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ABSTRACT

Wave propagation is a fundamental physical phenomenon. Its simulation is key for a

large number of applications in many science and engineering applications ranging from the

design of antennas, sonars and aircraft to medical techniques in fluoroscopy and magnetic

resonance imaging.

The behavior of electromagnetic waves in harmonic regime can be accurately repre-

sented by partial differential equations (Helmholtz and Maxwell). Taking into account that

waves frequently propagate in unbounded domains, one can rely on integral equations set

on the surface of the object, commonly solved via the so-called boundary element methods

(BEM). BEM induces linear systems that are generally solved by iterative methods such as

GMRES combined with preconditioning techniques. If so, the precision is controlled by

the quality of the matrix induced by BEM, while the efficiency can be represented by the

quality of the preconditioner.

In this thesis, we seek to fully understand the compromise between precision and

efficiency in the resolution phase of discrete schemes, focusing on the complex case of

BEM for Helmholtz and Maxwell equations. Among our main results, we introduce the

novel bi-parametric operator preconditioning framework. Our findings are validated in

three-dimensional BEM simulations for the Helmholtz and Maxwell equations, and high-

performance applications are explored in uncertainty quantification.

Keywords: Galerkin methods, preconditioning, iterative linear solvers, perturbation

analysis, wave propagation, uncertainty quantification.
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RESUMEN

La propagación de ondas es uno de los fenómenos fı́sicos fundamentales cuya simu-

lación es clave para un gran número de aplicaciones en ingenierı́a eléctrica que van desde

el diseño de antenas, sonares y aviones a aplicaciones médicas en radioscopia o imágenes

por resonancia magnética.

El comportamiento de las ondas electromagnéticas en régimen armónico puede ser rep-

resentado mediante ecuaciones diferenciales parciales (Helmholtz y Maxwell). Teniendo

en cuenta que las ondas se propagan frecuentemente en dominios no acotados, se suele

recurrir a ecuaciones integrales sobre en la superficie del objeto, resueltas comúnmente por

medio de método de elementos de frontera (BEM). Los métodos BEM inducen sistemas

lineales que se resuelven en general mediante métodos iterativos tales como GMRES, com-

binados con precondicionamiento. En aquellos casos, la precisión se controla con la calidad

de la matriz inducida por BEM, mientras la eficiencia puede ser representada por la calidad

del precondicionador.

El presente proyecto busca abordar la problemática del compromiso entre precisión

y eficiencia en la fase de resolución de los esquemas discretos, enfocándose en el caso

sumamente complejo de BEM para las ecuaciones de Helmholtz y Maxwell. A lo largo

del proyecto, se introduce el nuevo método de precondicionamiento por operadores bi-

paramétrico. Se validan los resultados teóricos propuestos con aplicaciones de BEM para

las ecuaciones de Helmholtz y Maxwell y se exploran soluciones de alto rendimiento en

cuantificación de incertidumbre.

Palabras Claves: Métodos de Galerkin, precondicionamiento, métodos iterativos,

análisis perturbativo, propagación de ondas, cuantificación de incer-

tidumbre.
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1. INTRODUCTION

1.1. Motivation

Electromagnetic waves propagation is described by Maxwell’s equations, introduced

in the 1860s. In harmonic regime and in homogeneous media, they can be recasted as

partial differential equations (PDEs), referred to as “Maxwell” in this chapter, and give

rise to another scalar PDE, “Helmholtz” under more restrictive requirements (Monk et al.,

2003; Nédélec, 2001). Furthermore, the latter describes the propagation of acoustic waves

in homogeneous media. Cases of interest include the analysis of perfect electric conduc-

tors (PECs) (Andriulli et al., 2008), perfect magnetic conductors (PMCs), impedance or

transmission problems (TP) (Colton & Kress, 2012). These configurations are taken into

account by enforcing boundary conditions (BCs). They allow to recast such problems as

boundary value problems (BVPs) (Ern & Guermond, 2013).

Resolution of BVPs is key in a number of fields in engineering for design and opti-

mization purposes (Aylwin, Jerez-Hanckes, Schwab, & Zech, 2020; Allaire & Schoenauer,

2007). As explained before, they generally are presented in the form “PDE in a domain

+ BC on the boundary”. Still, they appeal to complex notions of functional analysis, and

thus it is paramount to enclose them into a proper mathematical framework in order to

ensure key properties such as existence, uniqueness and stability of the solution provided

by the model (Ern & Guermond, 2013). Besides, their resolution is complex as no sim-

ple analytical solution is available except for simple configurations—e.g., balls, squares or

cubes.

Consequently, discretization methods are approaches of choice, as they allow to gen-

erate sequences converging asymptotically toward the exact continuous solution, under a

moderate number of operations (linear o quasi-linear) (Steinbach, 2007). On the other

hand, the dramatic increase in computing capacities over the last decades has allowed these

methods to become ubiquitous, ensuing a large number of new algorithms and resurgence

of applied mathematics.
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The numerical resolution of the aforementioned problems is commonly carried out by:

(i) An analysis of continuous differential operators in reflexive Banach spaces (Steinbach,

2007; Ern & Guermond, 2013);

(ii) The discretization of these operators by means of spectral bases (Haldenwang,

Labrosse, Abboudi, & Deville, 1984; Shen, Tang, & Wang, 2011), or by dis-

cretizing the domain considered by some low-order method such as the finite

element method (FEM) (Brenner & Scott, 2007; Ern & Guermond, 2013);

(iii) The resolution of a linear system from the impedance matrix (or precision ma-

trix) assembled.

Provided that waves frequently propagate in unbounded domains, their resolution by

FEM can be problematic. For this reason, Green’s function-based methods are a method

of choice. They give birth to boundary integral equations (BIEs)—defined on the surface

of the studied object, and are solved using boundary element methods (BEM) (Sauter &

Schwab, 2010; Steinbach, 2007; Nédélec, 2001).

However, the originated matrices are dense, and when many degrees of freedom are

used, the resulting linear system is not suitable for direct resolution, calling for iterative

methods (Saad, 2003; Nevanlinna, 1993). Moreover, in the case of first-kind Fredholm in-

tegral equations (Sauter & Schwab, 2010), the poor conditioning of the matrices can gener-

ate serious convergence problems (Steinbach, 2007). For this reason, the BEM community

devotes many efforts to find efficient preconditioners in order to consequently reduce the

number of iterations (Steinbach, 2007; Sauter & Schwab, 2010; Thierry, 2014).

1.2. Wave Scattering Problem

As described before, this thesis seeks to provide mathematical and high performance

computational tools to solve wave diffraction problems (Helmholtz, Maxwell) in harmonic

regime and homogeneous media by BEM. General wave scattering problems can be repre-

sented as BVPs as follows in Problem 1:
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U"#$

Γ ≔ '( )
(

BC

(,
U?

!"#$

Γ ≔ '( )
(

BC

(,
!?

Parameters µ, c > 0,  := !/c µ, ✏ > 0,  := !
p
✏µ

Traces
�0U := U|� �0U := U|� ⇥ n

�1U := n ·rU|� �1U := 1

(curlU|� ⇥ n)

Operator ��U� 2U curl curlU� 2U

TABLE 1.1. Overview of wave propagation problems.

PROBLEM 1. Let D ⇢ Rd, d = 2, 3, be a bounded Lipschitz domain. Given  > 0 and

an incident wave Uinc such that LUinc = 0, seek U := Uscat + Uinc in Dc := Rd\D such

that 8
>>><

>>>:

LU = 0 in Dc,

BC(U) = 0 on �,

RC(Uscat,) for r !1.

For each case, the PDE in the domain is given by a partial differential operator L while

BCs are given on the boundary. The domain Dc being unbounded, radiation (boundary)

conditions (RC) are provided at infinity (Nédélec, 2001). Also, the incident field acts as a

source term. Notations of Problem 1 are summed up in Table 1.1.

1.3. Analysis in reflexive Banach spaces

Questions of interest such as well-posedness of Problem 1 require a precise analysis. A

problem is said to be well posed—according to Hadamard nomenclature—if the following

properties hold (Ern & Guermond, 2013):

(i) It admits a solution;

(ii) The solution is unique;
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(iii) The solution is endowed with a stability property, namely it is controlled by the

data.

The variational approach is simple and well suited for a whole class of approximation

methods. The BVPs are transformed into an entirely different kind of problem, allowing

for an analysis in reflexive Banach spaces (Megginson, 2012; Steinbach, 2007), on which

one can lay well-posedness results (refer to Chapter 2 in (Ern & Guermond, 2013) for an

exhaustive summary of variational problems in abstract form).

Therefore, one has to approximate the continuous solution, the latter issuing approxi-

mation methods such as the Galerkin methods (see e.,g., (Ern & Guermond, 2013, Chapter

2)). Provided adapted assumptions on the approximation space, these allow to transfer

well-posedness from continuous to discrete setting. A discrete approximation is obtained

at the cost of solving a linear system of the form:

Au = b. (1.1)

1.4. Boundary Integral Methods

Galerkin methods rely on the use of certain approximation spaces, such as splines,

finite elements or spectral bases. A method of choice is FEM (Ern & Guermond, 2013). It

consists in meshing the object, and using piecewise defined basis functions—i.e. with local

support—to obtain the approximation function. Refer to (Brenner & Scott, 2007) and the

references therein for a comprehensive introduction to FEM.

This thesis is particularly devoted to study wave propagation problems, which are com-

monly defined on unbounded domains. This causes the classical FEM to be impractical,

providing the mesh generation for an unbounded volume which is problematic. To amend

this, one can approximate the RC—e.g. with an approximation of the Steklov-Poincaré op-

erator (Sauter & Schwab, 2010) to make the domain bounded. As opposed to the later,

when the exterior domain is homogeneous, one can resort to Second Green’s formula
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(Sauter & Schwab, 2010) and arrive at an equivalent problem, which consists in a BIE—

inducing a boundary integral operator (BIO), posed on the boundary � := @D with D

introduced in Problem 1. Thus, one meshes the boundary and applies classical FEM: these

methods are referred to as BEM. This proceeding allows to lower the dimension of the

problem, but induces further costs:

(i) The originated matrices are dense and poorly conditioned, preventing the use of

direct linear solvers;

(ii) BEM is not straightforward to implement;

(iii) Trace spaces—spaces defined on the boundary, are rather technical.

Taking into account these issues, BEM can be a method of choice due to its precision.

We refer readers to Chapter 1 in (Sauter & Schwab, 2010) for a complete introduction to

BEM. Without going much more into detail, we emphasize that the theoretical results in

this thesis go further than BEM. Still, we decided to use the application to BEM for wave

scattering as: (i) a way to improve existing results for the BEM community; and (ii) as a

proof of concept for the newly created paradigms and techniques in this thesis.

1.5. Preconditioning and Iterative Solvers

Previously mentioned challenges justify the use for preconditioners to solve the in-

duced linear systems. To begin with, a “good” preconditioner is a matrix C that can be

assembled relatively simply, and such that:

CA ⇡ I, (1.2)

with I the identity matrix.

Additionally, we report two important remarks:

(i) One has to define in what sense CA approximates well the identity. It is worthy

to be able to quantify the size of the perturbation of identity. For instance, one
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can arrive on continuous level at:

CA = I+ K, (1.3)

with K a compact operator. The latter will ensure that the discrete spectrum will

cluster at 1, benefiting to iterative solvers.

(ii) Dependence with respect to parameters is of importance. For example, one will

value preconditioners that generates a sequence of linear systems such that the

spectral condition numbers:

S(C(h)A(h))  K, h! 0+, (1.4)

i.e. bounded condition numbers with h, also referred to as h-independent condi-

tion numbers.

1.6. Fast BEM

BEM induces dense matrices, requiring a memory cost and number of operations per

matrix-vector product growing as O(N2) with N the number of degrees of freedom of the

linear system. However, integral operators have their own characteristics of interest: their

Green function g(x, y) generally admits a decay of the form Okx� yk�↵ with a parameter

↵ > 0, as well as its derivatives, with other parameters. That is, they have a singular

behavior for x = y and that the value of the interactions decreases when further interactions

are considered. Then, the intuition is that high resolution methods are obtained by solving

singularities carefully and by approximating distant interactions with less precision.

This idea generated the FMM algorithm (Darve, 2000), introduced by Greengard and

Rokhlin, and considered one of the ten best algorithms of the twentieth century. Another

more algebraic approach is that of hierarchical matrices (H-mat) (Bebendorf, 2008; Beben-

dorf, Bollhöfer, & Bratsch, 2013), which use low-rank approximations of the far interac-

tions of the impedance matrix. These apply to a general class of integral operators, called
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pseudo-differential operators (Bebendorf, 2008) to which the Helmholtz and Maxwell ker-

nels belong, among others. These methods usually allow to reduce the memory require-

ments and the cost of the matrix-vector product to O(N logN).

However, in the case of oscillatory operators such as those considered throughout,

the quasi-linear behavior is not conserved for high frequencies, despite being quite stable

numerically, according to (Betcke, van’t Wout, & Gélat, 2017). These problems can be

solved, using for example directional matrices (Engquist, Ying, et al., 2009), requiring a

more complex implementation work. Finally, the discretization of the integral operators

involves calculation of integrals on discrete meshes. This is carried out by means of quad-

rature rules that induce approximation errors.

1.7. Summary of Contributions and Outline

The main contributions of this thesis are the following:

• Extension of the Operator Preconditioning (OP) framework to Petrov-Galerkin

methods;

• Introduction of the Bi-Parametric OP framework with application to iterative

solvers;

• Application of the Bi-Parametric OP framework to the Multiplicative Calderón

Preconditioning for the Electric Field Integral Equation;

• Efficient application of the First-Order Sparse Boundary Element approximation

in the context of Uncertainty Quantification for Helmholtz Scattering Problems

by random shapes.

This thesis is structured as follows:

(i) In Chapter 2, we extend the operator preconditioning framework (Hiptmair,

2006) to Petrov-Galerkin methods while accounting for parameter-dependent

perturbations of both variational forms and their preconditioners, as occurs when

performing numerical approximations. By considering different perturbation pa-

rameters for the original form and its preconditioner, our bi-parametric abstract



8

setting leads to robust and controlled schemes. For Hilbert spaces, we derive

exhaustive linear and super-linear convergence estimates for iterative solvers

delivering h-independent convergent schemes, when preconditioning with low-

accuracy or, equivalently, high compression approximations.

(ii) In Chapter 3, we consider the standard Calderón preconditioning for the EFIE.

We apply the Bi-Parametric OP framework based on hierarchical matrices. We

split solution and preconditioner accuracies, significantly reducing computation

times and memory requirements while retaining the good properties of the orig-

inal Calderón preconditioner. Numerical experiments validate our claims for

increasingly complex settings, yielding results comparable to those given by al-

gebraic techniques such as near-field preconditioners and providing insights into

further research avenues;

(iii) In Chapter 4, we consider the numerical solution of time-harmonic acoustic scat-

tering by obstacles with uncertain geometries for Dirichlet, Neumann, impedance

and transmission boundary conditions. In particular, we aim to quantify diffracted

fields originated by small stochastic perturbations of a given relatively smooth

nominal shape. Using first-order shape Taylor expansions, we derive tensor de-

terministic first-kind boundary integral equations for the statistical moments of

the scattering problems considered. These are then approximated by sparse

tensor Galerkin discretizations via the combination technique (Griebel et al.

(Griebel, Schneider, & Zenger, 1990; Griebel & Harbrecht, 2014)). We sup-

ply extensive numerical experiments confirming the predicted error convergence

rates with poly-logarithmic growth in the number of degrees of freedom and

accuracy in approximation of the moments.

Finally, we represent in Figure 1.1 the methodology of this thesis and the main contri-

butions in green.
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2. BI-PARAMETRIC OPERATOR PRECONDITIONING

This chapter was submitted to Computers & Mathematics with Applications in Novem-

ber, 2020 (under review).

2.1. Introduction

Variational equations—continuous weak forms (Betcke, Scroggs, & Śmigaj, 2020,

Section 3.1)—in suitably defined reflexive Banach spaces X , Y , or equivalently (Ern &

Guermond, 2013, Proposition A.21) as operator equations—continuous strong forms (Betcke

et al., 2020, Section 3.1)—have successfully been employed to model a plethora of phe-

nomena, particularly in the form of integro-differential equations. In general, one can

only approximate solutions by solving linear systems or matrix equations arising from

the continuous infinite-dimensional counterparts. Galerkin methods are a widely accepted

choice to derive such linear systems due to their solid theoretical and practical understand-

ing. Specifically, Petrov-Galerkin (PG) methods provide a generic framework for operator

equations with operators of the form A : X ! Y 0, allowing to choose different trial and

test spaces. Within PG methods, one finds Bubnov-Galerkin (BG) methods, namely, the

case when A : X ! X 0 as well as PG for endomorphisms (PGE), i.e., A : X ! X , as

in second-kind Fredholm integral equations, wherein A is a compact perturbation of the

identity in X .

Most relevant applications lead to large linear systems solved by iterative methods

(Saad, 2003) such as Krylov (subspace) methods (Saad & Schultz, 1986, Chapters 6 and

7) as direct inversion quickly becomes computationally impractical. For real symmetric

(resp. complex Hermitian) positive definite matrices, the standard choice is the conjugate

gradient method (CG) (Hestenes & Stiefel, 1952), whereas the general minimal residual

method (GMRES) and its m-restarted variant GMRES(m) (Saad & Schultz, 1986) are

common alternatives for nonsingular indefinite complex matrices. For these methods, con-

vergence of the residual strongly depends on matrix properties inherited from the continu-

ous (resp. discrete) operator. Features such as the field-of-values (FoV) or singular values
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distributions are key to obtain residual convergence bounds (Sarkis & Szyld, 2007; Beck-

ermann, Goreinov, & Tyrtyshnikov, 2005; Steinbach, 2007; Nevanlinna, 1993). Yet, con-

vergence for these methods can be slow, with performance commonly deteriorating as the

linear system dimension increases. Thus, the need for robust preconditioning techniques.

For a linear system Au = b, in our case spawned by any PG method, preconditioning

consists in the application of a (left) preconditioner P such that

PAu = Pb.

We say that the preconditioner P is good if: (i) it is relatively cheap to compute; and (ii) the

product PA approximates the identity matrix or iterative solvers perform better than on the

original linear system. In this note, we focus on the framework of operator preconditioning

(OP). Successfully applied to BG methods (Hiptmair, 2006; S. H. Christiansen & Nédélec,

2000)—denoted OP-BG—, we aim at extending OP to general PG methods (OP-PG) as

well as understanding the effects of numerical perturbations in iterative solvers.

Fundamentally, OP relies on finding suitable endomorphic operator equations, i.e. map-

pings onto the same function spaces, leading to bounded spectral condition numbers. In

the BG setting, one has reflexive Banach spaces X , V and an operator A : X ! X 0, for

which one considers another operator C : V ! V 0, such that

(OP-BG)
X X 0

V 0 V

A

M�⇤M�1

C

, (2.1)

with M : X ! V 0 linking the domain of A and the range of C. The preconditioning

operator is then P := M�1CM�⇤. Similarly, opposite-order OP has been considered for

PG methods (Andreev, 2013), particularly in the context of pseudo-differential operators

(Steinbach & Wendland, 1998; McLean & Steinbach, 1999; Hsiao & Wendland, 2008),
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i.e. for A : X ! Y 0 and C : Y 0 ! X , with1 M = N =: I, leading to

(opposite-order OP) X Y 0
A

C
. (2.2)

However, there is no known result for general OP-PG, which would encompass both OP-

BG and opposite-order PG. This entails considering the following more general framework.

For reflexive Banach spaces X, Y , V and W , and a preconditioner C : V ! W 0 to A :

X ! Y 0, we need to build the commuting diagram:

(OP-PG)
X Y 0

W 0 V

A

N�1M�1

C

, (2.3)

with M : X ! W 0 and N : V ! Y 0 linking the domain and range spaces for A and C, and

leading to an endomorphism on X . Notice that in this case P := M�1CN�1 and that (2.3)

reduces to (2.1) if W = V , Y = X and N = M⇤. In this regard, our main contribution is

a theory for OP-PG for which we provide estimates for spectral and Euclidean condition

numbers. For the latter, we make use of the synthesis operator linking the domain space

and its basis expansion, thereby acknowledging the dimension dependence.

Yet, and despite leading to bounded spectral condition numbers, OP does not necessar-

ily ensure convergence for iterative solvers such as GMRES or GMRES(m). Theoretically,

one requires further assumptions on the induced problems, related primarily to the matrix

FoV distribution (Starke, 1997; Liesen & Tichỳ, 2012), to obtain linear convergence results

for GMRES. Still, these bounds are pessimistic (Liesen & Tichỳ, 2012; Kirby, 2010), with

convergence radius for GMRES close to one. This justifies the derivation of sharper con-

vergence results at the expense of tighter assumptions on the operators. For instance, one

can observe a super-linear convergence of the iterative scheme for systems derived from

second-kind Fredholm operator equations. (Moret, 1997; Winther, 1980; Campbell, Ipsen,

Kelley, & Meyer, 1996; Axelsson & Karátson, 2018).

1Recently, (Stevenson & van Venetië, 2021) proposed a construction with M, N 6= I, whose discretization
leads to M and N being diagonal matrices.
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Furthermore, though OP general properties are retained as the linear system dimen-

sion increases, it can quickly become impractical. A well-known example is the dual

mesh-based OP—also known as multiplicative Calderón preconditioning—for boundary

element methods (Hiptmair, 2006; Steinbach & Wendland, 1998; Andriulli et al., 2008). In-

deed, due to barycentric grid refinement, the standard method entails a dramatic increase in

memory and computational costs. To counter this, low-accuracy Calderón preconditioners

have been recently proposed with promising results (Bebendorf, 2008; Escapil-Inchauspé

& Jerez-Hanckes, 2019; Fierro & Jerez-Hanckes, 2020). Indeed, iterative solvers’ per-

formance is seen to remain stable when building relatively coarse approximations of a

given operator preconditioner. Clearly, this has no impact over the solution accuracy as

this is only induced by the numerical approximation of the original problem, estimated

by Strang’s lemma (Strang, 1972) and its variants (Ern & Guermond, 2013; Di Pietro &

Droniou, 2018). Accordingly, we recently proposed the idea of systematically “combining

distinct precision orders of magnitude inside the resolution scheme” (Escapil-Inchauspé &

Jerez-Hanckes, 2019) with successful numerical results for boundary element methods in

electromagnetics (Escapil-Inchauspé & Jerez-Hanckes, 2019; Kleanthous et al., 2020) and

acoustics (Fierro & Jerez-Hanckes, 2020), despite hitherto the lack of rigorous proof.

Thus, we aim to provide theoretical grounds for the above observations by consider-

ing parameter-dependent perturbed problems and introducing the bi-parametric OP para-

digm (Theorem 2.2), with bounds on spectral and Euclidean condition numbers with re-

spect to perturbations. We further deduce linear (resp. super-linear) convergence results

for GMRES(m) (resp. GMRES), and present exhaustive new convergence bounds for it-

erative solvers when working on Hilbert spaces. Due to their generality, our results apply

to diverse research areas: equivalent operators theory (Faber, Manteuffel, & Parter, 1990;

Axelsson & Karátson, 2009; Kirby, 2010), opposite-order OP (Winther, 1980; Steven-

son & van Venetië, 2021), compact equivalent OP (Axelsson, Karátson, & Magoulès,

2018; Axelsson & Karátson, 2018) and (fast) Calderón preconditioning (Andriulli et al.,

2008; Escapil-Inchauspé & Jerez-Hanckes, 2019; Antoine & Darbas, 2021; Fierro & Jerez-

Hanckes, 2020; Hiptmair & Urzúa-Torres, 2020). Furthermore, these ideas could be also
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applied on high frequency wave propagation problems (Graham, Spence, & Vainikko,

2017; Galkowski, Müller, & Spence, 2019), Schwarz preconditioning (Sarkis & Szyld,

2007; Feischl, Führer, Praetorius, & Stephan, 2017) and second-kind Fredholm operator

equations (Atkinson, 1976; Colton & Kress, 2012).

This manuscript is structured as follows. In Section 2.2, we present the abstract PG

setting. In Section 2.3 we introduce perturbed forms and state the first Strang’s lemma for

completeness. Next, we arrive at the bi-parametric OP framework and state our main result

in Section 2.4. Finally, we investigate the performance of iterative solvers in Section 2.5,

and discuss new research avenues in Section 2.6. Figure 2.1 summarizes constants and

problems defined throughout this work.

2.2. Continuous, Discrete and Matrix Problem Statements

Let X and Y be two reflexive Banach spaces and let a 2 L(X⇥Y ;C) be a continuous

complex sesqui-linear—weak—form with norm kak. We tag dual spaces by prime (0) and

adjoint operators by asterisk (⇤). For a linear form b 2 Y 0, the weak continuous problem is

seek u 2 X such that a(u, v) = b(v), 8 v 2 Y. (2.4)

Throughout, we assume for each b 2 Y 0 the existence of a unique continuous solution u

to (2.4). The form a induces a—strong—bounded linear operator A 2 L(X;Y 0) defined

through the dual pairing in Y as follows (Ern & Guermond, 2013, Proposition A.21)

hAu, viY 0⇥Y := a(u, v), 8 u 2 X, 8 v 2 Y. (2.5)

Hence, (2.4) is equivalent to the strong continuous problem:

seek u 2 X such that Au = b. (2.6)
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KA
kak
�A

(2.12)

K⇤h

k⇤k

�⇤
(2.16)

K?

kmkknkkckkak
�M�N�C�A

(2.36)

K?,µ,⌫ K?

⇣
1+µ

1�µ

⌘⇣
1+⌫

1�⌫

⌘
(2.45)

�k(K)
1
k

P
k

j=1 �j(K) (2.86)

Problem Problem in matrix form Eq.

((A)) Au = b (2.13)

((A))⌫ A⌫u⌫ = b⌫ (2.26)

((CA)) M�1CN�1Au = M�1CN�1b (2.34)

((CA))µ,⌫
M�1CµN�1A⌫u⌫ = M�1CµN�1b⌫

(2.43)

((CA))p
µ,⌫

(2.83)

((A))p N�1Au = N�1b (2.82)

FIGURE 2.1. Comprehensive review of the constants (left) and problems (right)
defined throughout this manuscript, along with their corresponding introductions.
Convergence radius ⇥(m)

k
and e⇥(m)

k
for the preconditioned GMRES are defined in

(2.64).

Given an index h > 0, we introduce finite-dimensional conforming spaces, i.e. Xh ⇢

X and Yh ⇢ Y , and assume that dim(Xh) = dim(Yh) =: N , with N ! 1 as h ! 0.

Customarily, h relates to the mesh-size of finite or boundary elements approximations.2

The counterpart of (2.4) is the weak discrete problem:

find uh 2 Xh such that a(uh, vh) = b(vh), 8 vh 2 Yh, (2.7)

2For the sake of simplicity, the problems under consideration are defined for a given h > 0 although asymp-
totic considerations are key in proving properties such as h-independent condition numbers, i.e. remaining
bounded as h! 0 (cf. Corollary 2.3).
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The above admits a unique solution uh (Ern & Guermond, 2013, Theorem 2.22) if a satisfies

the discrete inf-sup—Banach-Nečas-Babuška (BNB)—condition, for a constant �A > 0:

sup
vh2Yh\{0}

|a(uh, vh)|
kvhkY

� �AkuhkX > 0, 8 uh 2 Xh. (2.8)

Assumption 1. Throughout, we assume that a is continuous and satisfies the BNB condi-

tion (2.8).

Equivalently, we define the discrete operator Ah : Xh ! Y 0

h
:

hAhuh, vhiY 0
h
⇥Yh

:= a(uh, vh), 8 uh 2 Xh, 8vh 2 Yh, (2.9)

and bh 2 Y 0

h
such that bh(vh) := b(vh) for all vh 2 Yh, wherein the norms of bh and Ah are

given by (refer to (Sauter & Schwab, 2010, Section 4.2.3)):

kbhkY 0
h
:= sup

vh2Yh\{0}

|a(uh, vh)|
kvhkYh

and kAhkXh!Y
0
h

:= sup
uh2Xh\{0}

kAhuhkY 0
h

kuhkXh

. (2.10)

Consequently, the strong discrete problem related to (2.6) reads

seek uh 2 Xh such that Ahuh = bh. (2.11)

One can introduce the discrete condition number:

(Ah) := kAhkXh!Y
0
h

kA�1
h
k
Y

0
h
!Xh

 ��1
A kak =: KA, (2.12)

with KA being referred to as BNB condition number, not to be confused with the BNB

condition (2.8).

Pick bases such that span{'i}Ni=1 = Xh ⇢ X and span{�i}Ni=1 = Yh ⇢ Y , and write

the corresponding coefficient vectors in CN for the basis expansion in bold letters, e.g.,

uh 2 Xh : uh =
NX

i=1

ui'i, u := (ui)
N

i=1 2 CN ,

vh 2 Yh : vh =
NX

i=1

vi�i, v := (vi)
N

i=1 2 CN ,
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and build the (stiffness) Galerkin matrix and right-hand side

A := (a('j,�i))
N

i,j=1, b := (bh(�i))
N

i=1.

It holds that

hAuh, vhiY 0⇥Y = hAhuh, vhiY 0
h
⇥Yh

= (Au,v)2,

where (u,v)2 denotes the Euclidean inner product in CN with induced norm kuk2 =
p

(u,u)2. The matrix norm is

kAk2 := max
u2CN\{0}

kAuk2
kuk2

.

We set AH := A
T the conjugate transpose of A and define vector and matrix norms

induced by the Banach space setting as kuk
Xh

:= kuhkXh
and kAk

Xh!Y
0
h

:= kAhkXh!Y
0
h

,

for Ah in (2.10). Notice that inclusion Xh ⇢ X ensures that kuk
Xh

= kuk
X
=: kuhkX .

Consequently, (2.7) and (2.11) correspond to the matrix problem referred to3 as ((A)):

((A)) : Seek u 2 CN such that Au = b. (2.13)

Next, we introduce ⇤h the synthesis operator for Xh:

⇤h : CN ! Xh

u 7! uh,
(2.14)

along with strictly positive constants for h > 0

�⇤h
:= inf

uh2Xh\{0}

kuhkX
kuk2

and k⇤hk := sup
uh2Xh\{0}

kuhkX
kuk2

. (2.15)

Notice that, for any uh 2 Xh, it holds that (Ern & Guermond, 2006, Section 2.3)

�⇤h
kuk2  kuhkX  k⇤hkkuk2,

and set

K⇤h
:=
k⇤hk
�⇤h

. (2.16)

3In the following, notation ((·)) denotes matrix equations.
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REMARK 2.1. One should observe the explicit use of h-subscripts for the synthesis

operator. Indeed, while discrete inf-sup conditions are generally bounded as h tends to

zero, the bounds k⇤hk and �⇤h
are not. For example, let ⌦ ⇢ Rd, d = 2, 3 be a smooth

bounded Lipschitz domain (Steinbach, 2007, Section 2) with boundary � := @⌦. For D

being either � or⌦ and s 2 [0, 1], we introduce the Sobolev space Hs(D) (Steinbach, 2007)

and let X := Hs(D). We assume that D is decomposed into a shape regular, locally quasi-

uniform mesh T (Steinbach, 2007, Section 9.1) with elements ⌧ 2 T . Set h⌧ as the diameter

of each element ⌧ 2 T , along with hmin := min⌧2T h⌧ and h ⌘ hmax := max⌧2T h⌧ ,

and introduce a nodal C0-Lagrangian basis (Ainsworth, McLean, & Tran, 1999) on T as

span{�i}Ni=1 = Xh ⇢ X , for any N(h) 2 N. For all uh 2 Xh, there holds that (Sauter &

Schwab, 2010, Sections 4.4 and 4.5):

Ch
d

2
minkuk2  CkuhkL2(D)  kuhkHs(D)  Ch�s

minkuhkL2(D)  Ch�s

minh
d

2
maxkuk2. (2.17)

Consequently, one obtains

�⇤h
� Ch

d

2
min, k⇤hk  Ch�s

minh
d

2
max and K⇤h

 C

✓
hmax

hmin

◆ d

2

h�s

min. (2.18)

For D = � and Hs(�), with s 2 [�1, 1], one has

K⇤h
 C

✓
hmax

hmin

◆ d

2

h�|s|

min . (2.19)

In this case, one can see the synthesis operator’s explicit h-dependence via (2.18) and

(2.19). A similar situation holds in the case of Nédélec and Raviart-Thomas (Rao-Wilton-

Glisson) elements applied in electromagnetic scattering (cf. (Hiptmair, Jerez-Hanckes, &

Mao, 2015) and references therein).

For the remainder of this work, we will make extensive use of the spectral and Eu-

clidean condition numbers, S(A) and 2(A), respectively, defined as

S(A) := %(A)%(A�1) =
|�max(A)|
|�min(A)| and 2(A) := kAk2kA

�1k2, (2.20)
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with %(A) := |�max(A)| being the spectral radius of A. We denote the spectrum of A by

S(A). Since the spectral radius is bounded by any norm on CN , we set, for any Qh : Xh !

Xh with matrix representation Q, the Banach space induced norm kQk
X

:= kQk
X!X

,

with kQk
X

= kQk
Xh

=: kQk
Xh!Xh

by inclusion Xh ⇢ X , leading to %(Q)  kQk
X

.

The latter is key in proving the operator preconditioning result in Theorem 2.1.

As mentioned in Section 2.1, we are concerned with the consequences of perturbing the

above sesqui-linear and linear forms over discretization spaces as it occurs when employing

finite-arithmetic, numerical integration or compression algorithms. To this end, we give a

notion of admissible perturbations needed for the ensuing analysis.

Definition 2.1 ((h, ⌫)-perturbation). Let ⌫ 2 [0, 1) and h > 0 be given. We say that

a⌫ 2 L(X ⇥ Y ;C) is a (h, ⌫)-perturbation of a if it belongs to the set �h,⌫(a):

a⌫ 2 �h,⌫(a) () ��1
A |a(uh, vh)� a⌫(uh, vh)|  ⌫kuhkXkvhkY , 8 uh 2 Xh, 8 vh 2 Yh.

(2.21)

Similarly, b⌫ 2 Y 0 is called a (h, ⌫)-perturbation of the linear form b if it belongs to the set

⌥h,⌫(b) defined as

b⌫ 2 ⌥h,⌫(b) () |b(vh)� b⌫(vh)|  ⌫kbhkY 0
h

kvhkYh
, 8 vh 2 Yh.

We identify a0 and b0 with a and b, respectively.

The (h, ⌫)-perturbation formalism allows to control precisely the perturbed sesqui-

linear (resp. linear) form.

PROPOSITION 2.1. Consider a⌫ 2  h,⌫(a). Then, a⌫ has a discrete inf-sup condition

and is continuous, with corresponding constants �A⌫
, ka⌫k, satisfying

�A⌫
� �A(1� ⌫) and ka⌫k  kak+ ⌫�A  kak(1 + ⌫). (2.22)
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PROOF. For any uh 2 Xh, it holds that

sup
vh2Yh\{0}

|a⌫(uh, vh)|
kvhkY

� sup
vh2Yh\{0}

✓
|a(uh, vh)|
kvhkY

� |a(uh, vh)� a⌫(uh, vh)|
kvhkY

◆

� �AkuhkX � �A⌫kuhkX = �A(1� ⌫)kuhkX

(2.23)

by Assumption 1 and Definition 2.1. Similarly, for any uh 2 Xh and vh 2 Yh, one has

|a⌫(uh, vh)|  |a(uh, vh)|+ |a⌫(uh, vh)� a(uh, vh)|

 (kak+ ⌫�A)kuhkXkvhkY  kak(1 + ⌫)kuhkXkvhkY ,

as stated. ⇤

REMARK 2.2. Though the sets of admissible perturbations�h,⌫(a) and⌥h,⌫(b) depend

on h, the perturbed forms remain continuous. Also, for a given h, one may choose different

parameters for each set.

Set ⌫ 2 [0, 1) and introduce perturbations a⌫ 2 �h,⌫(a) and b⌫ 2 ⌥h,⌫(b). We arrive at

the perturbed weak discrete problem:

seek uh,⌫ 2 Xh such that a⌫(uh,⌫ , vh) = b⌫(vh), 8 vh 2 Yh, (2.24)

with strong discrete counterpart

find uh,⌫ 2 Xh such that Ah,⌫uh,⌫ = bh,⌫ , (2.25)

and matrix form

((A))⌫ : Seek u⌫ 2 CN such that A⌫u = b⌫ . (2.26)

Notice that ((A))0 = ((A)). Moreover, one can combine Proposition 2.1 with (Ern & Guer-

mond, 2013, Theorem 2.22) to obtain the next result.

PROPOSITION 2.2. For ⌫ 2 [0, 1), ((A))⌫ admits a unique solution.



21

2.3. First Strang’s lemma for perturbed forms

We start by characterizing the error between continuous and discrete solutions for the

unperturbed version of ((A)) recalling Céa’s lemma (Céa, 1964; Ern & Guermond, 2013).

Lemma 2.1 (Céa’s Lemma (Ern & Guermond, 2013, Lemma 2.28)). Let u 2 X and

uh 2 Xh be the solutions to (2.4) and (2.7), respectively. Then, one has

ku� uhkX  (1 + KA) inf
wh2Xh

ku� whkX , (2.27)

with KA defined in (2.12).

REMARK 2.3. This fundamental result highlights the importance of the BNB condition

number. It shows that if the problem has poor intrinsic conditioning for either continuous or

discrete settings, then the quasi-optimality constant (1+KA) will be large and the solution

uh far from the best approximation error. Observe that in Lemma 2.1 both sesqui-linear

and linear forms are computed exactly.

Next, we present a modified version of the above lemma for perturbed problems ((A))⌫ .

Lemma 2.2 (First Strang’s Lemma). Set ⌫ 2 [0, 1) and let uh,⌫ 2 Xh and u 2 X be

the unique solutions to (2.25) and (2.4), respectively. It holds that

ku� uh,⌫kX  inf
wh2Xh

✓✓
1 +

KA

1� ⌫

◆
ku� whkX +

⌫

1� ⌫ kwhkX
◆
+

⌫

�A(1� ⌫)
kbhkY 0

h

 (1 + KA)

✓
1 +

KA

1� ⌫

◆
inf

wh2Xh

ku� whkX +
2⌫

�A(1� ⌫)
kbhkY 0

h

.

PROOF. For any wh 2 Xh and for all vh 2 Yh, it holds that

a⌫(uh,⌫ � wh, vh) = b⌫(vh)� a⌫(wh, vh) + a(wh, vh) + a(u� wh, vh)� b(vh)

= a(u� wh, vh) + (a(wh, vh)� a⌫(wh, vh)) + (b⌫(vh)� b(vh)),

leading to

�A⌫
kuh,⌫ � whkX  kakku� whkX + ⌫�AkwhkX + kbh � bh,⌫kY 0

h

(2.28)
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by Assumption 1 and Definition 2.1. Next, by combining the triangle inequality, and (2.28),

one derives

ku� uh,⌫kX  ku� whkX + kwh � uh,⌫kX


✓
1 +
kak
�A⌫

◆
ku� whkX + ⌫

�A
�A⌫

kwhkX +
1

�A⌫

kbh � bh,⌫kY 0
h

,

and, since wh is arbitrary in Xh, there holds

ku� uh,⌫kX 
1

�A⌫

kbh � bh,⌫kY 0
h

+ inf
wh2Xh

✓✓
1 +
kak
�A⌫

◆
ku� whkX +

�A
�A⌫

⌫kwhkX
◆

 ⌫

�A(1� ⌫)
kbhkY 0

h

+ inf
wh2Xh

✓✓
1 +

KA

1� ⌫

◆
ku� whkX +

⌫

1� ⌫ kwhkX
◆

 ⌫

�A(1� ⌫)
kbhkY 0

h

+

✓
1 +

KA

1� ⌫

◆
ku� uhkX +

⌫

1� ⌫ kuhkX

 2⌫

�A(1� ⌫)
kbhkY 0

h

+ (1 + KA)

✓
1 +

KA

1� ⌫

◆
inf

wh2Xh

ku� whkX ,

as stated, by recalling the continuous dependence on b for uh solution of (2.7), i.e. kuhkX 
1
�A
kbhkY 0

h

, and by application of Lemma 2.1. ⇤

REMARK 2.4. Since

(Ah,⌫) 
ka⌫k
�A⌫

=: KA⌫
 KA

1 + ⌫

1� ⌫ ,

one can expect the discrete (resp. BNB) condition number of a⌫ to be stable with respect

to small perturbations, as KA⌫
= KA(1 � 2⌫ + o(⌫)) for ⌫ ⌧ 1. For ⌫ ⌧ 1, Lemma 2.2

shows that the perturbation implies: a best approximation error term with quasi-optimality

constant (1 + KA)2, and O(⌫) errors induced by the perturbed sesqui-linear form and

right-hand side (cf. (Escapil-Inchauspé & Jerez-Hanckes, 2019, Sections 2 and 3)).

REMARK 2.5. Observe that contrary to Céa’s lemma, Lemma 2.2 does not invoke the

solution to the continuous perturbed problem:

seek u⌫ 2 X such that a⌫(u⌫ , v) = b⌫(v), 8 v 2 Y. (2.29)
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Assuming the existence of a unique continuous solution u⌫ to (2.29), Lemma 2.1 and Re-

mark 2.4 lead to the following quasi-optimal bound:

ku⌫ � uh,⌫kX 
✓
1 + KA

1 + ⌫

1� ⌫

◆
inf

wh2Xh

ku⌫ � whkX . (2.30)

2.4. Bi-parametric Operator Preconditioning

We complete the setting in Section 2.2 by introducing preconditioners. To this end, let

V and W be two reflexive Banach spaces. We consider an operator c 2 L(V ⇥W ;C) as

well as pairings n 2 L(V ⇥ Y ;C) and m 2 L(X ⇥W ;C). These forms induce operators

C : V ! W 0, N : V ! Y 0 and M : X ! W 0. With these, we state the preconditioned

version of the operator equation (2.6):

seek u 2 X such that PAu = Pb, with P := M�1CN�1. (2.31)

We refer the readers to Figure 2.1 and to the previous diagram in (2.3) for an overview

of domain mappings and functional spaces for OP-PG.

For our new spaces, we set conforming finite-dimensional spaces Vh ⇢ V and Wh ⇢

W of the same dimension N as for Xh and Yh.

Assumption 2. We assume that c, n and m satisfy a discrete inf-sup condition (cf. (2.8))

over the approximations spaces, with constants �C, �N and �M, respectively.

Consequently, the strong discrete preconditioned problem

seek uh 2 Xh such that PhAhuh = Phbh, with Ph := M�1
h
ChN

�1
h
, (2.32)

is well posed, by the same arguments as in Proposition 2.2. As in Section 2.2, we now pick

bases { i}Ni=1 ⇢ Vh and {⇠i}Ni=1 ⇢ Wh of Vh and Wh, and build the Galerkin matrices

C := ((c( j, ⇠i))
N

i,j=1, M := ((m('j, ⇠i))
N

i,j=1 and N := ((n( j,�i))
N

i,j=1. (2.33)
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Operator sesqui-linear
form Matrix Constants

Impedance A : X ! Y
0 a : X ⇥ Y A : [Yh ⇥Xh] �A, kak

Preconditioner C : V !W
0 c : V ⇥W C : [Wh ⇥ Vh] �C, kck

Pairing A N : V ! Y
0 n : V ⇥ Y N�1 : [Vh ⇥ Yh] �N, knk

Pairing C M : X !W
0 m : X ⇥W M�1 : [Xh ⇥Wh] �M, kmk

TABLE 2.1. Overview of functional spaces for OP-PG. We specify spaces for the
corresponding continuous operators and sesqui-linear forms, along with their in-
duced discrete matrices, continuity and discrete-inf sup constants. Brackets for
matrices indicate the spaces associated to rows ⇥ columns.

Therefore, we arrive at the matrix problem:

((CA)) : find u 2 CN such that PAu = Pb, with P := M�1CN�1. (2.34)

REMARK 2.6. As hinted in (Betcke et al., 2020), OP allows to obtain an equivalent

representation for both the discrete and matrix settings, referred to as Galerkin product

algebra. Indeed, introduce a unique vh 2 Vh such that Nhvh = bh, wh := Chvh 2 W 0

h
, and

a unique qh 2 Xh such that Mhqh = wh. We obtain that

Ahuh = bh = Nhvh ) N�1
h
Ahuh = vh 2 Vh,

Chvh = wh = Mhqh ) M�1
h
Chvh = qh 2 Xh,

leading to matrix counterparts

Au = Nv ) N�1Au = v,

Cv = Mq ) M�1Cv = q.

Hence

qh = PhAhuh with basis expansion q = PAu. (2.35)

Consequently, uh = (PhAh)�1qh is with basis expansion u = (PA)�1q.
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We state the following estimates for the condition numbers of PA.

Theorem 2.1 (Estimates for OP-PG). For problem ((CA)) given in (2.34), the spectral

condition number is bounded as

S(PA)  (PhAh) 
kmkknkkckkak
�M�N�C�A

=: K? . (2.36)

Furthermore, the Euclidean condition number satisfies

2(PA)  K?

✓
k⇤hk
�⇤h

◆2

= K? K
2
⇤h
, (2.37)

with K⇤h
introduced in (2.16).

PROOF. Remark that, for any uh 2 Xh, it holds that

�C�A
kmkknkkuhkX  kPhAhuhkX 

kckkak
�N�M

kuhkX . (2.38)

Let us introduce u linked to uh so as to deduce that

kPhAhkX = kPAk
X
 kckkak

�N�M
and k(PhAh)

�1k
X
= k(PA)�1k

X
 kmkknk

�C�A
,

(2.39)

which leads to the stated result for the spectral condition number given in (2.20), since

%(PA)  kPAk
X

and %((PA)�1)  k(PA)�1k
X

.

For the Euclidean condition number, we employ the synthesis operator ⇤h, introduced

in (2.14), and (2.38), to derive

1

k⇤hk

✓
�C�A
kmkknk

◆
kuhkX  kPAuk2 

1

�⇤h

✓
kckkak
�M�N

◆
kuhkX , (2.40)

yielding
�⇤h

k⇤hk

✓
�C�A
kmkknk

◆
kuk2  kPAuk2 

k⇤hk
�⇤h

✓
kckkak
�M�N

◆
kuk2, (2.41)

providing the second result. ⇤

As mentioned in Section 2.1, the abstract formulation in Theorem 2.1 for OP-PG en-

compasses the following important cases:
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(i) OP-BG (Hiptmair, 2006; S. H. Christiansen & Nédélec, 2000): X = Y , V = W

and N := M⇤ (cf. (2.1));

(ii) Opposite-order OP (Andreev, 2013): Y = X 0 and W = V 0 and M = N := I

(cf. (2.2)).

We are now ready to introduce perturbed sesqui-linear forms and their preconditioners.

In the spirit of (2.24), we consider the family of bi-parametric perturbed preconditioned

problems.

For two parameters µ, ⌫ 2 [0, 1), we define cµ 2 �h,µ(c), a⌫ 2 �h,⌫(a), and b⌫ 2

⌥h,⌫(b). The perturbed preconditioned problem reads

find uh,⌫ 2 Xh such that Ph,µAh,⌫uh,⌫ = Ph,µbh,⌫ , with Ph,µ := M�1
h
Ch,µ,N

�1
h
,

(2.42)

with corresponding matrix form

((CA))µ,⌫ : seek u⌫ 2 CN such that PµA⌫u⌫ = Pµb⌫ , with Pµ := M�1CµN
�1.

(2.43)

Naturally, ((CA))0,0 =((CA)). In practice, one seeks the preconditioner parameter µ to be

much larger than the original system’s accuracy ⌫ while retaining the convergence proper-

ties. Indeed, we can now state our main result.

Theorem 2.2 (Bi-Parametric Operator Preconditioning). For the problem ((CA))µ,⌫ ,

given in (2.43) for µ, ⌫ 2 [0, 1) and h > 0, the spectral condition number is bounded as

S(PµA⌫)  K?

✓
1 + µ

1� µ

◆✓
1 + ⌫

1� ⌫

◆
=: K?,µ,⌫ (2.44)

and the Euclidean condition number satisfies

2(PµA⌫)  K?,µ,⌫ K
2
⇤h
, (2.45)

with K? and K⇤h
defined in (2.16) and (2.36), respectively.
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PROOF. Application of Proposition 2.1 to cµ and a⌫ leads to:

8 uh 2 Xh, (1�µ)(1�⌫) �C�A
kmkknkkuhkX  kPh,µAh,⌫uhkX 

kckkak
�A�C

(1+µ)(1+⌫)kuhkX ,

(2.46)

from where one derives the result for the spectral condition number following the proof of

Theorem 2.1. For the Euclidean condition number, the proof is similar modulo the term

K⇤h
due to the synthesis operator. ⇤

REMARK 2.7. Theorem 2.2 provides bounds for both spectral and Euclidean condi-

tion numbers. Notice that (2.45) involves the synthesis operators in Xh (see Remark 2.1).

Moreover, it holds that K?,µ,⌫ = K?,⌫,µ, and K?,µ,⌫ does not involve cross-terms in µ and

⌫. Remark that (2.44) is a sharper estimate than the previous bound in (Escapil-Inchauspé

& Jerez-Hanckes, 2019, Proposition 1). Also, we have assumed M and N to be exact or

unperturbed but one could also extend the above results to account for perturbed pairings.

Theorem 2.2 constitutes the formal proof of the effectiveness of preconditioning with

low-accuracy approximations hinted, for instance, by Bebendorf in (Bebendorf, 2008, Sec-

tion 3.6). To illustrate this, assume that the best approximation error in Lemma 2.1 con-

verges at a rate O(hr), r > 0. First, Theorem 2.2 shows that one can set ⌫ = O(hr) to

preserve the convergence rate. Second, one can relax µ by setting a bounded µ = O(1)

guaranteeing a bounded spectral condition number. Consequently, the result suggests using

different parameters for the assembly of Pµ and A⌫ . For example, one can keep standard

Galerkin methods for building stiffness matrices with preconditioners built using coarser

Galerkin approximations (Escapil-Inchauspé & Jerez-Hanckes, 2019; Kleanthous et al.,

2020; Fierro & Jerez-Hanckes, 2020), collocation methods (Atkinson, 1976), compression

techniques (Bebendorf, 2008; Bebendorf & Kunis, 2009), or feedforward neural networks

(Meade Jr & Fernandez, 1994; Sappl, Seiler, Harders, & Rauch, 2019).
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2.5. Iterative Solvers Performance: Hilbert space setting

Throughout Section 2.5, we restrict ourselves to X ⌘ H with H being a Hilbert space

with inner product (·, ·)
H

and k · k
H

=
p

(·, ·)
H

. We set H := (('j,'i)H)
N

i,j=1, being

Hermitian positive definite with {'i}Ni=1 defined in Section 2.2, satisfying

8 uh, vh 2 Xh, (uh, vh)H = hRuh, vhiH0⇥H
= (Hu,v)2 =: (u,v)

H
, (2.47)

where R is the isometric Riesz-isomorphism H ! H 0 (Hiptmair, 2006, Section 3).

We aim at detailing how the context of Theorem 2.1 and Theorem 2.2 transfers onto

the behavior of iterative solvers such as GMRES under the above Hilbertian setting. To this

end, the following matrix properties will prove useful.

2.5.1. Matrix properties: H-FoV

For any Q 2 CN⇥N , N 2 N, we introduce FH(Q), the matrix H-FoV of Q—also

referred to as H-numerical range

FH(Q) :=

⇢
(Qu,u)

H

(u,u)H
: u 2 CN \ {0}

�
(2.48)

and VH(Q), the distance of FH(Q) from the origin

VH(Q) := min
z2FH(Q)

|z| = min
u2CN\{0}

|(Qu,u)H |
(u,u)H

. (2.49)

Likewise, we introduce F2(Q), or equivalently 2-FoV, and V2(Q). Moreover, for any

Qh : Xh ! Xh, we set the discrete H-FoV and VH(Qh):

FH(Qh) :=

⇢
(Qhuh, uh)H
(uh, uh)H

: uh 2 Xh \ {0}
�

and VH(Qh) := inf
uh2Xh\{0}

|(Qhuh, uh)H |
(uh, uh)H

.

(2.50)

We recall that the H-adjoint of Q is Q? := H�1QHH, and that Q is said to be H-normal

if Q commutes with Q? (Axelsson & Karátson, 2009, Section 2.2.1.1).
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The matrix H-FoV (and 2-FoV) being key in describing the linear convergence of

GMRES(m), we aim at giving a further insight on these sets. Following (Benzi, 2016,

Section 4), we state some useful properties of the matrix H-FoV.

Lemma 2.3 (Properties of the matrix H-FoV FH(Q)). Consider any Q,H 2 CN⇥N ,

N 2 N, with H being a Hermitian positive definite matrix. The following properties hold:

(i) FH(Q) = F2(H
1
2QH�

1
2 );

(ii) Spectral containment: S(Q) ⇢ FH(Q);

(iii) H-normal matrices: If Q is H-normal, then FH(Q) = Conv(S(Q)) the convex

hull of S(Q);

(iv) FH(Q) is contained in a disk centered at 0 with radius kQk
H

;

(v) FH(Q) is compact and convex.

PROOF. Set bQ := H
1
2QH�

1
2 .

(i) For any u 2 CN \ {0}, one can define bu := H
1
2u such that

(Qu,u)H
(u,u)H

=
(H

1
2 bQH

1
2u,u)2

(H
1
2H

1
2u,u)2

=
(bQbu, bu)2
(bu, bu)2

,

proving that FH(Q) = F2(bQ), and that kbQk2 = kQkH .

(ii) By (Benzi, 2016, Section 4, Item 1), one has S(bQ) ⇢ F2(bQ). Clearly, Q and bQ

share the same spectrum.

(iii) If Q is H-normal, there holds that QH�1QHH = H�1QHHQ, hence

H
1
2QH�1QHHH�

1
2 = H

1
2H�1QHHQH�

1
2 ,

leading to bQbQH = bQH bQ, proving that bQ is normal. By (Benzi, 2016, Section

4, Item 10), we deduce that F2(bQ) = Conv(S(bQ)).

(iv) F2(bQ) is contained in a disk centered at zero with radius kbQk2 (Benzi, 2016,

Section 4, Item 3). Moreover, FH(Q) = F2(bQ) and kQk
H
= kbQk2.

(v) F2(bQ) is compact and convex by (Benzi, 2016, Section 4, Items 7 and 12).

⇤
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FIGURE 2.2. 2-FoV boundary (blue line), eigenvalues (green circles), convex hull
for eigenvalues (green line) and |�min|, |�max| (black diamonds) for a matrix Q :=
I + 0.5E 2 R40⇥40 (left) and its inverse Q�1 (right). E is a random matrix with
Ei,j uniformly distributed random numbers in [0, 1] for 0  i, j  40. Remark
that 0 6= Conv(S(Q)) (resp. 0 6= Conv(S(Q�1))) while 0 2 F2(Q) (resp. 0 2
F2(Q�1)).

Figure 2.2 illustrates the above definitions for a random matrix. Remark that: (i) Q is

invertible, as |�min(Q)| > 0; (ii) F2(Q) 6⇢ Conv(S(Q)) and F2(Q�1) 6⇢ Conv(S(Q�1));

(iii) Conv(S(Q)) and Conv(S(Q�1)) are bounded away from the origin, whereas 0 2

F2(Q) and 0 2 F2(Q�1). Moreover, one has S(Q) = 30.6 while 2(Q) = 58.3, evidenc-

ing the non-normality of Q.

2.5.2. General linear convergence estimates for GMRES(m)

Following (Graham et al., 2017, Chapter 5), let us recall the application of the weighted

(resp. Euclidean) GMRES to a linear system Qx = d in CN , where Q 2 CN⇥N is a

complex nonsingular matrix. For an initial guess x0 6= x, we introduce the residual r0 =

d�Qx0 such that r0 6= 0 as well as Krylov spaces

Kk(Q, r0) := span{Qjr0 : j = 0, . . . , k � 1}, 1  k  N. (2.51)
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For any step 1  k  N , we define xk and x̃k to be the unique elements of Kk(Q, r0)

satisfying the minimal residual property under the energy and Euclidean norms:

krkkH := kd�QxkkH = min
x2Kk(Q,r0)

kd�Qxk
H
,

kr̃kk2 := kd�Qx̃kk2 = min
x2Kk(Q,r0)

kd�Qxk2,
(2.52)

respectively. We refer to either weighted or Euclidean GMRES collectively as GMRES.

We add an (m) superscript to signal restarted GMRES(m), for any natural number 1 

m  N . Notice that GMRES and GMRES(m) coincide up to iteration m.

Lemma 2.4 (Weighted GMRES(m): Linear bounds). Let Q 2 CN⇥N , with 0 6=

FH(Q) in (2.48) and set 1  m  N . Then, the k-th residual of weighted GMRES(m) for

1  k  N satisfies:
krkkH
kr0kH


�
1� VH(Q)VH

�
Q�1

�� k

2 . (2.53)

PROOF. We first remark that Lemma 2.4 for the Euclidean GMRES, i.e. for H = I, is

proved in (Liesen & Tichỳ, 2012). Thus, we focus on the extension to weighted GMRES.

Following (Graham et al., 2017, Theorem 5.1), we set bQ := H
1
2QH�

1
2 , bd := H

1
2d,

bx := H
1
2x and br0 := H

1
2 r0. Application of the Euclidean GMRES to bQbx = bd yields

kbrkk2
kbr0k2


⇣
1� V2(bQ)V2(bQ�1)

⌘ k

2
. (2.54)

By Lemma 2.3, we obtain that FH(Q) = F2(bQ) and FH(Q�1) = F2(H1/2Q�1H�1/2) =

F2(bQ�1). Consequently, by (2.54) we derive the final bound for the weighted GMRES

krkkH
kr0kH


�
1� VH(Q)VH(Q

�1)
� k

2 = ⇢k, (2.55)

with ⇢ := (1� VH(Q)VH(Q�1))
1
2 and ⇢ < 1 by (Liesen & Tichỳ, 2012, Section 1).

Finally, we remark that ⇢ above does not depend on k: it provides a one-step bound. There-

fore, we set a restart 1  m  N and define k =: im+t with 0  t < m and 0  i  bN
m
c.

By application of (2.55), there holds that:

krim+tkH  ⇢tkrimkH , (2.56)
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and thus, krkkH  ⇢kkr0kH , leading to the expected result for GMRES(m). ⇤

REMARK 2.8. Lemma 2.4 provides a linear convergence bound for weighted GMRES(m)

with respect to VH(Q) and VH(Q�1) and constitutes a sharper version of the classic result

for weighted GMRES in (Graham et al., 2017; Sarkis & Szyld, 2007). Indeed, for Q in

Lemma 2.4 there holds that (Liesen & Tichỳ, 2012, Section 1):

1� VH(Q)VH(Q
�1)  1� VH(Q)2

kQk2
H

< 1.

2.5.3. Discrete hXhi- and (Xh)-coercivity

For the ensuing GMRES analysis of our preconditioned problem ((CA)), we need pre-

cise definitions for coercivity that relate to the BNB condition for Hilbert spaces. We

introduce the notion of (discrete) hXhi-coercivity, with angle brackets referring to the dual

pairing in (2.5) (refer to (Chandler-Wilde, Graham, Langdon, & Spence, 2012, Section 5)).

Definition 2.2 (hXhi-coercivity). Consider A : X ! X 0 as in the BG case with X

being a Hilbert space. For h > 0 given, A is said to be hXhi-coercive if there exists ↵A

such that

0 < ↵A 
|a(uh, uh)|
kuhk2X

=
|hAuh, uhiX0⇥X |
kuhk2X

8 uh 2 Xh \ {0}. (2.57)

Thus, discrete hXhi-ellipticity refers to self-adjoint operators satisfying the hXhi-coercivity

condition. These definitions extend naturally to continuous hXi-coercivity and -ellipticity.

REMARK 2.9 (BNB condition and hXhi-coercivity). As pointed out for hXi-coercivity

in (Ern & Guermond, 2013, Lemma 2.8) , hXhi-coercivity for A in Definition 2.2 provides

a BNB constant �A = ↵A, since for any uh 2 Xh \ {0}, it holds that

0 < ↵AkuhkX 
|a(uh, uh)|
kuhkX

 sup
vh2Xh\{0}

|a(uh, vh)|
kvhkX

. (2.58)

REMARK 2.10. hXhi-coercivity is a common property for BG methods in Hilbert

spaces. For example, under suitable assumptions on the discretization scheme, operators

with a Gårding inequality on X—of the form A = A0 +K : X ! X 0 with A0 hXi-coercive
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and K compact (Sauter & Schwab, 2010, Section 2.1)— admit a h0 > 0 such that A is

hXhi-coercive for all 0 < h  h0 (Sauter & Schwab, 2010, Section 4.2.3).

Similarly to Definition 2.2, we introduce the discrete (Xh)-coercivity, the difference

being the use of inner products.

Definition 2.3 ((Xh)-coercivity). Consider A : X ! X for the PGE case with X =:

H being a Hilbert space. A is said to be (Xh)-coercive if, for any uh 2 Xh \ {0}, there

exists ↵A > 0 such that

↵A 
|(Auh, uh)H |
(uh, uh)H

, (2.59)

or equivalently

↵A  inf
uh2Xh\{0}

|(Auh, uh)H |
(uh, uh)H

= VH(Ah). (2.60)

Definition 2.3 via (2.60) shows the strong connection between (Xh)-coercivity and

discrete VH . Furthermore, under the OP setting, the discrete and matrix H-FoVs coincide.

Lemma 2.5. Consider ((CA)) with X =: H a Hilbert space with inner product (·, ·)H .

There holds that

(i) FH(PhAh) = FH(PA) and FH((PhAh)�1) = FH((PA)�1);

(ii) VH(PhAh) = VH(PA) and VH((PhAh)�1) = VH((PA)�1).

PROOF. Following (2.35), qh := PhAhuh 2 Xh for any uh 2 Xh has basis expansion

q = PAu. Therefore, there holds by (2.47) that for any uh 2 Xh:

(PhAhuh, uh)H = (PAu,u)H and (uh, uh)H = (u,u)H , (2.61)

yielding FH(PhAh) = FH(PA), and thus the expected result for PhAh. Similarly, one

deduces the same result for the inverse operator since for any qh 2 Xh, (PhAh)�1qh has

basis expansion (PA)�1q. ⇤
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2.5.4. Linear convergence estimates for GMRES(m) applied to ((CA))

Following Section 2.5.2, application of the weighted (resp. Euclidean) preconditioned

GMRES(m), for 1  m  N , to ((CA))µ,⌫ and initial guess x0 6= u⌫ , has the iterates xk

(resp. x̃k) for any step 1  k  N with minimal residual properties:

kPµrkkH := kPµb⌫ �PµA⌫xkkH = min
x2Kk(PµA⌫ ,r0)

kPµb⌫ �PµA⌫xkH ,

kPµr̃kk2 := kPµb⌫ �PµA⌫x̃kk2 = min
x2Kk(PµA⌫ ,r0)

kPµb⌫ �PµA⌫xk2,
(2.62)

with Kk introduced in (2.51) and obvious construction for ((CA)). By (2.62), the minimal

residuals satisfy

kPµr̃kk2  kPµrkk2 and kPµrkkH  kPµr̃kkH . (2.63)

We set convergence rates for the weighted (resp. Euclidean) preconditioned GMRES(m):

⇥(m)
k

:=

✓
kPµrkkH
kPµr0kH

◆ 1
k

and e⇥(m)
k

:=

✓
kPµr̃kk2
kPµr0k2

◆ 1
k

. (2.64)

Finally, we define convergence rates for non-restarted weighted (resp. Euclidean) precon-

ditioned GMRES ⇥k := ⇥
(N)
k

(resp. e⇥k := e⇥(N)
k

).

The bounds in Theorem 2.1 and Theorem 2.2 are related to the spectral radius, and

rely on the continuity and discrete inf-sup constants: they do not supply information on

the eigenvalue or FoV distributions, as pointed out in Figure 2.2, which are required to

derive convergence results for iterative solvers to ((CA))or ((CA))µ,⌫ . Thus, more specific

conditions are required. For instance, for ((CA)) we enforce the following (Xh)-coercivity

condition for PhAh.

Assumption 3 (Xh)-coercivity for ((CA)). For problem ((CA)) with X := H being a Hilbert

space with inner product (·, ·)H , we assume that PhAh and its inverse are (Xh)-coercive

satisfying
�C�A
kmkknk  VH(PhAh) and

�M�N
kckkak  VH((PhAh)

�1). (2.65)
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REMARK 2.11. The (Xh)-coercivity constants in Assumption 3 emerge naturally, as

they are related to the BNB constants for both PhAh and its inverse (cf. proof of Theo-

rem 2.1). Alternatively, one can write Assumption 3 as:

0 < �0  VH(PhAh) and 0 < �1  VH((PhAh)
�1), (2.66)

with �0,�1 constants depending on the discrete inf-sup and continuity constants for the

induced operators and eventually for (·, ·)H in (2.47).

We are ready to state the linear convergence result for GMRES(m) for ((CA)) for the

Hilbertian case.

Theorem 2.3 (GMRES(m): Linear convergence estimates for ((CA))). Consider ((CA)) with

X =: H Hilbert and (·, ·)H such that Assumption 3 holds. Then, GMRES(m) for 1 

k,m  N leads to

⇥(m)
k

✓
1� 1

K?

◆ 1
2

and e⇥(m)
k
 K⇤h

✓
1� 1

K?

◆ 1
2

, (2.67)

with K? as defined in (2.36) and K⇤h
in (2.16).

PROOF. By combining Assumption 3, Lemma 2.5 and definition of K?, there holds

that

VH(PA)VH((PA)�1) � 1

K?

(2.68)

and thus

1� VH(PA)VH((PA)�1)  1� 1

K?

Application of Lemma 2.4 to the preconditioned system with residuals (2.62) provides the

first bound in (2.67), namely

kPrkkH
kPr0kH


✓
1� 1

K?

◆ k

2

, 1  k  N. (2.69)
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Next, we follow the steps in (Sarkis & Szyld, 2007, Section 4) to arrive at the second bound

in (2.67). First, the minimal residual property (2.63) yields

kPr̃kk2  kPrkk2. (2.70)

By virtue of the synthesis operator in (2.14), one has

kPrkk2 
1

�⇤h

kPrkkH and kPr0kH  k⇤hkkPr0k2. (2.71)

Therefore, (2.69) combined with (2.70) and (2.71) lead to the final result, as

kPr̃kk2  kPrkk2 
1

�⇤h

kPrkkH 
1

�⇤h

✓
1� 1

K?

◆ k

2

kPr0kH  K⇤h

✓
1� 1

K?

◆ k

2

kPr0k2,

as stated. ⇤

REMARK 2.12. This result provides extensive convergence bounds for GMRES(m).

It will guarantee h-independent convergence for weighted GMRES(m) for ((CA)) in the

Hilbert setting (cf. Corollary 2.3). Also, the synthesis operator enters as an offset factor in
e⇥(m)
k

= K⇤h
⇢ with ⇢ := (1� 1/K?)1/2 < 1. One should observe that e⇥(m)

k
could be larger

than 1 for K⇤h
> 1, an impractical bound for Euclidean GMRES(m). The latter supports

theoretically the use of weighted GMRES(m) as a solver (Feischl et al., 2017).

To illustrate the application of the above results, we provide a case of interest where

Assumption 3 is satisfied. Therein, notice the extra KA-term in (2.72) below, justifying

Remark 2.11.

Corollary 2.1 (Preconditioner-induced norm (Feischl et al., 2017; Starke, 1997; Kirby,

2010)). Consider ((CA)) for OP-BG for Hilbert spaces X =: H and V , A being hXhi-

coercive, and C being hVhi-elliptic, with �A := ↵A and �C := ↵C. Then, P�1 is Hermitian

and yields an inner product on Xh, denoted by (·, ·)P�1 , and

�C�A
kmk2  VP�1(PhAh) and

�2M
kckkak KA  VP�1((PhAh)

�1). (2.72)
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PROOF. First, notice that since C is hVhi-elliptic, C and C�1 are Hermitian positive

definite. Therefore, we deduce that P = M�1CM�H = PH and P�1 = P�H are Hermit-

ian positive definite. For any u,v 2 CN \ {0} and w := P�1v, one has

VP�1(PhAh) = inf
u2CN\{0}

|(PAu,u)P�1 |
(u,u)P�1

= inf
u2CN\{0}

|(Au,u)2|
|(P�1u,u)2|

and

VP�1((PhAh)
�1) = inf

v2CN\{0}

|(A�1P�1v,v)P�1 |
(v,v)P�1

= inf
w2CN\{0}

|(A�1w,w)2|
|(Pw,w)2|

.

Next, using Equations 2.61 and 2.62 in Kirby (Kirby, 2010), we deduce that:

�Akuhk2X  |(Au,u)2|  kakkuhk2X and
�A
kakkwhk2X0

h

 |(A�1w,w)2|  kakkwhk2X0
h

,

(2.73)

while for the preconditioner P one has by (Steinbach, 2007, Section 13.2) that

�C
kmk2kwhk2X0

h

 |(Pw,w)2| 
kck
�2M
kwhk2X0

h

(2.74)

and
�2M
kckkuhk2X  |(P�1u,u)2| 

kmk2
�C
kuhk2X . (2.75)

Therefore,
�A�C
kmk2 

|(Au,u)2|
|(P�1u,u)2|

and
�A�2M
kak2kck 

|(A�1w,w)2|
|(Pw,w)2|

, (2.76)

finalizing the proof. ⇤

Corollary 2.2. Consider ((CA)) for OP-BG for Hilbert spaces X =: H and V , A being

hXhi-coercive, and C being hVhi-elliptic. Then, GMRES(m) for 1  k,m  N leads to

⇥(m)
k

✓
1� 1

K? KA

◆
and e⇥(m)

k
 K⇤h

✓
1� 1

K? KA

◆ 1
2

, (2.77)

with K? as defined in (2.36), K⇤h
in (2.16) and KA in (2.12).

REMARK 2.13. The KA-term in Corollary 2.1 and Corollary 2.2 is removed if A is

hXhi-elliptic, since A�1 is hX 0

h
i-elliptic with constant 1/kak (Steinbach, 2007, Section

13.2).
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2.5.5. Linear convergence estimates for GMRES(m) applied to ((CA))µ,⌫

As in Section 2.5.4, we give counterparts to Assumption 3 and Theorem 2.3 for the

bi-parametric preconditioned problem ((CA))µ,⌫ .

Assumption 4 (Xh)-coercivity for ((CA))µ,⌫ . For ((CA))µ,⌫ with X := H being a Hilbert

space with inner product (·, ·)H , assume that there holds that

�Cµ
�A⌫

kmkknk  VH(Ph,µAh,⌫) and
�M�N
kcµkka⌫k

 VH((Ph,µAh,⌫)
�1). (2.78)

Remark 2.11 remains valid for Assumption 4. With this, we can extend Theorem 2.3

to ((CA))µ,⌫ .

Theorem 2.4 (GMRES(m): Linear convergence estimates for ((CA))µ,⌫). Consider

((CA))µ,⌫ along with Assumption 4. Then, the residuals for GMRES(m) for 1  k,m  N

are bounded as

⇥(m)
k

✓
1� 1

K?,µ,⌫

◆ 1
2

and e⇥(m)
k
 K⇤h

✓
1� 1

K?,µ,⌫

◆ 1
2

, (2.79)

with K?,µ,⌫ and K⇤h
defined in (2.44) and (2.16), respectively.

PROOF. The result follows by direct application of Theorem 2.3 to ((CA))µ,⌫ . ⇤

REMARK 2.14. The above result gives a controlled convergence rate for GMRES(m)

with respect to bi-parametric (µ, ⌫)-perturbations. As in the discussion ensuing Theo-

rem 2.2 and in order to illustrate its practical implications, assume that the best approxi-

mation error in Lemma 2.2 converges at a rate O(hr), r > 0, and ⌫ = O(hr). Therefore,

provided that µ = O(1) guarantees a bounded K?,µ,⌫ , the bounds in (2.79) ensure linear

convergence for the weighted GMRES(m) (resp. Euclidean GMRES(m), for K⇤h
< 1).

2.5.6. Compact and Carleman class operators

So far, we have focused on the linear convergence rates for GMRES(m). Yet, it is

know that in many situations the bound in Lemma 2.4 “may significantly overestimate

the GMRES residual norms” (Liesen & Tichỳ, 2012). To better understand this, we aim
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to improve bounds for the case of second-kind Fredholm operators, which are known to

display super-linear convergence results for GMRES, i.e. the radius of convergence tends

to zero as k !1. To this end, we introduce the concept of Carleman class operators.

Again, assuming H to be a separable Hilbert space, we introduce C(H) ⌘ C(H;H)

the space of compact operators on H . Given T 2 L(H;H), we denote the ordered singular

values of T as �j(T) := {inf kT� TikH : Ti : H ! H, rankTi < j}. For any k � 1, the

kth partial arithmetic mean for the singular values reads

�k(K) :=
1

k

kX

j=1

�j(K). (2.80)

For p > 0, a compact operator K 2 C(H) is said to belong to the Carleman class Cp(H)

(Dunford & Schwartz, 1963, Section XI.9) if it holds that

|||K|||
p
= k�(K)kp :=

 
1X

i=1

�i(K)
p

!1/p

<1. (2.81)

Next, we identify C0(H) ⌘ C(H) and for p � 0, we say that Q is a p-class Fredholm

operator of the second-kind, Q 2 FCp(H) if and only if Q � I 2 Cp(H). Consequently,

for H =: X a separable Hilbert space, p � 0 and ⌫, µ 2 [0, 1), we define the following

problems:

((A))p : ((A)) for PGE (i.e. A : H ! H) with A 2 FCp(H) and N := I, (2.82)

and

((CA))p
µ,⌫

: ((CA))µ,⌫ with CµN
�1A⌫ 2 FCp(H), and M := I, (2.83)

whose diagram representation is

((CA))p
µ,⌫

:
H Y 0

H V

A⌫

N�1I�1

Cµ

.
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Finally, for ((A))p and ((CA))p
µ,⌫

, the corresponding compact terms K := A � I and Kµ,⌫ :=

CµN�1A⌫ � I) have discrete counterparts Kh := Ah � Ih and Kh,µ,⌫ := ChN
�1
h
Ah � Ih with

Galerkin matrices defined as

K := A�N and Kµ,⌫ := CµN
�1A⌫ �M, (2.84)

respectively. In the sequel, we introduce ordered (matrix) singular values with respect to

the H-norm (Axelsson et al., 2018, Proposition 4.2):

�H

j
(Q) := �j(Q

?Q)1/2 = �j(H
1/2QH�1/2), (2.85)

for any Q 2 CN⇥N and Q? = H�1QHH its H-adjoint.

2.5.7. Super-linear convergence estimates for GMRES applied to ((A))p

We recall the classic super-linear convergence result for weighted GMRES on a (con-

tinuous) Hilbert setting level (cf. (Moret, 1997) and (Axelsson et al., 2018, Theorem 3.1)).

PROPOSITION 2.3 (Weighted GMRES: Classic super-linear convergence estimate (Axelsson

et al., 2018, Theorem 3.1)). Let H be a Hilbert space. Set p � 0 and consider the applica-

tion of weighted GMRES on Qx = f , for a bounded and invertible operator Q 2 FCp(H)

with f 2 H . Introduce GMRES iterates x0 6= x, and xk, along with rk := Qxk� f , for any

k � 1. Then, the residuals satisfy

✓
krkkH
kr0kH

◆ 1
k

 kQ�1k
H
�k(K),

wherein K := Q� I 2 Cp(H) and �k(K) defined in (2.86).

Remark that �k(K) ! 0 as k ! 1 evidencing the super-linear convergence rate for

residuals of weighted GMRES in this particular case. Furthermore, the convergence rate

depends directly on the singular values of the continuous operator K. The following result

shows that the above is applicable to ((A))p as well.
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Theorem 2.5 (GMRES: Super-linear convergence estimates for ((A))p). Consider the

PGE problem ((A))p in (2.82) for any p � 0. Then, for 1  k  N , it holds that

✓
krkkH
kr0kH

◆ 1
k

 �k(K)

�A�N

✓


|||K|||
p

�A�N
k�

1
p if p > 0

◆
, (2.86)

and ✓
kr̃kk2
kr0k2

◆ 1
k

 K⇤h

�k(K)

�A�N

✓
 K⇤h

|||K|||
p

�A�N
k�

1
p if p > 0

◆
, (2.87)

wherein K := A� I2 Cp(H) and �k(K) in (2.86).

PROOF. By hypothesis, we have that N�1A = I +N�1K, with K such as in (2.84).

Following the same steps as in Axelsson (Axelsson et al., 2018), we deduce that the fol-

lowing relations hold (cf. proofs of Theorem 2.1 and Lemma 2.5):

k(N�1A)�1k
H
 knk

�A
=

1

�A
,

since N = I. Furthermore, it holds that the singular values (Axelsson et al., 2018, Proposi-

tion 4.2)

�H

j
(N�1K)  1

�N
�j(Kh) 

1

�N
�j(K).

Therefore, for 1  k  N , following (Axelsson et al., 2018) and using Proposition 2.3, we

can show that

krkkH
kr0kH

 k(N
�1A)�1k

H

k

kX

j=1

�H

j
(N�1K)  1

�A

kX

j=1

�H

j
(N�1K)

k
 1

�A�N

kX

j=1

�j(K)

k
.

Now, if K 2 Cp(H) for any p > 0, we follow (Winther, 1980, Theorem 2.2) and derive

kX

j=1

�j(K)

k
 |||K|||

p
k�

1
p ,

providing the final estimate in energy norm.

Finally, the bounds in Euclidean norm are deduced in the same fashion as in Theo-

rem 2.3. ⇤
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REMARK 2.15. This result appears to be new and it justifies the positive results of em-

ploying mass matrix preconditioning, i.e. N := I, to transfer the super-linear convergence

bounds from the continuous to the discrete level. Indeed, the choice of N = I guarantees a

discrete system N�1A = I+N�1K of the form I plus discretization of a compact operator.

The latter enables the application of the classical super-linear results for GMRES given in

Proposition 2.3. Notice that the bounds in (2.86) and (2.87) depend on k via �k(K): they

are not one-step bounds, and do not generalize to GMRES(m), as the relative error at

iteration k for 2  k  N depends on previous iterations.

REMARK 2.16. The super-linear convergence rate depends on the decay rate of �k(K).

For example, for trace class operators (p = 1), it holds that krkkH/kr0kH = O(k�1)

while for Hilbert-Schmidt operators (p = 2), one observes the faster rate krkkH/kr0kH =

O(k�2) (Dunford & Schwartz, 1963, Chapter XI). Results describing the Carleman class

index for pseudo-differential operators (resp. the Laplace double-layer operator) can be

found in (Sobolev, 2014) (resp. (Bessoud & Krasucki, 2006; Miyanishi & Suzuki, 2015))

and will be investigated elsewhere.

2.5.8. Super-linear convergence estimates for GMRES applied to ((CA))p
µ,⌫

We next show that the reasoning in Theorem 2.5 can also be applied to ((CA))p
µ,⌫

.

Theorem 2.6 (GMRES: Super-linear convergence estimates for ((CA))p
µ,⌫

). Consider

((CA))p
µ,⌫

in (2.83) for any p � 0 and define Kµ,⌫ := CµN�1A⌫ � I2 Cp(H). Then, for

weighted and Euclidean GMRES, respectively, it holds that

⇥k 
knk

�C�A�M

�k(Kµ,⌫)

(1� µ)(1� ⌫)

 
 knk
�C�A�M

|||Kµ,⌫ |||p
(1� µ)(1� ⌫)k

�
1
p if p > 0

!
, (2.88)

and

e⇥k  K⇤h

knk
�C�A�M

�k(Kµ,⌫)

(1� µ)(1� ⌫)

 
 K⇤h

knk
�C�A�M

|||Kµ,⌫ |||p
(1� µ)(1� ⌫)k

�
1
p if p > 0

!
,

(2.89)

with ⇥k and e⇥k defined in (2.64) and �k(·) in (2.86).
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PROOF. Consider ((CA))p
µ,⌫

and follow the proof of Theorem 2.5. First, we use Propo-

sition 2.1 to deduce that

k(PµA⌫)
�1k

H
= kA�1

⌫
NC�1

µ
Mk

H
 knk
�A�C

1

(1� µ)(1� ⌫) .

Next, for 1  j  N , one has

�H

j
(M�1CµN

�1A⌫ � I) = �H

j
(M�1Kµ,⌫) 

1

�M
�j(Kµ,⌫),

with Kµ,⌫ = CµN�1A�M as in (2.84). Therefore, we obtain

⇥k 
k(PµA⌫)�1k

H

k

kX

j=1

�H

j
(M�1Kµ,⌫) 

knk
�C�A�M

�k(Kµ,⌫)

(1� µ)(1� ⌫) .

The second bound in (2.88) and (2.89) follows by the same arguments as in the proof of

Theorem 2.5. ⇤

Theorem 2.6 describes precisely the residual convergence behavior of GMRES for

((CA))p
µ,⌫

for p � 0. In particular, (2.89) shows that the Euclidean GMRES converges

super-linearly, up to a K⇤h
-term as observed experimentally for the electric field integral

equation on screens in (Hiptmair & Urzúa-Torres, 2020).

Corollary 2.3 (h-Asymptotics). Consider ((CA))µ,⌫ in (2.79), for µ ! 0 and ⌫ ! 0

as h ! 0. Additionally, let us suppose that (i) the finite dimensional subspaces are dense

in their function space, satisfying the approximability property (Ern & Guermond, 2013,

Definition 2.14); and, (ii) the forms in ((CA)) have a uniform discrete inf-sup condition with

respect to h. Then, for vanishing h, the following statements hold:

(i) ku� uhkX ! 0 in Lemma 2.2;

(ii) K? in Theorem 2.1, and subsequently K?,µ,⌫ Theorem 2.2 remain bounded (h-

independence);

(iii) Under Assumption 4, the residual⇥(m)
k

in (2.79) remains bounded (h-independent

linear convergence);
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(iv) For ((CA))p
µ,⌫

in (2.83), p � 0, the residual ⇥k ! 0 as k ! 1 in Theorem 2.6

(h-independent super-linear convergence).

REMARK 2.17. Theorem 2.6 requires the operator Kµ,⌫ to be compact so as to ensure

application of Proposition 2.3. Recent results by Bletcha (Blechta, 2021) allow to consider

a more general Proposition 2.3 with A : H ! H of the form A = Q+K, with Q a bounded

invertible operator and K compact. The latter could allow to relax the compactness for

Kµ,⌫ and to analyze ((CA))µ,⌫ as a general bounded perturbation of ((CA))p. This will be

investigated elsewhere.

2.5.9. Elliptic Case

We give further insight on the bi-parametric operator preconditioning framework by

considering the elliptic case for OP-BG for X =: H and V being Hilbert spaces. To

this end, we assume that A is hXi-elliptic and C is hV i-elliptic. Therefore, we have the

ellipticity conditions

a(u, u) � ↵Akuk2X and c(v, v) � ↵Ckvk2V ,

for all u 2 X and all v 2 V . Notice that continuous ellipticity implies a discrete inf-sup

condition for conforming discretization spaces, with �A = ↵A and �C = ↵C, respectively,

and allows to apply our previous analysis—without requiring Assumption 3.

For p � 0, problem ((CA))p leads to CN�1A = I + K with K compact and self-

adjoint. Thus, we introduce the ordered eigenvalues |�i+1(K)|  |�i(K)| for i � 1. By

(Winther, 1980, Section 2), |�i(K)| = �i(K) and the Carleman class in (2.81) simplifies to

the Neumann-Schatten class

|||K|||
p
:=

 
1X

i=1

|�i(K)|
!1/p

<1. (2.90)

As ellipticity allows for more refined bounds, one can examine the use of preconditioned

CG solvers (Steinbach, 2007, Section 13.1).
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Corollary 2.4 (Elliptic Case). Consider ((CA))µ,⌫ with cµ 2 �h,µ(c), a⌫ 2 �h,⌫(a),

such that A⌫ is hXi-elliptic and Cµ is hV i-elliptic.Then, the continuous and perturbed

problems have a unique solution, u and uh,⌫ , respectively, with the following error bound

ku� uh,⌫kX  inf
wh2Xh

✓
KA

1� ⌫ ku� whkX +
⌫

1� ⌫ kwhkX
◆
+

⌫

�A(1� ⌫)
kbhkY 0

h


✓

K2
A

1� ⌫

◆
inf

wh2Xh

ku� whkX +
2⌫

�A(1� ⌫)
kbhkY 0

h

.

with KA defined in (2.12). Furthermore, it holds that

S(PµA⌫) = 2(PµA⌫)  K?,µ,⌫ , (2.91)

with K?,µ,⌫ in (2.45). Therefore, for x0 6= u⌫ and 1  k  N , the k-th iterate xk of CG

with an error ek := xk � u⌫ is bounded in the A⌫-norm as

⇥CG
k

:=

✓kekkA⌫

ke0kA⌫

◆ 1
k

 2
1
k

 
1� 2p

K?,µ,⌫ + 1

!
. (2.92)

Finally, consider ((CA))p
µ,⌫

for p � 0. It holds that

⇥CG
k
 2knk
�C�A�M

1

(1� µ)(1� ⌫) ·
1

k

kX

j=1

|�j(Kµ,⌫)| (2.93)

and, if p > 0, one retrieves

⇥CG
k
 2knk
�C�A�M

|||Kµ,⌫ |||p
(1� µ)(1� ⌫)k

�
1
p . (2.94)

PROOF. By the ellipticity hypothesis on the sesqui-linear form a, Lemma 2.1 is re-

placed by the Lax-Milgram lemma (Ern & Guermond, 2013, Section 2.1.2), providing the

sharper quasi-optimality constant KA. Since the resulting system is Hermitian positive defi-

nite, the spectral and Euclidean condition numbers coincide. Next, we set { := S(PµA⌫)

and introduce the linear bound for the preconditioned CG with respect to the condition

number (Kurics, 2010, Theorem 1.8):

⇥CG
k
 2

1
k

✓p
{ � 1p
{ + 1

◆
. (2.95)
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Observe that
✓p

{ � 1p
{ + 1

◆
=

✓
1� 2p

{ + 1

◆

 
1� 2p

K?,µ,⌫ + 1

!
,

leading to (2.92). Since, ((CA))p
µ,⌫

entails a self-adjoint compact perturbation Kµ,⌫ :=

CµN�1A⌫ � I, one has an ordered eigenvalue decomposition, and the application of super-

linear result for CG (Kurics, 2010, Theorem 1.9):

⇥CG
k
 2k(PµA⌫)

�1k
H

 
1

k

kX

j=1

|�j(M�1Kµ,⌫)|
!
.

Finally, one can show that (cf. proof of Theorem 2.6):

kA�1
⌫
P�1

µ
k
H
 knk
�C�A

1

(1� µ)(1� ⌫) and |�j(M�1Kµ,⌫)| 
1

�M
|�j(Kµ,⌫)|,

proving the final result. ⇤

2.6. Conclusion

For general Petrov-Galerkin methods, we considered their operator preconditioning

and introduced the novel bi-parametric framework. Several results were derived including

bounds in Euclidean norm for the convergence of iterative solvers when preconditioning,

with GMRES as a reference. These results pave the way toward new paradigms for pre-

conditioning, as they allow to craft robust preconditioners, better understand the efficiency

of existing ones and relate them to experimental results. We see direct applications in a va-

riety of research areas including wave propagation problems (Gander, Graham, & Spence,

2015), singular perturbation theory (Axelsson & Karátson, 2009, Section 3), fast numer-

ical methods (Bebendorf, 2008; Bebendorf & Kunis, 2009) and iterative solvers (Saad &

Schultz, 1986).

Future work avenues we foresee are: further analysis of second-kind Fredholm integral

equations, with applications to acoustics and electromagnetics; deep learning of precondi-

tioners for GMRES, and wavenumber asymptotic analysis for preconditioners. Also, we

mention two promising research areas: (i) extension of ((CA))p
µ,⌫

to bounded perturbations
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of ((CA))p via (Blechta, 2021); and (ii) characterization of Carleman class for compact op-

erators using elliptic regularity theorems (Bessoud & Krasucki, 2006).



3. FAST CALDERÓN PRECONDITIONING FOR THE ELECTRIC FIELD INTE-

GRAL EQUATION

This chapter was published in IEEE Transactions on Antennas and Propagation in

January, 2019.

3.1. Introduction

Prowess in computational electromagnetism (EM) has shown to be key in supporting

the overwhelming pace of technological innovation seen for several decades. Indeed, as

the EM spectrum is continuously exploited for ever more complex and varied purposes,

the need for robust, fast and efficient simulators becomes all the more relevant. To mea-

surement accuracy, Maxwell equations depict the physical phenomena of interest but their

solution generally calls for numerical methods. Among these, common choices are finite

differences, finite elements or boundary element methods (BEM). All these methods rely on

a domain discretization over which fields/currents are approximated by easily computable

bases and solutions derived from a linear system (Buffa & Hiptmair, 2003; Buffa, Hiptmair,

von Petersdorff, & Schwab, 2003).

In this chapter, we consider time-harmonic EM waves scattered by a Perfect Electric

Conductor (PEC) embedded in an exterior unbounded domain. To approximate fields, we

reduce the original volume problem to the obstacle’s boundary via Green’s formulas and

functions, incorporating implicitly radiation conditions at infinity. This leads to an integral

equation for surface electric and magnetic currents called the Electric Field Integral Equa-

tion (EFIE) discretized with Rao-Wilton-Glisson (RWG) elements (Rao, Wilton, & Glis-

son, 1982). Due to the non-locality of the integral kernel, the BEM originates dense indef-

inite matrices with large and often impractical requirements in memory and computational

work. This motivates the development of so-called fast approximation techniques. Among

these, the Fast Multipole Method (FMM) clusters matrix terms according to interaction dis-

tances and constitutes one of the first and more widely spread techniques (Dembart & Yip,

1998; Gumerov & Duraiswami, 2004; Darve, 2000). Alternatively, Hierarchical Matrices
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(H-mat) take a purely algebraic approach approximating the operator by low-rank matrices

(Bautista, Francavilla, Vipiana, & Vecchi, 2014; Steinbach, 2007). This technique can be

enhanced by incorporating a nested cluster structure to achieve linear complexity in some

cases (H2-mat) (Omar & Jiao, 2014; Bebendorf, 2008). Regardless of the paradigm, all

these methods share several features: only matrix-vector products are performed; interac-

tions are partitioned into far and near ones; cluster decompositions; tolerance parameters

set approximation accuracy; and, commonly exhibit log-linear complexity and memory

consumption.

Yet, solving the resulting large EFIE matrices remains a hard task for traditional di-

rect solvers, and thus one resorts to iterative ones such as GMRES (Saad & Schultz, 1986;

Saad, 2003). Moreover, the spectral properties of EFIE matrices often lead to bad conver-

gence rates, requiring preconditioning. Calderón Multiplicative Preconditioners (CMP) are

a particular case of operator-based ones that lead to provable mesh-independent condition

numbers (Hiptmair, 2006; Nédélec, 2001; S. Christiansen & Nédélec, 2001; Andriulli et

al., 2008; Buffa & Christiansen, 2007). They employ matching Galerkin discretizations

of operators with complementary mapping properties: using an opposite order operator so

as to generate an endormorphism with a ratio between continuity and coercivity constants

independent of mesh size. Calderón preconditioners are applicable even for Lipschitz scat-

terers and optimal if the surface is closed, i.e. has no boundary (Hiptmair, 2006, Section

4). Still, their building cost can be prohibitive as dual functions defined on a barycen-

tric mesh lead to a six-fold increase in the size of the considered matrices. For instance,

Zhang et al. (Xu, Bo, & Zhang, 2016) used H2-mat for discretizing the EFIE operator on

the barycentric grid while Guo et al. (Guo, Hu, Yin, & Nie, 2009) appeal to the Adaptive

Cross Approximation (ACA) algorithm (Bebendorf, 2008). Still, even when associated to

efficient resolution techniques, Calderón preconditioning remains very expensive in terms

of memory, assembly time and time per iteration for iterative solvers.

Inspired by (Bebendorf, 2008, Section 3.6), we present a reduced cost Calderón pre-

conditioning strategy, dubbed bi-parametric, which considers the splitting of (i) solution

accuracy and (ii) preconditioner quality, combining distinct precision orders of magnitude
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inside the resolution scheme. The proposed bi-parametric paradigm is suitable for any pre-

conditioner, provided tolerance parameters are accesible. Indeed, the ideas presented in

this chapter extend verbatim to generic CMP-based applications (see e.g., (Cools, Andri-

ulli, & Michielssen, 2011; Gossye, Huynen, Ginste, De Zutter, & Rogier, 2018; Beghein,

Mitharwal, Cools, & Andriulli, 2017; Niino, Akagi, & Nishimura, 2017)). Here, we show

similar performance to that of algebraic techniques such as the Near-Field (NF) precondi-

tioner (Bunse-Gerstner & Gutiérrez-Cañas, 2006; Malas & Gurel, 2007; Carpentieri, Duff,

& Giraud, 2000) and a significant reduction in memory requirements, assembly time and

time per iteration with respect to the standard Calderón one.

The chapter is organized as follows. In Section 3.2, we recall the fundamentals of the

EFIE and its RWG discretization. Details on its implementation are provided in Section 3.3,

where the original approach is referred to as "-Calderón. The bi-parametric Calderón is in-

troduced in Section 3.4. Numerical tests for different configurations are given in Section 3.5

and Section 3.6 elaborates on future work.

3.2. The Electric Field Integral Equation

Consider D ⇢ R3 to be an open bounded Lipschitz PEC domain with boundary

� := @D and exterior unit normal n. Its complement Dc := R3\D is a purely dielec-

tric unbounded domain with real permeability and permittivity constants µ, ✏ > 0, yielding

a wavenumber k := !
p
µ✏ ⌘ 2⇡

�
with ! being the angular frequency for a time dependence

e�ı!t, ı being the imaginary unit, and � the associated wavelength. Let us consider an inci-

dent field Uinc that curl curlUinc�k2Uinc = 0. By linearity, the total field U = Uinc+Usc,

wherein the scattered field Usc solves

curl curlUsc � k2Usc = 0 in Dc,

n⇥Usc = �n⇥Uinc on �,
(3.1)

satisfying the Silver-Müller radiation condition:
����curlU

sc(x)⇥ x

kxk2
� ıkUsc(x)

���� = o
�
kxk�1

2

�
, (3.2)
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for kxk2 ! 1, x 2 R3, with k · k2 being the Euclidean l2-norm. The induced electrical

current density j on � satisfies the EFIE:

T (j) := TS (j) + TH (j) = �n⇥Uinc, (3.3)

where

TS (j) := ı!µn⇥
Z

�

e�ıkkx�yk2

4⇡kx� yk2
j(y)dy,

TH (j) := � 1

ı!✏
n⇥r

Z

�

e�ıkkx�yk2

4⇡kx� yk2
r� · j(y)dy.

The kernel of these operators decays as kx� yk�1
2 and becomes singular whenever x = y

but their integration in variational form is valid. Thus, T is non-local and its discretization

leads to dense indefinite complex matrices with complex eigenvalues.

To solve the EFIE, we generate meshes �h representing the boundary �, consisting of a

subdivision of � into a set of planar triangular non-overlapping elements ⌧l such that �h :=

[l⌧l. Following (Sauter & Schwab, 2010, Section 4.1.2), we define h⌧l
:= supx,y2⌧l kx �

yk2 and inscribed circles diameters ⇢⌧l per element. We then introduce the meshwidths h ⌘

hmax := max⌧l2�h
h⌧l

, hmin := min⌧l2�h
h⌧l

and the number of elements per wavelength r

such that h  �

r
for a given �. Mesh quality information is condensed in the vector:

h :=


h,

hmax

hmin

,max
⌧l2�h

h⌧l

⇢⌧l

�
,

which contains grading and shape-regularity measures.

The EFIE (3.3) is solved numerically by approximating j 2 X := H�1/2
⇥ (div�,�)

(Buffa & Hiptmair, 2003) by jh 2 Xh ⇢ X , using div-conforming RWG basis functions

{�n}Nn=1 ⇢ Xh defined on �h:

jh =
NX

n=1

un�n, (3.4)
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where u := (un) 2 CN is a vector of unknown coefficients. By testing (3.3) with functions

�i for i = 1, . . . , N , we obtain the linear system:

ZRWGu = b, (3.5)

wherein ZRWG and b are called the impedance matrix and load vector, each with elements

defined as

ZRWG

ij
:=

Z

�h

T (�j) · (n⇥ �i), bi := �
Z

�h

(n⇥ �i) · (n⇥Uinc).

3.3. Standard Calderón preconditioner

Multiplicative Calderón preconditioning using a dual mesh was introduced by Andri-

ulli et al. (Andriulli et al., 2008). Calderón preconditioning techniques exploit the self-

regularizing property of the EFIE for smooth surfaces, i.e. the square of the EFIE operator

does not have eigenvalues accumulating at zero or infinity. Furthermore, for closed Lip-

schitz surfaces, Calderón preconditioning yields a mesh-independent sequence of linear

systems, i.e. whose condition number is bounded independently of h. Still, in Figure 3.1

we summarize the drawbacks of the original method and explain several steps that lead to

the proposed fast bi-parametric Calderón preconditioning.

3.3.1. Dense Calderón preconditioner

A regularization of the EFIE is obtained by leveraging on the Calderón identity:

T 2(j) = �1

4
j+K2(j), (3.6)

where the operator

K(j) := n⇥r⇥
Z

�

e�ıkkx�yk2

4⇡kx� yk2
j(y)dy (3.7)

is compact on smooth surfaces (Nédélec, 2001). In other words, on smooth surfaces, T 2 is

a second kind Fredholm operator whose spectrum accumulates at �1/4. Besides, it is an

endomorphism on Lipschitz domains (Hiptmair, 2006, Section 4). Thus, we precondition
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Fig. 1. Summary of the Calderón preconditioning drawbacks (left) and
specific solutions (right). Observe the sequential improvement.

Fig. 2. Meshes used for the Calderón preconditioning. From the primal
mesh, �h are generated barycentric and dual ones, denoted by �b

h and �d
h ,

respectively.

function spaces and ensures that the pairing between T and
itself is invertible. BC functions are defined on the dual mesh
(see Fig. 2) but are built from a barycentrically refined mesh,
denoted by �b

h , leading to a sixfold increase in computational
and memory requirements with respect to those of the primal
mesh. For each edge of the primal mesh, one considers the
two hexagons of the dual mesh that cross it. They form the
support of the BC function associated with this edge [16].

The classical multiplicative Calderón preconditioning
approach—based on discretization by RWG functions over the
barycentric mesh �b

h and leading to a (6N) × (6N) matrix
Zb ≡ ZRW G,b—applied to (5) is summed up in Algorithm 1,
inducing the linear system1

CZpu = Cb (9)

with C ≡ G−T Zd G−1, Zd := PT ZbP, Zp := RT ZbR, and
b := RT bb.

1Superscripts p and d for matrices refer to both primal and dual meshes
and are used to underline the projective character of associated discretizations
related to barycentric grids.

Algorithm 1 Calderón Preconditioning
Input: �h , problem parameters

(1) Define barycentric mesh ← �b
h

(2) Assembly EFIE operator and right-hand side on barycen-
tric mesh ← Zb, bb

(3) Assembly mapping and Gram matrices ← R, P, G
Output: Zb, bb, R, P, G

In the above, the restriction matrix P maps RWG functions
defined on �b

h to div- and quasi-curl-conforming BC functions
on �d

h while R takes RWG functions defined on �b
h to �h .

They are sparse matrices with O(N) nonzero values and can
be evaluated exactly by geometrical considerations in O(N)
steps and memory. Finally, the Gram matrix is given by
(G)i j :=

�
�(n × �i ) · �BC, j and is sparse and invertible.

Remark that Zd and ZBC (resp. Zp and ZRW G) represent
the same operator discretization but imply different assembly
works for matrix–vector products. Finally, notice that dual BC
functions are strictly reserved for building the preconditioner,
as this allows for an efficient biparametric implementation as
shown in Section III-C.

Theorem 1 (See [13, Section 4]): Consider matrices Zd ,
Zp , and G induced by Algorithm 1 for a closed Lipschitz
domain. Then, the spectral condition number

�2(G−T Zd G−1Zp) ≤ K (10)

where K is a positive constant independent of h but dependent
on � and k.

B. �-Calderón Preconditioning

For a matrix A, let A� denote its approximation for a
given tolerance � and similarly for a vector v(�) := v�.
This approximation can be obtained by FMM, H-mat, etc.
Application of the compressed Calderón preconditioning
leads to

C�Zp
� u� = C�b (11)

with

C� := G−T PT Zb
�PG−1 ≡ C + �C�

Zp
� := RT Zb

�R ≡ Zp + �Zp
�

u� := u + �u�.

Set C�Zp
� = CZp +�(C�Zp

� ), where �(C�Zp
� ) is a perturbation

depending on �. The next result, proven in Appendix A,
connects tolerance, condition number, and solution accuracy.

Theorem 2 (�-Calderón): Let � ≥ 0 and assume that for
the linear system (11), it holds2

��(CZp)−1�
�
C�Zp

�

���
2 ≤ � < 1. (12)

Then,

�2
�
C�Zp

�

�
≤ K

1 + �

1− �
and [u�]2 ≤

�

1− �
. (13)

2For matrices, we introduce ‖ · ‖2 and ‖ · ‖F as spectral and Frobenius
norms, respectively. Brackets [·]· refer to relative norm errors, e.g., [u�]2 :=
‖u� − u‖2/‖u‖2.

FIGURE 3.1. Summary of Calderón preconditioning drawbacks (left) and specific
solutions (right). Observe the sequential improvement.

T by itself and solve

T 2(j) = T (�n⇥Uinc). (3.8)

For the EFIE on a primal mesh �h, one introduces Buffa-Christiansen (BC) div- and quasi-

curl- conforming basis functions �BC (Buffa & Christiansen, 2007). This allows discretiza-

tion of T 2 in proper function spaces and ensures that the pairing between T and itself is

invertible. BC functions are defined on the dual mesh (see Figure 3.2) but are built from

a barycentrically refined mesh, denoted �b

h
, leading to a six-fold increase in computational

and memory requirements with respect to those of the primal mesh. For each edge of the
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FIGURE 3.2. Meshes used for Calderón preconditioning. From the primal mesh
�h are generated barycentric and dual ones, denoted by �b

h
and �d

h
, respectively.

primal mesh, one considers the two hexagons of the dual mesh that cross it. They form the

support of the BC function associated to this edge (Andriulli et al., 2008).

Input: �h, problem parameters

(1) Define barycentric mesh �b

h

(2) Assembly EFIE operator and right-hand side on barycentric mesh Zb,bb

(3) Assembly mapping and Gram matrices R,P,G

Output: Zb,bb,R,P,G
Algorithm 1: Calderón Preconditioning

The classical multiplicative Calderón preconditioning approach –based on discretiza-

tion by RWG functions over the barycentric mesh �b

h
and leading to a (6N)⇥ (6N) matrix

Zb ⌘ ZRWG,b– applied to (3.5) is summed up in Algorithm 1, inducing the linear system1:

CZpu = Cb, (3.9)

with C ⌘ G�TZdG�1, Zd := PTZbP, Zp := RTZbR and b := RTbb.

In the above, the restriction matrix P maps div- and quasi-curl- conforming BC func-

tions on �d

h
to RWG functions defined on �b

h
while R takes RWG functions defined on

�h to �b

h
. They are sparse matrices with O(N) non-zero values and can be evaluated ex-

actly by geometrical considerations in O(N) steps and memory. Finally, the Gram matrix

1Superscripts p, d for matrices refer to both primal and dual meshes, and are used to underline the projective
character of associated discretizations related on barycentric grids.
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is given by (G)ij :=
R
�(n ⇥ �

i
) · �BC,j and is sparse and invertible. Remark that Zd

and ZBC (resp. Zp and ZRWG) represent the same operator discretization but imply differ-

ent assembly work for matrix-vector products. Finally, notice that dual BC functions are

strictly reserved for building the preconditioner, as this low for an efficient bi-parametric

implementation as shown in Section 3.4.

Theorem 3.1 (cf. Theorem 2.1). Consider matrices Zd,Zp,G induced by Algorithm 1

for a closed Lipschitz domain. Then, the spectral condition number

S(G
�TZdG�1Zp)  K, (3.10)

where K is a positive constant independent of h but dependent on � and k.

3.3.2. "-Calderón preconditioning

For a matrix A, let A" denote its approximation for a given tolerance " and similarly for

a vector v(") := v". This approximation can be obtained by FMM, H-mat, etc. Application

of compressed Calderón preconditioning leads to

C"Z
p

"
u" = C"b (3.11)

with

C" := G�TPTZb

"
PG�1 ⌘ C+ �C",

Zp

"
:= RTZb

"
R ⌘ Zp + �Zp

"
,

u" := u+ �u".

Set C"Zp

"
= CZp + �(C"Zp

"
) where �(C"Zp

"
) is a perturbation depending on ".

The next result, proved in Section 3.7.1, connects tolerance, condition number and

solution accuracy.
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Theorem 3.2 ("-Calderón). Let " � 0 and assume that, for the linear system (3.11), it

holds2:

k(CZp)�1�(C"Z
p

"
)k

X
 " < 1. (3.12)

Then,

S(C"Z
p

"
)  K

1 + "

1� " and [u"]X 
"

1� " . (3.13)

Theorem 3.2 states that for a relatively small tolerance parameter, the condition number

remains approximately constant while the solution error grows like O("). Indeed, solution

accuracy does not depend on neither C nor �C" as �u" = �(Zp

"
)�1�Zp

"
u (cf. Section 3.7.1).

Since both preconditioner (C") and impedance (Zp

"
) matrices are built upon Zb

"
they share

the same compression. As K is h�independent, the condition number behaves well when

increasing tolerance. The theorem remains valid in the case of non-preconditioned EFIE

but with K = O(h�2) (Andriulli, Tabacco, & Vecchi, 2010).

The above hints at decoupling tolerances of preconditioner and impedance matrix.

Since the condition number remains relatively constant while accuracy grows linearly, one

could rather define different tolerances to both matrix compressions. As Calderón precon-

ditioning exhibits h-independent convergence, one can increase solver iteration counts in

order to accelerate assembly and matrix-vector time on the barycentric grid. Ultimately, for

cases where the impedance matrix is given, this splitting would allow to implement a spe-

cific black-box to obtain a preconditioner. This is the gist of the proposed method shown

in Section 3.4.

Theorem 3.2 follows the perturbation analysis found in matrix compression (cf. (Bebendorf

et al., 2013, Section 5) or (Bebendorf, 2008, Definition 2.39)). In practice, Theorem 3.2

characterizes a spectral tolerance which is linked to H-mat tolerance or block sizes (cf. (Faustmann,

Melenk, & Praetorius, 2015; Bebendorf, 2008)). Finally, we should mention that though

2Using the correspondences between jh 2 Xh ⇢ X and u 2 CN in (3.4), we set kuk
X

:= kjhkX . Ac-
cordingly, for a bounded linear operator Bh : Xh ! Xh with induced discretization matrix B, we introduce
kBhkX := sup

vh2Xh
kBhuhkX/ kuhkX and set kBkX := kBhkX . For vectors and matrices, we introduce

k · k2 and k · k
F

as Euclidean and Frobenius norms, respectively. Brackets [·]
·

refer to relative norm errors,
e.g. [u"]X := ku" � uk

X
/kuk

X
.
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NF-based preconditioners are widely spread, they lack theoretical results such as the one

discussed.

3.4. Bi-parametric Calderón preconditioner

Define a pair of tolerance parameters µ, ⌫ > 0 and assembly the EFIE matrices on

primal and barycentric meshes with different tolerances, Z⌫ and Zb

µ
, respectively. We now

analyze the linear system:

�
G�TPTZb

µ
PG�1

�
Z⌫u⌫ =

�
G�TPTZb

µ
PG�1

�
b

rewritten as:

CµZ⌫u⌫ = Cµb. (3.14)

with Cµ ⌘ C + �Cµ and Z⌫ ⌘ Z + �Z⌫ . Observe that now we just need to assembly P

and G.

PROPOSITION 3.1 (Bi-parametric Calderón). For µ, ⌫ � 0, assume that for the linear

system (3.14),

k(CZ)�1(�CµZ)kX  µ,

k(Z)�1(�Z⌫)kX  ⌫,

with µ+ ⌫ + µ⌫ < 1. Then,

S(CµZ⌫)  K
1 + µ+ ⌫ + µ⌫

1� µ� ⌫ � µ⌫
(3.15)

and

[u⌫ ]X 
⌫

1� ⌫ . (3.16)

The proof is detailed in Section 3.7.2 and relies on splitting the inequality

k(CZ)�1�
�
C"Z"

�
k
X
 ".
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One term is the classical inequality on the EFIE operator, k(Z)�1(�Z⌫)kX  ⌫, which

is independent of the preconditioner and represents the tolerance of any approximated

EFIE linear system. The second term relates to the preconditioner tolerance, given by

k(CZ)�1(�CµZ)kX  µ, similar to the " one. By decoupling these terms, the proposed

technique reduces the work on the barycentric grid, since this is reserved for Cµ. Notice

that: (i) for small parameters µ and ⌫, the condition number asymptotically behaves as

O(1) and the relative error [u⌫ ]X grows as O(⌫); (ii) for small ⌫, the condition number

behaves as K 1+µ

1�µ
(cf. Figure 3.3). The theorem states that the condition number of the

induced system is very resilient to perturbations.

!"($%&')(), +)/K!"($%&') ), + /K .' " +

FIGURE 3.3. Behavior in change percentage of S(CµZ⌫)/K (left) and [u⌫ ]X
(right) as a function of (µ, ⌫) for µ, ⌫ 2 [0, 0.5].

We present the steps of the bi-parametric technique in Algorithm 2 with a dependency

graph in Figure 3.4. Based on Proposition 3.1, one can confidently use a classical H-

mat approximation for the EFIE and assembly the preconditioner with H2-mat, to reduce

error constants coming from the barycentric grid as much as possible. Moreover, one can

perform a rough approximation of the preconditioner by relaxing the fast resolution scheme

tolerance and/or simplifying quadrature rules. This is the approach followed successfully

in Section 3.5.

3.5. Numerical Experiments
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Theorem 2 states that for a relatively small tolerance para-
meter, the condition number remains approximately constant
while the solution error grows like O(�). Indeed, solution
accuracy does not depend on neither C nor �C� as �u� =
−(Zp

� )−1�Zp
� u (see Appendix A). Since both preconditioner

(C�) and impedance (Zp
� ) matrices are built upon Zb

� , they
share the same compression. As K is h−independent, the con-
dition number behaves well when increasing tolerance. The
theorem remains valid in the case of nonpreconditioned EFIE
but with K = O(h−2) [28].

The above hints at decoupling tolerances of preconditioner
and impedance matrices. Since the condition number remains
relatively constant while accuracy grows linearly, one could
rather define different tolerances to both matrix compressions.
As the Calderón preconditioning exhibits h-independent con-
vergence, one can increase solver iteration counts in order to
accelerate assembly and matrix–vector time on the barycentric
grid. Ultimately, for cases where the impedance matrix is
given, this splitting would allow implementing a specific black
box to obtain a preconditioner. This is the gist of the proposed
method shown in Section III-C.

Theorem 2 follows the perturbation analysis found in matrix
compression (see [29, Section 5] or [10, Definition 2.39]).
In practice, Theorem 2 characterizes a spectral tolerance which
is linked to H-mat tolerance or block sizes (see [10], [30]).
Finally, we should mention that though NF-based precondi-
tioners are widely spread, they lack theoretical results such as
the one discussed.

C. Biparametric Calderón Preconditioner

Define a pair of tolerance parameters µ, � > 0 and assembly
EFIE matrices on primal and barycentric meshes with different
tolerances, Z� and Zb

µ, respectively. We now analyze the linear
system

�
G−T PT Zb

µPG−1�Z�u� = �
G−T PT Zb

µPG−1�b

rewritten as

CµZ�u� = Cµb (14)

with Cµ ≡ C + �Cµ and Z� ≡ Z + �Z� . Observe that now
we just need to assemble P and G.

Proposition 1 (Biparametric Calderón): For µ, � ≥ 0,
assume that for the linear system (14)

‖(CZ)−1(�CµZ)‖2 ≤ µ

‖(Z)−1(�Z�)‖2 ≤ �

with µ + � + µ� < 1. Then

�2(CµZ�) ≤ K
1 + µ + � + µ�

1− µ− � − µ�
(15)

and

[u�]2 ≤
�

1− �
. (16)

The proof is detailed in Appendix B and relies on splitting
the inequality ‖(CZ)−1�(C�Z�)‖2 ≤ �. One term is the
classical inequality on the EFIE operator, ‖(Z)−1(�Z�)‖2 ≤ �,

Fig. 3. Behavior in change percentage of �2(CµZ�)/K (left) and [u� ]2
(right) as a function of (µ, �) for µ, � ∈ [0, 0.5].

Algorithm 2 Bi-Parametric Calderón Preconditioning
Input: �h , problem parameters, a tolerance pair µ, �

(I) Assembly EFIE operator with tolerance � and right-hand
side on primal mesh ← Z�, b
(II) Define barycentric mesh ← �b

h
(III) Assembly mapping and Gram matrices ← R, P, G
(IV) Assembly EFIE operator with tolerance µ on barycen-
tric mesh Zb

µ

Output: Zb
µ, Z�, b, R, P, G

Fig. 4. Dependency tree for the biparametric Calderón preconditioning (see
Algorithm 2). Observe independent processes for preconditioner (left leaf)
and impedance matrix (right leaf) assemblies.

which is independent of the preconditioner and represents the
tolerance of any approximated EFIE linear system. The sec-
ond term relates to the preconditioner tolerance, given by
‖(CZ)−1(�CµZ)‖2 ≤ µ, similar to the � one. By decoupling
these terms, the proposed technique reduces the work on
the barycentric grid, since this is reserved for Cµ. Notice
that: 1) for small parameters µ and �, the condition number
asymptotically behaves as O(1) and the relative error [u�]2
grows as O(�) and 2) for small �, the condition number
behaves as K 1+µ

1−µ (see Fig. 3). The theorem states that the
condition number of the induced system is very resilient to
perturbations.

We present the steps of the biparametric technique in
Algorithm 2 with a dependency graph shown in Fig. 4.
Based on Proposition 1, one can confidently use a classical
H-mat approximation for EFIE and assembly preconditioner
with H2-mat, to reduce error constants coming from the
barycentric grid as much as possible. Moreover, one can
perform a rough approximation of the preconditioner by relax-
ing the fast resolution scheme tolerance and/or simplifying
quadrature rules. This is the approach followed successfully in
Section IV.

FIGURE 3.4. Dependency tree for bi-parametric Calderón preconditioning (cf. Al-
gorithm 2). Observe independent processes for preconditioner (left leaf) and
impedance matrix (right leaf) assemblies.

Input: �h, problem parameters, a tolerance pair µ, ⌫
(I) Assembly EFIE operator with tolerance ⌫ and right-hand side on primal mesh
 Z⌫ ,b
(II) Define barycentric mesh �b

h

(III) Assembly mapping and Gram matrices R,P,G
(IV) Assembly EFIE operator with tolerance µ on barycentric mesh Zb

µ

Output: Zb

µ
,Z⌫ ,b,R,P,G

Algorithm 2: Bi-parametric Calderón Preconditioning

3.5.1. Methodology

We consider an incident plane wave Uinc := [0, 0, eıkx1 ] scattered by objects in vac-

uum. In what follows, we solve the EFIE using H-mat based on ACA (Steinbach, 2007,

Subsection 14.2.3). This has been implemented in the open-source Galerkin boundary el-

ement library Bempp 3.2 (Śmigaj, Arridge, Betcke, Phillips, & Schweiger, 2015), along

with an efficient implementation of Calderón preconditioning (cf. (Scroggs, Betcke, Bur-

man, Śmigaj, & van’t Wout, 2017; Kleanthous, Betcke, Hewett, Scroggs, & Baran, 2018)

for interesting results on "-Calderón). Tests were executed on a 32 core, 4 GB RAM per

core, 64-bit Linux server using Python 2.7.6. Linear systems are solved with restarted

GMRES(m) (Saad & Schultz, 1986; Saad, 2003).

Given an operator discretization Z, we introduce quadrature orders

qZ := [onear, omedium, ofar, osing],
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as well as the rules for partitioning zones as presented in Bempp3. We choose default

settings for zones and recall default quadrature orders (qZ := [4, 3, 2, 6]). Tolerance pa-

rameters µH, ⌫H are those introduced in ACA –they characterize the accuracy of each sub-

matrix within the block cluster tree, e.g., [(Z⌫)i,j]F  ⌫H for all admissible partitions (i, j)

(cf. (Steinbach, 2007; Harbrecht & Peters, 2013)). In practice, the spectral tolerances, ", ⌫,

µ, incorporate H-mat tolerance and quadrature orders. Hence, they will be defined equiv-

alently as numbers or as pairs " := ("H,qZb), µ := (µH,qZb) and ⌫ := (⌫H,qZ). Any

other relevant parameter inducing an approximation error could also be taken in account in

the characterization of spectral tolerances.

For three test geometries, namely the unit sphere, the Fichera cube and a destroyer, we

compare solving the EFIE in the following ways:

• (NONE)⌫ is the unpreconditioned system;

• (DIAG)⌫ stands for Jacobi or diagonal preconditioner;

• (CALD)" is the "-Calderón;

• (CALD)µ,⌫ is the bi-parametric Calderón;

• (NF)µ,⌫ uses NF preconditioning. It consists of (i) choosing a sparse NF pat-

tern with integer distance parameter �NF leading to Znear

�NF
; and, (ii) a sparse LU

decomposition of Znear

�NF
leading to a preconditioner fully described by µNF :=

(�NF).

In all cases but (CALD)", the original impedance matrix Z⌫ is the same. The shorthand

(CALD) will refer to both Calderón-based techniques while (NONE)0 refers to a reference

solution, evaluated in dense mode with ⌫ref := (0, [10, 10, 10, 12]) and solved with a direct

solver, leading to a surface current jh,ref. Gram matrix inverses are solved internally by

sparse LU decomposition and present computational and memory requirements negligible

when compared to those for computing boundary integral operators –same considerations

hold for R,P matrices. For each implementation, we first perform a sensibility analysis

so as to optimize the Z⌫ matrix parameters, i.e. " for (CALD)" (resp. ⌫ in other cases),

3https://bempp.com/quadrature/
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guaranteeing a given solution accuracy. Consequently, given an approximation Z⌫ we can

optimize µ,µNF for (CALD)µ,⌫ and (NF)µ,⌫ . A fully documented Python/Bempp plugin

allowing for a complete reproduction of our results is available online4.

3.5.2. Results for the unit sphere

We start by considering the scattering by the unit sphere with a boundary condition

such that Usc = h(1)
1 (kr)e� for x 2 Dc, with h(1)

1 (·) being the first order spherical Hankel

function, (r, ✓,�) spherical coordinates anchored at the point x0 with Cartesian coordinates

[0.1, 0.1, 0.1], and e� denoting the unit vector parallel to dx/d� (Śmigaj et al., 2015, Section

4.4). We set k = 1 and simulate seven uniform meshes associated to indices l = {0, . . . , 6}

with increasing number of elements per wavelength rl = 10(2l + 1), leading to meshes

whose coarsest has N0 = 175 degrees of freedom (dofs) and densest N6 = 20, 043 dofs.

We observe experimentally that [jh,ref]L2(�) behaves as O(h) = O(N�1/2), and fix ⌫, "

such that the approximation error does not deteriorate the solution accuracy, leading to ⌫l =
�
0.005 ·2�l, [4, 3, 2, 6]

�
and "l =

�
0.004 ·(2.5)�l, [4, 3, 2, 6]

�
. A stronger ACA compression

was needed for " to guarantee the same accuracy for all meshes due to work on baycentric

grid. Indeed, for comparable results "H must be adapted to the (6N) ⇥ (6N) matrix Zb

"
.

Then, we fix parameters for preconditioners to obtain mesh independent sequences for

GMRES(1,000) chosen with a tolerance tol = 10�8, hence µNF,l :=
�
5 + l

�
and µl :=

�
0.1 · 2�l, [1, 1, 1, 2]

�
. Figure 3.5 (a) shows that all solutions converge at the expected rate.

Also, all techniques except for (CALD)
"

led to errors almost equal to (NONE)
⌫

and so

we only plot the latter. Figure 3.5 (b) displays the number of iterations for all methods, with

behaviors of O(h0.77) and O(h0.75) for (NONE)
⌫

and (DIAG)
⌫
, respectively. Notice also

the strong mesh independence of (CALD) and (NF)µ,⌫ . Despite rough quadrature rules

and ACA tolerance for (CALD)
µ,⌫

, the number of iterations remains exactly the same

as for (CALD)
"
, both stabilizing at 8 iterations. Figure 3.5 (c) portrays total assembly

time in seconds, and remark that both (CALD) present an almost linear behavior, the

bi-parametric approach taking half the time the standard version does. (NF)µ,⌫ presents

4https://github.com/pescap/cald
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a similar behavior for coarse meshes but scales badly with N due to matrix inversion.

Similar observations apply to solver time in seconds, presented in Figure 3.5 (d) arguing

for the effectiveness of (CALD)
µ,⌫

in this initial setting.

(a)

(c)

(b)

(d)

FIGURE 3.5. Results for unit sphere with known analytic solution and varying
problem size. (a) Relative error in surface current versus N for increasing size
problems. (b) Number of iterations for the relative error of GMRES to reach tol =
10�8. (c) Total assembly times (in seconds) for all proposed formulations. (d)
Solver times (in seconds).

3.5.3. Results for Fichera cube (reentrant corner)

For k = 10 (f = 477.5 MHz) and r = 10 elements per wavelength, Figure 3.6 shows

primal and induced barycentric meshes graded towards corners with h = [0.0772, 5.67, 12.0]

and N = 16,113 dofs. For the barycentric mesh hb = [0.0460, 7.44, 19.7] and N b = 96,678
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dofs, showing how quality declines as grading and shape-regularity parameters increase by

33% and 64%, respectively. Tolerance for GMRES(m) is set to tol = 10�5 in order to

neglect iterative solver error.

We focus first on approximating the EFIE matrix Z⌫ yielding a vector u⌫ and asso-

ciated current density jh,⌫ . Table 3.1 shows relative errors for matrix approximation and

resulting surface currents taking as reference jref,h as explained before. Memory storage

of operators –consisting in an inherited Scipy LinearOperator Class5– and assembly times

tZ⌫
are given in megabytes and seconds, respectively. We choose ⌫ := (1e-03, [4, 3, 2, 6]),

leading to a relative L2-error of 1.03% with limited memory consumption and assembly

time. Using the parameters aforementioned, Figure 3.7 presents the resulting squared total

electric field density.

FIGURE 3.6. Fichera cube. Primal mesh �h with N = 16,113 dofs (left) and
induced barycentric mesh �b

h
with N

b = 96,678 dofs (right) used for a wavenumber
k = 10 and r = 10 of elements per wavelength. The cube is of side one with bottom
corner located at [0, 0, 0].

A bi-parametric Calderón preconditioner Cµ is chosen by analyzing different values

of µ. An optimal choice of parameters leads to stable number of iterations and minimal
5https://bempp.com/operators/
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TABLE 3.1. Fichera cube: Approximation results for Z⌫

⌫ Relative errors
⌫H qZ [jh,⌫ ]L2(�) [Z⌫ ]F memZ⌫ tZ⌫

dense [6,4,2,12] 7.262e-04 4.328e-05 4057 68.1
dense [4,3,2,6] 1.501e-03 8.947e-05 4057 29.4
1e-06 [10,10,10,12] 8.685e-03 3.776e-05 1302 400
1e-04 [4,3,2,6] 7.500e-03 8.934e-04 944 29.0
1e-03 [4,3,2,6] 1.030e-02 8.942e-04 696 25.0
1e-03 [1,1,1,1] 4.157e-01 1.114e-02 764 13.0
1e-02 [4,3,2,6] 7.084e-02 9.720e-04 473 15.1
1e-01 [4,3,2,6] 9.255e-01 3.925e-03 268 10.6

XY Z

0 3 6

XY Z

0 3 6

XY Z

0 3 6XY Z

0 3 6

XY Z

0 3 6

XY Z

0 3 6

FIGURE 3.7. Fichera cube: Total electric density squared obtained with
(CALD)µ,⌫ for the mesh in Figure 3.6, µ = (1e-01, [1, 1, 1, 2]) and ⌫ = (1e-03,
[4,3,2,6]) with GMRES(200) and tol = 10�5. Field evaluated on planes X = 0.5
and Z = 0 on a structured 200 ⇥ 200 square grid of side 10 by piecewise linear
interpolation. Incident wave travels along X-axis and polarized along Z-axis.

total solver time and memory requirements. For several µ, Table 3.2 presents: number of

iterations of GMRES(200), niter; preconditioner assembly (tCµ
) and solver (tsolve) times;

memory storage and relative L2-error for electric currents. For the impedance matrix,

memZ⌫
= 696 MB and tZ⌫

= 25.0 s. We see that the number of iterations remains sta-

ble despite crude preconditioner approximations. These values would lead to appalling

accuracy if applied to Z⌫ (cf. Table 3.1).
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FIGURE 3.8. Fichera cube: GMRES(200) iterations for the parameters mentioned
in Figure 3.7 along with "=⌫=(1e-03, [4, 3, 2, 6]) and µNF = (5).

TABLE 3.2. Fichera cube: Approximation results for Cµ

µ Performance parameters
µH qC niter memCµ tCµ tsolver [jh,⌫ ]L2(�)

1e-04 [4,3,2,6] 76 7843 345.4 82.9 1.028e-02
1e-03 [4,3,2,6] 76 5783 313.4 66.75 1.030e-02
1e-02 [1,1,1,2] 100 3960 122.7 71.5 1.030e-02
1e-01 [1,1,1,2] 99 2125 79.6 53.8 1.100e-02
2e-01 [1,1,1,2] 118 1679 79.9 61.8 1.089e-02
3e-01 [1,1,1,2] 396 1458 69.1 200.8 1.035e-02

Based on the above, we choose µ = (1e-01, [1, 1, 1, 2]). This allows for a drastic

reduction in memory, assembly time and time per matrix-vector product. Given µ, and

following an analogous process, we build (CALD)" and (NF)µ,⌫ in a bi-parametric fashion

setting " = ⌫ and µNF = (5) respectively. Based on Figure 3.8, both (CALD) converge

with low number of iterations and at similar rates despite of the rough approximation used

in (CALD)µ,⌫ . Also, (NF)µ,⌫ has similar niter as (CALD) with all three techniques surpass-

ing (NONE)⌫ and (DIAG)⌫ .

Table 3.3 presents a performance comparison for the techniques considered. To ob-

serve explicitly the mesh independence of both (CALD) in number of iterations (nunif
iter ), a

uniform discretization using r = 10 without further grading is used leading to a mesh with

hunif := [0.0834, 1.72, 5.11] and 5,667 dofs. The number of iterations for (NONE)⌫ and



66

(DIAG)⌫ depends highly on the grading parameter. Also, for (CALD) the h-independence

property is verified with a slight increase in number of iterations for (CALD)" while no

change is perceived for (CALD)µ,⌫ . Observe the poor performance in terms of memory,

assembly time and time per matrix-vector product6 tmean of (CALD)" with a relative error

growing more than two-fold when compared to the other ones (passing from around 1.1%

to 2.476%). Indeed, in Section 3.5.2 we observed that a more drastic ACA compression

was needed as computational work was carried out on the barycentric grid. In addition,

the accuracy stabilizes at 1.56% for (CALD)" when setting " = (1e-05, [5, 4, 3, 7]) or for

more constrained ACA and quadrature parameters, despite uncompetitive computational

requirements. This underlines the additional error induced by the deterioration of mesh

shape regularity and grading, independently of compression parameter. Opposingly, the bi-

parametric Calderón drastically reduces overall computational time and memory. To finish,

remark that (NF)µ,⌫ and (CALD)µ,⌫ present similar behaviors in time but with a third of

the memory cost for the (NF)µ,⌫ preconditioner.

TABLE 3.3. Fichera cube: Preconditioner performance comparison

Technique n
unif
iter niter memCµ memZ⌫ tCµ tZ⌫ tsolver tmean [jh,⌫ ]L2(�)

(NONE)⌫ 1800 9572 - 696.4 - 31.75 520.9 3.645e-02 1.159e-02
(DIAG)⌫ 1838 3841 0.377 696.4 6.036e-03 31.75 228.8 3.560e-02 9.427e-03
(NF)µ,⌫ 76 95 729.7 696.4 81.40 31.75 42.6 2.543e-01 1.011e-02

(CALD)" 73 77 5783 359.6 111.2 1.440 2.476e-02
(CALD)µ,⌫ 99 99 2125 696.4 79.6 31.75 53.8 4.986e-01 1.100e-02

3.5.4. Results for a complex domain: destroyer

We now test how the preconditioning techniques perform in a complex scenario such as

when solving the wave scattering by a destroyer. For k = 0.19 (f = 9.07 MHz) and r = 10,

we obtain a mesh with h = [3.22, 21.2, 10.7], N = 108,570 dofs, N b = 651,420 dofs and

hb = [1.99, 30.7, 25.2]. We proceed as before and obtain ⌫ = " = (1e-04, [4, 3, 2, 6]),

µNF = (8), and µ = (1e-02, [1, 1, 1, 2]). Figures 3.11 and 3.12 show squared electric

6
tmean is estimated over 100 realizations of matrix-vector products.
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FIGURE 3.9. Fichera cube: CPU times for solving the EFIE using parameters
specified in Figure 3.8. Blue (resp. green) boxes refer to assembly impedance ma-
trix (resp. preconditioner) time while red boxes stand for total solver time.

FIGURE 3.10. Fichera cube: Memory required to store impedance matrix (blue)
and preconditioner (green) for parameters given in Figure 3.8.

surface current density in decibels. Observe the grading along small/elongated features

such as the cannon (Figure 3.12).

Figure 3.13 presents residual iterative solver errors in the l2-norm. We choose GM-

RES(1,500) with tol = 10�5 and a maximum number of iterations of 10,000. Observe that

(NONE)⌫ and (DIAG)⌫ do not converge, illustrating the need for a robust preconditioning

technique. Concerning the other methods, similar remarks to those given for the Fichera
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FIGURE 3.11. Destroyer: Top view of the squared current density |jh,⌫ |2 obtained
with (CALD)µ,⌫ for k = 0.19, r = 10, N = 108,570, µ = (1e-02, [1, 1, 1, 2]) and
⌫ = (1e-04, [4, 3, 2, 6]). Solution obtained with GMRES(1,500) with tol = 10�5.
Evaluation is performed by piecewise linear interpolation on primal mesh nodes.
Incident wave travels along X-axis and is polarized along the Z-axis.

FIGURE 3.12. Destroyer: Squared current density of solution introduced in Fig-
ure 3.11. View centered on cannon, stressing a strong mesh grading.

FIGURE 3.13. Destroyer: GMRES(1,500) iterations for parameters used in Fig-
ure 3.11 along with " = ⌫ and µNF = (8).
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TABLE 3.4. Destroyer: Preconditioner performance comparison

Technique n
unif
iter niter memCµ memZ⌫ tCµ tZ⌫ tsolver tmean

(NONE)⌫ >10000 >10000 - 8107 - 400.5 >10108 0.8093
(DIAG)⌫ >10000 >10000 2.544 8107 5.049e-02 400.5 >10391 0.8249
(NF)µ,⌫ 485 1365 14497 8107 8698.7 400.5 9094.6 5.320

(CALD)" 624 610 63239 4231 11649 18.64
(CALD)µ,⌫ 673 703 34963 8107 1503 400.5 5664.0 8.003

cube hold except that the optimal parameter for (NF)µ,⌫ led to a higher number of itera-

tions than for (CALD), attributable to the slow and expensive inversion step, limiting the

acceptable range of distance parameters for the NF pattern.

Table 3.4 presents results for a uniform discretization leading to a mesh 100,665 dofs

with hunif := [3.30, 4.48, 10.72]. Notice that when comparing the initial mesh to this uni-

form one, the grading parameter is multiplied by 4.73. When considering number of itera-

tions, we find mesh-grading independence for (CALD), while for (NF)µ,⌫ , we observe an

increase by a factor of 2.81 and that, at iteration 485, the residual is 186.2 times larger for

the graded mesh case than in the uniform one. In the case of (NONE)⌫ (resp. (DIAG)⌫),

the final residual in the graded mesh is 5.08 times larger (resp. 4.86) than for the uniform

one.

Figure 3.14 shows: (i) poor performance of (CALD)" and (NF)µ,⌫ in comparison to

(CALD)µ,⌫ in total resolution time by a factor of 2.09 and 2.40 respectively; and, (ii) the

significant increase in preconditioner assembly time for (NF)µ,⌫ when compared to re-

sults obtained in Section 3.5.3, due to the inherently sequential processing of LU factor-

ization. Finally, Figure 3.15 shows that (CALD)" requires 1.47 times more memory than

(CALD)µ,⌫ while (NF)µ,⌫ is still less expensive in terms of memory (15.0GB vs. 35.0GB

for preconditioner) and time per matrix-vector product (5.320s vs. 8.003s). This is again

due to matrix-vector products on the barycentric mesh.

3.6. Conclusions

The presented bi-parametric splitting strategy provides an efficient and robust frame-

work for preconditioning purposes. Its application to Calderón preconditioning leads to
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FIGURE 3.14. Destroyer: CPU times required for solving the EFIE using parame-
ters given in Figure 3.11.

FIGURE 3.15. Destroyer: Memory required to store operators using parameters
provided in Figure 3.11.

remarkable improvements in memory and computation times over the classical approach

while retaining its stability properties. Several numerical tests attest to this with compara-

ble and even better results than NF-preconditioning. Further work includes application to

any type of operator-based preconditioning techniques. Also, given the stability displayed

when performing rough preconditioner approximations, quadrature rules on dual meshes

directly or partially, could discard the problematic use of barycentric meshes altogether.
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3.7. Proof of theorems

3.7.1. "-Calderón

By hypothesis

[C"Z"]X  kI� (CZ)�1C"Z"kX  ". (3.17)

Then,

kC"Z"kX  kCZ�C"Z"kX + kCZk
X
 (1 + ")kCZk

X
.

Besides,

k(C"Z")
�1k

X
= k(CZ+ �(C"Z"))

�1k
X

=
���
�
CZ

⇥
I+ (CZ)�1�(C"Z")

⇤��1
���
X


���
�
I+ (CZ)�1�(C"Z")

��1
���
X

��(CZ)�1
��
X
.

By Neumann series and application of Theorem 3.1 to C"Z", we get

S(C"Z")  K
1 + "

1� " . (3.18)

As per solution accuracy, we have �u" = �(Z+ �Z")�1�Z"u. Then,

[u"]X 
��(CZ+ �(C"Z"))

�1�(C"Z")
��
X

=
���
⇥
CZ

�
I+ (CZ)�1�(C"Z")

�⇤�1
�(C"Z")

���
X

=
���
�
I+ (CZ)�1�(C"Z")

��1
(CZ)�1�(C"Z")

���
X

 "

1� " .
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3.7.2. Bi-parametric Calderón

We notice that:

k(CZ)�1�(CµZ⌫)kX

= k(CZ)�1[C(�Z⌫) + (�Cµ)Z+ (�Cµ)(�Z⌫)]kX

 k(CZ)�1C(�Z⌫)kX + k(CZ)�1(�Cµ)ZkX

+ k(CZ)�1(�Cµ)(�Z⌫)kX

= kZ�1(�Z⌫)kX + kZ�1C�1(�Cµ)ZkX

+ k(CZ)�1(�CµZ)(Z
�1�Z⌫)kX

 (µ+ ⌫ + µ⌫).

Then, the proof for the condition number is derived if µ + ⌫ + µ⌫ < 1. Concerning the

accuracy, this time we have:

�u⌫ = �(Z+ �Z⌫)
�1�Z⌫u, (3.19)

which gives

[u⌫ ]X  k(Z+ �Z⌫)
�1�Z⌫kX

= k(I+ (Z)�1�Z⌫)
�1Z�1�Z⌫kX 

⌫

1� ⌫ .



4. HELMHOLTZ SCATTERING BY RANDOM DOMAINS: FIRST-ORDER

SPARSE BOUNDARY ELEMENT APPROXIMATION

This chapter was published in SIAM Journal on Scientific Computing in September,

2020

4.1. Introduction

Modeling wave scattering is key in numerous fields ranging from aeronautics to bio-

engineering or astrophysics. As applications become more complex, the ability to effi-

ciently quantify the effects of random perturbations originated by actual manufacturing or

operation conditions becomes ever more relevant for robust design. Under this setting, we

consider standard time-harmonic wave scattering models with only aleatoric uncertainty,

i.e. randomness in the shapes. More specifically, we aim at providing an accurate and

fast uncertainty quantification (UQ) method for computing statistical moments of wave

scattering solutions assuming small random perturbations or deviations from a nominal

deterministic shape.

The model problems here considered involve solving Helmholtz equations in unbounded

domains with constant coefficients supplemented by one or more different boundary con-

ditions (BCs), namely, Dirichlet, Neumann, impedance and transmission ones. Under rea-

sonable decay conditions at infinity, deterministic versions of such problems can be shown

to be uniquely solvable even for Lipschitz scatterers (Nédélec, 2001; Sauter & Schwab,

2010). Considering Lipschitz parametrized transformations, the small perturbation as-

sumption leads to diffeomorphisms between nominal and perturbed domains. This, in turn,

gives rise to suitable shape Taylor expansions for the scattered fields, for which the corre-

sponding shape derivatives (SDs) must be computed. Restricting ourselves to sufficiently

smoother nominal domain, these SDs are solutions of homogeneous boundary value prob-

lems (BVPs) with boundary data depending on the normal component of the velocity field,

allowed by the Hadamard structure theorem (see Theorem 2.27 in (Sokolowski & Zolesio,

1992)).
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We will then approximate fields in the perturbed domains by quantities defined solely

on the nominal shape. Indeed, for the cases considered –constant coefficients and un-

bounded domains–, one can conveniently reduce the volume problems associated to the

scattered fields as well as to their SDs, onto the scatterers’ boundaries by means of the

integral representation formula (Sauter & Schwab, 2010). This involves solving boundary

integral equations (BIEs) shown to be well posed.

The above described first order approximation (FOA) can be extended from the de-

terministic case to now random (but small) perturbations (Chernov, Pham, & Tran, 2015),

giving birth to equations with deterministic operators with stochastic right-hand sides. As-

suming separability of the underlying functional spaces as well as Bochner integrability,

application of statistical moments on the linearized equation yields tensorized versions

of the operator equations, thus parting from the multiple solves required by Monte Carlo

(MC) methods. Yet, direct numerical approximation of these tensor systems gives rise

to the infamous curse of dimensionality. This can be, in turn, remedied by applying the

general sparse tensor approximation theory originally developed by von Petersdorff and

Schwab (von Petersdorff & Schwab, 2006), and which has multiple applications ranging

from diffraction by gratings (Silva-Oelker, Aylwin, Jerez-Hanckes, & Fay, 2018) to neutron

diffusion (Fuenzalida, Jerez-Hanckes, & McClarren, 2019) problems. In our case, numer-

ically, we will employ the Galerkin boundary element method (BEM) to solve the arising

first kind BIEs. As both nominal solutions and SDs will be derived over the same surface,

the FOA-BEM allows for substantial computational savings by employing the same matrix

computations.

Depending on the regularity of solutions, statistical moments resulting from the FOA-

BEM can be computed by sparse tensor approximations robustly. Harbrecht, Schneider

and Schwab (Harbrecht, Schneider, & Schwab, 2008) studied the interior Laplace problem

with Dirichlet BC whereas the Laplace transmission problem was analyzed in (Chernov et

al., 2015). Jerez-Hanckes and Schwab (Jerez-Hanckes & Schwab, 2016) provide the nu-

merical analysis of the method in the case of Maxwell scattering. Computationally, further

acceleration can be achieved by employing the combination technique (CT), introduced by
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Griebel and co-workers (Griebel et al., 1990; Harbrecht, Peters, & Siebenmorgen, 2013).

Specifically, the method allows for simple and parallel implementation, which we will fur-

ther detail in the chapter. Throughout, we apply the FOA-BEM-CT method –referred to as

first-order sparse BEM (FOSB) method to alleviate notations– to the Helmholtz problem.

To our knowledge, the case of the FOSB method for the Helmholtz-UQ remains untackled.

The chapter is structured in the following way. First, we introduce the mathematical

tools used throughout in Section 4.2. Generic scattering problems formulations as well as

the description of the BVPs solved by the SDs are given in Section 4.3. We then restrict

ourselves to the associated BIEs in Section 4.4 and analyze their Galerkin solutions in Sec-

tion 4.5. Implementation aspects of the FOSB method are given in Section 4.6 whereas

numerical results are provided in Section 4.7. Finally, further research avenues are high-

lighted in Section 4.8.

4.2. Mathematical tools

We start by setting basic definitions as well as the functional space framework adopted

for our analysis. As a reference, Table 4.3 beneath Section 4.5 provides a non-exhaustive

list of the acronyms used throughout this chapter.

4.2.1. General notation

Throughout, vectors and matrices are expressed using bold symbols, (a · b) denotes

the classical Euclidean inner product, k·k2 :=
p
a · a refers to the Euclidean norm, C is a

generic positive constant and o, O are respectively the usual little-o and big-O notations.

Also, we set ı2 = �1, S1 and S2 are the unit circle and sphere, respectively.

Let D ✓ Rd, with d = 2, 3, be an open set. For a natural number k, we set Nk :=

{k, k + 1, . . .}. For p 2 N0 = {0, 1, . . .}, we denote by Cp(D) the space of p-times dif-

ferentiable functions over D, by Cp,↵(D) the space of Hölder continuous functions with

exponent ↵, where 0 < ↵  1. Also, let Lp(D) be the standard class of functions with

bounded Lp-norm over D. For a Banach space X and an open set T ⇢ R, we introduce
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the usual Bochner space Cp(T ;X). Given s 2 R, q � 0, p 2 [1,1], we refer to (Sauter &

Schwab, 2010, Chapter 2) for the definitions of function spaces W s,p(D), Hs(D), Hq

loc(D)

and Hq

loc(�, D). Norms are denoted by k·k, with subscripts indicating the associated func-

tional space. Similarly, relative norms are denoted by brackets e.g., [a� b] = ka� bk/kbk

for a an approximation of a reference b.

For k 2 N1, and xi 2 Rd, i = 1, · · · , k, we set x := (x1, · · · ,xk). Besides, k-fold

tensors quantities are denoted with parenthesized subscripts, e.g., f (k) := f ⌦ · · ·⌦f . This

notation applies indifferently to functions, domains and function spaces. The diagonal

terms of a k-fold tensor ⌃k at x are denoted by diag⌃k(x) := ⌃k|x1=···=xk
. Following

(Jerez-Hanckes & Schwab, 2016, Section 4.1), for X, Y separable Hilbert spaces, we set

B 2 L(X, Y ) the space of linear continuous mapping from X to Y and define the unique

continuous tensor product operator:

B(k) :=B⌦ · · ·⌦ B| {z }
k-times

2 L(X(k), Y (k)).

4.2.2. Traces and surface operators

Let D ⇢ Rd with d = 2, 3 be open bounded with Lipschitz boundary � := @D and

complement exterior domain Dc := Rd\D. Equivalently, we will write D0 ⌘ Dc and

D1 ⌘ D to refer to exterior and interior domains, respectively. Accordingly, when defining

scalar fields in Dc [ D, we use notation U = (U0,U1). For i = 0, 1, we introduce the

continuous and surjective trace mappings (Sauter & Schwab, 2010, Sections 2.6 and 2.7):

(Dirichlet trace) �0 : H1
loc(D

i)! H
1
2 (�),

(Neumann trace) �1 : Hloc(�, Di)! H�
1
2 (�).

For a suitable scalar field Ui, i = 0, 1, we refer to a pair of traces ⇠i as Cauchy data if

⇠i ⌘

0

@�i
�i

1

A :=

0

@�0Ui

�1Ui

1

A . (4.1)



77

Likewise, we introduce the second-order trace operator �2Ui := (r2Ui|�)n · n = @
2Ui

@n2

��
�

along with the tangential gradientr� and tangential divergence div� (Nédélec, 2001, Sec-

tion 2.5.6).

4.2.3. Random domains

Throughout, we consider an open bounded Lipschitz –nominal– domain D ⇢ Rd,

d = 2, 3, of class C2,1 (McLean, 2000, Definition 3.28), with boundary � := @D and ex-

terior unit normal field n 2 W 2,1(�) pointing by convention towards the exterior domain.

Those domains are commonly referred to as domains with Lyapunov boundary. The mean

curvature H := divn belongs to W 1,1(�).

Let (⌦,A,P) be a suitable probability space and X a separable Hilbert space. For

an index k 2 N1 and x := (x1, · · · ,xk), and for U : ⌦ ! X a random field in the

Bochner space Lk(⌦,P;X) (Jerez-Hanckes & Schwab, 2016, Section 4.1), we introduce

the statistical moments:

Mk[U(!)] :=

Z

⌦

U(x1,!) · · ·U(xk,!)dP(!), (4.2)

Vk[U(!)] =: diagMk[U(!)]� E[U(!)]k, (4.3)

with M1 ⌘ E being the expectation and V2 the pseudo-variance (Silva-Oelker et al., 2018).

In a nutshell, the aim of the present chapter is as follows: given a random domain with

realization D(!) specified later on, consider U(x,!) defined over D(!) as the solution of

a Helmholtz scattering problem (see Section 4.3). We seek at quantifying:

E[U(!)] and Mk[U(!)� E[U(!)]] for k 2 N2. (4.4)

REMARK 4.1 (Complex statistical moments). Statistical moments for complex random

fields induce several quantities of interest. As introduced in (Eriksson, Ollila, & Koivunen,

2010, Section V-A), for k 2 N2 and U 2 Lk(⌦,P;X), the kth statistical moments are

defined as

↵p;q ⌘ ↵p;q[U(!)] := E[UpUq

], for p, q 2 N0, such that p+ q = k. (4.5)
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Notice that symmetric moments are redundant, i.e. ↵p;q = ↵q;p. Also, for k = 2, complex

moments are the pseudo-covariance ↵2;0 and covariance ↵1;1 = E[UU]. In this chapter, we

focus on

Mk[U] = ↵k;0 = ↵0;k.

However, some applications involve other choices for p, q. Still, our analysis applies ver-

batim to ↵p;k up to conjugation of terms in the tensor deterministic formulation in Sec-

tion 4.4.2 (see, for instance, (Silva-Oelker et al., 2018) for k = 2).

We consider a centered random velocity field field v 2 Lk(⌦,P;W 2,1(�;Rd)), i.e. such

that E[v(·,!)] = 0. Also, assume kv(·,!)kW 2,1(�) . 1 uniformly for all ! 2 ⌦ and intro-

duce a family of random surfaces {�t}t via the mapping

⌦ 3 ! 7! �t(!) = {x+ tv(x,!), x 2 �} =: Tt(�)(!). (4.6)

Following (Jerez-Hanckes & Schwab, 2016), we deduce that there exists " > 0 such

that, for each |t| < " and P-a.s. !, the collection {�t(!)} generates bi-Lipschitz dif-

feomorphisms and induces connected Lipschitz domain Dt(!) by continuity of v(!) P-

a.s. on the compact surface �. Besides, we define Dt(!) corresponding to either Dc

t
(!) or

Dc

t
(!)[Dt(!) according to the problem considered. Finally, we notice that (v(x,!) ·n) 2

W 2,1(�).

4.2.4. First-order approximations

With the domain transformation and velocity field defined in Section 4.2.3, we are

ready to introduce the concept of random SD.

Definition 4.1 (Random SD (Harbrecht et al., 2008)). For ! 2 ⌦, consider a random

shape dependent scalar field Ut(!) defined in Dt(!) for |t| < " and denote U ⌘ U0 for

the nominal domain solution. Ut(!) is said to admit a SD U0(!) in D along v(!) if the

following (pointwise) limit exists

U0(!,x) := lim
t!0

Ut(!,x)� U(x)

t
, x 2 Dt(!) \D. (4.7)



79

Assuming SD in Definition 4.1 belongs to H1
loc(D) and a Lipschitz condition, then the

following Taylor expansion holds for |t| < ":

Ut(!) = U + tU0(!) +O(t2) in H1(Q(!)), Q(!) b D \Dt(!). (4.8)

Finally, following (Dölz & Harbrecht, 2018, Section 2.1), we introduce K such that

K b D
\⌦
t

, D\⌦
t

:=
\

!2⌦

Dt(!). (4.9)

Consequently, according to (4.8) and using the embedding arguments of (Dölz & Har-

brecht, 2018, Lemma 5.9) for the variance, the quantities of interest can be accurately

approximated for k � 2 by

E[Ut(!)] = U +O(t2), in H1(K),

Mk[Ut(!)� U] = tkMk[U0(!)] +O(tk+1), in H1(K)(k), and

Vk[Ut(!)] = tk diagMk[U0(!)] +O(tk+1), in L2(K).

(4.10)

Hence, for a random class of parametrized perturbations (see (4.6)), the statistical moments

(refer to (4.4)) can be approximated accurately through U, Mk[U0(!)], defined in D and

D
(k): the FOA amounts to computing U and Mk[U0(!)]. Before proceeding, we decide to

sum up the main points of the FOSB method in Figure 4.1. It describes the path followed

throughout and, for each step, details the related section and the quantity of interest consid-

ered. The technique is sequential from top to bottom, and between each step we use arrows

specify whether an approximation is done or an equivalent formulation is used. Notice that

the two “equivalent” steps enclose the operations realized on the boundary of the nominal

scatterer.

4.3. Deterministic Helmholtz scattering problems

Let us now describe the Helmholtz problems considered in two and three dimensions.

We characterize physical domains by a positive bounded wave speed c and a material den-

sity constant µ –representing, for instance, the permeability in electromagnetics. For time-

harmonic excitations of angular frequency ! > 0, set the wavenumber  := !/c and define
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Helmholtz-UQ

Step

Moments
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a(E[U(�)], Mk[U(�)� E[U(�)]])

FOA (U,Mk[U0(�)])
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(⇠, ⌃k)

CT (⇠L, ⌃̂k

L
)

Reconstuction (UL, \Mk[U0]
L
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⇡

�

⇡

�

Fig. 1. Sequential description of the FOSB. For each step, we detail the related section and
unknowns and make precise whether it consists of an approximation (blue) or an equivalent (green)
one. Color is available online only.

Finally, following [12, section 2.1], we introduce K such that

(9) K b D
��
t

, D
��
t

:=
\

�2�

Dt(�).

Consequently, according to (8) and using the embedding arguments of [12, Lemma
5.9] for the variance, the quantities of interest can be accurately approximated for
k � 2 by

(10)

E[Ut(�)] = U +O(t2) in H
1(K),

Mk[Ut(�)�U] = t
kMk[U0(�)] +O(tk+1) in H

1(K)(k),

Vk[Ut(�)] = t
k diagMk[U0(�)] +O(tk+1) in L

2(K).

Hence, for a random class of parametrized perturbations (see (6)), the statistical
moments (see (4)) can be approximated accurately through U, Mk[U0(�)], defined in
D and D

(k): the FOA amounts to computing U and Mk[U0(�)]. Before proceeding,
we sum up the main points of the FOSB method in Figure 1. It describes the path
followed throughout and, for each step, details the related section and the quantity
of interest considered. The technique is sequential from top to bottom, and between
each step we use arrows to specify whether an approximation is done or an equivalent
formulation is used. Notice that the two “equivalent” steps enclose the operations
realized on the boundary of the nominal scatterer.

3. Deterministic Helmholtz scattering problems. Let us now describe the
Helmholtz problems considered in two and three dimensions. We characterize physical
domains by a positive bounded wave speed c and a material density constant µ,
representing, for instance, the permeability in electromagnetics. For time-harmonic
excitations of angular frequency � > 0, set the wavenumber  := �/c and define the
Helmholtz operator:

L : U 7! ��U� 
2U.
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FIGURE 4.1. Sequential description of the FOSB. For each step, we detail the
related section and unknwowns and precise whether it consists in an approximation
(blue) or an equivalent (green) one.

the Helmholtz operator:

L : U 7! ��U� 2U.

The Sommerfeld radiation condition (SRC) (Nédélec, 2001, Section 2.2) for U defined over

Dc and  reads

SRC(U,) ()
���
@

@r
U� ıU

��� = o
⇣
r

1�d

2

⌘
for r := kxk2 !1, (4.11)

for d = 2, 3. This condition will guarantee uniqueness of solutions Section 4.3.1 and the

definition of F 2 C1(Sd�1) the far-field (Chandler-Wilde et al., 2012, Lemma 2.5) such

that ���U� exp(ır)r
1�d

2 F(x/r)
��� = O

⇣
r�

1+d

2

⌘
for r := kxk2 !1. (4.12)

REMARK 4.2 (Far-field Taylor expansions). As the far-field does not depend on domain

transformations, the Taylor expansion for Ut,U and U0 in (4.10) transfers straightly to Ft, F

and F0, respectively.
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4.3.1. Problem Formulations

We introduce the following BVPs corresponding to Dirichlet, Neumann, impedance

and transmission BCs. By linearity, we can write the total wave as a sum of scattered and

incident ones, i.e. U = Usc + Uinc. Notation (P�) with bold � will refer to any of the

problems considered. For the sake of clarity, we summarize these notations and illustrate

domain perturbations in Figure 4.2.

PROBLEM 1 (P�) (� = 0, 1, 2). Given  > 0 and Uinc 2 H1
loc(D

c) with LUinc = 0 in

Dc, we seek U 2 H1
loc(D

c) such that
8
>>>>>>><

>>>>>>>:

�U + 2U = 0 in Dc,

��U = 0 on �, if � 2 {0, 1}, or

�1U + ı⌘�0U = 0, ⌘ > 0 on �, if � = 2,

SRC(Usc,).

PROBLEM 2 (P3). Let i, µi > 0, i = 0, 1, with either 0 6= 1 or µ0 6= µ1, and

Uinc 2 H1
loc(D

c) with L0Uinc = 0 in Dc. We seek (U0,U1) 2 H1
loc(D

c) [H1(D) such that
8
>>>>>>><

>>>>>>>:

�Ui + 2
i
Ui = 0 in Di, for i = 0, 1,

[�0U]� = 0 on �,

[µ�1�1U]� = 0 on �,

SRC(Usc,0).

Exterior problems (P�), � = 0, 1, represent the sound-soft and -hard acoustic wave

scattering while (P2) and (P3) describe the exterior impedance and transmission problems,

respectively. Notice that (P�) is known to be well posed (McLean, 2000, Chapter 4).

4.3.2. Shape derivatives for Helmholtz scattering problems

We summarize the BVPs, denoted by (SP�), satisfied by the SD for each BC, as de-

tailed in (Hiptmair & Li, 2017, Table 5.6).
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� Problem D BCs

0 Sound-soft D
c

�0U = 0

1 Sound-hard D
c

�1U = 0

2 Impedance D
c

�1U + ı⌘�0U = 0

3 Transmission D
c [D [�0U]� = [µ�1

�1U]� = 0

U"#$

Γ

&
'( ')(	

'				')	 Γ+ 	

FIGURE 4.2. Overview of (P�) (left) and representation of domain transformations
(right).

PROBLEM 3 (SP�) (� = 0, 1, 2). We seek U0 2 H1
loc(D

c) solution of
8
>>>>>>><

>>>>>>>:

�U0 + 2U0 = 0 in Dc,

��U0 = g� on �, if � 2 {0, 1}, or

�1U0 + ı⌘�0U0 = g2, ⌘ > 0 on �, if � = 2,

SRC(U0,),

wherein, for U being the respective solution of (P�), we have

g0 := ��1U(v · n),

g1 := div� ((v · n)r�U) + 2�0U(v · n),

g2 := div� ((v · n)r�U) + 2�0U(v · n) + ı⌘(v · n)(��1U� H�0U).
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PROBLEM 4 (SP3). We seek U0 = (U00,U01) 2 H1
loc(D

c)⇥H1(D) solution of
8
>>>>>>><

>>>>>>>:

�U0i + 2
i
U0i = 0 in Di, for i = 0, 1,

[�0U0]� = h0 on �,

[ 1
µ
�1U0]� = h1 on �,

SRC(U00,0),

with boundary data built using U solution of (P3), as follows

h0 := �[�1U]�(v · n),

h1 :=
h 1
µ

i

�
div� ((v · n)r�U) + [2]��0U(v · n).

In the proposed setting, (SP�) is known to be well posed (cf. (Hiptmair & Li, 2017,

Section 3.2)).

Having described the deterministic problems, we now consider the random domains

described Section 4.2.3 and analyze, for each realization Ut(!), solutions of (P�). The

prior choice of random domains ensures wellposedness of the perturbed solution Ut(!) and

of its shape derivative U0(!) for each realization. Therefore, we apply the FOA framework

of Section 4.2.4 to Ut(!), allowing to obtain an accurate approximation of the statistical

moments of Ut(!) through:

U and Mk[U0(!)],

defined over D and D(k), respectively –check step 2 in Figure 4.1. In the same spirit as in

(Dölz & Harbrecht, 2018), the domain and perturbations considered allow for a bounded

shape Hessian in H1
loc(D), hence the Lipschitz condition for the SD. As these domains are

unbounded, we reduce the problem to the boundary � via BIEs. Notice that the randomness

in U0(!) appears only through (v · n)(!), which appears solely in BCs.
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4.4. Boundary Reduction

In this section, we explain how to reduce the Helm-holtz boundary value problems

described before as well as their SDs onto the boundary via the integral representation

formula. Then, we consider the small random domain counterparts and show how the SDs

are equivalently reduced to BIEs comprising deterministic operators with stochastic right-

hand side. As mentioned initially, this will fit the general framework described in (von

Petersdorff & Schwab, 2006) to compute statistical moments.

4.4.1. Boundary integral operators in scattering theory

First, we define the duality product between ⇠1 = (�1, �1) and ⇠2 = (�2, �2) both in

the Cartesian product space H1/2(�)⇥H�1/2(�):

h⇠1, ⇠2i� := h�1, �1i� + h�2, �2i�.

Recall the fundamental solution G(x,y) of the Helmholtz equation for  > 0:

G(x,y) :=

8
><

>:

ı

4
H(1)

0 (kx� yk2) for d = 2,

ı

4⇡

exp(ıkx� yk2)
kx� yk2

for d = 3,
(4.13)

where H(1)
0 is the zeroth-order Hankel function of the first kind. With this, we introduce

the single- and double-layer potentials for � 2 L1(�):

SL(�)(x) :=

Z

�

G(x� y)�(y)d�(y) x 2 Rd\�,

DL(�)(x) :=

Z

�

@

@ny
G(x� y)�(y)d�(y) x 2 Rd\�.

With this at hand, we introduce the block Green’s potential:

R := (DL,�SL),
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and for the sake of convenience, we identify implicitly the Cauchy data (4.1) with the

domain index for � = 2, i.e.:

R(⇠)(x) ⌘ Ri
(⇠i)(x), if x 2 Di, i = 0, 1. (4.14)

The identity operator Id and five continuous boundary integral operators in Lipschitz do-

mains for  > 0, ⌘ > 0 and |s|  1 (Chandler-Wilde et al., 2012, Theorems 2.25 and

2.26):

V : Hs�1/2(�)! Hs+1/2(�), V := {{�0}}� � SL,

K : Hs+1/2(�)! Hs+1/2(�), K := {{�0}}� � DL,

K0


: Hs�1/2(�)! Hs�1/2(�), K0


:= {{�1}}� � SL,

W : Hs+1/2(�)! Hs�1/2(�), W := �{{�1}}� � DL,

B0

,⌘
: Hs+1/2(�)! Hs�1/2(�), B0

,⌘
:= W � ı⌘

�
1
2 Id+ K0



�
.

(4.15)

Also, we introduce the following operator:

A :=

2

4
�K V

W K0



3

5 ,

along with

bA,µ :=

2

4
1 0

0 1/µ

3

5

2

4
�K V

W K0



3

5

2

4
1 0

0 µ

3

5 =

2

4
�K µV

1/µW K0



3

5 .

Next, we consider a radiating solution U, i.e. U = (U0,U1) such that LUi = 0, i =

0, 1, and U0 with Sommerfeld radiation conditions (Sauter & Schwab, 2010, Section 3.6).

Therefore, the following representation formula holds:

U = DL([�0U]�)� SL([�1U]�) = R([⇠]�) in D0 [D1. (4.16)
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Its Cauchy data ⇠i = (�0Ui, �1Ui) =: (�i, �i) 2 H1/2(�)⇥H�1/2(�) satisfy

(Interior) ⇠1 =
�
1
2 Id+ A

�
⇠1 =: P1


⇠1,

(Exterior) ⇠0 =
�
1
2 Id� A

�
⇠0 =: P0


⇠0 = (Id� P1


)⇠0.

(4.17)

Notice that the above identities are also valid for bA0,µ and bA1,µ. Operators P0

,P1


are

dubbed exterior and interior Calderón projectors. They share the interesting property that

for i = 0, 1, (Pi


)2 = I, allowing for Calderón-based operator preconditioning (see Sec-

tion 4.6.2).

Lastly, we introduce SDir(D) ⌘ S0(D) and SNeum(D) ⌘ S1(D) the countable set ac-

cumulating only at infinity of strictly positive eigenvalues of Helmholtz problem with ho-

mogeneous Dirichlet and Neumann boundary conditions (Sauter & Schwab, 2010, Section

3.9.2).

4.4.2. Tensor BIEs

We now show that the FOA analysis for (P�) can be reduced to (B�) defined further

in Generic Problem 3, consisting in two deterministic first kind BIEs including a tensor

one (refer to Figure 4.1). To begin with, we consider both deterministic problems (P�) and

(SP�), and show that they can be reduced to two wellposed BIEs of the form:

GENERIC PROBLEM 1 (Deterministic BIEs). Provided Z 2 L(X, Y ) and B 2 L(Y, Y )

for separable Hilbert spaces X, Y , f 2 Y and g 2 Y , we seek ⇠, ⇠0 2 X such that:
8
<

:
Z⇠ = f on �,

Z⇠0 = Bg on �.
(4.18)

Equivalence between problems couple ((P�),(SP�)) and Generic Problem 1 is derived

through the following steps:

(i) Using Section 4.4.1, we perform the boundary reduction for (P�) and (SP�),

leading to Generic Problem 1 (see Section 4.9);
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(ii) We prove that Generic Problem 1 is well-posed in adapted Sobolev spaces using

Fredholm theory. Notice that we remove the spurious eigenvalues to guarantee

injective boundary integral operators.

Step (ii) is extensively surveyed for � = 0, 1, 2 in (Chandler-Wilde & Monk, 2008); see

Table 2.1 and Theorem 2.25 for � = 0, 1, and refer to Section 2.6 for � = 2. The transmis-

sion problem (� = 2) is analyzed in (Claeys, Hiptmair, & Jerez-Hanckes, 2012, Section

3).

After reducing the deterministic problem to the boundary, we retake Section 4.2.4 and

consider the random counterparts of (P�) and (SP�), leading to U and U0(!), and perform

correspondingly the boundary reduction. The generic random BIEs for the SD read:

GENERIC PROBLEM 2 (Random BIEs). Provided Z 2 L(X, Y ) and B 2 L(Y, Y ) for

separable Hilbert spaces X, Y , g 2 Lk(⌦,P;Y ), for k 2 N2, we seek ⇠0 2 Lk(⌦,P;X)

such that

Z⇠ = Bg on �. (4.19)

Applying Theorem 6.1 in (von Petersdorff & Schwab, 2006), we deduce that the tensor

operator equation admits a unique solution ⇠0 2 Lk(⌦,P;Y ) and that Mk[⇠0(!)] 2 Y .

Therefore, we arrive at a tensor BIE with stochastic right-hand sides, providing the final

form of the wellposed deterministic tensor operator BIEs (B�):

GENERIC PROBLEM 3 (B�) (Formulation for the BIEs). Given Z 2 L(X, Y ), B 2

L(Y, Y ) for separable Hilbert spaces X, Y , k 2 N2, f 2 Y and Mk[g] 2 Y (k), seek

⇠ 2 X,⌃k 2 X(k) such that:
8
<

:
Z⇠ = f on �,

Z(k)⌃k = B(k)Mk[g] on �(k).
(4.20)

We now detail the resulting sets of BIEs for each problem (B�) as well as for their

statistical moments and their related potential reconstruction. As in (von Petersdorff &
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Schwab, 2006, Section 6.2), notice that the statistical moments and the layer potentials

commute by Fubini’s theorem.

PROBLEM 5 (B0). If 2 /2 SDir(D), �0Uinc 2 H1/2(�) and Mk[g0] 2 H1/2(�)(k),

k 2 N2, we seek �1U 2 H�1/2(�) and Mk[�1U0] 2 H�1/2(�)(k) such that:
8
<

:
V�1U = �0Uinc on �,

V(k)
 Mk[�1U0] =

�
�1

2 Id+ K

�(k) Mk[g0] on �(k).
(4.21)

Then,

U = Uinc � SL�1U in Dc,

Mk[U0] = Mk[�SL�1U0 + DLg0] in (Dc)(k)

= R(k)

Mk[(g0, �1U0)] in (Dc)(k).

PROBLEM 6 (B1). If 2 /2 SNeum(D), �1Uinc 2 H�1/2(�) and Mk[g1] 2 H�1/2(�)(k),

k 2 N2, we seek �0U 2 H1/2(�) and Mk[�0U0] 2 H1/2(�)(k) such that:
8
<

:
W�0U = �1Uinc on �,

W(k)
 Mk[�0U0] =

�
�
�
1
2 Id+ K0



��(k) Mk[g1] on �(k).
(4.22)

Also,

U = Uinc + DL�0U in Dc,

Mk[U0] = Mk[�SL�1U0 + DLg0] in (Dc)(k)

= R(k)

Mk[(�0U0, g1)] in (Dc)(k).

PROBLEM 7 (B2). If 2 /2 SNeum(D), �1Uinc 2 H�1/2(�) and Mk[g2] 2 H�1/2(�)(k),

k 2 N2, we seek �0U 2 H1/2(�) and Mk[�0U0] 2 H1/2(�)(k) such that:
8
<

:
B0

,⌘
�0U = �1Uinc on �,

(B0

,⌘
)(k)Mk[�0U0] =

�
1
2 Id+ K0



�(k) Mk[g2] on �(k).
(4.23)
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� Problem X
s

Y
s Z C

0 Soft H
�1/2+s(�) H

1/2+s(�) V W

1 Hard H
1/2+s(�) H

�1/2+s(�) W V

2 Impedance H
1/2+s(�) H

�1/2+s(�) W � ı⌘
�
1
2 Id+ K0



�
V

3 Transmission H
1/2+s(�)⇥H

�1/2+s(�) H
1/2+s(�)⇥H

�1/2+s(�) (bA0,µ0 + bA1,µ1) (bA0,µ0 + bA1,µ1)

TABLE 4.1. Overview of the BIEs for (B�) and associated operator preconditioner
employed in Section 4.6.2.

Moreover,

U = Uinc + (ı⌘SL + DL)�0U in Dc,

Mk[U0] = Mk[(ı⌘SL + DL)�0U0 � SLg2] in (Dc)(k)

= R(k)

Mk[(�0U0, g2 � ı⌘�0U0)] in (Dc)(k).

PROBLEM 8 (B3). For ⇠inc := (�0Uinc, �1Uinc) 2
⇥
H1/2(�)⇥H�1/2(�)

⇤(k) and Mkh =

Mk(h0, h1) 2 (H1/2(�) ⇥ H�1/2(�))(k), for k 2 N2, we seek ⇠0 := (�0U0, �1U0) 2

H1/2(�)⇥H�1/2(�) and Mk[⇠0] ⌘Mk[⇠00] 2 (H1/2(�)⇥H�1/2(�))(k) such that:
8
><

>:

⇣
bA0,µ0 + bA1,µ1

⌘
⇠0 = ⇠inc on �,

⇣
bA0,µ0 + bA1,µ1

⌘(k)
Mk[⇠0] =

⇣
1
2 Id+

bA1,µ1

⌘(k)
Mk[h] on �(k).

(4.24)

Also,

U(x) = Uinc(x)� SL0�1U
0 + DL0�0U0, x 2 Dc,

U(x) = �SL1�1U
1 + DL1�0U

1, x 2 D,

Mk[U0] = Mk[R(⇠)] = R(k)

Mk[⇠] in D(k).

Ultimately, we sum up the functional spaces and BIEs for (PB�) in Table 4.1. Also,

corresponding Sobolev spaces of higher regularity will be denoted Xs, Y s, for s � 0, with

Y 0 ⌘ Y and X0 ⌘ X . Operator C refers to the left-preconditioner that is used for operator

preconditioning purposes, as detailed later on in Section 4.6.2.
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4.5. Galerkin Method and Sparse Tensor Elements

We now aim to solve numerically the variational forms arising from the BIEs described

in Generic Problem 3. Let us introduce a nested shape-regular and quasi-uniform family

{Ml}l2N0 of surface triangulations consisting of triangles or quadrilaterals, with each level

l associated to a meshwidth hl > 0. For � = 0, 1, we define the associated boundary

element spaces V �

0 ⇢ V �

1 ⇢ · · ·V �

l
⇢ H

1
2��(�):

V 0
l
:= {� 2 C(�) : �|K 2 Pp(K), 8K 2Ml, p 2 N1},

V 1
l
:= {� 2 L2(�) : �|K 2 Pp(K), 8K 2Ml, p 2 N0}.

where Pp(K) stands for the space of polynomials of degree p, p 2 N0 on the cell K. No-

tice that under regular enough Neumann data, i.e. Neumann traces belong to H(d�1)/2+�(�)

(Sauter & Schwab, 2010, Theorem 2.5.4) for any � > 0, we can also use piecewise contin-

uous functions e.g., piecewise linear functions P1, as in Section 4.7. Afterwards, we intro-

duce usual best approximation estimates for the h-version of boundary elements (Sauter &

Schwab, 2010, Chapter 9).

Lemma 4.1 (Interpolation error for Dirichlet traces). For 0  t  s  p + 1 and all

� 2 Hs(�), there holds

inf
vl2V

0
l

k�� vlkHt(�)  Chs�tk�kHs(�), (4.25)

where C > 0 is independent of h and �.

Lemma 4.2 (Interpolation error for Neumann traces). For 0  t  s  p + 1 and all

� 2 Hs(�), there holds

inf
vl2V

1
l

k� � vlkH�t(�)  Chs+tk�kHs(�), (4.26)

where C > 0 is independent of h and �.
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4.5.1. First-order statistical moments

Adopting the notation in Table 4.1, we define XL ⇢ X from V 0
L

and V 1
L

, and arrive at

the Galerkin formulation for ⇠:

GENERIC PROBLEM 4 (Galerkin formulation). Seek ⇠L 2 XL ⇢ X such that:

hZ⇠L,�Li� = hf,�Li�, 8�L 2 XL. (4.27)

We define NL := card(XL). Classical results for coercive operators (Sauter & Schwab,

2010) ensure that there exists a minimum resolution L0 such that the discrete solution is

well defined and converges quasi-optimally in X . Thus, provided that ⇠ 2 Xs for any

0  s  p+ 1, by Lemmas 4.1 and 4.2 it holds

k⇠ � ⇠LkX  Chsk⇠kXs . (4.28)

4.5.2. Higher-order statistical moments and CT

Having introduced the tensor L2-product h·, ·i�(k) (Harbrecht et al., 2013), we state the

tensor deterministic variational forms of the BIEs:

GENERIC PROBLEM 5 (Tensor Galerkin). Given k 2 N2, seek ⌃k

L
2 X(k)

L
such that

hZ(k)⌃k

L
,⇥k

L
i�(k) = hB(k)Mk[g],⇥k

L
i�(k) , 8⇥k

L
2 X(k)

L
. (4.29)

As shown in (von Petersdorff & Schwab, 2006, Section 3.5), there is a L0() 2 N0

for which, for all L � L0(), the tensorized problem admits a discrete inf-sup, and has a

unique solution converging quasi-optimally in X(k). From here, we deduce the following

error estimates

k⌃k � ⌃k

L
k
X(k)  Chsk⌃kk(Xs)(k) . (4.30)

provided that ⌃k 2 (Xs)(k), for any 0  s  p + 1. Now, we introduce the complement

spaces:

W0 := X0, Wl := Xl\Xl�1, l > 0,
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and consider the sparse tensor product space:

bX(k)
L

(L0) =
M

klk1L+(k�1)L0

Wl1 ⌦ · · ·⌦Wlk
(4.31)

Then, we can state the following stability condition.

Lemma 4.3 ((von Petersdorff & Schwab, 2006, Theorem 5.2)). For k 2 N2, there

exists L0(k) and ĉS such that for all L � L0, it holds

inf
0 6=⌃̂2 bX(k)

L

sup
0 6=⇥̂2 bX(k)

L

hZ(k)⌃̂, ⇥̂i�(k)

k⌃̂kX(k)k⇥̂kX(k)

� 1

ĉS
> 0. (4.32)

Therefore, we deduce that the problem is well posed and we deduce the following

convergence error in sparse tensor spaces:

Lemma 4.4 ((von Petersdorff & Schwab, 2006, Theorem 5.3)). Provided that ⌃k 2

(Xs)(k) for any 0  s  p+ 1, the following error bound holds for L � L0(k):

k⌃k � ⌃̂k

L
k
X(k)  Chs| log h|(k�1)/2k⌃kk(Xs)(k) .

We solve the Galerkin system in the sparse tensor space applying the CT (Griebel et

al., 1990). It consists in solving the full systems for l specified in (Harbrecht et al., 2013,

Theorem 13) and for associated spaces Xk

l
as described below.

GENERIC PROBLEM 6 (Tensor Galerkin - Subblocks). Given k 2 N2, seek ⌃k

l
2 X(k)

l

such that

h(Zl1 ⌦ · · ·⌦ Zlk
)⌃k

l
,⇥k

l
i�(k) = hB(k)Mk[g],⇥k

l
i�(k) , 8⇥k

l
2 Xl. (4.33)

Thus, following (Harbrecht et al., 2013, Lemma 12 and Theorem 13), the Galerkin

orthogonality allows to rearrange the solution in the sparse tensor space as

⌃̂k

L
(L0) =

k�1X

i=0

(�1)i
✓
k � 1

i

◆ X

klk1=L+(k�1)L0�i

⌃k

l
. (4.34)
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Dirichlet traces Neumann traces

Norm k · kH1/2(�) k · kH�1/2(�)

⇠L h
3/2

h
2

⌃k

L
h
3/2

h
2

⌃̂k

L
h
3/2| log h|(k�1)/2

h
2| log h|(k�1)/2

FOA First-Order Approximation

SD Shape Derivative

FOSB First-Order Sparse Boundary

BIE Boundary Integral Equation

MC Monte-Carlo

CT Combination Technique

Table 4.2 (left): Expected convergence rates for the quantities of interest for k 2 N2

with P1 discretization and affine meshes. Table 4.3 (right): Non-exhaustive list of
acronyms.

The total number of degrees of freedom (dofs) is of order dofs = O(NL log
k�1 NL).

Finally, we plug the unknowns ⇠L, ⌃̂k

L
into the volume reconstruction formulas pre-

sented in Section 4.4.2 and obtain the couple

UL(x), and \Mk[U0]
L
(x), for x 2 D,x 2 D(k), (4.35)

being the final approximate delivered by the method.

REMARK 4.3 (Affine meshes). Meshing by planar surface elements induces a geo-

metrical error, which typically limits the order of convergence of Galerkin BEM to O(h2).

Following (Sauter & Schwab, 2010, Chapter 8), we present in Table 4.2 the conjectured

convergence rates for P1 discretization with affine meshes for the mean field and two-point

covariance for both Neumann and Dirichlet trace counterparts for (B�).

4.6. Implementation considerations

In what follows, we aim at understanding several technical aspects related to the im-

plementation of the FOSB scheme.

4.6.1. Symmetric covariance kernels

Consider the case k = 2 for a solution ⌃2 ⌘ ⌃. In most applications, the right-

hand side is a symmetric pseudo-covariance kernel, which entails a symmetric solution

⌃(x1,x2) = ⌃(x2,x1). Therefore, the sparse tensor approximation or the CT allow for a
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L = 5 and L0 = 0 L = 5 and L0 = 2

165, 740 87, 672 413, 980 225, 808

TABLE 4.4. Subspaces used for the classical CT (left of each cell) and the sym-
metric CT (right of each cell) for k = 2. In last row, we detail dofs of each scheme.
Notice that N2

L
= 595, 984.

two-fold reduction of the dofs for a given accuracy, since for any l1, l2 2 N0, the matrix

representation of unknowns reads ⌃l1,l2 = ⌃T

l2,l1
, its transpose. We express the latter in

Table 4.4, for (L0, L) = (0, 5) and (2, 5) and for the test case that we detail further in

Section 4.7.2, and giving N2
L

= 595, 984 in the full tensor space V (2)
L

, evidencing the

efficiency of the CT and the benefits due to symmetry of the solution. Indeed, for L,L0 2

N0, L0 � L, the CT yields:

⌃̂L(L0) =
X

l1+l2=L+L0

⌃l1,l2 �
X

l1+l2=L+L0�1

⌃l1,l2 , (4.36)

while its symmetric counterpart uses a reduced number of subblock indices:

⌃̂L(L0) =
X

l1+l2=L+L0
l2<l1

(⌃l1,l2 + ⌃l2,l1)�
X

l1+l2=L+L0�1
l2<l1

(⌃l1,l2 + ⌃l2,l1)

+ ⌃(L+L0)/2 � ⌃(L+L0)/2�1, if L+ L0 is odd.

The remark applies identically to complex Hermitian covariance matrices, as ⌃l1,l2 =

⌃l2,l1

T

= ⌃H

l2,l1
(see Remark 4.1) and can be directly generalized for higher moments.

4.6.2. Preconditioning

The CT allows to solve smaller subsystems by gathering the operators assembled over

distinct levels –on the indices stated in (4.34). It is known that the condition number of
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tensor operators grows with the dimension (cf. (Griebel & Knapek, 2009, Section 3) and

(Fuenzalida et al., 2019)). Hence, the need to precondition with an adapted framework such

that the linear systems remains at least mesh independent. We opt to apply operator-based

preconditioners such as Calderón preconditioning (Hiptmair, 2006; Escapil-Inchauspé &

Jerez-Hanckes, 2019) and assume for � = 0, 1, 2 that 2 /2 {SDir, SNeum}. On each level,

we apply the preconditioner C proposed in Table 4.1. We propose the following result for

the induced linear system in Lemma 4.5.

Lemma 4.5 (Mesh independence result). For k 2 N1 and for each l = (lk)k with

lk 2 N0, lk � L0(k) such as defined in Section 4.5, the discretized Galerkin system issued

from operator (CZ)(k) has a spectral condition number 2 independent of the mesh size,

i.e. remains bounded as klk1 !1.

PROOF. The result is proved for k = 1 in (Hiptmair, 2006) and applies straightfor-

wardly to k � 2 as the condition number of tensor operators is multiplicative (Fuenzalida

et al., 2019). ⇤

This last result shows mesh independence of the numerical scheme, i.e. it guaran-

tees the h-stable (linear) convergence of GMRES (refer to (Galkowski, Müller, & Spence,

2019, Section 4)). Also, as the domains have a Lyapunov boundary, K is compact in both

H1/2(�) and L2(�) (see the discussion after Theorem 2.49 in (Chandler-Wilde & Monk,

2008)). Consequently, the induced operators are second-kind Fredholm operators of the

form I + K : X ! X (Antoine & Darbas, 2021) with X a separable Hilbert space, which

entails fast asymptotic convergence (i.e. super-linear) of iterative solvers (Van der Vorst

& Vuik, 1993). Additionally, L2-compactness is advantageous as it is naturally suited to

the euclidean norm-based GMRES (Campbell, Ipsen, Kelley, Meyer, & Xue, 1996). Still,

second-kind Fredholmness is not transferred to (I + K)(k), as the cross-terms are not com-

pact, e.g., for k = 2, I⌦ K and K⌦ I are not compact at a continuous level.
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REMARK 4.4 (Non-compactness of cross-terms). As stated in (Zanni & Kubrusly,

2015, Corollary 1) for X a Hilbert complex space and A,B 2 L(X):

B⌦ A is nonzero and compact () A and B are both nonzero and compact. (4.37)

Suppose that K is nonzero and I ⌦ K. Therefore, I is compact, which is a contradiction,

proving that I⌦ K is not compact. Similarly, we ensure that K⌦ K is compact.

Despite the above, super-linear convergence for the higher moments is likely: cluster-

ing properties of A are surprisingly transferred to the tensor operator as hinted by the next

result.

Theorem 4.1 (Clustering properties of the tensor matrix equation). Consider that A =

I + K : X ! X with X a separable Hilbert space and K a compact operator. Therefore,

for k 2 N2, the discretized system of A(k) has a cluster at 1.

PROOF. As K is compact, its singular values �j(K), j = 1, · · · with �j(K) ! 0 as

j !1. Therefore, the singular values of (I⌦K) give �j,l(I⌦K) = �j(K)! 0. Therefore,

I⌦K has a cluster at 1. The same proof applies to any cross-term. Finally, as the constants

in the asymptotic bounds are independent of the mesh side, the clustering property transfers

at discrete level. ⇤

To quantify a possible super-linear behavior at iteration m 2 N1, we introduce rm the

GMRES residual and the convergence factor given by the following m-th root:

Qm :=

✓
krmk2
kr0k2

◆1/m

. (4.38)

Notice that the super-linear behavior shows up in the final phase of convergence of Krylov

solvers and “is often not seen unless one iterates to very small relative errors and the con-

dition number is large” ((Axelsson, 1996, Section 13.5)).
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4.6.3. Wavenumber analysis

In this chapter, we focus on first-kind BIEs preconditioned via Calderón identities.

Still, the proposed technique does not give results concerning the wavenumber dependence

in the constants of: (i) the FOA; (ii) the quasi-optimality constant of the sparse tensor

approximation; and, (iii) the condition number. Despite being out of the scope of this

chapter, we aim at giving a few remarks about the analysis for high wavenumbers. The

smoothness of the domains considered here hints at using non-resonant L2-combined field

formulations (Sauter & Schwab, 2010, Section 3.9.4), but would require a more complex

analysis to prove enough regularity for the shape derivative, namely to prove that Cauchy

data (�i, �i) for the SD i = 0, 1 belong to H1(�) and L2(�) respectively. Furthermore,

extensive results were proved for (P�), and the analysis could be carried on, under addi-

tional restrictive requirements on the domain such as star-shapedness (refer e.g., to (Spence,

2014; Galkowski, Müller, & Spence, 2019; Galkowski, Spence, & Wunsch, 2019). Those

surveys can lead to elliptic formulations, allowing for application of Céa’s lemma (Céa,

1964), with a simple characterization of the -dependence of the constants of (ii) and (iii).

Concerning item (i), we expect the constant to be specified with the help of the BVP for

the shape Hessian, provided sufficient regularity of both domain and transformations. Fur-

thermore, star-shapedness is a classical assumption for the UQ by random domains, as it

allows to handle the domain transformations more easily.

4.7. Numerical Results

We now apply the proposed technique to realistic applications. In order to investigate

the accuracy of the first-order shape approximation, in Section 4.7.1 we analyze with the

shape sensitivity analysis of sound-soft and -hard problems for a kite-shaped object. Thus,

the transmission problem is set over the unit sphere and focus is set on the CT for the two-

point covariance field i.e. k = 2. The error convergence rates for the CT relying on the Mie

series are analyzed in Section 4.7.2. Finally, the behavior of GMRES is discussed in Sec-

tion 4.7.3 and the FOSB is compared to MC simulation for a complex case in Section 4.7.4.
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Domains are excited by a plane wave polarized along the x-direction, i.e. Uinc(x) = eıx,

with x = (x, y, z) 2 R3.

All simulations are performed via the open-source Galerkin boundary element library

Bempp 3.2 (Śmigaj et al., 2015).1 The induced linear systems are preconditioned by strong-

form multiplicative Calderón preconditioning (cf. (Kleanthous et al., 2018)). Tests are ex-

ecuted on a 32 core, 4 GB RAM per core, 64-bit Linux server using Python 2.7.6. Default

parameters used throughout are the following: linear systems are solved with restarted GM-

RES(200) (Saad, 2003) with a tolerance of 10�4. Simulations are accelerated with Hierar-

chical Matrices (H-mat) (Bebendorf, 2008, Chapter 2) combined with the Adaptive Cross

Approximation algorithm (ACA) (Bebendorf, 2008, Section 3.4). The relative tolerance

for ACA is set to 10�5. Meshes and simulations are fully reproducible using pioneering

Bempp-UQ platform, a documented Python/Bempp-based plug-in including Python Note-

books.2

In our simulations, we shall represent the polar radar cross section (RCS) over the unit

circle S1 and in decibels (dB) defined by:

RCSt(✓) := 10 log10

✓
4⇡

|Fscat
t

|2

|Finc|2

◆
, ✓ := atan2(y, x) 2 [0, 2⇡].

4.7.1. Kite-shaped object: FOA analysis

First, we aim at evidencing FOA’s accuracy. For this, we introduce a kite-shaped

object perturbed according to �t := {x + tv, x 2 �}, with v := [(z2 � 1)(cos(✓) �

1), 0.25 sin(✓)(1 � z2), 0] in Cartesian axes. In Figure 4.3, we represent the family of

transformed boundaries considered here, corresponding to t = {0.01, 0.1, 0.25, 0.5, 1.0}.

For wavenumbers  = 1 and  = 8, we illuminate the object for � = 0, 1 and solve (P�)

for all the values of t. We compare the far-field and RCS of Ut (in black) to:

U, the zeroth order approximation (ZOA, in red), and

(U + tU0), the FOA (in blue).

1https://bempp.com/download/
2https://github.com/pescap/Bempp-UQ
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FIGURE 4.3. Transformed boundaries function to t, meshed with 3, 249 vertices.

Notice that the zeroth order approximation has no role in the FOA scheme, but will be used

throughout as an additional reference for comparison purposes. The Galerkin discretization

for  = 1 (resp.  = 8) was realized with a precision of 30 (resp. 20) triangular elements

per wavelength and led to a Galerkin matrix of size N = 3249 (resp. N = 9820).

Table 4.5 presents RCSs for � = 0, 1 and  = 1, 8. For different values of t, we plot

RCS in dB of Ut on the left along with the one of the FOA (U+ tU0). The x-axis represents

the translated angle (✓ + ⇡) in radians. We remark that (i) as expected, the FOA gives a

proper approximation for small values of t, (ii) the approximation seems less accurate for

the shadow region, due to the oscillatory behavior of the latter and (iii) there is an evident

dependence of the quality of the approximation function to the wavenumber. As an effect,

we see that the FOA is accurate in a wider range of values of t for  = 1 than for  = 8.

To corroborate these remarks, we plot in Table 4.6 on the left-side of each cell: the

error [·]L2(S1) for F and (F + tF0) the FOA for

t 2 {0.025, 0.05, 0.075, 0.1, 0.125, 0.25, 0.5, 0.75, 1.00}.

These figures evidence the predicted linear and quadratic errors of both zero and first order

approximations (see Remark 4.2). Besides, we observe that the FOA is indeed more accu-

rate that F for small values of t. Still, the accuracy range of the FOA decreases strongly

with . For instance, for � = 0, 1 and  = 1, the FOA gives a 15% error for t  0.5.

Dissimilarly for  = 8, the latter remains true only for t  0.1 for � = 0 and even gives an

error of 20% for � = 1.
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! = 0.05
! = 0.1
! = 0.25
! = 0.5
! = 1

! = 0

Sound-soft problem Sound-hard problem

 = 1

 = 8

TABLE 4.5. RCS patterns (in dB) versus the angle (✓ + ⇡) in radians.

The right-side of each cell in Table 4.6 presents the RCS pattern of Ut,U and (U+tU0)

for (, t) = (1, 0.5) and (, t) = (8, 0.1). Let us focus on  = 8 and for t � 0.25: the

FOA is clearly out of its admissible range. Next, we detail further the relative errors: in

Table 4.7, we represent [·]L2(S1) in a log-log scale function to t and verify that for  = 1,

the error rate are as expected. For  = 8, the FOA presents slightly reduced convergence

rates for small values of t due to discretization error.

Henceforth, we aim at studying the wavenumber dependence of the approximates. We

now fix t = 0.1 and solve the problem for  2 {1, · · · , 10}, with a precision of 20 elements

per wavelength for each . In Figure 4.4, for � = 0, 1, we display the relative L2-error of

the approximates on S1 function to . We notice a linear dependence of the error for U

with respect to  and a dependence of order O(3/2) for the FOA for � = 0 and � = 1,

respectively. The curves show a stable asymptotic behavior function to the wavenumber.

The latter hints at using 3/2t = O(1) to keep an accuracy for the FOA bounded indepen-

dently of the wavenumber. Notice that this estimate is more restrictive that the intuitive

bound t = O(1) proposed in (Silva-Oelker et al., 2018), confirming the need for a proper

wavenumber analysis for the FOA (Section 4.6.3).
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Sound-soft problem Sound-hard problem

 = 1

 = 8

TABLE 4.6. ZOA (red) vs. FOA (blue): Relative L2-error on S1 function to t (left)
and RCS patterns (in dB) for (, t) = (1, 0.25) and (, t) = (8, 0.1) (right).

FIGURE 4.4. ZOA (red) vs. FOA (blue): Relative L
2-error on S1 function to  for

� = 0 (left) and � = 1 (right) and polynomial fit.

4.7.2. Unit sphere: convergence analysis

Consider the unit sphere D := {x 2 R3 : kxk2  1} and focus on the convergence

rates for the mean field and second order statistical moment. In order to inspect the behavior

of both Dirichlet and Neumann traces separately for the second moment, we dispose of a
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Sound-soft problem Sound-hard problem

 = 1

 = 8

TABLE 4.7. ZOA (red) vs. FOA (blue): Relative L
2-error on S1 function to t in

log-log scale.

known solution, set ⇠inc = (�0Uinc, �1Uinc), µ0 = µ1 = 1, and consider the following BIEs

with ⇠ := ⇠0 = (⇠0, ⇠1):

(bA0,µ0 + bA1,µ1)⇠ = ⇠inc, on �,

(bA0,µ0 + bA1,µ1)
(2)⌃ = ⇠inc ⌦ ⇠inc, on �(2).

Using the Mie series, we know exactly ⇠ as well as ⌃ = ⇠ ⌦ ⇠. Due to the domain

regularity and the piecewise linear discretization on an affine mesh, we expect convergence

rates of Table 4.2 to be verified. In particular here, the asymptotic error is limited by the
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discretization error for Dirichlet counterpart of traces, i.e.

k⌃� ⌃̂Lk(H1/2(�)⇥H�1/2(�))(2) = C| log h|1/2h3/2k⇠(2)0 kH1/2(�)(2) + o(h3/2).

For the sake of conciseness, we decide to focus on the error for the Dirichlet and Neumann

counterparts of the solution and not on cross terms in H1/2(�)⌦H�1/2(�) and H�1/2(�)⌦

H1/2(�) as they provide similar results to the problems (P�), � = 0, 1, 2.

We set µ0 = µ1 = 1, and solve the transmission problem for two couples of wavenum-

bers, referred to as the low frequency (LF): (0,1) = (0.4, 1) and high frequency (HF):

(0,1) = (8, 2) cases. We generate a sequence of meshes obtained by subdividing each

triangle into two new ones, and by projecting the new vertices onto S2. We obtain a car-

dinality for Vl of Nl = O(2l) and set L = 9. First, we study the convergence rates for

the first moment and full tensor solutions in Table 4.8. We remark a O(h3/2) and O(h2)

convergence rate for the Dirichlet and Neumann traces respectively. Also, we notice an

oscillatory behavior of the error for the Dirichlet trace for the HF case.

Next, we focus on the sparse tensor approximation and the minimal resolution level.

For values of L0 2 {0, 1, 2, 3, 4}, in Table 4.10 we represent the relative energy norm error

of ⌃̂L(L0) versus the full solution ⌃L function to 1/h. We restrict the case L0 = 4 to the

HF case, as lower refinement levels give satisfactory results. As expected, we remark that

for a sufficient minimal resolution level, the solution in the sparse tensor space converges

with the same rate as the full solution ⌃L (in black).

We also represent the precision r, which represents the number of elements per wave-

length in the x-axis. For the HF case: (i) the sparse solution inherits of limited convergence

rate for small values of 1/h; and, (ii) appears to oscillate less than in the full space.

In order to better assess the quality of the sparse approximate function to L0, we present

in Table 4.10 the same energy norm errors as in Table 4.9 function to dofs the number of

dofs used to get the approximation. The optimal resolution level L̂0 depends on the type

of trace and the frequency. In the sequel, we focus on the symmetric case (refer to Sec-

tion 4.6.1). In Table 4.11 we corroborate that the symmetry of the right-hand side benefits
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LF: (0,1) = (0.4, 1) HF: (0,1) = (2, 8)

k = 1, ⇠L

k = 2,⌃L

TABLE 4.8. Relative errors in energy norm of the Dirichlet and Neumann Traces
on S2 and (S2)(2) for the LF and HF cases. Relative energy norm error for Dirichlet
(red) and Neumann (blue) trace components with respect to the inverse mesh den-
sity 1/h.

the sparse tensor approximation, as roughly half of the linear systems of the classical CT

are needed.

4.7.3. Unit Sphere: Iterative solvers

We focus on the practical implementation of the CT. We solve the sub-blocks of the

symmetric CT with GMRES and a tolerance of 10�8. Figure 4.5 showcases the number of

dofs and GMRES iterations needed to reach the prescribed tolerance of each sub-block for

given indices l1 and l2. We highlight the case L = 7 and L0 = 0 with bold (resp. italic)

notation for the added (resp. subtracted) sub-blocks for the symmetric CT (cf. Table 4.4).

Below, as a reference, we show the results for the first moment. The number of dofs on the
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Dirichlet trace Neumann trace

LF:⌃̂L(L0)

HF:⌃̂L(L0)

TABLE 4.9. Relative errors in energy norm function to h of the Dirichlet and Neu-
mann Traces on (S2)(2) for the LF and HF cases.

diagonal (i.e. the bold and italic ones) are of size N0 ⇥ NL (resp. N0 ⇥ NL�1). Thus, the

resolution of subsystems of equivalent size when implementing the CT.

We also remark the effectiveness of Calderón preconditioning, as we notice that the

number of iterations remains of 8 independently of l1 and l2. Also, the number of iterations

passes from 3 for first moment to 8, likely due to 2(A⌦B) = 2(A)2(B). Besides, we

show the solver times in seconds in Table 4.12. Accordingly, we consider the HF case: we

plot the relative residual l2-error of GMRES in Figure 4.6 (in log-log scale). First, in black

(resp. gray), we represent the iterations for k = 1 and L = 0 (resp. l 2 {1, · · · , 7}). We

remark that: (i) the iteration count increases compared to the LF case; (ii) the relative error

is reasonably resilient with the meshwidth, as the curves are close to each other; and, (iii)

fast convergence of the residual towards zero. Still, mesh independence is key in reducing
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Dirichlet trace Neumann trace

LF:⌃̂L(L0)

L̂0 = 0 L̂0 = 0, 1

HF:⌃̂L(L0)

L̂0 = 3, 4 L̂0 = 1, 2

TABLE 4.10. Relative errors in energy norm function to dofs of the Dirichlet and
Neumann Traces on (S2)(2) for the LF and HF cases.

the sensibility to the meshwidth but does not necessarily leads to faster convergence of

GMRES, as the condition number remains bounded but can be large, as highlighted for the

second moment. Indeed, for several values of (l1, l2) we add error convergence curves of

GMRES for k = 2, and renew the previous remark, with a noticeable deterioration of the

convergence results.

Based on the above, we further investigate the properties of the resulting linear sys-

tems and the convergence behavior. In Table 4.13, we portray again the GMRES residual
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Dirichlet trace Neumann trace

LF: ⌃̂L(L0)

HF: ⌃̂L(L0)

TABLE 4.11. Symmetric case: relative errors in energy norm function to dofs of
the Dirichlet and Neumann Traces on (S2)(2) for the LF and HF cases.

error, in a semi-log scale (first row). Also, we present the convergence factor at each iter-

ation (second row). The first row shows that all curves present at least a linear decrease,

ensuring convergence of GMRES. Moreover, the convergence for the first moment is too

fast to observe a super-linear phase. The second moment curves present poor convergence

rates close to 1, with a very slow decrease (see the bottom-right figure), giving a moderate

super-linear behavior, still noticeable for ⌃1,2 and ⌃0,3 (see the top-right figure). To fin-

ish, we introduce M the mass and A the impedance matrices. In Table 4.14, we plot the

eigenvalues distributions of the resulting linear systems (in strong form, such as done in

(Kleanthous et al., 2018)). We remark that the spectra present some clustering at one and
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l2\l1 0 1 2 3 4 5 6 7

7 319,696

6 159,952 307,600

5 80,080 154,000 301,840

4 40,144 77,200 151312 299,536

3 20,176 38,800 76,048 150,544

2 10,192 19,600 38,416

1 5,200 10,000

0 2,704

k = 1 52 100 196 388 772 1,540 3,076 6,148

l2\l1 0 1 2 3 4 5 6 7

7 8

6 8 8

5 8 8 8

4 8 8 8 8

3 8 8 8 8

2 8 8 8

1 8 8

0 8

k = 1 3 3 3 3 3 3 3 3

FIGURE 4.5. Numbers of dofs for each subsystem (left) and GMRES iterations to
reach prescribed tolerance (right).

have similar patterns. Also, we see that the tensor matrix for k = 2 has a more scattered

cluster, and much more outliers. The latter emerges from the property of the tensor opera-

tor, and was expectable. To finish, despite the presence of non-compact terms at continuous

level, we observe discrete clustering properties due to Theorem 4.1.

To conclude, the HF case shows that the limiting step of the CT is decisively the solver

step, and justifies even more the use of efficient preconditioning techniques. In addition,

the tensor operator structure of the CT and its speedup with hierarchical matrices allow for

limited memory requirements for the impedance matrices and matrix-matrix product func-

tion to the number of dofs of the subsystems. These results motivate the use of hierarchical

matrices to describe both unknown and right-hand side, in order to reduce matrix-matrix

product execution times (cf. (Dölz, Harbrecht, & Schwab, 2017)).
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l2\l1 0 1 2 3 4 5 6 7

7 1,588

6 613 1,320

5 459 688 1,167

4 209 436 601 1,107

3 98.8 157 392 583

2 49.4 77.3 174

1 25.9 44.3

0 8.83

k = 1 0.246 0.328 0.767 1.25 1.83 5.51 10.7 17.7

FIGURE 4.6

Table 4.12 (left) : solver times (in seconds) for the LF case. Figure 4.6 (right):
relative l

2-error of GMRES in log-log scale for the HF case.

4.7.4. Real case: Non-smooth domain

To finish, we compare FOSB with Monte Carlo simulations for a complex case: the

sound-soft scattering by a unit Fichera Cube with  = 5. We perturb the boundary face

located at the z = 0.5-plane –represented in red in Figure 4.10 later on– and use P0 ele-

ments. We set L0 = 0 and L = 2 and generate a sequence of nested meshes associated with

discrete spaces X0, X1, X2 of cardinality N0 = 1140, N1 = 2804 and N2 = 6370. The

zeroth level corresponds to a precision of 10 elements per wavelength and related meshes

are found in Figure 4.7.
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k = 1 k = 2

Residual error of GMRES krmk2 function to iteration count m

krmk2

Convergence estimate Qm function to iteration count m

Qm

TABLE 4.13. HF case: Complete survey of the GMRES convergence.

Given uniformly distributed random variables Yij 2 U [�1, 1], i = 0, · · · , 5, the pertur-

bation field is given as:

v(x,!) :=
5X

i=0

5X

j=0

⌥i(x)⌥j(y)Yij êz, x 2 �, z = 0.5, (4.39)

with ⌥i denoting fundamental sine splines of the form | sin(q⇡x)|, x 2 [0, 0.5], q 2

{2, 4, 6} with support of length 0.5/(q + 1) represented in Figure 4.8. Therefore, for x1
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Case L = 2 L = 3 L = 4

k = 1

k = 2

TABLE 4.14. HF case: Eigenvalues distribution dependence on L for the resulting
preconditioned matrix (M�1AM�1A)(k), k = 1, 2.

FIGURE 4.7. Sequence of nested meshes used to perform the FOSB.

and x2 in �, and z1 = z2 = 0.5, we have

Mk[v · n](x1,x2) =
5X

i=0

5X

j=0

1

3
⌥i(x1)⌥j(y1)⌥i(x2)⌥j(y2). (4.40)
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FIGURE 4.8. Splines sinusoidal functions used for random families of perturbed
boundaries.

FIGURE 4.9. Nominal mesh (red) and transformed meshes corresponding to real-
izations of MC simulation (blue).

The perturbation parameter is set to t = 0.075. As a reference, we compute the mean field

and variance through Monte Carlo method with M = 5000 simulations (see (Silva-Oelker

et al., 2018, Section 5)). For each realization, we deform the mesh corresponding to level

L = 2 and obtain U(!m). Next, we evaluate:

UMC :=
1

M

MX

m=1

U(!m), and VMC :=
1

M

MX

m=1

(U(!m)� UMC)(U(!m)� UMC). (4.41)

In Figure 4.9, we plot mesh elements corresponding to z = 0.5 for the nominal shape (in

red). Therefore, we plot deformed mesh issued from realizations of the perturbation field

(in blue).
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Y
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Z

1e-05 0.001 0.1

XY

FIGURE 4.10. Volume plot of the squared density for U (left) and the standard
deviation

p
V̂ obtained through the FOSB method.

For the implementation of a symmetric FOSB, we use an indirect formulation (Sauter

& Schwab, 2010) for the tensor equation and choose a Near-Field preconditioner (Escapil-

Inchauspé & Jerez-Hanckes, 2019) as it outperformed the Multiplicative Calderón precon-

ditioner in solution times. In Figure 4.10, we plot the total squared density of U (left) and

the standard deviation –square root variance–
p

V̂ (right). We remark that the area close

to the perturbed boundary has a higher variance while the zone behind the Fichera Cube

has low sensibility to shape variation. In Table 4.15 we compare the RCSs provided by

both methods, namely MC (left column) and FOSB (right column) –we inspire ourselves

of the plots in (Harbrecht, Ilić, & Multerer, 2019). In the first row, we represent the ap-

proximation of the mean field (red) and its sensibility (blue). Second row focuses on RCS

for the squared root variance. We remark that both methods show similar patterns. Indeed,

the relative L2-error on S1 between the FFs differ by a 11.0% (resp. 18.4%) for UMC and U

(resp.
p
VMC and

p
V̂), evidencing accuracy of the FOSB scheme. The latter is interesting

as it shows that the FOA behaves well for domains with corners, albeit lacking theoretical

results on it. Finally, the symmetric CT led to a total dofs = 18, 420, 424 compared to
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Monte Carlo FOSB

TABLE 4.15. Final comparative results between the MC (left) and FOSB (right)
methods. First row shows the approximation for the mean RCS (red) and its stan-
dard deviation (blue) while second rows focuses on the standard deviation. RCSs
are in represented (dB) versus the angle (✓ + ⇡) in radians.

N2
L
= 41, 088, 100 for the full tensor space. As a comparison, MNL = 38, 460, 000 for

MC. The total execution time for MC was 13 hours 26 min. compared to 6 hours 19 min. for

the FOSB.

4.8. Conclusion

In this chapter, we tackled UQ for random shape Helmholtz scattering problem. Under

small perturbation assumptions, we applied the FOSB method and allowed for an accurate
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approximation of statistical moments with an almost optimal memory and computational

requirements. We provided the complete analysis for Helmholtz boundary value problems

and added comments concerning the efficient implementation of the schemes. Numeri-

cal experiments evidenced the applicability of the technique and showed good scalability

and robustness when coupled with fast resolution methods and efficient preconditioners.

Observe that theory presented in Section 4.5 and Section 4.6.2 and numerical results of

Sections 4.7.2 and 4.7.3 are of interest for general Helmholtz-based tensor operators BIEs,

as they are developed aside from the FOA framework. Conversely, the FOA and the nu-

merical results of Section 4.7.1 apply to low-rank approximation-based schemes to solve

the deterministic equation (Dambrine, Harbrecht, & Puig, 2015).

Further research includes asymptotic wavenumber analysis of each specific boundary

condition and under additional requirements would lead in some cases to elliptic formu-

lations, simplifying greatly the Galerkin scheme –Céa’s Lemma– and the sparse tensor

approximation. We hope that the analysis carried on in (Galkowski, Müller, & Spence,

2019) can be extended to the FOSB method for the exterior sound-soft problem, and would

provide -explicit estimates of the constants involved in the scheme along with bounds for

the GMRES for both nominal solution and sub-blocks for the CT.

In parallel, this chapter suggests the use of more efficient tools such as: (i) multilevel

matrix-matrix product and compression techniques for the covariance kernel (e.g., hier-

archical matrices or low-rank approximations), (ii) efficient iterative solvers for multiple

right-hand sides (Sun, Carpentieri, Huang, Jing, & Naveed, 2018), and (iii) fast precon-

ditioning techniques (Escapil-Inchauspé & Jerez-Hanckes, 2019). Those improvements

would allow to compute higher moments in a satisfactory number of operations. Also as

a by-product of our study we have rendered available the Bempp-UQ plug-in for further

improvement and usage. Our code currently supports the P1 projection between grids, the

tensor GMRES, the CT for k = 2 and the FOA for all problems considered here. Cur-

rent work seeks to implement the FOA for Maxwell equations; speed up the preconditioner

matrix assembly for both Helmholtz and Maxwell cases; and incorporate high-order quad-

rature rules routines for UQ purposes.
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4.9. Boundary reduction

4.9.1. Case: (P�)

Set Ai ⌘ Ai
and recall the following identity:

Lemma 4.6. Let U be the solution of problem (P�) with ⇠inc := (�0Uinc, �1Uinc). Thus,

for ⇠ := (�0U0, �1U0), we have
✓
1

2
Id+ A0

◆
⇠ = ⇠inc. (4.42)

PROOF. Consider U the solution of (P�). Since Uinc provides admissible Cauchy data

inside the scatterer and Uscat is a radiative Helmholtz equation, the following identities hold:
✓
1

2
Id� A0

◆
⇠scat = ⇠scat, and

✓
1

2
Id+ A0

◆
⇠inc = ⇠inc. (4.43)

Summing both equations, we get,

A0(2⇠
inc � ⇠) =

1

2
⇠ )

✓
A0 +

1

2
Id

◆
⇠ = 2A0⇠

inc = ⇠inc.

⇤

This last result allows us to determine directly the BIEs of U from the BCs for � =

0, 1, 3. Let us focus on (P2). Second row of Lemma 4.6 and the BCs rewrite:
✓
W � ı⌘

✓
1

2
Id+ K0



◆◆
�0U = �1Uinc. (4.44)

Next, the integral representation formula (4.16) gives:

Uscat = �SL(�1Uscat) + DL(�0Uscat) in Dc, and

0 =� SL(�1Uinc) + DL(�0Uinc) in Dc.

Summing both equations yields

U = Uinc � SL(�1U) + DL(�0U) in Dc, (4.45)

giving the final results for the expected field.
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4.9.2. Case: (SP�)

Similarly, boundary reduction for the shape derivative is deduced from the following

identities for ⇠0 := ⇠0:
✓
1

2
Id� A0

◆
⇠0 = ⇠0, and

✓
1

2
Id+ A1

◆
⇠01 = ⇠01, if � = 3, (4.46)

by considering the boundary conditions. In particular, for � = 2:

�W�0U0 +

✓
1

2
Id� K0



◆
�1U0 = �1U0

)
✓
W � ı⌘

✓
1

2
Id+ K0



◆◆
�0U0 =

✓
1

2
Id+ K0



◆
g2.

Finally, we detail the potential reconstruction for the transmission problem. Representation

formulas (4.16) yield:

U0i = �SLi
�1U0i + DLi

�0U0i in Di, i = 0, 1

= R(⇠) in D (4.14).



5. CONCLUSION AND FUTURE RESEARCH

In this thesis, we investigated the trade off between precision and efficiency in numer-

ical schemes related to BVPs. We focused on resolution of scattering problems, being a

challenging case of study. We provided new results regarding preconditioning, perturbation

analysis, uncertainty quantification and convergence of iterative solvers.

To begin with, we introduced the bi-parametric OP. As a study case, it was applied

successfully to the EFIE. Along with this, we considered the Helmholtz scattering by ran-

dom objects and provided a detailed framework to apply the FOSB method, incorporating

preconditioning issues.

As a consequence to the publication of (Escapil-Inchauspé & Jerez-Hanckes, 2019)

(corresponding to Chapter 3), the bi-parametric OP framework was applied to Helmholtz

Scattering Problems by Jerez-Hanckes and Fierro (Fierro & Jerez-Hanckes, 2020) and com-

plex objects together with A. Kleanthous, C. Jerez-Hanckes, T. Betcke et al. in (Kleanthous

et al., 2020), submitted to J. Comp. Phys., 2020. We also mention interesting results con-

cerning preconditioning for the local multiple-trace formulation applied to electromagnet-

ics (Ayala, Claeys, Escapil-Inchauspé, & Jerez-Hanckes, 2020).

Algonside the aforementioned, the chapter paves the way towards a number of novel

applications. To begin with, bi-parametric OP can be a source of inspiration to (i) quantify

more efficiently how current preconditioners behave and (ii) design new preconditioners,

based on this result. Amongst others, we mention:

(i) artificial intelligence schemes—deep or shallow learning—to propose rough pre-

conditioners;

(ii) compactness estimates—Carleman class—for differential and second-kind Fred-

holm operators;

(iii) asymptotic estimates for high-wavenumber and singular perturbation analysis.

To finish, FOSB framework’s comprehension is allowing to easily apply it to EM.

Ongoing work embrace numerical experiments for EM scattering by random objects.



References

Ainsworth, M., McLean, W., & Tran, T. (1999). The Conditioning of Boundary Ele-

ment Equations on Locally Refined Meshes and Preconditioning by Diagonal Scaling.

SIAM Journal on Numerical Analysis, 36(6), 1901–1932.

Allaire, G., & Schoenauer, M. (2007). Conception optimale de structures (Vol. 58).

Springer.

Andreev, R. (2013). Stability of sparse space-time finite element discretizations

of linear parabolic evolution equations. IMA Journal of Numerical Analysis, 33(1),

242–260.

Andriulli, F. P., Cools, K., Bagci, H., Olyslager, F., Buffa, A., Christiansen, S., &

Michielssen, E. (2008). A Multiplicative Calderón Preconditioner for the Electric

Field Integral Equation. IEEE Transactions on Antennas and Propagation, 56(8),

2398–2412.

Andriulli, F. P., Tabacco, A., & Vecchi, G. (2010). Solving the EFIE at low fre-

quencies with a conditioning that grows only logarithmically with the number of un-

knowns. IEEE Transactions on Antennas and Propagation, 58(5), 1614-1624.

Antoine, X., & Darbas, M. (2021). An Introduction to Operator Preconditioning for

the Fast Iterative Integral Equation Solution of Time-Harmonic Scattering Problems.

Multiscale Science and Engineering, 3, 1–35.

Atkinson, K. (1976). A Survey of Numerical Methods for the Solution of Fredholm

Integral Equations of the Second Kind. Society for Industrial and Applied Mathe-

matics (Philadelphia).

Axelsson, O. (1996). Iterative Solution Methods. Cambridge University Press.
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Bunse-Gerstner, A., & Gutiérrez-Cañas, I. (2006). A preconditioned GMRES for

complex dense linear systems from electromagnetic wave scattering problems. Lin-

ear algebra and its applications, 416(1), 135–147.

Campbell, S. L., Ipsen, I. C., Kelley, C. T., Meyer, C., & Xue, Z. (1996). Conver-

gence Estimates for Solution of Integral Equations with GMRES. The Journal of

Integral Equations and Applications, 19–34.

Campbell, S. L., Ipsen, I. C., Kelley, C. T., & Meyer, C. D. (1996). GMRES and the

minimal polynomial. BIT Numerical Mathematics, 36(4), 664–675.

Carpentieri, B., Duff, I. S., & Giraud, L. (2000). Experiments With Sparse Precondi-

tioning of Dense Problems from Electromagnetic Applications. CERFACS, Toulouse,

France, Tech. Rep. TR/PA/00/04, 9.
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résolution numérique des équations intégrales de frontière de l’acoustique. Comptes

Rendus de l’Académie des Sciences-Series I-Mathematics, 330(7), 617–622.

Claeys, X., Hiptmair, R., & Jerez-Hanckes, C. (2012). Multi-trace boundary integral

equations. Direct and Inverse Problems in Wave Propagation and Applications, 14,

51–100.

Colton, D., & Kress, R. (2012). Inverse Acoustic and Electromagnetic Scattering

Theory (Vol. 93). Springer Science & Business Media.

Cools, K., Andriulli, F. P., & Michielssen, E. (2011). A Calderón Multiplicative

Preconditioner for the PMCHWT Integral Equation. IEEE Transactions on Antennas

and Propagation, 59(12), 4579.

Dambrine, M., Harbrecht, H., & Puig, B. (2015). Computing Quantities of Inter-

est for Random Domains with Second Order Shape Sensitivity Analysis. ESAIM:

Mathematical Modelling and Numerical Analysis, 49(5), 1285–1302.

Darve, E. (2000). The Fast Multipole Method: Numerical Implementation. Journal

of Computational Physics, 160(1), 195–240.

Dembart, B., & Yip, E. (1998). The Accuracy of Fast Multipole Methods for

Maxwell’s Equations. IEEE Computational Science and Engineering, 5(3), 48-56.

123



Di Pietro, D. A., & Droniou, J. (2018). A third Strang lemma and an Aubin–Nitsche

trick for schemes in fully discrete formulation. Calcolo, 55(3), 1–39.

Dölz, J., & Harbrecht, H. (2018). Hierarchical Matrix Approximation for the Uncer-

tainty Quantification of Potentials on Random Domains. Journal of Computational

Physics, 371, 506–527.

Dölz, J., Harbrecht, H., & Schwab, C. (2017). Covariance Regularity and H-matrix

Approximation for Rough Random Fields. Numerische Mathematik, 135(4), 1045–

1071.

Dunford, N., & Schwartz, J. T. (1963). Linear Operators, Part 2: Spectral Theory,

Self Adjoint Operators in Hilbert space. Wiley.

Engquist, B., Ying, L., et al. (2009). A fast directional algorithm for high frequency

acoustic scattering in two dimensions. Communications in Mathematical Sciences,

7(2), 327–345.

Eriksson, J., Ollila, E., & Koivunen, V. (2010). Essential Statistics and Tools

for Complex Random Variables. IEEE Transactions on Signal Processing, 58(10),

5400–5408.

Ern, A., & Guermond, J.-L. (2006). Evaluation of the condition number in linear

systems arising in finite element approximations. ESAIM: Mathematical Modelling

and Numerical Analysis, 40(1), 29–48.

Ern, A., & Guermond, J.-L. (2013). Theory and Practice of Finite Elements

(Vol. 159). Springer Science & Business Media.
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