling the Twitter API, and without the Openweather

API.

69

Table II-1: Results details for the comparison of the 4 execution methods.

Table II-2: Results mean values (obtained from details) for the comparison

of the 4 execution methods.

Table II-3: Results details for the comparison of the classic and streaming

methods while using a LIMIT optional bloc. (*We eliminated the forcing use of

streaming method in case of LIMIT bloc to make the tests).

Table II-4: Results details for the comparison of the queries over a single

API instead of both.

N° Tests Set Query Pipeline Min_API LIMIT Mappings API Calls Total (s) API (s) DB (s)

1 T & W false false - 635 687 583,11 523,97 59,14

2 T & W false false - 631 683 414,56 397,95 16,61

3 T & W false false - 636 688 438,78 417,91 20,87

1 T & W false true - 637 104 1685,05 128,24 1556,82

2 T & W false true - 632 104 1370,72 82,95 1287,77

3 T & W false true - 625 104 1423,11 92,1 1331,01

1 T & W true false - 636 688 529,05 478,1 50,95

2 T & W true false - 634 687 458,99 403,52 55,47

3 T & W true false - 631 683 429,82 397,34 32,48

1 T & W true true - 636 104 884,47 93,45 791,02

2 T & W true true - 633 104 993,5 116,94 876,55

3 T & W true true - 648 104 867,25 102,93 764,32

Query Pipeline Min_API LIMIT Mappings API Calls Total (s) API (s) DB (s)

Classic T&W false false - 634,00 686,00 478,82 446,61 32,21

Min API T&W false true - 631,33 104,00 1492,96 101,10 1391,87

Pipeline T&W true false - 633,67 686,00 472,62 426,32 46,30

Both T&W true true - 639,00 104,00 915,07 104,44 810,63

Query Pipeline Min_API LIMIT Mappings API Calls Total (s) API (s) DB (s)

Classic T&W false* false 100 100 685 445,71 428,24 17,47

Pipeline T&W true* false 100 100 108 96,33 70,8 25,53

Query Pipeline Min_API LIMIT Mappings API Calls Total (s) API (s) DB (s)

Weather false false - 52 52 43,96 28,09 15,87

Tweets false false - 633 52 97,97 81,53 16,44

