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Abstract

Ecologists have become aware of the role played by interannual climatic variability on the

temporal dynamics of infectious diseases. In this report, I present evidence from data on

measles cases in England and Wales showing that during the post-vaccination period, the

interannual variability of winter weather (represented by the North Atlantic Oscillation,

NAO) influences the annual dynamics of the disease. Using annual measles data from

seven cities and simple logistic models, this study reveals how, after vaccination, NAO

increases its effects on measles fluctuations. In addition, this study shows that vaccination

may be represented as a simple vertical and lateral perturbation effect (Royama�s
classification), by reducing the maximum per capita growth rate and the equilibrium

number of infected individuals. The results suggest that vaccination will not lead to

outbreaks of measles from regular cyclic to irregular chaotic dynamics. In contrast, because

of the reduction in per capita growth rates, the disease dynamics appear to be more stable

than during the pre-vaccination period. The analysis of annual data on infectious diseases

may be useful for detecting long-term effects of climate and complements the classical

analyses and modeling based on monthly or seasonal time-step data.
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I N T R O D U C T I O N

The dynamics of infectious diseases have attracted the

attention of ecologists for decades (Bartlett 1957; Anderson

& May 1991; Grenfell & Dobson 1995). This is because of

their importance for human health and because data on

childhood diseases have fuelled the development of

theoretical models of population dynamics (Anderson &

May 1991; Finkenstädt & Grenfell 2000). One of the most

studied childhood diseases is measles because of its simple

natural history and the wealth of detailed data (Grenfell &

Dobson 1995). As a consequence, there is a very good

understanding of the mechanisms that drive the dynamics of

the infection, particularly in England and Wales, where

accurate reports have been available since the Second World

War (Earn et al. 2000; Grenfell et al. 2002; Bjørnstad et al.

2002).

Since the first studies by Bartlett (1957, 1960), there has

been a firm theoretical understanding of the deterministic

and stochastic factors that influence the dynamics of

measles (Anderson & May 1991; Finkenstädt et al. 1998;

Finkenstädt & Grenfell 2000; Earn et al. 2000; Grenfell et al.

2002; Bjørnstad et al. 2002). The classical approach is to use

susceptible-infected-recovered (SIR) or susceptible-

exposed-infected-recovered (SEIR) models in continuous

time (Anderson & May 1991; Earn et al. 2000). These

mechanistic models appear to capture the essential elements

of measles dynamics, but because they represent continuous

dynamical systems, it can be difficult to link them with

available discrete time-series data. Consequently, several

time series approaches have been developed in the last years

for dealing with time series data of infectious diseases. For

example, discrete time models using the same SEIR

mechanisms have been developed to link theory on

infectious disease dynamics with empirical data (Finkenstädt

& Grenfell 2000; Bjørnstad et al. 2002). On the other hand,

new statistical methods have been developed for analyzing

the dynamics of infectious diseases, which are based on
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stochastic differential equations and where different noise

processes, such as seasonality, hidden variables and mea-

surement error, can be included (Ionides et al. 2006; King

et al. 2008).

One of the best documented dynamic patterns of measles

is the transition from annual to biennial cycles in outbreaks

observed in England and Wales; a transition that was caused

by the decrease in birth rates following the post-World War

II baby boom (Earn et al. 2000). Thus, one simple

prediction is that countries with higher birth rates than

industrialized countries will show persistent, annual dynam-

ics (Bjørnstad et al. 2002; Earn et al. 2000). Nevertheless,

complex multi-annual dynamics can be observed in coun-

tries with very high birth rates and strong seasonality in

transmission rates (Ferrari et al. 2008). Similarly, the post-

vaccination dynamics in England and Wales appears to be

explained by changes in the transmission rates, which

causes: (i) a switch in the periodicity and amplitude of the

outbreaks (Earn et al. 2000); (ii) a less clear pattern of

density-dependence than that observed during the pre-

vaccination period (Finkenstädt et al. 1998); and (iii) a drop

in the spatial synchrony of the epidemics (Bolker & Grenfell

1993). The general idea is that changes in birth and

vaccination rates can lead measles dynamics to a regime of

multiple coexisting attractors, where noise plays an impor-

tant role in moving the system between the different

attractors (Earn et al. 2000; Bauch & Earn 2003). Alter-

nately, a recent study hypothesizes that noise amplification

can explain the dynamic transitions in measles from biennial

cycles to irregular fluctuations after the vaccination period

(Alonso et al. 2007). In contrast to previous views (Earn

et al. 2000; Bauch & Earn 2003), the irregular dynamics

observed after vaccination would be caused by the

amplification of the noise with transmission rates (Alonso

et al. 2007). In support of this, a time-series model analysis

of measles dynamics in Canada between pre- and post-

vaccination periods shows the same model structure and

dynamics in both periods (Trottier et al. 2006).

As in many ecological systems, infectious disease dynam-

ics are determined to some degree by climatic variability

(Rodó et al. 2002). In fact, recent studies on cholera (Rodó

et al. 2002; Koelle et al. 2005), meningitis (Sultan et al. 2005),

and malaria (Zhou et al. 2004; Pascual et al. 2008a,b) have

detected an important role of climate in determining

infectious disease dynamics. In this study, the dynamics of

measles in England and Wales during the pre and post-

vaccination era are analysed. I had two objectives: (i) to

demonstrate that annual measles oscillations can be

described by simple first order dynamics during the pre-

and post-vaccination periods; and (ii) to test whether a

climatic signature represented by the North Atlantic

Oscillation (NAO) index and winter weather influences

measles dynamics during the post-vaccination period.

M A T E R I A L A N D M E T H O D S

Population model

The classical approach for modeling infectious disease

dynamics is the SIR or SEIR model (Anderson & May

1981). In the case of measles, the ecological population

process of the disease in large populations can be

represented as predator–prey dynamics between infected

and susceptible individuals (Anderson & May 1981; Bjørns-

tad et al. 2002). Similar to the original Lotka–Volterra

predator–prey models, the transmission rate (parameter) is

directly proportional to the product of susceptible and

infected individuals (bSI), which resembles the mass action

principle (Berryman 1999). The cyclic nature of predator–

prey oscillations observed in measles dynamics are the

results of an interplay between the recruitment of new

susceptible individuals (birth rate of host population) and

the transmission rate, which describes how fast newly

infected individuals are recruited (Earn et al. 2000). For a

given transmission rate, high birth rates will lead to rapid

replenishment of the susceptible class, and the annual

dynamics of the infected class can be represented by a

simple equilibrium point (Finkenstädt & Grenfell 2000;

Earn et al. 2000; Grenfell et al. 2002). Lower birth rates

and ⁄ or higher transmission rates lead the measles fluctua-

tions toward a 2-year cycle (first-order oscillations) or even

to multi-annual cycles typical of predator–prey dynamics

(Finkenstädt & Grenfell 2000; Earn et al. 2000). In England

and Wales, measles dynamics are characterized by annual or

bi-annual cycles; therefore, I modeled the annual dynamics

of infected individuals as a simple logistic process (Ricker

1954; Royama 1992):

It ¼ It�1 � rm � eð�c�I a
t�1Þ ð1Þ

where It is the annual number of infected individuals, rm is a

positive constant that represents the maximum finite

reproductive rate, c is a constant that represents the

competition intensity and resource depletion (susceptible

individuals), and a indicates the effect of interference (how

difficult it is for new individuals to become infected as the

number of infected individuals increases). Alternately, the

parameter rm can be considered as the basic reproductive

number, R0, which is defined as the mean number of

infections caused by an infected individual in a susceptible

population, in an annual time scale. As a consequence, rm is

directly related to the susceptible numbers and the

transmission rate, while parameter c is inversely related to

susceptible numbers (resource dynamics). A simple predic-

tion is that when susceptible numbers vary between years

because of low birth rates and ⁄ or high transmission rates,

and the resource at time t)1 is so depleted that it cannot

recover by time t + d (d = 0, 1, 2, 3,..), then the infected
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individuals in t)d will influence the availability of suscep-

tible individuals at time t. In such cases, we expect a second-

order model for describing the dynamics of infected

individuals (Royama 1992; Berryman 1999; Turchin 2003;

Ginzburg & Colyvan 2004). In contrast, when susceptible

numbers do not vary between years because of a high ratio

of births to number of transmissions, annual dynamics are

predicted, where it is difficult to observe large between-year

variability in the infected numbers. By defining the above

equation in terms of the reproduction curve (Royama 1992)

or R-function (Berryman 1999), by using Rt = loge (It ⁄ It)1),

log-transforming eqn (3), and defining the infected numbers

as logarithm Xt = loge (It), we obtain:

Rt ¼ Rm � e a�Xt�1þCð Þ; ð2Þ
where Rt is the realized per capita growth rate Rt = log(It ⁄ It-1),

Rm = log(rm), a is the same parameter as in eqn (1), C = log

(c), and X = log(I ). In this model, the three parameters Rm,

a and C have an explicit biological interpretation, thus

we can include climatic perturbations in each parameter

using the framework of Royama (1992). For example, simple

additive climatic perturbations can be represented as

�vertical� effects, which shift the relative position of the

R-function by changing Rm on the y-axis (Royama 1992).

This can be expressed as:

Rt ¼ Rm � e a�Xt�1þCð Þ þ d � weathert : ð3Þ

Measles data

The measles data consisted of weekly case reports from

seven cities of England and Wales during the period 1948–

1987. These data are freely available at the Brian Bolker�s
website (electronic appendix) (Fig. 1). Annual measles

notifications in England and Wales during the period

1940–2007 are also available at the Health Protection Agency of

UK website (Fig. 1).

Climate data

The NAO-index used here is based on the difference in

normalized sea level pressures between Ponta Delgada,

Azores, Portugal and Stykkisholmur, Iceland from 1864 to

2005 for the winter period December–March (Hurrell

1995). For each of the seven localities in the UK, we

obtained the monthly minimum average temperatures

during winter (December–March), using the nearest mete-

orological station from the Met Office web site.

Statistical analyses

I fitted eqs 1–3 using the nls library in the program R by

means of non-linear regression analysis (Bates & Watts

1988). In addition, I included NAO and winter minimum

temperatures as a simple additive effects (eqn 3). All the

models were fitted by minimizing the AICc = )2 · log(like-

lihood) + 2p + 2p(p + 1) ⁄ (n)p)1), where p is the number

of model parameters and n is the sample size. Models with

the lowest AICc values were selected. Data during the post-

vaccination period were de-trended when a negative trend

was detected (London and Birmingham). The models

showed no convergence, therefore I used an ecological

criterion for fixing the Rm parameter (maximum per capita

growth rates). In many empirical time series there are few or

no data at low densities. As a consequence, it is difficult to

obtain information on the maximum per capita growth rates

at low abundances. One way to deal with this problem is using

some biological criterion to fix the parameter a priori, a

procedure suggested by Royama (1992) and applied to

different situations (Berryman & Lima 2006; Lima et al.

2008a,b; Estay et al. 2008). The lowest observed number of

infected individuals was 38 in the city of Bristol and the

maximum Rm value observed there was 5.2. We used this value

as an approximate estimation of Rm and fixed this value at 5.5

for all models during the pre-vaccination period. Alternately,

during the post-vaccination period, higher Rm values were

observed in the cities of Bristol and Sheffield, which

fluctuated between 2.46 and 2.86, thus I fixed this parameter

at 3.0 for all cities during the post-vaccination period.

Simulated dynamics

In order to test the ability of the discrete population model

to infer the underlying continuous dynamics of measles in

different dynamical regimes, I simulated a SEIR model in

continuous time and seasonal transmission parameter

(Altizer et al. 2006):

dS

dt
¼ k � N � Sð Þ þ l � I � b tð Þ � S � I

N
dE

dt
¼ b tð Þ � S � I

N
� k � E � r � E

dI

dt
¼ r � E � cþ lþ kð Þ � I

R ¼ N � S þ E þ Ið Þ
b tð Þ ¼ b0 � 1þ b1 � cos 2 � p � tð Þð Þð Þ

ð4Þ

where n = population size, S = susceptible numbers,

E = exposed, I = infected, R = recovered individuals,

k = birth rate, b(t) = seasonal transmission rate, b0 = aver-

age transmission rate, b1 = seasonal amplitude, c = recov-

ery rate, and l = mortality rate. Some degree of stochastic

variability was included in the seasonal amplitude of the

transmission rate using the following formulation:

b1 � cos 2 � p � tð Þð Þ � e, where � is a uniformly distributed

random variable that takes values between 0.002 and 2.1.

The simulations were started using the parameter values

from (Altizer et al. 2006), which produce the classical
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biennial dynamics of measles (see Table 2). The differen-

tial model was solved numerically using a fourth-order

Runge–Kutta method implemented in Mathcad 8 User�s
Guide (1999) The basic initial parameters were

n = 5 · 106; k = 0.017, b0 = 1250, b1 = 0.1, c = 73,

l = 0, r = 45.625, and the dynamical transitions toward

annual and multi-annual cycles were simulated by chang-

ing transmission rate and birth rate (see Table 2). The

annual simulated dynamics from model 4 was analysed

using classic tools from time series diagnosis. The first

step in the analysis was to use diagnostic tools for

determining the order or dimension of the time series.

Subsequently, a linear autoregressive model for each

simulation was fitted as:

Rt ¼ ln
Nt

Nt�1

� �
¼ Aþ B1 � Xt�1 þ B2 � Xt�2 þ et ð5Þ

where X =loge (N), n = population density, Rt =

loge(Nt ⁄ Nt)1) is the realized logarithmic per capita rate of

change over a year, and �t is a random stochastic variable (0,

r2). Parameters of the linear model were estimated in the

program R using the stats library. The estimated Partial Rate

Correlation Function (PRCF): (i) is the partial correlation

between R and Xt)d, d = 1, 2 ... 3, providing an estimate of

the order of the autoregressive process (Berryman 1999;

Berryman & Turchin 2001). PRCF (i) can be interpreted as a

measure of the importance – or relative contribution – of

feedback at lag d to the determination of R. After the
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Figure 1 Time-series dynamics of measles in seven major cities of England and Wales. Annual numbers of reported cases for the period

1948–1988. The red arrow shows the year when the vaccination program started.
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diagnosis, the logistic model from eqn (3) and the delayed-

time (second-order) logistic model (Royama 1992; Table 2)

were used for fitting the annual simulated dynamics of the

continuous time SEIR model.

R E S U L T S

Infected dynamics were adequately represented by a simple

non-linear logistic first-order process during the pre-

vaccination period (1948–1967) (Table 1). The logistic

model explained 93% of the variance of infected dynamics

in Sheffield, while in Liverpool explained only 35%

(Table 1). However, in most of the cities, a simple Ricker

model explained 93–64%, and using the pooled data for

England and Wales, the endogenous factors explained 92%

of the measles dynamics (Table 1). During the post-

vaccination period (1968–1988), the pure logistic model

explained between 55% (Bristol) and 77% (Newcastle), and

for England and Wales together, the endogenous factors

explained only 77% of the measles dynamics (Table 1).

Thus, the endogenous component of the dynamics was

reduced in almost all cities during the post-vaccination

period.

In contrast, the proportion of variance explained by the

winter weather (NAO or winter minimum temperatures) in

the measles dynamics increased during the post-vaccination

period (Tables 1 and 2). For example, the residuals of the

pure endogenous models showed a significant negative

correlation with NAO in Bristol, Liverpool, Newcastle and

Sheffield (Table 2), with the minimum average temperature

during December in London, Bristol, Manchester, Sheffield

and Birmingham (Table 2). In addition, residual variation

showed significant negative effects of January minimum

temperatures in London and Birmingham, and negative

effects of March minimum temperatures in Newcastle

(Table 2). On average, model residuals were negatively

correlated with NAO and December minimum average

temperatures (Table 2).

During the pre-vaccination period, including NAO in the

logistic models improved the explained variance up to 2%

only (Table 1), while during the post-vaccination period

NAO and winter weather terms improved the explained

variance from 3 to 21%, depending on the city (Table 1). In

the England and Wales pooled data, including the NAO

term improved the explained variance of the model by 8%

(Table 1). The AICc values and Akaike weights provide

strong support for the role of NAO as an important

exogenous perturbation in Bristol, Liverpool, Newcastle and

Sheffield (Table 1). A similar result is observed with the

December–January minimum temperatures in London and

Birmingham (Table 1), but in Manchester the models with

NAO or December minimum temperature were similar to

that without weather effects (Table 1). Similarly, the model

for England and Wales together including NAO effects is

almost nine times more likely than the model without the

climate effect (Table 1). The overall effect of vaccination on

measles R-function appears to be a decrease in the

equilibrium point and the maximum per capita growth rate

Rm (Fig. 2).

Observed annual measles dynamics before and after

vaccination can be characterized as a classical first-order

feedback structure (Fig. 3a,b), which supports the choice of

the Ricker�s model with one time lag. The simulated

dynamics using the SEIR model shows that the same

dynamic process is observed in the parameter region of

biennial and annual cycles (Fig. 3c,d). However, when the

SEIR model is simulated using lower birth and ⁄ or trans-

mission rates (vaccination) the PRCF shows a clear increase

in the order of the dynamics, indicating that second-order

annual models are better for describing this dynamic process

(Fig. 3e–h; Table 3). The SEIR model simulations repre-

sented as annual dynamics show that biannual and annual

cycles (b = 1250; k = 0.017; k = 0.035 and k = 0.06;

Table 3) can be expressed as simple first-order logistic

models (Fig. 4). When transmission rates and birth rates are

low, as expected during the vaccination period (b = 625;

b = 500; k = 0.01; k = 0.006; k = 0.004; Table 3), the

annual output of the SEIR continuous model is best

represented by second-order logistic annual models

(Table 3; Fig. 5).

D I S C U S S I O N

The results of this study give a new perspective on measles

dynamics, a perspective where the annual variability is

described by a simple logistic model of population

dynamics. First of all, the analysis suggests that vaccination

does not lead measles dynamics to a regime of multiple

coexisting attractors. In contrast, the ecological system

during the post-vaccination period appears to be the same as

during the pre-vaccination period: first-order feedback

dynamics characterized by a single and stable lower

equilibrium number of infected individuals, and a reduced

maximum per capita growth rate. Previous studies using the

classical SEIR modeling approach predict complex multi-

annual outbreak dynamics, caused by an interplay between

seasonality, noise, and the magnitude of transmission and

birth rates (Olsen et al. 1988; Earn et al. 2000; Bauch & Earn

2003). However, Alonso et al. (2007) hypothesized that high

noise amplification can explain the dynamic transitions in

measles dynamics from biennial cycles to irregular fluctu-

ations after the vaccination period. The results of this study

are consistent with the proposition of Alonso et al. (2007). A

recent study by Ferrari et al. (2008) supports the idea that

complex multi-annual dynamics can be generated by an

interaction of high birth rates and seasonality in transmis-
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Figure 2 Lateral and vertical displacement of the R-functions due to the effects of vaccination program. R-functions [eqn (2)] fitted to data

from 1948–1967 (blue) and 1968–1988 (red) for the seven cities and all of England and Wales. See Table 1 for statistics.

Table 2 Pearson�s product-moment correlation coefficients between the weather variables (NAO and minimum monthly temperatures in

winter) and the residuals of model 2 (Logistic model without climatic covariables) fitted to the time series of each city

NAO

Temperature

December

Temperature

January

Temperature

February

Temperature

March

London )0.36 (P = 0.14) )0.56 (P = 0.015) )0.58 (P = 0.012) 0.051 (P = 0.84) )0.023 (P = 0.93)

Bristol )0.60 (P = 0.008) )0.40 (P = 0.095) )0.16 (P = 0.54) 0.087 (P = 0.73) )0.34 (P = 0.17)

Liverpool )0.54 (P = 0.020) )0.25 (P = 0.32) 0.27 (P = 0.29) 0.20 (P = 0.42) )0.23 (P = 0.36)

Manchester )0.37 (P = 0.12) )0.42 (P = 0.081) 0.10 (P = 0.70) 0.05 (P = 0.84) )0.36 (P = 0.14)

Newcastle )0.63 (P = 0.005) )0.22 (P = 0.38) )0.04 (P = 0.86) 0.18 (P = 0.48) )0.44 (P = 0.07)
Birmingham )0.38 (P = 0.12) )0.50 (P = 0.037) )0.40 (P = 0.10) )0.18 (P = 0.47) )0.13 (P = 0.60)

Sheffield )0.49 (P = 0.04) )0.44 (P = 0.066) 0.16 (P = 0.53) 0.40 (P = 0.10) )0.25 (P = 0.31)

Average )0.48 )0.40 )0.093 0.11 )0.25

NAO, North Atlantic Oscillation.

Boldfaces are P-values lower than 0.l.
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sion rates. However, if the infected–susceptible dynamics

are perceived as a predator–prey system, multi-annual cycles

(with a period > 2 years) can only be generated when the

predator (infected individuals) has a high per capita growth

rate relative to its prey (susceptible individuals) and ⁄ or

higher attack rates (Berryman 1999). In the SEIR modeling

perspective, this is equivalent to diseases with high

transmission rates and low recovery rates relative to the

birth rates (or recruitment rates) of susceptible individuals

(Keeling & Rohani 2008). In sum, when susceptible

individuals are removed due to infection at a faster rate

than they are recruited by birth, multi-annual predator-prey-

like cyclic dynamics are expected.

This study indicates that vaccination can be perceived as a

vertical and lateral perturbation effect on the R-function of

measles dynamics (Royama 1992) (Fig. 2). A vertical

perturbation effect because vaccination reduces the maxi-

mum per capita growth rates of infected individuals and this

quantity is proportional to the number of susceptible

individuals, and the transmission and recovery rates. Also, a
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Figure 3 Partial correlation between R and

Xt-d, with d the lag in the feedback response

for observed and annual simulated measles

dynamics. (a) observed time series of num-

ber of cases in England and Wales before

vaccination; (b) observed time series of

number of cases in England and Wales after

vaccination; (c) simulated biannual cycles

of measles cases using the, susceptible-

exposed-infected-recovery (SEIR) model

(eqn 4) and b = 1250, k = 0.017; (d) sim-

ulated annual cycles of measles cases using

the SEIR model (eqn 4) and b = 1250,

k = 0.035; (e) simulated 3-year cycles of

measles cases using the SEIR model (eqn 4)

and b = 1250, k = 0.01; (f) simulated multi-

annual cycles of measles cases using the

SEIR model (eqn 4) and b = 625, k = 0.01;

(g) simulated multi-annual cycles of

measles cases using the SEIR model

(eqn 4) and b = 625, k = 0.006; (h) simu-

lated multi-annual cycles of measles cases

using the SEIR model (eqn 4) and b = 500,

k = 0.004.
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lateral perturbation effect because vaccination reduces the

total number of susceptible individuals available to be

infected, and this is can be thought of as a reduction in the

carrying capacity of the system. Because the dynamics of

infected and susceptible individuals are the result of an

interplay between transmission (b), recovery (c), and

recruitment (k) rates, we need to understand how these

rates are affected in order to predict the effect of

vaccination. From an ecological point of view, if the

influence of vaccination affects proportionally these param-

eters, one would expect similar dynamics before and after

vaccination (in terms of the order of the feedback structure),

with changes only in the equilibrium number of infected

individuals and the maximum per capita growth rates.

Observing the change in measles dynamics in England and

Wales during the pre- and post-vaccination periods, it is

clear that fluctuations in the number of infected individuals

became stabilized after vaccination (Fig. 1), which is

predicted by the logistic theory when Rm is reduced

(Berryman 1999). In fact, time-series analyses of infectious

diseases before and after vaccination suggest the existence

of a similar underlying endogenous structure (Trottier et al.

2006). Indeed, the observed reduction in Rm was � 45%

(from 5.5 to 3.0) and the reduction in the equilibrium

number or infected individuals was � 70% (from 369,535 to

111,302 individuals), which is proportional to the average

vaccination coverage during the period 1968–1985 (54%)

(http://www.hpa.org.uk/web/HPAweb&HPAwebStandard/

HPAweb_C/1195733786957). It is important to notice that

vaccination has changed the dynamics of another disease in

a dramatic manner, such as in the whooping cough case,

where multiannual 4–5 year cycles were triggered after

vaccination (Rohani et al. 2002). As far I know, no

mechanistic explanation has been proposed for this change

in the dynamic structure during the vaccination era.

An interesting finding of this study is that climate –

represented by NAO and winter minimum temperatures –

has noticeable influence on the measles dynamics during the

post-vaccination period. The irregular dynamics observed

during that period appears to be influenced by winter

weather, represented by NAO or minimum average

temperature during December. Alonso et al. (2007) pro-

posed that the irregular dynamics observed after vaccination

could be caused because the noise amplification of the

system changes with the transmission rates. It is important

to notice that irregular noisy dynamics are also observed

before the vaccination in Liverpool due to the high

recruitment rates observed in that city. Therefore, it seems

that the ratio between how fast infected individuals produce

new infections and the recruitment of susceptible individ-

uals is what determines the degree of noise influence. When

the endogenous dynamics becomes more stable, the role of

noise appears to be more important (see Fig. 4a–c). This is

consistent with the observed increase in the importance of

winter weather after vaccination. Alternately, NAO itself has

experienced low-frequency variability: the NAO index was

more negative during the period 1965–1985 than other

decades (Hurrell 1995). Negative NAO values are associated

with cooler and drier winters in northern Europe (Hurrell

1995), which may influence the transmission rate by

Table 3 Logistic and lagged logistic popula-

tion dynamics models fitted to the simulated

annual time-series of measles using the

continuous time SEIR model

Models for simulated

measles dynamics

Parameters

Rm a a1 C r2 AICc DAICc

Rt ¼ Rm � e a�Xt�1þCð Þ

1. b = 1250; k = 0.017 2.28 0.92 )9.29 0.992 — —

2. b = 1250; k = 0.035 2.44 0.73 )7.53 0.874 — —

3. b = 1250; k = 0.060 0.42 3.00 )37.16 0.633 — —

4. b = 1250; k = 0.010 1.14 1.56 )16.21 0.856 136.92 83.30

5. b = 625; k = 0.010 0.69 1.37 )14.56 0.465 )57.53 211.84

6. b = 625; k = 0.006 0.78 0.79 )8.04 0.310 )24.55 161.99

7. b = 500; k = 0.004 0.52 0.63 )6.56 0.166 37.63 265.15

Rt ¼ Rm � e a�Xt�1þa1 �Xt�2þCð Þ

4a. b = 1250; k = 0.010 2.62 0.72 0.35 )9.94 0.939 53.62 0.00

5a. b = 625; k = 0.010 1.28 0.69 0.74 )14.50 0.925 )269.37 0.00

6a. b = 625; k = 0.006 2.62 0.11 0.34 )3.43 0.860 )186.54 0.00

7a. b = 500; k = 0.004 12.02 )0.028 0.080 2.00 0.943 )227.52 0.00

SEIR, susceptible-exposed-infected-recovery.

(Equation 4) and different combinations of transmission rates (b) and birth rates (k). a, non-

linearity coefficient; a1, 1-year lagged coefficient; b, maximum finite reproductive rate; C,

equilibrium point; r2, coefficient of determination; AICc, Akaike�s information criterion

corrected for small sample bias; DAICc, differences in AICc. Models were run for 1000 annual

time steps and the first 900 years were discarded.

Letter Winter weather and measles dynamics 311

� 2009 Blackwell Publishing Ltd/CNRS



lowering the immune defense in children, or changing their

social behavior.

The seasonal variability of transmission rate in the UK is

complex and seems to be determined by other factors

beyond the pure effect of the school period (Finkenstädt &

Grenfell 2000; Bjørnstad et al. 2002). For example, trans-

mission rates tend to be high after the start of the school

period, then decline toward the end of the year, and show

their peak during late December and early January. After

this major peak, transmission rates decline again until the

eastern holidays and show a minor peak during April–May

before declining to very low values during the summer

vacation period (Finkenstädt & Grenfell 2000; Bjørnstad

et al. 2002). It is interesting to note that the minimum

average temperature during December appears to be the

most important variable compared with temperatures

recorded during other winter months. It is likely that the

highest peak in transmission rate observed during late

December-early January in the UK is influenced by the

minimum temperatures of December. Under this hypoth-

esis, winter weather may influence the transmission rate in

this period and may cause inter-annual variability in measles

dynamics. Also, note that minimum average temperature

during March shows a weak but consistent negative

correlation with model residuals (Table 2), suggesting that

weather during late winter-early spring may be related with

the other peak in transmission rates observed from bi-weeks

9 to 11 (Finkenstädt & Grenfell 2000).

In the same vein, long-term changes in transmission rates

associated with climate change have been reported for

malaria and cholera (Koelle & Pascual 2004; Pascual et al.

2008a,b). Some recent studies have related El Niño

Southern Oscillation (ENSO) events with changes in

cholera prevalence (Rodó et al. 2002; Koelle et al. 2005),
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Figure 4 (Left side) Time series plot of the

simulated log numbers of infected individ-

uals using the susceptible-exposed-infected-

recovery model (eqn 4) and (right side) plot

of the per capita growth rate of infected

individuals against the log number of

infected cases. (a) biannual cycles (b =

1250; k = 0.017); (b) annual cycles (b =

1250; k = 0.035); (c) annual cycles

(b = 1250; k = 0.06).
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rainfall variability with malaria in east Africa (Zhou et al.

2004; Pascual et al. 2008a,b), and climate variability with

outbreaks of meningitis in west Africa (Sultan et al. 2005).

Although most of these studies are based on statistical

relationships between disease prevalence and climate vari-

ation, some are based on the use of an explicit epidemio-

logical model, which suggests that climatic trends may

influence disease transmission rate (Koelle & Pascual 2004;

Pascual et al. 2008a,b). The climate effects detected in this

report suggest that, after vaccination, winter weather is an

important exogenous factor that influences measles dynam-

ics, likely through its effects on the seasonal pattern of

transmission rates.

In this study, I propose the use of a simple logistic model

based on annual measles dynamics, instead of the classical

SEIR models based on weekly or monthly time-step data.

My analysis provides an alternative view of the conse-

quences of vaccination on measles dynamics in England and

Wales, and highlights the role of climate after the

vaccination period. Most of the infectious diseases are

strongly influenced by seasonality (Altizer et al. 2006), but

the same argument is valid for many ecological systems,

such as insects and small rodents. In many populations in

which seasonality is important, simple models based on

annual time-step data have been developed and used for

understanding and prediction (Royama 1992; Berryman

1999). This study shows that ecological models based on the

annual dynamics of an infectious disease can be used as an

alternative for analyzing and understanding disease dynam-

ics. My analysis resolves previous contradictory findings

about measles dynamics.
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Figure 5 (Left side) Time series plot of the

simulated log numbers of infected individ-

uals using the susceptible-exposed-infected-

recovery model (eqn 4) and (right side) plot

of the per capita growth rate of infected

individuals against the log number of

infected cases. (a) multi-annual cycles (b =

625; k = 0.01); (b) multi-annual cycles (b =

625; k = 0.006); (c) multi-annual cycles

(b = 500; k = 0.004).
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Finkenstädt, B. & Grenfell, B. (2000). Time series modelling of

childhood diseases: a dynamical systems approach. J. R. Stat. Soc.,

Ser C. Appl Stat., 49, 187–205.
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Rodó, X., Pascual, M., Fuchs, G. & Faruque, A.S.G. (2002). ENSO

and cholera: a nonstationary link related to climate change? Proc.

Natl Acad. Sci. USA, 20, 12901–12906.

Rohani, P., Keeling, M.J. & Grenfell, B.T. (2002). The interplay

between determinism and stochasticity in childhood disease. Am.

Nat., 159, 469–481.

Royama, T. (1992). Analytical Population Dynamics. Chapman & Hall,

London, UK.

Sultan, B., Labadi, K., Guegan, J. & Janicot, S. (2005). Climate

drives the meningitis epidemics onset in West Africa. PLoS Med,

2, e6, 0043–0049.

Trottier, H., Phillipe, P. & Roy, R. (2006). Stochastic modeling of

empirical time series of childhood infectious diseases data before

and after mass vaccination. Emer. T. Epid., 3, doi:10.1186/1742-

7622-3-9.

Turchin, P. (2003). Complex Population Dynamics: A Theoretical ⁄
empirical Synthesis. Princeton University Press, Princeton, USA.

Zhou, G., Minakawa, N., Githeko, A.K. & Yan, G. (2004). Associ-

ation between climate variability and malaria epidemics in the East

African highlands. Proc. Natl. Acad. Sci. USA, 101, 2375–2380.

Editor, Bernd Blasius

Manuscript received 20 November 2008

First decision made 31 December 2008

Second decision made 24 January 2009

Manuscript accepted 28 January 2009

314 M. Lima Letter

� 2009 Blackwell Publishing Ltd/CNRS


