
PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

EXPLOITING DIRECTION IN GRID

GRAPHS TO BUILD A FAST AND

LIGHTER SUBGOAL GRAPH

BRUNO MARÍN BARRERA

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

JORGE BAIER ARANDA

Santiago de Chile, March 2022

© MMXV, BRUNO MARÍN BARRERA

PONTIFICIA UNIVERSIDAD CATÓLICA DE CHILE

ESCUELA DE INGENIERÍA

EXPLOITING DIRECTION IN GRID

GRAPHS TO BUILD A FAST AND

LIGHTER SUBGOAL GRAPH

BRUNO MARÍN BARRERA

Members of the Committee:

JORGE BAIER ARANDA

ÁLVARO SOTO ARRIAZA

CARLOS HERNÁNDEZ ULLOA

PATRICIO DE LA CUADRA BANDERAS

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, March 2022

© MMXV, BRUNO MARÍN BARRERA

DocuSign Envelope ID: EA7ADA11-E8F6-4863-88DA-2E12614B6C13

Gratefully to my parents and

siblings

ACKNOWLEDGEMENTS

I would first like to thank my supervisor Jorge Baier, who constantly guided and sup-

ported me through this process. Thanks for always having time for talking about my

research and our lives.

I would also like to thank Carlos Hernández, who always was aware of my work and pro-

vided me important feedback.

I am also grateful to Tansel Uras and Daniel Harabor, for helping me to understand Jump

Point Graphs.

I wish to express my sincere thanks to Paulina Peñaloza, for helping me with the writing

of this thesis.

I must express my very profound gratitude to my parents for all the support they gave me

during my studies and the pandemic. Nothing of this work would be possible without their

help, specially my mother’s. I would also like to thank my brother, who was always there

to listen to my ideas and problems about my research.

Finally, I would like to thank all my friends that helped me to better cope with this process.

Bruno Marı́n

iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS iv

LIST OF FIGURES viii

LIST OF TABLES x

ABSTRACT xi

RESUMEN xii

1. INTRODUCTION 1

2. BACKGROUND 5

2.1. Problem definition . 5

2.1.1. Graphs . 5

2.1.2. Path planning . 6

2.1.3. Preprocessing Based Path Planning 6

2.1.4. Grid Graphs . 7

2.1.5. 8-connected Grid Graph . 7

2.2. Search algorithms . 9

2.2.1. BFS . 11

2.2.2. Dijkstra . 11

2.2.3. Bidirectional Dijkstra . 12

2.2.4. A* . 12

2.3. Contraction Hierarchies . 13

2.4. The Subgoal Graph framework . 15

2.4.1. Formal definition . 15

2.4.2. Preprocessing algorithm . 17

2.4.3. Query algorithm . 19

2.5. Subgoal Graphs . 20
v

2.5.1. Formal definition . 20

2.5.2. Framework implementation . 21

2.6. Jump Point Graphs . 24

2.6.1. Jump Point Search . 24

2.6.2. Formal definition . 27

2.6.3. Framework implementation . 29

2.6.4. Diagonal Merged Jump Point Graphs 32

3. DIRECTED SUBGOAL GRAPHS 34

3.1. Directed Subgoal Graphs . 34

3.1.1. Motivation . 34

3.1.2. Formal definition . 35

3.1.3. Framework implementation . 41

3.2. Contraction Hierarchies and the subgoal graph framework 50

3.2.1. Overview . 50

3.3. Improvements to the subgoal graph framework 50

3.3.1. Avoidance . 50

3.3.2. Reducing redundant edges in CH-dsg 51

3.3.3. Unpacking freespace-R-reachable shortcuts 53

4. EXPERIMENTAL EVALUATION 54

4.1. Experimental setup . 54

4.1.1. Benchmarks . 54

4.1.2. Validation of JP and JPD . 56

4.1.3. Implementation details . 57

4.2. Results and discussion . 60

4.2.1. Standalone subgoal graph framework 60

4.2.2. Sugoal graph framework and Contraction Hierarchies 65

4.2.3. Memory analysis . 72

4.2.4. Avoidance . 76
vi

5. CONCLUSIONS 78

5.1. Conclusions . 78

5.2. Future work . 79

REFERENCES 80

vii

LIST OF FIGURES

2.1 Directions and octile distance . 8

2.2 Types of clearances . 19

2.3 SG reachability relations . 21

2.4 All four turning points . 25

2.5 Straight jump points and jump point search execution 27

2.6 Forward connect and diagonal-first scans 32

3.1 DSG key idea . 35

3.2 Edges on G∗ consider incoming direction 37

3.3 Diagonal first safe freespace reachability 38

3.4 Schema of Lemma 3.1 proof. 40

3.5 Reachable cells of straight and diagonal subgoals 42

3.6 Straight and diagonal nodes when surrounded by multiple obstacles. 43

3.7 Clearances for DSG . 44

3.8 DSG forward connect . 48

3.9 Differences of the backward connection . 49

3.10 CH interactions with subgoal graphs . 52

4.1 Bits schema for storing f and h in a single 64-bit integer. 58

4.2 Causes for graph size differences between SG, DSG and JPD 62

4.3 DSG and SG edges comparison . 64
viii

4.4 CH-DSG and CH-JPD percentage improvement versus graph size 72

4.5 Maps in which CH-DSG performs the best 73

4.6 Memory comparison between CH-DSG and CH-JPD. 76

ix

LIST OF TABLES

4.1 Statistics of solving all instances from MovingAI benchmark using A*. . . . 56

4.2 CH priority term weights . 60

4.3 Subgoal graphs sizes in the MovingAI benchmark. 63

4.4 Execution times of the Connect-Search-Refine procedure of the subgoal graph

framework. 65

4.5 CH subgoal graph sizes in the MovingAI benchmark. 67

4.6 Execution times of the Connect-Search-Refine procedure of the CH subgoal

graph framework. 69

4.7 Statistics of the bidirectional search performed by CH subgoal graphs. 70

4.8 Memory usage of directed subgoal graphs and its CH versions 75

4.9 Search statistics when using avoidance . 77

x

ABSTRACT

In the path planning problem on grid graphs, one of the main state-of-art preprocessing

techniques are subgoal graphs. These graphs consist of a subset of important nodes called

subgoals that are connected by a reachability relation. When solving a path planning

problem, one must connect the origin node and the destination node to the subgoal graph,

search for a path in the subgoal graph, and refine the path into a path in the original graph.

In this thesis, we present Directed Subgoal Graphs (DSG), a new subgoal graph which

is built on a grid graph augmented with the incoming direction in order to prune non-

shortest paths. The reachability relation ensures that all shortest path and the beginning

of any diagonal-first path between two subgoals are unblocked. In DSG the connection

between subgoals is performed in a novel cardinal-first order. The connection process

shows to be fastest among these in all subgoal graphs while using the minimum amount

of memory for this stage.

When DSG is enhanced with Contraction Hierarchies (CH), it improves the state-of-

art performance in several instances of the MovingAI benchmark set. In game maps it

provides a speedup of up to 3.0% over the state-of-art subgoal graph while using 47% less

memory. We observed most of the benefits are obtained in mainly large maps in which the

traversable space allows long diagonal movements and there is a large number of isles of

obstacles. When this happens, the speedups can reach up to 27%. Additionally, we provide

several improvements to the subgoal graph framework, which includes the extension of

the avoidance of unimportant subgoals and a new technique to reduce redundant shortcuts

generated by CH.

Keywords: Path planning, Preprocessing based path planning, Grid Graphs, Sub-

goal Graphs, Jump Point Graphs, Contraction Hierarchies.
xi

RESUMEN

En el problema de path planning sobre grafos tipo grilla, una de las principales técnicas

de preprocesamiento del estado del arte son los subgoal graphs. Estos grafos consisten

en un subconjunto de nodos importantes denominados subgoals que son conectados me-

diante una relación de alcanzabilidad. Al momento de resolver un problema se conecta el

nodo origen y el nodo destino al subgoal graph, se realiza una búsqueda en el grafo y se

refina el camino obtenido en un camino en el grafo original. En esta tesis, presentamos Di-

rected Subgoal Graphs (DSG), un nuevo subgoal graph que se construye sobre una grilla

aumentada con la dirección de incidencia para eliminar caminos que no sean óptimos. La

relación de alcanzabilidad asegura que todos los caminos óptimos y el comienzo de algún

camino diagonal-first entre dos subgoals sean válidos.

En DSG la conexión entre subgoals se realiza en un orden cardinal-first. El proceso de

conexión muestra ser el más rápido respecto al de todos los otros subgoal graphs, al mismo

tiempo que necesita la mı́nima cantidad de memoria para esta etapa. Cuando DSG es po-

tenciado con Contraction Hierarchies (CH), mejora el rendimiento del estado del arte en

varias instancias del grupo de benchmarks MovingAI. En mapas tipo juegos, nuestro al-

goritmo es hasta 3.0% más rápido que el mejor de los otros subgoal graphs utilizando

un 47% menos memoria. Gran parte de los beneficios se obtienen mayoritariamente en

mapas grandes cuyo espacio transitable permite movimientos diagonales amplios donde

también hay una gran cantidad de islas de obstáculos. Cuando esto sucede, DSG es hasta

un 27% más rápido. Ademas, entregamos mejoras para el conjunto de subgoal graphs, que

incluye la extensión de la evitabilidad de subgoals poco importantes y una nueva técnica

para reducir atajos redundantes generados por CH.

Palabras Claves: Path planning, Preprocessing based path planning, Grid Graphs,

Subgoal Graphs, Jump Point Graphs, Contraction Hierarchies.
xii

1. INTRODUCTION

The problem of path planning consists of finding a sequence of actions that allows an

agent to move from an initial state to a goal state in a given environment. This environ-

ment consists of states and actions. States are positions or locations where the agent can

stand; whereas, actions are movements the agent can perform to transition between one

state to another. Thus, this sequence of actions is a solution to the path planning problem.

Environments can belong to different domains where the states and actions represent dif-

ferent real-life elements. There are domains such as road networks and grid maps. In road

networks each state is a road junction and each actions consists of movement through a

road segment. In this domain, the path planning problem may represent GPS navigation.

Grid maps are a discretized two-dimensional space where each possible position or cell

can be blocked or unblocked. In this sense, blocked cells stand for obstacles that can not

be traversed while unblocked cells represent traversable spaces. A problem in this domain

represents navigation while avoiding obstacles.

To solve a path planning problem, the environment is often represented as a graph. In this

representation, the environment’s states and actions are respectively the nodes and edges

in the graph. The solution for this problem is a sequence of edges that connect the initial

and goal node i.e. a path in the graph. A problem is often referred to as a query and an

algorithm that answers this query is called a search algorithm.

There are environments that are static and known in advance such as road networks or

video games. This allows a preprocessing phase to take place that consists in computing

valuable information that can be saved and used later in order to speed up the query, these

techniques are called preprocessing algorithms. It is possible to classify preprocessing al-

gorithms in domain dependent and domain independent, the latter being used directly on

a graph.

The highway dimension of a graph can predict the efficiency of a preprocessing algorithm.

When over a graph with small highway dimensions, as in the case of road networks, the

speed ups obtained are of several orders of magnitude, with algorithms such as Contraction

1

Hierarchies (Uras & Koenig, 2018). However, in graphs with larger highway dimensions,

as in the case of grid graphs, the speed up obtained is reduced compared to road networks

(Abraham, Delling, Fiat, Goldberg, & Werneck, 2016).

In grid graphs, there are many symmetric shortest paths, i.e. paths with the same start and

goal that consist of the same series of movements combined in different order (Harabor

& Grastien, 2011). This negatively affects the performance of a search algorithm. There-

fore, domain preprocessing algorithms often use a mechanism to break the symmetry of

shortest paths. Two of these algorithms are Subgoal Graphs (Uras, Koenig, & Hernández,

2013) and Jump Point Graphs (Harabor, Uras, Stuckey, & Koenig, 2019).

These algorithms share a framework that entails (1) in the preprocessing stage building

a high-level graph in which a subset of important nodes are connected by a reachability

relation, (2) in the query stage (a) connect the start and goal nodes to the graph, then (b)

search for a path between those nodes, and finally (c) refine the high-level path into a path

in the original graph. This procedure is called Connect-Search-Refine.

In SG the important nodes, called subgoals, are located at convex corner cells. Here, the

reachability relation ensures all the shortest paths between two reachable nodes are un-

blocked. On the other hand, JP defines a subgoal graph on the direction extended grid

graph, an augmented graph that also considers incoming directions while allowing only

shortest and diagonal first paths. As a consequence, there are multiple jump points in-

stead of each subgoal (according to the possible incoming directions) that connect to only

diagonal-first reachable nodes.

�In certain scenarios, like video games or streets, JP can be up to five 5 times faster than SG.

Here, the main differences are that (1) a single JP edge may represent a path of arbitrary

length in SG and therefore diminishing solution depths and (2) the edges starting from a

given position in JP are splitted into different nodes with different incoming directions and

therefore diminishing the branching factor.

This algorithm reveals a new paradigm of subgoal graphs that are also directed. Then,

the question arises if we can build other directed subgoal graphs with different properties.

Therefore, our hypothesis is as follows: It is possible to redefine the direction extended

2

grid graph to build a new directed subgoal graph, according to a more restrictive reacha-

bility relation and in combination with other preprocessing techniques can be faster that

other state-of-art subgoal graphs in several benchmarks while also using less memory for

the connection phase.

The contributions of this thesis are:

• We propose a new subgoal graph called Directed Subgoal Graphs (DSG).

For this purpose, we modify the definition of the direction-extended grid graph

to only allow shortest paths. Then, we define a subgoal graph over this grid graph

using straight and diagonal subgoals and a reachability relation that ensures

all shortest paths and the beginning of a diagonal-first path between reachable

subgoals are unblocked.

• In DSG, the connection algorithm uses a novel cardinal-first order to detect

reachable subgoals. There, the start and target connection use the same con-

nection schema. This allows halving the memory used in the connection

process in comparison with JP. The time and space complexity of the pre-

processing stage are linear on the grid size while for the forward and backward

connect from the query phase are linear in the largest dimension of the grid.

Our results show that DSG has the fastest connection procedure among all

subgoal graphs, achieving an average speedup of 6.5%. However, the complete

Connect-Search-Refine procedure is slower than other subgoal graphs.

• In combination with Contraction Hierarchies, CH-DSG improves the state-

of-art of several instances of MovingAI benchmarks. We obtain a speedup

of up to 3.0% over the fastest subgoal graphs in three games subcategories and

two rooms subcategories. Also, CH-DSG uses 47% and 45% less memory in

games and all benchmarks respectively with respect to the state-of-art subgoal

graphs. We provide an in-depth analysis of where CH-DSG performs best, and

our results show that it is on mainly large maps in which the traversable space

allows long diagonal movements and there are a large amount of connected com-

ponents. In these scenarios, the speedups reach up to 27%.

3

• We provide several optimization to the subgoal graph framework. We ex-

tend the avoidance of unimportant subgoals, provide mechanisms to reduce re-

dundant edges in CH and extend the idea of using shortcuts that can be easily

unpacked.

This thesis is structured as follows. In Chapter 2 we provide the theoretical framework

to this thesis. In Section 2.1 we explain the formal definitions to path planning, graphs

and grid graphs. In Section 2.2 we introduce to several search algorithms, explaining

their commonalities and differences and in Section 2.3 we provide the basic notions to un-

derstand Contraction Hierarchies. In Section 2.4 we introduce to the subgoal framework

and in Section 2.5 and Section 2.6 we explain different applications of the subgoal graph

framework that produces Subgoal Graphs and Jump Point Graphs respectively. In Chap-

ter 3, Section 3.1 we present Directed Subgoal Graphs (DSG). To do so, we introduce with

a motivation with the key ideas behind DSG, then we provide the formal definitions and

proofs for it and next we present the algorithms used and their time and space complexities.

In Section 3.2, we give and overview of how CH works on the different subgoal graphs

and in Section 3.3 we provide several optimizations to the subgoal graph framework. In

Chapter 4 we present the experimental evaluation of DSG and all others subgoal graphs.

In Section 4.1 We describe the experimental setup. Then, in Section 4.2 we present the

results of the preprocessing phase and query phase of all subgoal graphs and their combi-

nation with CH applied to the benchmarks. In Chapter 5 we summarize the conclusions

and contributions of this thesis.

4

2. BACKGROUND

In this chapter we first introduce to the formal definitions about graphs, grids, path

planning and preprocessing techniques. Then we explain in detail the most used search

algorithms, such as BFS, Dijkstra, A* and Bidirectional Dijkstra. Then, we continue

explaining Contraction Hierarchies, an state-of-art preprocessing technique for graphs.

Following, we discuss about the subgoal graph framework introduced in (Uras, 2019),

followed by the formal definitions and algorithms used in Subgoal Graphs (SG) (Uras et

al., 2013) and Jump Point Graphs (JP) (Harabor et al., 2019).

2.1. Problem definition

The problem of path planning consists of finding a sequence of actions that allows an

agent to move from an initial state to a goal state in a given environment. This problem

is equivalent to find a path in a graph, where states are nodes and actions are edges in the

graph. This task can be performed by search algorithms, procedures than systematically

explore the graph in order to find the sought path.

2.1.1. Graphs

A weighted graph is a tuple G = (V,E, c) where V is a set of nodes and E is a set of

edges. E is a relation between nodes, i.e. E ⊆ V ×V . c is a cost function that maps every

edge to a positive real number: c : E → R+
0

G is undirected if for every edge e1 = (u, v) ∈ E there exist an edge e2 = (v, u) ∈ E

such that c(e1) = c(e2). Otherwise, we say G is a directed graph. Also, if e = (u, v) ∈ E

we say e is an outgoing edge of v and an incoming edge of u. In the same way, we say v is

an incoming neighbour of u and u is an outgoing neighbour of v. For undirected graphs,

incoming and outgoing neighbours are the same, therefore we use neighbour.

A path π between v1 and vn in G is a sequence of nodes ⟨v1, v2, ..., vn−1, vn⟩ such that

(vi, vi+1) ∈ E for every i ∈ {1, . . . , n−1}. We say a path π pass through a node v if v ∈ π.

5

For two paths π1 = ⟨u0, ..., um⟩ and π2 = ⟨v0, ..., vn⟩ where um = v0 the concatenation

between π1 and π2 is denoted by π1 · π2 and equals to ⟨u0, ...um = v0, ..., vn⟩.

The length of a path π = ⟨v1, . . . , vn⟩, denoted by l(π), is the number of edges in it;

that is, l(π) = |π|−1 = n−1 and the cost of a path c(π) equals to the sum of the cost of its

edges: c(π) =
∑n−1

i=1 c(vi, vi+1). A path between s and t is called an s-t path. A shortest s-t

path π is such that no other s-t path π′ exists such that c(π) > c(π′). The s-t distance on G

equals to the cost of an s-t shortest path and is denoted as ds,t. If the s-t path π is a shortest

path it is called an optimal path, otherwise it is called an suboptimal path. An heuristic, in

the context of a graph, is a function h : V × V → R+
0 that estimates the distance between

two nodes in the graph. An heuristic is admissible if it doesn’t overestimate the distance

to the destination: h(u) ≤ du,v for all u.

2.1.2. Path planning

The path planning problem between initial and goal states represented by a nodes s

and t on a graph G is defined as an s-t query. The sought path is also called as an s-t

path or as the solution, and the solution may be optimal or suboptimal. An algorithm that

always returns an optimal solution, is also optimal. If the algorithm outputs suboptimal

solutions π and there exists some w : c(π) ≤ w · dst for all s, t we say the algorithm is

w-suboptimal. If the solution is optimal, it is an s-t shortest path. Also, we refer the node

s as the start and t as the target or the goal.

2.1.3. Preprocessing Based Path Planning

When a graph is known in advance and there is time available before solving the

queries, a preprocessing phase can take place. This consists of performing different cal-

culations over the graph with the purpose of producing information that can be used later

to speed up the query. The set of instructions needed to perform both the preprocessing

phase and the query phase is called a preprocessing algorithm .

6

To compare two preprocessing algorithms, the following criteria are taken into con-

sideration: (1) Preprocessing time: Time used in the preprocessing phase to compute the

desired information (2) Memory used: The amount of memory that must be saved to store

the desired information and (3) Query time: The time needed to solve an s-t query.

2.1.4. Grid Graphs

Grid graphs are used in navigation tasks over a discretized two-dimensional space,

often called as a map. A grid graph G = (V,E) is represented as a binary W ×H matrix

A, where each entry Ax,y can be in one of two possible states: blocked or unblocked.

The set of nodes V consists of cells n = (x, y) which are vectors in Z2 such that Ax,y is

unblocked. Cells represent position in the space in which the agent can be, using one cell

at a time. In a grid graphs, there exists a set of valid movements D. A movement is a vector

in Z2 and each edge (n1, n2) ∈ E is such that n2 = n1 + d for some direction d ∈ D.

Therefore, for a path π = ⟨n1, ..., nk⟩ there exist a sequence of movements ⟨d1, ..., dk−1⟩

that holds ni + di = ni+1, i = 1..k − 1.

There exist different types of grid graphs depending on the number of valid movements the

agent can perform, also called neighborhood size. A grid graph with neighborhood size of

4 correspond to a grid graph where the movements are related to one of the four cardinal

directions. In the same way, neighborhood size of 8 represents a grid graph where the

valid movements are one of the four cardinal or four diagonal directions. It is possible to

generalize this idea to build grid graphs with neighborhoods of size 2k (Rivera, Hernández,

Hormazábal, & Baier, 2020), however, we focus our study in grids with neighborhood size

of 8 which are 8-connected grid graphs.

2.1.5. 8-connected Grid Graph

An 8-connected Grid Graph is a grid graph in which there are eight valid movements,

each one corresponding to one the following directions.

7

CW (−) CCW (+)

d0
d1

d2

d3

d4

d5

d6

d7

(a) The eight possible directions.

u

v

(b) Freespace u-v shortest paths.

Figure 2.1. (a) Directions with superscripts. Increasing a superscript re-
sults in a CCW rotation and decreasing a superscript results in a CW rota-
tion. (b) Any path consisting of two green movements and one blue move-
ment is a freespace shortest path whose cost is the octile distance between
u and v.

D = ⟨(1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1), (1,−1)⟩

A diagonal direction d satisfies |d| =
√
2 and a cardinal direction c is such that |c| = 1.

Cardinal and diagonal movements are defined according to their directions.

In some cases, we need to refer correlated directions. For this purpose, we use di to refer

the i-th direction in the D sequence, regardless if it is a cardinal or a diagonal one. Also,

for i < 0 or i > 8 we use di = di mod 8 in order to allow circular references. This way

when i is even the direction is cardinal and when i is odd the direction is diagonal. If

the superscript is omitted, a cardinal direction is represented by c and a diagonal one is

denoted by d. In Figure 2.1 (a) we show the eight possible directions with their respective

superscript. Here, increasing a superscript results in a counter-clockwise rotation (CCW-)

and decreasing a superscript results in a clockwise rotation (CW+).

The 8-connected graph, whose space is represented by the W × H binary matrix A,

is a graph where V = {(x, y) | Ax,y is unblocked} and E = {(n1, n2) | n1 + d =

n2, for some d ∈ D}.

8

(Harabor et al., 2019) The freespace graph for a grid graph G with an associated

matrix A is a graph denoted FG and is constructed using the matrix AF , which has the

same dimensions of A but is such that all positions are unblocked cells. Shortest paths in

this graph are called freespace-shortest-paths. If a freespace-shortest path π is unblocked

on G, then it is also a shortest path on G. The distance between any pair of cells in the

freespace is called the octile distance. The octile distance between two cells (x1, y1) and

(x2, y2) equals to:

octile distance((x1, y1), (x2, y2)) = (
√
2− 1)min(∆x,∆y) + max(∆x,∆y),

where ∆x = |x2 − x1| and ∆y = |y2 − y1|. A path whose cost is the octile distance

consists of the repetition of two movements, a cardinal and a diagonal one, as shown in

Figure 2.1 (b).

In 8-neighbor grid graphs, the most common heuristic function is octile distance. If an

heuristic function is not specified, we are referring to the octile distance.

2.2. Search algorithms

A search algorithm over a graph G consists of a sequence of instructions which sys-

tematically explores the graph in order to find a path between given pair of nodes. There

are one-to-one, one-to-many and many-to-many search algorithms. One-to-one refers to

algorithms that compute the path between a specific pair of nodes, called start and goal.

one-to-many, on the other hand, compute the path from a given start node to a subset of G

(and potentially G). Many-to-many algorithms computes the distances between two subset

of G (potentially G×G). A correct algorithm is an algorithm that if it finds a solution π,

it is a valid path on G. A complete algorithm is one that always finds a solution if it exists.

Finally, a search algorithm is optimal if it always find a path π with c(π) = ds,t.

The common structure of a search algorithm is shown in Algorithm 2.1. The Open queue

contains all the explored nodes and is used to determine the next node to be expanded. For

this purpose, it could use a stack or a priority queue. The Closed set contains all already

9

expanded nodes. The parents array keeps the last node u ̸= v that passes through an s-v

path ⟨s, ..., u, v⟩.

Algorithm 2.1 Generic search algorithm.
1: function SEARCH ALGORITHMM(node s, node t, graph G)
2: Open← {s};
3: Closed← {};
4: parents← an array with the size of |V |;
5: while Open is not empty do
6: u← EXTRACT NEXT(Open); ▷ Expansion of node u
7: Closed← Closed ∪ {u}
8: for all v in u outgoing neighbours do; ▷ Edges relaxation
9: if v /∈ Open ∪ Closed then

10: Open← Open ∪ {v};
11: parents[v]← u;
12: else if v ∈ Open and UPDATE PARENT(v, u) then
13: parents[v]← u;
14: π ← ⟨⟩;
15: u← t;
16: while parents[u] ̸= s do ▷ Path reconstruction
17: π ← ⟨(parents[u], u)⟩ · π;
18: u← parents[u];

return π;

The expansion of a node u (lines 6-13) consists of the relaxation of each one of its

outgoing edges (lines 8-13) whereas the edge relaxation consists of the following steps:

In lines 9-11, check if the outgoing neighbour v if it is in the Open. If v is not in the

Open, then it is an unexplored node and the path ⟨s, .., u, v⟩ is a valid s−v path, therefore,

update its parent. In lines 12 and 13, if v is in the Open, then the search algorithm may

perform the UPDATE PARENT procedure. The UPDATE PARENT, which depends of the

specific implementation, consists of checking if the path ⟨s, .., u, v⟩ is a path of lower

estimated cost than the actual s−u path (if exists). If this occurs, the s−v path is updated

by line 13 such that it now passes through u. The estimated cost is also defined in each

implementation. The algorithm ends with the path reconstruction (lines 14-18), which

consists of building the path from the end to the beginning using the parents array.

Now we prove correctness of this algorithm. If, when given s and t, we show that π is an

s-t path. The returned sequence π consists only of (parent[u], u) tuples. Also, (parent[u],

10

u) is an edge since it is defined in lines 8, 11 and 13. Therefore π is a path on G. Now we

show that π is an s-t path. For line 1, s is the first node to be expanded and also is the first

node in every path. For line 15, the last edge of π ends in t. Therefore π is an s-t path and

2.1 is correct.

Next we prove that this algorithm is complete. Since each expanded vertex is added

to the Closed (line 7) and each node is added to the open only if it isn’t in the Open or

Closed already, this algorithm expands every node at most once. Also, for line 8, each

node relaxes its edges at most once, therefore, every edge is checked at most once. Thus,

if G is finite, the algorithm will halts.

In the expand node phase, the algorithm performs O(|V |) Open queue deletions and

closed insertions. In the Edges relaxation phase, it performs O(|E|) queue insertions and

the same order of Closed checks, Open checks and UPDATE PARENT calls.

A search algorithm can be seen as the exploration of search tree. The number of ex-

panded nodes during a search algorithm is the search space. The branching is the average

number of nodes that are added to the Open after an expansion. Finally, the solution depth

is the length (number of edges) of the returned path π. Specific details of the most common

search algorithms are presented as follows.

2.2.1. BFS

Breadth first search (BFS) uses a first-in first-out queue. Given it uses a breath ex-

ploration, BFS is guaranteed to find path with the minimum amount of edges. In this

algorithm the queue insertion and deletion are O(1), resulting in a O(|V | + |E|) time

complexity.

2.2.2. Dijkstra

Dijkstra uses a priority queue in which the priority of a node u is the distance ds,u.

The priority, called g, is initialized as g(v) = ∞ for all v ∈ G \ {s} and g(s) = 0. The

11

g-value of a node v explored from u node equals to g(v) = g(u) + c((u, v)). In Dijkstra,

the UPDATE PARENT returns true when g(v) > g(u) + c((u, v)) and false otherwise, i.e.

u is being discovered from path of lower cost that pass by v. Dijkstra is guaranteed to find

the shortest s-t path and is used in one-to-many queries.

2.2.3. Bidirectional Dijkstra

Bidirectional Dijkstra presents a new approach to solve an s-t problem that consists of

performing simultaneously a search from the start and another search from the goal. The

objective is to explore two search spaces with half radius, resulting in a smaller search

space with respect to Dijkstra. These searches explore the forward and backward graph

respectively. The forward graph Gf = (V,Ef , c) equals to G, but for clarity we add the

f sub index. The backward graph Gb = (V,Eb, c) is a graph where for each (u, v) in Ef

there is (v, u) ∈ Eb with c((u, v)) = c((v, u)). We use f and b sub indices to distinguish

between G, E, Open , Closed, g from forward and backward graphs and searches.

To simulate simultaneous searches, the algorithm decides which open should be expanded

in every iteration using a criterion. The most common criteria are: (1) Expand the queue

with the lowest g value (2) Expand the queue with maximum size (3) Alternate between

Openf and Openb.

The algorithms finishes after (1) the two frontiers meet at node u and (2) only paths with

cost higher than gf (u) + gb(u) can be found. Bidirectional Dijkstra is used to solve one-

to-one queries and it is based on that the area of a circle with radius r is larger than the

area of two circles of radius r
2
.

2.2.4. A*

A* uses a priority queue with a priority term defined as f(u) = g(u) + h(u). g is

the same function used in Dijkstra while h is an heuristic function. If A* is run with

an admissible heuristic, it is guaranteed to find an optimal solution. In this algorithm g

and UPDATE PARENT are used in the same way than in Dijkstra. If the priority queue is

12

implemented used a Min Heap, then the worst case time complexity of A* is O((|V | +

|E|)log2|V |.

2.3. Contraction Hierarchies

Contraction Hierarchies (CH) (Geisberger, Sanders, Schultes, & Delling, 2008) is a

preprocessing algorithm that builds an augmented graph G′ = (V,E ′). In this graph,

there are additional edges between nodes, called shortcuts. Shortcuts are used to speedup

queries in the graph, however, they should be added smartly to avoid graphs with size

V × V . For this, CH performs and ordering of all nodes where nodes are sorted from the

least important to the most important. Then, every node is contracted according that order.

Once a node is contracted, it is assigned with a hierarchy level, which must be higher than

the level of other already contracted nodes. The preprocessing phase ends when all nodes

are contracted.

Contraction is the process by which a node v ∈ V is temporarily removed of the graph.

In order to preserve shortest paths in the remaining graph, shortcuts between incoming

neighbours u and outgoing neighbours w are added, but only if the path ⟨u, v, w⟩ is the

unique u-w shortest path. Also, the node and all its edges are removed temporarily from

the graph.

In order to determine the shortcuts that need to be added into the graph after in case of

a contraction of a node v, a modified Dijkstra is performed from every incoming neighbour

u. This search ends after all outgoing neighbours w of v are expanded. Also, it does not

add v to the Open (Algorithm 2.1, line 9) in order to verify if the only shortest path is

⟨u, v, w⟩. The execution of this version of Dijkstra is the most time-consuming task in the

preprocessing phase, because of this, it may be useful to limit the search space of these

searches. The search space limit (L) is a parameter of CH and is used to improve the

preprocessing times.

13

In the aforementioned procedure, the importance of a node plays a crucial role, since it

determines the ordering of the nodes, and therefore the final size of the augmented graph.

Thus, the ordering of the node must minimize the shortcuts added to the graph at the same

time it improves the average query speed. The importance of a node is represented as a

linear combination of different priority terms, some of them are described below.

• Edge difference (E): The edge difference in the contraction of a node v is ar-

guably the most important priority term. It represent the number of shortcuts that

need to be added to G in order preserve shortest paths in the remaining graph

minus the sum of the incoming and outgoing edges from v.

• Deleted/contracted neighbors (D): Is the number of neighbours that are already

contracted. This term is used to contract nodes uniformly on the grid, this way

improving query speed.

• Search space (S): It is a measure of the cost of a contraction. It equals to the

sum of the search space of all Dijkstras associated to the contraction of v. It can

be used to decrease preprocessing time.

The importance of a node, also referred as the priority, can be determined in an initial

phase of CH, however, subsequent node contractions can change its value. Therefore,

determining an optimal ordering of the nodes can be a time-consuming task. To deal

with this, there are heuristics that can be used to reduce preprocessing time at the cost of

obtaining sub-optimal ordering. One of these heuristics is presented in (Geisberger et al.,

2008). This consists of (1) before contracting a node, recalculate its priority to verify that

it is the least important node, otherwise, repeat this process with the new least important

node. (2) each time a node is contracted, update the priority of its neighbours, since their

priority probably changed. (3) Periodically update all priorities.

Once the hierarchy is built, an s-t query can be solved by performing a bidirectional

search starting from s and t. In those searches, only edges that go up in hierarchy are

used, therefore, reducing substantially the branching factor. Also, shortcuts help reaching

14

solutions with lower depth. After the bidirectional search is finished, the resulting path

may consist of edges on the original graph and shortcuts. In order to have a path in the

original graph, every shortcut must be unpacked into the corresponding edges on G.

One way to implement the unpacking procedure is by 2-pointer unpacking. For perform-

ing this procedure, the two base edges e1 and e2 that composes a shortcut must be saved.

This edges can be shortcuts too. Then, for unpacking a shortcut it is necessary to recur-

sively unwrap both of its edges in its corresponding base edges, until these edges are not

shortcuts.

2.4. The Subgoal Graph framework

The Subgoal Graph Framework (Uras, 2019) is a general idea used in pathfinding that

uses preprocessing to speed up pathfinding. During preprocessing time, we are given the

search graph G, and we build another graph GS , whose nodes are a subset of the nodes of

G. During query time, we are given a start and a goal node of G and find a path connecting

such nodes by carrying out search over GS .

Both Subgoal Graphs (Uras et al., 2013) and Jump Point Graphs (Harabor et al., 2019)

fit into the subgoal graph framework. In the rest of the section, we give definitions that are

common to these two graphs, and which are also be the basis for directed subgoal graphs,

the type of graphs we propose in this thesis.

2.4.1. Formal definition

We start off with some of the the basic definitions needed to compute a subgoal graph.

All definitions in this section were first proposed in (Harabor et al., 2019).

Definition 2.1. Given a graph G = (V,E), a reachability relation R is a relation such

that R ⊆ V × V , and:

(i) For every v ∈ V , (v, v) ∈ R.

(ii) For every (v1, v2) ∈ E, (v1, v2) ∈ R.

15

When (v1, v2) ∈ R we say v2 is R-reachable from v1 or v1 R-reaches v2. The reader

may notice at this point that our definition of reachability relation is very general. For

example, we may say that v1 and v2 are horizontally reachable iff (1) v1 = v2, (2) v2 =

v1+d, for some d ∈ D, or (3) there is a path from v1 to v2 generated by performing cardinal

move (1, 0). Not all reachability relations allow us to define useful subgoal graphs. We

give more examples in the following sections.

Definition 2.2. t is direct-R-reachable (DR-reachable) from s with respect to S ⊆ V

on G iff (s, t) ∈ R and no shortest s-t path on G passes through any v ∈ S.

For an example of direct-R reachability, consider once again horizontal reachability,

defined above, and let S = V . Observe that if n1, n2, and n3 are all horizonatally reachable

from each other, but a shortest path from n1 to n3 passes through n2, then n3 is not direct-

horizontally reachable from n1. Direct reachability is later used to define the connections

in subgoal graph. We aim these connections to be as fewer as possible. By using direct

reachability we avoid adding arcs that are not necessary for search.

Below we may say simply that ‘t is DR-reachable from s’ when set S is clear from the

context.

Definition 2.3. S ⊆ V is an R−shortest-path-cover (R−SPC) on G iff, for all s, t ∈ V

if (s, t) /∈ R, then at least one shortest s-t path on G passes through some v ∈ S

When a set of nodes is a shortest-path-cover we know that no optimal paths between

nodes of the cover are ‘lost’. Indeed, we define a subgoal graph as one in which such

shortest paths are maintained, given a specific reachability relation R, as follows.

Definition 2.4. GS = (S,ES), where S ⊆ V is a set of subgoals, is a subgoal graph

on G with respect to R iff S is an R-SPC on G and for all u, v ∈ V such that u ̸= v, it

holds that (u, v) ∈ Es iff v is DR-reachable with respect to S from u.

16

2.4.2. Preprocessing algorithm

2.4.2.1. Building the graph

In order to compute a subgoal graph according to Definition 2.4, a set of subgoals S

and a reachability relation R are needed. However, it is possible to describe high level

algorithm that assumes that those elements are given, as shown in Algorithm 2.2. The

input of this process is the grid graph represented by its binary matrix A whose dimensions

are W ×H .

The function DEFINE SUBGOALS invokes the IDENTIFY SUBGOALS function for ev-

ery unblocked cell n whereas the latter function adds subgoals associated with n to the set

of subgoals S. Here, we use the word ‘associated’ since, as explained in Section 2.5 and

Section 2.6, subgoals can be cells (v ∈ V) or tuples of cells and directions (v ∈ V ×D).

The function CONNECT GRAPH receives the set of subgoals S and for each subgoal v

calls the FORWARD CONNECT for v, which return all DR-reachable subgoals v′ from v.

Finally, once the subgoal graph GS is computed by invoking COMPUTE SUBGOAL GRAPH,

it can be stored to be used later, in the query phase, to speedup an s− t query.

2.4.2.2. Clearances

The FORWARD CONNECT procedure, which consists of finding every DR-reachable

subgoals v′ from every subgoal v, can be quite expensive if performed in a naive manner.

Given this, it is often optimized using the concept of clearances.

Formally, the clearance C[n, di] is a function that returns how many movements are

needed to move from cell n in direction di to reach the nearest important cell n′ if exists,

otherwise returns zero.

Important cells can be (1) cells that contain subgoals that satisfy a given property

(simple important) or (2) cells that lead to another simple important cell along a given

17

Algorithm 2.2 Constructing a generic subgoal graph from a binary matrix A. Blue and
red lines are subgoal graph-specific.

1: function DEFINE SUBGOALS(A)
2: S ← ∅ ;
3: for all unblocked cells n from A do
4: IDENTIFY SUBGOALS(n, S,A);
5: return S
6: function CONNECT GRAPH(S)
7: ES ← ∅;
8: for all v ∈ S do
9: Ev ← FORWARD CONNECT(v);

10: for all v′ ∈ Ev do
11: ES ← ES ∪ {(v, v′)};
12: return ES

13: function BUILD SUBGOAL GRAPH(A)
14: S ← DEFINE SUBGOALS(A);
15: ES ← CONNECT GRAPH(S);
16: GS ← (S,ES)
17: return GS

direction (recursive important). We say that an important cell n′ leads to another important

cell n′′ along d iff n′ + k · d = n′′, for some k > 0 with k ∈ N.

This way, a clearance that uses a simple important cell is a simple clearance. A re-

cursive clearance C[n, di] is a clearance that uses a recursive important cell that leads to

n′′ where n′′ must be an important cell for a different simple clearance. Therefore, the

recursive clearance that reaches n′ must satisfy C[n′, d] > 0 for another simple clearance.

An hybrid clearance uses both types of important cells. Diagonal and cardinal clearances

are defined according to their directions.

Most simple important cells are located at convex corner cells. A convex corner cell is

an unblocked cell n which satisfy (1) for di a diagonal direction, n+ di is blocked and (2)

n+di+1 and n+di+1 are unblocked. An example of the different clearances using convex

corner cells as simple important cells is shown in Figure 2.2. Despite this, each subgoal

graph must define its own clearances.

18

n0

3

2

21

1

2

1 n′1

n′2

n′3

n′′1

n′′2

n′′3

(a) Simple and recursive clearances.

n0

n1

n2 n3

4/2

2/2

(b) Recursive and hybrid clearances.

Figure 2.2. (a) The diagonal clearance towards NE is recursive, i.e., it mea-
sures distance to the nearest recursive important cell (yellow). The cardinal
clearance towards E is simple, i.e., it measures distance to the nearest sim-
ple important cell (red). Using these clearances is possible to determine
a path from n0 to n′′

1, n′′
2 and n′′

3 checking only 3 recursive and 3 simple
clearances. (b) If the clearance towards NE is recursive, the value from n0

is 4, reaching n2. However, if the clearance is hybrid, the value from n0 is
2, reaching n1. These clearances are equivalent from n1, both reaching n2.

2.4.3. Query algorithm

Once the graph is built, the procedure to solve an s-t query is called Connect-Search-

Refine [CSR] and is explained as follows:

(i) The first step is to try a direct path. This consists of checking if an s-t freep-

sace shortest path is unblocked on G. If a direct path is found, then it is the

shortest path and this complete procedure ends. The worst case time complexity

is O(W + H), however, since finding any blocked cell interrupts this process,

the time consumed in this phase is low.

(ii) Connect: Then, only if the start does not already belong to S, it must be con-

nected to other DR-reachable subgoals using the forward connection. In the

same way, only if the target does not already belong to S, all subgoals that DR-

reach the target must connect to it. The latter procedure is referred as backward

19

connection. The complexity of the connect stage depends on the subgoal graph

implementation.

(iii) Search: Next, a search in the subgoal graph is performed. Any search algorithm

could be used, but best first ones such as A* are the preferred choices. Once the

search ends, it returns πS which is a path on the subgoal graph. The complexity

of A* is O((| S | + | ES |) · log2 | S |).

(iv) Refine: Here we convert πS into a path on G. If R is a relation that ensures

that at least one freespace shortest path is unblocked on G, then the refinement

process consists of:

Let πs = ⟨n0, ..., nk⟩ be the s-t shortest path on Gs where n0 = s and nk = t .

For each pair of subsequent subgoals ni and ni+1 let πi be any ni-ni+1 freespace

shortest path on G. Next, let π′
i be the subpath without its last cell. Finally the

concatenation of π′
0 · ... · π′

k−1 · t is a valid shortest path on G. This procedure

has a linear complexity on πs cost.

For each subgoal graph instance we must define the forward connection only if it differs

from the preprocessing forward connection and the backward connection only if it differs

from the query forward connection. Also, we must define the default freespace shortest

path used in the refine procedure.

2.5. Subgoal Graphs

Subgoal Graphs (SG) (Uras et al., 2013) is one of the type of graphs that is generalized

by the subgoal graph framework.

2.5.1. Formal definition

Our definitions are adapted from (Uras et al., 2013) and (Harabor et al., 2019).

Definition 2.5 (Subgoals). An unblocked cell n ∈ V is a subgoal iff there exists a

diagonal direction di such that n+di is blocked and n+di+1 and n+di−1 are unblocked.

20

0

1

2

3

4

5

0 1 2 3 4 5 6 7 8

S A B C

D E

F G

Figure 2.3. Subgoals are marked with letters. A, D and F are DSFR from
S. B and C are SFR from S but not direct since A is in the S-B and S-C
path. E is also SFR from S but not direct since D is in a S-E path. Finally,
G is FR from S since there is an unblocked freespace path, but is not SFR
since there are subgoals and obstacles in other freespace paths.

Definition 2.6 (Safe-Freespace reachability). Two cells are safe-freespace-reachable

[SFR] if each freespace-shortest path between them are is also a path on G.

Below we use the abbreviation DSFR to refer to direct-safe freespace reachability.

Figure 2.3 shows an example of the different reachability relations.

Figure 2.3 shows an example of the different reachability relations.

In (Uras, 2019) the authors proved that the set of subgoals is a SFR-SPC on G. There-

fore one can build a subgoal graph GS = (S,ES) where S is the set of subgoals and R is

safe-freespace-reachability. This subgoal graph is called Subgoal Graph [SG] since it is

the former subgoal graph.

2.5.2. Framework implementation

Using Definition 2.5 and Definition 2.6 we can instantiate a subgoal graph. The next

step is to implement the procedures of the subgoal graph framework.

21

2.5.2.1. Identify subgoals

In the IDENTIFY SUBGOALS is implemented in Algorithm 2.3 according to Defini-

tion 2.5. It is an straightforward implementation which perform a for loop with constant

size and constant-time operations, therefore it is O(1) in time and space.

Algorithm 2.3 SG: Identify subgoals in cell n.

1: function IDENTIFY SUBGOALS((n, S,A))
2: for all diagonal directions superscripts i do
3: if n+ di is blocked on A then
4: if n+ di+1 and n+ di−1 are unblocked on A then
5: S ← S ∪ {n};

2.5.2.2. Clearances

The clearances used to detect DSFR subgoals are

• Cardinal clearances C[n, d]: These are simple clearances that reach any subgoal

along d.

• Diagonal clearances C[n, di]: These are hybrid clearances that reach (1) any

subgoal along di and (2) cells n′ with C[n′, di±1] > 0.

2.5.2.3. Forward connection

In order to construct the set of edges, we must define the FORWARD CONNECT which

performs the detection of DSFR subgoals. This is implemented in Algorithm 2.4, which

is a modified version of the algorithm presented in (Harabor et al., 2019) that includes an

adaptation of the optimization for allowing only direct connections presented in (Uras et

al., 2013).

In this algorithm, since subgoals are cells, we use n instead of v to refer to them. The core

idea is to perform a systematic exploration of the space using diagonal-first scans from

the cell n at the same time it tracks the cardinal distance to subgoals in order to preserve

DSFR connections. Diagonal-first scans (DF-scans) are procedures in which a diagonal

22

and recursive clearance is checked iteratively, while checking the corresponding simple

and cardinal clearances in every step.

In detail. the function CARDINAL SCAN performs the connection to DSFR subgoals

checking a cardinal clearance while respecting and returning the new boundaries for direct

connections (lines 3, 5 and 6). Since it consists only of constant-time operations it is O(1)

in time and space.

The function FORWARD CONNECT performs the connection to (1) DSFR subgoals that are

reached by a cardinal path (lines 10-11) (2) DSFR subgoals that are reached by a diagonal

path (lines 19-21) and (3) DSFR subgoals that are reached by a path with diagonal and

cardinal movements (lines 12-24). The latter procedure is performed using DF-scans. The

time and space complexity of FORWARD CONNECT is as follows: First, the time complex-

ity of CARDINAL SCAN is O(1) since it only performs constant-time operations. Then,

the for loop in lines 10-11 has constant size and performs only constant-time operations,

therefore it is O(1). The for loop in lines 12-24 has constant size but the while loop in

lines 17-24 iterates through a diagonal axis of the grid. Since each operation performed

inside this loop is constant, the time and space complexity of Algorithm 2.4 is linear on

the smallest grid dimension.

After the subgoal graph is built, a s-t query can be answered using the CSR procedure.

In Subgoal Graphs, the forward and backward connection are equivalent.

2.5.2.4. Refine

The refinement process of the CSR procedure can be performed by using any freespace-

shortest path, since SFR guarantees all those paths are unblocked. To simplify this process

we use paths which prioritize diagonal movements before cardinal movements.

23

Algorithm 2.4 SG forward connection from a cell n.
1: function CARDINAL SCAN(n, i, b)
2: clr ← C[n, di];
3: if clr > 0 and clr < b then
4: En ← En ∪ {n+ clr · di};
5: return clr;
6: return b;
7: function FORWARD CONNECT(n)
8: B ← array of size 8; ▷ Cardinal boundaries
9: En ← ∅;

10: for all i cardinal direction superscripts do ▷ Cardinal connection
11: B[i]←CARDINAL SCAN(n, i,∞);
12: for all j diagonal direction superscripts do
13: b− = B[j − 1];
14: b+ = B[j + 1];
15: clr ← C[n, dj];
16: n′ ← n;
17: while clr > 0 do ▷ DF-scans
18: n′ ← n′ + clr · dj;
19: if IS SUBGOAL(n′) then ▷ Diagonal connection
20: En ← En ∪ {n}′;
21: break;
22: b− ←CARDINAL SCAN(n′, j − 1, b−);
23: b+ ←CARDINAL SCAN(n′, j + 1, b+);
24: clr ← C[n′, dj];

return En;

2.6. Jump Point Graphs

Jump Point Graphs (JP) (Harabor et al., 2019) is a preprocessing algorithm that builds

a subgoal graph over the direction-extended grid graph. It formalizes the Jump Point

Search search space as a graph, defining a set of jump points and the direct diagonal first

freespace reachable reachability relation to define the edges of the graph.

2.6.1. Jump Point Search

Jump Point Search (JPS) (Harabor & Grastien, 2011) is an online search algorithm,

i.e., it requires no preprocessing. It is based on exploring only-diagonal first paths, while

only expanding a subset of the explored nodes called jump points. These jump points can

24

ni

xni−1

ni+1

(a) card-to-card

ni

y
ni−1 ni+1

(b) diag-to-diag

ni

z

ni−1

ni+1

(c) card-to-diag

ni

ni−1

ni+1

(d) diag-to-card

Figure 2.4. Examples of the four types of turning points and its respective
conditions to belong to shortest and DF paths. (a) A card-to-card turning
point can only belong to a DF and shortest path if x is blocked. (b) A
diag-to-diag turning point can not belong to any shortest path, since if y is
blocked the diagonal movement is not possible and otherwise it would not
be a shortest path. (c) A card-to-diag turning point can belong to a shortest
path and in order to be in a DF path z must be blocked. (d) A diag-to-card
turning point can belong to DF and shortest paths.

be (1) cells that can be used to circumnavegate an obstacle or (2) cells from which a re-

peated cardinal movement leads to the former case. Now we present the formal definitions

of JPS that are transcendental to the understanding of the search space that is generated.

These definitions were obtained from (Harabor & Grastien, 2011).

Definition 2.7. A turning point is any node ni along a path π = ⟨n1, n2, . . . , nk⟩

where the direction of travel from the previous node ni−1 to ni is different to the direction

of travel from ni to the subsequent node ni+1, that is, ni−ni−1 and ni+1−ni have different

directions. A turning point ni is card-to-diag if the direction of ni − ni−1 is cardinal and

the direction of ni+1 − ni is diagonal. A turning point ni is diag-to-card if the direction of

ni − ni−1 is diagonal and the direction of ni+1 − ni is cardinal.

Definition 2.8. A path π is diagonal-first (DF) if it contains no card-to-diag turning

point ⟨nk−1, nk, nk+1⟩which could be replaced by a diag-to-card turning point ⟨nk−1, n
′
k, nk+1⟩

to produce a new valid path on G.

Definition 2.9. A path π is cardinal-first (CF)) if it contains no diag-to-card turning

point ⟨nk−1, nk, nk+1⟩which could be replaced by a card-to-diag turning point ⟨nk−1, n
′
k, nk+1⟩

to produce a new valid path on G.

25

In Figure 2.4 we show all different turning points and explain its respective conditions

to belong to shortest and DF paths. A Diag-to-diag turning point can not belong to a short-

est path, whereas a card-to-card can only belong to a shortest and DF path if surrounding

an obstacle. A Card-to-diag turning point can belong to a shortest path, but in order to

belong to a DF path it must surround an obstacle, whereas a diag-to-card turning point can

belong to a shortest and DF path without extra conditions.

During a search, JPS only adds nodes to the Open list that reached by a diagonal-first

path. Also when expanding a node, it scans along continuations of the possible diagonal

first paths and only take as successors a subset of nodes, called jump points, that generates

different branches of diagonal-first paths. The successors are called jump points and there

are 2 types of them, that are mentioned below. This definitions are extracted from (Harabor

et al., 2019)

Definition 2.10. A straight jump point is a tuple (n, d) where d is a cardinal direction

and for some d′ ⊥ d, n+ d′ is unblocked, n− d is unblocked and (n− d) + d is blocked.

Figure 2.5(a) illustrates this definition, while also it shows that a single convex corner

cell can generate up to two straight jump points in a cell.

Definition 2.11. A diagonal jump point is a tuple (n, d) where n is a cell and d =

c1 + c2 is a diagonal direction such that for some direction c ∈ {c1, c2} and k ∈ N is true

that the freespace shortest path between n and n′ = n + k × c is unblocked and n′ is a

straight jump point or n′ is the target.

In order to reach the target, it is also generated as a successor, according to Defini-

tion 2.11. In Figure 2.5(b) an execution of JPS for solving an s-t problem is shown. We

observe that only a small subset of nodes is expanded, resulting in faster query times with

respect to A*.

In (Harabor & Grastien, 2011) they proved JPS is optimal. Since it also returns only

diagonal-first shortest paths, then it is possible to establish the following lemma.
26

d

n
d′
n+ d′

n− d n− d+ d′

−d′

(a) A straight jump point (n, d).

s t
(b) s-t query using JPS.

Figure 2.5. (a) In order to define a jump point in (n, d), two adjacent cells
n + d′ and n − d must be unblocked and n − d + d′ must be blocked.
One can notice that (n,−d′) is also a jump point. (b) The red arrows and
yellow disks represent the expanded straight and diagonal jump points re-
spectively. The dashed blue line represents the actual path and the dashed
black line represent other explored jump points.

Lemma 2.1. (Harabor et al., 2019) For every shortest path π on G, there exists a path

π′ on G which has the same cost and is diagonal-first.

A drawback of JPS is that since it does not explicitly build a graph, it cannot be en-

hanced with other preprocessing algorithms such as Contraction Hierarchies. For this

reason, the question arises whether it is possible to represent the search space of JPS as a

subgoal graph. The formalization of this idea is presented bellow.

2.6.2. Formal definition

The formalization of JPS search space is presented below. The following definitions

and lemmas are obtained from (Harabor et al., 2019).

Definition 2.12. A path π = ⟨n1, ..., nk⟩ is taut iff every subpath of the form ⟨ni−1, ni, ni+1⟩

of π is a shortest path between ni−1 and ni+1.

Definition 2.13. Let G = (V,E) be a grid graph. The corresponding direction-

extended grid graph G∗ = (V ∗, E∗) is as follows

• V ∗ = {(n, d) | n ∈ V, d ∈ D}.
27

• For each (n1, n2) ∈ E and each pair of grid moves d1 and d2 there exists

((n1, d1), (n2, d2))) ∈ E∗ if and only if:

(i) n1 + d2 = n2

(ii) if ⟨(n1 − d1), n1⟩ ∈ E then ⟨n1 − d1, n1, n2⟩ is diagonal-first and taut;

otherwise, d1 = d2.

Intuitively, being at node (n, d) in the direction-extended graph should be interpreted

as “we are at node n while coming from another node in G by applying movement d”. This

is established by Condition 1 in Definition 2.13. Condition 2 of Definition 2.13 establishes

that connections cannot be produced between nodes if such connections would allow the

existence of diagonal-first and taut path. Notice that if n1 − d1 does not exist—this could

be due to the fact that n1 is at the border of the grid or adjacent to an obstacle—we only ask

that d1 = d2 to be consistent with the fact that connections in G∗ reflect only shortest-path

connections.

G∗ can be seen as G with two main differences: (1) Each cell is augmented with

the possible incoming directions (2) Any edge ((n1, d1), (n2, d2))) also considers the cell

n1−d1 and the path defined by ⟨n1−d1, n1, n2⟩must be diagonal-first and taut. Therefore,

even if the set of nodes is larger, the set of edges is reduced. Also, as shown in the

following lemma, the number of paths is also reduced to only allow diagonal-first and taut

paths.

Lemma 2.2. Any path π∗ on G∗ is diagonal-first and taut.

The Lemma 2.2 shows that G∗ can be used to solve a path planning problem by treating

all (s, d) as start nodes and all (t, d) as goal nodes, for all d ∈ D. Also, it is possible to

notice that all straight jump points belong to G∗. Therefore, in order to construct a subgoal

graph on G∗ it is necessary to define a rechability relation those jump points.

Definition 2.14. The diagonal-first freespace-shortest path from n to n′ is a freespace-

shortest path where all diagonal moves appear before cardinal ones. A node (n′, d′) ∈ V ∗

28

is a diagonal-first freespace reachable [DFFR] from (n, d) ∈ V ∗ iff a path from (n, d) to

(n′, d′) on G∗ corresponds to the diagonal-first freespace-shortest path from n to n′. We

use DDFFR to denote direct-DFFR reachability.

Now we prove the following theorem, whose proof was presented in (Harabor et al.,

2019).

THEOREM 2.1. Straight jump points form a DFFR-SPC on G∗

PROOF. Let s∗ = (s, d) and t∗ = (t, d). For a contradiction, we assume (s∗, t∗) /∈

DDFFR and no shortest path passes through a jump point. By Lemma 2.2 π∗ is diagonal-

first and taut, therefore π∗ must have at least one turning point. If a turning point is

card-to-card, then it either pass through a jump point or it is not taut. If a turning point is

diag-to-diag it is not taut. If a turning point is card-to-diag it is either not locally diagonal-

first or it passes through a jump point. Finally, if there exists only one turning point and it

is diagonal-to-cardinal then (s∗, t∗) ∈ DDFFR. Thus, either (s∗, t∗) are DDFFR or π∗ pass

through a jump point. □

For Theorem 2.1 we can define the subgoal graph GS with S as the set of straight

subgoals and DDFFR as the reachability relation that generates ES . This subgoal graph is

called Jump Point Graph [JP].

2.6.3. Framework implementation

We now define the procedures in the subgoal graph framework.

2.6.3.1. Identify subgoals

The IDENTIFY SUBGOALS function is implemented in Algorithm 2.5. It consists of

adding the corresponding two straight jump points to S according to Definition 2.10, but

only if they do not already belong to it. This algorithm is O(1) in space, and if the set

operations are O(1), the complexity of this process is O(1) in time too.
29

Algorithm 2.5 JP: Identify subgoals in cell n.

1: function IDENTIFY SUBGOALS((n, S,A))
2: for all diagonal directions superscripts i do
3: if n+ di is blocked on A then
4: if n+ di+1 and n+ di−1 are unblocked on A then
5: if (n, di−3) /∈ S then
6: S ← S ∪ {(n, di−3)};
7: if (n, di+3) /∈ S then
8: S ← S ∪ {(n, di+3)};

2.6.3.2. Clearances

In JP the forward and backward connection differs, since the backward connection

must check cardinal-first paths. Therefore, there are four types of clearances, listed below:

(i) Forward cardinal clearances Cf [n, d]: These are simple clearances that reach

jump points with direction d.

(ii) Forward diagonal clearances Cf [n, d
i]: These are recursive clearances that reach

cells n′ with Cf [n
′, di±1] > 0.

(iii) Backward diagonal clearances Cb[n, d
j]: These are simple clearances that reach

jump points with direction dj±3. Only those jump points can DFFR-reach the

cell n.

(iv) Backward cardinal clearances Cb[n, d
k]: These are hybrid clearances that reach

(1) jump points with any direction and (2) cells n′ with Cb[n
′, dk±1] > 0.

2.6.3.3. Forward connection

In Algorithm 2.6 (Harabor et al., 2019) we implement FORWARD CONNECT. Here, we

use DF-scans to systematically explore the space, but unlike SG, it is not necessary keep

distance to other subgoals. The pseudo-code in Algorithm 2.6 performs the connection

of the start node of a query. However, the forward connection for a jump point in S is

different, performing only a subset of the scans, the ones that generate diagonal first paths,

as show in Figure 2.6 (a). The connection of a start node is also shown in Figure 2.6 (b).

In (Harabor et al., 2019) the authors showed the space and time complexity of running

30

FORWARD CONNECT over a single jump point is O(min(W,H)). However, when running

this function over all jump points it is possible to limit this complexity to O(WH).

Algorithm 2.6 JP forward connection from the start node located at cell n.
1: function CARDINAL SCAN(n, i, En)
2: if Cf [n, d

i] ≥ 0 then
3: En ← En ∪ {(n+ Cf [n, d

i] · di, di)};
4: function DIAGONAL FIRST SCAN(n, j, En)
5: n′ ← n;
6: while Cf [n, d

j] ≥ 0 do
7: n′ ← n′ + dj · Cf [n, d

j];
8: CARDINAL SCAN(n′, j − 1, En);
9: CARDINAL SCAN(n′, j + 1, En);

10: function FORWARD CONNECT(n)
11: En ← ∅;
12: for all cardinal direction superscripts i do
13: CARDINAL SCAN(n, i, En);
14: for all diagonal direction superscripts j do
15: DIAGONAL FIRST SCAN(n, j, En);
16: return En;

2.6.3.4. Backward connection

As above mentioned, backward connection must perform cardinal-first scans. A cardinal-

first scan (CF-scan) consists of an iteration over a cardinal axis in where in each step at

least one diagonal scan is performed. A diagonal scan consists of checking a diagonal

clearance in order to perform a connection when applicable. As the authors of (Harabor

et al., 2019) mentioned, CF-scans need to iterate in both cardinal and diagonal axes in

order to connect all jump points that DDFFR the goal. This is shown in Figure 2.6(b).

As a result, the time and space complexity of backward connection increases to O(WH),

which is higher than a single call to FORWARD CONNECT.

2.6.3.5. Refine

In the refine procedure, JP must refine each edge between jump points in the corre-

sponding freespace-diagonal-first path on G.

31

c2

d
c1

d′

c′

x

(a) Cardinal and DF-scans
performed in forward con-
nect.

s

t

n

(b) Start and target connection.

Figure 2.6. (a) Forward connect from the red jump point only calls CARDI-
NAL SCAN for c1 and c2 and DIAGONAL FIRST SCAN for d. Scans through
green directions c′ and d′ are not diagonal first unless x is a blocked cell.
(b) In JP the start s connects to all red nodes using cardinal or DF-scans
(black lines). It does not connect to the purple node, since it is reached in
a diagonal movement. However in JPD, the start would connect to the pur-
ple node and end the scan, thus not connecting to the red node in n. In JP
the target t connects to blue nodes using cardinal, diagonal and CF-scans
(green). Purple node is connected to the target after an iteration through the
diagonal green axis. In JPD, the target do not need to iterate in diagonal
directions, thus not connecting to the purple node.

2.6.4. Diagonal Merged Jump Point Graphs

In order to improve the complexity of backward connection, authors developed a vari-

ant of JP that does not need to iterate through diagonal directions. This is achieved by

using additional jump points with diagonal directions along with the straight jump points.

The usage of jump points with diagonal directions is explained in depth in Section 3.1.3.1.

This way, a DF-scan in the forward connect procedure can stop if there is a diagonal jump

point with the same direction. As a consequence, forward connections may finish earlier

than in JP and backward connections now only need to perform a single diagonal scan in

each visited cell in the diagonal scan. In Figure 2.6 it is possible to notice the differences

between forward and backward connections of JP and JPD. The graph resulting of these

modifications is called called Diagonal Merged Jump Point Graph [JPD] (Harabor et al.,

2019).

32

Since in JPD the backward connection iterates through every cardinal direction while

performing constant operations in each visited cell, its complexity is O(W + H) in both

time and space. The authors signaled that in the MovingAI benchmark (Sturtevant, 2012)

JPD uses 26.3% and 75% less edges than JP in games and street-1024 categories respec-

tively. Also, the connection procedure is 11% faster overall.

33

3. DIRECTED SUBGOAL GRAPHS

3.1. Directed Subgoal Graphs

In this chapter, we introduce Directed Subgoal Graphs [DSG] which is a new subgoal

graph inspired by both JP and SG. First, we provide a motivation for the key idea of DSG.

Then, we proceed to the formal definition of the set of nodes called directed subgoals and

the direct-diagonal-first safe-freespace reachability relation. Next, we prove that the set

of directed subgoals forms a DFSFR-SPC on G. After that, we explain how the subgoal

graph framework is implemented in DSG. Finally, we give new insights on how to improve

CH performance in combination with a directed grid graph such as DSG, JP or JPD.

3.1.1. Motivation

There are two properties of JP that explain its superior performance with respect to SG.

The first one is that JP partitions the edge set of each corresponding subgoal in SG into two

to four jump points located at the same position, as shown in Figure 3.1 (a) and (b). In case

that a search needs to expand only one of those jump points, the branching factor would

be reduced. Since each jump point is reached from a different direction, this condition

holds. The second property is that a single JP edge may represent a path of any length in

SG. An example of this is shown in Figure 3.1(c). Here, in order to go through a staircase,

SG expands a node in each stair rung while JP connects directly to the end of the staircase.

This has a direct impact in the depth of solutions: JP finds solutions with lower depth than

SG. Although these properties present a huge potential, there are cases where JP and JPD

perform poorly. Figure 1 (d) represents a floating staircase pattern that continues along the

diagonal axis. In this pattern, a search execution in JP would process a number of nodes

proportional to the length of the staircase, regardless of the target destination. Then, the

question arises as if it is possible to use each stair rung as an anchor to the rest of the

staircase. Thus, the number of processed nodes would be proportional to the distance to

the destination. The answer to this question is explained in this chapter where we build a

34

(a) A single subgoal (b) Two jump points

s

t

(c) Paths in SG and JP

repeat

s

(d) Staircase pattern in JP

Figure 3.1. (a) In SG, the Orange subgoal reaches any subgoal in the or-
ange area. (b) In JP, blue and green jump points can only reach jump
points in the respective blue and green area, since any other position is
not diagonal-first. (c) An s-t path in SG (blue) uses four additional sub-
goals, while in JP the path consists of single edge (red). (d) The jump point
in s connects to every red jump point in the floating staircase, therefore,
when s is expanded during a search, the number of processed red nodes
is proportional to the length of the staircase, regardless of the distance to
the target. Using blue nodes as an anchor to the rest of the staircase could
avoid this problem.

directed graph similar to JP and JPD that preserves the two properties mentioned above.

Also, this graph has a more restrictive connection, i.e. edges represents paths of fewer

edges on G. This connection is similar to SG and its safe-freespace-reachability.

3.1.2. Formal definition

We start by modifying the definition given by (Harabor et al., 2019) and propose the

following definition for direction extended grid graph.

35

Definition 3.1. Let G = (V,E) be a grid graph. Its corresponding direction-extended

grid graph G∗ is defined as the tuple (V ∗, E∗) where:

• V ∗ = {(n, d) | n ∈ V, d ∈ D}

• For each (n1, n2) ∈ E and each pair of directions d1 and d2 there exists ((n1, d1), (n2, d2)) ∈

E∗ if and only if:

(i) n1 + d2 = n2

(ii) It holds that if (n1 − d1, n1) ∈ E then ⟨n1 − d1, n1, n2⟩ is a shortest path;

otherwise d1 = d2.

Intuitively, as with being at node (n, d) in the direction-extended graph should be inter-

preted as “we are at node n while coming from another node in G by applying movement

d”. This is established by Condition 1 in Definition 3.1. Condition 2 of Definition 3.1

establishes that connections cannot be produced between nodes if such connections would

allow the existence of suboptimal paths. Notice that if n1 − d1 does not exist—this could

be due to the fact that n1 is at the border of the grid or adjacent to an obstacle—we only ask

that d1 = d2 to be consistent with the fact that connections in G∗ reflect only shortest-path

connections.

Figure 3.2 shows examples of edges and non-edges of G∗ in two interesting cases.

Now we provide the definitions necessary to define our subgoal graphs. We start off

with a definition for subgoal, whose location in the grid coincide with convex corners of

obstacles. In other words, their location coincide with the locations of subgoals in Subgoal

Graphs. Our definition is, however, slightly more involved since our nodes are direction-

extended. Definitions 3.2, 3.3, and 3.4 define a subset of directed subgoals.

Definition 3.2. A straight subgoal on a direction-extended graph G is a tuple (n, d)

where n is an unblocked cell, d is a cardinal direction, n − d is unblocked, and for some

direction d′ perpendicular to d, n− d′ is unblocked and n− (d+ d′) is blocked in G.

36

d1

d2n1
n2

n1 − d1

n3

d3

(a) ((n1, d1), (n3, d3)) is an
edge, but ((n1, d1), (n2, d2)) is
not.

d1
d3n1

n3

n1 − d1

n2

d2

(b) ((n1, d1), (n2, d2)) is an
edge, but ((n1, d1), (n3, d3)) is
not.

.

Figure 3.2. (a) The path ⟨n1 − d1, n1, n3⟩ is a shortest path but ⟨n1 −
d1, n1, n2⟩ is not. (b) In presence of an obstacle an edge can lead to a
blocked cell, but this is only allowed for edges whose d1 = d2 according to
Definition 3.1

Definition 3.3. A diagonal subgoal on a direction-extended graph G is a tuple (n, d)

where d is a diagonal direction if and only if for some diagonal direction dk ∈ D perpen-

dicular to d is true that n+ dk is blocked and both n+ dk−1 and n+ dk+1 are unblocked

in G.

Definition 3.4. The set of directed subgoals for a direction-extended graph G∗ is the

set of all straight and diagonal subgoals of G∗.

Now we propose a reachability relation that holds SFR in a least restrictive fashion.

This relation is used to define the subgoal reachability relation.

Definition 3.5. A path ⟨v1, v2, ..., vk⟩ on a direction-extended grid graph G∗ with vi =

(ni, di) for every i ∈ {1, . . . , k}, is diagonal-first (DF) if the following conditions hold:

(i) ⟨n1, ..., nk⟩ is a diagonal-first path on G and

(ii) If (n1− d1, n1) ∈ E then ⟨n1− d1, n1, n2, . . . , nk⟩ is a diagonal-first path on G;

otherwise, d1 = d2.

Definition 3.6. Two nodes v1 = (n1, d1) and v2 = (n2, d2) are diagonal-first safe-

freespace-reachable [DFSFR] if

37

n1

n2

n3

(a)

n1

n2 n3

n

(b)

Figure 3.3. In (a) there is no path from the red subgoal to the blue and pur-
ple subgoals on G∗, since the cells associated to their incoming directions,
n2 and n3 respectively, do not pass through any red shortest path. In (b)
the path ⟨n1, n, n2⟩ is not diagonal-first, violating Condition 3 from Defi-
nition 3.6 and thus the blue subgoal is not reachable from the red subgoal .
This does not happen for ⟨n1, n, n3⟩, allowing the connection to the green
subgoal.

(i) (n1, n2) are SFR on G and

(ii) There exists a path between v1 and v2 on G∗ and

(iii) For the node v′ = (n1 + d2, d2) the path ⟨v1, v′⟩ is a shortest and diagonal-first

path on G∗.

In Figure 3.3 (a) we show how can we use Condition 2 to prune connections to SFR

subgoals, this way allowing direct connections to subgoals that are further away in com-

parison with SG. Also, in Figure 3.3 (b) we show that Condition 3 can be used to block

connections towards areas that does not represent a turn around the obstacle.

Definition 3.7. Two nodes s and t are Direct-R-reachable if (s, t) ∈ R and no shortest

path passes through a subgoal v such that (s, v) ∈ R and (v, t) ∈ R with ds,v+dv,t ≤ ds,t.

Definition 3.7 re-states Definition 2.2 for the case of Directed Subgoal Graphs. It is

explicit in avoiding redundant edges while also is less restrictive than Definition 2.2 by

allowing shortest paths containing other subgoals that cannot be used to construct an s-t

path using edges defined by R. Using Definition 3.7 we define direct-diagonal-first safe-

freespace-reachability (DDFSFR).
38

Now, in order to prove SPC, we need the following definitions.

Definition 3.8. Let s and t be two nodes where the freespace-diagonal-first path π is

unblocked but s and t are not SFR. Let d and c be the diagonal and cardinal directions on

the moves of π. The top-leftmost directed subgoal vL = (n, d′) of π is the directed subgoal

with the lowest i (tiebreak with lowest j) in a cell n = s+ i · c+ j · d with i, j ∈ N0.

Definition 3.9. The parallelogram between two cells n1 and n2, denoted n1□n2 is the

set of all cells (blocked or unblocked) that are in a n1-n2 freespace-shortest-path. For

nodes of the form v1 = (n1, d1) and v2 = (n2, d2), v1□v2 is defined as equal to n1□n2.

Lemma 3.1. If s and t are reachable by a diagonal-first freespace path π but they are

not SFR, then s DFSFR -reaches the top-leftmost directed subgoal vL of π.

PROOF. First, we show there exists a diagonal subgoal vL inside s□t. For this proof,

we use Figure 3.4 as a reference. Given the s-t diagonal-first freespace path π is un-

blocked, the diagonal line that starts from s towards d inside s□t is unblocked. Also,

since s and t are not SFR there is at least one obstacle in s□t. We perform an iteration

over an x axis with direction c and then over an y axis with direction d inside s□t. Without

loss of generality, let o = s+ci+dj be the first obstacle that is found when scanning diag-

onally from s to t (that is, by creating parallel diagonals in the d direction from s moving

towards t. Given the diagonal line that starts on s + (i − 1)c is unblocked, we know that

cells u1 = o − c and u2 = o − c + d are unblocked (refer to Figure 3.4 for the location).

Since the diagonal line passing through s+(i− 2)c is also unblocked, cell n = o+ d− 2c

is unblocked too. Therefore a diagonal subgoal vL = (n, d) exists.

Now we show that (s, vL) ∈ DFSFR. Since o is the first blocked cell in the iteration we

know s and vL are SFR. Also, given the s-t diagonal-first freespace path exists, we know

that start direction st must be either d or d−c and the target direction dt must be d or c. For

ds = d then for any dt it holds that ⟨s, ((s+dt), (dt)⟩ is diagonal first. For ds = d−c, a car-

dinal direction, there must be an obstacle in cell z that allows diagonal-first path towards t,

therefore also making ⟨s, ((s+ dt), dt)⟩ diagonal-first. Therefore (s, vL) ∈ DFSFR. □

39

s

t

x

y

o

d

c

u1

u2n

x = i

y
=
j

z

Figure 3.4. Schema of Lemma 3.1 proof.

Finally, in order to build a new subgoal graph we enunciate the R-SPC theorem.

THEOREM 3.1. The set of directed subgoals form a DFSFR -SPC on G.

We prove this on G instead G∗ so that for two nodes s and t in G we can choose a

specific direction to guarantee DFSFR . This proof uses the same idea from Theorem 2.1.

PROOF. The proof is by contradiction. Suppose s and t are not DFSFR for any direc-

tion of the start and target ds and dt, respectively, and no directed subgoal passes through

any shortest path π. We need to show that either a shortest path passes through a directed

subgoal or that s and t are DFSFR for some start goal and goal directions.

Firstly, if s and t are SFR, all freespace shortest path are unblocked on G, therefore

we can choose arbitrarily ds and dt that make Condition 2 and 3 from Definition 3.6 true.

Therefore, s and t cannot be SFR.

Let π be the diagonal-first path between s and t. As shown in Figure 2.4, we analyze

the different types of turn points that π could have. If π has a card-to-card turn point, then

π must pass through by a directed subgoal. If π has a card-to-diag turn point, either (1) π is

not diagonal-first (contradiction) or (2) π passes through a directed subgoal. Path π cannot

have diag-to-diag turn points since that would imply that π is not a shortest path. Finally,

π can have diag-to-card turn points and therefore the path consists of a single turn point.

For this to occur, the s-t diagonal-first freespace-path π must be unblocked. Since s and t

40

are not SFR, s reaches the top-leftmost directed subgoal vL(Definition 3.8), therefore, all

shortest paths from (s, d) to vL are unblocked on G∗. Let π1 be any of these paths. Next,

the path from vL that moves only in d has guarantee of being unblocked, at least until it

reaches the cardinal section of π in a cell nC . Let such path from vL to vC be π2. Finally,

the path π3 from (nC , c) to (t, d) is unblocked since the s-t diagonal-first freespace-path

is unblocked. Therefore, the path π′ = π1 · π2 · π3 is a shortest path that passes through a

directed subgoal vL, leading to a contradiction. □

With Theorem 3.1 we can build a new subgoal graph according to Definition 2.4.

Definition 3.10. GS = (S,ES) with S as the set of directed subgoals and ES defined

by DFSFR is a subgoal graph. This subgoal graph is called Directed Subgoal Graphs

[DSG].

With the incorporation of DSG to the subgoal graph framework, there are a total of

4 subgoal graphs: SG, JP, JPD and DSG. To refer any of these graphs we use subgoal

graphs (lowercase) and to refer any of the directed graphs we use directed subgoal graph

(lowercase).

3.1.3. Framework implementation

First we discuss the implementation of the IDENTIFY SUBGOALS procedure of the

framework. In order to commonly refer to subgoals, jump points and directed subgoals,

we use the original subgoal concept.

3.1.3.1. Identify subgoals

One of the main differences between DSG and JP is that DSG uses both straight and

diagonal subgoals. This idea is also present in JPD (Harabor et al., 2019) where the authors

mentioned that it does not increase the total number of subgoals, since both types almost
41

s− d

(s, d)

(a) Straight subgoal

s− d

(s, d)

(b) Diagonal subgoal

Figure 3.5. (a) Any path starting from s− d to the blue area cannot be DF
and any cell in the green area can be reached by a DF path. (b) Similar to
(a), but paths to the blue area are also not shortest path.

always have exactly the same edges. In Figure 3.5 (a) and (b) we show that straight and

diagonal subgoals reach the same area.

The algorithm to define subgoals is shown in Algorithm 3.1. Once a subgoal position

is found (Lines 4-5) it adds the diagonal subgoals to the set of subgoals (Lines 7 and 10)

only if they were not there before (Lines 6 and 9). Also, it adds references from straight

subgoals to diagonal subgoals (Lines 8 and 11). If the set and hash are constant-time

operations, the procedure is O(1).

Despite the aforementioned, there are exceptions where we use straight subgoals over

diagonal subgoals. When a subgoal is surrounded two convex corner cells that form a

corridor, as shown in Figure 3.6, using diagonal nodes would result in multiple expansions

for the same position instead of a single one. Therefore, in these cases we prefer to use the

straight subgoals, and keep diagonal subgoals only as a reference to the straight ones. This

modifies Algorithm 3.1, introducing new constant-time operations, but does not increase

the time complexity or memory requirements.

3.1.3.2. Clearances

At a formal level, the clearances needed to detect DFSFR subgoals are as follows:

42

Algorithm 3.1 DSG: Identify subgoals in cell n
1: R = an empty hash table; ▷ Node references
2: function IDENTIFY SUBGOALS(n, S,A,R)
3: for all diagonal directions superscripts i do
4: if n+ di is blocked on A then
5: if n+ di+1 and n+ di−1 are unblocked on A then
6: if (n, di+2) /∈ S then
7: S ← S ∪ {(n, di+2)};
8: R[(n, di+3)]← (n, di+2);
9: if (n, di−2) /∈ S then

10: S ← S ∪ {(n, di−2)};
11: R[(n, di−3)]← (n, di−2);

s

s-d

l

(a) Single Cardinal node

d1 d2

s− d1s− d2

s

l

(b) Two Diagonal nodes

Figure 3.6. (a) The straight node allows the search to explore the green area
(b) Two diagonal nodes explores half the area each one, while also sharing
a column. If s is reached by the path between the obstacles, a search would
need to expand both (s, d1) and (s, d2).

(i) Diagonal clearances C[n, d]: These are simple clearances that reach directed

subgoals with direction d.

(ii) Cardinal clearances C[n, di]: These are hybrid clearances that reach (1) subgoals

with any direction and (2) cells n′ with C[n′, di+1] > 0 or C[n′, di−1] > 0.

In Figure 3.7 we provide an example of how can we use these clearances for detecting

DFSFR subgoals. There, diagonal clearnaces can be used to detect diagonal subgoals

reached by diagonal paths and cardinal clearances can be used to detect diagonal subgoal

reached by CF paths and straight subgoals reached by cardinal paths.

43

n0 n1 n2

n3

n4

5 2 0

4 1

Figure 3.7. Clearances of each cell are shown in the colors of the respective
direction. When detecting DFSFR from the red subgoal at n0, the green
diagonal clearance can be used to detect subgoal in n3. Then, the blue
cardinal clearance can be used to detect the cell n1, where there is a positive
diagonal clearance that can be used to detect the subgoal at n4. Finally, the
cardinal clearance also helps detecting subgoals in the same axis, such as
n2.

In Section 3.1.3.3 we explain how we can also use those clearances to preserve the

direct property from Definition 3.7 and in Section 3.1.3.4 we explain how we can utilize

the same clearances for the forward and backward connection.

3.1.3.3. Forward connection

The FORWARD CONNECT procedure, is the main connection procedure which is in-

voked when connecting the graph (Algorithm 2.2) of a directed subgoal v = (n, di) con-

sists of two main function calls, (1) DIAGONAL CONNECTION and (2) CARDINAL FIRST SCAN

which are explained below.

The DIAGONAL CONNECTION function explained in Algorithm 3.2 connects v to other

reachable subgoals via diagonal paths. It also sets the diagonal boundaries B, which rep-

resents the maximum distance along each diagonal direction in order to keep safe and

direct connections. To do so, it calls the function DIAGONAL SCAN. This function checks

a diagonal clearance to find a potentially DR subgoal while respecting and updating the

boundaries. The number of calls to DIAGONAL SCAN depends of the type of subgoal.

Diagonal subgoals perform a single diagonal scan (Lines 8-9), cardinal subgoals perform

two diagonal scans (Lines 11-12) and query nodes (start and goal) perform four diagonal

44

scans (Lines 13-15).

The DIAGONAL SCAN function performs only constant-time operations, therefore it is

O(1) in time and space. Given that DIAGONAL SCAN performs a fixed number of calls to

DIAGONAL CONNECTION, its complexity is also O(1).

Algorithm 3.2 Diagonal connection and diagonal scan.
In red changes needed for backward connection.

1: function DIAGONAL SCAN(n, i, b)
2: clr ← C[n, di];
3: if clr > 0 and clr < b then
4: Ev ← Ev ∪ {(n+ di · clr, di+4)};
5: return clr+1;
6: return b;
7: function DIAGONAL CONNECTION(n, i, B)
8: if IS DIAGONAL(di) then
9: B[i]←DIAGONAL SCAN(n, i,∞);

10: else if IS CARDINAL(di) then
11: B[i− 1]← DIAGONAL SCAN(n, i− 1,∞);
12: B[i+ 1]←DIAGONAL SCAN(n, i+ 1,∞);
13: else ▷ Query node
14: for all diagonal direction superscripts i do
15: B[i]← DIAGONAL SCAN(n, i,∞);

The CARDINAL FIRST SCAN function explained in Algorithm 3.3 is where most of

the connections occur. It iterates through a cardinal axis and in every step it checks if

a diagonal connection is feasible, what we call a cardinal-first scan (CF scan). We also

allow each diagonal scan to run independently and use the boolean parameters do CCW

and do CW to determine if the corresponding diagonal scan must be performed. When

one of these parameters is initially false, we say that it is a half CF scan. An example of

CCW and CW scans is shown in Figure 3.8 (a).

In detail, this function first sets the boundaries to the CW and CCW diagonal scans b−

and b+ according to DIAGONAL CONNECTION (Lines 2 and 3). Then, the main loop starts

(Line 7). This loops iterates through the cardinal direction di where each step is deter-

mined by the cardinal clearance. As shown in Figure 3.7, it can be used for the connection

to subgoals reached by cardinal paths (Lines 9-11) and cardinal-first paths (Lines 16-19).

45

Additionally, if there is a subgoal with direction di±2 in the cardinal axis, it reveals the ex-

istence of an obstacle and thus the corresponding diagonal scan must halt (Lines 12-15).

Given that this loop perform two types of connections, the second condition to break the

loop consists of (1) there are no more CF scans to perform and (2) a successful cardinal

connection has already been performed (Line 7).

The cost of calling CARDINAL FIRST SCAN consists of a for loop through a cardinal axis

of the grid in which calls to IS SUBGOAL, DIAGONAL SCAN and other constant-time op-

erations are performed. The auxiliary function IS SUBGOAL(n, d) returns true if there is

a directed subgoal with that position and direction. This function can run in constant time

with an array or a hash table. Given that DIAGONAL SCAN is also O(1), the time and

space complexity of CARDINAL FIRST SCAN is O(W +H) in the worst case.

Algorithm 3.3 DSG forward cardinal first scan
1: function CARDINAL FIRST SCAN(n, i, do CCW, do CW)
2: b− ← B[i− 1]; ▷ CW(-) boundary
3: b+ ← B[i+ 1]; ▷ CCW(+) boundary
4: clr ← C[n, di];
5: n′ ← n;
6: connected in cardinal← false;
7: while (clr > 0 and (do CCW or do CW or not connected in cardinal)) do
8: n′ ← n′ + clr · di;
9: if IS SUBGOAL((n′, d)) and not connected in cardinal then

10: Ev ← Ev ∪ {(n′, d)};
11: connected in cardinal← true;
12: if IS SUBGOAL((n′, di−2)) then
13: do CCW← false; ▷ Halt CCW scan
14: if IS SUBGOAL((n′, di+2)) then
15: do CW← false; ▷ Halt CW scan
16: if do CCW then
17: b+ ←DIAGONAL SCAN(n′, i+ 1, b+); ▷ CCW scan
18: if do CW then
19: b− ←DIAGONAL SCAN(n′, i− 1, b−); ▷ CW scan
20: clr ← C[n′, di];

The FORWARD CONNECT function is explained in Algorithm 3.4. The number of

calls and the parameters used in CARDINAL FIRST SCAN depends of the type of subgoal

being connected. Diagonal subgoals perform two CF-scans halves (Lines 5-7), cardinal

46

subgoals performs one complete CF-scan and CF-scans two halves (Lines 8-11) and query

nodes perform all CF-scans (Lines 12-14). An application of this algorithm is illustrated

at Figure 3.8 (b).

The complexity of the FORWARD CONNECT algorithm consist on (1) Diagonal connec-

tion which is O(1), (2) Up to four cardinal scans which are O(W +H). Thus, FORWARD

CONNECT is O(W +H) in time and space.

Algorithm 3.4 DSG forward connection from subgoal v = (n, di).
1: function FORWARD CONNECT(n, i)
2: Ev ← ∅;
3: B ← array of size 8; ▷ Diagonal boundaries
4: DIAGONAL CONNECTION(n, i);
5: if IS DIAGONAL(di) then
6: CARDINAL FIRST SCAN(n, i− 1, true, false);
7: CARDINAL FIRST SCAN(n, i+ 1, false, true);
8: else if IS CARDINAL(di) then
9: CARDINAL FIRST SCAN(n, i, true, true)

10: CARDINAL FIRST SCAN(n, i− 2, true, false);
11: CARDINAL FIRST SCAN(n, i+ 2, false, true);
12: else ▷ Query node
13: for all cardinal directions i do
14: CARDINAL FIRST SCAN(n, i, true, true);
15: return Ev;

3.1.3.4. Backward connection

The backward connection answers the question of which nodes DDFSFR-reach the

goal. In JP and JPD, since the only valid path between two nodes is the DF path, the

goal must be connected using a CF-scan, needing additional reversed clearances for this

purpose. However, in DSG the goal connection can maintain the forward connection

schema using CF-scans too since any path is valid between two DDFSFR nodes. Therefore

this procedure does not need to use additional clearances, halving the memory used for this

purpose. Finally, there are three differences that are discussed below.

47

CCW(+) CW(-)

n

(a) A DSG cardinal-first scan

n

(n1, d)

(n2, c2)

CW

CCW

c1

n3

(b) Forward connect over a diagonal
subgoal

Figure 3.8. (a) The CF-scan from n towards the blue lines is CCW and
towards the green lines is CW (b) Connection of a directed subgoals is per-
formed in two halves CF-scan. Here, we can notice that the CCW diagonal
scan along d ends in n3, given that (n3,−c1) reveals the existence of an
obstacle towards d. However, the cardinal connection continues up to n2.

(i) As show in fig. 3.9 (a), a CF scan from t in directions c and d would detect

subgoals of the form (n, d) pointing outwards the target. However, for Defini-

tion 3.3 it is guaranteed that the subgoal (n,−d) exists, which points towards

the target. Therefore, this subgoal can DDFSFR-reach the target. Thus, in Al-

gorithm 3.2, the only modification needed to fulfill this behaviour is changing di

to di+4 in Line 4.

(ii) In FORWARD CONNECT if there are multiple DFSFR subgoals in a line with a

parallel direction to the cardinal scan direction, only the first reached subgoal

is direct, given that it R-reaches the other subgoals in the same cardinal line.

However this does not happen in backward connection. In Figure 3.9 (a) we

can see that the brown subgoal does not have a diagonal first movement towards

the target, therefore the direct condition between n2 and t holds. Considering

this, in order connect to all DDFSFR-reachable nodes we must change Line 5 in

Algorithm 3.2 by widening the margin by 1.

(iii) The aspect in which the forward and backward connections differ the most is in

the connection to nodes reached by cardinal paths. In the target connection, t can

48

t

n1 n2

d d

−d −dc

(a) Target CF-scan

t n1

n2
n3

c

(b) Target cardinal connection

Figure 3.9. (a) The backward connection from t can use CF-scans from
FORWARD CONNECT to find (n1, d) and (n2, d). However, the reached
subgoals point outwards t. Therefore, the backward connection must con-
nect subgoals with direction -d. Also, in FORWARD CONNECT (n2, d)
would not be direct to t, since (n1, d) DDFSFR-reaches (n2, d), breaking
Definition 3.7. However, in backward connection this no longer happens
since any subgoal DFSFR-reached from (n2,-d) along c does not have a
diagonal-first path towards t, as the brown node. Thus, the target is direct
from (n2,-d). (b) Up to three nodes can directly reach the target t along c,
one at the left, one at the right and one at the opposite direction with respect
to the scan direction c.

be connected up to three different nodes in the same line, as shown in Figure 3.9.

We can also notice that t no longer connects to (n1, c).

The outline of the backward CF-scan is: Connect t to the first node in each perpendic-

ular direction c′ ⊥ c, which also triggers the halting of the corresponding CF-scan. The

entire CF-scan finishes when it finds and connects to a node in the direction −c. Since

the backward connection is a modified version of Algorithm 3.4, Algorithm 3.2 and Algo-

rithm 3.3 that only adds constant-time operations, the time and space complexity remains

at O(W +H).

3.1.3.5. Refine

Since every pair of DDFSFR subgoals are also SFR, we can use any freespace shortest

path for the refine procedure. For simplicity, we refine using DF paths.

49

3.2. Contraction Hierarchies and the subgoal graph framework

Since there are different implementations for the subgoal graph framework and its

corresponding CH graphs, we use CH-subgoal-graph [CH-sg] to refer to any subgoal

graph. If the graph is also directed, as in the case of JP, JPD and DSG, we use CH-

directed-subgoal-graph [CH-dsg].

3.2.1. Overview

• Preprocessing phase: It consists of building the subgoal graph without any

alteration and then running CH over it, generating the CH-sg.

• Query phase: In the connect procedure, it assumes that s and t are the in the

lowest hierarchy level, therefore, all the connection edges needed in a subgoal

graph are needed in a CH-sg too. (2) In the search phase, one can use any bidi-

rectional search algorithm, although Bidirectional Dijkstra is the most common.

However, in (Uras, 2019) the authors used Bidirectional A* instead of Bidirec-

tional Dijkstra, since it reported faster searches. (3) In the refine phase, we group

the unpacking procedure of CH and the refine procedure of the subgoal graph.

3.3. Improvements to the subgoal graph framework

In this section we provide some optimizations to the subgoal graph framework and its

interactions with CH. For that purpose, we use the word subgoal to refer to a node v in the

set of subgoals s and directed subgoals to refer to a subgoal with direction.

3.3.1. Avoidance

In (Harabor et al., 2019) the authors developed a method called avoidance tables. This

optimization was developed in order to decrease the number of connections a query point

performs to nodes that can be considered as useless during a search, i.e. nodes that have

zero outgoing or incoming edges.

50

We modify this method by defining nodes without incoming edges as backward avoid-

able and nodes without outgoing edges are forward avoidable. An avoidable node can

be skipped either in the connection or the search, but the avoidable state must be updated

before in the connection of the query point that adds edges to the opposite graph. Once

a subgoal graph is built, one can determine the avoidance status of every subgoal in the

forward and backward graph. Then the connection avoidance and the search avoidance

can be performed as follows:

• Connection avoidance: If a subgoal has no incoming edges, it cannot be reached

by another subgoal. Therefore, when solving a query, if the backward con-

nection reach this subgoal, the connection would be meaningless. The only

exception is when the start also connects to this subgoal. Thus the connection

avoidance consists of two steps: (1) when connecting the start, mark backward

avoidable nodes as not avoidable and (2) when connecting the target, skip con-

nection to backward avoidable nodes. This procedure can also be used in for-

ward connection, but requires the target to be inserted previously, leading to a

small overhead.

• Search avoidance: If a subgoal different from the target has no outgoing edges,

adding it to the open is unnecessary. The procedure consists of the following

steps: (1) when connecting the target, mark each reached node as not forward

avoidable. (2) when expanding a node, if a successor is forward avoidable, then

it can be ignored. For bidirectional search this procedure can also be used in the

backward search.

3.3.2. Reducing redundant edges in CH-dsg

In (Uras, 2019) the authors explained most of the drawbacks of this process for CH-

dsgs. One of these is explained as follows. The contraction process of a node v verifies

if without v, the remaining graph preserves the shortest distance between two incoming

and outgoing neighbours of v, w and u. However, in CH-dsgs there are multiple nodes in

51

v1

v2
v3

Figure 3.10. The green shortcut between v1 and v3 that passes through v2
can be unpacked without using the black edges if we use freespace-DF-
reachable shortcuts and refine it into the freespace-DF path.

each cell, which results in that the distance between two cells can be preserved even when

there is only a couple of shortest path between any two nodes in those cells. Thus, the

w-u distance may be preserved even if the contraction of v does not detect it, since other

nodes in w and u positions may still have a shortest path. When this happens, a redundant

shortcut is added to the graph.

Thus, CH adds many redundant shortcuts. The authors reported up to 25.6% of re-

dundant edges in a random map. In order to detect if a shortcut is redundant, one must

compare its cost with the distance between the cells dn2,n3 . For that purpose, the distance

matrix between every subgoal position M must be constructed. The authors proposed an

optimal and a suboptimal method to deal with this problem. The optimal method consists

of performing a Dijkstra search from every subgoal position s and use as start nodes every

subgoal (s, d) with d ∈ D. However, the authors reported it increased the preprocessing

time of CH in up to three times. Therefore, they proposed a suboptimal approach in which

a Dijkstra search is run from only the subgoals that already exists on GS . However, this

search is not complete, since it skips the try direct path and Connect phases of the subgoal

graph query phase. Given this, after this procedure they reported that 15.9% of the edges

were redundant.

Redundant edges not only translate to a larger graph, they also can lead to an incorrect

52

calculation of the elimination priority of a node and therefore, deteriorating the node or-

dering and the query times. In this section we further provide two additional approaches

to reduce the redundant edges problem:

(i) In grid graphs the distance between a pair of nodes is always symmetrical. Thus,

if M ′[s1, s2] < M ′[s2, s1], we can make M ′[s2, s1] = M ′[s1, s2]

(ii) We can detect all pair of nodes (s1, s2) that are reachable by a freespace diagonal-

first or cardinal-first path and set their distance as M ′[s1, s2] = octile distance(s1, s2).

This process can be sped up using clearances that do not need to be stored after-

wards.

3.3.3. Unpacking freespace-R-reachable shortcuts

Finally, we present an optimization in the unpacking procedure that was also discussed

in (Uras & Koenig, 2018). There the authors mentioned that, for CH-SG, is possible to

avoid saving the unpacking information of a shortcut. This occurs when a shortcut is added

between two subgoals s1 and s2 that satisfies a given freespace reachability relation. For

example, if (s1, s2) are freespace-diagonal-first reachable (FDFR) we can avoid saving the

unpacking information and refine the edge directly into the freespace path, thus improving

the refine process. However, this idea is not bound only to SG, therefore it can be used in

any CH subgoal graph. When we use this optimization we say that we are using freespace-

R reachable shortcuts (RFR) shortcuts. The benefit of using this optimization is that in

the refine procedure, we can skip the unpacking procedure for RFR shortcuts following

the RF reachability relation to produce a path on G, as shown in Figure 3.10.

53

4. EXPERIMENTAL EVALUATION

4.1. Experimental setup

In this section we evaluate the time and memory performance of the algorithms we

have discussed in this thesis. For that porpuse, in Section 4.1.1 we introduce the bench-

mark that is used to evaluate and compare all these algorithms. Then, in Section 4.1.2 we

explain the validation process to compare JP and JPD with DSG. Next, in Section 4.1.3

we explain implementation details of the search algorithms, subgoal graphs and CH.

4.1.1. Benchmarks

We use a single set of benchmarks in our experiment, the MovingAI benchmarks

(Sturtevant, 2012), which was created to allow researchers compare pathfinding algo-

rithms. This benchmark consists of several groups of maps, where we can distinguish

3 different sources: (1) commercial video games (2) discretized real life environments and

(3) autogenerated maps. We follow the categorization used in (Harabor et al., 2019) where

there are 5 main categories and a total of 26 subcategories, detailed below:

(i) Games: Maps from different video games.

(a) bg: 120 maps from Baldur’s Gate II.

(b) bg-512: 75 maps from Baldur’s Gate II, scaled to 512x512.

(c) dao: 156 maps from Dragon Age: Origins.

(d) da2: 67 maps from Dragon Age 2.

(e) sc1: 75 maps from Starcraft I.

(f) wc3-512: 36 maps from Warcraft III, scaled to 512x512.

(ii) Mazes: Set of maze maps with 512x512 resolution. The type of maze is deter-

mined by the corridor size, that can be 1, 2, 4, 8, 16, or 32. There are 10 maps for

each corridor size, leading to a total of 60 maps. The subcategories are defined

by the corridor size X, called maze-X.

54

(iii) Random: Set of maps with random obstacles and 512x512 resolution. Each cell

has a percentage of being blocked that goes from 10 to 40 in steps of 5. This

percentage X determines the subcategory, called random-X. There are 10 maps

in each subcategory for a total of 70 maps.

(iv) Rooms: Set of room maps with 512x512 resolution. Each map is subdivided in

square rooms all with the same size. Then, doors between rooms are added with

a probability of 0.8. Possible rooms sizes are 8×8, 16×16, 32×32 and 64×64.

Subcategories are determined by the room side size X , named room-X .

(v) Streets: Maps are a discretization of 30 different real life environments. The dis-

cretization is performed in three resolutions: 256x256, 512x512 and 1024x1024,

resulting in a total of 90 maps. We have one subcategory for resolution called

street-X.

The instances or queries of each map are generated randomly according to the follow-

ing criteria. First, multiple problems between random points are generated. Then each

problem with a shortest path of cost l belongs to a bucket ⌊l/4⌋. A maximum of 10 prob-

lems are selected from each bucket. The number of buckets is determined by the largest

shortest path. Therefore, maps with larger shortest paths have more instances, as in the

case of mazes. In the Table 4.1 we show a summary of the MovingAI benchmark, where

the number of maps, instances, graph size are shown. We also show statistics for an A*

run over these problems, capturing the average path length, the number of expansions that

A* performs and its runtime.

We observe that solutions for the mazes benchmark are the longest paths, whereas

street-1024 has the largest graphs both in number of vertices and number of edges. In

games we observe that Starcraft and Warcraft III are the games with largest graphs, whereas

Starcraft and Dragon Age: Origins are the games with the largest shortest paths.

55

Table 4.1. Statistics of solving all instances from MovingAI benchmark
using A*.

Map Graph sizes Instances Sol. N° Time
Count | V | | E | Avg. Total Cost Exp. (µs)

all 789 127 123 916 054 2177 1 717 640 1120 56 202 31 331
games-all 529 64 861 499 013 1234 653 050 430 25 475 16 272
mazes-all 60 207 941 1 338 316 10 450 627 000 2265 101 435 51 017
random-all 70 185 864 937 004 2225 155 750 482 28 046 16 786
rooms-all 40 232 785 1 691 743 2109 84 350 422 40 454 26 669
streets-all 90 346 561 2 724 776 2194 197 490 567 43 131 32 091
bg 120 4507 32 180 340 40 780 142 2676 1460
bg-512 75 73 930 574 510 1635 122 600 360 12 829 7905
dao 156 21 322 159 548 998 155 620 418 13 256 7926
da2 67 15 911 117 640 1003 67 200 280 6010 3604
sc1 75 263 782 2 040 510 2819 211 390 612 55 092 35 769
wc3-512 36 112 488 867 184 1541 55 460 318 15 182 10 116
maze-1 10 131 071 262 140 14 549 145 490 2986 63 662 23 690
maze-2 10 174 517 870 383 11 911 119 110 2413 85 014 39 877
maze-4 10 209 268 1 356 891 10 422 104 220 2150 105 629 54 103
maze-8 10 232 928 1 688 141 10 331 103 310 2133 125 164 66 053
maze-16 10 246 042 1 871 727 9121 91 210 1877 133 310 73 419
maze-32 10 253 819 1 980 615 6366 63 660 1300 127 443 72 770
random-10 10 235 903 1 533 055 1797 17 970 359 11 258 8685
random-15 10 222 689 1 301 321 1861 18 610 372 17 341 12 400
random-20 10 209 255 1 097 499 1915 19 150 383 22 903 15 443
random-25 10 195 315 918 694 1990 19 900 398 27 775 17 910
random-30 10 180 209 760 078 2078 20 780 415 31 805 20 238
random-35 10 161 313 613 313 2297 22 970 459 36 772 21 418
random-40 10 96 365 335 069 3637 36 370 751 37 015 18 229
room-8 10 206 792 1 301 001 2098 20 980 419 36 905 24 064
room-16 10 231 263 1 663 793 2037 20 370 407 35 885 23 982
room-32 10 243 733 1 855 004 2097 20 970 419 41 255 27 485
room-64 10 249 353 1 947 173 2203 22 030 441 47 296 30 857
street-256 30 48 012 363 862 934 28 020 187 4440 2969
street-512 30 196 602 1 531 900 1876 56 270 376 16 899 11 797
street-1024 30 795 069 6 278 567 3773 113 200 755 65 747 49 387

4.1.2. Validation of JP and JPD

In order to perform a fair comparison between DSG, JP and JPD, we developed our

own implementation of both JP and JPD. The differences in data structures, search al-

gorithms, datatypes, and other micro optimization between our DSG implementation and

the original JP and JPD implementation could lead to differences in execution times that

do not reflect the properties of these algorithms, leading to wrong conclusions. Thus, we

56

implemented a framework that can run all these algorithms: A*, SG, DSG, JP and JPD

and the CH combinations (except for A*). This common framework treats all subgoal

graphs as equivalent, where the connect procedure is specific for each, but other aspects

are equivalent. In order to validate our framework we tested the graph size of JP and JPD in

several maps, achieving a perfect equality. We also tested the target and goal connections

for these maps, achieving a perfect equality too. With respect to the search performance,

we compared the number of expansions of A* for these maps, achieving a difference of

around ±1%, mainly explained by the priority queue with double priority.

For CH, as we do not share the same implementation, we tested the speedup against

A* in the grid graphs, achieving speedups of the same order of magnitude.

The implementation of all these algorithms can be found at https://gitlab.com/

bmarinb/directed-subgoal-graphs.

4.1.3. Implementation details

• A*: We implemented A* using octile distance as the heuristic. The priority

queue is a Binary Heap with decrease key operation. This queue also uses a

second criterion, the h value, which is used to break ties. We preallocate all the

memory needed in the execution: g, parents, heap items and indices.

• Second priority term: We use a new technique based on the theoretical maxi-

mum values hmax, gmax, and fmax in grid maps, described as follows: For a map

of size W ×H we have gmax ≤ W ·H . Without loss of generality, lets assume

W ≥ H . Then hmax = H(
√
2 − 1) + W and fmax = gmax + hmax. In this

scenario, the number of bits needed to store the integer part of hmax and fmax

are ⌈log2(hmax)⌉ and ⌈log2(fmax)⌉ respectively. For a 1024 × 1024 resolution

these amounts are 21 and 11 bits - summing up 32 bits. Using a 64 bit unsigned

integer, there are left 32 bits for the decimal part of both terms. This is repre-

sented in Figure 4.1. With this approach it is possible to compare both g and h

57

https://gitlab.com/bmarinb/directed-subgoal-graphs
https://gitlab.com/bmarinb/directed-subgoal-graphs

1 0 ... 0 1 1 ... 0

64 bits

int. part dec. part int. part dec. part

f h

Figure 4.1. Bits schema for storing f and h in a single 64-bit integer.

using a single comparison at the cost of the computation of this priority term,

that can be done with multiplication, bit shifting and addition.

• Map representation: We use a flattened array of size W ×H . Therefore, each

cell (i, j) can be represented by a 4 bytes integer using position p = i + jW

in the array. For traveling across the map, we precompute the distance in the

flattened array of moving from one cell s to other cell s+ d for each d ∈ D.

• Grid graph: Each unblocked cell is a node and its edges consists of a single

byte where the i-th bit signals the existence of an edge to the direction di.

• Subgoal graph framework:

– Subgoal information: For each subgoal, we save its position and direction

in the flattened array p and its direction d in a single 4 byte integer as p ×

|D| + d. We also save all reference subgoals that refer to (p, d) in a single

byte, using each bit for each possible direction. Therefore, we use 5 bytes

for directed subgoals and 4 bytes for subgoals.

– Edges: We save edges ordered by source node. Since the cost is always the

octile distance, we only keep the target in a 4 byte integer.

– Subgoal edges: To identify each subgoal edges, we use a 4 byte integer

for saving the first edge in the ordered array and a 2 bytes integer to save

the number of edges it has. Therefore, we use a total of 6 bytes.

– Node detection: We use a two-part approach that consists of a matrix that

keeps the presence of different subgoal directions in a given cell. This can

be saved in 8 bits (1 byte) leading to WH bytes. Then, once the existence of

58

a node with a given direction is determined, we use a hash table that maps

the flattened tuple (position, direction superscript) into a node identifier.

– Grouping subgoals: In directed subgoal graphs, we use an optimization

from (Uras, 2019) where all directed subgoals in the same cell are grouped

into a single node in the search algorithm. Therefore we need to preallocate

memory (Open, g and f) only for the number of different cells of directed

subgoals, equal to the number of subgoals in SG.

– Removing redundant edges: In JP and JPD the preprocessing phase gen-

erates a graph with redundant edges. In this context, a redundant edge is

an edge that can be represented by a path of the same cost. In order to re-

duce the graph size, it is possible to delete this edges by running a modified

Dijkstra from each jump point v. This search differs from the traditional

Dijkstra in that it updates the parent of a node in the Open anytime it is

reached by a new path with the same cost. This way, outgoing neighbours

that have a parent different from v represent redundant edges that can be

deleted from the graph.

• Contraction Hierarchies over the subgoal graph framework: The forward

and backward graphs contain the information to identify the edges that corre-

spond to each node, which are the first edge (4 bytes) and the number of edges

(2 bytes). In SG the forward and backward graphs point to the same structure,

while in directed subgoal graphs (DSG, JP and JPD) the forward and backward

graphs are materialized separately. Each edge is saved only in one node, the one

with lower hierarchy. Each edge has 5 attributes: source and target nodes, cost

and unpacking information. Each attribute use 4 bytes, for a total of 20 bytes per

edge. All edges are saved in the same vector. With respect to the parameters used

to define the priority of a node in the contraction process are shown in Table 4.2.

These values were obtained from a greedy exploration based on (Geisberger et

al., 2008) as start point. For the refinement process, we use freespace-cardinal-

first and freespace-diagonal-first reachable shortcuts. In order to detect if a given

59

Table 4.2. CH priority term weights. E = Edge Difference weight, D =
Contracted Neighbours weight, S = Search Space weight and L = Search
space limit.

E D S L
120 120 0.5 1000

freespace reachability relation holds, we use the same clearance mentioned in

Section 3.3.

4.2. Results and discussion

In this section we present and discuss the results of building all subgoal graphs over

each map in the MovingAI benchmark and solving all the corresponding problems in each

map, excluding the random due to JP-CH, JPD-CH and DSG-CH preprocessing times and

street-1024 due to high SG-CH preprocessing times. In these benchmarks we have par-

tially lead to the same conclusions present of (Harabor et al., 2019): CH-SG and CH-JPD

overperforms all other subgoal graphs in random and street-1024 benchmarks respectively.

In each subsection, we briefly describe the statistics captured in the experiment and

then proceed to comment the results. For statistics that are relative to the preprocessing

stage, the averaging is performed weighting each category by the number of maps in it. For

statistics that are relative to the query phase, the averaging is performed weighting each

category by the number of problems in it. Given that maze maps have the highest number

of problems per map, they tend to be over-represented in the all benchmark. All the query

times are measured in micro seconds (µs) and the preprocessing times are measured in

seconds (s).

4.2.1. Standalone subgoal graph framework

First we test the standalone subgoal graph framework, i.e, without CH. We divided the

from the preprocessing and query phases.

60

4.2.1.1. Preprocessing phase

In the preprocessing phase we capture the following metrics that describe the graph

size:

• |V |: The number of subgoals in the subgoal graph.

• |E|: The number of edges in the subgoal graph.

In Table 4.3 we see that with respect to the number of subgoals, the minimum number

is always reached by SG since it has at most one subgoal per cell. However, with respect

to the other subgoal graphs, we observe that DSG and JPD have lower number of subgoals

than JP. In Section 3.1.3.1 it is explained a case where it is convenient to use straight

subgoals over diagonal ones, generating one subgoal less. In the same way, there is a

case when using diagonal subgoals is better that straight ones, generating two subgoal

less. This happens when a subgoal is surrounded by two convex corner cells that are in

opposite directions. Since JP do not make use of this optimization it has more subgoals.

With respect to the number of edges, JPD takes the lead for all benchmarks except for

maze-1 and rooms. The dominance of JPD can be explained by the following factors:

• The DF-scans performed by forward connect in JPD end when a jump point is

found in the diagonal scan, as shown in Figure 2.6. Unlike this, JP DF-scans

do not end until an obstacle is found. Therefore, JPD scans end earlier than JP

scans, resulting in a lower number of edges.

• With respect to DSG, this happens mainly due to wall roughness. In a rough

wall, as shown in Figure 4.2 (a), JPD ignores most jump points that point to-

wards a rough wall, unlike DSG in which these subgoals are needed to reach the

concave corners of the rough wall.

Despite the aforementioned, DSG is positioned in the 2nd place, having 17% less edges

than JP in games benchmark. This is explained due to having a more restrictive connec-

tion. The only benchmarks where JPD does not leads is in maze-1 and rooms, where SG

61

x

(a) JPD and DSG in rough walls (b) maze-1 (c) rooms

Figure 4.2. (a) In JPD every red jump point can only be reached by another
jump point in the marked diagonal line. In contrast, in DSG, every subgoal
with a lower x-coordinate than a red subgoal can DFSFR -reach it (not
necessarily directly). (b) and (c) Red positions represent unblocked cells
with more than two directed subgoals. This is highly common in maze-1
and rooms benchmarks.

does. This can be explained by the number of nodes. DSG and JPD have ×2.01 more

nodes than SG in games benchmark, where SG has more edges overall. This is the ex-

pected result since a single convex corner cell generates one subgoal and two directed

subgoals or jump points. However, in maze-1 and rooms DSG and JPD have ×2.34 and

×2.77 more nodes respectively. Having more than two subgoals in the same cell only

can happen when a cell is surrounded by more than a convex cell. In these benchmarks,

corridors and doors have a width of one cell which propitiates this condition, as shown

Figure 4.2 (b) and (c). Since DSG and JPD have proportionally more nodes in these

benchmarks, it also results in an increased number of edges.

4.2.1.2. Query phase

In the query phase, the time consumed for solving a path planning problem is deter-

mined by the Connect-Search-Refine (CSR) procedure. Besides this, there are other time

consuming tasks stages such as pre-allocating memory, deleting query points s and t from

the subgoal graph graph and resetting avoidance status. However, given this tasks can be

performed anytime before and after the query, we do not include them in this results. In

62

Table 4.3. Subgoal graphs sizes in the MovingAI benchmark. All cate-
gories are included except random and street-1024.

| V | | E |
SG JP JPD DSG SG JP JPD DSG

all 2593 5596 5579 5579 25141 12882 10756 11361
games-all 1425 2887 2874 2874 21521 10017 7924 8304
mazes-all 11557 25164 25164 25164 27447 29853 29768 30195
rooms-all 4270 11908 11848 11848 13797 18128 17940 18029
streets-all 2806 5698 5668 5668 62310 17672 11921 15026
bg 449 922 909 909 4307 1852 1305 1448
bg-512 666 1334 1334 1334 8164 2573 2124 2961
dao 896 1828 1817 1817 9996 5137 4039 4115
da2 598 1211 1206 1206 5701 2520 2190 2401
sc1 5698 11526 11480 11480 104369 48630 38306 39517
wc3-512 1193 2387 2387 2387 13519 7391 6279 6407
maze-1 36179 84654 84654 84654 72356 100580 100580 100580
maze-2 21954 43908 43908 43908 57261 50930 50930 50930
maze-4 7906 15812 15812 15812 24807 19453 19095 20930
maze-8 2410 4819 4819 4819 7484 5952 5844 6364
maze-16 709 1418 1418 1418 2203 1746 1708 1876
maze-32 185 370 370 370 570 459 449 492
room-8 12826 35347 35120 35120 41211 54528 53816 53978
room-16 3261 9352 9338 9338 10735 13884 13843 13954
room-32 802 2375 2375 2375 2641 3350 3351 3408
room-64 192 558 558 558 602 750 750 775
street256 1881 3840 3807 3807 27419 11281 7788 8689
street512 3732 7555 7528 7528 97202 24062 16054 21363

Table 4.4, we present results for the connect, search and CSR execution times. We exclude

the refine time because (1) there are only subtle differences between graphs and (2) it is

also included in CSR time.

• Connect phase: DSG achieves better connection times in all, games and streets

benchmarks. SG dominates in mazes and rooms. The main differences of DSG

against each type of graph are:

– SG: In SG forward connect, the iteration through the main axis may have

more steps than in DSG, since simple important cells are subgoals while

in DSG the subgoals must have a given direction. This also translates into

the amount of connections. In Figure 4.3 we can see that SG connects to

every subgoal it finds, while DSG connects only to subgoals with a specific

direction.

63

s

(a) DSG ignores connections in com-
parison to SG

s

(b) Paths in DSG are not always shorter than in SG

Figure 4.3. (a) In SG, s connects to every yellow subgoal, while in DSG
s does not connect to any subgoal. (b) In DSG, edges from s to the green
nodes represent a path of length two in SG. However, in DSG, a path from
s to the red node uses the same number of edges than a path in SG.

– JP and JPD: In DSG forward connect, each successful connection restricts

other subsequent connections, because of the boundaries used in DIAGO-

NAL SCAN from Algorithm 3.2. Also each diagonal scan from a CF-scan

stop independently, unlike JP and JPD where both cardinal scans continue

until the diagonal scan stops. Finally, in comparison with JP target connec-

tion, the time complexity is lower, with O(W +H) versus O(WH).

• Search phase: JP outperforms all other algorithms in almost all categories. This

is achieved since an edge in JP can represent a path of any length in SG, as

explained in Section 3.1.1. It is possible to notice that DSG also outperforms

SG, but the difference is lower. This occurs since a DSG edge can represent a

path in SG of a length up to two, as shown in Figure 4.3.

• Connect-Search-Refine procedure: JP outperforms other algorithms in almost all

categories since the search phase is predominant in comparison with the connect

phase. To summarize, one can notice that JP is 2.14 times faster than DSG in the

games category.

64

Table 4.4. Execution times of the Connect-Search-Refine procedure of the
subgoal graph framework. All categories from the MovingAI benchmark
are included, except random and street-1024.

Connect (µs) Search (µs) CSR (µs)
SG JP JPD DSG SG JP JPD DSG SG JP JPD DSG

all 7.14 7.31 6.21 5.83 1607.81 876.94 939.52 979.88 1647.60 914.22 976.17 1017.68
games-all 11.77 11.14 9.30 8.58 714.72 78.57 93.06 188.90 735.11 95.92 109.46 205.45
mazes-all 1.57 2.82 2.69 2.73 2850.88 1892.75 2014.37 2002.38 2916.90 1956.69 2078.25 2068.69
rooms-all 1.73 3.10 3.03 2.91 422.90 343.22 386.73 369.66 433.67 354.20 397.80 381.60
streets-all 18.04 15.25 11.61 10.52 466.30 40.45 55.38 112.74 490.25 60.05 72.10 128.97
bg 5.12 5.83 3.75 3.86 214.35 21.57 35.07 66.99 224.30 29.84 42.55 75.18
bg-512 7.84 6.15 5.24 5.16 191.20 18.23 23.61 71.72 204.81 28.91 33.91 82.45
dao 7.77 8.26 6.76 6.22 506.66 88.52 101.89 162.72 523.87 103.32 116.23 177.50
da2 5.36 5.59 4.58 4.59 194.94 21.14 28.57 56.17 206.86 31.29 38.48 66.73
sc1 21.33 19.46 16.44 14.87 1579.69 149.56 175.49 378.52 1613.01 177.80 201.79 404.58
wc3-512 7.97 9.14 8.04 7.03 156.65 24.92 28.41 49.16 169.57 38.05 40.70 60.72
maze-1 1.39 3.19 3.03 3.31 6857.02 5546.25 5857.16 5637.72 6973.37 5667.13 5976.21 5758.58
maze-2 1.72 3.11 3.06 3.10 4545.04 2544.74 2678.57 2555.02 4630.45 2627.72 2760.63 2638.28
maze-4 1.60 2.93 2.73 2.72 1710.26 539.44 646.57 918.13 1766.23 587.50 696.13 973.12
maze-8 1.59 2.57 2.44 2.35 532.27 155.62 185.62 267.21 576.11 193.61 224.69 309.76
maze-16 1.61 2.38 2.23 2.17 143.50 41.67 49.38 71.72 173.90 69.66 77.96 101.90
maze-32 1.56 2.31 2.16 2.15 34.43 9.83 11.63 17.28 52.69 27.72 29.67 36.00
room-8 1.99 4.03 3.89 3.90 1322.71 1092.58 1234.02 1155.49 1339.48 1108.74 1250.41 1173.96
room-16 1.76 3.24 3.12 2.96 288.75 225.55 251.61 254.04 299.77 236.84 262.93 266.28
room-32 1.67 2.68 2.68 2.50 76.55 54.96 61.79 66.71 84.91 63.76 70.68 76.00
room-64 1.52 2.47 2.44 2.32 19.72 12.78 14.09 16.55 26.83 20.61 21.92 24.55
street256 10.91 10.48 7.91 7.38 232.93 31.18 39.99 70.79 247.97 44.54 51.42 82.08
street512 21.59 17.63 13.46 12.09 582.51 45.06 63.04 133.63 610.89 67.77 82.40 152.32

4.2.2. Sugoal graph framework and Contraction Hierarchies

In this section we test the subgoal graph framework in conjunction with CH. We di-

vided the from the preprocessing and query phases.

4.2.2.1. Preprocessing phase

In order to measure the size of a CH-subgoal graph we use the following metrics:

• N° shortcuts: Is the number of edges added with respect to the base graph

numbers shown in Table 4.3. Each shortcut is potentially a combination of other

edges.

65

• % RF -reachable shortcuts: Is the percentage of shortcuts that do not need to be

unpacked, since the incident nodes holds a determined freespace reachability re-

lation. In this case, we use is freespace-diagonal-first reachability and freespace-

cardinal-first reachability. Having a higher percentage reduces the cost of the

unpacking procedure.

• |E|: Is the total number of edges in the graph after the CH preprocessing. It

is the most important measure to compare graph sizes between subgoal graphs,

since the number of nodes is similar.

Table 4.5 shows the preprocessing phase results of this experiment. From it, we can

mention that

• N° shortcuts: JP is the subgoal that adds the least number of shortcuts. This

occurs given that JP edges represent paths of many edges in SG or DSG. There-

fore, other subgoal graphs need more shortcuts to represent JP edges, and more

to represent JP shortcuts. With respect to to CH-DSG it adds the most number of

shorctuts between directed subgoal graphs, due to the aforementioned reasons.

This occurs more strongly in benchmarks with larger maps such as Starcraft I

and Street-512.

• % RF -reachable shortcuts: CH-SG is the subgoal graph with highest percent-

age of RF -reachable shortcuts, followed by CH-DSG and CH-JPD in all bench-

marks. The percentage of RF -reachable shortcuts X% can be interpreted as

that X% of the shortcuts can be treated as edges in the original graph and only

1 − X% of the shortcuts actually need the CH unpacking procedure. CH-DSG

has almost 70% of RF -reachable shortcuts, therefore this optimization is essen-

tial for speeding up the refine procedure. The percentage is still important in

CH-JPD, reaching 48.1%. In CH-JP is where this optimization is least impor-

tant.

66

Table 4.5. CH subgoal graph sizes in the MovingAI benchmark. All cate-
gories are included except random and street-1024.

N° shortcuts % RF -reachable shortcuts | E |
SG JP JPD DSG SG JP JPD DSG SG JP JPD DSG

all 2739 3293 3646 4460 75.63 22.13 48.10 69.82 15309 16175 14402 15821
games-all 1560 1086 1375 1923 84.30 25.12 54.54 76.72 12320 11102 9299 10228
mazes-all 6638 13536 13678 14064 29.33 5.23 15.97 26.56 20362 43389 43445 44260
rooms-all 9707 17384 17880 21779 25.80 1.67 4.56 34.36 16606 35512 35820 39808
streets-all 4592 3117 4155 5673 78.69 26.34 52.49 75.91 35747 20788 16076 20699
bg 448 231 388 570 84.84 18.59 66.17 79.38 2602 2083 1694 2018
bg-512 676 375 504 871 83.65 24.51 53.70 77.90 4758 2949 2628 3832
dao 975 747 927 1209 83.50 25.06 50.88 73.89 5973 5884 4966 5323
da2 481 279 388 568 85.70 28.65 54.88 77.40 3332 2799 2578 2969
sc1 6526 4582 5691 8029 85.79 35.32 52.18 79.49 58711 53211 43998 47547
wc3-512 1298 1099 1262 1527 81.65 20.62 37.61 70.58 8058 8490 7541 7933
maze-1 21808 52107 52107 52099 4.75 7.47 7.47 7.48 57986 152687 152687 152680
maze-2 12359 22134 22134 22134 15.39 5.05 5.05 5.04 40990 73064 73064 73063
maze-4 4040 4976 5597 7234 38.42 4.71 19.69 34.53 16443 24429 24692 28163
maze-8 1200 1487 1653 2151 38.17 5.08 19.25 34.99 4943 7439 7498 8516
maze-16 346 422 471 628 37.91 4.62 20.51 36.10 1448 2168 2180 2504
maze-32 75 87 103 141 41.33 4.47 23.86 41.22 360 546 552 633
room-8 30206 55628 57391 68383 24.03 2.98 8.09 26.02 50811 110156 111207 122361
room-16 7016 11585 11772 15258 23.50 1.73 4.66 30.07 12384 25469 25615 29212
room-32 1400 2048 2075 3014 24.86 0.75 2.53 36.30 2721 5398 5426 6422
room-64 206 276 280 462 30.80 1.23 2.96 45.05 507 1026 1030 1237
street256 2809 2265 2944 3818 76.87 22.63 49.86 72.81 16518 13546 10732 12507
street512 6375 3968 5365 7529 80.51 30.06 55.11 79.01 54976 28030 21419 28892

• |E|: Despite JP being the subgoal graph with the least number of added short-

cuts, each subgoal graph stays in the same place overall, but the differences

narrow. CH-DSG now has 10% more edges than CH-JPD in games benchmark.

4.2.2.2. Query phase

In order to present the differences in the query speed, we present the following metrics:

• Search time: The search stage was the most time consuming phase in Sec-

tion 4.2.1.2 and reducing it is one of the main objectives of CH.

• Refine time: The refine time in CH-subgoal graphs now considers both the time

of the unpacking stage of CH and the time of the refine stage of subgoal graphs.

• CSR time: Similar to CSR time in Section 4.2.1.2, it is used to determine the

fastest algorithm in the query phase.

67

• N° exp.: The number of expansions performed by Bidirectional A*. It includes

forward and backward expansions.

• Successors per exp.: The average number of nodes added (or updated) to the

Open queue after an expansion.

Since the connect procedure remains almost the same than in the base subgoal graph, we

do not include connect time. However, there is a subtle and even increase in connection

times with respect to the base subgoal graph, given that each edge in CH is represented

by more attributes. In any case, the influence of the connect time can be seen reflected in

CSR time.

Table 4.6 presents the results of solving all problems in MovingAI, whereas Table 4.7

presents the search stats. Here, we can observe that:

(i) Search time: Unlike Section 4.2.1.2, now JPD achieves the best CSR time per-

formance overall. However, the panorama is much more competitive, with CH-

SG winning in 2 subcategories, CH-JP in 3, CH-JPD in 9 and CH-DSG in 4.

Here, we observe that differences against CH-DSG are almost nonexistent, av-

eraging 2.3%.

(ii) Refine time: CH-JP achieves the smallest refine times. This can be explained

since CH-JP add the least number of shortcuts as discussed in Section 4.2.2.1.

However, as other subgoal graphs use RF -reachable shortcuts, the differences

in the refine time are small. For example CH-DSG has 35% more shortcuts but

only 3.2% slower refine.

(iii) CSR time: CH-JPD is the fastest subgoal graph in MovingAI, however, the dif-

ferences are small: CH-JP and CH-DSG are 3.1% and 1.6% slower respectively.

With respect to CH-DSG, it leads the CSR time in 5 subcategories, in compar-

ison with the 4 subcategories in the search phase. This can be explained since

DSG is the fastest algorithm in the connect phase Section 4.2.1.2.

(iv) N° Exp. and successors per exp.: We can notice that CH-JP is the algorithm

with the fewest expansions, but DSG is the algorithm with lower successors per

68

Table 4.6. Execution times of the Connect-Search-Refine procedure of the
CH subgoal graph framework. All categories from the MovingAI bench-
mark are included, except random and street-1024.

Search (µs) Refine (µs) CSR (µs)
SG JP JPD DSG SG JP JPD DSG SG JP JPD DSG

all 60.22 21.13 20.46 20.94 70.01 55.09 56.36 56.86 139.20 84.56 84.04 84.73
games-all 98.10 26.56 25.22 25.80 9.82 8.67 8.90 9.22 122.75 47.93 44.94 45.24
mazes-all 12.01 9.85 9.82 10.02 148.34 115.60 118.24 119.01 162.26 128.66 131.15 132.15
rooms-all 59.55 60.64 60.22 58.41 16.97 13.85 14.07 14.16 79.11 78.57 78.32 76.59
streets-all 126.04 23.40 22.97 27.02 6.81 5.96 6.11 6.33 155.28 46.36 42.25 46.13
bg 41.61 12.12 11.31 13.25 4.93 3.86 4.15 4.33 53.16 22.59 19.99 22.41
bg-512 45.51 10.64 10.50 13.71 7.30 6.62 6.83 7.11 62.47 24.11 23.17 26.89
dao 70.21 25.36 23.87 23.69 10.91 9.45 9.65 9.94 90.95 44.18 41.32 41.12
da2 42.97 11.53 11.29 13.02 8.01 6.77 7.04 7.40 57.85 24.59 23.70 25.89
sc1 191.25 46.79 44.12 43.11 12.86 11.52 11.79 12.22 230.93 80.66 75.20 73.01
wc3-512 45.85 16.81 16.58 17.14 6.59 5.96 6.11 6.25 62.69 33.20 31.95 31.76
maze-1 11.19 13.51 13.31 13.57 306.75 234.19 238.57 237.93 319.60 251.52 255.60 255.46
maze-2 15.12 11.98 11.80 11.83 204.70 156.44 159.46 157.92 221.77 172.05 174.79 173.37
maze-4 13.72 10.02 10.20 10.28 101.75 78.41 81.28 85.24 117.39 91.60 94.47 98.48
maze-8 12.03 8.24 8.22 8.49 72.19 59.68 61.55 63.74 86.18 70.69 72.45 74.81
maze-16 10.20 6.39 6.52 6.77 47.09 42.11 43.92 44.76 59.34 51.13 52.94 53.98
maze-32 7.83 4.82 4.87 5.23 25.77 25.07 25.08 25.76 35.66 32.56 32.49 33.43
room-8 137.19 150.86 149.56 142.84 29.18 22.34 22.90 23.06 169.71 179.76 178.86 172.44
room-16 62.21 59.42 59.26 58.56 17.79 14.60 14.63 14.61 82.63 77.96 77.77 77.07
room-32 28.98 25.54 25.46 25.11 12.05 10.37 10.59 10.58 43.32 39.05 39.20 38.70
room-64 12.23 9.25 9.10 9.56 9.26 8.37 8.46 8.69 23.64 20.40 20.31 20.92
street256 68.88 20.33 19.20 21.62 5.14 4.22 4.37 4.60 87.95 36.47 33.01 35.36
street512 154.51 24.93 24.85 29.71 7.64 6.82 6.98 7.19 188.81 51.28 46.86 51.50

exp, i.e., a lower branching factor. These two effects combined even out the

search times, as shown in Table 4.6.

In games benchmarks, CH-DSG is the fastest algorithm in dao, sc1 and wc3-512. The

differences with CH-JPD are small, but in Starcraft I CH-DSG is 3.0% faster than CH-

JPD. These benchmarks are characterized by its large dimensions and large problems, as

discussed in Section 4.1.1. Therefore, we present a detailed analysis in order to determine

if the size of the map is correlated with CH-DSG better performance. For that purpose,

we compare the overall dominant algorithm CH-JPD with CH-DSG in these benchmarks.

In this comparison, we contrast the CSR times of each algorithm with the average graph

size. In order to express this in percentage and to have positive values when CH-DSG is

faster we use the following percentage improvement formula:

Percentage improvement = 100× (
CH-JPD CSR time
CH-DSG CSR time

− 1)%

69

Table 4.7. Statistics of the bidirectional search performed by CH subgoal
graphs. All categories from the MovingAI benchmark are included, except
random and street-1024.

N° exp. Successors per exp.
SG JP JPD DSG SG JP JPD DSG

all 45.92 33.44 34.19 36.58 2.09 1.51 1.47 1.38
games-all 60.81 35.52 36.46 40.12 2.63 1.74 1.67 1.54
mazes-all 29.27 29.04 29.55 30.20 1.06 0.97 0.97 0.97
rooms-all 47.21 60.44 60.65 61.62 2.32 2.06 2.05 1.97
streets-all 53.05 23.07 24.57 31.66 5.37 3.23 3.04 2.49
bg 34.55 20.36 21.61 24.85 2.28 1.59 1.44 1.40
bg-512 34.87 18.42 19.38 23.72 2.52 1.63 1.55 1.55
dao 52.74 37.14 37.73 39.96 2.34 1.59 1.51 1.42
da2 39.36 22.67 23.35 26.98 2.02 1.35 1.32 1.27
sc1 100.72 54.81 56.08 60.71 3.06 1.91 1.84 1.63
wc3-512 33.99 21.99 22.67 25.47 3.05 2.40 2.31 1.98
maze-1 29.56 37.15 37.15 37.74 1.04 0.98 0.98 0.98
maze-2 35.74 34.97 35.03 35.40 1.07 0.98 0.98 0.98
maze-4 32.04 29.71 30.72 31.19 1.08 0.97 0.97 0.98
maze-8 28.61 25.48 26.27 27.22 1.08 0.97 0.96 0.97
maze-16 24.71 20.72 21.80 22.29 1.07 0.96 0.96 0.96
maze-32 19.57 15.99 16.45 17.76 1.05 0.95 0.95 0.96
room-8 84.02 121.55 122.22 120.93 3.24 2.77 2.74 2.66
room-16 53.16 65.49 65.63 67.91 2.57 2.27 2.27 2.16
room-32 33.65 37.85 37.98 39.32 1.99 1.80 1.80 1.73
room-64 19.54 19.09 19.00 20.53 1.55 1.45 1.44 1.39
street-256 38.95 21.76 22.53 27.60 4.16 2.99 2.76 2.33
street-512 60.07 23.73 25.59 33.68 5.98 3.35 3.17 2.57

In order to normalize graph sizes, we use the average number of edges between CH-JPD

and CH-DSG.

Average graph size =
|E|CH JPD + |E|CH DSG

2

We also include bg-512 in this comparison since it also contains large maps.

In Figure 4.4 we plot the percentage improvement of CH-DSG versus the average graph

size, and also add a trend line. Here, we can see that all trend lines have a positive slope,

i.e., the speedup that DSG grants with respect to JPD increases with the graph size. How-

ever, the slope is little steep and there are many outliers. In (a), (b) and (c) we can see

that CH-JPD dominates in smaller graphs, but as the graph size increases CH-DSG takes

the lead. In (d), the speedup favors CH-JPD over all graph sizes, however, the slope is

still positive, reducing the difference with CH-DSG as the graph size increases. The maps

with highest percentage improvement for CH-DSG in these benchmarks reach 27%, 20%,

22% and 8% in sc1, dao, wc3-512 and bg-512 benchmarks respectively, representing a

70

huge improvement for the state-of-art algorithms. This becomes more relevant when we

consider that these benchmarks are games benchmark with larger graphs and problems

with higher costs.

To understand why this happen, we show in Figure 4.5 the maps on which CH-DSG per-

forms best for each respective benchmark. Based on this, we made the following observa-

tions:

• There is a large number of connected components of obstacles: In (a) Expe-

dition, we can find a lots of medium-size isles and also, in the center of the map,

a large number of small blocks. This situation repeats in (b) ost100d, where there

are a great number of isolated group of pixels. In (c) stromguarde, we can see

a large number of blocks and in (d) AR0414SR, there are several medium-size

islands.

• The traversable space allows long diagonal movements: This is crucial to

understand why CH-DSG outperforms CH-JPD on these maps. Long diagonal

movements among with large number of connected components results in that,

during a forward connect in JPD, the diagonal scan takes longer to finish, at the

same time it detects a large number of connected components with its respective

jump points, resulting in more connections, for both the Connect graph in the

preprocessing stage and the Connect in the query phase.

Despite the aforementioned, DSG has 1.8% to 3% more edges than JPD in these bench-

marks, as shown in Table 4.3. However, this difference is small and many of these edges

are incident to subgoals in rough walls. Since subgoals in rough walls are mainly used

to navigate through the wall, they often have low hierarchy levels and therefore most of

these edges are skipped in a bidirectional search over the CH graph. In conclusion, CH

takes away most of DSG weakness on these type of maps whereas JPD maintains higher

connection times and similar search times. We can observe that the larger size of the

graph has a positive correlation with CH-DSG better performance, but we think that the

aforementioned observations plays a more important role.

71

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·105

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

Avg. Graph size (|E|)

Pe
rc

en
ta

ge
im

pr
ov

em
en

t(
%

)

CH-JPD is faster
CH-DSG is faster

Trend line

(a) Starcraft

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

·104

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

Avg. Graph size (|E|)

Pe
rc

en
ta

ge
im

pr
ov

em
en

t(
%

)

CH-JPD is faster
CH-DSG is faster

Trend line

(b) Dragon Age: Origins

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

·104

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

Avg. Graph size (|E|)

Pe
rc

en
ta

ge
im

pr
ov

em
en

t(
%

)

CH-JPD is faster
CH-DSG is faster

Trend line

(c) Warcraft III - 512

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2

·104

−40.00

−30.00

−20.00

−10.00

0.00

10.00

20.00

30.00

Avg. Graph size (|E|)

Pe
rc

en
ta

ge
im

pr
ov

em
en

t(
%

)

CH-JPD is faster
CH-DSG is faster

(d) Baldurs gate II - 512

Figure 4.4. Scatter plot of the percentage improvement of CH-DSG over
CH-JPD versus average graph size in games benchmark

4.2.3. Memory analysis

In Section 4.2.2.2 we showed that the differences in execution time between directed

subgoal graphs are small, with CH-DSG being 1.6% and 0.2% slower than CH-JPD in

all and games-all benchmarks respectively. Therefore, other factors, such as memory

usage, gain more relevance in order to determine which graph is more appropriate for each

context. For the following comparisons, we exclude SG and CH-SG, since the benchmarks

in which DSG is faster or is close to being, its main competitors are JP and JPD.

That said, in Section 3.1.3.4 we explain how DSG can use half of the clearances that JP

and JPD use. In order to quantify the improvements this represents, we summarize all the

information that must be saved after the preprocessing stage:

72

(a) Expedition from Starcraft (b) ost100d from Dragon Age: Origins

(c) stromguarde from Warcraft III-512 (d) AR0414SR from Baldurs Gate II-512

Figure 4.5. Maps in which CH-DSG performs the best

• Clearances: We use 1 byte for each clearance value. Therefore, considering all

directions we have 8×W ×H bytes per set of diagonal and cardinal clearances.

Thus SG and DSG use a total of 8×W ×H bytes for clearance memory and JP

and JPD use a total of 16×W ×H bytes.

• Subgoal graphs:

73

– Information per subgoal: It uses 4 bytes for the position and direction, 1

byte for subgoals that reference it and 6 bytes for edges information. Total:

11 bytes.

– Information per edge: It uses 4 bytes for the target nodes. Total: 4 bytes.

This adds up to a total of 11× |V |+ 4× |E| bytes.

• CH subgoal graphs:

– Information per subgoal: Additional to the 11 bytes for the subgoal in-

formation, we use an additional 6 bytes for reverse edges and 1 byte for

avoidance information. Total: 18 bytes.

– Information per edge: We can avoid saving the cost and unpacking infor-

mation for edges that do not need to be unpacked. These edges are edges

which are not shortcuts or shortcuts that are freespace-R-reachable. To do

so, for every edge we save the source and target node and a new unpacking

identifier, which is undefined (-1) for those edges (total of 12 bytes). For the

remaining |E ′| edges, we save the unpacking information in another vector:

4 bytes for the cost and 8 bytes for the base edges. This vector is referenced

using the unpacking identifier. Total: 12× |E|+ 12× |E ′| bytes.

This adds up to a total of 18× |V |+ 12× |E|+ 12× |E ′| bytes .

In Table 4.8 we show the memory usage of each directed subgoal graph and the per-

centage of that memory that is used on clearances, signaled as % Clr Mem. This way we

can measure the benefit of using DSG in terms of memory. Dark orange rows represent

benchmarks with the highest memory usage, whereas dark blue rows represent bench-

marks where the graph weights more with respect to the weight of the clearances.

• Subgoal graphs: The benchmark with the highest memory usage is sc1, but it

presents a high percentage of clearances. Therefore, DSG substantially reduces

memory usage to 51.9% with respect to JPD. In general terms, DSG uses 51.7%

and 51.0% of JP and JPD memory on all and games-all benchmarks. This occurs

since the percentage of memory that corresponds to clearances is greater than

74

Table 4.8. Memory usage of directed subgoal graphs and its CH versions.

Mem. (MB) % Clr Mem. Mem. CH (MB) % Clr Mem. CH
JP JPD DSG JP JPD DSG JP JPD DSG JP JPD DSG

all 3.18 3.17 1.64 96.39 96.66 93.39 3.40 3.38 1.86 90.02 90.64 82.27
games-all 2.97 2.96 1.51 97.54 97.82 95.63 3.10 3.08 1.64 93.49 94.19 88.57
mazes-all 4.60 4.60 2.50 91.31 91.32 83.96 5.35 5.35 3.27 78.39 78.39 64.26
rooms-all 4.40 4.40 2.30 95.34 95.37 91.14 5.06 5.06 3.00 82.99 83.02 70.04
streets-all 2.76 2.74 1.44 95.11 95.93 91.38 3.01 2.95 1.69 87.08 88.88 77.72
bg 0.29 0.29 0.15 93.46 94.24 88.78 0.32 0.31 0.18 84.56 86.09 74.05
bg-512 4.22 4.22 2.13 99.38 99.42 98.69 4.27 4.26 2.18 98.39 98.49 96.41
dao 2.19 2.19 1.11 98.08 98.29 96.61 2.27 2.26 1.18 94.86 95.38 90.98
da2 2.45 2.45 1.24 98.99 99.05 98.05 2.49 2.49 1.28 97.45 97.57 94.94
sc1 7.47 7.43 3.86 95.68 96.22 92.60 8.05 7.93 4.39 88.85 90.13 81.48
wc3-512 4.25 4.25 2.15 98.66 98.76 97.53 4.36 4.35 2.25 96.28 96.55 93.31
maze-1 5.54 5.54 3.45 75.70 75.70 60.91 8.23 8.23 6.13 50.98 50.98 34.21
maze-2 4.89 4.89 2.79 85.92 85.92 75.31 6.16 6.16 4.07 68.08 68.08 51.61
maze-4 4.45 4.45 2.36 94.31 94.34 89.02 4.85 4.85 2.80 86.50 86.50 75.00
maze-8 4.28 4.27 2.18 98.17 98.18 96.34 4.40 4.40 2.31 95.40 95.41 90.71
maze-16 4.22 4.22 2.12 99.43 99.44 98.85 4.26 4.26 2.17 98.54 98.54 96.94
maze-32 4.20 4.20 2.11 99.83 99.83 99.65 4.22 4.22 2.12 99.55 99.55 99.05
room-8 4.81 4.80 2.70 87.31 87.42 77.64 6.84 6.84 4.85 61.32 61.39 43.30
room-16 4.36 4.36 2.26 96.33 96.34 92.92 4.82 4.82 2.76 87.05 87.06 76.06
room-32 4.24 4.24 2.14 99.04 99.04 98.08 4.34 4.34 2.25 96.80 96.79 93.34
room-64 4.21 4.21 2.11 99.75 99.75 99.50 4.23 4.23 2.13 99.27 99.27 98.45
street-256 1.14 1.13 0.60 92.21 93.40 87.09 1.31 1.27 0.77 80.10 82.48 68.72
street-512 4.38 4.35 2.27 95.87 96.59 92.52 4.72 4.63 2.61 89.02 90.64 80.35

90%, thus, the memory usage is dominated by clearances. The exceptions are

dark blue rows as maze-1 or room-8, where the weight of the graph is comparable

to the weight of the clearances.

• CH subgoal graphs: The memory benefits are greater on games maps (light

blue), where CH-DSG uses 53.2% of the memory used by CH-JPD. In all bench-

mark, the benefit reaches 55.0%. The memory benefits are still important in

streets, using only a 57.3% of CH-JPD’s memory. maze-1 and room-8 are the

benchmarks that use the most memory. Given that they present a lower percent-

age of clearance memory, the benefit of using DSG is also lower. This occurs

since CH adds many shortcuts and thus increases the relative weight of the graph

with respect to the clearances.

75

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.40

0.45

0.50

0.55

0.60

0.65

0.70

Percentile (%)

%
M

em
or

y

CH-DSG/CH-JPD

(a) Percentage of memory used by CH-DSG with
respect to CH-JPD over percentile of total memory
usage.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.00

2.00

4.00

6.00

8.00

10.00

12.00

Percentile (%)

M
em

or
y

ga
in

(M
B

)

CH-JPD−CH-DSG

(b) Net memory gain of CH-DSG vs CH-JPD over
percentile of total memory usage.

Figure 4.6. Memory comparison between CH-DSG and CH-JPD.

4.2.3.1. Memory usage and graph size in games

Since the memory benefits of using DSG or CH-DSG are greater in games benchmark

we compare it with the dominant algorithm, CH-JPD. For this purpose, we include the

total size as a new dimension. For each graph we sort the maps by their total memory

usage (clearances and graph) in ascending order. Then, for each percentile of these sorted

maps we compare the memory usage of CH-DSG with CH-JPD. Figure 4.6 (a) shows the

percentage of memory that CH-DSG uses with respect to CH-JP and (b) shows the net

memory gain. Here, we can see that the memory benefits of using CH-DSG are greater

when the total memory used is higher. In maps with lower memory usage the percentage of

memory used by CH-DSG reaches 62% which translates into gains of 0.02 megabytes per

map and in maps with higher memory usage the percentage of memory used by CH-DSG

reaches 51% which translates into gains of up to 11 megabytes per map.

4.2.4. Avoidance

The avoidance utilized for subgoal graphs consist of backward connection avoidance

and forward search avoidance, whereas the avoidance used for CH subgoal graphs con-

sists only of backward connection avoidance, since avoidable nodes tend to have lower

76

Table 4.9. Search statistics when using avoidance. All instances from the
10 maps in lexicographical order from games and streets categories of
MovingAI benchmark are included (excluding street-1024).

Without avoidance With avoidance
Graph Added edges N° exp. CSR time (µs) Added edges N° exp. CSR time (µs)
DSG 31.32 406.29 217.85 27.85 338.02 190.15
JP 59.57 196.02 113.36 24.18 138.14 83.81
JPD 40.96 232.13 122.09 26.95 177.15 94.85
CH-DSG 31.32 40.18 46.58 27.85 38.14 44.56
CH-JP 59.57 47.14 61.02 24.18 31.96 45.84
CH-JPD 40.96 40.23 49.78 26.95 33.29 43.37

hierarchies and thus are less likely to being added to the open. In order to measure the

impact of avoidance, we perform the following experiment: For a subset of the first 10

maps (lexicographically) from each game and street subcategories, we present statistics

with and without avoidance. These statistics are:

• Added edges: The average number of edges added in the connection procedure.

• N° expansions: The average number of expansions during the search.

• CSR time: The average total execution time for each instance.

The results of this experiment are shown in Table 4.9.

We can notice that the amount of edges added in the connection procedure is drastically

reduced with the connection procedure, reaching a 59% reduction in JP. However we can

also notice that this improvement is lower in DSG, where the reduction is only 11%. It is

also important to notice that without avoidance, CH-DSG is indisputably the fastest search

algorithm.

We discovered that in JP about 50% of subgoals are backward avoidable, while in JPD and

DSG this percentage is about 30% and 12% respectively. Forward avoidance is more even

between the different graphs, but also shows a similar tendency. In summary, avoidance

represent an improvement to all directed subgoal graphs, but is more crucial in JP and

JPD.

77

5. CONCLUSIONS

5.1. Conclusions

DSGs are an extension to the subgoal graph framework, in which we expanded the

usage of the incoming direction first introduced in JP. DSG is a more conservative subgoal

graph in the sense that it introduces edges that are relatively short in comparison with JP or

JPD. In addition, its connection procedure is the fastest across the MovingAI benchmark

while also using half of the memory. This connection procedure also explores the grid

in a novel cardinal-first approach. The above benefits come at the cost of slower search

times, mainly due to the fact that solutions have a higher depth. However, this pitfall

can be largely overcome by using CH-DSG, which generates a graph that is as fast as

its competitors, improving the state-of-art query times in several benchmarks, mainly in

games and rooms. The speedups in these benchmarks reach up to 3.0%.

We also characterized the scenarios where CH-DSG outperforms its competitors the

most, these are mainly in large maps in which the traversable space allows long diagonal

movements where there also are a large number of connected components. In these sce-

narios, speedups with respect to the state-of-art CH-dsgs can reach up to 27%. In addition

to the above, CH-DSG still uses considerably less memory than other CH-dsgs, using in

average 45% less memory in all benchmarks and 47% less memory in games benchmarks.

In the process of developing DSG, we provided an in depth analysis of the subgoal

graph framework, possibly improving the explainability of each one of its components,

and providing several optimization for directed subgoal graphs and CH-dsgs. These op-

timizations are (1) the extension of the notion of avoidance, in which a group of nodes

can be ignored in both search and connection stages (2) the improvement of suboptimal

approaches to reduce redundant edges in CH-dsgs and (3) the generalisation of the usage

of freespace-reachable shortcuts in CH-sgs to reduce refine times. DSG represent an ex-

tension to the subgoal graph framework that in overall widens the spectrum of scenarios

78

in which subgoal graphs are the most situable preprocessing technique for solving path

planning problems.

5.2. Future work

Through the development of this research, we identified several other opportunities to

improve the subgoal graph framework.

• We provided a new subgoal graph that is based on SG safe-freespace reachabil-

ity, however, we added a diagonal-first condition to enhance solution depths and

branching factor. Given this, it is possible to build a DSG without this condition

that would be more conservative than DSG and therefore it could present other

benefits yet undiscovered.

• Considering there are several different subgoal graphs, one could think building

a meta-subgoal graph, which determines in preprocessing time what would be

the best subgoal graph for that grid graph, this way obtaining most of the benefits

for each scenario.

• With respect to the subgoal graph framework, it is possible to expand the avoid-

ance concept to nodes that only reach (or are reached) by avoidable nodes, there-

fore generating avoidance trees. This could allow to increase the amount of

avoidable nodes at the cost of an overhead in the connection phase depending on

the height of the trees. It should be possible to limit height of trees and therefore

get performance benefits.

• In CH subgoal graphs, it would beneficial to include a priority term that con-

siders the probability of a subgoal being connected to the start and goal. This

could be done by counting the number of cells that are direct-R reachable to the

subgoal or that direct-R reach the subgoal.

• We think that an improvement to the rooms benchmark would be to add doors of

different sizes, since doors of size 1 favors SG to the detriment of any subgoal

graph with more than one node at each cell.

79

REFERENCES

Abraham, I., Delling, D., Fiat, A., Goldberg, A. V., & Werneck, R. F. (2016, dec). High-

way dimension and provably efficient shortest path algorithms. J. ACM, 63(5). Retrieved

from https://doi.org/10.1145/2985473 doi: 10.1145/2985473

Geisberger, R., Sanders, P., Schultes, D., & Delling, D. (2008). Contraction hierarchies:

Faster and simpler hierarchical routing in road networks. In Proceedings of the 7th interna-

tional conference on experimental algorithms (p. 319–333). Berlin, Heidelberg: Springer-

Verlag.

Harabor, D., & Grastien, A. (2011). Online graph pruning for pathfinding on grid maps. In

Proceedings of the twenty-fifth aaai conference on artificial intelligence. Retrieved from

http://www.aaai.org/Conferences/AAAI/aaai11.php

Harabor, D., Uras, T., Stuckey, P., & Koenig, S. (2019). Regarding jump point search

and subgoal graphs. In Proceedings of the international joint conference on artificial

intelligence (ijcai) 2019. Retrieved from https://ijcai19.org/,https://www

.ijcai.org/proceedings/2019/

Rivera, N., Hernández, C., Hormazábal, N., & Baier, J. (2020, January 1). The 2k neigh-

borhoods for grid path planning. Journal of Artificial Intelligence Research, 67, 81–113.

doi: 10.1613/jair.1.11383

Sturtevant, N. R. (2012). Benchmarks for grid-based pathfinding. IEEE Transactions

on Computational Intelligence and AI in Games, 4(2), 144-148. doi: 10.1109/TCI-

AIG.2012.2197681

Uras, T. (2019). Speeding up path planning on state lattices and grid graphs by exploit-

ing freespace structure (Ph.D. in Computer Science, University of Southern California).

80

https://doi.org/10.1145/2985473
https://doi.org/10.1145/2985473
http://www.aaai.org/Conferences/AAAI/aaai11.php
https://ijcai19.org/,https://www.ijcai.org/proceedings/2019/
https://ijcai19.org/,https://www.ijcai.org/proceedings/2019/
https://doi.org/10.1613/jair.1.11383
https://doi.org/10.1109/TCIAIG.2012.2197681
https://doi.org/10.1109/TCIAIG.2012.2197681

Retrieved from http://idm-lab.org/

Uras, T., & Koenig, S. (2018). Understanding subgoal graphs by augmenting contrac-

tion hierarchies. In Proceedings of the 27th international joint conference on artificial

intelligence (p. 1506–1513). AAAI Press.

Uras, T., Koenig, S., & Hernández, C. (2013). Subgoal graphs for optimal pathfinding

in eight-neighbor grids. In Proceedings of the twenty-third international conference on

international conference on automated planning and scheduling (p. 224–232). AAAI

Press.

81

http://idm-lab.org/

	ACKNOWLEDGEMENTS
	TABLE OF CONTENTS
	LIST OF FIGURES
	LIST OF TABLES
	ABSTRACT
	RESUMEN
	1. INTRODUCTION
	2. BACKGROUND
	2.1. Problem definition
	2.1.1. Graphs
	2.1.2. Path planning
	2.1.3. Preprocessing Based Path Planning
	2.1.4. Grid Graphs
	2.1.5. 8-connected Grid Graph

	2.2. Search algorithms
	2.2.1. BFS
	2.2.2. Dijkstra
	2.2.3. Bidirectional Dijkstra
	2.2.4. A*

	2.3. Contraction Hierarchies
	2.4. The Subgoal Graph framework
	2.4.1. Formal definition
	2.4.2. Preprocessing algorithm
	2.4.3. Query algorithm

	2.5. Subgoal Graphs
	2.5.1. Formal definition
	2.5.2. Framework implementation

	2.6. Jump Point Graphs
	2.6.1. Jump Point Search
	2.6.2. Formal definition
	2.6.3. Framework implementation
	2.6.4. Diagonal Merged Jump Point Graphs

	3. DIRECTED SUBGOAL GRAPHS
	3.1. Directed Subgoal Graphs
	3.1.1. Motivation
	3.1.2. Formal definition
	3.1.3. Framework implementation

	3.2. Contraction Hierarchies and the subgoal graph framework
	3.2.1. Overview

	3.3. Improvements to the subgoal graph framework
	3.3.1. Avoidance
	3.3.2. Reducing redundant edges in CH-dsg
	3.3.3. Unpacking freespace-R-reachable shortcuts

	4. EXPERIMENTAL EVALUATION
	4.1. Experimental setup
	4.1.1. Benchmarks
	4.1.2. Validation of JP and JPD
	4.1.3. Implementation details

	4.2. Results and discussion
	4.2.1. Standalone subgoal graph framework
	4.2.2. Sugoal graph framework and Contraction Hierarchies
	4.2.3. Memory analysis
	4.2.4. Avoidance

	5. CONCLUSIONS
	5.1. Conclusions
	5.2. Future work

	REFERENCES

