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Resumen

En teoŕıas de gravedad modificada que presentan mecánismo de apantallamiento ca-

maleón, la fuerza de la quinta fuerza depende del ambiente donde es gatillada. Esto

induce una dependencia del entorno en la formación de la estructura a gran escala, que

difiere del Universo ΛCDM. Se muestra que tales diferencias pueden ser captudaradas

por medio de una función de correlación marcada. Con la función de correlación de

galaxias y su número de densidad calibrado para ser el mismo entre los modelos f(R)

y ΛCDM, en simulaciones numéricas, mostramos que la función de correlación marcada

usando la densidad local o la masa de los halos para marcar las galaxias, contiene in-

formación extra y puede ser usada para probar estas teoŕıas. Discutimos las posibles

aplicaciones de este estudio estad́ıstico in observaciones. Esta tesis reproduce texto de

Armijo et al. (2018) literalmente.
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Abstract

In theories of modified gravity with the chameleon screening mechanism, the strength of

the fifth force depends on the environment. This induces an environment dependence of

structure formation, which differs from ΛCDM. We show that these differences can be

captured by the marked correlation function. With the galaxy correlation functions and

number densities calibrated to match between f(R) and ΛCDM models in simulations,

we show that the marked correlation functions from using either the local density or the

halo mass to mark galaxies extra information is encode, and can be used to test these

theories. We discuss possible applications of these statistics in observations. This thesis

reproduces text from Armijo et al. (2018) verbatim.
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Chapter 1

Introduction

The current cosmological paradigm establishes that the Universe is expanding due to

the influence of the mysterious component named dark energy, which rises in General

Relativity (GR), as a cosmological constant Λ. Theories of modified gravity (MG) were

proposed as alternatives to the Λ-cold-dark-matter (ΛCDM) paradigm to explain the

late-time cosmic acceleration without using Λ, but with external degrees of freedom

that produce a similar effect on the Universe. Such models work as an extension to the

standard GR model and they can be used to study the effects of gravity at large-scales.

In light of the recent detection of gravitational waves from the binary neutron star

merger GW170817 and simultaneous measurement of its optical counterpart GRB170817A,

several popular classes of MG models are ruled out (e.g. Lombriser & Taylor, 2016;

Baker et al., 2017; Sakstein & Jain, 2017; Ezquiaga & Zumalacarregui, 2017; Creminelli

& Vernizzi, 2017). These kind of models modified the propagation velocity of gravi-

tational waves in the vacuum, which is not consistent with the current measurements

(Abbott et al., 2017). Nevertheless, many other models remain viable and would af-

fect the growth of large-scale structure, such as Brans-Dicke type theories, including

derivative-coupling theories such the normal-branch Dvali-Gabadadze-Porrati (nDGP)

model (Dvali, Gabadadze & Porrati, 2000), Chameleon models, including f(R) grav-
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CHAPTER 1. INTRODUCTION

ity (De Felice & Tsujikawa, 2010), and more complex variants of dark energy within

standard gravity. It remains important to test the equivalence principle and General

Relativity (GR) at cosmological scales.

The kind of MG models used to study gravity at large-scales predicts an extra fifth

force which emerges by the presence of a new scalar field that modifies the structure

formation at different scales. A general feature of the surviving models is that they often

rely on screening mechanisms to suppress the fifth force in the solar system, centres of

dark matter haloes, and in general, high density regions or small scales. This is true

for both the f(R) (Li & Barrow, 2007; Brax et al., 2008) and nDGP models (Dvali,

Gabadadze & Porrati, 2000). The former features a chameleon screening and the latter

the Vainshtein screening mechanism (Khoury & Weltman, 2004; Vainshtein, 1972). The

inevitably alteration of structure formation in an environmental dependent manner, i.e.

in the regime where the fifth force is suppressed, makes gravity behave as in GR and

structure formation remains similar to that of the ΛCDM; in the places where the fifth

force is unscreened, such as in low density regions in the f(R) model, or outside the

so-called Vainshtein radius in nDGP model, the additional fifth force changes struc-

ture formation in a complex way. This provides opportunities to test these models using

statistics that are sensitive to the environment-dependent nature of structure formation.

Thus, tests that involve weak lensing, large-scale structures as galaxy clusters or cos-

mic voids and measurements of redshift-space distortions could be useful to distinguish

models of gravity. In this work, we explore using the marked correlation method to test

gravity using the f(R) model as an example, motivated by the methodology proposed

in White (2016).

The marked correlation is a high order statistical method which contains information

beyond the galaxy two point correlation function. It is useful for studying the connec-

tions between properties of galaxies, such as luminosity and environmental density, with

the flexibility of the choice of the mark (e.g. Beisbart & Kerscher, 2000; Sheth & Tor-
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CHAPTER 1. INTRODUCTION

men, 2004; Harker et al., 2006; Wechsler et al., 2006), that acts as weights when the

clustering is computed. This kind of statistic has been applied to break degeneracies

between the halo occupation and the σ8 parameter in two different cosmological models

with the same clustering (White & Padmanabhan, 2008). The same principle should be

applicable to distinguish MG and ΛCDM (White, 2016), by computing the clustering of

galaxies considering marks which contain information about the different environments,

that depends on the strength of gravity or the fifth force. In this work, using galaxy

catalogues from both f(R) and ΛCDM simulations, that are tuned to have the same

clustering, we explore different marked statistics to see if these models can be told apart.

The key question is what mark is the optimal to fulfill our task. We explore two

quantities, local density and halo mass, which we believe should serve best for our

purpose of capturing the difference due to the distinct environmental dependencies for

structure formation in f(R) and ΛCDM models. Previous works involving modified

gravity tell us that cosmic voids grow larger in comparison to GR (Cautun et al., 2018)

and dark matter halos are formed more efficiently when the fifth force is present (Cai,

Padilla & Li, 2015). The outline of this work is the same as in Armijo et al. (2018)

paper, which this thesis is based, as the following: In § 2 we describe f(R) theory and

our simulations. The results of the marked correlation function are shown in § 3. We

draw conclusions and discuss our results in § 4.
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Chapter 2

Theory and simulations

2.1 The f (R) model of gravity

The MG model studied in this letter is f(R) gravity (see De Felice & Tsujikawa, 2010,

for a review) , which extends GR by including a function of the Ricci scalar R, f(R),

in the Einstein-Hilbert action:

S =

∫
d4x
√
−g
{

1

2κ2
[R + f(R)] + Lm

}
, (2.1)

where κ2 = 8πG, G is Newton’s constant, g is the determinant of the metric gµν , and Lm
is the Lagrangian density for matter. By varying the action, we can obtain a modified

version of the Einstein field equations

Gµν + fRRµν − gµν
[

1

2
f −∇2fR

]
−∇µ∇νf(R) = 8πGTmµν , (2.2)

with Gµν the Einstein tensor, ∇µ the covariant derivate for the metric tensor, fR ≡ df
dR

is the so-called scalaron and represents a new, scalar and dynamical degree of freedom,

finally Tmµν is the energy-momentum tensor for matter. By taking the trace of Eq. (2.2),

and under a quasi-static approximation, it is possible to obtain the equations of motion

for fR and the Newtonian potential Φ without dependence on time (Bose et al., 2015):

4



CHAPTER 2. THEORY AND SIMULATIONS

In this model, gravity between massive particles is governed by a modified Poisson

equation:

~∇2Φ =
16πG

3
a2 [ρm − ρ̄m] +

1

6
a2[R(fR)− R̄], (2.3)

in which ρm = ρm(x, t) is the density of non-relativistic matter at scale factor a, an

overbar means the cosmic mean of a quantity and fR ≡ df(R)/dR is an additional

scalar degree of freedom (a scalar field) which is governed by an equation of motion

(EoM):

~∇2fR = −1

3
[R(fR)− R̄ + 8πG(ρm − ρ̄m)]. (2.4)

which are dynamical equations for the scalaron field and a modified Poisson equation

for Φ. Note that in both equations, the Ricci scalar is expressed as a function of fR by

the inverse of the fR(R) function. Eqs. (2.3) and (2.4) can be combined to obtain

~∇2Φ = 4πGa2 [ρm − ρ̄m]− 1

2
~∇2fR, (2.5)

which indicates that −1
2
fR can be considered as the potential of a force, called the fifth

force, that is mediated by the scalar field fR.

The Chameleon Mechanism

An interesting feature of this model is the chameleon screening mechanism (Khoury &

Weltman, 2004), which is activated in inside a deep Newtonian potential (e.g., the solar

system) or with a uniform high matter density (e.g., the early Universe), the solution

to Eq. (2.4) is dynamically driven to |fR| → 0 so that Eq. (2.5) reduces to the standard

Poisson equation: in this regime GR is recovered, hence offering a way for the theory to

pass stringent solar system tests of gravity.

In contrast, in shallow Newtonian potentials, the dynamics of Eq. (2.4) is such that

δR = R− R̄ is negligible, and Eq. (2.5) reduces to

~∇2Φ =
16

3
πGa2 [ρm − ρ̄m] , (2.6)
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CHAPTER 2. THEORY AND SIMULATIONS

Figure 2.1: Dark matter particle simulations in a box with size of 64 Mpc/h, from Zhao, Li &

Koyama (2011). A comparison between ΛCDM universe and modified gravity. Bottom panel

are the two f(R) models used in this work, with |fR0| = 105, 106 respectively.
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CHAPTER 2. THEORY AND SIMULATIONS

indicating a 1/3 enhancement of gravity with respect to GR, or a fifth force with 1/3 the

strength of standard gravity at maximum, independent of the form of f(R). This fifth

force can enhance the growth of dark matter haloes (Cai, Padilla & Li, 2015), and make

cosmic voids grow larger by evacuating more matter from void centres (Clampitt, Cai

& Li, 2013). The fact that the fifth force is strong in low-density regions but suppressed

in high-density regions implies that the difference from GR can be strengthened by up-

weighting low density regions using marked statistics, thus offering a way to distinguish

the model from ΛCDM. We shall show this is the next case, and for illustration, we

adopt the form of f(R) proposed in Hu & Sawicki (2007):

f(R) = −m2 c1(−R/m2)n

c2(−R/m2)n + 1
, (2.7)

where m2 = κ2ρ̄0/3, and ρ̄0 being the mean density of the Universe today.

For a realistic expansion history, |R| � m2 for z ≥ 0, so that

f(R) ≈ −c1

c2

m2 +
c1

c2
2

m2

(
m2

R

)n
, (2.8)

to a good approximation. If we set c1/c2 = 6ΩΛ/Ωm, where Ωm is the density parameter

for matter today and ΩΛ = 1−Ωm, the model can accurately mimic a ΛCDM expansion

history. Meanwhile,

fR ≈ −n
c1

c2
2

(
m2

R

)n+1

, (2.9)

can be inverted to find R(fR) which is used in Eqs. (2.3, 2.4). Thus the model has two

free parameters, n and c1/c
2
2, which can be related to the value of fR0 today by using

Eq. (2.9):

c1

c2
2

= − 1

n

[
3

(
1 + 4

ΩΛ

Ωm

)]n+1

fR0. (2.10)

A smaller |fR0| means weaker deviation from GR. The current cosmological constraint

on these parameters is and |fR0| . 10−5 (e.g. Cataneo, M. et al., 2015; Liu et al., 2016);

we fix n = 1 in this work as is suggested in the literature given the current cosmological

constrains.
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CHAPTER 2. THEORY AND SIMULATIONS

Figure 2.2: The two-point correlation function ξ of the different model in the simulations. The

shaded region indicates the 1σ confidence of GR model. As reported in Cautun et al. (2018)

the clustering deviations between MG and GR models are below the 5%.
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CHAPTER 2. THEORY AND SIMULATIONS

2.2 Simulations and mock galaxy catalogues

The simulations we employed here were run using the ecosmog code (Li et al., 2011),

with 10243 dark matter particles with mass mp ≈ 7.8× 1010 h−1M� in a box with size

L = 1024h−1Mpc. We have 5 independent realizations for error analysis. Both f(R) and

GR models adopt the same ΛCDM background cosmology with parameters from the

WMAP mission 9-yr results (Hinshaw et al., 2013), hence they essentially have the same

expansion history and start from identical initial conditions, as is showed in Fig. 2.1.

Two f(R) models with different amplitude |fR0| are used in this work and are referred

to as F5 and F6 (with amplitude values of |fR0| = 10−5, 10−6 respectively). More details

can be found in Cautun et al. (2018). Dark matter haloes were identified by using the

rockstar code (Behroozi et al., 2013) with mass definition M200c,where the subscript

200c refers to 200 times of the critical density of the Universe. There are no galaxies

produced in the simulation until this stage.

We populated haloes with galaxies using a 5-parameter halo occupation distribution

(HOD) recipe (Zheng et al., 2004). The procedure is as follows (see more details in

Cautun et al., 2018; Li et al., 2017): For GR, we adopted the parameters from Manera

et al. (2013), which were calibrated to match the SDSS CMASS clustering. We adjusted

the HOD parameters for the f(R) models to best match the galaxy numbers and two-

point correlation functions in GR, this allow us to constrain MG and GR models in terms

of galaxy clustering and number density as is observed in the Universe. The flexibility

of the HOD model allows us to adjust the shape and magnitude of the galaxy two point

correlation function by sampling haloes of different masses, as shown by the histogram

for the mass of haloes hosting HOD galaxies by different models in Fig. 3.1. This

process brought the agreement for the correlation functions ξ among different models

to ≤ 2 ∼ 3% on scales of between 2 − 80 h−1Mpc as is showed in Fig. 2.2. This was

calculated as the rms difference between the GR and f(R) correlation functions in all

9



CHAPTER 2. THEORY AND SIMULATIONS

Figure 2.3: The mean number of galaxies, 〈N〉, as a function of halo mass, M for F5, F6

and GR models. The secondary panel shows the ratio of the f(R) models HOD to the GR

one. This parameters are used to match the clustering and number density of galaxies as is

mentioned on Cautun et al. (2018)
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CHAPTER 2. THEORY AND SIMULATIONS

galaxy separation bins (bottom panel of 2.2), and we also included in the calculation

the difference in the galaxy number densities in these models. This agreement is the

best we can get with the 5-parameter HOD method using a simplex algorithm to find

the best fit value of the HOD parameters. The plot of the number of the mean number

of haloes as function of its mass is showed in 2.3.

Note the match for the galaxy correlation functions is in real space with no redshift

space distortions. This is equivalent to matching the projected two-point correlation

functions, as explained in Cautun et al. (2018). It is also worth noting that the cor-

relation functions agree with each other within the errors estimated from a volume of

∼ 1(h−1Gpc)3 of our simulations, specifically for the catalogues used on this work, which

correspond to z = 0.5, which is the redshift where the CMASS catalogue is centered.

Considering the previous aspects, these simulations are consistent with some relevant

observables in cosmology, such as the cosmological parameters from WMAP, and the

clustering of SDSS CMASS galaxies, but also including distinct models of gravity.

11



Chapter 3

The Marked Correlation Function

3.1 Marked pairs computation

The marked correlation function is in essence a weighted version of the two point cor-

relation function, where the weight is the mark m (e.g. Sheth et al., 2005; White, 2016)

M(r) =
1

n(r)m̄2

∑
ij

mimj, (3.1)

where n(r) is the number of pairs at separation r in real space, m̄ is the mean mark

value computed for all the galaxies in the simulation and mimj is the product of the

marks for the ij-galaxy pair. Note that on large scales the average over all pairs tends

toward m̄2, so M becomes close to unity.

To compute the marked pairs at different scales, a two-point statistic code has been

developed and can be found in the following URL: https://github.com/bartok10/

MarkedCF. This C routines use the Davis & Peebles estimator (Davis & Peebles, 1983),

to compute both the two-point correlation function and its marked version, in 3D co-

moving coordinates with periodic boundary conditions. The code can be used in large

galaxy simulations (∼ 1h−1Gpc) and is in agreement with current algorithms in litera-

ture. (e.g the CUTE code in Alonso, 2012, being the most popular one).

12
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CHAPTER 3. THE MARKED CORRELATION FUNCTION

Figure 3.1: The distribution of the host halo mass M sampled by the HOD galaxies for different

models as labelled in the legend. The dashed line indicates mean value for GR.

13



CHAPTER 3. THE MARKED CORRELATION FUNCTION

We use the local galaxy number density and the halo mass to define the marks in

order to best capture the environmental dependence of structure formation induced by

the chameleon screening mechanism in f(R) models.

3.2 A mark based on local density

It is well known that for the f(R) model the 5th force is unscreened in low density

regions such as voids (e.g., Hui et al., 2009; Clampitt, Cai & Li, 2013). The consequence

is that voids expand faster and become emptier than in GR. The change of large-

scale structure in low density regions may not be detectable in the galaxy two point

correlation function, which results from the global average of all galaxy pairs. This is

because tracers in low density regions have lower amplitudes of clustering by definition,

and so their contribution to the total correlation function is minor. As a result, the

effect of the chameleon screening may have been hidden under the globally averaged

two point correlation function. To amplify the effect due to screening, it is therefore

useful to use the local density as a mark, in particular, to up-weight the low density

regions.

To do this, we use Voronoi tessellations from the zobov code (Neyrinck, 2008)

to estimate the density around each galaxy. The density of a galaxy ρi is inversely

proportional to the volume of each Voronoi cell Vi. Fig. 3.2 shows the distribution of

galaxy local densities estimated in this way. It is clear that while the distributions remain

similar to each other for different gravity models for densities close to the mean, f(R)

models tend to have more galaxies with low densities, i.e. the most isolated galaxies in

f(R) models are even more isolated than in GR. In particular, the number of galaxies

with ρi < 0.2 could be a factor of 2-3 higher for F5 than for GR. For F6, the difference

from GR is milder but the trend is the same. This confirms the expectation that the

abundance of low density regions is larger in f(R) models even when the galaxy two

14



CHAPTER 3. THE MARKED CORRELATION FUNCTION

point correlation functions are the same as in GR. It suggests that having a mark to

up-weight the low density regions to enhance this effect may be useful to distinguish

f(R) models from GR.

We first try the mark defined by mi = ρpi where the power index p is chosen to be

negative to up-weight low density regions. An example for p = −0.5 is shown in Fig. 3.3

(solid line). For F5, the marked correlation function is above the GR version at the ∼2σ

level at small scales, consistent with the fact that the probability of low density galaxies

are higher in this model. For F6, however, it is consistent with GR within the errors,

due to the relatively small difference from GR in the distribution function of densities.

These results change with the value of p. When p is more negative, e.g. p < −1,

more weights will be assigned to the low density regions. The relative difference between

models becomes larger but the noise also increases, because the number of low density

galaxies is small. On the other hand, when p is positive, e.g. p > 0.5, more weights

will be assigned to high density regions, which are also rare. In this case, the marked

correlations become noisy and indistinguishable from one model to another within the

errors. For comparison, an example for p = 0.5 is also shown in dashed curves in Fig. 3.3.

The light-shaded region in the bottom shows the errors on the mean corresponding to

a volume of ∼1(h−1Gpc)3. These errors are estimated using the jackknife method with

all the 5 simulation boxes. The errors are much larger than the case of p = −0.5,

indicating that the large overdense regions are rarer or higher in their amplitudes than

the underdense ones, and so the Poisson noise becomes much larger when up-weighting

high densities. Both the F6 and F5 curves are broadly consistent with GR within the

errors. This confirms the fact that the distribution of galaxies differs more in underdense

regions than in overdense regions, and the former carries more information about MG.

We have also repeated the same analysis with galaxies in redshift space and find that the

marked correlation functions become noisier, but results remains qualitatively similar

to those in real space.

15



CHAPTER 3. THE MARKED CORRELATION FUNCTION

Figure 3.2: Distribution of galaxy local densities estimated using a Voronoi tessellation method.

Only the range of below the mean density is shown for better illustration.
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CHAPTER 3. THE MARKED CORRELATION FUNCTION

Figure 3.3: The marked correlation function M(r) using the local density ρ as the mark.

This plot shows the examples for M = ρp, with p = ±0.5 in solid (-0.5) and dashed lines

(0.5). The lower panel shows the ratios of marked correlation functions between f(R) and

GR. The shaded regions correspond to the errors on the mean corresponding to a volume of

∼ 1(h−1Gpc)3 estimated using the Jackknife method. The dark and light shaded regions are

for the case of p = −0.5 and p = 0.5 respectively.
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3.3 A mark based on halo mass

Due to the fifth force, the halo mass functions in f(R) gravity and GR are different (e.g.,

Cataneo et al., 2016). The halo occupancies of galaxies, therefore, have to compensate

for this in order to have the same galaxy clustering and number density. This inevitably

induces differences in the underlying halo populations being occupied by galaxies, as

shown in Fig. 3.1.

Another way to see this is that there are differences in the relations between the

galaxy and halo populations in these models. Matching the galaxy density and clus-

tering will result in haloes being populated differently in these models. On the other

hand, one can in principle change the HOD parameters such that the halo populations

being sampled are the same for different models, but then the galaxy clustering will be

different. This difference in the intrinsic relation between haloes and galaxies offers an

opportunity to distinguish these two types of models by having a joint constraint from

galaxy clustering and their underlying halo population. By using halo mass as the mark

in the marked correlation function we can achieve this goal.

To do that, we simply set mi = Mp
i , where Mi is the mass of the host halo, and the

index p is a free parameter of our choice. We explore a wide range of p and find that

F5 can be well distinguished from GR with 0.001 < |p| < 0.1. An example for p = ±0.1

is shown on the left-hand panel in Fig. 3.4. The marked correlation function for the F5

model deviates from the 1σ region of the GR version at scales as large as 20h−1Mpc,

which is well beyond the 1-halo term region. The results remain similar in the above

range of p: the amplitude of the marked correlation function decreases with |p|, but the

errorbars also decrease by approximately the same factor. Therefore, the significance

for the deviation from GR is rather independent of p. When |p| is relatively large, i.e.

|p| > 0.1, the measurement becomes noisy because the tail of the mass distribution is

up-weighted regardless of the sign of p. This is because the distributions of halo mass
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sampled by the HOD peak at approximately 1013h−1M� and drops rapidly towards both

the low and high mass ends (Fig. 3.1) This enhances the Poisson noise and makes F5

indistinguishable from GR at |p| > 0.1. In the limit when |p| ≈ 0, the mark becomes

flat and the correlation functions are equal to unity for all models, and they become

indistinguishable from each other. For all the cases we have explored, F6 is always

consistent with GR within the errors.

The above experiment suggests a powerful way to constrain the f(R) model, but

it requires information about the host halo mass for each galaxy, which is not easily

accessible from observation. Even if it is, there will be uncertainties on the halo mass.

We therefore make two tests. First, we explore the case where uncertainties for the halo

masses are added, i.e. log10 M̃i = log10Mi + ∆M , where ∆M = σ is drawn from a

Gaussian distribution with σ chosen to be 0.1, 0.2, 0.3. We then measure the marked

correlation functions using these noisy marks. We find that the results remain quali-

tatively similar to the case with no noise in terms of the significance for the difference

between F5 and GR. As the noise level increases, the errorbars increase as expected.

At σ = 0.3, F5 is almost indistinguishable from GR. We show in the panels A & B of

Fig. 3.4 the example for σ = 0.1 & 0.2.

Second, we explore the situation where haloes are binned into 8 mass bins, ranging

from 1012 to 1015h−1M�, with a bin-width of half a decade. Note that errors for the halo

masses have been added before they are grouped into mass bins. The mean mass of host

haloes can be estimated either with galaxy-galaxy lensing (e.g. Han et al., 2015; Viola

et al., 2015) or a dynamical method for stacked samples of galaxy groups (e.g. Kaiser,

1986; Carlberg et al., 1997; Evranrd et al., 2008; Mamon et al., 2013). We then assign

galaxies within each mass bin the same mark based on the median mass of the bin, and

measure the marked correlation functions. We find that the results remain similar in

terms of the differences between the two models, as shown in panels C & D of Fig. 3.4.

Based on these tests, we conclude that using the halo mass as the mark is a stable and
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powerful method for distinguishing f(R) and GR models.
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Figure 3.4: Similar to Fig. 3.3 but showing the marked correlation function using the host halo

mass of galaxies M as the mark, m = Mp. The solid and dashed curves shows the case for

p = 0.1 and p = −0.1 respectively. The dark and light shaded regions show the 1σ errors for

these two cases. The panels show the different cases: using the host halo mass as mark adding

0.1 dex uncertainty to the masses (A), adding 0.2 dex uncertainty (B), using only 8 mass bins

to generate the marks and 0.1 dex uncertainty (C) and adding 0.2 dex uncertainty (D).
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Chapter 4

Conclusions and Discussion

4.1 Discussion

When the mark is defined, an exponent p is included as a free parameter to control the

amplitude of the marked correlation function. In principle, the choice on the value of p

would affect statistically on how different are the marked correlation functions between

the models. We use the reduced χ2
ν statistic to capture the differences between MG and

GR models for different values of p. This requires the computation of the covariance

matrices for both, the standard correlation function and its marked version. The analysis

is made by assuming GR as a fiducial model of ΛCDM cosmology, which is compared

with F5 and F6 models representing the f(R) cosmology. The reduced χ2
ν is obtained

from

χ2
ν =

1

ν

n∑
ij

∆iCij−1
∆j, (4.1)

where ν is the number of degree of freedom, ∆i = ξiGR − ξiMG or ∆i = Mi
GR −Mi

MG,

and the covariance matrix Cij−1
for the unmarked or marked correlation function re-

spectively.
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Figure 4.1: Different χ2
ν as function of the free parameter p for the mass-marked correlation

function in F5 (left) and F6 (right). The 5 boxes show a wide range of possible χ2
ν values in a

range of p = [−10, 10].

In this analysis, the χ2
ν value is used as a goodness of fit to determine how similar

is the two-point correlation function in the different cosmologies, expecting a value of

χ2
ν ∼ 1, for both F5 and F6 models. In the other hand, for the marked correlation

function a value of χ2
ν > 1 is expected, this tell us how much different the models are at

level of σ. For our models of marks, we set the free parameter p to up-weight different

regimes or scales that depends on the environment. As we mention in the Section 3.2

and Section 3.3 the parameter p handle both the amplitude of the marked correlation

function and the size of the errors, which means there is a dependence between the χ2
ν

value and p. In Fig. 4.1 the χ2
ν value for the different values of p are showed. Although,

there is not a preferred value of p for the different boxes or the two f(R) models, there

is a tendency of maximize the χ2
ν between p = −2,−1, 1, 2. Just for convenience we set

p = −1, 1 to compute the mass-marked correlation function. In the case of the density-

marked correlation function, the situation is similar but with smaller values of χ2
ν given

the higher noise as was explained in Sec. 3.2.
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4.2 Conclusions

We have explored how to use the marked correlation function to distinguish f(R) models

from the ΛCDM universe using N-body simulations. Our study uses different halo

occupancies to reproduce the observed projected galaxy two point correlation functions

in different models of gravity. We explore two different marks related respectively to

the local galaxy number density and host halo mass, and test their ability to distinguish

the models. We find that up-weighting low density regions helps to unveil differences

hidden in the correlation function, but only at relatively low significance and on small

scales. The latter are actually in the regime of the one-halo term, which can be difficult

to interpret in redshift space. Nevertheless, this is qualitatively consistent with the

expectation that low-density regions are influenced more strongly by the fifth force in

f(R) models.

The method of up-weighting low density regions is in the same spirit of testing grav-

ity using voids (Clampitt, Cai & Li, 2013; Cai, Padilla & Li, 2015), clipping off peaks

(Lombriser et al., 2015), or doing a log transformation on the density (Llinares & Mc-

Cullagh, 2017). It also achieves similar goals to the position-dependent power spectrum

method in capturing information about three-point statistics (Chiang et al., 2014). Our

study differs from the recent work of Valogiannis & Bean (2017) (VB) where the marked

correlation function method was applied to simulations of f(R) and Symmetron models

in the following: VB apply the marked statistic to the matter density fields, while we

use mock galaxy catalogues, calibrated to have the same clustering and number den-

sities among different models. This sets different requirements for implementing these

techniques in observations.

We find much stronger deviations between the different models when using halo

mass to define the mark. The difference is found out to larger scales (∼ 20h−1Mpc)

with higher significance. Our forecast is based on a simulation volume of the same order
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as that of the SDSS CMASS galaxy sample. The constraining power of our approach

for the model comes from the quasi-linear and non-linear regimes. Our method offers

compatible constraints for the f(R) model compared to other independent approaches

such as matter bispectrum (Gil-Marin et al., 2011), stacked phase-space distribution

(Lam et al., 2012) and galaxy infall kinematics (Zu et al., 2014) over a similar range of

scales. It promises better constraints than that from the large-scale linear regime, such

as galaxy power spectrum (Dossett et al., 2014), redshift-space distortion (Yamamoto

et al, 2010) and the Integrated Sachs-Wolfe effect (Song et al., 2007; Lombriser et al.,

2012) (see also Lombriser , 2014, and references therein).

Similar conclusions were found by an independent study (Hernandez-Aguayo et al.,

2018) following a similar approach. When using halo mass as the mark we find the

result to be stable for a wide range of power indices. The significance remains similar

when errors are introduced into the halo mass, or when haloes are grouped into mass

bins mimicking stacking to obtain masses via weak lensing, as the method does require

additional information about the host halo mass of galaxies. The host halo mass can

in principle be measured using a dynamical method or weak gravitational lensing. The

latter requires overlapping of a lensing survey and a spectroscopic redshift survey over

the same sky. Existing surveys such as GAMA plus KiDS are essentially ready for

performing this measurement (Driver et al., 2011; Hildebrandt2017 et al., 2017). In

principle, the total mass of haloes will be affected by baryonic effects, which may change

the mass of haloes by a few percent and up to 20 percent in the mass range of haloes

of our interest (e.g. Schaller et al., 2015). The impact of this on the marked correlation

function needs to be investigated in a self-consistent manner for different models of

gravity, which is beyond the scope of this work.
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4.3 Proposed application to data

The next step after this study is to think about how the marked correlation function

can be applied to observational data. One thing to consider, which should be the most

important aspect to determine, is what sample of galaxies can be used on purposed

to complete such a test. Additionally, a proper mark m need be chosen to include all

the environmental information that can be used to rule out MG models. If we think

about the marks used in this work, both the local density ρ and the host halo mass M ,

can be applied only in large surveys of galaxies, focused in large-scale structures and

baryon acoustic oscillation measurements, as the current extended Baryon Oscillation

Spectroscopic Survey (eBOSS) (Dawson et al., 2016) and future surveys as LSST (LSST

Dark Energy Science Collaboration, 2012) and DESI (Levi et al., 2013). In the case of

using the local density to compute the marked clustering the difficulties come by obtain

systematics errors given projection effects or by redshift space distortions, that would

add noise to the marked correlation function, making it not statistically significant to

rule out or constrain f(R) models. The other possibility is to use the mass of host halos

to mark the clustering of galaxies in groups. Precise measurements of halo masses are

required, and this can be accomplished by taking weak lensing or dynamics methods or

another independent way to measure the mass with precision. In this context, galaxy

clusters represent good candidates as their mass measurements are robust and can be

modeled as high mass halos. In the 14th data release (DR14) of SDSS-IV the SPIDERS

program (Clerc et al., 2016) offers the potential sample of candidates to apply the marked

correlation function. The SPIDERS clusters present masses estimations given x-ray

luminosities, which are confirmed by velocity dispersion measurements of the galaxy

cluster members, currently the sample is about 1200 galaxy clusters. If we combine this

cluster sample with eBOSS spectroscopic galaxies, a marked-cross-correlation function

can be computed using the local density estimation as mark of the galaxies and the
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mass of cluster as mark for the galaxy cluster centres. This can be easily tested in our

simulations by taking the most massive halos in MG and GR models (M > 1014M�)

and considering the same clustering in terms of the unmarked cross correlation function

version. The marked-cross-correlation function for the galaxies in the simulation using

halo masses and local density as marks is showed in Fig. 4.2. Although small deviations

can be found between the models, the errors are small, which tell us that the marked-

cross correlation function captures the same kind of information as the version showed

in Fig. 3.4. Such a test can be used to constrain modified gravity models precisely, as

galaxy clusters are extremely good probes to test both gravity and cosmic acceleration.
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Figure 4.2: The marked-cross-correlation function between GC centers and galaxies for differ-

ent models. A combination of marks is explored in this case, using mGC = Mp and mg = ρp.

The shaded region is the GR errorbars estimations showing the 1σ confidence estimation.
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