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iii



Gratefully to my family, my mentor

and friends



ACKNOWLEDGEMENTS

I would like to express my gratitude to all those who gave me the possibility to com-

plete this thesis. I want to thank my supervisor Prof. Dr. M. Torres-Torriti from the Pon-
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ABSTRACT

Assessing a driver’s state of awareness and fatigue is especially important to reduce the

number of traffic accidents often involving bus and truck drivers, who must work during

several hours under monotonous driving conditions. The main challenge, in resolving the

state of alert, is determine the driver’s blinking (PERCLOS). To do so, an IR camera is used,

processing the images in order to find the eyes, and determine if they are open or closed.

Direct detection methods such as Viola-Jones, have the disadvantage of operating only

with a particular pose of the object sought, in this case, the head and eyes. To overcome

this problem, our approach combines the driver’s kinematics and the motion analysis of

Shi-Tomasi salient features within the face to determine head pose. With this information is

possible to achieve a continuous and robust tracking of the eyes, resistant to occlusions, and

computationally fast. The tracking has shown to be highly effective and allows a successful

99.41% rate detection of the eyes in normal conditions. To detect blinking, a set of filters

that enhances horizontal intensity changes, and the advantage of the high reflectivity of the

retina to near infrared illumination, employing a camera with an 850 nm wavelength filter,

allows a 98.2% rate detection of blinking. Head pose, besides its use on the eye tracking,

helps to determinates the driver’s attention on the road and can also be used as a drowsiness

cue, thought, blinking (PERCLOS) it will be used as the principal indicator.

Keywords: Alert state assessment , fatigue detection , drowsiness detection , dri-

ver assistance , IR eye tracking, PERCLOS, image processing, dri-

ver’s kinematics.
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RESUMEN

Obtener el estado de alerta y la fatiga del conductor es particularmente importante

para reducir el número de accidentes de tránsito que usualmente involucran a conduc-

tores de buses y camiones, los que están sometidos a largas horas de manejo bajo condi-

ciones monótonas. El desafı́o principal en la resolución del estado de alerta, es determi-

nar el parpadeo (PERCLOS). Para ello, una cámara infrarroja es utilizada, procesando las

imágenes a fin de encontrar los ojos, y determinar si están abiertos o cerrados. Métodos

de detección directa como Viola-Jones, tienen la desventaja de que sólo funcionan con

una pose en particular del objeto buscado, en este caso, la cabeza y los ojos. Para su-

perar este problema, nuestro enfoque combina la cinemática del conductor y el análisis del

movimiento de los puntos salientes de Shi-Tomasi dentro de la cara para determinar la pose

de la cabeza. Con esta información es posible lograr un tracking continuo y robusto de los

ojos, resistente a las oclusiones y computacionalmente rápido. El tracking ha demostrado

ser altamente eficiente, y permite una detección exitosa del 99.41% en condiciones nor-

males. Para detectar el parpadeo, un grupo de filtros que resaltan los cambios horizontales

de intensidad en el área del ojo, y la alta reflectividad de la retina a la iluminación en

infra-rojo cercano usando una cámara con filtro de 850nm de longitud de onda permitió

una deteccion del 98.2% de los parpadeos. La pose de la cabeza, ademas de su uso en el

tracking de los ojos, ayuda a determinar la atención del conductor en el camino asi como

también, como una caracterı́stica del sueño, sin embargo, el parpadeo (PERCLOS) será

usado como indicador principal.

Palabras Claves: Evaluación de estado de alerta, detección de la fatiga, detección

de somnolencia, asistencia al conductor, tracking de los ojos en

IR, PERCLOS, procesamiento de imágenes, cinemática del con-

ductor.

xi



1. INTRODUCTION

Road accidents take a heavy financial and social toll on national economies. The eco-

nomic cost of traffic incidents is estimated to be 1% of gross national product in low-income

countries, 1.5% in middle-income countries and 2% in high-income countries, totaling a

global cost of US$518 billion per year (Pedan et al., 2004). Without appropriate actions

to improve education, law enforcement, infrastructure and technology, a global increase

of 67% is expected by year 2020. Although global statistics about accidents attributed to

fatigue and drowsiness are not available because in many countries such details are not re-

ported or classified, the number of incidents in high-income countries is not negligible. For

example, the National Highway Traffic Safety Administration (NHTSA) reported as much

as 56.000 accidents back in 1996 (Administration, 1998), which increased to 1.35 million

in 2002 (Royal, 2002). The latter is about 0.7% of the reported accidents. These figures are

even larger if other accidents related to the driver’s state-of-alert, such as distracted driving

(3.5%) and cell-phone use accidents (0.1%), are included. Some other alarming accident

statistics due to fatigue, stress or distraction can be found in (Flores, Armingol, & Escalera,

2008 ; Pickering, Burnham, & Richardson, 2007). In this context, developing systems to

monitor a driver’s state of awareness is fundamental. Though, a number of methods, like

EEG (electroencephalogram) or EOG (electro-oculogram) are efficient to measure drowsi-

ness (Chang, Lim, Kim, & Seo, 2007 ; Liang et al., 2005 ; Wright & McGown, 2001),

they are invassive, producing disconfort and eventually the disconnection of the measuring

system by the driver, so the development of a non invassive system is essential.

1.1. Objectives

The main objective is to determine, in real time, the driver’s drowsiness state in a

non-invasive way. The proposed system relies on CV(computer vision) techniques and the

analysis of images obtained using a near IR camera with a 850nm filter. Drowsiness state

must be classified in to three different levels: awake (when the driver is fully attentive),

drowsy (when the driver is becoming sleepy) and asleep (when the driver has fallen asleep,

1



requiring an alarm to be triggered). The proposed drowsiness detection system must also

fulfill the following requirements:

• Must be robust against partial occlusion whenever the driver moves or blocks the

camera momentarily.

• Must have detection rates close to 100% in order to be reliable.

• Must detect head pose, which is also an indicator of level of attention.

• Must have low false alarm rates.

1.2. Hypotheses

The main hypotheses are:

• Percentage of closure time of the eyes (PERCLOS) can be obtained using an IR

camera with an 850nm filter.

• Rules can be defined using PERLCLOS to determine the driver’s level of drowsi-

ness.

• The face can be modeled as a coplanar set of points (SPG).

• Head pose can be estimated comparing the SPG projection into the 2D camera

coordinates with the displacement of these points using Lucas-Kanade’s optical

flow algorithm.

1.3. Existing Approaches

Several studies exist about physiological cues that can be used to assess a driver’s

awareness. Some techniques can be invasive, but fortunately, there are many behavioral

changes that provide visual cues, namely, eye-blinking frequency and closure percent-

age over some window of time (PERCLOS), yawn frequency, head movement, eye-gaze,

among other facial expressions. Hence, a variety of systems based on computer vision

techniques have been proposed. A summary is presented in Table 1.3, in which the ap-

proaches have been grouped according to the technique employed to extract the area of

2



the head. As may be seen from Table 1.3, a large number of them (Dong & Wu, 2005 ;

Horng, Chen, Chang, & Fan, 2004 ; Qin, Gao, & Gan, 2007 ; Rongben, Lie, Bingliang, &

Lisheng, 2004 ; Singh & Papanikolopoulos, 1999 ; Tabrizi & Zoroofi, 2008) employ color-

based segmentation approaches, while another important number of approaches relies on

the Viola-Jones detector (Flores et al., 2008 ; Hong, Qin, & Sun, 2007 ; Lu, Zhang, & Yang,

2007 ; Sigari, 2009 ; Xu, Zheng, & Wang, 2008 ; Zhang & Zhang, 2006). The comparison

of the approaches is not easy because results are reported in different non-standard ways.

Moreover, some approaches only track the eyes, while other focus on particular facial cues,

such as yawning (Fan, Yin, & Sun, 2007 ; Rongben et al., 2004). However, it is possible to

say that approaches based on color analysis are limited by illumination conditions and often

cannot be applied at night. This has motivated some researchers to use near infrared (IR)

cameras, exploiting the retinas’ high reflectivity to 850 nm wavelength illumination (Gu,

Ji, & Zhu, 2002 ; Park, Ahn, & Byun, 2006). Some approaches employ neural-networks

to extract the head and main features (D’Orazio, Leo, Spagnolo, & Guaragnella, 2004 ;

Suzuki, Yamamoto, Yamamoto, Nakano, & Yamamoto, 2006), while other rely on a vari-

ety of template matching schemes (Dong, Qu, & Han, 2008 ; Fan et al., 2007 ; Fan, Yin, &

Sun, 2008 ; Ito, Mita, Kozuka, Nakano, & Yamamoto, 2002 ; Wang, Yang, Wang, Guo, &

Yang, 2006).

1.4. Summary of Contributions

The main contributions of this work are in that:

• The approach combines the kinematics driver’s model, Shi-Tomasi salient points

and Nelder-Mead simplex minimization to overcome the problem of partial de-

tection. Increasing in the case of Viola-Jones from 38.02% to a 99.41% detection

rate.

• By matching salient points in 3D space to points on the 2D image plane, head

pose is estimated and loss of information can be minimized whenever occlusions

occur. This improves the ability of the method to track the eyes and correctly

3



Face Detection
Technique

Approach Characteristics Remarks
Eyes

Detection
Rate [%]

Blinking
Detection /
False Alarm
Rates [%]

Publication
Year

Color Segmentation

(Horng et al.,
2004)

Eyes location from horizontal
projection. Tracking by template
matching.

4 test subjects. 99.1 N.A. 2006

(Dong & Wu,
2005)

Eyes location from horizontal
projection. Tracking by Dynamic
Template Matching.

2 test subjects. 98.0 N.A. 2005

(Tabrizi &
Zoroofi, 2008)

Skin and eye color-based seg-
mentation.

37 test subjects. Requires illu-
mination.

96.9 N.A. 2008

(Singh & Pa-
panikolopoulos,

1999)

Eyes location from horizontal
projection.

– 95.0 N.A. 1999

(Rongben et al.,
2004)

Lips and skin segmented with
Fischer classifier and connected
component analysis. Mouth
is tracked in real-time using a
Kalman Filter.

Results obtained from 150 im-
ages. Yawning detection rate
of 95.3% and true negatives of
100%.

N.A. N.A. 2004

(Qin et al., 2007) Binarization and clustering. – 96.0 N.A. 2007
Viola-Jones

(Hong et al.,
2007)

Eyes location from horizontal
projection. Dynamic threshold-
ing.

Poor accuracy for tilted faces
(detection rate of 60.1%). 88.2 89.3/14.1 2007

(Zhang & Zhang,
2006)

Eyes location from projection.
Tracking with Unscented Kalman
Filter.

3 test subjects. Few validations
samples. 99.5 N.A. 2006

(Sigari, 2009)
Eyes location and PERCLOS
from horizontal projection.

3 test subjects. Few validations
samples. N.A. 97.8/6.3 2009

(Xu et al., 2008)
Binarization and histogram of the
horizontal projection.

Results obtained from 5646
images. N.A. 97.1/0.3 2009

(Lu et al., 2007)
Rectangle and texture features to
extract eyes with Adaboost and
SVM.

4000 images from FERET
database.

96.8 N.A. 2009

(Flores et al.,
2008)

Face poses not detected by Viola-
Jones are detected using a neural
network.

– 97.3 97.0/– 2008

TABLE 1.1. Summary of existing approaches for driver state of alert detection.
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Face Detection
Technique

Approach Characteristics Remarks
Eyes

Detection
Rate [%]

Blinking
Detection /
False Alarm
Rates [%]

Publication
Year

Neural Networks
(D’Orazio et al.,

2004)
Iris geometrical information and
symmetry.

3 test subjects. N.A. 90.0/– 2004

(Suzuki et al.,
2006)

Horizontal projection and 2nd

derivative employed to detect
eyelids using a SVM.

200 images used for training
and validation.

N.A. 96.0/– 2004

IR-based Retina Detection

(Gu et al., 2002)

Two different IR wavelengths to
detect the retina. Gabor kernels
employed to detect facial expres-
sions. Tracking with Kalman Fil-
ter.

1 test subject. 99.1 N.A. 2002

(Park et al.,
2006)

Illumination compensation and
SVM to validate the detected eye
candidates.

10 test subjects. 98.4 N.A. 2006

Other

(Fan et al., 2008)

Local Binary Pattern measure of
texture around eyes and Gabor
wavelets around mouth combined
with Adaboost.

30 test subjects. Yawning
detection/misdetection =
90.8/6.9%

N.A. 99.67/0.99 2008

(Dong et al.,
2008)

Curvature and upper eyelid cur-
vature and aperture are employed
using fuzzy fusion to detect dri-
ver fatigue. Tracking eyes with
Kalman Filter.

– N.A. 92.1/– 2008

(Ito et al., 2002)

A separability filter, which is a
circular template matching ap-
proach is used together with the
gradient of grayscale values to lo-
cate the eyes and detect blinking.

10 test subjects. N.A. 95.45/– 2002

(Wang et al.,
2006)

A binary eye pair template is used
to roughly find eyes and SVM to
validate candidates.

– 97.0 N.A. 2006

(Fan et al., 2007)

Employs a Gravity-Center tem-
plate, together with grayscale
projection and Gabor wavelets to
detect yawning.

Yawning
detection/misdetection =
95.0/6.0%

N.A. N.A. 2007

TABLE 1.2. Summary of existing approaches for driver state of alert detection.
PART II

estimate PERCLOS measure, necessary to determine the driver level of atten-

tiveness.
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2. PROPOSED APROACH

The proposed approach can be divided into two main groups of tasks (see fig. 2.1).

The first one, initializes the algorithm when the driver is looking to the front, providing the

driver’s nominal pose. The second group is the recursive loop that tracks the head pose,

taking as starting point the driver’s nominal pose determined at the initialization stage.

The first step in the initialization process detects the driver’s face using the classic

Viola-Jones algorithm (Viola & Jones, 2001), which is briefly explained in section 2.1.

The box bounding the area of the head found will be called Bh. The next step finds the

salient points inside Bh, which will be used for tracking. The algorithm to find salient

points will be described in section 2.4. Once the salient points are determined, a mesh

or grid of salient points is created. The grid of salient points will be referred to as SPG

(Salient Points Grid). The SPG is defined as a group of coplanar points forming a non

deformable structure that will have 5 degrees of freedom (DOF), replicating the driver’s

kinematics. The SPG will be described in greater detail in section 2.5. The initialization

process ends with the detection of the eyes using the Viola-Jones algorithm trained for such

purpose. The search is carried out in an area defined within Bh where the eyes are expected

to be found according to the head’s anatomy.

Once the initialization is completed , the head tracking task is carried out by comparing

the motion of the SPG in 3D space with the motion of salient points in the 2D image plane.

To this end, the salient points in the image are tracked individually using the Lucas-Kanade

(LK) approach to optical flow computation (details on the LK algorithm will be provided

in section 2.2). The next step involves solving a matching problem that requires to find

the motion of the SPG using the kinematic model of the driver, such that the projection

back to 2D coordinates in the image plane of salient points in the SPG, which are in 3D

space, coincides as best as possible with the new location of the salient points tracked in

2D space using the LK approach. The driver’s estimated pose is obtained as a solution of

the matching problem that is further explained in section 2.8.

6



Finally, the driver’s eyes are sought within expected regions according to the newly

determined head pose. Solving the head tracking problem significantly improves tracking

of the eyes, even if during several frames the eyes cannot be detected directly by analyzing

the image. Continuous tracking of the eyes allows knowing the location of the pupils with

great accuracy and if they are visible or not due to blinking by the driver. Analyzing the

blinking yields measures such as PERCLOS (Wierwille, Ellsworth, Wreggit, Fairbanks, &

Kirn, 1994), which provide an indication of the driver’s state of drowsiness More details

about PERCLOS will be provide in section 2.3 .

FIGURE 2.1. Flow chart of the proposed method.
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2.1. Viola-Jones Detector

The Viola-Jones detector uses features obtained from the image response to Haar-like

kernels, such as the shown in fig. 2.2.

FIGURE 2.2. Examples of Haar-like features.

One of the contribution of Viola-Jones was to use integral image-based representa-

tions (Crow, 1984) for the faster computation of the Haar-like features. Viola and Jones

propose the use of the adaptive boosting technique (known as Adaboost) to select simple

linear classifiers with high detection rates and weak false positive rates. The use of these

classifiers in cascade (fig. 2.3) allows excellent detection rates and reduced false alarms.

From a practical stand point, the advantage of this approach is in that classification of fea-

tures can be computed efficiently in short time by the cascade of simple classifiers, even

if the training stage to solve the classifier parameters is computationally more demanding

than that of other classification approaches, but that are slower on the classification stage.

2.2. Optical Flow

The optical flow approach proposed by Lucas and Kanade (Lucas & Kanade, 1981)

rests on three assumptions: the first one is that a pixel of an object on the scene does not

change its intensity when the object moves from frame to frame, the second one is that the

objects only make small movements from frame to frame, and the final assumption is that

neighboring points belong to the same surface, have similar motion, and are neighbors in

the image plane if they are neighbors in the scene.

8



FIGURE 2.3. Face detection using a cascade of linear clasifiers (Ci).

If I(x(t), t) : N2 ×R→ R denotes the brightness of a moving pixel x(t) ∈ N2 at time

t, the basic idea of the Lucas-Kanade approach is to take the spatial derivative at pixel x,

denoted by Ix = ∂I
∂x

, and the temporal derivative of the same pixel at time t, denoted by

It = ∂I
∂t

, and then calculate how much the point moves from one frame to another using the

following approximation:

‖~v‖ ≈ − It
Ix
. (2.1)

This approximation is valid for the one-dimensional case and is possible because:

dI

dt

∣∣∣∣
x(t),t

=
∂I

∂x

∣∣∣∣
t︸︷︷︸

Ix

dx

dt︸︷︷︸
~v

+
∂I

∂t

∣∣∣∣
x(t)︸ ︷︷ ︸

It

= 0 ⇒ v = − It
Ix

(2.2)

by the brightness constancy assumption. Considering fig. 2.4, which shows a smooth edge

consisting of bright values on the left and dark values on the right and that is moving

towards the right along the x-axis, the motion velocity ~v is the ratio between the rise in

time and the displacement in space. Since brightness undergoes small variations in real

images, this process must be iterated using the computed value of ~v as starting solution
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for the next iteration. Another important aspect is that in 2D images, there are two spatial

variables, but just one equation, i.e. the system is under determined, and therefore a block

of neighboring pixels must be employed to add constraints. The problem becomes an over

determined system of equations, which can be solved using a pseudoinverse to find the

two-dimensional velocity vector ~v.

FIGURE 2.4. Example of optical flow on 1D.

To achieve more accuracy the operation is repeated until the difference of the intensities

of the point in both frames is below certain threshold, or a maximum number of iterations

is reached.

2.3. PERCLOS

PERCLOS is a measure that has been proven to have a high correlation with the

level of drowsiness of persons (Sigari, 2009 ; Xu et al., 2008 ; Grace et al., 1998). The
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most important study was made by the Federal Highway Administration of the United

States (Wierwille et al., 1994), and shows how the PERCLOS of a person increases di-

rectly with the level of fatigue. The test was made keeping ten subjects awake for 42 hours

and taking tests of PERCLOS and reaction time every two hours. The test results show an

average correlation between the reaction time and drowsiness of 0.878.

PERCLOS is calculated as a ratio between the amount of time the eyes are closed with

respect to the total time:

PERCLOS =
tc

tc + to
(2.3)

where tc is the time the eyes are closed and to is the time the eyes are open. This measure

is typically computed over moving windows lasting one minute. It will be shown in the

results that our approach can measure PERCLOS with high accuracy in normal conditions

(the direction of the head does not separate more than 15 degrees from the nominal position

and the subjects did not use glasses or sunglasses). The results obtained from our tests

with subjects in simulated driving conditions are consistent with the previous studies about

PERCLOS reported in the literature.

2.4. Salient Points of the Face

Once face detection succeeds, the next step is to localize salient points that will be

easy to track from frame to frame. To determine these points, the Shi-Tomasi corner detec-

tor (Shi & Tomasi, 1994) is implemented and applied to the image region Bh. The objective

is to use the points on the face that are good candidates for tracking regardless of their po-

sition. In this way, every characteristic, including the ones that change from face to face

like scars, beard, freckles, etc., will be used to estimate head’s pose and eyes’ position.

The Shi-Tomasi corners are a variant of Harris corners (Shi & Tomasi, 1994), in which

the autocorrelation matrix of first order horizontal (Ix) and vertical (Iy) image derivatives

is used:
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M(x, y) =


∑

−K≤i,j≤K

wi,jI
2
x(x+ i, y + j)

∑
−K≤i,j≤K

wi,jIx(x+ i, y + j)Iy(x+ i, y + j)

∑
−K≤i,j≤K

wi,jIx(x+ i, y + j)Iy(x+ i, y + j)
∑

−K≤i,j≤K

wi,jI
2
y (x+ i, y + j)

 ,(2.4)

where 2K is the size of the surrounding region used to calculate the matrix.

The Shi-Tomasi approach select a salient point whenever min(λ1, λ2) are higher, than

a certain threshold, where λ1 and λ2 are the eigenvalues of M(x, y).The number of salient

points selected is restricted to a maximum number denoted by Nmax that in our implemen-

tation was set to 96.

2.5. Salient Points Grid

Visual tracking using a single camera of any object in 3D space is a challenging pro-

blem because, as it is well known, some information is lost due to the perspective projection

that maps points in 3D space to the bidimensional space of the optical plane of the camera.

However, if a priori knowledge of the object geometry is available, then it is possible to

recover 3D motion and pose information. The approach in this work exploits the fact that

all salient points belong to the driver’s head (see fig 3.1 in the implementation section for

an example of salient points detected for one of the test subjects), which is a rigid object of

standard size and at a regular nominal distance from the camera. Since the salient points

belong to a 3D object, the geometric constraints which they satisfy are only fulfilled in 3D

coordinates, and therefore, tracking them correctly requires projecting salient points in 2D

coordinates back to 3D coordinates in order to comply with the constraints of motion in 3D

space.

The method for tracking the driver using a single camera uses three matrices,

P2D:3D : x ∈ R2 → X ∈ R3 (2.5)
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FIGURE 2.5. Transformation of the salient points made by the proposed approach

M : X ∈ R3 → X ′ ∈ R3 (2.6)

P3D:2D : X ′ ∈ R3 → x′ ∈ R2 (2.7)

and for simplicity of exposition it will be divided as follows:

• Applying the projection P2D:3D to salient points x in the image back to points X

to the facial plane, as shown in fig. 2.5.

• Finding a motion matrix M that maps points X to points X ′ according to the

driver’s body motion, such that the projection of X ′ back to the image plane

using the projection matrix P3D:2D results in points x′ that closely match the

salient points found using the LK algorithm in the newly acquired frame.

The proposed approach just described relies on the following assumptions:

• The face can be modeled as a plane.

• The face is a non-deformable rigid object.
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• The driver’s motion can be represented by a two-link system with two articulated

joints providing 5 DOF (shown in fig. 2.6).

• The distance between the joints is equal to the average length Hb of an adult’s

torso.

By the above assumptions, the group of salient points form a non-deformable structure

that will be called salient points grid or SPG. The salient points belonging to the SPG of

one of the test subjects is shown in fig 3.1 of the implementation section.

In the next sections, the kinematic model represented by the transformation matrix M

will be divided, as well as the projective transformation from camera to world coordinates

(P2D:3D) and vice versa (P2D:3D).

2.6. Driver’s kinematic model

The motion of the driver can be decomposed into head motion and torso motion as

shown in fig. 2.6.

The motion model employs three coordinate systems: Sh,Sb,Sw for the head , body

and world coordinates, respectively. It is assumed that initially Sh,Sb and Sw are aligned

and share the same origin coordinate. The first step in representing the position of the SPG

involves rotating Sh (and the SPG fixed to Sh) around Sb and translating, an Hb distance,

the rotated Sh along the x-coordinate of Sb. This operation is generated by matrix:

Mh =


c(α1)c(β1) c(α1)s(β1)s(γ1)− s(α1)c(γ1) c(α1)s(β1)c(γ1) + s(α1)s(γ1) Hb

s(α1)c(β1) s(α1)s(β1)s(γ1) + c(α1)c(γ1) s(α1)s(β1)c(γ1)− c(α1)s(γ1) 0

−s(β1) c(β1)s(γ1) c(β1)c(γ1) 0

0 0 0 1

 ,(2.8)

The next step rotates Sb around Sw using the rotation matrix:
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FIGURE 2.6. Driver’s kinematics.

Mb =


c(α2)c(β2) −s(α2) c(α2)s(β2) 0

s(α2)c(β2) c(α2) s(α2)s(β2) 0

−s(β2) 0 c(β2)c(γ2) 0

0 0 0 1

 , (2.9)

Therefore, given angles α1,β1,γ1,α2,β2 which define the driver’s pose, the location of points

Xspg ∈ SPG in Sw coordinates will be given by:

XW = MBMHX
spg (2.10)

2.7. The SPG and the Perspective Projection Model

In order to simplify the transformation of salient points in the image to points of

the SPG in 3D coordinates some useful coordinate transformations are introduced first.
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The first transformation takes salient points in standard image coordinates (which assume

the origin at the upper-left corner with the x-axis aligned with pixels rows towards the

right and the y-axis aligned vertically with the columns), and expresses those coordinates

with respect to a new coordinate frame whose origin is defined in terms of coordinates

(facepivotx,facepivoty) located horizontally at the center of the head and vertically 1/3

below the center of the head. This coordinate also defines the position around which the

facial plane in 3D coordinates can tilt when the head moves. To express salient points with

respect to pivot coordinates the following transformation is employed:

xp = CSx (2.11)

where

S =


Pixh 0 0

0 Pixw 0

0 0 1

 , (2.12)

is a scaling matrix which transforms pixel units to metric units and

C =


−1 0 facepivotx

0 1 facepivoty

0 0 1

 , (2.13)

transfers the coordinates of salient points in standard image coordinates to salient points

in pivot coordinates, Pixh and Pixh are calculated with the camera intrinsic parameters

(resolution and size of the CCD). It is to be noted that the latter are still 2D coordinates.

To take 2D points to the 3D space, more information besides the points’ position on

the camera’s optical plane is needed. This information is the distance between the camera

and the driver’s head. Determining the approximate distance at which the head of the
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driver is located is possible using the distance between the eyes as yardstick since the

interpupilar distance is relatively invariant for adult people. Here it will be assumed that the

separation between the eyes is 63mm (Dodgson, 2004). If δ denotes the distance between

the projection of the eyes onto the optical plane in millimeters, then the distance between

the camera and the driver’s face is given by:

Dhc = 63
f

δ
(2.14)

where f is is the focal distance of the camera in millimeters. Using Dhc (which usually

takes values between 50cm and 80cm), the transformation matrix that projects the salient

points back to the SPG is

D =


Dhc/f 0 0

0 Dhc/f 0

0 0 Nf

0 0 1

 , (2.15)

where Nf is the distance along z-coordinate between the pivot of the head coincident with

the origin of SH and the SPG’s plane as shown in fig. 2.7. This distance must be taken

into account because the face rotates about the neck, and the rotation point is not coplanar

with the SPG’s plane.

With the previously defined matrices, the backprojection of 2D to 3D coordinates can

be constructed as follows:

P2D:3D = DCS. (2.16)

The projection of SPG element coordinates back to the image plane requires two addi-

tional transformation matrices. One of this matrices is
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FIGURE 2.7. Face pivot and Nf distance.

Mpov =


−1 0 0 Hb

0 −1 0 0

0 0 1 −(Dhc +Nf )

0 0 0 1

 , (2.17)

whose point is to adjust the camera coordinates relative to the global world coordinate

frame SW . The other matrix is the standard projection matrix:

H =


f 0 0 0

0 f 0 0

0 0 1 0

 . (2.18)

Finally, the mapping of 3D point coordinates to 2D image coordinates can be defined

by:
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P3D:2D = C−1S−1HMpov. (2.19)

It is to be noted that the combined transformation defined as:

T (α1, β1, γ1, α2, β2, ) = P3D:2DMP2D:3D (2.20)

is a 3x3 matrix with full rank.

2.8. Head Pose Estimation

The proposed approach use the well known Lucas-Kanade’s method to optical flow

computation (Lucas & Kanade, 1981) to track point by point of the SPG projected in the

2D image coordinates. As shown in fig. 2.8, some points may not be tracked correctly,

especially if they are close to the boundaries of the head and they become occluded when

the head turns. Bad tracking can also occur when the points are occluded by an external ob-

ject like the driver’s hand. In order to determine reliable points that were correctly tracked

and discard wrongly tracked points, pixels neighboring the salient point in two consecutive

frames are compared. This comparison is carried out in terms of the convolution of cor-

responding pixel blocks. The resulting value provides a measure of wi of the quality and

reliability of the match which is used to assign weights to the different salient points.

If xi denotes the i-th salient point of the SPG and ti the corresponding point tracked

by LK algorithm, the head pose can be estimated by solving the following minimization

problem:

min
α1,β1,γ1,α2,β2

∑
i

wi
∥∥T (α1, β1, γ1, α2, β2)x

i − ti
∥∥ (2.21)
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FIGURE 2.8. Example of LK tracking between two frames with a point bad tracked.

Once the head parameters are found it is possible to project the SPG, such that the

SPG points closely match the points tracked by the LK algorithm. If most of the salient

points are well tracked by LK, the projected points of the SPG will give a corrected posi-

tion of the salient points, fixing the few bad points tracked as shown in fig. 2.9. The solution

of the minimization problem employs as initial value the solution obtained in previous it-

erations. By doing so, falling into local minimum is avoided and the computation time is

reduced, as compared to the one starting always from some nominal posture.

FIGURE 2.9. Example of SPG tracking between two frames with a corrected point.
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2.9. Eyes Location and Tracking

The eyes’ location is obtained using the Viola-Jones approach in a subwindow within

Bh. To achieve a continuous and reliable detection whenever the Viola-Jones algorithm

fails to detect the eyes, especially due to changes in pose or due to occlusions, the proposed

approach takes advantages of the fact that the SPG is a non-deformable structure and that

therefore prior identifications of the eyes (that are fixed points of the face) can be related

to two additional points in the SPG. On every successful detection of the eyes using the

Viola-Jones approach, an indication of the eyes’ location is obtained. Each new hint of

where the eyes are located can be employed to improve the location of the eyes within the

SPG, which by the matrix transformations can be used to obtain the location of the eyes on

the camera’s optical plane in every frame, regardless of whether the Viola-Jones algorithm

fails to find them. In this case, if ec,lk and ec,rk denote the respectively location of the left (l)

and right (r) eye in image coordinates (indicated by c) for frame k, then

espg,ik = T−1(α1, β1, γ1, α2, β2)e
c,i
k , i = l, r (2.22)

are the location of the eyes in SPG coordinates. Hence the update of the estimated position

of the eyes on the SPG (denote by êspg,ik ) every time Viola-Jones successfully finds the eyes

is computed as

êspg,ik = (1− α)êspg,ik−1 + αespg,ik , i = l, r, (2.23)

where α indicates the percentage of relevance of the raw measurement espg,ik that will be

used to update êspg,ik−1 i.e α is the so-called learning rate of the first order running average

filter implemented by (2.23).

Having an estimated position of the eyes on the SPG on every frame, the estimated

position of the eyes in image coordinates is calculated by
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êc,ik = T−1(α1, β1, γ1, α2, β2)ê
spg,i
k , i = l, r. (2.24)

It will be shown in the results section that êc,ik has proven to be a very precise estimation

of the eyes’ position.

2.10. Reset Rules

As seen in the previous sections, the proposed approach estimates head pose with

respect to an initial nominal pose, in other words, the head pose measure is differential.

This is why, if small errors occur on some frames, these errors accumulate over time.

Despite this, the eye detection system maintains its accuracy because every time a direct

detection of the eyes succeeds, the estimation is updated correcting the cumulative error

that may exist. To fix the accumulative error of the head tracking a set of rules to reset

the head pose estimation is defined. If the head does not move outside 20◦ for any of

the DOF (α1,β1,γ1,α2,β2), or if the eyes are directly detected at least one time within a

certain number of frames (100 frames were used in the tests), the tracking will be reset in a

relatively long number of frames denoted as nl, if any of the mentioned rules is broken, the

tracking will be reset on a smaller number of frames that will be denoted ns. On the tests,

nl was set to 5000 and ns to 100, giving good tracking results by keeping the cumulative

error to the minimum.

2.11. Detection of Blinking

A Laplacian filter is applied to an area of the image arround êck denoted Eck with height

equal to 33% of the height of the found face and width equal to 18% of the width of the

found face. As result, an horizontal gradient image denote by Gs
x,k(i, j) is obtained. Since

the number of lines with vertical directions, i.e. lines with stronger horizontal gradients, in-

creases when the eyes and mouth are open, the average intensities in the horizontal gradient
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FIGURE 2.10. Eye image and filter image for both open and close eye.

image, given by

Ḡs
x,k =

1

|Bsk|
∑

(i,j)∈Bsk

Gs
x,k(i, j), s = l, r, (2.25)

provides a reference value Ĝs
x,k against which Ḡs

x,k must be compared to according to

‖Ĝs
x,k−Ḡs

x,k‖ > ηs, in order to establish if a blinking has occurred. Here ηs is a percentage

of Ĝs
x,k determined in such a way as to maximize the rate of detection, while minimiz-

ing the rate of false alarms. Figure 2.10 illustrates a closed eye (upper-left), an open eye

(lower-left) and the corresponding responses obtained from the application ∇2
x Laplacian

filter in the horizontal direction. When the eyes are open, the value of Ĝs
x,k and Ḡs

x,k are

similar. However, when the eyes are closed there is only a horizontal line, thus the average

brightness is weaker, resulting Ḡs
x,k < Ĝs

x,k instead of Ḡs
x,k ≈ Ĝs

x,k as when eyes are open.
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3. IMPLEMENTATION AND TESTING METHODOLOGY

To determine the efficacy of the proposed approach, a number of subjects participated

in driving experiments, which lasted 45 minutes each. These experiments were carried in a

simulator implemented to acquire driving behavior and measure each individual’s reaction

time. A snapshot of the software implemented to extract salient points and compute the

PERCLOS measure is shown in fig 3.1.

To compare reaction times under drowsiness and full rest, the participants would drive

in two sessions: one after sleep deprivation for one night, and the other a few days later after

having had a full night of sleep. The next sections will describe how the driving tests and

reaction time were obtained, as well as the details on the specifications and construction of

the driving simulator.

FIGURE 3.1. Snapshot of the system running.
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3.1. Reaction Time and Driving Test

Measurement of reaction times was done by asking drivers to press a button as fast as

possible whenever a green mark on the simulator’s projection screen would turn red. The

procedure was repeated 50 times before the driver would start driving. The elapsed time

between each reaction test was random and could last between 2 to 10 seconds.

Once the tests to measure reaction time were completed, participants had to drive for

45 minutes along a rather monotonous track scenario simulating a dessert with hills and

very few turns. The purpose of the chosen scenario was to induce drivers to fall asleep,

while keeping visual distractors that could arouse driver’s attention to a minimum.

3.2. Driving Simulator

The car simulator was built inside a closed lab with no external light sources using a

Ford Escape 2009 seat and a Momo Racing Force Feedback Steering Wheel by Logitech,

which included gas, brake and clutch pedals. A Viewsonic high resolution digital projec-

tor was used to project the scenes on a cylindrical projection plane, whose purpose was to

immerse the driver into the virtual driving scenario and contribute to the realism perceived

by the person by considering the effects of video motion on the peripheric vision. In other

words, the curved backdrop surrounding the driver provides him or her an enhanced ve-

locity sensation than what a planar surface would. The simulator also includes speaker to

provide realistic sound. The software employed to create the driving environment is the

open source driving simulator Racer (www.racer.nl). The simulator was configured to limit

driving speed to 100 km/h

Fig. 3.2 shows the simulator layout, composed of the semicircular projection screen

of 1.8m radius, the projector located 5.8m from the projection screen and 2.7m above

the ground to avoid the car seat structure from casting shadows on the screen. As shown

in fig. 3.2, the rear of the seat structure is 0.9m away from the center of the semicircular
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FIGURE 3.2. Driving simulator layout.

projection screen. This location ensures that the driver field of view subtends the whole

projection screen and not just the central portion (see fig. 3.5). Fig. 3.3 shows the dimen-

sions of the seat structure whose construction is shown in fig. 3.4.
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FIGURE 3.3. Dimensions of the vehicle simulator steering-wheel and seat structure.

FIGURE 3.4. The constructed vehicle simulator structure.
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FIGURE 3.5. Driving simulator during an test drive.

3.3. Drowsiness Detection Sensor

The drowsiness detection sensor was implemented using a near infrared camera with

a resolution of 640x480 pixels (see fig. 3.6). The camera is an of-the-shelf security camera

available for less than USD 100.00. The camera includes an array of 21 infrared emitters. A

850nm filter was added to block interference from other sources of infrared radiation, es-

pecially the sun. A composite-video to USB converter was employed to capture the frames

directly on a PC (approximate value USD 50.00). The processing algorithms were imple-

mented in using OpenCV (the official website is http://sourceforge.net/projects/opencv/)

and the Microsoft Visual C/C++ compiler executed on a laptop with a 2.2 GHz CPU and

3 GB of available RAM, delivering a frame rate of 16.5 fps for 384x288 pixel frames to

achieve real-time processing capabilities.
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FIGURE 3.6. IR camera with a 850nm filter and an array of 10 infrared emitters.
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4. EXPERIMENTAL RESULTS

In the next two sections this chapter presents and discusses the results concerning

the detection of eyes and blinking, as well as the drowsiness detection results using the

PERCLOS measure.

4.1. Eye and Blink Detection Results

Eye detection, eye tracking and blinking rates were calculated using a subset of five

randomly chosen subjects out of the seventeen persons that volunteered for the experi-

ments. The reason for using a subset and not the whole collected data is that the length of

the videos (45 min per experiment) would have required an enormous amount of time of

manual processing for ground truth extraction.

Eye blinking was effectively detected 98.37% of the time on average with a rate of

false alarm of 0.98%, as shown in table 4.1. In three out of five subjects, blinking was

detected every time it occurred. However, the third and fourth subjects were harder to

detect on every occurrence because they tended to move more and change their eye gaze

direction. The time duration of blinks was measured on each occasion they were detected,

thus providing a good estimate for PERCLOS. Threshold values for eye blinking thresholds

ηs, s = l, r (defined in section 2.11), were chosen so as to yield the highest detection rates

with lowest possible false alarm rate.

The proposed approach proved highly effective for eye tracking, yielding average

tracking rates above 99%, as shown in Table 4.2. Except for two subjects that would move

a lot while driving, the rest of the five drivers had perfect eye tracking rates of 100%, in

spite of their motion and changes in the external illumination. In other words, the system

is able to determine the location of the head and its pose 99.41% of the time on average.

If the Viola-Jones approach to eye detection is used alone, only 38.02% of the time the

eyes can be detected and tracked, as shown in Table 4.3. This confirms the importance of
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Subject Events
Detection
Rate [%]

False
Alarm Rate

[%]
1 24 100.00 1.05
2 20 100.00 1.61
3 24 96.00 0.4
4 40 97.56 0.88
5 13 100.00 0.85

Mean 98.37 0.98

TABLE 4.1. Blink detection results.

Subject Frames
Tracking
Rate [%]

1 2768 100
2 6122 100
3 5219 100
4 3310 96
5 5253 99

Mean 99.41

TABLE 4.2. Eye tracking results with the proposed approach.

Subject Frames
Tracking
Rate [%]

1 2768 22.24
2 6122 43.16
3 5219 21.18
4 3310 58.29
5 5253 44.33

Mean 38.02

TABLE 4.3. Direct eye detection results with the Viola-Jones aproach.

including the kinematic model for the head motion as a way to improve the detection and

tracking rates.
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FIGURE 4.1. Subjects used to calculate the tracking rate of the eyes and the detec-
tion rate of blinking.

The subjects used to estimate the tracking rate of the eyes and the detection rate of

blinking are shown in fig. 4.1.

4.2. Drowsiness Detection Using the PERCLOS Measure

To determine the state of drowsiness of the driver and establish its relation with the

PERCLOS’s value found by the proposed approach, the different states of drowsiness were

separated in; awake, semi-drowsy and drowsy. The awake state is defined as the state of a

person who had a full night sleep (between 6 and 8 hours) and that does not yawn or fall

asleep during the test (falling asleep is defined as the total closure of the eyes for more than

2 seconds). The semi-drowsy state is defined according to any of the two criteria: (i) the

subject had a full night of sleep, but did yawn during the test, or (ii) the subject did not

sleep all night, but does not fall asleep during the test. Finally, the drowsy state is defined

as the one for which subjects fall asleep at least one time during the test.

The PERCLOS measure computed using a moving window of 15 minutes for subjects

that were awake is shown in table 4.4. Assuming the PERCLOS measurements have a

normal distribution, the confidence interval (CI) with a confidence level of 95% is found

to be 0.0319 ± 0.0021 with a standard deviation of 0.0066, i.e, the eyes were closed 3%

of the time during the observation period. These results differ from those obtained for

subjects in semi-drowsy state (see table 4.5) and for which the CI is within 0.0880±0.0084

with a standard deviation of 0.0570. This means that the PERCLOS measure for semi-

drowsy drivers is significantly larger than that for awake drivers. The semi-drowsy state
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can be interpreted as the transition from the awake state to the drowsy state considering

that the average PERCLOS measure for drowsy drivers was 0.18, a remarkable increase

with respect to not fully drowsy drivers. PERCLOS results for subjects in a drowsy state are

shown in table 4.6. The CI for the PERCLOS measure for drowsy drivers is 0.1802±0.0146

with a standard deviation of 0.0690.

Subject PERCLOS

1 0.028057
2 0.032882
3 0.029127
4 0.044358
5 0.025534
6 0.031695

Mean 0.03194
Std.Dev 0.0066209

TABLE 4.4. Average PERCLOS for the group of subjects in awake state.

Subject PERCLOS

7 0.10885
8 0.065954
9 0.090533

10 0.108824
11 0.066297

Mean 0.0880916
Std.Dev 0.0213996

TABLE 4.5. Average PERCLOS for the group of subjects in semi-drowsy state.

Fig. 4.1 shows the average PERCLOS values and the CI of the different states of alert

confirming a clear difference between the states. Fig. 2 shows the normal distribution of

the three states and providing the necessary information to establish the classification rules

for the alert states of the driver. For example, the means and covariances can be assumed
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to specify the probability distributions for each class, and used to select the class for which

the measurement has the highest probability to belong to. This sort of minimum distance

estimator can be implemented in terms of the following rules:

• 0.000 <PERCLOS≤ 0.048 indicates the driver is fully awake (awake state).

• 0.048 <PERCLOS≤ 0.125 indicates the driver is in a semi-drowsy state.

• 0.125 <PERCLOS≤ 1.000 indicates the driver is in a drowsy state.

Subject PERCLOS

12 0.189135
13 0.176758
14 0.209923
15 0.097456
16 0.226241
17 0.181416

Mean 0.18015483
Std.Dev 0.0445936

TABLE 4.6. Average PERCLOS for the group of subjects in drowsy state.

In order to avoid incorrect triggering of alarms to wake up the driver when laughing,

frowning, scratching or making other gestures not related to a drowsy state, the search for

eye closures lasting more than two seconds to determine if the driver has fallen asleep are

done only if the PERCLOS value is greater than 0.0881, which is the mean PERCLOS value

for drivers in semi-drowsy state. Because the semi-drowsy state is a transition between the

awake and the drowsy states, is reasonable to assume that subjects in the semi-drowsy state

closer to the drowsy state will have higher probability of falling asleep than the ones closer

to the awake state.

Tests made to measure the reaction time of the subjects show that in most cases the

reaction time increases with drowsiness, as shown in table 4.7. However, it is difficult
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FIGURE 4.2. Mean and confidence interval of the tested subjects for the three
states of alert.

FIGURE 4.3. Normal distributions of the different states of alert calculated with
the tested subjects.
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to establish the state of the subject because the reaction time can vary significantly from

subject to subject, even if when are equally awake or fatigued. For this reason the reaction

time was not used as a criteria to determine the state of the driver, despite weak correlations

between the mean reaction time of the different groups and their level of drowsiness.

State Reaction time[ms]

Awake 199
Semi-drowsy 204.6

Drowsy 262.5

TABLE 4.7. Mean reaction time of the group of subjects in the different states.
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5. CONCLUSION AND FUTURE RESEARCH

A robust and computationally effective approach for estimating the drivers state of

drowsiness was presented. The approach relies on the motion analysis of salient points,

which are selected using the Shi-Tomasi approach and tracked with the Lucas-Kanade

tracker. Tracking the facial points and estimating the head pose allows keeping track of

the driver’s pupils at all times without requiring a computationally expensive face detec-

tion process on every frame. The Viola-Jones approach applied to face detection is used

only to obtain an initial estimate of the face location, and every certain frames, when a large

movement of the head is detected. The approach performs under day or night illumination

conditions because it uses a standard camera together with a circular array of infrared leds

integrated to the camera and an 850 nm infrared passband filter added to block illumina-

tion variations during the day due to external sources. The approach delivers the estimated

position of the eyes 99.41% of the time on average, regardless of whether a direct detection

was possible or not, thus proving to be quite effective and robust to occlusions due to driver

actions, such as yawning, scratching, laughing, or other facial gestures. It is also to be

noted that blinking is detected a 98.37% of the time on average with low false alarm rates

(below 1%). Higher detection rates are possible, but with higher false alarm rates due to

changes in the intensity of the pupil whenever the driver changes the direction view.

The approach performs in real-time comparing favorably with respect to other ap-

proaches reported in the literature. It can be easily implemented with currently available

low-cost security cameras that include IR leds.

It was shown that PERCLOS measurements can be used to identify the driver’s main

states of alert: awakeness, partial drowsiness and full drowsiness. Basic rules to determine

the driver’s drowsiness take into account the mean PERCLOS value and the standard devi-

ation to define the threshold for being in certain state. A remarkable finding was that the

group of subjects in the awake state presents a mean PERCLOS value of 0.0319 ± 0.0022

(CI 95%) with a standard deviation of 0.0066, while subjects in the drowsy state have a

mean PERCLOS of 0.1801 ± 0.0146 (CI 95%) with a standard deviation of 0.0690, thus
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exhibiting a significant difference between the two states that would allow a driver assis-

tance system to warn the driver about having reached dangerous levels of fatigue, which

could lead to an imminent accident, and that stopping the car to get some rest should be a

priority.

The proposed approach may be improved by reducing cumulative error arising from

head tracking or improving the direct detection of face and eyes, for example, through some

improvement of the Viola-Jones algorithm. Therefore, future research is concerned with

incorporating the RANSAC iterative method to discard outliers from the tracked points.

Also, given that a 5 DOF kinematic model of the driver’s motion in space is already being

used, an extended Kalman filter could be added to minimize the variance in the head pose

estimation from a frame to the next. The Viola-Jones algorithm used in our approach was

trained using images taken with a regular camera. In order to improve the detection rates,

IR images of faces will be used to re-train the Viola-Jones algorithm for eye and head

detection.

Though some test with drivers wearing eyeglasses and sunglasses were done, no con-

clusive results were obtained. More tests must be made in the future to analyze how the

system works under these conditions and how can it be improved to work robustly in both

cases, with or without eye glasses.
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no. dot hs 808 707 (pp. 30 éd.; N. E. P. on Driver Fatigue & Sleepiness, Eds.).

National Center on Sleep Disorders, Research, National Heart, Lung, and Blood

Institute, and National Highway Traffic, Safety Administration, Washington, D.C.:

NCSDR/NHTSA.

Chang, B., Lim, J., Kim, H., & Seo, B. (2007, Sept.). A study of classification of the

level of sleepiness for the drowsy driving prevention. The Society of Instruments and

Control Engineers Conference, 3084-3089.

Crow, F. (1984). Summed-area tables for texture mapping. Proceedings of the 11th

annual conference on Computer graphics and interactive techniques, 207 - 212.

Dodgson, N. (2004, Jan.). Variation and extrema of human interpupillary distance.

Stereoscopic Displays and Virtual Reality Systems XI, 2, 36-46.

Dong, W., Qu, P., & Han, J. (2008, July). Driver fatigue detection based on fuzzy

fusion. Control and Decision Conference, 2008. CCDC 2008. Chinese, 2640-2643.

Dong, W., & Wu, X. (2005, May). Driver fatigue detection based on the distance of

eyelid. VLSI Design and Video Technology, 2005. Proceedings of 2005 IEEE Inter-

national Workshop on, 365-368.

D’Orazio, T., Leo, M., Spagnolo, P., & Guaragnella, C. (2004, Oct.). A neural system

for eye detection in a driver vigilance application. Intelligent Transportation Systems,

2004. Proceedings. The 7th International IEEE Conference on, 320-325.

39



Fan, X., Yin, B., & Sun, Y. (2008, April). Nonintrusive driver fatigue detection. Net-

working, Sensing and Control, 2008. ICNSC 2008. IEEE International Conference

on, 905-910.

Fan, X., Yin, B.-C., & Sun, Y.-F. (2007, Aug.). Yawning detection for monitoring

driver fatigue. Machine Learning and Cybernetics, 2007 International Conference

on, 2, 664-668.

Flores, M., Armingol, J., & Escalera, A. (2008, June). Real-time drowsiness detec-

tion system for an intelligent vehicle. Intelligent Vehicles Symposium, 2008 IEEE,

637-642.

Grace, R., Byrne, V., Bierman, D., Legrand, D., J.M. andGricourt, Davis, B.,

Staszewski, J., et al. (1998). A drowsy driver detection system for heavy vehicles.

Digital Avionics Systems Conference, 2, 136/1-136/8.

Gu, H., Ji, Q., & Zhu, Z. (2002). Active facial tracking for fatigue detection. Appli-

cations of Computer Vision, 2002. (WACV 2002). Proceedings. Sixth IEEE Workshop

on, 137-142.

Hong, T., Qin, H., & Sun, Q. (2007, 30 2007-June 1). An improved real time eye

state identification system in driver drowsiness detection. Control and Automation,

2007. ICCA 2007. IEEE International Conference on, 1449-1453.

Horng, W.-B., Chen, C.-Y., Chang, Y., & Fan, C.-H. (2004, March). Driver fatigue

detection based on eye tracking and dynamk, template matching. In (Vol. 1, p. 7-

12).

40



Ito, T., Mita, S., Kozuka, K., Nakano, T., & Yamamoto, S. (2002). Driver blink mea-

surement by the motion picture processing and its application to drowsiness detection.

Intelligent Transportation Systems, 2002. Proceedings. The IEEE 5th International

Conference on, 168-173.

Liang, S. F., Lin, C. T., Wu, R. C., Chen, Y. C., Huang, T. Y., & Jung, T. P. (2005,

Sept.). Monitoring drivers alertness based on the driving performance estimation and

the eeg power spectrum analysis. Engineering in Medicine and Biology 27th Annual

Conference.

Lu, H., Zhang, W., & Yang, D. (2007, 28 2007-Dec. 1). Eye detection based on rec-

tangle features and pixel-pattern-based texture features. Intelligent Signal Processing

and Communication Systems, 2007. ISPACS 2007. International Symposium on, 746-

749.

Lucas, B., & Kanade, T. (1981). An iterative image registration technique with an

application to stereo vision. Proceedings of Imaging Understanding Workshop, 121-

130.

Park, I., Ahn, J.-H., & Byun, H. (2006, 0-0). Efficient measurement of eye blink-

ing under various illumination conditions for drowsiness detection systems. Pattern

Recognition, 2006. ICPR 2006. 18th International Conference on, 1, 383-386.

Pedan, M., Scurfield, R., Sleet, D., Mohan, D., Hyder, A. A., Jarawan, E., et al.

(2004). World report on road traffic injury prevention. WHO Press.

41



Pickering, C., Burnham, K., & Richardson, M. (2007, Oct.). A review of automo-

tive human machine interface technologies and techniques to reduce driver distrac-

tion. System Safety, 2007 2nd Institution of Engineering and Technology Interna-

tional Conference on, 223-228.

Qin, H., Gao, Y., & Gan, H. (2007, Dec.). Precise eye location in driver fatigue state

surveillance system. Vehicular Electronics and Safety, 2007. ICVES. IEEE Interna-

tional Conference on, 1-6.

Rongben, W., Lie, G., Bingliang, T., & Lisheng, J. (2004, Oct.). Monitoring mouth

movement for driver fatigue or distraction with one camera. Intelligent Transporta-

tion Systems, 2004. Proceedings. The 7th International IEEE Conference on, 314-

319.

Royal, D. (2002). National survey of distracted and drowsy driving attitudes and

behavior: 2002, report no. dot hs 809 566. NHTSA.

Shi, J., & Tomasi, C. (1994, June). Good features to track. In Proc. of the 9th ieee

conf. on computer vision and pattern recognition (pp. 593–600).

Sigari, M. H. (2009, Feb.). Driver hypo-vigilance detection based on eyelid behavior.

Advances in Pattern Recognition, 2009. ICAPR ’09. Seventh International Conference

on, 426-429.

Singh, S., & Papanikolopoulos, N. (1999). Monitoring driver fatigue using facial

analysis techniques. Intelligent Transportation Systems, 1999. Proceedings. 1999

IEEE/IEEJ/JSAI International Conference on, 314-318.

42



Suzuki, M., Yamamoto, N., Yamamoto, O., Nakano, T., & Yamamoto, S. (2006,

Oct.). Measurement of driver’s consciousness by image processing -a method for

presuming driver’s drowsiness by eye-blinks coping with individual differences -.

Systems, Man and Cybernetics, 2006. SMC ’06. IEEE International Conference on,

4, 2891-2896.

Tabrizi, P. R., & Zoroofi, R. A. (2008, Nov.). Open/closed eye analysis for drowsi-

ness detection. Image Processing Theory, Tools and Applications, 2008. IPTA 2008.

First Workshops on, 1-7.

Viola, P., & Jones, M. (2001, June). Rapid object detection using a boosted cascade

of simple features. In Proc. of the 16th ieee conf. on computer vision and pattern

recognition (Vol. I, pp. 511–518).

Wang, Q., Yang, W., Wang, H., Guo, Z., & Yang, J. (2006, June). Eye location in face

images for driver fatigue monitoring. ITS Telecommunications Proceedings, 2006 6th

International Conference on, 322-325.

Wierwille, W., Ellsworth, L., Wreggit, S., Fairbanks, R., & Kirn, C. (1994). Research

on vehicle based driver status/performance monitoring: development, validation, and

refinement of algorithms for detection of driver drowsiness. National Highway Traf-

fic Safety Administration Final Report.

Wright, N., & McGown, A. (2001). Vigilance on the civil flight deck: incidence of

sleepiness and sleep during long-haul flights and associated changes in physiological

parameters. Ergonomics, 44(1), 82-106.

43



Xu, C., Zheng, Y., & Wang, Z. (2008, June). Efficient eye states detection in real-

time for drowsy driving monitoring system. Information and Automation, 2008. ICIA

2008. International Conference on, 170-174.

Zhang, Z., & Zhang, J. shu. (2006, 0-0). Driver fatigue detection based intelligent ve-

hicle control. Pattern Recognition, 2006. ICPR 2006. 18th International Conference

on, 2, 1262-1265.

44


