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The electron-phonon interaction in mixed-valence systems is modeled on the basis of an
Anderson-like Hamiltonian that describes a cluster of one metallic rare-earth cation surrounded
by six anions. Coupling between the electronic and phononic variables is introduced, keeping
two diR'erent phonon modes: a breathing and an asymmetric mode. The erst, related to the
ionic radius, is treated exactly. The asymmetric mode, which determines the sd fhyb-ridization,
is dealt with in the Born-Oppenheimer approximation. A variety of experimental results are
adequately accounted for by this simple model, like the anomalous thermal expansion, the
Debye-Wailer factor, the phonon softening and broadening, and the charge-distance correlation,

I. INTRODUCTION

For around two decades the description and under-
standing of intermediate valence has attracted signifi-
cant eKorts. However, several relevant issues remain
to be solved, among them the full understanding of the
electron-phonon interaction in fluctuating-valence sys-
tems.

The central objective of this paper is the study of phase
transitions of mixed-valence systems like Smq M S,
where M=Y,Th, Gd, . . . in general belong to the rare-
earth (R) series. These systems exhibit a metal-insulator
transition, characterized by an important variation of the
cationic radius, when subject to changes in temperature,
pressure, and/or dopant concentration. s In fact, the
ionic radius of Sm changes from 1.14 (A), in the insu-
lating Sm2+ phase, to 0.96 (A.), in the metallic Sms+
state. These large variations imply that the electron-
phonon coupling plays a major role in the stabilization
of the mixed-valence phase.

Several anomalous properties are associated with the
latter. Among them we mention the following: (i) a neg-
ative thermal expansion coeKcient for certain ranges of
dopant concentration and temperature, "5 (ii) a reduc-
tion of the bulk compressibility modulus, as compared to
other R chalcogenides, ~ (iii) an anomalous temperature
dependence of the Debye-Wailer factor, (iv) a softening
of the optical-phonon modes (in particular, the LO
phonons lie below the TO ones), (v) anomalous phonon
broadening, which is especially noticeable at the point
I of the LO phonon branch, and (vi) negative values of
the eq2 elastic constant.

Various models have been proposed to incorporate the
electron-phonon interaction in the description and un-

derstanding of valence Quctuations. Some of them em-
phasize the coupling of the R valence to the symmet-
ric breathing mode vibrations of the anions that sur-
round it. ~~ ts Others stress the role played by the lat-
tice vibrations as the mechanism which induces the 8d-

f hybridization. ~ Phenomenological models have also
been proposed to describe the lattice dynamics of these
systems. However, most of them have been solved by
means of approximations or in special limits.
Moreover, several important physical magnitudes have
not been evaluated, especially at finite temperatures.

In this contribution we put forward a simple cluster
model to investigate mixed valence systems, focusing on
the electron-phonon interaction. Two types of phonon
modes are considered: a symmetric breathing mode and
an asymmetric one. The latter is analyzed in the Born-
Oppenheimer approximation, and is the only term of the
Hamiltonian not treated exactly. However, a posteriori
its quantum character is retrieved. The energy eigenval-
ues and eigenstates are thus obtained and used to eval-
uate the thermodynamic averages of the magnitudes of
physical interest.

While the symmetric mode belongs to the I'+&(Sm)
representation, and is related to the point L of the LO
branch, the asymmetric ones belong to the I'&5(Sm) rep-
resentation, which is related to the point I' of the same
branch. The reason to select the breathing mode for
an exact treatment is that the physical magnitudes on
which our interest is focused are predominantly related
to the point L of the LO branch. They are the lattice
parameter as a function of temperature, the mean-
square fluctuation of the anionic positions, the anoma-
lous broadening and softening of the phonon frequencies
at the point L of the LO branch, and the dynamic

43 3593 1991 The American Physical Society



3594 MIGUEL RIVAS, JAIME ROSSLER, AND MIGUEL KIWI 43

correlation between the instantaneous valence and the
anion-cation distance.

This paper is organized as follows: After this intro-
duction, in Sec. II, the model is presented in full detail,
and solved as outlined above. In Sec. III our results are
discussed in the light of the available experimental infor-
mation. Finally, in Sec. IV conclusions are drawn and a
brief summary is given.

II. MODEL AND SOLUTION

A. The Hamiltonian

H = H, + Hpp + Hp-p

where

(2.1)

1' Ng

H, =) s dtd„+) Ejftf +U ) ng ng,
v=1 v v'=l

(2.2)

In the formulation of our model we retain only the
most essential physical ingredients. We do consider a
single rare-earth (R) cation (Srn, for example) whose 4f
states hybridize with the narrow sd conduction band of
the host. Due to the strong coupling of the electrons
with the lattice vibrations, we have to include the phonon
field in our description. We retain two phonon modes:
a breathing mode and an asymmetric oscillation. Both
play significant and quite diferent roles, as we shall see
shortly.

The model also has to embody the sd fhybri-diza-
tion mechanism, which has been a subject of controversy.
In fact, due to the different symmetries (opposite par-
ity) of the sd and f orbitals, and since the cations are
located at an inversion symmetry lattice site, a direct
mixing of these orbitals is forbidden. To solve this dif-
ficulty Schweitzer 9 proposed many-body eA'ects as the
cause of the hybridization, while I in and Falicov em-
ployed first-neighbor mixing matrix elements. However,
the asymmetric lattice vibrations constitute a very nat-
ural dynamic mechanism to induce the required instan-
taneous symmetry breaking. r i5 i On the other hand,
the breathing mode, in which the six anions vibrate about
the (R) ion preserving octahedral symmetry, is directly
coupled to the cation valence.

Thus, in the partial-wave representation, the Hamilto-
nian H can be written as

& = Esd'd+ [E' —G(~+ tit)]f'f + ~~arr'u+ ~~it'~

+[Vo + g(a + at)](ftd ~ dt f) (2 5)

where the state ft~0) represents, for example, a Sm2+

cation in the 4f state dt(0.) = P& d&~0)/~IV repre-
sents a Sm + in a 4f state plus a conduction sd elec-
tron in a Wannier state centered around the cation. Ed
is the energy eigenvalue of the atomic d state. In order
to properly describe the insulating phase of SmS (with a
cation Sm + configuration and no conduction electrons),
we assume just one electron in our cluster. Since we

limit our attention to an isolated cluster, fluctuations in
the number of electrons are ruled out, as the conduction
band is of zero width. On the other hand, and due to
the absence of electronic orbital and spin degeneracy, it
is possible to define just one asymmetric phonon mode
capable of triggering the hybridization.

The Harniltonian as written in Eq. (2.5) actually de-
scribes a R cation, of infinite mass, coupled through two
distinct Einstein oscillator modes to six finite mass Mg
sulphur atoms. The R ion can be found in only two pos-
sible electronic configurations (i.e., Sm + and Sm +).

where dt&(d&) and ft(f ) are fermion operators that cre-
ate (destroy) electron states in the narrow s-d conduction
band and in the f states, respectively. k = (k, v) is a col-
lective index denoting both the wave vector k and the z
component of the total angular momentum v, zy denotes
the energy of the band states, E& is the energy of the
f-electron states localized on the R. The number oper-
ator is n~ ——f„f„U is the on-site Coulomb repulsion
between f electrons, and cu, and ~b are the frequencies of
the asymmetric and the symmetric breathing oscillation
modes, created by the boson operators at and bt, respec-
tively. G is the coupling constant between the breathing
mode and the number of f electronsis on the R, while Vo,
which has its origin in the doping R impurities, is the
static hybridization term of the Anderson Hamiltonian.
The coupling constant g yields the magnitude of the mix-
ing between band and localized f states, induced by the
asymmetric phonon mode.

It has been shown that in the large-Ng limit,
and for U: oo, substantial simplifications do occur:
electron-hole pairs and double f-electron transfer drop
out of the treatment. Within this framework we incor-
porate an additional simplification: we assume the con-
duction band to be very narrow. Then our Hamiltonian
reads

Hpg —h~. ata + h~~btb, (2.3) B. Born-Oppenheimer approximation

Nf

H, -r b = G(b+ bt) )—E~ ft f

+ ).[V. + g( +")](ftd.+d,'f.),
N „

(2.4)

In this paper we treat quantum mechanically the
breathing mode, related to the operators b and bt. The
asymmetric phonon mode, related to the f dhybridiza--
tion mechanism, is treated in the Born-Oppenheimer ap-
proximation, which has proved to be an adequate proce-
dure in the low-temperature regime. Thus, we replace
the quantum operator (a+ at) by a real classical displace-
ment denoted by y. The rationale to proceed in this
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manner is that the physical magnitudes we evaluate in
this paper are mainly related to the symmetric breathing
mode; for example, the temperature variation of the lat-
tice parameter. The latter is determined as the average
value of the displacement associated with the breathing
mode coordinate. Moreover, the softening and broaden-
ing of the phonon frequencies are especially relevant at
the point L of the LO phonon branch, which is precisely
associated to the breathing mode. i On the other hand,
the main role of the asymmetric phonon mode, which is
related to the point 1 of the LO branch, is to induce sd- f
hybridization.

Consequently, the Hamiltonian of Eq. (2.5) adopts the
final form

HIE) = FIE) . (2 7)

The energy eigenvector IE) has fermionic and boson-
ic contributions, i.e. , it belongs to the product space
H, H&h. Thus we use the most general form of a
state, in our reduced Hilbert space, for the eigenvector

(2.8)

H = btb+ [E~ —G(b+ bt)]fr f
+(Uo+ yy)(f'd+ d'f) +

4
y', (2 6)

where we have chosen hug ——1 and E~ ——0 as the unit
and origin of energy, respectively. The time-independent
Schrodinger equation satisfied by II is

markable, since the latter were obtained for extended sys-
tems and not for a cluster calculation.

Once the energy spectrum and eigenfunctions have
been obtained, following the procedure outlined above,
the Helmholtz free energy F,

F(y) = k&—T ln ) exp[—PE„(y)], (2.12)

(2.14)

A well-known procedure~3 allows to carry out the sum-
mation above, in the harmonic approximation. It yields

is evaluated as a function of the classical parameter y, as-
sociated with the asymmetric phonon mode. The Born-
Oppenheimer approximation is generalized to finite tem-
peratures, through the use of F(y) as the potential energy
for the breathing modes. After doing so we reintroduce
the quantum nature of the variable y in the self-energy
equation for the asymmetric phonon mode

[——,'&~.(a —a')'+ F(a+ a')]&~(y) = &~&~(y)

(2.13)
where we have reinserted y = a+ a~ as a quantum oper-
ator acting on the asymmetric mode eigenfunction P(y).
Equation (2.13) is solved in the neighborhood of the ab-
solute minimum of F(y) using the harmonic approxima-
tion, to yield the probability distribution

in) = (b')" Io)
(2.9)

where Ie) denotes the vacuum of the electronic Hilbert
space. The bosonic basis is defined by bobbin) = nin), and
consequently

C(y) = e»l:—PF(y)],
where

2 f hQ~—= nn' ""iq2k T

(2.15)

(2.16)

This way („and rj„are probability amplitudes for having
the ion with an occupied f or d state, respectively, and
n "bare" phononic excitations. Substitution of Eq. (2.9)
into the eigenvalue equation, Eq. (2.7), leads to a typical
three-term recursion relation

(s„E~ U /—s„)(„—= G(~n („—i+v'n + 1 ( p i ),
(2.10)

with

(2.11)

and the definitions z„=E —h~yn and V = Vp+ gg.
Eq. (2.10) is an eigenvalue equation, for the energies s„

and eigenvectors g„. The latter can be solved imposing
the condition that I(„+i/(„I (( 1, for n ~ oo which is the
requirement for the existence of a physical eigenfunction.
More precisely, lim„~ I(„+i/(„I G/(huy~n), as can
be inferred from Eq. (2.10), and the condition that the
sequence ((„)converges have to be simultaneously sat-
isfied.

The close analogy between Eq. (2.11) and similar re-
cursion relations derived in Refs. 13 and 15 is quite re-

(BzF(y) &
(2.17)

(2.18)

where the state IE) was defined in Eqs. (2.7) and (2.8),
and

Q = f dvu(v) (2.19)

Here yo denotes the absolute minimum of F(y), while 0
is the oscillation frequency around that minimum. In the
k~T && hQ limit P = (k~T) i and Eqs. (2.15) and (2.16)
become the classical expressions. In the opposite T ~ 0
limit the "efFective temperature" (P) i ~ hQ/2, which
corresponds to the zero-point fiuctuation energy of the
quantum oscillator.

In our adiabatic approximation the thermodynamic av-
erage of an operator A is denoted by (A) and given by

1
(~) = — dy p(y)

Q

x ) (E.(y)l&l&. (y))e
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In (2.18) the y integral averages over the "slow" asym-
metric modes, associated with the I' point of the LO
phonons, ~5 while the quantum bracket yields a statisti-
cal average over the "fast" oscillations, which in this case
correspond to the electronic and breathing modes.

C. Temperature dependence of the lattice
parameter

An important physical magnitude is the lattice param-
eter and its temperature dependence. It is convenient to
write this parameter l(T) in terms of a nondimensional
quantity A(T)

+(1 —ftf)( ,'I+ -4&,( —,'IM)—'

+(lI gP lI )2] + 1PI3 (2.23)

the context of an isolated cluster study we are only inter-
ested in the motion of the anions in the radial direction,
relative to the central Sm. The position coordinate of
an anion along the o. axis, where n = z, y, z is given by
z(l+ V ~, while ( = +(—) denotes the anion to the right
(left) of the central Sm.

Consequently, the elastic energy of the cluster can be
written as

= —) .I &'f(2I+ &L' ~
—2'I)'

a$

l(T) = l~ + (ll —l~)A(T), (2.20)

which in turn can be written as a function of the phonon
operators

A(T) = {b+bt) .
2

(2.21)

Use of Eq. (2.5) and the Hellman-Feynman theorem al-
lows us to prove that

A(T) {ftf)—:ny . (2.22)

The above relations are useful to test the accuracy of our
numerical calculations, which turns out to be better than
one part in 10 . This linear relation between displace-
ment from equilibrium and f-level occupation, known as
Vegard's law, should hold for any model in which the
valence is coupled linearly to the breathing modes, pro-
vided that the elastic energy is evaluated in the harmonic
approximation.

D. System parameters

In order to obtain adequate estimates for the magni-
tude of the SmS system parameters a rough description of
the interactions within the cluster, as well as its coupling
to the rest of the lattice, is required. We put forward
an analysis which implies several simplifications, since we
only retain elastic interactions between first-neighbor Sm
and S atoms, characterized by a Hooke constant Ii Nev-.
ertheless the procedure is quite sound, since this nearest-
neighbor interaction is at least one order of magnitude
larger than the other elastic couplings, in actual R +S
systems. 24

The precise definition of our simplified model is as fol-
lows: The equilibrium elongation of each bond is defined
as II/O and IM/2, for the Sm + and Sm + cations, respec-
tively. The remainder of the lattice is simulated by six Sm
cations, with an ionic radius (R; „)= nf RI+(1 flf)RM,
where gl and RM are the Sm + and Sm + ionic radii,
respectively. These cations play a "passive" role, which
means that they have no electronic degrees of freedom
and that their masses are infinite, They are disposed in
a octahedral configuration around the central ("active")
Sm, and at a distance l away. Their only role is to pro-
vide a suitable coordination for the six S anions. Within

0 = ,'(Ir —4x—)v'3&Ms~' = 3r ~ (2.24)

for the coupling constant between the Sm valence and the
breathing mode. The estimation of G above is obtained
using the values 11 —l~ = 0.36 (A.) and h~ —0.031 (eV),
which corresponds to the phonon energy at point I of
the LO branch, for a stable valent R2+S system. g

The effect of pressure on the lattice parameter can
also be obtained from relation (2.23), and is formally
described by means of the following two equations:

l2
(=ID — .P=/O — P, (2.25)

OEg ~ l= Ms (lI —4r), (2.26)

where B is the bulk modulus for the actual system, while
Bp is the associated "bare" magnitude (say, the bulk
modulus for a stable-valent R +S system).

Relation (2.25) is a generalization of Eqs. (2.20)
and (2.22). However, the external pressure modifies the
lattice parameter in two ways: first through the bare
bulk modulus Bo, and second via the pressure shift of

where P represents the external hydrostatic pressure,
1p ——lM + ny (II —4I), and 1 /2 is a suitable choice for
the cluster volume. We complete the cluster Hamiltonian
by adding the electronic and anionic kinetic energies and
the hybridization term. After a straightforward calcula-
tion we recast this Hamiltonian into the form given by
Eq. (2.5), plus four oscillators decoupled from the elec-
tronic part and some constant terms that only depend on
the lattice parameter l. The implementation of this new
procedure yields explicit expressions for some parameters
of the Hamiltonian in terms of well-known constants, and
also gives some insight on the effect of pressure.

As a first obvious consequence of this analysis, the
"bare" phonon frequencies become degenerate, and thus
hereafter cu = ug ——u, where ~ is related to the Hooke
constant I& and the sulphur mass Ms by ~ = g2 I~ /Ms.
In actual systems, like Smp 7sYp g5S, the asymmetric
phonon frequency ~ (associated to the point I' of the
LO branch) and the symmetric frequency uy (point I, of
the same LO branch) differ 5 by less than 10%.

A rearrangement of Eq. (2.23) yields
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the f level, as obtained from Eq. (2.26). In fact, this
shift generates a change in nf, and the latter gives rise
to a modification of / through a change in /p. Conse-
quently, the evaluation of the change in / due to the pres-
sure shift of Ey implies a full solution of the dynamical
problem. This way, pressure and lattice parameter are
self-consistently coupled, in a highly nonlinear fashion,
by means of Eqs. (2.25) and (2.26). The actual bulk
modulus B(P) and the f lev-el position Ey(P) can only
be obtained after this self-consistency is achieved. In
addition, the actual f-level energy must be obtained by
diagonalization of the Hamiltonian and, in general, turns
out to be different to the bare parameter Ey .

If the f level is well below the Fermi energy, then
the pressure does not modify the valence of the sys-
tem, ng ——1, and B = Bo. Thus relation (2.26) yields
(BEy/BP) = &(II —lM)l 6 (meV/kbar) Th. is last
numerical estimate was obtained by using the known
parameters's for the semiconducting R2+S phase and is
similar to the one observed in EuS, where a large enough
gap of 1.6 (eV) does exist. In contrast, (DEf/OP) 10
(meV/kbar) for the (black) Sm'+S system. 2s This dis-
agreement is due to the fact that the SmS gap is very
small and the system is very close to a valence transi-
tion. Thus, in the later case, the bare magnitudes of Eg
and Bp have no direct meaning, and a fully self-consistent
solution of the problem is required. That analysis will be
presented elsewhere; for the time being we omit a more
extensive study of pressure effects.

As previously stated, the hybridization is due to the
phonon-induced instantaneous dipole field. We carry out
a rough estimate of this effect by using standard d and

f orbitals. Their z angular-momentum component, and
the degenerate I'i5 phonon are chosen according to the
Wigner-Eckart theorem to obtain

is convenient to redefine the f-level position E&' —+ Ef =
Efo —Gz jh~. This way, the valence transition takes place
when Eg 0.

III. APPLICATION TO Sm, R S SYSTEMS

In this section we apply the formalism developed in the
preceding one to the representative intermediate valence
systems Smi R S, where R=Y,Th, ad, . . . .

The temperature dependence of several magnitudes of
physical interest has been evaluated using the method
described above. In our numerical computations we use

Vp ——0, go ——1.45, and G = 3.5. These values are in
agreement with our previous estimates, but a search has
been made to narrow down on the appropriate range of
gp. The choice of Vp —0 is made in order to stress the
effect of the dynamical hybridization.

In Fig. 1 we plot A versus 7, for a value of EJ be-
low the Fermi level. Since we have chosen E" = 0 in

Eq. ('2.5) as the origin of energies, in our cluster calcula-
tion the parameter Eg plays the same role as the distance
of the f level to Fermi surface in an infinite system.
It is noticed that at low temperatures (ft f) ~ 1, which
implies an insulating phase with only Sm2+ ions. The
latter is quite natural, since we have chosen Ef ( 0.
For k~T ~Eg —Ed~ the valence of the system stabi-
lizes at an intermediate value (A & 0.5). On the other
hand, according to Eq. (2.21), these results provide in-
formation on the lattice parameter /(T), which exhibits
an anomalous negative thermal expansion for increasing
temperatures, in agreement with experiment

In Fig. 2 we display the correlation function between
metallic valence and Sm-S distance, given by

h~ ((b+ bt)dtd
2G (dtd)

2 err f gagag ( jlg(T)=c
&s

a"
~

—= go IJag+ ay gj T

(2.27)

The above parameter gives a measure of the lattice
response to valence fluctuations. When the latter fluc-
tuates slowly the S atoms follow these valence changes

where cr = ghMs~ 0.06 (A.) is associated to the zero-
point vibration amplitude, c is a constant whose value
may be estimated to be between 20 and 60, and af, ad
are the radii of the f atomic orbital and the s-d Wannier
state, respectively. Using the estimates 4 & (ad jay) & 6
and ag 1.2 (A), we obtain the approximate lower and
upper bounds bc' & gs & 2h~.

In Eq. (2.25) we also take into consideration the fact
that the coupling constant g has a non-negligible dep en-
dence on the lattice parameter /, with gp being the in-
sulating phase value. As / depends on T and on the
parameters of the system, a self-consistent calculation
for g is required for each temperature. Actually, our nu-
merical computations do incorporate this self-consistency
requirement, but our results turn out to be only slightly
aAected by this refinement.

In closing this subsection it is worth recalling that E&
is shifted by —G2/hem, the polaronic correction. 2 Thus, it

0.5

.0
O.o 0.4 0.8 1.2

FIG. 1. Plot of A vs T, for Ey ———065, G = 35, and
gp = 1.45, all in the units hu = 1 used throughout.
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FIG. 2. Correlation function between metallic valence and
Sm-S distance, Ag vs T, for the same parameter values as Fig.
1.

0.46

in phase; thus, A~ adopts the value that corresponds to
the metallic phase ((dtd) = I) lattice parameter, that
is Ap 0. But, when the valence fluctuates rapidly
the S atoms are unable to respond fast enough and thus
Ag A, which implies that a static displacement sets in.
However, when the f level lies below the d level, the adi-
abatic potential traps the f state, precluding breathing
and mixing at very low temperatures. This behavior is
observed in Fig. 2, for the same parameter values of the
preceding figure, where it is seen that Ag A at low tem-
peratures, while for intermediate temperatures Ad tends
to zero. The low-temperature result Ag A has been con-
firmed, within 30%, by extended x-ray-absorption fine-
structure experiments in Smp 75Yp g5S. However, the
drift of Ad towards zero at high T is yet to be corrobo-
rated experimentally.

For what follows it is useful to redefine the breath-
ing phonon operators, choosing the equilibrium position
A(T) = (b) = (bt) as the origin, say,

p—:b —A(T), (3 2)

with (p + pt) = 0. In this notation the mean-square
deviation of the anionic positions AA, which determines
the Debye-Walter factor, is written as

((v+ &')') .
2t

(3.3)

In Fig. 3 plots of the temperature dependence of AA
are displayed. It, is noticed that when EJ lies very close
to the Fermi level [see Fig. 3(b)] an anomalous behavior
is observed, which consists in a minimum of LA versus
T. When no valence fluctuations are present AA is a
monotonically growing function of T, while in the case at
hand and when the temperatures are not too high, the
fluctuations of the anionic positions are not solely due to
thermal excitations but are dominated by the Sm valence
fluctuations. As T increases the asymmetric vibration
mode induces strong 8-d hybridization, to which the ions
are unable to respond dynamically, with the consequent
decrease in LA. Finally, for high temperatures, thermal

0.44—

0.42
0.0 0.2 0.4 0.6 0.8

FIG. 3. Mean-square deviation of the anionic positions
AA vs T. In (a) the solid and dashed lines correspond to
Ef = —0.05 and Ey ———0.65, respectively, and the other
parameters as in previous figures. The dotted line corresponds
to G = 0. (b) is an enlargement of the important features of
the continuous curve in (a).

) -(@ q @ )
(@.1(v+ ~')l@Gs)

g(WG l(v+ v')'I@ )
= ZGs+ n~ —(glibly), (3.4)

excitations become the dominant mechanism and drive
a new increase of AA. Figure 3 also shows that this
anomalous behavior disappears for larger values of lEyl.

The contribution of the breathing mode to LA is also
clarified by the G = 0 (i.e., when the electron-phonon
coupling is ignored) plot in Fig. 3. The small values of
LA confirm that valence fluctuations are the dominant
feature in this regime.

The minimum of the mean vibration amplitude was ob-
served experimentally in the Smp 7Yp 3S system, through
the measurement of the Debye-Wailer factor, by Dernier
et al. s The minimum of Fig. 3(b) corresponds to AA
0.08 A and to a temperature 0.4hu, both in good agree-
ment with experiment.

We now consider the phonon softening, which in our
treatment and for T = 0 is defined by
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where ~@as) is the ground state of Eq. (2.5). The ket

~P) = C(p+ yt)~gas), where C is a normalization con-
stant, represents the state generated by disturbing ~@as)
with a probe that couples to the phonon field, for ex-
ample, neutrons. Since the operator yt excites a purely
vibrational mode, without center-of-mass displacement,
(gas(P) = 0. Its average energy can be taken to be the
energy required to create a phonon, thus justifying the
definition given in Eq. (3.4) for the phonon softening.

The above expression for Lu can be recast into

('DAO )

0.04

0.02

0.00
-3.0 -1.5

I I

f
0.0 1.5 3.0

where AA() is the zero-point vibration amplitude in the
absence of electron-phonon coupling, i.e. , when G
0. The above expression is similar to a relation al-
ready derived, through approximations, by Kuroda and
Bennemann. ~

In Fig. 4 the softening A~ is plotted as a function of
Ey, for the static hybridization case g = Q. The value
U = 2 corresponds to the average of the dynamic hy-
bridization V(y) = Vp+ gy for the parameter values used
previously in Figs. 1, 2, and 3. However, the evaluation
of the phonon softening is somewhat delicate, since one
has to make sure that Lu is associated to the creation
of a phonon mode and not to an electronic transition.
The sharp peak displayed by hA~ at the metal-insulator
transition, i.e. , for Ey ——0, constitutes a reassuring fea-
ture; moreover, its magnitude is in good agreement with
experimental results obtained for the Smi R S fam-
ily, which show up to 2Q%%uo softening for the frequency
associated to the point L of the LO phonon branch.

We also analyze the average

rias = (gasify p(@as), (3.6)

which provides an indication of the number of breathing
phonon states embodied in the ground state that cannot
be eliminated by a translation of the origin. In Fig. 5 a
plot of nas versus Ey is given for the same parameter
values of the previous figure. Again a peak is present
in the vicinity of the metal-insulator transition, which

FIG. 5. Average number of phonons in the ground state
nos vs Ey, at zero temperature and for G = 3.5 and V = 2.

underscores the role played by the electron-phonon cou-

pling in the valence mixing mechanism. Away from the
peak nGs is quite small, and thus the ground state can be
basically described as a simple translation of the origin.

In Fig. 6 the phonon linewidth I', of the breathing
mode at zero temperature, is displayed for the same
parameter values of the two preceding graphs. This
linewidth is evaluated as the energy spread of the spectral
decomposition of the state ~(t), defined after Eq. (3.4),
and turns out to be

r = 4nas~ —(Z —i)&, (3.7)

where

2G
(S('GS l(G + 7 ) l )GS) =

h
&&GS)

Again, a large peak is observed in the vicinity of Ey ——0,
which confirms a strong mixing of electron and phonon
states near the transition. This mixing is significant only
in this vicinity, which makes the mean field, ~4 or coherent
state, approximations highly suspect in this neighbor-
hood. Thus, an exact treatment of the electron-phonon

0.30 0.30

0.15 0.1 5

0.00
-3.0 -1.5 3.0

0.00
-3.0 -1.5 1.5 3.0

FIG. 4. Softening of the phonon mode Au vs Ey, at zero
temperature and for G = 3.5 and V = 2.

FIG. 6. Phonon linewidth I' vs Ey, at zero temperature
and for G = 3.5 and V = 2.
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Hamiltonian of Eq. (2.4), as the one we presented above,
is well justified in our case.

The peak in Fig. 6 reaches a maximum value of
0.2hcu, again in good agreement with experiment. In ac-
tual systems, like Smo 75YO 25S, a broadening of 25%%uo

is observed. "'

IV. SUMMARY AND CONCLUSION

A simplified treatment of mixed valence, concentrating
on its interaction with the lattice, has been presented.
The complexities of a system like Sm~ R S were mod-
elled by a seven atom cluster of one anion (Sm), sur-
rounded by six S cations. Two types of phonon modes
were included: a symmetric breathing mode, which was
treated rigorously, and an asymmetric mode dealt with in

the Born-Oppenheimer approximation. The first of these
modes plays a key role in most of the experiments we fo-
cus our attention on, while the asymmetric one provides
a dynamical sd fhybr-idization mechanism.

In spite of the drastic simplifications that were made,
and the approximation we have implemented to solve it,
the results obtained provide an adequate description of
the phenomenology and good agreement with the avail-
able experimental data, in view of which we believe to
have used the essential physical elements and realistic
values of the pertinent parameters. Of special interest

is the existence of a minimum, and the magnitude of
the low-temperature maximum, in the plot of AA ver-
sus T of Fig. 3(b), which describes the temperature de-
pendence of the Debye-&aller factor. To the best of our
knowledge this is the first theoretical justification for this
eAect, observed experimentally long ago. Moreover, this
minimum is a consequence of dynamic hybridization and
does not appear in a static hybridization treatment, since
it is related to the increase of the frequency of the valence
fluctuations and the lattice response to it.

Two exact results were rigorously derived, under
the proviso that the electron-phonon coupling is lin-
ear: Eq. (2.22), known as Vegard's law, and Eq. (3.5),
which relates phonon softening and zero-point fluctua-
tions. They provide a test to check the linear coupling
hypothesis in actual physical systems.

In onclusion, our simple model yields satisfactory
agreeII:ent with experiment and a consistent understand-
ing of the physics involved.
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