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Mass generation and symmetry breaking in Chern-Simons supergravity
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We argue that the quartic fermionic potential of five-dimensional Chern-Simons supergravity induces spon-
taneous symmetry breaking, in a phenomenon bearing a close connection with the Nambu–Jona-Lasinio
model.
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An attractive feature of five-dimensional Chern-Simo
supergravity based on the Lie algebraSU(2,2uN) is that it
contains SU(N) gauge fields, fermions and gravity. Th
gauge fieldVPSU(2,2uN) has the matrix presentation

V5S W c j

c̄ i A i j D
where WPU(2,2), c i are N Dirac spinors, andA i j are
U(N) gauge fields. The action, first considered by Chams
dine @1#, is

I @V#52 ikE STrS 1

3
dVdVV1

1

2
dVV31

1

5
V5D

5I @W#1I W@c# ~1!

where I @W# is a Chern-Simons theory by itself. Since w
shall be interested in the gravitational and fermionic degr
of freedom we set Tr(W)5A50 hereafter.

Note that this theory has only two~dimensionless! param-
eters: the number of colorsN and the levelk. The gravita-
tional equations of motion are

R`R52
dI W@c#

dW
~2!

with R5dW1WW. On the fermion ground state, it is gen
erally taken for granted that the right hand side vanishes.
goal of this paper is to study this assumption in detail.

Chern-Simons gravity was first introduced in@2# in three
dimensions. It was then pointed out@1# that the same con
struction can be carried over to five dimensions. Poinc´
Chern-Simons supergravities were introduced in@3#, and
their anti–de Sitter extensions in@4#. It was conjectured in
@4# and @5# that M theory may be described by eleve
dimensional Chern-Simons supergravity. This idea has
cently been reexamined in@6#. A possible mechanism relat
ing the field content of standard and Chern-Simo
supergravities was discussed in@7#. The dynamical structure
of higher dimensional Chern-Simons theories and their a
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ciated current algebras was studied in@8–10#. See also@11#
for other aspects of higher-dimensional Chern-Simons th
ries.

Let us start by recalling the meaning of the Chern-Simo
level k and its relation to Planck’s scale. In the purely gra
tational sector, the gauge fieldW is expanded as

W5
1

2l
eaga1

1

4
wabgab ~3!

whereea is identified as the veilbein, andwab the spin con-
nection. The length parameterl ~AdS radius! is introduced
here becauseWm has dimensions 1/length whileem

a , related
to the spacetime metric bygmn5em

a en
bhab , has dimension

zero.
The next step is to find Planck’s length, the small sc

parameter, in terms ofl andk. ExpandingI @W# in powers of
the curvature tensor we can identify the term (k/2l 3)A2gR
and we thus find

k5
l 3

l p
3 ~4!

where l p
358pG. The Chern-Simons levelk in supergravity

then measures the quotient ‘‘maximum length’’-‘‘minimum
length.’’ In the weakly coupled theory with largek both
lengths are far away from each other.

Having introduced the relevant parameters in our the
we shall now set, for notational simplicity,l 51. In this uni-
ties, Planck’s length and all associated parameters dep
only on k. For later use we only quote Planck’s energy

Ep5
1

l p
5k1/3. ~5!

The fermionic term in Eq.~1! with N51 is @1#

I W@c#5E S 2i c̄R¹c1
4i

k
c̄cc̄¹c D ~6!

where

¹c5Dc1
1

2
eagac
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R5
1

4
~Rab1eaeb!gab . ~7!

D is the Lorentz covariant derivative withD`D5R and
¹`¹5R. For later convenience, we have rescaled the
mions byc→(2/k)1/2c.

As in any supergravity theory, the free part of Eq.~6! is
linearly supersymmetric aroundc50. The variation of the
free part of Eq.~6! under

dc5¹e

yields c̄RRe which is zero when the linear bosonic equ
tions of motion~2! hold. The key question is whetherc50
is the true ground state of the theory or not. If this was
true, the expansion around a nonzero value^c& would intro-
duce other quadratic terms coming from the potential. Th
the linear transformations would not cancel on the ba
ground~2! and the ground state would not be supersymm
ric.

We shall argue here that this in fact occurs in the gen
situation. In particular we prove that the fermion condens

^c̄gabc&Þ0 ~8!

is different from zero. Our analysis has a close analogy w
the Nambu–Jona-Lasinio model@12#, although we follow
the auxiliary field formalism of Gross and Neveu@13#.

The occurrence of Eq.~8! follows from the following ob-
servation. Recalling the expressions~7! for ¹, and applying
the five-dimensional Fierzing identity@14# it is a simple ex-
ercise to express the interaction term as

4i

k
c̄cc̄¹c5

1

k
c̄cc̄Dc2

1

4k
eabcdee

ac̄gbccc̄gdec.

Both terms are perturbations of the same order in power
k. The second term has the structure (c̄gabc)2, similar to
that arising in the Gross-Neveu model, and we shall th
focus on it. It is important to stress, however, that the fi
term could be relevant and it may turn on other operators

^c̄gabDc&; we shall study this possibility elsewhere.
Keeping only the second term we rewrite the interact

introducing an auxiliary fieldsab,

2
1

4k
c̄cc̄¹c→ k

4
eabcdee

asbcsde2
1

2
eabcdee

asbcc̄gdec

whose equation of motion is

sab5
1

k
c̄gabc.

The weak coupling,k→`, fermionic action we consider is
then

I W@c,s#5E F c̄S 2iR¹2
s”

2 Dc1
k

4
eabcdee

asbcsdeG
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where the 3-forms” is defined ass” ªeabcdee
asbcgde. It is

now evident that ifsÞ0, this action is not linearly super
symmetric underdc5¹e.

The effective potentialU(s) governing the values ofs is
defined as

ei *„2U(s)…5E DcDc̄eiI W[c,s]

and we obtain

U~sab!52
k

4
eabcdee

asbcsde1 i log detS 2iR¹2
s”

2 D .

In a semiclassical approximation, the value ofs is given
by the minimum of the effective potentialU. If this mini-
mum is not zero, then supersymmetry is broken. We alre
see that in the limit of largek the solution is in factsab

50. We now study the contribution from the first quantu
correction.

Although it is nice to have general background indepe
dent formula forU, the actual computation of the determ
nant is complicated because the operatorR¹ is nonminimal
and the standard heat kernel formulas cannot be applied
straightforward way.

In order to get an idea into the structure of the determ
nant we consider the largel regime. In this regime, spacetim
is approximately flat and we shall compute the explicit va
of U in that case. Specifically we consider fieldsW which are
slowly varying, whilec is fast varying, as compared tol. In
this regime we approximate

Rab1eaeb'eaeb

Dc1
1

2
ec'dc. ~9!

Rather than computing the effective potential directly fro
the above formula, it is convenient to rewrite the fermion
action in flat space. We first note that if the 2-formsab can
have nonzero values, Poincare´ invariance dictates its genera
form,

sab5
m

6
ea`eb, ~10!

wherem is a constant which can be interpreted as the f
mion mass. The actionI W@c,s# reduced to flat space be
comes

I @c#5E F c̄m~gmrs]r2mgms!cs2
5

6
km2G .

Of course, ifm50 I @c# is linearly supersymmetric unde
dcm5]me, and confirms that this action is the flat spa
analogous toI W@c,s#.

The question we would like to ask is whether or not t
true minimum of the effective potential ism50.

The determinant can now be computed by direct calcu
tion. We first compute the determinant of the Dirac matric
and obtain
3-2
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det~gmsr]r2mgms!528m8~m21]m]m!6. ~11!

The pole atm50 is expected because the action is gau
invariant at this point, and the integration over fermio
would require gauge fixing. This pole is however cance
by the determinant of the second class constraints prese
the fermionic action. Let us pause to explain this point.

In a theory with second class constraintsGA'0 with
det$GA ,GB%Þ0, the functional measure contains the fac

det61/2$GA ,GB% where the plus/minus sign corresponds
boson or fermions~see@15#!.

The flat space fermionic action in a 411 decomposition
reads

L52c i
†g i j ċ j1c̄ i~g i jk] j2mg ik!ck2

5

6
km2

2c0
†~g i j ] j2mg i !c i1c i

†~2g i j ] j
Q2mg i !c0 .

From here we identify the Poisson bracket

$c i
a~x!,c j b

† ~y!%5~ ĝ i j ! b
a d (4)~x,y! ~12!

whereĝ i j g
jk5d i

k , and the two constraints,

Gª~g i j ] j2mg i !c i , G†
ªc i

†~2g i j ] j
Q2mg i ! ~13!

whose Poisson bracket

$G~x!,G†~y!%5
4

3
m2d (4)~x,y!,

is invertible, as claimed. These constraints become first c
in the limit m→0 and generate the supersymmetry transf
mations. FormÞ0 they are second class.

Since bothG and G† carry spinor indices, there are i
total 8 constraintsGA (A51 . . . 8), and since their Poisso
bracket scales asm2 we have

det$GA ,GB%21/2;m28.

This factor in the fermion measure cancels the pole in
~11! exactly. This cancellation does not mean that we c
extrapolate our results all the way tom50. It only means
that our calculation is correct no matter how smallm is; at
the exact valuem[0 the whole theory is different, gaug
fixing is necessary, and~finite! discontinuities are actually
expected to arise@16#.

The final expression for the effective potential in mome
tum representation and Euclidean space is then

U~m!5
5k

6
m226E

L

d5p

~2p!5 logS 11
m2

p2 D ,

where we have chosenU(0)50 and L is an
SO(5)-invariant UV cutoff. Before going any further, let u
recall that the fermionic quartic interaction we have cons
ered here is not renormalizable in five dimensions. As a c
sequence, expanding the potentialU(m) into positive powers
of L one finds a termm4L that cannot be absorbed by
08501
e

d
in

r

ss
r-

.
n

-

-
n-

redefinition of the couplingk. We shall proceed by identify-
ing the physical parameters of the theory and write the cu
in terms of them. Not unexpectedly, we find thatL must be
of the order of Planck’s energy.

The potentialU(m) is clearly stable since, for a give
cutoff, U(m→6`)→1`, and there are no other poles. Th
next question is whether symmetry breaking takes pla
Taking the derivative ofU with respect tom one finds the
equation

5km

3
5E

L

d5p

~2p!5

12m

m21p2 , ~14!

describing the minima ofU. One solution to this equation i
m50 corresponding to the unbroken phase. We would l
to know if there are other solutions withmÞ0, and less
energy. In the following discussion it will be convenient
redefine the Chern-Simons couplingk as

k5
k83

5p3
. ~15!

As it happens for all dimensions greater than two@12,17#,
Eq. ~14! has a two-phase structure depending on the va
of k8/L. In fact evaluating the integral in Eq.~14! we see
that its nonzero solutions must satisfy

k83

L3
5123

m2

L2 13
m3

L3 arctan
L

m
. ~16!

This equation is plotted in Fig. 1. The left hand side is re
resented by straight lines, and the right hand side by
curve starting at 1, form50, and going monotonically to
zero asm→`. The intersections define nonzero solution
The graph is symmetrical underm→2m.

We first note that the intersection occurs only if

FIG. 1. Graphical analysis of Eq.~16!. The horizontal lines rep-
resent different values fork83/L3. Nonzero solutions~intersections!
exist only fork83/L3,1. The value ofm at which the intersection
occurs increases ask83/L3→0.
3-3
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k8

L
,1. ~17!

If this condition is not satisfied, the only solution to Eq.~14!
is m50, and the symmetry is not broken.

From Eqs.~15! and~5! we see thatk8551/3pEp whereEp
is Planck’s energy. Since the cutoff is the largest energy s
we conclude that the physical regime is in fact the brok
phase. Equation~16! is satisfied, and nonzero solutions form
exist. We shall see, however, thatL should not be too big.

Assume then that a nonzero solution to Eq.~16! exists,
and let us call itM. We identifyM with the physical mass o
the fermions. On physical grounds we expectM!L, and
hence we focus on the region near the origin of Fig. 1. In t
region we can approximate Eq.~16! andM satisfies

k835L323LM2. ~18!

Now, since M is the physical mass ‘‘fixed by exper
ments’’ it is natural to use this equation to eliminate t
cutoff in terms of the two physical quantitiesM andk8. To
first order inM2/k82 we find

L5k8S 11
M2

k82
1••• D . ~19!

Now we replace this value of the cutoff in the original p
tential and find the leading contribution in the largek8 ex-
pansion

U~m!5
k8

4p3
~m422M2m2!1O~1!. ~20!

This potential does not depend on the cutoff and exhibit sy
metry breaking for all positive values ofM2. By construc-
tion the value ofm at the minimum isM, and
n-
th

08501
le
n

s

-

U~M !52
k8

4p3
M4,U~0!.

Hencem5M and notm50 represents the true ground sta
It is interesting now to observe thatL;k8;k1/3 and, in

view of Eq. ~5!, we find the expected resultL;Ep ~plus
small corrections given by the fermions mass!. Equations
~16! and ~5! tell us that the fermion mass will satisfym
!L, providedL is of the order ofEp . If the cutoff is taken
all the way to infinity thenm diverges as well.

We would like to end with some comments and futu
prospects. We have shown that the effective potential g
erning the vacuum expectation value of the operatorsab

5(1/k)^c̄gabc& does exhibit symmetry breaking. We hav
only computed the value for the potential on a flat bac
ground: it would be very interesting to findU for an arbitrary
background. This would allow the study of the back react
from the fermions fields to the geometry, and would be p
ticularly relevant in view of the results of@7#. In fact the
original motivation for this calculation was to study the po
sibility of nontrivial vacuum sources in Eq.~2! coming from
the fermions, but in order to analyze this point properly w
need the effective potential on a general fieldW. Finally, it
would also be interesting to study the effect of the interact
term (1/k)c̄cc̄Dc that we have discarded in the largek
limit.
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