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ABSTRACT

As electric vehicles (EVs) surpassed the 3 million-vehicle threshold in 2017, charging

stations (CS) are becoming a growing necessity to allow EV charging while parked away

from home. In addition, by harnessing the inherent flexibility of the charging process, CS

can also provide services to the grid, such as frequency and voltage regulation. However,

given that full-charge using state-of-the-art technology can take a minimum of nearly 30

minutes, drivers may face queues and uncertainty on the availability of charging sockets.

To address this issue this work presents a model to determine the optimal management of

CS using advance reservations. In the model, CS are assumed to participate in the energy

and regulation markets, in addition to providing charging services to EV users. On the

other hand, EV users are modeled using Satisficing and Stochastic Satisficing decision

models. The optimal management strategies are characterized by different charging tariffs

and reservation fees, and their impact is analyzed in terms of the resulting charging profiles

and welfare of EV users.

Keywords: Charging Station Management, Electric Vehicles, Reservation Schemes.
x



RESUMEN

Los vehı́culos eléctricos ya han sobrepasado el umbral de más de 3 millones de unidades

en el 2017, esto tiene una directa implicancia en la importancia que las estaciones de carga

comienzan a tener para cargarlos mientras se encuentran fuera del hogar. Adicionalmente,

y tomando en cuenta la inherente flexibilidad que el proceso de carga posee, las estaciones

de carga pueden proveer servicios a la red, tales como regulación de frecuencia y tensión.

No obstante, dado que para lograr una carga total usando la tecnologı́a disponible puede

tomar un mı́nimo de≈30 minutos, los conductores pueden verse enfrentados a tiempos de

espera, filas e incertidumbre sobre la disponibilidad de estaciones de carga. Conforme a lo

anterior, este trabajo presenta un modelo para determinar la gestión óptima de la estación

de carga a través del uso de esquemas de reserva. En este modelo, se asume que la estación

de carga puede participar en el mercado de energı́a y regulación, además de proveer servi-

cios de carga. Por otra parte, los usuarios de vehı́culos eléctricos son modelados a través de

modelos de desición del tipo ”Satisficing” simple y estocástico. Las estrategias de gestión

son caracterizadas por tarifas de carga y reservas, y su impacto es analizado en términos

del perfil de carga y bienestar de los usuarios.

Palabras Claves: Gestión de estaciones de carga, vehı́culos eléctricos, esquemas de

reserva.
xi
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1. INTRODUCTION

1.1. Context

EVs surpassed the 3 million-vehicle threshold in 2017, and are expected to reach

up to 228 millions by 2030 (IEA) (2017). This unprecedented growth brings important

challenges in terms of charging infrastructure and coordination, with significant impact

in electricity distribution networks. Furthermore, since full charge of an EV can take a

significant amount of time, drivers may face queues and uncertainty over availability of

charging services.

The uncoordinated charging of EVs can have a negative impact in the distribution net-

works, such as overloading of feeders and transformers, voltage deviations and imbalance,

among others. One alternative to face these issues is to upgrade the distribution network

infrastructure; however this involves significant investment. A second alternative, with

much lower costs, is the use of coordinated charging strategies that maximize the utiliza-

tion of existing distribution assets, by taking advantage of the inherent flexibility of the

EV charging process.

Additional benefits for the distribution network can be obtained with the use of so-

called V2G strategies Habib et al. (2015). In particular, V2G and coordinated charging

strategies can help the operation of the DN, and the grid in general, by providing active

power regulation, voltage support, load balancing, and harmonic currents filtering ser-

vices, among others.

Industries that face somewhat similar challenges to allocate demand to a limited num-

ber of resources (e.g., restaurants, airlines, hotels) widely use advance reservations (AR)

as a resource management scheme Charbonneau & Vokkarane (2012). AR plays a sig-

nificant role in improving the provisioning quality of a resource manager and predictable

behaviour of grid resources Mumtaz Siddiqui (2010). Furthermore, AR benefits both users
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and service provider by reducing the uncertainty of being served and improving resource

management, respectively.

The straightforward communication between EVs and the CS is already a reality

thanks to IoT technologies and the use of smart applications, such as ChargePoint. These

applications provide EVs users with information about available charging sockets, prices

and location of CSs. In Cao et al. (2017) a communications framework for on-route EV

charging is presented, which allows users to optimize decisions on where to charge. Other

well-known applications associated with parking services, such as SpotHero, ParkWhiz

and JustPark, also allow users to compare parking alternatives and make reservations in

advance.

Previous work on AR for CSs has concentrated in the development of tools for the

minimization of travel times and route optimization Gerding et al. (2013); Liu et al. (2016),

as well as the optimal allocation of vehicles in the CSs Timpner & Wolf (2014). Also,

dynamic pricing schemes have been recently analyzed in Latinopoulos et al. (2017), where

reservation decisions are evaluated within a risky-choice modelling framework.

In this work we study the adaptation and implementation of AR schemes to the context

of CS for EVs. In specific, we model the participation of a CS in a whole-sale electricity

market and its associated ancillary services market by means of scheduling the charging of

available EVs. The later requires a detailed analysis and modeling of the users’ decision

making process in order to anticipate their individual behaviour. In this regard, Game

Theory (more precisely poisson games Myerson (1998b,a)) and Decision Theory are used

to model decisions of EV users on whether to make an AR or not, and which CS to choose.

The main contributions of this work are the following:

(i) AR schemes are adapted to the context of CS for EVs.

(ii) A simplified demand model is proposed for the CS, which considers a satisficing

behaviour of EV users.
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(iii) An optimization model is developed to calculate the optimal charging tariffs and

reservation fees of a CS that maximizes revenues from charging services and

electricity market participation.

1.2. Literature Review

1.2.1. Flexibility in Power Systems

In Lannoye et al. (2012), the concept of flexibility in power systems is defined as the

ability of a system to deploy its resources to respond to changes in net load, where net load

is defined as the remaining system load not served by variable generation. In this regard,

the resources that can supply flexibility services can be categorized in four types:

(i) Flexibility in generation: this service has been the most used during the past 60

years RWE (2009), supplying power ramps and switching on/off power plants

when needed to face mostly demand variations.

(ii) Flexibility in transmission: this type of flexibility is given mainly by HVDC

systems and FACTS devices, which give more control in terms of stability and

power management. Additionally, interconnections can be used as exportable

flexibility between different areas Bucher et al. (2016).

(iii) Flexibility in demand: this service can be provide through Demand Response

which is defined as a tariff or program established to motivate changes in electric

use by end-use customers in response to changes in the price of electricity over

time Qdr (2006).

(iv) Flexibility in storage: the storage of energy in periods when the energy cost

is low allows to reduce the total operation cost particularly in demand peaks

Akinyele & Rayudu (2014). Also storage can provide additional services that

improve power system reliability and power quality Divya & stergaard (2009).
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The particular features of EVs make them suitable to provide flexibility services Zhang

& Kezunovic (2016) using them for charging (demand) or for saving energy and discharg-

ing when needed (storage), .

1.2.2. Integration of Electric Vehicles in the Distribution Network

The integration of EVs in the distribution Network is becoming a technical issue due

to the fast and massive penetration of this kind of elements. An uncoordinated charging,

particularly in peak hours, has a negative effect related with overloading of feeders and

transformers in the Distribution Network. The grid is not prepared for these changes,

mainly because it was built and planned for unidirectional power flow and residential con-

sume where the loads are located throughout the feeder. Additionally, the massive charge

and discharge of EVs can produce many other technical problems. There are several works

that have investigated these impacts on the distribution grid Green II et al. (2011). Main

impacts reported are itemized next.

• Supply-demand matching: users tend to charge EV’s after work time so uncon-

trolled domestic charging will increase the peak load. Proposed solutions rely on

smoothing the load curve and avoid creating new peak demands. A smart con-

trol system would need to be programmed or incentives created for customers

to distribute charging throughout the day. An EV can be charged with different

rates depending on the voltage level at which is plugged in. In Standard (2010)

three different rates of charging are presented, which are the ones that are typ-

ically used in United States, these charging levels are summarized in the next

table.
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Table 1.1. Charge method electrical ratings (United States)

Level of Charging Use Power [kW]

Level 1 Residential 1 phase charger (120 VAC) 1.4 to 1.9

Level 2 Primary dedicated 1 phase charger (208 to 240 VAC) 4 to 19

Level 3 DC Comercial fast charger (600 VDC) Up to 100

• Voltage profile: EV’s impact is network-specific, and depends strongly on their

distribution within the network. Two extreme conditions could lead to violation

of voltage limits: EV’s charging during maximum load time, or EV’s generating

during minimum load scenarios. Moderate EV’s penetration could be manage

by OLTC.

• Malfunction of network protection: EV interface devices may be designed to

minimize or even eliminate the effects of EVs on the network fault level and

protection system. Suitable electronic devices can be used to plug EV’s into

DN’s.

• Phase imbalance: three phase supply points may not be available, particularly

in some residential distribution grids. Single phase interface is more practical.

When few EV’s are charging the diversity is low so the imbalance increase but

the lower total load reduces the voltage imbalance. When more EV’s are charg-

ing the diversity increases so the imbalance is low.

• Power quality: EV interface devices employ power electronic converters and

these are highly non-linear devices due to their operating principles and the pres-

ence of switching power semiconductor elements.This make manufacturers to

attend this issue by improving converters and filters to produce a good power

quality (mainly with regard to harmonics and power factor), both in charging

and regeneration modes.
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1.2.3. Vehicle-to-Grid technology

EV technology may offer many advantages to the grid if the charging and discharg-

ing is performed in a coordinated and intelligent manner. The main benefits can be the

increased efficiency of charging, and decrease in the associated CO2 emissions. The par-

ticular features of the EV technology offers an advantage known as Vehicle-to-Grid (V2G)

which is essentially the ability of a vehicle to make possible direct flow of power into the

distribution network Habib et al. (2015). This concept is a specific way of enhancing

the flexibility of the system by the charging and discharging of EVs’ batteries while the

vehicle is parked.

To implement V2G technology a special power electronic interface and software are

required; however, many of the charging kits currently available in the market already

allow this feature Kempton et al. (2001).

The main applications of V2G technology which can help to increase the performance,

reliability and efficiency of the distribution network, and the system as a whole, are Habib

et al. (2015):

(i) Active power regulation

(ii) Provide virtual inertia

(iii) Support reactive power

(iv) Load balancing

(v) Reduce utility operating cost and overall cost of service

(vi) Peak load shaving

(vii) Improve load factors

(viii) Reduced gas emissions

(ix) Tracking of variable renewable energy resources

Many of these applications can be used for providing ancillary services such as fre-

quency and voltage control among others. Hence, V2G gives the opportunity of generate

extra revenue to EV owners and CS operators. On the other hand, V2G implementation
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may produce higher battery degradation due to extensive charging/discharging (reducing

battery life and its storage capacity), and requires investment in new electric and commu-

nications infrastructure.

1.2.3.1. Charging Strategies

The charging coordination can provide benefits to the distribution network and miti-

gate some problems that were presented before. In Sioshansi et al. (2010) the impacts of

a coordinated integration of 230 EVs in the Ohio Network are analyzed. This work shows

a reduction in the imbalance between generation and demand whilst decreasing in a 70%

the use of conventional vehicles and CO2 emissions.

There are mainly 2 paths for achieving a proper integration of EVs. The first require

lot of investment to enhance the distribution network (protections devices, capacity of

lines and transformers, devices to provide voltage regulation, etc.) and to improve the

charging facilities (by installing new charging sockets and measurement devices) and the

second consist on applying a coordinated charging strategy that takes advantage of the

EVs charging features (e.g storage) Lopes et al. (2010).

The coordination of EVs must have a strong communication and control system with

standarized protocols. The literature refers to two main architectures which are centralized

and decentralized systems “Modeling Coordination in Organizations and Markets” (1987).

The difference between these categories lies on the level in which the charging decision is

made.

A centralized strategy compute the charging decision in a high level knowing the state

of all variables involved. This approach has the advantage of having a reliable charging

control and also it can be easily integrated to the most used control schemes in power sys-

tems. However, these kind of architectures require a massive management of information

and data in order to assure a proper performance.
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On the other hand, a decentralized strategy takes the charging decision in a low level,

that is, each EV take the charging decision independently. Most of these approaches are

based on price signals with different pricing methods such as time-of-use or dynamic

pricing, among others.

There is also a third control architecture, called hierarchical, which mixes both cen-

tralized and decentralized schemes by aggregating EVs and controlling them in a high

level. The selection of a proper strategy depends directly on the size of the problem and

the available resources.

In the next figure the three architectures are depicted in a simple manner Vay & Ander-

sson (2012). This figure gives a notion of the dimension of the problem for each scheme,

being the centralized the one which requires the most computational resources.

Figure 1.1. Coordination architectures and problem dimensions.
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In Lopes et al. (2010) a local and centralized control scheme is used in order to re-

duce the impacts on the voltage and power unbalance in a microgrid. A battery is used

as the main supply and as support EVs are charged in a coordinated manner. Other work

that shows the technical impact of a coordinated and centralized charge is presented in

Clement-Nyns et al. (2010), however in a distribution network, where an stochastic ap-

proach is included in the loads and a dynamic and quadratic programming is used to solve

the optimization problem.

The work presented in Tushar et al. (2014) tries to maximize the use of resources of

generation of a microgrid through a minimization of the power imported from the grid or

other external microgrids, this is an input signal for a decentralized charging strategy for

EVs. This paper models variable resources, such as wind and solar plants, and the load

(with its respective appliances) with an stochastic approach. A comparison between the

cases with and without EVs shows a remarkable improvement in the imported power.

Other work with a decentralized charging strategy is presented in Jian et al. (2013)

where the impacts of the total load variability are considerably reduced by minimizing

the variation of each household individually through the charge and discharge of the EV

battery. The latter is modeled as a quadratic non linear problem and solved with a proposed

heuristics method.

A novel approach for decentralized strategies is proposed in Hamid & Barria (2016),

where a relation between energy and fluid particles is made to model the charging be-

haviour of multiple EVs in a distribution network. This work shows that the voltage and

power variations are significantly reduced with the proposed strategy.

In Rajakaruna et al. (2015) an approach based on Model Predictive Control (MPC) is

proposed in order to control the charge and discharge of the EV Battery. In this work a

Load Area (LA) in which there are solar power plants and parked EV (used as storage)

available. The aim of the Load Area Controller (LAC) proposed is to reduce the variations

between load and generation, taking into account the minimum energy requirements of
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each EV. The LAC also helps with the integration of renewable resources and educing the

overall operational costs

Another model that uses MPC model is proposed in Wenzel et al. (2016), where this

controller is tested in an Air Force EV float of the United States. This work proof that this

kind of control can be suitable for real time applications and signal tracking such as an

Automatic Generation Control signal.
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2. FRAMEWORK

This chapter presents a framework for advance reservations and decision models.

2.1. Advance Reservations AR

This work makes use of the AR games framework in order to formulate the proposed

reservation scheme. The main feature of this framework is that it allows the modeling of

strategic behavior of users in systems that support reservations.

AR games are a type of non-cooperative game with a random number of players,

and can be classified as Poisson games; thus, they are characterized by the properties of

independent actions and environmental equivalence Myerson (1998b). Moreover, Poisson

games are guaranteed to have at least one equilibrium when the types of users and the

decisions are finite, and the utility function is bounded.

AR games are characterized by a number of servers, N , and a number of users re-

questing a server, D, both integer values. Requests for servers are made with a rate λ, and

are allocated in a first-reserved-first-allocated fashion; then, users that do not make an AR

are allocated randomly. Users decide whether to make an AR or not based on their own

lead-time and the reservation fee, where the lead-time is the time elapsing between mo-

ment in which the users realize they require the service, and their arrival to the server. The

random realizations of demand and lead-times for each slot are independent. In a general

AR scheme, the provider sets a fee C for making a reservation that is only charged if the

user is finally served, which may or may not be guaranteed.

A common assumption in AR is that each user follows a threshold strategy, which has

been shown to be the best response of users given any initial belief Simhon et al. (2015).

According to such strategy, users will make reservations if and only if their lead-time is

larger than a threshold value.
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It has been shown that the expected revenue for the provider is higher when informa-

tion about available servers is not made available to users Simhon & Starobinski (2015);

however, in this work we assume that such information is made public. We also assume

that the users’ rate of arrival is known to the CS and to the other users, which is a condi-

tion for the use of Poisson Games; however, Extended Poisson Games can be applied in

the cases where such parameter is unknown Myerson (1998a).

This work also considers that the information of the state of the world is known, this

means that every player knows the rate of arrivals of other player. Extended Poisson

Games can be used if the state of the world is unknown, where the expected population

sizes and player’s utility function may depend on this state

To the best of the authors’ knowledge, the existing literature on AR games Simhon &

Starobinski (2016, 2014); Simhon et al. (2015); Simhon & Starobinski (2015) only focuses

on schemes that feature one time-slot and one type of user; however, the framework can

be extended for its application to more realistic CS systems, with multiple (or continuous)

time-slots and types of users. In particular, this work extends the use of AR schemes to

CS with one type of user and a continuum of arrival times.

2.2. Decision Models

Demand for charging sockets varies with prices, location of the CS, reservation fees

(if any), sockets’ charging modes, among other factors. In order to account for these

decision criteria, consumers’ decision on where to charge is modelled using Decision

theory Bermudez (2009). Random Utility Theory (RUT) behavioural models are the

most widely used theoretical paradigm for modelling choices among discrete alternatives

Cascetta (2009); Ortuzar & Willumsen (2011). RUT models assume that individuals act

rationally by choosing, within all available alternatives, the one associated with the higher

net utility. These models were first studied by H. Block Pawl & Sets (1992) and McFadden

McFadden (1973) and later choice models based in this theory as MNL were formulated
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by T. Domencich A. Domencich & McFadden (1975). Among these models, mixed logit

models (MLM) are largely used in the literature related to EVs and CS Zoepf et al. (2013);

Jabeen et al. (2013); Sun et al. (2015); Xu et al. (2017), because it provides a convenient

way to model heterogeneity across individuals. However, MNL and other choice models

Ge et al. (2017) are also used to consider different types of decision makers. The deci-

sions covered in these works are such as charging or not at the end of a trip, charging

preferences among charging at home, work, and public stations, preferred charging time,

charging depending on the initial SOC and location.

Most of the existing literature on decision models assume that consumers behave as

welfare maximizing agents (i.e., the homo economicus paradigm); however, there are

works on behavioral economics Henrich et al. (2001); Frank (2016); Kluver et al. (2014),

psychology Todd & Gigerenzer (2003a); Yamagishi et al. (2014) and biology Fehr & Fis-

chbacher (2003) that don’t share the same assumptions. Howerver, satisficing theory, in-

troduced by Herbert A. Simon Simon (1955, 1956) postulates that consumers decisions

are determined by an aspiration level, which can be different from consumer to con-

sumer. The idea behind this approach is that consumers normally lack either sufficient

information or time to make welfare maximizing decisions which involves computational

capacity, choice models described before such as RUT and Elimination By Aspects Tver-

sky (1972b,a) among others, involve the examination of all alternatives. Thus, satisficing

theory considers a simplified decision process, where consumers are satisfied with any

solution that yields a welfare exceeding their aspiration level.

2.2.1. Random Utility Maximization Models

This models are the richest and by far the most widely used theoretical paradigm

for modelling choices among discrete alternatives, many application on transport mod-

elling and theory are widely detailed in Cascetta (2009) and Ortuzar & Willumsen (2011).

Choice models in literature related with electric vehicles are mainly focused on mixed

logit models Zoepf et al. (2013), Jabeen et al. (2013), Sun et al. (2015), Xu et al. (2017)
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because it provides a convenient way to model heterogeneity across individuals. However,

MNL and other choice models Ge et al. (2017) are also used to consider different types

of decision makers. The decisions covered in these works are such as charging or not at

the end of a trip, charging preferences among charging at home, work, and public stations,

preferred charging time, charging depending on the initial SOC and location.

Random utility theory postulates that individuals act rationally by choosing, within all

available alternatives, the one associated to the higher net utility. As the modeler is an

observer she doesn’t possess complete information about the user, thus the utility U q
i is

structured as the sum of measurable attributes V q
i and terms that reflects idiosyncrasies,

particular preferences, errors, etc. εqi (q index of alternative).

Expression (2.1) shows the proposed utility function of each user. It considers charging

tariff, cost of reservation and location.

U q
i = θi,ρ · ρq · Ei + θi,C · CAR

i + θi,q,d · dqi + εqi (2.1)

In this work, all users have decided to charge in a charging station. Under this assump-

tion, a MLM is proposed as a discrete location choice mechanism. This can be achieved

by assuming that the random residuals εqi are distributed IID as Gumbel. Thus, the choice

probabilities are given by expression (2.1).

P q0
i =

exp (β · V q0
i )∑

q exp (β · V q
i )

(2.2)

2.2.1.1. Elimination by Aspects

This decision model is focused on evaluating attributes of all alternatives and eliminate

those who doesn’t meet a certain criteria, starting with the most important attribute to the

decision maker. This work is introduced by Tversky in 1972 Tversky (1972b) and Tver-

sky (1972a), and was later used as an heuristic elimination algorithm by Categorization

Todd & Gigerenzer (2003b). When is applied, decision makers will reduce the number
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of alternatives considering only the most important ones. One alternative is evaluated at a

time until just a couple of alternatives remain. For example, someone who is looking for

a place to live may first compare different places on the basis of location, eliminating all

places of a specific area. The person may then reduce the choice set further by setting a

price threshold, followed by number of rooms, etc, until only one option remains.

2.2.2. Satisfyicing Theory

Satisficing theory, introduced by Herbert A. Simon Simon (1955) postulates that con-

sumers decisions are determined by an aspiration level, which can be different from con-

sumer to consumer. In general, people tend to make their decisions by achieving a certain

level of satisfaction rather than optimizing. In this cases the revenue requirements are rep-

resented by an inequality that must be satisfied. Once this requirement is achieve, it isn’t

necessary to determine whether there is an alternative that has a higher revenue.

The theory postulates that as in actual human decision-making, alternatives are often

examined sequentially. This is opposite to most global models of rational choice, where

all alternatives are evaluated before a choice is made. When alternatives are examined

sequentially, is very possible to chose the first satisfactory alternative that is evaluated

Simon (1956).

An assumption of this model postulates that information gathering isn’t costless. This

means that when people find it easy to discover satisfactory alternatives, their aspiration

level rises; as he finds it difficult to discover satisfactory alternatives, his aspiration level

falls. The higher the information cost is, the simpler the cognitive process may become.

However, there are simplifications and heuristics that allow reducing the amount of alter-

natives (e.g. Elimination By Aspects Tversky (1972b))

The main advantages of Satisficing theory are:

• It doesn’t require an utility function to choose between alternatives.

• It hasn’t a maximization problem.
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• It doesn’t consider the attributes of alternatives conjointly, but rather considers

them independently.

2.2.2.1. Stochastic Satisficing

The Stochastic Satisficing theory is proposed in Gonz & Ortúzar (2017) where it is

shown that this model allows variable or constant marginal rates of substitution and en-

ables the explicit characterization of non-compensatory behaviours. In this work the model

is tested on synthetic data and then on real data showing that is a good characterization of

Satisficing behaviour for simple datasets.

In this model, the acceptability of an alternative i (Aiq) evaluated by individual q is

given by the acceptability of each component of the acceptability vector. This vector is

composed with the attributes or the combination of attributes.

Pr(Aiq = 1) =
∏
∀k∈K

Pr(akiq = 1) (2.3)

In this equation, it is assumed that the acceptance of each attribute k is independent,

then the probability of choosing this alternative is given by the product of each attribute

acceptability.

Another assumption of this model is related with the behaviour when an acceptable

alternative is found. In this matter, the individual can continue searching for other alterna-

tives with a certain probability, which can decrease as the searching continues.

The Stochastic Satisficing model contemplates three simplifications:

(i) The probability of starting with a particular alternative is assumed equally for all

alternatives and is chosen randomly.

(ii) The probability of the transition between alternatives when are inspected is con-

sidered equally between all alternatives.
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(iii) The length of the search after finding an acceptable alternative is simplify. There-

fore, it is assumed that the first acceptable alternative is chosen.

As it was mentioned before, the acceptability of an alternative is based on the accept-

ability of each alternatives attributes. Each individual q has a set of acceptability thresholds

for each attribute f ′ . Where f ′ represents the aspirational level for the specific attribute k

and it can be assumed as a function for each individual. The acceptability of an attribute

akiq in terms of its quantity or level is denoted as xkiq.

The difference between the acceptability level of an attribute and its threshold can be

assumed as a logistic distribution and equation 2.3 can be reformulated as:

Pr(akiq = 1) =
exp(λkiq(xkiq − f

′

kiq))

1− exp(λkiq(xkiq − f
′
kiq))

(2.4)

where λkiq is a scale factor that represents the impact of xkiq in the probability of

accepting attribute k. Thus a higher value of λkiq is related with a higher sensibility to

changes in the attribute. The next Figure shows how the threshold and the scale factor

affect the acceptability of an attribute Gonz & Ortúzar (2017).

akiq =

1 if xkiq > f
′

kiq

0 otherwise
(2.5)
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Figure 2.1. Acceptability function versus different scale factors and
attribute-threshold differences .
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3. MODEL

This chapter presents an optimization model formulated as a Mixed-Integer Lineal

Problem (MILP) is developed to calculate the optimal charging tariffs and reservation fees

of a CS that maximizes revenues from charging services and electricity market participa-

tion.

3.1. Nomenclature

This section presents the description of all sets, parameters and variables used to for-

mulate the optimization model.

3.1.1. Sets

I Set of EVs i ∈ {i0, . . . , ij}

T Set of time t ∈ {t0, . . . , tl}

S Set of servers s ∈ {s0, ..., sq}

3.1.2. Parameters

Ei Energy required by electric vehicle i

ρDA(t) Day-ahead market price at time t

ρdown(t) Price for energy delivered as downward reserve at time t.

ρup(t) Price for energy delivered as upward reserve at time t.

γdown(t) System deviation sign at time t, 1 when the system needs downward

reserve and 0 otherwise.

γup(t) System deviation sign at time t, 1 when the system needs upward reserve

and 0 otherwise.

ρdowncap (t) Price for available downward reserve capacity at time t

ρupcap(t) Price for available upward reserve capacity at time t

ρe(t) Charging tariff in the rest of the system in time t



20

Pmax
i Maximum charging rate of vehicle i

η+
i Charging efficiency of vehicle i

Ti(T ) Vehicle charging state parameter, (0, 1] when the vehicle i need to charge

in time t, 1 if the vehicle need to charge the entire interval and 0 if the

vehicle doesn’t need to charge.

SOC0
i Battery initial state of charge of vehicle i

SOCf
i Battery final state of charge of vehicle i

doi Distance of vehicle i to its nearest charging station

dcsi Distance of vehicle i to the charging station under study

κd Distance weight factor

∆t Duration of each time interval

N Total number of charging facilities in the charging station

M A very large number

PAR′
i,s Probability of vehicle i of being served if s servers are in use

3.1.3. Variables

ρ(t) Charging tariff in time t

CAR(t) Reservation fee for time t

EDA(t) Energy purchased in the day-ahead market for the charging station in

time t

Edown(t) Energy purchased in the spot market if downward reserve is needed in

time t

Eup(t) Energy purchased in the spot market if upward reserve is needed in time

t

P̂ down(t) Downward reserve capacity bid in time t

P̂ up(t) Upward reserve capacity bid in time t

Av(t) Availability of vehicles in time t

Pav(t) Maximum charging power available at time t

Ri Profit for the energy charged to vehicle i
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CAR
i Reservation fee charged to vehicle i

Di Charging decision binary variable, 1 if the vehicle i chooses to charge in

the charging station, o otherwise.

Si Service state binary variable, 1 if the vehicle i is served in the charging

station, 0 otherwise.

ARi Advance reservation decision, 1 if the vehicle i chooses to reserve, 0

otherwise

mi Number of servers in use that vehicle i observes

ε+i (t) Charged energy to vehicle i in time t

SOCi(t) Battery state of charge of vehicle i in time t

Xi,k Auxiliary SOS1 binary variable for vehicle i if s servers are in use

Zi,k Auxiliary variable which denotes the charging tariff of vehicle i if s

servers are in use.

In this section, an optimization model formulated as a Mixed-Integer Lineal Problem

(MILP) is developed to calculate the optimal charging tariffs and reservation fees of a CS

that maximizes revenues from charging services and electricity market participation.

3.2. Objective Function

The objective function (3.1) consists in maximizing the charging station revenue, and

is divided in seven parts: i) income for selling the energy to the EVs; ii) income for

the reservation of each EV served ; iii) cost of buying energy in the day ahead market;

iv) cost of charging the EV with downward reserve; v) income for having downward

reserve capacity available; vi) income for having upward and reserve capacity available;

vii) income for providing upward reserve.



22

max



∑
i∈I Ri +

∑
i∈I C

AR
i

−
∑

t∈T ρ
DA(t) · EDA(t)

−
∑

t∈T ρ
down(t) · Edown(t) · γdown(t)

+
∑

t∈T ρ
down
cap (t) · P̂ down(t) · γdown(t)

+
∑

t∈T ρ
up(t) · Eup(t) · γup(t)

+
∑

t∈T ρ
up
cap(t) · P̂ up(t) · γdown(t)


(3.1)

3.3. Market Constraints

The aggregation of EVs clusters allows the CS to participate in whole-sale electric-

ity markets. Moreover, the inherent charging features of EVs make the EV Aggregator a

suitable regulation provider for the ancillary services market. In Bessa et al. (2012); Sor-

tomme & El-Sharkawi (2012); Jin et al. (2013), the EV Aggregator acts as a commercial

middleman between electricity market and EV owners. Similarly to these works, in this

paper the CS participates in a day-ahead, real-time and a regulation market.

On one hand, the day-ahead market bids cover all 24 h of the next day where the

market closure occurs in the morning of th next day (≈ 10 h). On the other hand, the

regulation market allows upward and downward reserve separated bids for each hour of

the day. The Aggregator presents capacity bids and the amount of reserve contracted is
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settled at the market clearing price. Accordingly, constraints (3.2b) to (3.2g) sets market

rules to trade energy and regulation services in the electricity market for all time t ∈ T . T

∑
i

ε+i (t) ≤ EDA(t) + Edown(t)− Eup(t)

+
P down(t)

∆T
· pf(t)− P up(t)

∆T
· pf(t) (3.2a)

Av(t) · Pmax = Pavmax(t) (3.2b)

Av(t) =
∑
i∈I

Ti(t) · Si (3.2c)

EDA(t)

∆T
+
Edown(t)

∆T
+ P down(t) ≤ Pavmax(t) (3.2d)

P up(t) ·∆T + EDown(t) ≤ EDA(t) (3.2e)

P down(t) ≤M · γdown(t) (3.2f)

P up(t) ≤M · γup(t) (3.2g)

The constraint (3.2a) ensures that all the energy that is sold to charge EVs is trade in

the electricity market, (3.2b) and (3.2c) define the maximum power available at time t,

(3.2d) and (3.2e) ensure that the downward reserve doesn’t exceed the maximum available

capacity and that the upward reserve bids are equal or below the electrical energy bid in

the day-ahead market. The last two constraints (3.2f) and (3.2g) guarantee that upward

and downward reserve are bid when is possible.

The next constraints are valid for all vehicles i ∈ I,

−M · Si ≤ Ri ≤M · Si (3.2h)

−M · (1− Si) ≤ Ri−ρ(t) · Ei ≤M · (1− Si) (3.2i)
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To face the nonlinearity of multiplying the variables Si and ρ in the objective function

Big M constraints are used. This problem arises from the necessity of charging only

vehicles who are served. Expressions (3.2h) and (3.2i) create a new variable Ri that takes

value only when the vehicle is served.

As the CS is supplied by the distribution network, electrical energy and reserve bids

may be constrained by the DSO. During peak hours and a stressed feeder, provide down-

ward reserve may be dangerous for the system Clement-Nyns et al. (2010).

3.4. Battery Constraints

The next constraints represent the charging dynamics of EV’s batteries.

SOCi(t+ 1) = SOCi(t) + ε+i(t) · η+, ∀ i ∈ I, t ∈ T (3.3a)

SOC0i = SOCi(t0), ∀ i ∈ I (3.3b)

SOCf i ≤ SOCi(tf ), ∀ i ∈ I (3.3c)

ε+i(t)

∆T
≤ Pmax

i · Ti(t) · Si, ∀ i ∈ I, t ∈ T (3.3d)

Constraint (3.3a) is a linear simplification of the charging pattern of the vehicle i.

Where only charging is allowed and the state of charge SOCi in time t is given by the

energy in t− 1 and the charged energy in this period. The boundary conditions are given

by constraints (3.3b) and (3.3c). The last expression sets the maximum charging rate,

which can be limited by the capacity the EV or the CS.
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Figure 3.1. Graphical depiction of a battery power draw for regulation.

3.5. Demand constraints

On one hand, the aspiration level of each user is represented by U o
i , which is the utility

of being served in the nearest charging station from vehicle i. On the other hand, the utility

of being served in the studied CS is denoted by Ucs. The details of the utility expressions

are presented next.

Uo = ρe · Ei + κd · do

Ucs = ρ·Ei + κd · dcs + CAR
i (t)
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With these expressions we can build the equations of the Satisficing Demand model

for all users.

U cs
i − U o

i ≤M ·Di (3.4a)

U o
i − U cs

i ≤M · (1−Di) (3.4b)

Expressions (3.4a) and (3.4b) are Big M constraints that model the charging decision

for all vehicles i ∈ I. If the utility of being served in the charging station under study U cs
i

is higher than the aspiration level U o
i , then the vehicle chooses to charge in CS.

3.6. Advance Reservation Constraints

For simplicity a continuous time and one type of user formulation is proposed in this

work. This is made because arrivals and departures are in a continuous fashion and a

simple rate tariff is applied (e.g. only fast charging). A shows a multiple types of users

and time slots modelling formulation, this appendix helps understand the basic steps in

order to achieve a continuous formulation.

Additionally, the rate of arrivals is the same for all time and is revealed to the users.

Note that not all drivers affect directly the decision of a single user, a specified range that

considers the staying time ∆T and the leadtime t is taken into account to face this issue.

In a continuous time formulation the arrivals are in a continuous fashion. For this

case we will consider that users are statistically equal, this means that vehicles with same

characteristics follow the same threshold strategy. This implies that if users with leadtime

t and staying time ∆T make an AR for time tarr, then all users with leadtime t + α are

going to make AR for being served in [tarr, tarr + ∆T ], for α ∈ R+
0 . And if he is better off

not making AR then all users with leadtime t− β are not going to make an AR for being

served in [tarr, tarr + ∆T ], for β ∈ R+
0 . A threshold user is then defined as the user whose
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utility is equal whether taking the decision of making a reservation (AR) or not (AR′) and

her leadtime is denoted as t∗.

As ∆T and the utility of being served is different for each user a threshold user is

difficult to find for the charging station owner. However, each user decides to make an AR

or not based on the same utility principle. The utility function of users who take decision

ARi and served is given by (U s
i −C), where U s

i is the utility of being served and C is the

reservation cost. This expression is valid only when there are available servers, otherwise

the service cannot be provide by the CS and the utility becomes zero. For a user who takes

the decision AR′i, the utility function is given by the utility of being served U s
i multiplied

by the actual probability of being served, P(Si|AR′i):

P(Si|AR′i) = PAR′
i

= P(D̃ < N |D̃ ≥ n), (3.5)

using Bayes’ theorem we obtain

PAR′

i =
P(n ≤ D̃ < N)

1− P(D̃ < n)
.

Equation 3.5 denotes the probability of being served without making AR given the

number of free servers. Where D̃ is the demand for the charging service in a specific

studied time ∆T , N is the total number of servers (charging facilities) and n represents

the occupied servers (being in use and reserved). The probability P is assumed as a Poisson

distribution with rate λi.

P(k) = eλi
λki
k!
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The expression for λi is given by

λi =



λ(t)
(
t2i + ∆T 2

2

)
if ∆Ti ≤ ti ≤ (1−∆Ti),

λ(t)
(
t2i + ∆T 2

2
− A1

)
if ti < ∆Ti, (1−∆T, )

λ(t)
(
t2i + ∆T 2

2
− A2

)
if ti > ∆Ti, (1−∆T ),

λ(t)
(
t2i + ∆T 2

2
− A1 − A2

)
if (1−∆Ti) < ti < ∆Ti.

where A1 = (∆Ti−ti)2
2

, A2 = (∆T−(1−ti))2
2

and ∆T ≤ 1.

For a better understanding of the expression for λi, a graphical depiction is shown in

Figure 3.2. Figure 3.2(a) illustrates the arrivals, leadtime, departures and staying time for

two EVs, in this example a parking overlap can be observed between T arr2 and T dep1 , during

this time both vehicles are being charged in the CS. Figure 3.2(b) shows a theoretical

continuous of possible arrivals of EVs (from 0 to M) that can be served in the CS, with

an emphasis in the vehicle i. The darkest area represents vehicles whose arrival is known,

i.e., users that have decided to make an AR or have arrived before T appi . The gray area

filled with lines represents EVs that doesn’t reserve but will arrive before vehicle i. The

gray area filled with dots represents vehicles that might reserve and will arrive within

[T appi , T appi + ∆T ]. Finally, the white area represents vehicles with less service priority.
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T1 T1 T1

∆T1

t1 = 0t1 = 1 t* 

t2= 0t2 = 1 t* 

∆T2Leadtime2

Leadtime1

app arr depT2 T2 T2
app arr depTime

(a) Charging example for two vehicles.

∆T
Time

EV’s whose arrival is known 
EV’s that make AR after Ti

EV’s don’t making AR in [Ti     ,Ti     ] 

EV’s with less service priority

Leadtimet0 = 0t0 = 1 t* 

tM = 0tM = 1 t* 

ti= 0ti = 1 t* 

Ti Ti Ti
app arr dep

app arr

t* 

(b) Charging example for M vehicles

Figure 3.2. Arrival, leadtime, staying time and departure characteristics for
two 3.2(a) and M 3.2(b) vehicles.

Aggregation Poisson property allows to formulate an expression for λi. This expres-

sion covers the arrivals of individuals before the studied user in a specific time and users

who make AR for the same time but with arrivals before the studied user.
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The AR decision for each user is done by evaluating the utility of making the reser-

vation or not, this is based on the expected number of users who arrive at the CS in the

required time. Equation (3.6) compares both utilities.

UAR′

i = UAR
i (3.6)

PAR′

i · U s
i = PARi · (U s

i − C).

As PAR′
i = 1, the expression becomes:

PAR′

i · U s
i = U s

i − C.

Figure 3.3 shows the probability function PAR′
i given a set of parameters. PAR′

i is a

non-increasing function of the leadtime, as leadtime increases, the probability that more

users are served in the required time also increases. All the N − 1 curves start at one

because the probability that vehicles arrive and use the remaining free servers is one for a

leadtime equals to zero.
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Figure 3.3. Function PAR′
i as a function of the leadtime t for different

servers in use m, given λ = 10 and ∆T = 0.2

U s
i denotes the utility of being served and can be written as the sum of two terms. The

first one covers the utility of buying the required energy and is given by Ei[ρwi − ρ], the

willingness to pay per unit of energy ρw is represented as ρe. The second term covers the

utility related to the distance to the CS and is given by κd(doi − dcsi ). Thus, equation 3.6

can be reformulated as:

PAR′

i [Ei[ρe − ρ] + κd(d
o
i − dcsi )]

= Ei(ρe − ρ) + κd(d
o
i − dcsi )− C + Uu

i .
(3.7)

In the right side the term Uu
i is added in order to cover the utility that a user gives for

clearing the uncertainty of being served, this term will be analyzed later.
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Finally, the next constraints model the advance reservation decision for all vehicle

i ∈ I and time t ∈ Ti.

PAR′

i (Ei · ρe(t) + κd(d
o
i − dcsi ))− Uu

−Ei ·
∑
s∈S

PAR′

i,s · Zi,s − κd(doi − dcsi )− Ei[ρe(t)− ρ]

≤M(1− ARi)− CAR(t) +M ′(1−Di)

(3.8a)

−PAR′

i (Ei · ρe(t) + κd(d
o
i − dcsi ))

+Ei ·
∑
s∈S

PAR′

i,s · Zi,s + Uu + κd(d
o
i − dcsi )

+Ei[ρe(t)− ρ] ≤M(ARi) + CAR(t) +M ′(1−Di)

(3.8b)

Constraints (3.8a) and (3.8b) are Big M constraints that represent equation (3.6) and

compare the utilities of making a reservation or not for all vehicle i ∈ I and time t ∈ Ti. If

a user’s utility of choosing a reservation is higher, then the decision variable ARi takes the

value of one. These constraints are valid only if the user decides to charge in the charging

station under study (Di = 1).

−M · ARi ≤ CAR
i (t) ≤M · ARi (3.8c)

−M(1− ARi) ≤ CAR
i (t)− CAR(t) ≤M(1− ARi) (3.8d)

As the variable Ri, CAR
i is created to face the nonlinearity of multiplying the variables

CAR(t) and ARi in the objective function. Big M constraints (3.8c) and (3.8d) are used to

charge the reservation fee only to the EV’s who make an AR.
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3.7. Additional Constraints

The constraints (3.9a) to (3.9c) are used to represent the nonlinearity function proba-

bility for all vehicle i ∈ I being served without making a reservation if s ∈ S servers are

in use.

PAR′

i =
∑
s∈S

PAR′

i,s ·Xi,s (3.9a)

0 =
∑
s∈S

s ·Xi,s −mi (3.9b)

1 =
∑
s∈S

Xi,s (3.9c)

These constraints are build to formulate an Special Order Set of type 1 (SOS1).

−M ·Xi,s ≤Zi,s ≤M ·Xi,s (3.9d)

−M(1−Xi,s) ≤ Zi,s − ρ ≤M(1−Xi,s) (3.9e)

Constraints (3.9d) and (3.9e) are valid ∀i ∈ I and s ∈ S . These Big M constraints are

used to face the nonlinearity of variable multiplication between ρ and Xk,i presented in

the AR decision constraints (3.8a) and (3.8b).

Constraints (3.9f) to (3.9k) are made for all vehicle i ∈ I. (3.9f) and (3.9g) are logic

expressions that ensures that if a vehicle doesn’t chooses to charge in the charging station,

then she cannot be served, neither make a reservation in this station.

ARi ≤ Si (3.9f)

Si ≤ Di (3.9g)
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∑
k∈IAi

ARk +
∑
k∈IBi

ARk

+
∑
k∈ICi

Vk −N ≤M · (1− Si) +M ′ · (1−Di) (3.9h)

N −
∑
k∈IAi

ARk −
∑
k∈IBi

ARk

−
∑
k∈ICi

Vk ≤M · Si +M ′ · (1−Di) (3.9i)

∑
k∈IAi

ARk +
∑
k∈IDi

Vk

−N ≤M · (1− ARi) +M ′ · (1−Di) (3.9j)

N −
∑
k∈IAi

ARk −
∑
k∈IDi

Vk ≤M · ARi +M ′ · (1−Di) (3.9k)

−M · (1− Si) ≤
∑
k∈IAi

ARk −
∑
kinIDi

Vk −mi ≤M · (1− Si) (3.9l)

For constraints (3.9h) to (3.9j) four sets are defined: IAi , IBi , ICi and IDi . The first and

second one denotes the set of vehicles who require being served when user i needs to,

and decide to charge before and after user i. The third and fourth sets cover the vehicles

who arrive before user i and appear before and after user i. These three Big M constraints

ensures the priority of service of vehicles who make an AR and those who arrive first.
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4. RESULTS AND DISCUSSION

In this section we analyze the AR schemes management structure by comparing the

performance of the AR model with a first-come-first-served FCFS management structure.

FCFS structure can be modelled as an AR scheme with a large cost of reservation for each

time slot. Thus, FCFS is a lower bound of the AR maximization problem. As the solution

of using an AR scheme is always equal or higher than a FCFS the comparison between the

two structures is analyzed in terms of the management of charging tariff, AR cost, driver

decisions making and welfare.

At the end of this section a Stochastic Satisficing demand model is proposed to com-

pare the modelling of drivers’ decisions considering the uncertainty in the demand. This

model tries to undertake different behaviours that depends on personal tastes, idiosyncrasy

and not measurable attributes.

The model is built as an MILP optimization problem and is solved in the python-based

open software Pyomo, where Gurobi is used as solver. A 1% MIP gap is selected.

4.1. Simulation Setup

A test case is built with 60 vehicles and 10 CSs randomly distributed spatially where

the CS in study is located in the centre of a normalized area. Six time slots of one hour

each is analyzed, arrivals and departure are allowed during all the studied time. The max-

imum time that a vehicle is allowed to make an advance reservation is 12 hours before the

required time-slot.

The CS in study is equipped with 5 charging sockets with fast charging allowed

(≈50kW). If a vehicle is not served in this CS, then it is assumed that is served in an-

other CS with a charging tariff of ρe per kWh. Parameters such as location or arrival time

are set randomly. However, these parameters can be estimated from historical data.
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On one hand, the real time price profile follows a sinusoidal shape to simulate a real

price variation in time. On the other hand, the profile for the day-ahead prices is normal-

ized and set to 1 per kWh to simplify and generalize the calculation. Up regulation and

Down regulation is allowed in the first half and the second half of the simulation time

respectively.

The distance disutility parameter κd is set to 5 per unit of distance. The calculation

of this parameter takes into account an average efficiency of 5 km per kWh, the cost of

getting to the CS and come back, and an extra disutility for the total charging time.

4.2. Study Cases

This section describes three Case Studies built to evaluate the management perfor-

mance of the proposed AR model.

• Study Case 1 - Fixed charging tariff: in this Case Study the charging tariff is

fixed in order to induce situations of interest such as positive and negative values

of the reservation fee.

• Study Case 2 - Variable charging tariff: unlike the previous case, this Case

Study the charging tariff is a variable optimized in order to maximize the CS

owner profit.

• Study Case 3 - Flexible EVs: the focus of this Case Study is the evaluation of

the EV’s flexibility in the CS’s profit. The flexibility here is assumed as a longer

staying time, but with a constant charging requirement.

4.3. Results and Discussion

This subsection discusses comparisons between the results of the Study Cases de-

scribed before in terms of the charging tariff, AR cost, market participation and welfare.

The owner of the CS has four main revenue streams in managing the CS:
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• Ancillary Services Market: the owner of the CS is allowed to provide up or down

regulation capacity for each hour if is available.

• Day-ahead and real-time Market Arbitrage: as EVs can be a flexible load, buying

and selling energy in both of these markets gives to the owner of the CS a tool

to profit with the price variability.

• Charging Tariff: the CS owner can profit if the Charging Tariff per energy sold

is higher than the energy bought in the electricity market.

• Reservation Scheme: the CS owner offers to the drivers the opportunity of re-

ducing the uncertainty of being served for a reservation fee.

The next subsections discuss how the CS owner use these four instances through the

management of its resources.

4.3.1. Charging Tariff and Reservation Cost

The charging tariff has a direct relation with the charging demand. Figure 4.1 shows a

demand curve for charging services in the Case Study 1 with a Satisficing model, which is

used to represent driver’s charging choices. It can be observed that demand decreases as

the charging tariff increases, drivers that are willing to pay more for each kWh are those

who are closer to the CS. A saturation of the available sockets of the charging station in

≈36 EVs can be observed when the charging tariff is fixed at 0, 9[$/kWh].

Most of the existing charging tariff are fixed rates and time-of-use tariffs for the differ-

ent charging levels. The CS owner can adjust the charging tariff according to the market

prices and charging demand. It is reasonable to decrease the charging tariff if the market

provides incentives for being able to provide ancillary services or if the energy market

prices are low. On the other hand, the owner of the CS will increase the charging tariff

if the demand is inelastic or if prices allows a proper arbitrage of the energy trade in the

market. Additionally, incentives such as reservations, can be offered to motivate drivers to

charge even if the tariff is high.
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Figure 4.1. Demand curve as a function of the charging tariff using a Sat-
isficing model for drivers charging choice model.

Figure 4.2 shows the available power (red line) and the actual charging power (blue

line) of the EVs for an optimized fixed charging tariff (Case Study 2) with an AR and a

FCFS scheme. The dashed lines denote the FCFS case and the solid lines the AR scheme

case. It can be observed that in hours 4, 5 and 6, the AR structure has more power available

than the FCFS scheme, this is because in these hours the reservation cost is settled in

negative values in order to incentive drivers to charge during this period. A low positive

cost of reservation in the firsts hours produces a similar drivers’ charging response for a

FCFS and a AR schemes. This is mainly because the charging tariff is not low enough to

incentive drivers to come and charge. In this particular case the optimized charging tariff

for an AR scheme is ρ∗AR = 1.003 and is similar to the FCFS structure ρ∗FCFS = 1.

As it was shown in Figure 4.2 the reservation cost is used as a price signal for vehicles

to charge in opportune periods. To achieve a proper response two strategies can be fol-

lowed. The first one decreases charging prices in order to increase the expected demand,

with an elevated demand an AR scheme ensures that users take advantage of low charging

tariffs. The second strategy increases the charging price and incentives users to charge in

specific periods with a negative cost of AR. This strategy can be applied in periods when

charging is not profitable for the CS owner.
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Figure 4.2. Charging profiles and power availability of electric vehicles for
a fixed tariff ρe and an optimized tariff ρ.

To study these strategies Figure 4.3 shows a boxplot of the reservation as a function of

the charging tariff for the Case Study 1. If the charging tariff is set low (0.9 per kWh) more

drivers are motivated to charge, in this cases the reservation fee takes a positive value. As

the charging tariff increases the reservation cost decreases, moreover, it becomes negative.

An optimized positive value of the reservation fee indicates that drivers give more

importance to clear the uncertainty of being served in the CS with a low charging tariff.

On the other hand, a negative value of the reservation indicates that an additional incentive

has to be set to counteract the charging tariff prices and distance.

4.3.2. Driver’s Charging Characteristics

This subsection describes the charging behaviour using a Satisficing decision model.

An analysis on the features of vehicles that decide to charge an those who decide to make

an AR is made.
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Figure 4.3. Reservation cost boxplot as the charging tariff increases.

In this work the amount of energy required, distance, arrival time, leadtime and will-

ingness to pay are presented as the main features for the driver to take his charging deci-

sion. Charging tariff and AR cost are directly related with the willingness to pay of the

driver, however this attributes are managed by the CS owner.

Figure 4.4 shows vehicles that decide to charge in the studied CS for the Case Study

2, each circle represent an electric vehicle, the ones that are filled with blue, red or green

decide to charge in the CS when using structure AR, FCFS or in both cases respectively.

The vertical axis denotes the distance difference between the CS and the distance that

satisfy a minimum aspiration level for each driver, which in this work is considered as do.

The horizontal axis denotes the leadtime.

To calculate the drivers’ utility a ρe price is settled for all CSs except the studied one,

in which a charging tariff ρ is optimized.
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Figure 4.4. Charging decision as a function of the distance to the CS, lead-
time and arrival time.

For a FCFS structure, EVs inside the red area decide to charge in the studied CS.

Moreover, if a FCFS structure is used and the optimized charging tariff ρ is similar to ρe,

the red area encloses all vehicles whose aspiration level is surpassed.

Having a long leadtime increase the uncertainty of being served if an AR is not made.

However, if the driver takes the decision of making an AR that uncertainty is reveal and

cleared. Thus, drivers whose leadtime are longer are more probable to be served when an

AR scheme is used. This can be straightforwardly from Figure 4.4, in which the blue area

encloses vehicles whose leadtimes are high and decide to charge even if they are distant to

the CS.

The difference between the available power and the actual charging profile is given by

the flexibility that drivers possess. Being parked more time that the required to charge the

battery, gives to the CS owner the flexibility of charging when is opportune.

Figure 4.5 shows the objective function as the flexibility increases for Case Study 3. In

this case, the flexibility is defined as the extra staying time that a driver is parked in the CS

without an additional energy requirement. Initially the objective function increases with
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Figure 4.5. Objective function as the drivers’ flexibility increases.

the flexibility of the drivers. This is because the CS owner can manage the resources that

has available freely. A step down in the profit can be observed if the extra staying time

keeps on increasing, because being in the CS for a long time takes away the opportunity

for an other vehicle to charge.

4.3.3. Welfare

The total welfare takes into account the CS welfare, which is directly related with his

profit, and consumer’s welfare, which covers individual drivers utilities in terms of charg-

ing tariff per energy bought, reservation cost and distance to the CS. The latter expression

is presented next:

WC =
∑
i∈I

(ρe − ρ) · Ei + (doi − dcsi ) · κd − Ci. (4.1)

As expression (4.1) does not consider an extra profit if the driver makes a reservation

and is served, an extra parameter that contemplates the value of clearing the uncertainty of

being served Uu
i is added to the consumer’s welfare expression for EVs who make AR and

are served. Uu
i can be associated with the difference between the consumers’ welfare who
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Figure 4.6. Average individual consumer welfare for EVs who make a
reservation and those who don’t.

make an AR and those who don’t. This value increases as the charging tariff decreases,

this is related to the fact that demand also increases and the uncertainty of being served

with it.

In Figure 4.6 the average individual Consumer’s Welfare is presented as a function of

the normalized charging tariff in Case Study 1 for EVs who make an AR (in blue) and

those who don’t (in red). For a better understanding, a trend line is plotted in both cases.

On one hand, the value of the uncertainty, which is represented as the difference be-

tween the consumers’ welfare of EVs who make an AR and those who don’t is depicted

in a light green area. On the other hand, the incentive value for EV’s to charge in the CS

is presented in a light orange area. Both values are quite related with the reservation fee

presented in Figure 4.3.

Another value that expression (4.1) does not consider is the disutility that drivers per-

ceive if they do not reserve and are not served in the required CS. However, this value can

be computed through real data and then added to the consumer’s welfare.
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4.3.4. Stochastic Satisficing Sensibility

In this subsection, a Stochastic Satisficing model Gonz & Ortúzar (2017) is used as

a demand model instead of the normal Satisficing theory to face the uncertainty within

drivers’ charging decision. Unlike normal Satisficing theory, the Stochastic Satisficing

model undertakes the decision of charging as a probability. The probability function rep-

resents the acceptability of each driver, which is modeled as a logit function. The shape

of the curve is related to the unpredictable behavior of drivers, the more the uncertainty is

cleared, the more the probability gets closer to a step.

If the decision is now considered as a probability the model becomes a non-linear

problem hard to solve. In order to make this problem solvable and for simplicity some

assumptions are taken into account:

• The charging tariff ρ is fixed and equal to ρe. In this case, the results of the non

Stochastic approach are used as an input.

• The logit model is adjusted considering that with a normalized price 0.9 and a

normalized distance 0.1, a vehicle has a probability 0.9 of deciding to charge

in the CS. Whilst with a normalized price of 1 and the same distance 0.1, the

probability of deciding to charge decreases to 0.5.

• A marginal substitution rate of cost/distance κd is approximated as 1/5.

• The logit model of the Stochastic Satisficing formulation is linearized and ap-

proximated with a linear piecewise function with an error less than a 10%.

• Only negative values of the AR cost are considered.

A model of the drivers’ unpredictable behavior has a direct impact on the expected

demand. In this case there is not a particular set of vehicles that decide to charge in

the CS, furthermore, all drivers might charge but with a given probability that depends on

measurable (distance, charging tariff and reservation cost) and unmeasurable (uncertainty)

conditions. The grey arrows in Figure 4.7 show how the availability of EVs changes

compared with the nonstochastic approach. The Stochastic Satisficing model tends to
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Figure 4.7. Charging profiles and Energy availability with a Stochastic Sat-
isficing approach.

smooth the CS charging profiles through time. However, price incentives with the AR

structure still make a notable difference between these two schemes.

On one hand, the stochastic approach reduces a ≈ 47% the profit of the CS for the

FCFS scheme, because the demand is smoothed and, in this particular case, more vehicles

charge in times when is not profitable and less in profitable periods. On the other hand, the

revenue of the CS considering an AR scheme remains similar (approximately a difference

of a 6% in the total revenue), this gives an insight of the impact of the reservation fee on

the charging profile of the CS, that regardless of the demand model a similar revenue is

achieved.

Additionally, is important to mention that the reservation fee in the stochastic and non-

stochastic approach have a similar shape. However, in the stochastic approach differences

on the reservation value can be attributed to the parameter tune on the logit model of the

demand.
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5. CONCLUSIONS

This work has modeled an EV Aggregator (EV charging station) and its interaction

with the electricity markets and individual EV users in order to determine the optimal

pricing and management strategy using of AR schemes. EV users’ decision making pro-

cess is modelled using Satisficing Theory.

A unique charging tariff is determined throughout the studied time, together with a

dynamic reservation fee. The reservation fee can be set to positive or negative values

depending on the CS objectives: An incentive to charge at a desired time, or an extra cost

for securing a specific charging time and socket.

The value that EV users assign to clearing the uncertainty of being served is estimated,

together with the incentives, in the form of negative reservation fees, required by EVs to

choose the CS at certain periods of time.

It is shown that EV’s flexibility, in terms of longer staying times in the CS facilities, can

have positive or negative effects on the CS revenues due to a trade-off between charging

flexibility and charging socket availability.

The AR scheme to manage CS for EVs is compared with traditional FCFS, showing a

superior performance in terms of CS revenues and management of available resources.

The Stochastic Satisficing model, which faces the drivers unpredictable behavior, has

a direct impact on the expected demand. On one hand, by using this approach, the rev-

enue for the FCFS scheme is significantly reduced. This is explained because the de-

mand is smoothed, more vehicles charge when is not profitable and less vehicles charge in

prof-itable periods. On the other hand, the revenue of the CS considering an AR scheme

re-mains similar, this gives an insight of the impact of the reservation fee on the charging-

profile of the CS, that regardless of the demand model a similar revenue is achieved.
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A. APPENDIX A: EXTENDING AR GAMES

This appendix presents how to extend Advance Reservation (AR) games theory to a

multiple types of user and time slots. Design principles are presented for a service provider

who wants to adapt a reservation system. A general formulation is made and different

simplified cases are presented to understand the influence on the AR costs of the time slot

length, rate of servers per time required, rate of arrivals and flexibility of the user.

A.1. Multiple types of users and time slots

In this section a formulation of a system that supports AR with multiple type of users

and time slots is presented. This is made for representing real systems where arrivals are

in random fashion and players want to use different number of slots in different times. The

formulation tries to be as general as it can to be adapted to different systems.

A Nash Equilibrium exists when there is no profitable deviation from any of the play-

ers, this only occurs if a threshold that guarantee a maximum profit for each player can be

found. Thus, this equilibrium is reached when both the provider and users maximize their

profit, knowing the strategy of all the other players. The strategy function maps the type t

and lead time lt to an action a ∈ {AR,AR′},

σ(τ | t) =

 AR for τ > τt

AR′ for τ ≤ τt
, ∀t ∈ T , (A.1)

where T indicates the set of types {t1, . . . , t2}.

All equilibrium strategies must be of threshold form Simhon & Starobinski (2016).

The main reason is that if a user makes AR, the probability of being served is a non-

decreasing function of her lead time, and if she doesn’t, the probability of being served

doesn’t depend on her lead time.
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The cost structure depends on the probability of being served by making a reserva-

tion πAR and the probability of being served without making a reservation πAR′ . These

expressions are given by

πAR|t =

mf∏
m=m0︸ ︷︷ ︸
A

N−Sm∑
k=0︸ ︷︷ ︸
B

∑
c∈Ck︸︷︷︸
C

∏
(i,t)∈T c︸ ︷︷ ︸

D

P(λt(1− τt), i) =

mf∏
m=m0

P1(m), (A.2)

where the sum term A represent the time range that the user t requires, B term rep-

resents the servers per time slot required, C term denotes the combinations of types that

sum k, D is used to calculate the weight of each combination and P(λ, n) is a Poisson

cumulative distribution function

P(λ, n) = e−λ
λn

n!
.

πAR′|t, the probability of being served by not making AR. Same as Eq. (A.2), but

multiplied by two extra terms covering users who don’t make AR.

πAR′|t =

mf∏
m=m0

P1(m) ·

[
N−k−Sm−1∑

j=0

∑
c∈Cj

∏
(i,t)∈T c

P(λtτt, i)

+
∞∑

j=N−k−Sm

∑
c∈Cj

∏
(i,t)∈T c

P(λtτt, i) ·

(∏Sm

s=0(N − k − s)
(j + 1)Sm

)]
.

(A.3)

The first of the two last terms in Equation A.3 covers the case in which the number

of players not making a reservation is less than the available servers. The second term

covers the case in which the number of players not making a reservation is higher than the

available servers, multiplied by a proportion that distributes the chance of being served

equally among the players that didn’t make a reservation.
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The AR cost curve is built on the assumption that a threshold user exists, this user is

indifferent between the possible actions. For a threshold user take the action AR or AR′

must yield to the same payoff. Therefore, the following expression holds

(Ut − Ct) · πAR|t(τt0 , . . . , τtn) = Ut · πAR′|t(τt0 , . . . , τtn), ∀t ∈ T , (A.4)

Where the left side of Equation A.4 shows the payoff by taking action AR and the

right side the payoff by taking action AR′. An expression for the cost Ct as a function of

the thresholds of each user can be derived from equation A.4,

Ct(τt0 , . . . , τtn) = Ut ·
(

1−
πAR′|t(τt0 , . . . , τtn)

πAR|t(τt0 , . . . , τtn)

)
. (A.5)

A brief summary of sets and index is shown in Table A.1.

Notation Description

AR Action of making an advance reservation

AR′ Action of not making an advance reservation

m Time slot index, being m0 the first time slot and mf the last

k Number of users choosing AR

N Total number of available servers

Sm Rate per slot required by user t in the time slot m

i Auxiliar index to denote number of users of one type

T c Set of i users of type t given by combination c

Ck Combinations of types that sum k

Ut Utility of type t user when is served

n Number of types of user

Table A.1. Notation summary
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A.2. 2 types of users

This subsection discusses the impacts of adding an extra type of user on the expected

revenue of the provider and AR cost for each type of user. The game is played between

the uncertain population of 2 types of users and the CS owner. Two pricing structures are

presented: Fixed Rate (FR) and Differentiated Rate (DR).

Figure A.1 shows the computed cost of AR for each user C1 and C2 for a system where

N = 12 and the rate of arrivals of each user is λt1 = 6 and λt2 = 3.

Figure A.1. Cost function with N = 12, λt1 = 6 and λt2 = 3.

As AR cost depends on the user’s type, 2 pricing structures are presented next with its

possible equilibrium states:

• Fixed Rate (FR): this structure charges a fixed cost for every user regardless his

type. FR supports 5 possible equilibria:

(i) None-make-AR, this equilibrium is achieved when there is no threshold that

leads to the cost of AR and all players are better off not making AR.
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(ii) None-1-some-2, this equilibrium is achieved when some of type 2 users

and none type 1 make AR, this means that the thresholds are τt1 = 1 and

τt2 ∈ (0, 1).

(iii) None-1-all-2, this equilibrium is achieved when all of type 2 users and none

type 1 make AR, this means that the thresholds of each user are τt1 = 1 and

τt2 = 0.

(iv) Some-1-all-2, this equilibrium is achieved when all of type 2 users and some

type 1 make AR, this means that τt1 =∈ (0, 1) and τt2 = 0.

(v) All-make-AR, this equilibrium is achieved when all players are better off

making AR.

To calculate the ranges within each equilibrium we will define some values to

limit these ranges.

CFR
1 = max

τt1

{Ct1(τt1 , 0)} (A.6)

CFR
2 = max

τt2
{Ct2(1, τt2)} (A.7)

C1 =
[
1− πAR′|t1(1, 1)

]
(A.8)

C2 =
[
1− πAR′|t2(1, 1)

]
(A.9)

C = max
{
C1, C2

}
(A.10)



61

Figure A.2. Equilibria and its C ranges for FR structure.

For FR there isn’t an state that support a threshold equilibrium (some-make-AR

equilibrium for each type). This statement is interesting because it constraints

the range in which both type of users make AR.

• Differentiated Rate (DR): this structure charges a different cost depending on

the type, Ct1 and Ct2 DR supports 5 possible equilibria:

(i) None-make-AR, this equilibrium is achieved when there is no threshold that

leads to the costs of AR and all players are better off not making AR.

(ii) None-1-some-2, this equilibrium is achieved when some of type 2 users and

none type 1 make AR. The difference between this equilibrium and the one

in FR is that the threshold τt1 is not necessarily equal to 1.

(iii) Some-1-none-2, this equilibrium is achieved when none of type 2 users and

some type 1 make AR. The difference between this equilibrium and the one

in FR is that the threshold τt2 is not necessarily equal to 1.

(iv) Some-make-AR, this equilibrium is achieved when some of the user of each

type make AR.

(v) All-make-AR, this equilibrium is achieved when all players are better off

making AR.
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These equilibria are reached under the assumption that there exist a threshold

user for every type of user. To calculate the ranges of these equilibria is neces-

sary to add two more limits

CDR
1 = max

τt1 ,τt2
{Ct1(τt1 , τt2)} (A.11)

CDR
2 = max

τt1 ,τt2

{Ct2(τt1 , τt2)} (A.12)

In this structure we can show that a threshold equilibrium exists, this means that

for a given cost C1 ∈ [0, C1] (or C2 ∈ [0, C2] ) there exist a cost C2 (or C1) that

yields to thresholds τ1 and τ2 for each user.

Lemma 0.1. For a given DR structure there is a combination of thresholds

{τt1 , τt2} ∈ (0, 1) that yields to costs of AR C1(τt1 , τt2) and C2(τt1 , τt2).

Lemma 0.1 gives the provider the faculty to control the expected demand of AR

by choosing the adequate cost for each type of user.

A.2.1. Revenue

AR with different types of users reveals an interesting problem of achieving the max-

imum revenue under strategic customer behaviour. This is because the pricing may differ

from one type of user to another.

Let DAR(τ1, τ2) be a random variable denoting the number of users requesting AR un-

der a threshold strategy {τ1, τ2} and dAR(τ1, τ2) be a random variable denoting the number

of reservation request of servers under a threshold strategy {τ1, τ2} . Then the expected

value of the revenue for structure FR is given by

RFR(τ1, τ2) =

 C · E[DAR(τ)] for dAR(τ1, τ2) ≤ N

C ·N · E
[
DAR(τ1,1)+DAR(1,τ2)

dAR(τ1,τ2)

]
for dAR(τ1, τ2) > N

(A.13)
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The reason for taking a piecewise function is because the number of requests may

exceed the number of available servers.

Figure A.3 shows the expected revenue in the range of equilibria B and D.

Figure A.3. FR structure expected revenue per server in the range of equi-
libria B and D for N = 12, λ1 = 6 and λ2 = 3: (a) B and (b) D.

Note that in this equilibria the expected revenue only depends in the threshold of one

type of user.

The equilibria A and E yield to zero revenue because there isn’t AR demand in A and

there is zero AR cost on B. In equilibrium C the revenue is linearly dependent on the cost

of reservation in the range [CFR
1 , C2].

The expected value of the revenue for structure DR is given by

RFR(τ1, τ2) =


∑

t∈T E
[
Ct ·DAR|t(τt)

]
for dAR(τ1, τ2) ≤ N∑

t∈T E
[
Ct ·

DAR|t(τt)

dAR(τ1,τ2)

]
for dAR(τ1, τ2) > N

. (A.14)
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Figure A.4 shows the expected revenue in a DR structure. The maximum revenue for

these settings is 0.142, that is reached for C1 = 0.270 and C2 = 0.388, here a some-

make-AR and none-make-AR equilibria can occur. To avoid the risk of none-make-AR

the maximum permitted revenue is 0.107 and is reached for C1 = 0.125 and C2 = 0.241.

Figure A.4. Expected revenue per server in structure DR for N = 12,
λ1 = 6 and λ2 = 3.

A.3. 2 time slots

This subsection discusses the impacts of adding an extra time slot. The game begins

at time n = 1 and ends at n = 2. All users request only one server but if not served, then

they wait until the next time slot. Users can arrive in time n = 1 and n = 2 with rates

λ1 and λ2. The server duration, denoted by ∆T , is analysed as a design parameter in this

system.

For establish an equilibrium the strategy function is modified and extend to cover

multiple time slots formulation,
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σn(τ) =

 AR for τ > τe

AR′ for τ ≤ τe
(A.15)

where the index n ∈ [1, 2] in this case denotes the time slot and τ the threshold.

For this analysis the threshold is the same for every user. However, there could be

cases where the threshold of users requesting servers in each time slot is different.

A DR structure is used and three types of equilibria are found: all-make-AR, some-

make-AR and none-make-AR. These are achieved when a certain action maximizes the

profit of each user within a threshold strategy followed by all players.

All-make-AR occurs only if the utility of being served by making AR is always greater

than the utility of being served without making AR. This is given by∑
n∈N

(U1,n − C1) · π1,n
AR(0) >

∑
n∈N

U1,n · π1,n
AR′(0), (A.16)

and

(U2,2 − C2) · π2,2
AR(0) > U2,2 · π2,2

AR′(0), (A.17)

where N is the set of time slots, in this case {1, 2}. Equation A.16 cover the first period

and A.17 covers the second period. It is easy to deduce that for a negative C in both

periods an all-make-AR equilibrium exists.

None-make-AR occurs only if the utility of being served by making AR is always

lower than the utility of being served without making AR.

(U1,1 − C1) · 1 <
∑
n∈N

U1,n · π1,n
AR′(1) (A.18)

(U2,2 − C2) · 1 < U2,2 · π2,2
AR′(1). (A.19)
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The left side of equations A.18 and A.19 are multiplied by 1 just to note that if a user

differ from the action of not making AR, then he is served with probability 1. From these

equations we can find C1 and C2,

C1 = U1,1 −
∑
n∈N

U1,n · π1,n
AR′(1) (A.20)

C2 = U2,2 − U2,2 · π2,2
AR′(1). (A.21)

If the cost of reservation for each period is higher or equal than C1 and C2, then there

is at least one none-make-AR equilibrium.

Some-make-AR equilibrium is achieved when a virtual threshold user is indifferent

between making an AR or not. A strategy with threshold τ is a some-make-AR equilib-

rium if and only if the next 2 equalities hold for a threshold user in period 1 and 2

∑
n∈N

(U1,n − C1) · π1,n
AR =

∑
n∈N

U1,n · π1,n
AR′ (A.22)

and

(U2,2 − C2) · π2,2
AR = U2,2 · π2,2

AR′ , (A.23)

where the left terms of the above expressions denote the utility of a user who makes

an AR and the right side the utility of not making an AR, in the first time slot A.22 and in

the second A.23. At each time slot the utility and the probability of being served change,

that’s why there is a sum through the time slots.

An expression for C1 and C2 can be formulate from equations A.22 and A.23,

C1(τ,∆T ) =

∑
n∈N U

1,n · π1,n
AR(τ)−

∑
n∈N U

1,n · π1,n
AR′(τ)∑

n∈N π
1,n
AR

(A.24)

C2(τ) = U2,2 − U2,2 · π2,2
AR′(τ). (A.25)
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The expressions for πn,n
′

AR and πn,n
′

AR′ are presented in the appendix. It is important to

note that πn,n
′

AR is a non decreasing function of ∆T .

As seen in Section A.2 there are some cases where one type of user is better off not

making AR as the other one make AR. In this section these particular cases are considered

a type of some-make-AR equilibrium.

A.3.1. Revenue

With a DR structure revenue can be formulated as

R(τ) =
∑
n∈N

Cn · E[min{Dn
AR(τ), N̄}], (A.26)

where Cn is the AR cost of each time slot, N̄ is the maximum number of available

servers per time slot. The reason for taking the minimum between N̄ and DAR(τ) is

because the number of request may exceed the number of available servers.

An example is presented next to see how the revenue and costs of AR change as a

function of ∆T . The settings are N = 6, λ1 = λ2 = 6 and users of each period follow the

same strategy. The utility of being served in the second period by requesting AR in the

first is represented as a quadratic function of ∆T of the form

U1,2 = U1,1 −∆T 2. (A.27)

The utility, lead time and length of each period are normalized between [0, 1].

For these settings it can be found a cost for reservation and a revenue, both function

of the lead time and ∆T . The maximum revenue is R(τ)/N = 0.3953 (see Figure A.5)

and is achieved with a threshold τ = 0.2 and ∆T = 0.49, the fees corresponding to this

threshold are C1 = 0.2043 and C2 = 0.2898 (see Figure A.6)
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Figure A.5. Revenue of the CS owner for N = 6 and λ1 = λ2 = 6.
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Figure A.6. Cost of AR for N = 6 and λ1 = λ2 = 6, where a) is the first
period and b) the second.

Note that the cost C2 (Figure A.6.b) is not a function of the time slot’s length. This is

because for a threshold user the lead time of a first period user is always grater than the

lead time of the second one. Thus, the cost C1 (see Figure A.6.a is a function of the period

length.
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For this point there is a some-make-AR and a none-make-AR equilibrium. Figure A.7

shows how the costs C1 and C2 change as ∆T increases. As was expected C2 doesn’t

depend on ∆T , but C1 is quadratic because of the utility function.
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Figure A.7. Cost of none-make-AR equilibrium for N = 6 and λ1 = λ2 = 6.

A.4. 4 types of users and 2 time slots

This subsection presents a model of 4 types of users that differ on the time and servers

requested. A DR structure as proposed in Section A.2 is used. This is because for all

combinations of thresholds there is a differentiated cost of AR for each type of user, despite

the fact that each type of user has its own threshold and rate of arrivals. This can be proved

from Lemma 0.1. Thus, the same threshold is used for each user as a simplification for

showing the main results.

Same equilibria as Section A.3 are found here for a DR structure. Note that in the

some-make-AR equilibria it can be found types of user that are better of without making

AR.
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The main idea of this example is to analyse the impacts on AR pricing of the number of

servers and the rate of servers per time requested. Figure A.8 shows the cost of reservation

and the provider’s revenue as the threshold increase.

Figure A.8. For settings N = 6 and λt = 6 ∀ t ∈ T , (a) Cost of AR (b)
Expected revenue per server.

In Figure A.8 it can be seen that the AR cost is the same for users of type 1 and 3 and

for users of type 2 and 4, even if the total amount of servers requested is not the same.

Lemma 0.2. In a multiple time and multiple type of users formulation, if there isn’t

a waiting time and a DR structure is applied, then the cost for AR for each type doesn’t

depend on the time requested but the rate of servers per time.

One implication of this lemma is that pricing structures should focus on pricing by rate

and not by the amount of time slot a user request.

Requesting servers through time only increase the AR cost for users that request

servers after the current time slot, this is mainly because the AR cost is an increasing

function of available servers.

Although the price is the same for users whose rate per servers require is equal, the

probability of being served and the utility of a player who requires less servers is higher.
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