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Abstract

Ž .A thermal QCD Finite Energy Sum Rule FESR is used to obtain the temperature dependence of the axial-vector
Ž . Ž .coupling of the nucleon, g T . We find that g T is essentially independent of T , in the very wide range 0FTF0.9 T ,A A c

where T is the critical temperature. While g at Ts0 is q2-independent, it develops a q2 dependence at finitec A

temperature. We then obtain the mean square radius associated with g and find that it diverges at TsT , thus signallingA c

quark deconfinement. As a byproduct, we study the temperature dependence of the Goldberger-Treiman relation. q 1999
Published by Elsevier Science B.V. All rights reserved.

The possibility of creating a quark-gluon plasma
in relativistic heavy ion collisions has sparked much
interest in theoretical predictions for the onset of this

w xstate 1 . In addition to the search for unambiguous
processes signalling the formation of such a plasma,
it is also important to understand the temperature
behaviour of hadronic Green’s functions and their
associated parameters, viz. masses, widths, cou-
plings, etc. The general consensus is that hadronic
widths depend strongly on the temperature; in fact
they are expected to diverge at some critical temper-
ature T , thus signalling quark-gluon deconfinementc
w x Ž2 hadronic widths are to be understood, in this
context, as absorption coefficients determined by the

.imaginary parts of two-point functions . Thermal
three-point functions also provide independent evi-
dence for this phase transition, as the mean square

radii happen to increase with increasing temperature,
w xbecoming infinite at TsT 3 .c

A recent investigation of the thermal behaviour of
the pion-nucleon coupling, in the framework of both

w xthe linear sigma model and QCD sum rules 4 ,
showed that as the temperature approaches T ,c

Ž .g T vanishes, while the associated radius di-p NN
Ž . ² 2 :Ž .verges. Both g T and r T may thus bep NN p NN

interpreted as signals for the deconfinement phase
transition. In this work we shall determine the tem-
perature behaviour of the axial-vector coupling con-

Ž 2 .stant of the nucleon g 'g q s0 , and the asso-A A

ciated radius, using the method of thermal QCD sum
w xrules 5 ; specifically, the leading dimension Finite

Ž .Energy Sum Rule FESR . However, we shall first
discuss our own determination of g at Ts0, asA

previous QCD sum rule determinations, dating back
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w xmany years 6 , were the subject of some contro-
versy. We find it possible to reproduce the experi-
mental value of g at Ts0, which then serves toA

normalize the finite temperature results. Finally, as a
byproduct, we shall use this result to determine the

Ž .behaviour at finite temperature of the SU 2 =L
Ž .SU 2 Goldberger-Treiman relationR

f T g TŽ . Ž .p p NN
s1qD T . 1Ž . Ž .pM T g TŽ . Ž .N A

Ž . w xIn this relation, f T is known up to TsT 7 ,p c
Ž .where it vanishes, g T behaves qualitativelyp NN

w x Ž .similarly 4 , and M T is essentially constant up toN
w xTsT 8,9 . The question is then, how big are thec

Ž . Žthermal corrections to this relation, D T normal-p

Ž . .ized to D 0 s0 . An equally important chiral-sym-p

metry relation, the Gell-Mann, Oakes and Renner
Ž .relation GMOR , has recently been investigated in

the framework of thermal chiral perturbation theory
w x w x10 and QCD sum rules 11 . There is excellent
numerical agreement between both results, indicating
that temperature corrections to the GMOR relation
are rather small. It should be kept in mind that a
comparison between thermal QCD sum rules results
and those from effective theories at finite tempera-
ture, e.g. sigma model, chiral perturbation theory,
etc., must necessarily be done numerically. The fields
involved in the former technique are those of the
quarks and gluons, while those of the latter frame-
work are purely hadronic. As a result, expansions in
powers of the temperature do not necessarily need to
match order by order because the coefficients in
these expansions will involve different types of pa-
rameters. However, numerical results from both
techniques should agree, at least within the range of
validity of the low temperature expansion in effec-

Žtive theories QCD sum rules are in principle valid
.across the whole range of temperatures . This is

precisely what happens with the two analyses of the
GMOR relation mentioned above.

We begin by considering the three-point function

P p , pX ,qŽ .m

s i2 d4 x d4 yHH
=

XiŽ p xyq y.² :0 T h x A y h 0 0 e ,Ž . Ž . Ž .Ž .p m n

2Ž .

where the charged axial vector current is given by:
Ž . Ž . Ž .A x su x g g d x , while the interpolating cur-m m 5

w xrents of the proton and neutron are chosen as 12

a b m ch x se u x Cg u x g g d ,Ž . Ž . Ž .p abc m 5

a b m ch x sye d x Cg d x g g u . 3Ž . Ž . Ž . Ž .n abc m 5

Ž 2 .The axial-vector coupling of the nucleon, g q , isA

defined through

2² < < :N p A 0 N p su p g g g qŽ . Ž . Ž . Ž . Ž .2 m 1 2 m 5 A

2qq g h q u p ,Ž .Ž .m 5 A 1

4Ž .

Ž .with q s p yp . The coupling of the interpo-m 2 1 m

Ž .lating currents, Eq. 3 , to the nucleon is

² < < :0 h 0 N p sl u p . 5Ž . Ž . Ž . Ž .N

Inserting a complete set of intermediate nucleon
Ž .states into Eq. 2 , one obtains the hadronic represen-

tation

l2
NX

P p , p ,q sŽ .m X 22 2 2p yM p yMŽ . Ž .N N

= puX qM T pu qM , 6Ž . Ž . Ž .N m N

where

2 2T s g g g q qq g h q , 7Ž .Ž . Ž .m m 5 A m 5 A

and the following expansion holds

puX qM T pu qMŽ . Ž .N m N

X X2sg q y2 pu p g qpu pug gŽ .A m 5 m 5

X 2q puq pu g g M y2 p g M qM g gŽ . m 5 N m 5 N N m 5

X2 2qh q ypu pu qqu M qM q g . 8Ž .Ž .A N N m 5

Since we are only interested in g , we need toA

extract tensor structures which are not multiplied by
h ; a suitable candidate being the structureA

puX qpu g g . 9Ž . Ž .m 5
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The relevant term of the imaginary part of the
Ž .hadronic correlator is then

X 2 <Im P s,s ,qŽ . HADm

syl2 g q2 M p 2d syM 2Ž . Ž .N A N N

=d sX yM 2 puX qpu g gŽ .Ž .N m 5

X X X 2 <qQ sys Q s ys Im P s,s ,q ,Ž . Ž . Ž . QCD0 0 m

10Ž .
where ssp2, sX spX 2, and we have added the
hadronic continuum, modelled by perturbative QCD,
starting at thresholds sss and sX ssX . Considering0 0

the contribution to the correlator from perturbative
QCD, we obtain

X <P p , p ,qŽ . PQCDm

d4k d4k1 22sy24 i g S k g S k yqŽ . Ž .H a F 2 b F 182pŽ .
=g S k g aS pX yk yk g bg . 11Ž . Ž . Ž .m F 1 F 1 2 5

Taking the imaginary part of this expression, and
evaluating the integrals, it turns out that there are no

Ž .terms proportional to the tensor structure of Eq. 9 .
Turning to the non-perturbative part, we find the
quark condensate contribution to the correlator to be

X <P p , p ,qŽ . QCDm

4d k
3² :s2 i dd g SH a F42pŽ .

= k g g S q g aS pX ykyq g bgŽ . Ž . Ž .b m F F 5

d4k
y g g S kyq g SŽ .H a b F m F42pŽ .

Xa b= k g S p yk g gŽ . Ž .F 5

4d k
X² :q uu g S p yk g SŽ .H a F b F42pŽ .

d4k
a b= kyq g S k g g g q g SŽ . Ž . Hm F g a F42pŽ .

Xa b= k g S q g g S p yk g g . 12Ž . Ž . Ž . Ž .b F m F 5

Taking the imaginary part, and keeping only terms
Ž .proportional to the relevant tensor structure Eq. 9 ,

and which are non-vanishing in the limit q2 ™0, we
² : ² : ² :obtain, after assuming uu , dd ' qq ,

1
X X< ² :Im P p , p ,q s qq pu qpu g g .Ž . Ž .QCDm m 512p

13Ž .

Next, using Cauchy’s theorem, and assuming quark-
hadron duality, the lowest dimensional FESR for g A

reads

s sX
0 0 X Xds ds Im P s,sŽ .H H HADm

0 0

s sX
0 0 X Xs ds ds Im P s,s . 14Ž . Ž .H H QCDm

0 0

From this FESR one then obtains the relation

X ² :s s qq0 0
g sy . 15Ž .A 3 212p l MN N

At first sight, this result hardly looks like a predic-
tion for g , since s , sX , and l are a-priori un-A 0 0 N

known. However, since the double dispersion in
2 X 2 X Ž .p ss and p ss , used in obtaining Eq. 15 ,

refers to the nucleonic legs of the three-point func-
tion, it is reasonable to set s ssX . At the same time,0 0

a QCD FESR analysis of the two-point function
w xinvolving nucleonic currents 8 yields the following

relations

3 ² :s qq02 2 2l s , l M sy s , 16Ž .N N N 04 2192p 8p

where, in principle, the numerical value of the
asymptotic freedom threshold s does not have to be0

Ž .the same as that in Eq. 15 . In fact, if one were to
Ž . Ž .assume them to be equal, then Eqs. 13 and 14

would imply g s8r12p , a value far too small.A

Without any attempt at extracting a precision value
of g , it is rewarding, though, to find that theA

experimental value g s1.26 can be reproduced inA

this framework if l2 , 3.1 = 10y4 GeV6, s sN 0
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Ž . Ž .Fig. 1. The coupling g T , from Eq. 20 , as a function ofA

TrT .c

2 ² :3.7 GeV , and the standard value qq sy0.01, are
Ž . 2used in Eq. 15 . These values of l and s areN 0

close enough to those resulting from the two-point
function channel, at least for the purpose of the
present work, which is to obtain the temperature
dependence of g and its mean square radius, ratherA

Ž .than a prediction for g Ts0 .A

The finite temperature corrections to g are ob-A

tained by inserting the thermal Dolan and Jackiw
w x13 propagators, and allowing for the temperature

² : ² : Ž .variation of qq , l and s . For qq and l TTN 0 N
w x w xwe shall use the results of 7 and of 8 , respectively.

The temperature dependence of s was first obtained0
w x w xin 14 , and later improved in 15 . It turns out that

for a wide range of temperatures not too close to T ,c

say T-0.8T , the following scaling relation holds toc

a good approximation
2 ² :f T qq s TŽ . Ž .Tp 0

, , . 17Ž .2 ² :qq s 0f 0 Ž .Ž . 0 0p

The appropriate contribution to the thermally cor-
rected QCD spectral function becomes

² :qq
X XIm P p , p ,q s pu qpu g gŽ . Ž .m m 548p

=
Xf p ,T q f p ,T , 18Ž . Ž . Ž .

where

< < < <p y p x1 0
f p ,T s dx 1ynŽ . H F ž /2y1

< < < <p q p x0
yn , 19Ž .F ž /2

Fig. 2. The temperature dependence of the mean square radius,
Ž .Eq. 22 .

Ž . Ž x .y1 Ž X .with n x s 1qe , and f p ,T is similarlyF

defined. Finally, we obtain the sum rule for g atA

finite temperature:

² :qq 1 Ž .s T0g T sy dsŽ . HA 3 248p l M 0N N

=
X Ž .s T X X0 ds f p ,T q f p ,T . 20Ž . Ž . Ž .H

0

In order to evaluate the integrals one needs to choose
Ž .a specific frame, for example the rest frame ps0.

In this case, the components of the four vectors p
and pX may be expressed in terms of s, sX and q2.
Other choices of frames give essentially the same

Ž .results. A numerical evaluation of g T is pre-A

sented in Fig. 1. As can be seen from this figure, g A

is basically T-independent, and it clearly does not
vanish as the critical temperature is approached. In
this sense, g does not represent a signal for theA

deconfinement phase transition. We turn now to the

Ž .Fig. 3. Deviation from the Goldberger-Treiman relation, Eq. 1 ,
as a function of of TrT .c
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² 2:mean square radius r associated with g , andTA A

defined as

E
2 2

2² : <r s6 ln g q ,T . 21Ž .Ž .T q s0A A2E q

This radius is non-zero at finite temperature due to
the q2-dependence of the arguments of the thermal
Fermi factors. After evaluating the logarithmic

Ž .derivative of Eq. 20 one obtains
y1Xs s0 0 X X2² :r s ds ds f p ,T q f p ,TŽ . Ž .T H HA ½ 5

0 0

=
X 6Ž . Ž . 1s T s T X0 0ds ds dxH H H '2T s0 0 y1

=

X X Xp p q p x0 0
1qx expXž / ž /p 2T

=

2X Xp q p x0
n . 22Ž .F ž /2

This is plotted in Fig. 2, which shows that the radius
diverges as the critical temperature is approached.
This kind of behaviour has been obtained previously

w xfor other radii 3,4 , and it may be interpreted as
Ž .analytic evidence for quark deconfinement.

Finally, we can use our result for g at non-zeroA

temperature to evaluate the validity of the GTR, Eq.
Ž .1 . Results for the mass of the nucleon show that it
has very little variation with temperature, and so we

w xshall assume that it is constant 8,9 . Using the result
w xof 7 for f at finite temperature, together with ourp

Ž . w xprevious results for g T 4 , and our currentp NN
Ž .result for g T , we can determine the thermal cor-A

Ž . Ž .rection to the GTR, D T defined in Eq. 1 . In Fig.p

Ž .3 we present a plot of 1qD T against TrT ,p c

which indicates that the GTR is approximately cor-
rect until about T,0.9 T , where it breaks down.c
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