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Abstract Variations in parasite populations may be

temporal and/or spatial and can occur in relation to

environmental factors. However, such changes may

also occur due to differences in host population density,

which is one of the main factors that affect the

abundance of directly transmitted parasites. Fish larvae

and their ectoparasites were collected via ichthyoplank-

ton samplings during a 3-year survey near the coast of

central Chile. To estimate the variations in ectoparasite

abundance that occurred with fluctuations in host

density, the prevalence and intensity of ectoparasites

(copepods and isopods) were calculated and compared

with the density (i.e., the larval fish abundance

standardized to 1,000 m-3) of six species of nearshore

fish larvae that belonged to the families Gobiesocidae,

Labrisomidae and Tripterygiidae. Copepods (Penel-

lidae and Caligidae) and isopods (Cryptoniscidae) were

found to be parasitizing the fish larvae. Pennellid

copepods were the most prevalent ectoparasite, and the

clingfish Gobiesox marmoratus (Gobiesocidae) was the

most parasitized fish species (12.81 %). The individual

burdens of pennellid, caligid and isopod ectoparasites

failed to exhibit any correlation with the larval densities

of four fish species (i.e., Auchenionchus crinitus,

Auchenionchus microcirrhis, Sicyases sanguineus and

Helcogrammoides chilensis). Nonetheless, the preva-

lence and intensity of the pennellid copepods exhibited
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Valparaı́so, Chile

F. P. Ojeda

Departamento de Ecologı́a, Pontificia Universidad
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a significant and positive correlation with the density of

a gobisesocid species. In contrast, the prevalence of

pennellid copepods (5.10 %) exhibited a significant but

negative correlation with the density of tripterygid fish.

Ectoparasite abundance is a result of a species-specific

relationship with their hosts, but the evidence found

suggests no correlation between ectoparasite burden

and host density in larval fishes from coastal

environments.

Keywords Host density � Tripterygiidae �
Gobiesocidae � Prevalence � Pennellidae � Caligidae

Introduction

Variations in parasite populations and communities

may be temporal or spatial (Kennedy 1975); in

addition, such variations can be of high magnitude

and occur without any stable pattern, varying both

among and within fish species (Grutter 1994). Another

cause of variability is the environment of the parasites,

which differs from the environment of free-living

organisms because it has two components: (1) the

macroenvironment, which is the environment of the

host, and (2) the microenvironment, which is the host

body itself (Rohde 1984). Therefore, both environ-

ments play an important role in the ecology of parasite

communities by controlling the interactions, abun-

dance and diversity of parasites.

Macroenvironment variations can be associated

with natural changes in climate, seasonal variations

and other environmental conditions that influence

parasites through direct and indirect pathways (Vi-

olante-González et al. 2008; Altman and Byers 2014).

For example, the prevalence of metazoan ectoparasites

of marine fishes is positively and strongly related to

water temperature (Rohde et al. 1995; Castro and

Santos 2013).

In addition, microenvironment variations, which

include the reproductive periods, food availability,

mortality rates (Negovetich and Esch 2007) and

density (Fellis and Esch 2004) of the host, as well as

any biological changes that occur in the host, can also

affect the abundance of parasite populations (Ander-

son and May 1978; May and Anderson 1978; Muñoz

and Randhawa 2011), leading to temporal variations in

the dynamics of parasite populations and communities

(Muñoz and Randhawa 2011). Characteristics of the

host, such as host size (Guegan et al. 2005) and host

density (Simková et al. 2001), can be important for the

acquisition and retention of parasites.

Host density typically plays a central role in

determining the prevalence of directly transmitted

parasites, explaining the species richness, distribution

and abundance of parasite populations (Arneberg et al.

1998; Morand and Poulin 1998). Moreover, the

probability of the transmission stage (e.g., eggs,

larvae) contacting a host (Arneberg et al. 1998)

increases with increasing host density, for example,

the larval stages of Caligus rogercresseyi have a direct

relationship with salmon density (Molinet et al. 2011),

demonstrating that host density can be more important

than oceanographic variables in certain circumstances.

Consequently, those species of hosts occurring at high

densities should harbor more parasitic species than

species occurring at low abundances (Morand and

Poulin 1998; Morand et al. 2000).

Most research concerning the ecology of marine

fish ectoparasites was conducted using the adult and/or

juvenile stages of fishes, but information related to

ectoparasites on fish larvae is scarce. These develop-

mental stages are more vulnerable to the effects of

parasites than adult fish (Fogelman and Grutter 2008)

due to their fragile nature (Herrera 1984, 1990) and

because they are in the early stages of immunological

and physiological development (Uribe et al. 2011).

Using a 3-year time series (2010–2012) of plankton

sampling in nearshore waters (\500 m offshore) off

the coast of central Chile, we tested the hypothesis that

variations in host density (i.e., the density of fish

larvae) influence the ectoparasite burden, as indicated

by parasite prevalence and intensity, in different host

species. This hypothesis was addressed using the

larval stages of three fish families (i.e., Gobiesocidae,

Labrisomidae and Tripterygiidae) that serve as hosts

for the developmental stages of ectoparasites.

Materials and methods

Fieldwork

During the late winter and spring of 2010 (three

cruises on 9/2, 9/9 and 10/4), 2011 (five cruises on 9/8,

9/15, 10/18, 11/18 and 11/23) and 2012 (five cruises

on 11/8, 11/13, 11/27, 12/5 and 12/11), nearshore
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(\500 m offshore) night surveys (1,900–2,300 h)

were conducted in El Quisco Bay (33�240S,

71�430W) in central Chile on board an artisan vessel.

Oblique hauls of a Bongo net (60 cm diameter,

300 lm mesh size) with one TSK flow meter (The

Tsurumi-Seiki Co., Ltd., Tsurumi-ku, Yokohama,

Japan) mounted in the frame of the net were performed

for 10–15 min each from a depth of 20 m. The volume

of seawater filtered by the net ranged from 13.1 to

437.4 m3 (mean ± one SD 141.8 ± 102.5 m3). All

zooplankton samples (n = 192) were initially fixed

with 5 % formalin buffered with sodium borate and

preserved in 96 % ethanol after 12 h.

Unfortunately, macroenvironmental factors, such

as seawater temperature, salinity, density and wind

strength, could not be incorporated into the study

because oceanographic and meteorological data were

not available for every sampling period.

Laboratory work

All fish larvae were separated from general plankton

samples, counted and classified into the lowest

possible taxon following the descriptions of Pérez

(1979, 1981) and Neira et al. (1998). Then, all fish

larvae were observed under an Olympus ZS-61

stereomicroscope (Olympus Corporation, Shinjuku-

ku, Tokyo, Japan) to separate and preserve each

parasitized larva into individual containers for further

analysis. Each ectoparasite was identified to the lowest

possible taxon based on mouthparts and appendages

(Castro and Baeza 1986, 1989; Muñoz et al. 2015).

Data analysis

The obtained fish larval abundance values were stan-

dardized as individuals 1,000 m-3 for each taxon. From

the complete taxocenosis, only three families were

selected due to their high prevalence in the samples:

Labrisomidae, Gobiesocidae and Tripterygiidae. Each

of these families was represented by two selected

species: A. crinitus (Jenyns, 1841) and A. microcirrhis

(Valenciennes, 1836), G. marmoratus Jenyns, 1842 and

S. sanguineus Müller and Troschel, 1843, and H.

chilensis (Cancino, 1960) and Helcogrammoides cun-

ninghami (Smitt, 1898), respectively (Online Resource

1). These species were grouped into two categories [i.e.,

non-parasitized larvae (NPL) and parasitized larvae

(PL)] to calculate the ectoparasite burden; the

prevalence and intensity were determined according

to the method described by Bush et al. (1997).

The obtained host density, prevalence and intensity

values for each parasite taxon were tested for their

normality distribution using the Shapiro–Wilk test. As

none of these variables presented a normal distribution

(Shapiro–Wilk test W [ 0.8; P \ 0.05), Spearman’s

correlations were performed to evaluate the existence

of a significant relationship between larval fish host

abundance (ind. * 1,000 m-3) and ectoparasite bur-

den. All of the statistical analyses were performed

using the STATISTICA 7 package (Statsoft Inc.,

Tulsa, Oklahoma, USA).

Results

During the study period (i.e., 2010–2012), a total of

22,671 fish larvae from a total of 46 larval fish species

were analyzed. The most parasitized larval fish

families were kelpfish labrisomids [Aucheniunchus

crinitus (3.43 %) and A. microcirrhis (5.51 %)],

clingfish [G. marmoratus (12.81 %) and S. sanguineus

(0.52 %)] and triplefins [H. chilensis (5.46 %) and H.

cunninghami (5.10 %)] (Fig. 1).

Three ectoparasitic taxa belonging to two taxo-

nomic groups (i.e., Copepoda, from different chalimus

stages, and Isopoda at the larval stage) were recog-

nized in the samples: Caligus sp. (Copepoda: Caligi-

dae), Trifur spp. (Copepoda: Pennellidae) and

Cryptoniscidae (Isopoda) (Fig. 2). The most prevalent

ectoparasites were pennellid copepods, with a variable

intensity range (1–8 for pennelid copepods, 1–2 for

caligids copepods and one isopod per parasitized fish).

However, the prevalence and the intensity of the

parasite species presented considerable differences in

the recorded samples (Table 1).

The prevalence and intensity of ectoparasites were

not correlated with the density of most fish larvae

(rs \ 0.7; P [ 0.05). However, significant correla-

tions were found for two fish species. The prevalence

(Spearman’s correlation, rs = 0.72; P = 0.005) and

intensity of pennellid copepods (Spearman’s correla-

tion, rs = 0.83; P \ 0.001) exhibited a significant and

positive correlation with the density of larval G.

marmoratus (Fig. 3), whereas prevalence of pennel-

lids exhibited a significant but negative correlation

with the density of H. cunninghami (Spearman’s

correlation, rs = -0.76; P = 0.021) (Fig. 3).
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Discussion

All of the investigated species exhibited a low and

variable ectoparasite prevalence between 0.52 and

12.81 %, which is not uncommon for fish larvae.

Other studies that were performed using larval fish of

different families described a low prevalence of

ectoparasites in gobiids (4.4 %), Anchoa sp. (En-

graulidae) (3.6 %), Brevoortia sp. (Clupeidae)

(0.22 %) (Felley et al. 1987), Engraulis ringens

(Engraulidae) (prevalence ranged between 0.9 and

4.7 %), Pomacentrus moluccensis (Pomacentridae)

(4 %) (Grutter et al. 2010) and Chilean triplefin H.

chilensis (Tripterygiidae) (2.7–20.8 %) (Palacios-

Fuentes et al. 2012).

The ectoparasite intensities were also low and

variable, primarily between 1 and 3 parasites per host

(the median value was one ectoparasite per fish larva),

and higher values were rare (e.g., up to eight pennellid

copepods in one specimen of clingfish G. marmora-

tus). These results concur with the descriptions given

by Felley et al. (1987), in which the majority of

Fig. 1 Three major

parasitized fish families.

Labrisomidae:

a Auchenionchus

microcirrhis,

b Auchenionchus crinitus;

Gobiesoscidae: c Gobiesox

marmoratus, d Sicyases

sanguineus and

Trypterigiidae:

e Helcogrammoides

chilensis,

f Helcogrammoides

cunninghami. Scale bars

1 mm length

Fig. 2 Ectoparasites present during the study period. a Cryptoniscidae, b Pennellidae, c, d Caligidae

94 Aquat Ecol (2015) 49:91–98

123



parasitized fish larvae in an estuary had a single

copepod attached and only four fish larvae (Gobiids

0.028 %, Anchoa sp. 0.011 % and Brevoortia sp.

0.0077 %) had two or three parasites.

This study represents an initial attempt to identify a

relationship between ectoparasite burden and larval fish

density. The difficulty of estimating host densities in

coastal areas limits the probability of determiningT
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Fig. 3 Correlations between: a G. marmoratus abundance and

prevalence, b G. marmoratus abundance and intensity and c H.

cunninghami abundance and prevalence
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significant correlations for the parasite–host relationship

in marine fishes. We were unable to find significant

correlations between ectoparasite burden and host

density for most of the fish species considered in this

study. The lack of a detectable correlation may be

caused by random environmental processes near the

coast, such as tides, coastal water advection, lunar

cycles, wind-driven turbulence and/or seasonal vari-

ability (Narváez et al. 2004). Therefore, macroenviron-

mental factors can affect the transmission of parasites to

their hosts in different ways; this effect should be

considered in future analyses.

G. marmoratus was the only host species that

exhibited positive correlations with pennellid copepod

burdens (i.e., prevalence and intensity). This fish

species was not the most abundant species, but it had

the highest prevalence and intensity of pennellids,

suggesting that these parasitic taxa might prefer this

host species. This relationship may be explained by

the life cycle of this host, which includes planktonic

larval stages that spend approximately 1 month in the

water column (Contreras et al. 2013); thereafter, they

locate near the sea floor where the probability of

infection by pennellidae may increase, because many

parasites develop their life cycles near the benthos

were invertebrates that are intermediate hosts for them

(Chambers and Dick 2005; Klimpel et al. 2006).

Most parasites are host specific as a strategy for

improving fitness because each host species provides

different microenvironments for parasites (i.e., some

host species are more suited for a successful life for a

parasite than other hosts) (Muñoz and Cortés 2009). A

similar result was found for the copepod C. roger-

cresseyi, for which a positive correlation was observed

between larval abundance and the density of salmon

hosts (Molinet et al. 2011). This link was generated not

only because host density positively affects parasite

transmission rates but also because C. rogercresseyi

prefers salmon hosts to native hosts.

In contrast, the prevalence of pennellid copepods

exhibited a negative correlation with the larval density

of triplefin H. cunninghami. The pelagic larval stage of

triplefin lasts approximately 4 months (Plaza et al.

2013; Mansur et al. 2014; Palacios-Fuentes et al. 2014);

during these months, the larvae aggregate as dense

schools near surface waters (Palacios-Fuentes pers.

obs.). Fishes with schooling behavior may exhibit a

lower rate of parasitism depending on their position in

the group (Krause 1994) and exhibit significantly

greater distances from their neighbors than uninfected

shoal members (Barber and Huntingford 1996). These

findings might explain why only a few specimens of

larval H. cunninghami were infected, despite the large

densities found in the study.

Characteristics of host biology that increase self-

recruitment may promote the completion of the life

cycle of ectoparasite copepods by increasing the

probability that the parasites will find a definite host;

thus, such characteristics favor the dispersal of pennellid

ectoparasites (Cribb et al. 2000). Therefore, pennellid

and caligid copepods may be utilizing meroplanktonic

fish larvae as intermediate hosts (Palacios-Fuentes et al.

2012; Muñoz et al. 2015) and detaching before the fish

move to the intertidal zone. This theory suggests that the

definitive host for the penellids and caligids found in the

larval fish considered in this study would be adult fish

from the dermersal and subtidal zones (e.g., Bovicthys

chilensis, Merluccius gayi and Sebastes oculatus)

(Muñoz et al. 2002; George-Nascimento 1996; Oliva

and González 2004).

This study represents an initial approach to im-

proving our understanding of how the developmental

stages of ectoparasites are related to the early life

stages of coastal fishes. Consequently, several ques-

tions should be addressed, and it is important for

studies of larval fish ecology to consider the effects of

ectoparasites on the feeding habits, growth, condition

and survival rates of fish larvae.
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Muñoz G, Valdebenito V, George-Nascimento M (2002) La

dieta y la fauna de parásitos metazoos del torito Bovichthys

chilensis Reagan, 1914 (Pisces: Bovichthydae) en la costa

de Chile centro-sur: variaciones geográficas y ontogenéti-
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