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Mass generation and symmetry breaking in Chern-Simons supergravity
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We argue that the quartic fermionic potential of five-dimensional Chern-Simons supergravity induces spon-
taneous symmetry breaking, in a phenomenon bearing a close connection with the Nambu—Jona-Lasinio
model.
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An attractive feature of five-dimensional Chern-Simonsciated current algebras was studied &-10]. See alsq11]
supergravity based on the Lie alget8&J(2,2N) is that it  for other aspects of higher-dimensional Chern-Simons theo-
contains SU(N) gauge fields, fermions and gravity. The ries.

gauge fieldQ e SU(2,2N) has the matrix presentation Let us start by recalling the meaning of the Chern-Simons

_ level k and its relation to Planck’s scale. In the purely gravi-

w oy tational sector, the gauge fieW is expanded as
Q= Al
W= ieaya"' lWab')’ab 3

where We U(2,2), ¢; are N Dirac spinors, and4" are 2l 4
U(N) gauge fields. The action, first considered by Chamsed- o N o )
dine[1], is wheree? is identified as the veilbein, and?® the spin con-

nection. The length parameterAdS radius$ is introduced

_ 1 1 . 1 . here becaus#/, has dimensions 1/length whi@, related
|[Q]=—lkf ST 3dQdQQ+ ZdQO°+ =0 to the spacetime metric by, ,=e%e’7,,, has dimension
zero.
= 1[W]+ Iy ] (1) The next step is to find Planck’s length, the small scale

parameter, in terms dfandk. Expandingl [ W] in powers of
where I[W] is a Chern-Simons theory by itself. Since we the curvature tensor we can identify the terki2(®) V- gR
shall be interested in the gravitational and fermionic degree&nd we thus find
of freedom we set Ti/) =.A=0 hereafter.
Note that this theory has only twdimensionlessparam- K=
eters: the number of colofd and the levek. The gravita-
tional equations of motion are

B (4)

wherelf):SwG. The Chern-Simons leved in supergravity
olwl ] 5  then measures the quotient “maximum length’-“minimum
SW 2) length.” In the weakly coupled theory with largke both
lengths are far away from each other.
with R=dW-+WW. On the fermion ground state, it is gen-  Having introduced the relevant parameters in our theory
erally taken for granted that the right hand side vanishes. Thee shall now set, for notational simplicitys=1. In this uni-
goal of this paper is to study this assumption in detail. ties, Planck’s length and all associated parameters depend
Chern-Simons gravity was first introduced[®] in three  only onk. For later use we only quote Planck’s energy
dimensions. It was then pointed olt] that the same con-
struction can be carried over to five dimensions. Poincare 1 s
Chern-Simons supergravities were introduced[3}, and Ep—r_k : (®)
their anti—de Sitter extensions Jjd]. It was conjectured in P
[4_1] and_ [5] that M theory may be describe_d _by eleven-  The fermionic term in Eq(1) with N=1 is[1]
dimensional Chern-Simons supergravity. This idea has re-
cently been reexamined [i6]. A possible mechanism relat- . i
ing the field content of standard and Chern-Simons Il w]:f (2i YRV i+ ?wn/;Vz,b (6)
supergravities was discussed[if]. The dynamical structure

of higher dimensional Chern-Simons theories and their asso-h
where
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1 where the 3-formé# is defined ash:=e,pcqeloye. It is
R= Z(Rab+ %) Yap - () now evident that ife#0, this action is not linearly super-
symmetric unde® = Ve.
D is the Lorentz covariant derivative with/A\D=R and The effective potentiadl (o) governing the values af is
VAV=R. For later convenience, we have rescaled the ferdefined as
mions by y— (2/k)*2y.
As in any supergravity theory, the free part of Ef) is eif(—U<<T)):J D y/D yel wl¥:0]
linearly supersymmetric aroungl=0. The variation of the
free part of Eq.(6) under and we obtain
oy=Ve

k ) _ &
B U(o?P)=— Zeabcd@aobcadeﬂ log det 2RV — = |.
yields ¢y RRe which is zero when the linear bosonic equa-

tions of motion(2) hold. The key question is whethes=0 In a semiclassical approximation, the valuecofs given
is the true ground state of the theory or not. If this was notyy the minimum of the effective potentil. If this mini-
true, the expansion around a nonzero valfe would intro- - mym is not zero, then supersymmetry is broken. We already
duce other quadratic terms coming from the potential. Thengee that in the limit of largeé the solution is in facts®°

the linear transformations would not cancel on the back—q. we now study the contribution from the first quantum
ground(2) and the ground state would not be supersymmetegrrection.
ne. o _ ~Although it is nice to have general background indepen-
We shall argue here that this in fact occurs in the generigjent formula forU, the actual computation of the determi-
situation. In particular we prove that the fermion condensatg,ant is complicated because the operdRat is nonminimal
_ and the standard heat kernel formulas cannot be applied in a
¥y #0 (8  straightforward way.
o ] ) In order to get an idea into the structure of the determi-
is different from zero. Our analysis has a close analogy withant we consider the largeegime. In this regime, spacetime
the Nambu—Jona-Lasinio modfl2], although we follow 5 approximately flat and we shall compute the explicit value
the auxiliary field formalism of Gross and Nevig]. of U in that case. Specifically we consider fiel¥swvhich are

The occurrence of Ed8) follows from the following ob-  gjowly varying, whiley is fast varying, as compared koln
servation. Recalling the expressioi™ for V, and applying  tpis regime we approximate
the five-dimensional Fierzing identifyl4] it is a simple ex-
ercise to express the interaction term as R0+ geP~ g2eP

4i— _V _ 1— _D 1 a, bc, - de 1
PN Y= GIID Y= - €anca Uy Uy Y. Dyt 5 ev=dy. ©

Both terms are perturbations of the same order in powers dRather than computing the effective potential directly from

k. The second term has the structug)yf°y)2, similar to  the above formula, it is convenient to rewrite the fermionic

that arising in the Gross-Neveu model, and we shall thergction in flat space. We first note that if the 2-forrl® can

focus on it. It is important to stress, however, that the firsthave nonzero values, Poincanwariance dictates its general

term could be relevant and it may turn on other operators likdorm,

(yy**Dy); we shall study this possibility elsewhere. gab:Tea/\eb, (10)
Keeping only the second term we rewrite the interaction 6

introducing an auxiliary fieldr=, wherem is a constant which can be interpreted as the fer-

1_ _ K 1 . mion mass. The actiohy] , o] reduced to flat space be-
= 2KV = J€abcad 0 0N~ S €apeg oYyt comes

— 5
whose equation of motion is |[¢,]:f [dfﬂ( P79, — MyHT) iy — 6kmz .

Uab:layabl//_ Of course, ifm=0 I[¢] is linearly supersymmetric under
k oy,=d,€, and confirms that this action is the flat space
analogous td [ #,0].
The weak couplingk— e, fermionic action we consider is  The question we would like to ask is whether or not the
then true minimum of the effective potential im=0.
4 The determinant can now be computed by direct calcula-
IW[zp,a]:f [quRV—E

k tion. We first te the determinant of the Di tri
+— a _bc _de 1on. e.IrS compute e aeterminant o e Dirac matrices
Yt 4 €abcad o0 and obtain
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de( y#77g,—my*7) = 28m¥(m?+ 9*9,,)°. (11 1
The pole atm=0 is expected because the action is gauge \
invariant at this point, and the integration over fermions os
would require gauge fixing. This pole is however canceled
by the determinant of the second class constraints present il
the fermionic action. Let us pause to explain this point. 0.8
In a theory with second class constrair@s~0 with

de{G,,Gg}#0, the functional measure contains the factor

1]
det"Y%G,,Gg} where the plus/minus sign corresponds to
boson or fermiongsee[15)).

The flat space fermionic action in at4 decomposition ]
reads

41

£=_lﬂiT?’”lﬁjJrlﬂi(Y'Jkﬁj_mY'k)lﬁk_gkmz x

to i i + i i FIG. 1. Graphical analysis of EL6). The horizontal lines rep-
— oY o —myY) it i (— 79— my) . resent different values fd¢' 3/ A 2. Nonzero solutiongintersections
exist only fork’3/A%<1. The value ofm at which the intersection

From here we identify the Poisson bracket occurs increases 4<%/ A30.

@ f =(~v:. )% 54
700,45 p(N)}= ()8 (xY) (12 redefinition of the couplind. We shall proceed by identify-

ing the physical parameters of the theory and write the cutoff
in terms of them. Not unexpectedly, we find thatmust be
Gi=(y1g —my) ., Gh=yl(—+ig—my) (13  Of the order of Planck's energy. . .
(Y2 =my) ¥, vi(=ylo—my) (13 The potentialU(m) is clearly stable since, for a given
whose Poisson bracket cutoff, U(m— = »)— +0, and there are no other poles. The
next question is whether symmetry breaking takes place.

T 4 @) Taking the derivative ofJ with respect tom one finds the

where y;; y/*= 8¢, and the two constraints,

is invertible, as claimed. These constraints become first class
in the limit m— 0 and generate the supersymmetry transfor- 3
mations. Form# 0 they are second class.

Since bothG and G carry spinor indices, there are in describing the minima of). One solution to this equation is
total 8 constraint$s, (A=1...8), and since their Poisson m=0 corresponding to the unbroken phase. We would like
bracket scales as’ we have to know if there are other solutions witim#0, and less

energy. In the following discussion it will be convenient to
de{Gu,Gg} >~m~%. redefine the Chern-Simons couplikags

5km_f d°p  12m

- A(2’7T)5 m2+p2’ (14)

This factor in the fermion measure cancels the pole in Eq. '3
(11) exactly. This cancellation does not mean that we can k= k_
extrapolate our results all the way to=0. It only means 573
that our calculation is correct no matter how smalis; at

the exact valuen=0 the whole theory is different, gauge As it happens for all dimensions greater than t@,17),
fixing is necessary, andinite) discontinuities are actually Eq. (14) has a two-phase structure depending on the values

expected to arisgl6]. of k'/A. In fact evaluating the integral in Eql4) we see
The final expression for the effective potential in momen-that its nonzero solutions must satisfy
tum representation and Euclidean space is then

(19

k,3—1 3m2+3m3 - 16
’ F— - P Parctanﬁ ( )

2
1+
P

5k d°p
U(m)=€m _GJAWIOQ

where we have chosenU(0)=0 and A is an This equation is plotted in Fig. 1. The left hand side is rep-
SQ(5)-invariant UV cutoff. Before going any further, let us resented by straight lines, and the right hand side by the
recall that the fermionic quartic interaction we have consid-curve starting at 1, fom=0, and going monotonically to
ered here is not renormalizable in five dimensions. As a conzero asm—o. The intersections define nonzero solutions.
sequence, expanding the potentigim) into positive powers The graph is symmetrical under— —m.

of A one finds a ternm*A that cannot be absorbed by a  We first note that the intersection occurs only if
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k' !

<L 7 U(M):—k—M4<U(O).
473

If this condition is not satisfied, the only solution to E§4)  Hencem=M and notm=0 represents the true ground state.
ism=0, and the symmetry is not broken. It is interesting now to observe that~k’~k® and, in

From Eqs(15) and(5) we see thak’ =537E; whereE,  view of Eq. (5), we find the expected result ~E, (plus
is Planck’s energy. Since the cutoff is the largest energy scalemall corrections given by the fermions masEquations
we conclude that the physical regime is in fact the broken16) and (5) tell us that the fermion mass will satisfy
phase. EquatiofiL6) is satisfied, and nonzero solutions far <A, providedA is of the order ofg, . If the cutoff is taken
exist. We shall see, however, thatshould not be too big. all the way to infinity therm diverges as well.

Assume then that a nonzero solution to E46) exists, We would like to end with some comments and future
and let us call itM. We identify M with the physical mass of prospects. We have shown that the effective potential gov-
the fermions. On physical grounds we exp&tt<A, and eming the vacuum expectation value of the operat8?
hence we focus on the region near the origin of Fig. 1. In this= (1/k){#y*°y) does exhibit symmetry breaking. We have

region we can approximate E(L6) andM satisfies only computed the value for the potential on a flat back-
s .3 5 ground: it would be very interesting to findi for an arbitrary
kK'*=A"—-3AM~. (18)  background. This would allow the study of the back reaction

) ] ) ] . from the fermions fields to the geometry, and would be par-
Now, sinceM is the physical mass “fixed by experi- ticylarly relevant in view of the results df7]. In fact the
ments” it is natural to use this equation to eliminate thegriginal motivation for this calculation was to study the pos-
cutoff in terms of the two physical quantitiéd andk’. To  sibility of nontrivial vacuum sources in E¢2) coming from
first order inM?/k’? we find the fermions, but in order to analyze this point properly we
need the effective potential on a general figld Finally, it

A=kl 1+ 'V'_2 . (19 would also be interesting to study the effect of the interaction
k'? ' term (1K) ¢y &yyD ¢ that we have discarded in the large
limit.
Now we replace this value of the cutoff in the original po- .
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