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ABSTRACT 

 

Even though there is a wide consensus that having good oil price forecasts is very valuable 

for many agents in the economy, results have not been fully satisfactory and there is an 

ongoing effort to improve their accuracy. Research has explored many different modeling 

approaches including time series, regressions, and artificial intelligence, among others. 

Also many different sources of input data have been used like spot and futures prices, 

product spreads, and micro and macro variables. 

This paper explores how useful are analyst´s expected price data for forecasting when 

appropriate measures are taken to account for sparse nature and high volatility. It proposes 

a multifactor stochastic pricing model, with time-varying risk premiums calibrated with 

filtered futures and analyst´s forecasts using a Kalman Filter. 

The forecasting model is applied to ten years of oil prices and analyst forecasts, from 

NYMEX and Bloomberg, respectively. Results are very encouraging showing that the 

model’s forecast performs much better than the no-change forecast, commonly used as a 

benchmark and better than many of the forecasting results from the literature. We 

conclude that analyst forecasts is a valuable source of input data that should be considered 

in future forecasting models.  

 

Keywords: Forecasting, Oil prices; Futures; Expected Prices; Pricing Models. 
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RESUMEN 

 

Si bien existe un amplio consenso en que tener buenos pronósticos del precio del petróleo 

es muy valioso para muchos agentes de la economía, los resultados no han sido 

completamente satisfactorios y existe un permanente esfuerzo por mejorar su precisión. 

La investigación ha explorado muchos modelos diferentes, incluyendo series de tiempo, 

regresiones e inteligencia artificial, entre otros. También se han usado bastantes fuentes 

asociadas a datos de entrada, como precios spot y futuros, diferenciales de producto, y 

tanto micro como macro variables. 

Este trabajo explora cuán útiles son los datos de precios esperados de los analistas para 

predecir cuando se toma las medidas apropiadas, que permiten considerar la naturaleza 

dispersa y volátil de estos datos. Se propone un modelo de precios estocástico 

multifactorial, con primas de riesgo variables en el tiempo calibradas con futuros filtrados 

y pronósticos de analistas utilizando un filtro de Kalman. 

El modelo de predicción de precios evalua diez años de precios de petróleo y pronósticos 

de analistas, de NYMEX y Bloomberg, respectivamente. Los resultados son bastante 

alentadores, muestran que el pronóstico del modelo planteado se comporta mucho mejor 

que el asociado al comunmente usado como benchmark (e.g. no-change) y, mejor que 

varios modelos de predicción de precios de la literatura. Concluimos que los pronósticos 

de precios de los analistias son una fuente valiosa de datos que deben considerarse en 

futuros modelos de predicción de precios. 

 

 

Palabras Claves: Predicción, Precios Petróleo; Futuros; Expectativas de precios; 

Modelos, Predicción Precios.
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I. ARTICLE BACKGROUND  

 

There is a wide consensus that having good oil price forecasts is very valuable for 

agents in economies that import or export this resource. Also, it is a main factor for 

macroeconomic projections by central banks and for private sector growth estimations 

(Alquist, Kilian, & Vigfusson, 2013). The price of oil and its derivatives impact the 

consumption behavior of energy-intensive durable goods (Busse, Knittel, & Zettelmeyer, 

2009), and can challenge monetary and fiscal policies (Baffes, Kose, Ohnsorge, & 

Stocker, 2015). 

Commodity prices are variable and not trivial to predict. Specifically, oil price is 

subject to unexpected fluctuations since its influenced by multiple factors like weather, 

stock levels, GDP growth, political aspects and people’s psychological expectations (Yu, 

Wang, & Lai, 2008). Given their importance, research has explored many different 

modeling approaches including time series (e.g. vector autoregression, VAR techniques), 

regressions, and Artificial Intelligence (AI), among others. Also many different sources 

of data have been used like spot and futures prices, product spreads, and micro and macro 

variables. Most forecasting models use as their benchmark a random-walk or no-change 

forecast to evaluate their performance. 

This work explores how useful are analyst´s expected price data for forecasting when 

appropriate measures are taken to account for sparse nature and high volatility. It proposes 

a multifactor stochastic pricing model, with time-varying risk premiums calibrated with 

filtered futures and analyst´s forecasts using a Kalman Filter. 
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In order to compare the approach associated with the newly named stochastic model, 

we describe some of the techniques of the forecasting literature.  One common approach 

is to propose a vector of autoregression (VAR) model like the one in Kilian and Murphy 

(2014) that considers shocks to the speculative demand of oil (using data on oil 

inventories), shocks to the flow of demand and supply. A reduced-form representation of 

this structural global oil market model with 12 autoregressive lags is used by Baumeister 

& Kilian (2012) and Baumeister, Kilian & Lee (2014), showing improved forecast 

accuracy in some pooled forecasts at very short term horizons. 

Inspired by the fact that oil is not a homogenous commodity, another time series 

approach is proposed by Lanza, Manera and Giovannini (2005) that applies an error 

correction model (ECM) in order to anticipate the evolution of crude oil prices. They 

analyze the dynamic relationships among heavy crude oil and product prices, using an 

autoregressive-distributed lag specification that – after testing cointegration between the 

oil and product price series - admit an ECM formulation. Their results show that product 

prices are statistically relevant in explaining short - and long - run adjustment in petroleum 

markets. 

A classical forecasting approach is to use regression techniques. Wang, Liu, Diao and 

Wu (2017) propose a two-step method to improve the predictability of real oil price by 

handling the problem of overfitting caused by redundant variables. Miao, Ramchander, 

Wang and Yang (2017) uses the Least Absolute Shrinkage and Selector Operator 

(LASSO) in their regression model to forecast oil prices as a method to choose the 

predictive variables. 
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Many forecasting models are now relying on some form of AI. One approach includes 

neural networks  (Sun, Sun, Wang, & Wei, 2018; Cheng, Li, Wei, & Fan, 2019; Zhang, 

Zhang, & Zhang, 2015).  Based on the “divide-and-conquer” principle, first, they 

decompose – in order to simplify the forecasting aim, they use independent sub-series – 

and then, ensemble to formulate a consensus forecasting on the original data. Yu et al. 

(2008) proposes an empirical mode decomposition (EMD) based on neutral networks 

ensemble learning paradigm for oil spot price forecasting.  

Related with a machine learning approach, Zhao, Li and Yu (2017) uses AI to forecast 

oil prices. In summary, first they divide the data into two parts, training and test samples, 

and model the nonlinear relationships of oil price with many factors. Then one prediction 

for each trained set is done to finally take the average prediction value as the final forecast. 

In a recent work Li, Zhu, & Wu (2019) implement hybrid methods based on variational 

mode decomposition (VMD) and artificial intelligence (AI) techniques for forecasting the 

trend component in monthly crude oil prices. It is important to note that in this work, 

influencing factors of long-term crude oil price variation are considered for the forecasting 

of the trend subcomponent. 

Forecasting models in the literature diverge not only on the modeling approach but 

also on the data used. Having said that, we recognize many of them using past spot prices, 

some of them use futures prices and/or macroeconomic and financial series, including 

financial indicators such as indexes of industry, stock and future market, gold price, 

interest rates and dollar indices.  Other forecasting models use product spreads 

(Baumeister, Kilian, & Zhou, 2018) such as gasoline and heating oil spot spreads. This is 
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based on the idea that gasoline prices and crude oil prices move together in the long run 

(Lanza et al., 2005). They showed that not all product spread models are useful for out-

of-sample forecasting, but the most accurate single spread forecasting model is based on 

the gasoline spot spread alone. 

A less common input to the forecasting models is to use analyst´s expectations. There 

has been some research on the usefulness of expectations surveys. Alquist et al. (2013) 

evaluates the performance of survey forecasts of the nominal price of oil and shows that 

there is no compelling evidence that survey forecasts outperform the no-change forecast. 

Gay, Simkins, & Turac (2009) analyzes how the market incorporates Bloomberg analysts’ 

forecasts in the price of natural gas. Stark (2010) focuses on how accurate are the Survey 

of Professional Forecasters (SPF) predictions of inflation, unemployment, concluding that 

in general the SPF outperform the benchmark projections of univariate autoregressive 

time series at short horizons. Pierdzioch, Rülke, & Stadtmann (2010) find strong evidence 

of anti-herding among oil-price forecasters. Cortazar, Kovacevic & Schwartz (2015) 

validates model predictions using expectation surveys. Cortazar, Millard, Ortega, & 

Schwartz (2019) use futures and expectation surveys to estimate a constant term structure 

of oil risk premiums while Cortazar, Liedtke, Ortega, & Schwartz (2018) uses the same 

information to estimate a time-varying term structure of oil premiums and what are the 

micro and macro variables that explain their variation. 

As said before, in this paper we explore the usefulness of including a survey of 

analysts´ forecasts as input in an oil price forecasting model. We address the high volatility 

of expectation forecasts by including also futures price data, by using a Kalman filter to 
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allow for observational error and by using the three factor stochastic model that allows for 

a time-varying risk premium term structure. This model was proposed by Cortazar et al. 

(2018) and we use ten years of crude oil prices from NYMEX and analyst forecasts from 

Bloomberg as data input for this model. 

Performance of forecasting models are typically measured using the Relative MSPE 

and Directional Accuracy and compared with a no-change forecast, commonly used as a 

benchmark. Under the present formulation Relative MSPEs below 1 mean that the forecast 

is more accurate than the no-change forecast. Regarding Directional Accuracy, this metric 

is evaluated using the Success Ratio, which represent the average number of times that 

the model success in the direction of its prediction. Given that, any Success Ratio higher 

than 0.5 indicates an improvement over the no-change forecast.  

In order to make a quick comparison with some results published from other models 

in the literature, we choose six alternative models to analyze their results. In terms of the 

Relative MSPE metrics, our model is better than all the other models for all horizons, 

except for the one and three month periods. Regarding the Directional Accuracy metric, 

results of our model are even better. Our model overcomes all others for all horizons 

except for the 3 month forecasts. It is important to the objective of this analysis was not 

to determine the best model, but rather to see if results are reasonably close to those of 

other models thus to determine if there is valuable information in the analysts´ expected 

prices.  

Using the aforementioned metrics, our results are very encouraging showing that the 

model performs much better than the no-change model, and also better than many of the 
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forecasting models from the literature. The Relative MSPE results are below 1 for every 

horizon in analysis, standing out the 18, 21 and 24 months horizons, with a ratio below 

0.7 for this metric. The Relative MSPE for horizons up to one and two years are both 

below 0.9. Regarding the Directional Accuracy results, these are evaluated through the 

Success Ratio which value goes from 0.55 to 0.82 for the horizons in analysis, all being 

statistically significant. If we consider the horizons up to one and two years this ratio is 

above 0.59 for both of them. 

Our main conclusion is that using analysts´ expected prices, even if they are noisy, is 

a useful data source that should be taken into account in the future by commodity price 

forecasters. Analyst forecasts is a valuable source of input data that should be considered 

in future forecasting models.  
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II. HOW GOOD ARE ANALYST FORECASTS OF OIL PRICES? 

 

 

1. Introduction  
 

 

There is a wide consensus that having good oil price forecasts is very valuable for 

agents in economies that import or export this resource. Also, it is a main factor for 

macroeconomic projections by central banks and for private sector growth estimations 

(Alquist, Kilian, & Vigfusson, 2013). The price of oil and its derivatives impact the 

consumption behavior of energy-intensive durable goods (Busse, Knittel, & Zettelmeyer, 

2009), and can challenge monetary and fiscal policies (Baffes, Kose, Ohnsorge, & 

Stocker, 2015). 

Oil prices are difficult to predict because they are very volatile and subject to 

unexpected fluctuations of many factors like weather, stock levels, GDP growth, political 

issues and personal expectations (Yu, Wang, & Lai, 2008). Given their importance, 

research has explored many different modeling approaches including time series (e.g. 

vector autoregression, VAR techniques), regressions, and Artificial Intelligence (AI), 

among others. Also many different sources of data have been used like spot and futures 

prices, product spreads, and micro and macro variables. Most forecasting models use as 

their benchmark a random-walk or no-change forecast to evaluate their performance. 

This paper explores how useful are analyst´s expected price data for forecasting when 

appropriate measures are taken to account for their sparse nature and high volatility. It 
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proposes a multifactor stochastic pricing model, with time-varying risk premiums 

calibrated with filtered futures and analyst´s forecasts using a Kalman Filter. 

To put our proposal into perspective we describe some of the approaches of the 

forecasting literature.  One common approach is to propose a VAR model like the one in 

Kilian and Murphy (2014) that considers shocks to the speculative demand of oil (using 

data on oil inventories) and shocks to the flow of supply. A reduced-form representation 

of this structural global oil market model with 12 autoregressive lags is used by 

Baumeister & Kilian (2012) and Baumeister, Kilian & Lee (2014), showing improved 

forecast accuracy in some pooled forecasts at short term horizons. 

Another time series approach is proposed by Lanza, Manera and Giovannini (2005) 

that applies an error correction model (ECM) in order to anticipate the evolution of oil 

prices. They analyze the dynamic relationships among heavy crude oil and product prices, 

using an autoregressive-distributed lag specification that – after testing for cointegration 

between the oil and product price series - admit an ECM formulation. 

A classical forecasting approach is to use regression techniques. Wang, Liu, Diao and 

Wu (2017) propose a two-step method to improve the predictability of real oil price by 

handling the problem of overfitting caused by redundant variables. Miao, Ramchander, 

Wang and Yang (2017) uses the Least Absolute Shrinkage and Selector Operator 

(LASSO) in their regression model to forecast oil prices as a method to choose the 

predictive variables. 

Many forecasting models are now relying on some form of AI. One of the most 

common approaches includes neural networks (Sun, Sun, Wang, & Wei, 2018; Cheng, Li, 
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Wei, & Fan, 2019; Zhang, Zhang, & Zhang, 2015). Based on the “divide-and-conquer” 

principle, first, they decompose – in order to simplify the forecasting aim, they use 

independent sub-series – and then, ensemble to formulate a consensus forecasting on the 

original data. Yu et al. (2008) proposes an empirical mode decomposition (EMD) based 

on neural networks ensemble learning paradigm, for oil spot price forecasting.  

Zhao, Li and Yu (2017) uses a machine learning approach to AI to forecast oil price. 

In summary, first they divide the data into two parts, training and test samples, and model 

the nonlinear relationships of oil price with many factors. Then one prediction for each 

trained set is done to finally take the average prediction value as the final forecast. 

In a recent work Li, Zhu, & Wu (2019) implement hybrid methods based on variational 

mode decomposition (VMD) and artificial intelligence (AI) techniques for forecasting the 

trend component in monthly crude oil prices.  

Forecasting models in the literature diverge not only on the modeling approach but 

also on the data used. Many of the forecasting models use past spot prices. Some of them 

use futures prices and some macroeconomic and financial series, including financial 

indicators such as indexes of industry, stock and future market, gold price, interest rates 

and dollar indices. Some other forecasting models use product spreads (Baumeister, 

Kilian, & Zhou, 2018) such as gasoline and heating oil spot spreads. This is based on the 

idea that gasoline prices and crude oil prices move together in the long run (Lanza et al., 

2005).  

A less common input to the forecasting models is to use analyst´s expectations. There 

has been some research on the usefulness of expectations surveys. Alquist et al. (2013) 



10 

 

  

 

evaluates the performance of survey forecasts of the nominal price of oil and shows that 

there is no compelling evidence that survey forecasts outperform the no-change forecast. 

Gay, Simkins, & Turac (2009) analyzes how the market incorporates Bloomberg analysts’ 

forecasts in the price of natural gas. Stark (2010) focuses on how accurate are the Survey 

of Professional Forecasters (SPF) predictions of inflation, unemployment, concluding that 

in general the SPF outperform the benchmark projections of univariate autoregressive 

time series at short horizons. Pierdzioch, Rülke, & Stadtmann (2010) find strong evidence 

of anti-herding among oil price forecasters. Cortazar, Kovacevic & Schwartz (2015) 

validates model predictions using expectation surveys. Cortazar, Millard, Ortega, & 

Schwartz (2019) use futures and expectation surveys to estimate a constant term structure 

of oil risk premiums while Cortazar, Liedtke, Ortega, & Schwartz (2018) uses the same 

information to estimate a time-varying term structure of oil premiums and what are the 

micro and macro variables that explain their variation. 

In this paper we explore the usefulness of including a survey of analysts´ forecasts as 

input in an oil price forecasting model. We address the high volatility of expectation 

forecasts by including also futures price data, a Kalman filter to allow for observational 

error and a three factor stochastic model that allows for a time-varying risk premium term 

structure (Cortazar et al. 2018). The forecasting model is applied to ten years of crude oil 

prices from NYMEX and analyst forecasts from Bloomberg.  

Results are very encouraging showing that the model performs much better than the 

no-change model, commonly used as a benchmark and better than many of the forecasting 
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models from the literature. We conclude that analyst forecasts is a valuable source of input 

data that should be considered in future forecasting models.  

This paper is organized as follows. Section 2 discusses how to measure performance 

in a forecasting model and what are the typical results found in the literature. Section 3 

presents the futures and analysts’ forecasts data that will be used in our model. Section 4 

presents the proposed forecasting model. Section 5 presents the model results. Finally, 

section 6 concludes. 

 

 

 

2. Measuring Forecasting Model Performance 
 

 

2.1 Model Performance Metrics 

 

The standard way of measuring the performance of a forecasting model is to compare 

it with a no-change or random walk model without drift that acts like its benchmark. This 

model assumes the forecast of a future spot oil price is the current spot price:  

S"!"#|! = S% 

with  $!	  the current spot price and S"!"#|! it’s forecast for h periods ahead.  

In what follows we present two performance metrics relative to the no-change 

benchmark. 
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2.1.1 Relative MSPE - Mean Squared Prediction Error 

 

The Mean Squared Prediction Error (MSPE), for a specific horizon	ℎ, is defined as the 

average squared difference between the spot and the predicted prices: 

'$(E = 	
∑ +$!"# − $-&,!"#|!.

(
!

/
 

where $!"# is the spot price for h periods ahead, $-&,!"#|! denotes the forecast of $!"#, 

of model i using data through time 0, and / represents the number of forecasts. 

The Relative MSPE (Stock & Watson, 2004) is defined as: 

12340562	'$(7& =	
∑ +$!"# − $-&,!"#|!.

(
!

∑ +$!"# − $-),!"#|!.
(

!

 

where i is the forecasting model analyzed and i=0 corresponds to the no-change 

benchmark model.  

Under this formulation, a Relative MSPE below one means that model i’s forecasts 

are more accurate than the no-change forecasts. 

2.1.2 Directional Accuracy 

 

The Directional Accuracy refers to how well the forecasting model predicts if the spot 

prices are going up or down.  Following Yao and Tan (2000), we define 4!,# which takes 

a value of 1 if the model is successful in the direction of the forecast made in t, for h 

periods ahead, and zero otherwise. 

4!,# = 8	1 5:	($!"# − $!)+$-!"# − $!. > 0
0 ?0ℎ2@A5B2
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Then, the Success Ratio for a period T is computed as:  

$CDD2BB	1405?	*
# =	

∑ 4!,#!∈*

/
 

A model that has a Success Ratio over 0.5 implies that their forecasts are better than 

those of the no-change model which is expected to correctly forecast the direction 50% of 

the time. 

 
2.2 Performance Results of Forecasting Models from the Literature 

 

In what follows we summarize the performance results of a set of alternative 

forecasting models that may represent a “typical” result found in the literature for this kind 

of models1.  

The main conclusion that can be drawn is that results are mixed and not always 

satisfactory. For example, for the 1 and 3 months horizon, even though the Relative MSPE 

ratio is 0.98 on average on the given set of models, the maximum value of this metric is 

1.01 and 1.52 for each horizon. The Success Ratios are between 0.45 and 0.58, and the 

average for these two horizons is 0.55. For the 6 and 9 months horizon the Relative MSPE 

ratio ranges between 0.93 and 1.01 and the average is 1.02.  On the other hand, Success 

Ratios are between 0.42 and 0.55. The average of this metric 0.49. If we look at the 12, 

15 and 18 months horizon, the Relative MSPE ratio is between 0.92 and 1.11, while the 

average is 0.98. The average Success Ratio is 0.48 and it moves between 0.37 and 0.56. 

 
1 A more detailed discussion of these alternative models can be found in Appendix A 
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Finally, for the 21 and 24 months horizon, the Relative MSPE average is 1.01, while the 

Success Ratios goes from 0.35 and 0.49, with an average below 0.5. 

From the above analysis it becomes clear that forecasting oil prices is a challenging 

issue, and explains why there are continuing efforts to improve the forecasting models. 

 
 

3. Using Analyst Forecasts and Futures Prices Data 
 

 

In this paper we propose using analyst expected price surveys, together with futures 

price data, to extract filtered price forecasts.  We use Bloomberg’s surveys for WTI’s 

expected prices, a list of predictions done by different financial firms. The expectations, 

when given, are quarterly for the next 6 quarters and yearly, at most for the next 5 years. 

Weekly WTI oil futures prices quoted at NYMEX are also obtained from Bloomberg. 

Most of the previous uses of survey data in the literature has been done using raw data, 

with no filtering or, at most, with a very simple averaging processing.  This, we believe, 

may hinder the true value of this information.  Data is available only when one of the 

many firms makes a prediction2, and may be available any day of the week and for any 

horizon.  Thus, the number of analyst’s predictions is variable and the values volatile. 

 
2 Analyst forecasts are made for the average price on each quarter, or year, but following Cortazar et. el 
(2018) we assume they represent the price in the middle of their time period. 
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Figure 3.1 shows analysts´ forecasts and futures prices available up to a 24 month 

horizon, for the third week of September, 2015. It can be seen that expected price data is 

very volatile making a filtering procedure very valuable.  

 

Figure 3.1: Futures and Analysts´ Expected Price Data, third week, September 2015. 

 

Table 3.1 compares the amount of data for analysts expected prices and futures prices 

for a horizon of 24 months or less. It can be seen that there is much more futures data than 

analysts´ forecasts.  
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Table 3.1: Available Data of Futures and Bloomberg Expected Prices up to 24 months. 

Year 

Amount of data 
Bloomberg's 

Analysts Expected 
Prices 

Futures Prices 

2007 375 5850 

2008 639 5882 

2009 512 5852 

2010 374 5844 
2011 445 5844 

2012 632 5850 

2013 824 5853 

2014 1165 5846 

2015 1207 5843 

2016 1315 5849 
2017 1205 5834 

2018 1728 5852 

Average 868.42 5849.92 

 

Given the disparity in data availability between both sets of data we follow Cortazar 

et al. (2018) and use futures weekly data represented by each Wednesdays´ prices for 

maturities every 6 months (and the closest maturity forward) and analysts´ expected 

weekly data represented by the week’s average for each horizon. 

Tables 3.2 and 3.3 summarize the weekly Analysts´ Expected and Futures Prices for 

horizons up to 24 months from 2007 to 2018. 
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Table 3.2: Expected prices between 2007 and 2018 for horizons up to 24 months. 

Maturity 
(months) 

Mean Price 
($/bbl.) 

Number of 
Observations 

0 - 1 73.99 241 

2 - 6 75.46 677 

7 - 12 77.67 779 

13 - 18 78.19 600 

19 - 24 81.20 270 

All maturities 77.23 2567 

 

 
Table 3.3: Futures prices between 2007 and 2018 for horizons every 6 months up to 24 months. 

Maturity 
(months) 

Mean Price 
($/bbl.) 

Number of 
Observations 

0 - 1 75.18 625 

6 76.44 625 

12 76.73 637 

18 76.56 645 

24 76.29 625 

All maturities 76.24 3157 

 

 

The forecasting model predictions will later be compared with the WTI spot price data 

available from the U.S, Energy Information Administration (EIA). Figure 3.2 presents the 

spot prices between 2007 and 2018.  
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Figure 3.2: WTI Spot Prices between 2007 and 2018 (EIA - U.S. Energy Information Administration). 

 

Figure 3.2 shows several sudden drops in oil prices being the major ones in the second 

half of 2008 and in the second half of 2014. This price behavior is going to be relevant 

when we analyze the forecasting performance of the model. Table 3.4 shows the annual 

average and standard deviations of WTI spot prices. It can be noticed the great variations 

between different years. 
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Table 3.4: Annual Average and Standard Deviation of WTI Spot Prices. 

Year Spot Price Average 
($US/bbl.) 

Spot Price Standard 
Deviation 

2007 72.34 12.88 

2008 99.67 28.62 

2009 61.95 13.39 

2010 79.48 5.25 

2011 94.88 8.08 

2012 94.05 7.73 

2013 97.98 5.46 

2014 93.17 13.55 

2015 48.66 6.83 

2016 43.29 6.74 

2017 50.80 3.92 

2018 65.23 6.53 

All years 75.16 23.25 

 

 

4. The Forecasting Model 
 

 

4.1 Model Definition 

  

As stated before, the proposed forecasting model should take into account the 

noisiness of the relatively few data in forecasting surveys, jointly with the more complete 

futures data. 

We propose using the Cortazar et al. (2018) model, but instead of studying the risk 

premium behavior, as the authors do, analyze the model´s forecasting power.    
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In what follows we present the Cortazar et al. (2018) model, a non-stationary 3-factor 

stochastic model calibrated using both futures and analysts´ expectations. The model 

addresses the noisiness of the data by using a Kalman Filter, and generates the futures and 

expected price curves to extract the term structure of risk premiums.  

Let $! be the spot price at time 0, then: 

3/($!) = E! = ℎ′G! 
 

 

HG! = I−JG! + L

M,
0
⋮
0

OPH0 + HA! 

 

where ℎ is an /	G	1 vector of constants, G! is an /	G	1 vector of state variables, M, is a 

scalar, J is an /	G	/ upper triangular matrix with its first diagonal element being zero the 

other diagonal elements all different and strictly positive. Let HA! be an /	G	1 vector of 

uncorrelated Brownian motions: 

!"!!"!′ = %!& 

where Q is an /	G	/ identity matrix. 

Let 1(! be the risk premium at time 0 and assume the following expression: 

1(! = R + ΛG! 
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So, the risk adjusted version of the model is: 

E! = ℎ′G! 
 

HG! = I−(J + Λ)G! + L

M,
0
⋮
0

O − RPH0 + HA!
-

 

 

where λ is an /	G	1 vector, Λ is an /	G	/ matrix that is not diagonal or triangular and 

HA!
-

 is a Brownian motion under risk neutral measure. Further restrictions on λ and Λ 

are not necessary. 

Cortazar et al. (2018) shows that the futures price (define as the spot price $! under 

the risk neutral measure U), is given by the expression: 

V!(W) = 7!
-($*) = 2.!

"(0#)"
,
(234

"(0#) 
with 

 

7!
-(G*) = 25(6"7)(*5!)G! + XY

*5!

)
25(6"7)8HZ[ (M − R) 

 

\?6-(G*) = Y
*5!

)
25(6"7)8(25(6"7)8)′HZ 

The expected price satisfies the following equations: 

7!($*) = 2.!(0#)"
,
(234(0#) 

 

7!(G*) = 256(*5!)G! + XY
*5!

)
2568HZ[ M 

 

\?6(G*) = Y
*5!

)
2568(2568)′HZ 
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Finally, model implicit volatilities of future prices σ9 and expected prices σ. may be 

determined as follows: 

9̂ = _ℎ′25(6"7)(*5!)25(6"7)(*5!)′ℎ 

 

.̂ = _ℎ′256(*5!)256(*5!)′ℎ 

 

 

 

4.2 Model Estimation 

 

Cortazar et al. (2018) uses Kalman Filter (Kalman, 1960) to estimate parameters and 

state variables.  At any given time-iteration, the Kalman Filter representation can be 

expressed by two equations. The first one is the following equation: 

`! = a!G! + H! + 6!				6!~c(0, 1!) 
 

where ̀ ! is an e!	G	1 vector that contains futures and expected log-prices observations 

at time 0. a! is a e!	G	/ matrix, H! is an e!	G	1 vector and 6! is a measurement error 

vector of e!	G	1 dimension with zero mean and covariance 1!. G! is an /	G	1 vector of 

state variables. In the model, e! depends on the number of observations at each time, so 

the dimension of `! , a! , H! , 6!	f	1! changes at each time.  

Matrix 1! is defined by: 

1! =

⎣
⎢
⎢
⎢
⎢
⎢
⎡ :̂

( ⋯ 0 0 ⋯ 0
⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ :̂

( 0 ⋯ 0

0 ⋯ 0 ;̂
( ⋯ 0

⋮ ⋱ ⋮ ⋮ ⋱ ⋮
0 ⋯ 0 0 ⋯ ;̂

(⎦
⎥
⎥
⎥
⎥
⎥
⎤
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The second equation in the Kalman Filter is: 

G!", = J̅G! + D̅ + A!				A!~c(0, U) 

where J̅ is an /	G	/ matrix, and D̅ is an /	G	1 vector. J̅ and D̅ represents the 

discretization of the process. In the above expression A! is a vector of random variables 

with zero mean and an /	G	/ covariance matrix U. 

 

 

5. Model Results 
 

 

5.1 Model Fit 

 

Before presenting our forecasting results in this section, we now discuss the calibration 

process and the model errors. In order to be able to make out-of-sample forecasts for each 

year, we estimate the model parameters using data from all previous years, with a 

minimum of two years. Given that our data is from 2007 to 2018, our first forecast is for 

2009 using data from 2007 to 2008, and our last one is for 2018 with data from 2007 to 

2017. 

Figure 5.1 shows the forecast and the futures curves for the third week of September 

of 2015 and the data available for that date3. The model considers the survey of expected 

prices and the futures data to jointly estimate both curves. Given the volatility of survey 

data, the Kalman filter optimally takes this into account. Thus the forecast curve does not 

 
3 The date is the same as in Figure 3.1, but now survey data for each horizon in the week has been averaged, 
and futures prices is only those of Wednesday (every 6 months). 
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necessarily perfectly fit current data but considers also past ones. Given that futures prices 

are less volatile, the futures curve fits much better the futures data. 

Table 5.1 computes Mean Absolute Percentage Error (MAPE) for Analysts´ forecasts 

and Futures prices for each calibration year.  As expected, the MAPE for the Futures data 

is much lower and less volatile than for the Analysts´ forecasts. 

 

 

Figure 5.1: Forecast and Futures curves and Analysts´ Expected Price and Futures Data. Third week, 
September 2015. 
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Table 5.1: Mean Absolute Percentage Error (MAPE) of futures and forecast curves. 

Calibration Years Year 
MAPE (%) between 

Curve and Futures Prices 
Data 

Curve and Analysts 
Expected Prices Data 

2007-2008 2009 0.29% 9.63% 

2007-2009 2010 0.38% 10.54% 

2007-2010 2011 0.35% 10.35% 

2007-2011 2012 0.37% 10.83% 

2007-2012 2013 0.38% 11.09% 

2007-2013 2014 0.36% 10.67% 

2007-2014 2015 0.38% 9.97% 

2007-2015 2016 0.41% 9.61% 

2007-2016 2017 0.41% 9.45% 

2007-2017 2018 0.42% 9.26% 

Average 0.37% 10.14% 

Standard Deviation 0.04% 0.64% 

 

 

 

5.2 Forecasting Results of the Proposed Model 

 

5.2.1 Relative MSPE 

 

Table 5.2 summarizes the Relative MSPE results. They are shown for different 

forecasting horizons, for each year and for the whole 10 year period.  

The two main conclusions that can be drawn from Table 5.2 are: First the general 

accuracy of the forecasting model over the whole 10 year period is much better than the 

no-change forecast. Second however good the model is when there is a relatively 

“reasonable” price behavior, this is not the case when there are sudden and unexpected 

jumps in spot prices, like those that can be seen in Figure 3.2. In these cases, analysts’ 

forecasts are obviously wrong and even the no-change model is a better alternative. 
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Table 5.2: Relative MSPE Forecasting Results. 

Horizon 
(months) 

General 
Accuracy 

Yearly Accuracy 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

1 0.995 1.011 1.247 0.980 1.048 1.166 0.785 0.981 0.843 0.906 1.093 

3 0.954 0.753 1.273 1.074 0.998 0.855 0.882 1.109 0.524 0.937 1.207 

6 0.871 0.531 1.049 0.857 0.719 0.944 0.805 1.690 0.432 0.899 1.159 

9 0.826 0.343 0.935 1.113 0.893 3.003 0.726 2.143 0.471 0.778 1.190 

12 0.788 0.238 0.904 0.764 1.221 0.746 0.749 3.474 0.382 0.663 0.957 

15 0.710 0.254 0.823 0.571 1.335 0.539 0.767 4.020 0.231 0.564 0.814 

18 0.671 0.371 0.589 0.543 2.336 0.452 0.758 7.157 0.107 0.357 0.403 

21 0.676 0.338 0.653 1.486 1.940 0.557 0.763 10.100 0.083 0.366 - 

24 0.651 0.297 0.532 1.069 1.515 0.590 0.775 4.483 0.143 0.465 - 
Horizons 
up to 12 
months 

0.848 0.417 0.987 0.962 0.951 1.038 0.761 2.040 0.453 0.783 1.132 

Horizons 
up to 24 
months 

0.729 0.346 0.800 0.929 1.369 0.565 0.764 3.269 0.189 0.643 1.068 

Boldface indicates improvements on the no-change forecast. The yearly accuracy refers to the year in 

which the forecast is made. The general accuracy indicates Relative MSPE from 2009 to 2018. “Horizons 

up to 12 months” indicates the Relative MSPE for horizons from 1 to 12 months. “Horizons up to 24 months” 

indicates the Relative MSPE for horizons from 1 to 24 months.     

 

5.2.2 Directional Accuracy 

 

Table 5.3 summarizes the Success Ratios.  They are shown for different forecasting 

horizons, for each year and for the whole 10 year period.   

Conclusions drawn from analyzing this table are similar, but even a bit stronger, than 

those from Table 5.2. Again our forecasting model is better than the no-change model 

over all horizons, when the 10 year period is considered. Moreover, this difference is 

statistically significant for all horizons at very high significance levels. Also our second 

conclusion holds again: when sudden jumps in spot prices occur, analysts´ forecasts may 

be even worse than those of the no-change model. 
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Table 5.3: Directional Accuracy Forecasting Results. 

Horizon 
(months) 

General 
Accuracy 

Yearly Accuracy 

2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 

1 0.555*** 0.500 0.385 0.558** 0.500 0.442 0.830*** 0.538 0.635 0.635 0.519 

3 0.541** 0.673*** 0.308 0.519** 0.500 0.519 0.679 0.404 0.692 0.635 0.481 

6 0.580*** 0.769*** 0.404 0.519* 0.577** 0.538*** 0.868*** 0.269 0.808 0.750 0.288 

9 0.635*** 0.769 0.519** 0.635*** 0.558** 0.462 0.849 0.327 0.769 0.942 0.510 

12 0.692*** 1.000*** 0.596 0.731*** 0.404* 0.577* 0.830 0.346 0.846 0.904*** 0.684 

15 0.733*** 1.000*** 0.673 0.808*** 0.365 0.712*** 0.811 0.519 0.923 0.808 0.680 

18 0.775*** 1.000*** 0.865*** 0.750*** 0.212 0.923*** 0.792 0.481 1.000*** 0.904 1.000*** 

21 0.752*** 0.981 0.712 0.615** 0.346 0.962 0.774 0.615 1.000*** 0.765 - 

24 0.818*** 1.000*** 0.827*** 0.615*** 0.635** 0.962 0.774** 0.673 0.962 0.947 - 

Horizons 
up to 12 
months 

0.602*** 0.760*** 0.447*** 0.575*** 0.527*** 0.537*** 0.807*** 0.335 0.771 0.787 0.461 

Horizons 
up to 24 
months 

0.676*** 0.877*** 0.591*** 0.638*** 0.455*** 0.694*** 0.800*** 0.435 0.867 0.816 0.526** 

Boldface indicates improvements on the no-change forecast. The yearly accuracy refers to the year in 

which the forecast is made. Statistical significance levels are given by ***1%, **5% and *10%, according 

to the Pesaran-Timmermann test (2009). The general accuracy indicates Directional Accuracy from 2009 to 

2018. “Horizons up to 12 months” indicates the Directional Accuracy for horizons from 1 to 12 months. 

“Horizons up to 24 months” indicates the Directional Accuracy for horizons from 1 to 24 months.   

   

5.2.3 Comparing Forecasting Results with those of Alternative Models 

 

Even though our accuracy results are quite promising, in this section we want to make 

a quick comparison with some results published from other models in the literature. As 

stated in Section 2.2 we chose 6 alternative models from the literature4 to analyze their 

results, but some caveats should be taken into account. 

 
4 See Appendix A for a brief description of each of the 6 alternative models 
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First, the selection of the 6 models with which our model will be compared is 

somewhat arbitrary and does not necessarily represents the best models from the literature.  

Second, given the data requirements for the estimation of the expected curve, the 

amount of out-of-sample data that of our model is only 10 years which is sometimes less 

than those used by other models.  

Third, the model developed in this paper predicts nominal prices, while there is 

another type of models that is dedicated to predicting real prices. Although given that we 

are comparing forecasts for a maximum of two years this may not be a great concern. 

Finally the evaluation period of each model is different across the papers, so depending 

on the behavior of the spot prices during the forecasting period comparisons could be 

unfair. 

Despite these elements, the objective of this section is not to determine the best model, 

but rather to see if the results are reasonably close to those of other models thus to 

determine if there is valuable information in the analysts´ expected prices.  

Table 5.4 compares the results of our model with those of the alternative models. It 

can be seen that our model has an excellent performance compared with the alternative 6 

models. In terms of the Relative MSPE metrics our forecast is better than all the other 

models for all horizons, except for the one and three month periods. In terms of the 

Directional Accuracy metric, results of our model are even better. Our model overcomes 

all others for all horizons except for the 3 month forecasts. 
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 As stated before, by showing our good results we are not claiming our model is the 

best in the literature, but only that using analysts´ forecasts filtered in a proper way, seems 

to be a data source that should not be discarded.  

 

Table 5.4: Results of different Forecasting models. 

Horizon 
(months) Error metric Our model 

Alternative models 

Average Minimum Maximum 

1 
Relative MSPE 0.995 0.985 0.917 1.008 

Directional 
Accuracy 0.555 0.505 0.460 0.554 

3 
Relative MSPE 0.954 1.077 0.936 1.519 

Directional 
Accuracy 0.541 0.486 0.447 0.575 

6 
Relative MSPE 0.871 1.032 0.935 1.040 

Directional 
Accuracy 0.580 0.504 0.459 0.541 

9 
Relative MSPE 0.826 1.002 0.927 1.099 

Directional 
Accuracy 0.635 0.481 0.419 0.553 

12 
Relative MSPE 0.788 0.986 0.917 1.112 

Directional 
Accuracy 0.692 0.515 0.370 0.557 

15 
Relative MSPE 0.710 0.984 0.936 1.031 

Directional 
Accuracy 0.733 0.464 0.434 0.494 

18 
Relative MSPE 0.671 0.984 0.969 1.041 

Directional 
Accuracy 0.775 0.474 0.397 0.440 

21 
Relative MSPE 0.676 1.023 0.987 1.058 

Directional 
Accuracy 0.752 0.393 0.349 0.437 

24 
Relative MSPE 0.651 0.997 0.940 1.054 

Directional 
Accuracy 0.818 0.429 0.367 0.491 

Boldface indicates improvements on the no-change forecast. “Our Model” column contains the general 

accuracy results for the indicated horizon. The “Average” column indicates the simple average between the 

other models’ results when reported their error metrics for the indicated horizon.  The “Minimum” and 

“Maximum” columns indicate the minimum and maximum value of the indicated error metric from the other 

models. Other models refers to the models reviewed in Appendix A. 
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6. Conclusions 
 

 

We have argued that even though there is a wide consensus that having good oil price 

forecasts is very valuable for many agents in the economy, results have not been fully 

satisfactory. There have been many attempts to improve this result, from new models to 

new inputs. Research has explored many different modeling approaches including time 

series, regressions, and artificial intelligence. On the other hand, many different sources 

of input data have been used like spot and futures prices, product spreads, and micro and 

macro variables. 

In this paper we explore the use of analysts´ expected prices from different financial 

firms and surveyed by Bloomberg. The proposed model uses this information, together 

with futures prices, in a multifactor stochastic model calibrated with the Kalman filter. 

We discuss that performance of forecasting models are typically measured using the 

Relative MSPE and Directional Accuracy and compared with a no-change forecast 

benchmark. Using these metrics our results are very encouraging when compared to other 

models from the literature. 

Our main conclusion is that using analysts´ expected prices, even if they are noisy, is 

a useful data source that should be taken into account in the future by commodity price 

forecasters.  
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APPENDIX 

 
 

Appendix A: Alternative forecasting models 
 

 

In the following Appendix, we present 6 different forecasting models from the 

literature. 

 
A.1 Single product spot spread model 

 

 

Inspired by the idea that gasoline prices and crude oil prices move together in the long 

run (Lanza et al., 2005), Baumeister et al. (2018) developed a single product spread model 

to forecast the real WTI price of oil. In what follows, there is a brief review of that model 

and its results.  

A.1.1 Data 

 

The forecast evaluation period is from early 1992 until September 2012, that means 

more than twenty years of out-of-sample data evaluation. They use data from WTI, 

gasoline and heating oil spot prices and, a proxy for the inflation rate. 

A.1.2 Model 

 

The single product spread model is: 

$	p !"#|!	
=&>
= $!

=&> 	2Gqrs	t + u-+q!
& − q!=&>. − v+w!"#

# .x 

Where 5	 ∈ 	 {{4B?35/2, ℎ2405/{	?53}, $	p !"#|!	
=&>

 denote the forecast of oil for ℎ 

periods ahead, using data through time 0. $!
=&> is the current real (0) price of oil, s and u 
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are estimated parameters and q!
& is the current log-price of 5. q!=&> is the current log-price 

of oil and v+w!"#
# . denotes the proxy for the inflation rate from 0 to 0 + ℎ.  

A.1.3 Results 

 

The forecast accuracy of this model is evaluated using both Relative MSPEs relative 

to no-change forecast and Success Ratios. On their analysis, better results are obtained 

fixing s = 0.  Results are shown in Table A.1. 
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Table A. 1: Forecast accuracy of single product spot spread models for the real WTI price developed by 
Baumeister et al. (2018). 

Horizon 
(months) Error metric 

Model 

Gasoline spot 
spread 

Heating oil spot 
spread 

h=1 
Relative MSPE 0.999 1.008 

Success Ratio 0.554 0.534 

h=3 
Relative MSPE 0.998 1.023 

Success Ratio 0.575 0.482 

h=6 
Relative MSPE 0.978* 1.037 

Success Ratio 0.541 0.459 

h=9 
Relative MSPE 0.965** 1.052 

Success Ratio 0.419 0.419 

h=12 
Relative MSPE 0.940** 1.040 

Success Ratio 0.504 0.370 

h=15 
Relative MSPE 0.936** 1.031 

Success Ratio 0.494 0.434 

h=18 
Relative MSPE 0.969* 1.041 

Success Ratio 0.440 0.397 

h=21 
Relative MSPE 0.987 1.058 

Success Ratio 0.437 0.349 

h=24 
Relative MSPE 0.940** 1.054 

Success Ratio 0.491 0.367 

Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE 

according to the Clark-West (2007) test and statistically significant improvements in Directional Accuracy 

according to the Pesaran-Timmermann test (2009) are marked using * (10% significance level) and ** (5% 

significance level) respectively. 

 

 

This paper concludes that the most accurate single spread forecasting model is a model 

based on the gasoline spot spread alone. From Table A.1 it can be observed that for the 

gasoline spot spread model, all horizons have a Relative MSPE lower than 1. This does 
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not happen with the heating oil spot spread model: all the horizons present Relative 

MSPEs above 1. Regarding the Success Ratios, for the gasoline spot spread model there 

are 4 out of 9 horizons with Success Ratios above 0.5, this means that 44% of the monthly 

horizons are more accurate than flipping a coin. On the other hand, the heating oil spot 

spread model only has one horizon with a Success Ratio over 0.5. 

 
A.2 EMD-based neural network model 

 

As anticipated, inspired by the “divide-and-conquer” principle, Yu et al. (2008) 

develop an empirical mode decomposition (EMD) based on neural networks ensemble 

learning method. They also compare its prediction with other forecasting model (ARIMA) 

by using error metrics such as the Directional Accuracy. They do this work for both WTI 

and Brent crude oil spot prices. 

A.2.1 Data 

 

In order to train their model, they use information from January 1986 to December 

2000, and, to evaluate the model performance, data from January 2001 to September 2006. 

This is 6 years in out-of-sample analysis. 

A.2.2 Model 

 

This model is actually an “EMD-FNN-ALNN” ensemble learning approach. That is, 

it is an “EMD (Decomposition)–FNN (Prediction)– ALNN (Ensemble)” methodology. 

The EMD technique decompose a time series G(0) into a sum of oscillatory functions, 

namely intrinsic mode functions (IMFs). In order to obtains the IMFs, they decompose 
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the data series using a standard procedure until the spot criterium is satisfied and, at the 

end of this procedure, the data series can be expressed by: 

G(0) =~ D?(0)
@

?A,
+ @@(0) 

Where / is the number of IMFs, @@(0) is the final residue, representing the central 

tendency of the data series. The residue is calculated on every step as the difference 

between G(0) and the current IMF. D?(0) are the IMFs – which are nearly orthogonal to 

each other, and all have nearly zero means (Yu et al., 2008). 

A.2.3 Results 

 

Although in this work a horizon-analysis is not performed, they present their overall 

results. Regarding Directional Accuracy, they show a Success Ratio of 0.87 for WTI 

prices, a very good result compared with the results of their benchmark (ARIMA model 

got 0.52). 

 

A.3 ARMA, oil futures and commodity price-based models 

 

Baumeister and Kilian (2012) explore the forecast accuracy of five different models, 

including an autoregressive moving average (ARMA). Also, they present alternative 

forecasting methods, such as the oil futures-based and the commodity price-based model. 

In what follows, the data used, the model specifications and their results are described. 

A.3.1 Data 

 

The evaluation window in this paper is from January 1992 to June 2010, this means 

that there are 18.5 years to analyze. The ARMA model uses information from the past 
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WTI spot prices in order to forecast the real price. While the futures-based model uses 

information from the futures prices, the commodity price-based model uses information 

from raw industrial materials. 

A.3.2 Model 

 

The ARMA(1,1) model for �! can be expressed as follows: 

�! = Ä + Å�!5, + Ç! + θÇ!5,						∀0 

Φ(Ü)�! = Ä + Θ(Ü)Ç! 

Where θ ≠ 0, Å ≠ 0, Ä	is a constant term and	Ü is the lag operator, Ç! is a weak while 

noise process with mean zero and variance given by B̂
(. Φ(Ü) = 1 − ÅÜ and Φ(Ü) = 1 −

âÜ. 

Adapting this to a forecasting model involves that �! represents the forecast for the 

price of oil given by this model. This model is estimated numerically by Gaussian 

maximum likelihood methods.  

The oil futures-based model: 

$	p !"#|!	
=&>
= $!

=&> 	ä1 + :!
# − B! − v+w!"#

# .ã 

$	p !"#|!	
=&>

 denote the forecast of oil for ℎ periods ahead, using data through time 0. 1!
=&> 

is the current real price of oil. :!
# is the log of the current WTI oil futures price for maturity 

ℎ, B! is the log of the corresponding WTI spot price and v+w!"#
# . is the expected U.S. 

inflation rate over the next ℎ periods. 

On the other hand, the commodity price-based model can be expressed: 

$	p !"#|!	
=&>
= $!

=&> 	ä1 + w!#,&@CDE!4&3>	43F	G3!;4&3>E − v+w!"#
# .ã 
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Where w!#,&@CDE!4&3>	43F	G3!;4&3>E stands for the percent change in the Commodity 

Research Bureau (CRB) index of the spot price of industrial raw materials (other than oil) 

over the preceding ℎ months. The term v+w!"#
# . is the expected U.S. inflation rate over 

the next ℎ periods. 

A.3.3 Results 

 

The results presented in this paper for the ARMA(1,1), oil futures-based and 

commodity price-based models are detailed in Table A.2. 

 

Table A. 2: Forecast accuracy for oil futures-based and commodity price-based models for the real WTI 
price (Baumeister & Kilian, 2012). 

Horizon 
(months) Error metric 

Model 

ARMA(1.1) Oil futures-based 
model 

Commodity price-
based model 

h=1 
Relative MSPE 0.917** 1.004 0.820 

Success Ratio 0.496 0.460 0.550∗ 

h=3 
Relative MSPE 0.936** 0.999 0.744∗ 

Success Ratio 0.482 0.477 0.609** 

h=6 
Relative MSPE 0.935** 1.002 1.040 

Success Ratio 0.465 0.502 0.590** 

h=9 
Relative MSPE 0.927** 0.981 1.099 

Success Ratio 0.467 0.547** 0.565∗ 

h=12 
Relative MSPE 0.917** 0.932 1.112 

Success Ratio 0.507 0.559** 0.574∗ 

Boldface indicates improvements on the no-change forecast. For the ARMA model, ** denotes significance 

at the 5% level based on bootstrap critical values for the average loss differential. For the oil futures-based 

and the commodity price-based models, ** denotes significance at the 5% level and * at the 10% level, 

based on the Diebold and Mariano (1995) test of equal predictive accuracy and the Pesaran-Timmermann 

test (2009) test of the null hypotesis of no Directional Accuracy. 
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Based on the 5 months horizon in analysis, the Relative MSPE shows that this model 

has better results than the no-change forecast, but, Success Ratios do not show a good 

performance. Only one out of five monthly horizon Success Ratios is above 0.5 (12 

months horizon). 

The oil futures-based model shows relatively good results for the 9 and 12 months 

horizons (both in Relative MSPE and Directional Accuracy metrics), compared with the 

1, 3 and 6 months horizon. On the other hand, commodity price-based model shows good 

performance for the 1 and 3 months horizons (from both error metrics), while for the other 

horizons in analysis there are good results only for Directional Accuracy (Relative MSPEs 

are above 1). 

 

A.4 Forecast methods based on monthly future prices and surveys 

 

Alquist et al. (2013) performs a vast review on how to forecast the crude oil price. 

Within this work, models of both real prices and nominal, and for both short and long 

horizons are reviewed. Among the forecasts associated with nominal and short-horizon 

prices, models based on monthly future prices and those that take the surveys forecasts of 

this nominal price of WTI are found.  

A.4.1 Data 

 

For the methods based on monthly future prices the forecast evaluation period is from 

January 1991 to December 2009, this means 19 years of data. 

On the other hand, the survey based forecasts uses another set of data, that is different 

for every forecast. The fist source is Consensus Economics (CE), and the evaluation 
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period on this forecast is from October 1989 to December 2009, this means more than 20 

years of data.  

A.4.2 Model 

 

This work presents 18 different forecast methods based on monthly future prices. 

Following it shows two of them: simple monthly-futures and the monthly-futures spread 

model 

 

Simple monthly-
futures model $	p !"#|!	

=&>
= V!

# 

Monthly-futures 
spread model $	p !"#|!	

=&>
= $!

=&> å1 + u-	3/ X
V!
#

$!
=&>[ç 

 

$	p !"#|!	
=&>

 denote the forecast of oil for ℎ periods ahead, using data through time 0. $!
=&> 

is the current real price of oil. V!
# is the current WTI oil futures price for maturity ℎ and u-  

it’s an estimated parameter from the model. 

Regarding the forecasts methods based on the CE survey, they use the arithmetic mean 

at their relevant horizons (three and twelve months): 

$	p !"#|!	
=&>
= $!,#

H. 

Where $!,#
H. denotes the arithmetic mean of the forecasts made by the firms for the 

specified period 0, for ℎ periods ahead. 

 

A.4.3 Results 

 

Using the described models, they report the Relative MSPE and the Success Ratios 

for horizons up to 12 months. 
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Table A. 3: Forecast accuracy for methods based on monthly future prices and surveys for the nominal 
WTI price (Alquist et al., 2013). 

Horizon 
(months) Error metric 

Model 

Simple 
monthly-futures 

Monthly-
futures spread 

CE Survey 
based 

h=1 
Relative MSPE 0.988 0.995   

Success Ratio 0.465 0.531*   

h=3 
Relative MSPE 0.998 0.990 1.519 

Success Ratio 0.465 0.474 0.447 

h=6 
Relative MSPE 0.991 0.978   

Success Ratio 0.509 0.535   

h=9 
Relative MSPE 0.978 0.989   

Success Ratio 0.548 0.553   

h=12 
Relative MSPE 0.941 1.052 0.944 

Success Ratio 0.557* 0.528 0.539* 
Boldface indicates improvements on the no-change forecast. ** denotes significance at the 5% level and * 

at the 10% level, based on the Diebold and Mariano (1995) test of equal predictive accuracy and the Pesaran-

Timmermann test (2009) test of the null hypotesis of no Directional Accuracy. 

 

Regarding the Relative MSPE, between the first two models under analysis (associated 

with monthly futures prices), we can see that the simple model of monthly futures has 

slightly better results for the horizons in analysis, being - for both models - this ratio less 

than 1 (except for the second model, within 12 months). Meanwhile, regarding the success 

rate, there is no clear superiority of either, but from 6 months on it is above 0.5. This, 

unlike the horizons equal to 1 and 3 months, where the only favorable result is for the 

second model for the one month horizon. 

Regarding the performance of the CE survey based model in analysis, the results for 

the 3 month-horizon is quite unfavorable in both Relative MSPE and Directional 
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Accuracy. This, unlike the results obtained for the 12 month-horizon, where both metrics 

reflect a good performance compared to the no-change forecast. 

 

A.5 Constrained Predictive Regression  

 

Using regressions of economic variables to predict the price of oil is very usual, but 

the interesting thing about this work (Wang et al., 2015) lies in the use of three restrictions 

according to the analysis of in-sample relations between real oil prices and its predictors. 

The first restriction is based on the economic theory while the second one is based on the 

statistical significance of regression coefficients. The third restriction is the combination 

of both economic and statistical restrictions.     

A.5.1 Data 

 

The sample data span the period from July 1986 through July 2013. Of this, the initial 

sample period covers the first 5-years, while the out-of-sample period covers the 

remaining 265 months. This represents 22 years of evaluation data. 

A.5.2 Model 

 

The standard predictive regression model can be written as: 

f!"# = s& + u& ∗ G&,! + â& ∗ f! + è!"# 

Where f!"# is the real oil price, ℎ is the forecasting horizon, G&,! is an independent 

variable and è!"# is the disturbance term with the standard Gaussian distribution. The out-

of-sample forecast is given by: 

fê!"# = sIt + u-& ∗ G&,! + â"& ∗ f! 
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Where fê!"# is the real oil price forecast, sIt , u-& and â"& are the ordinary least squared 

(OLS) estimates of s& , u& and â&, respectively. 

They use 9 independent variables to predict: oil futures prices, global oil production, 

global economic activity, changes of oil inventory, US oil imports, US petroleum 

consumption, crack spread, non-energy commodity index and a speculative index. 

A.5.3 Results 

 

Table A.4 reports both Relative MSPE and Directional Accuracy out-of-sample results 

for 1, 6, 12 and 18 months horizons.  

 

Table A. 4: : Forecast accuracy of the constrained regression model developed by Wang et al. (2015) for 
the real price of WTI. 

Horizon 
(months) Error metric Constrained regression 

model 

h=1 
Relative MSPE 0.985 

Success Ratio 0.496 

h=6 
Relative MSPE 1.292 

Success Ratio 0.515 

h=12 
Relative MSPE 0.943 

Success Ratio 0.598*** 

h=18 
Relative MSPE 0.941 

Success Ratio 0.585*** 

Boldface indicates improvements on the no-change forecast. *** denotes significance at the 1% level based 

on Pesaran-Timmermann test (2009) test of the null hypotesis of no Directional Accuracy. 
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The model outperforms the no-change forecast on two of the four in-analysis horizons 

in terms of both error metrics (12 and 18 months horizons). For the one-month horizon, 

the constrained regression model report a Relative MSPE ratio below 1, but the Success 

Ratio is below the desirable level. Regarding the six months horizon, its Relative MSPE 

is above 1, but the Success Ratio is above 0.5 for this horizon. 

 

A.6. LASSO regression method 

 

The LASSO model (Miao et al., 2017) is an innovative variable selection method and 

has found application in the energy area (electricity consumption, electricity prices and 

natural gas prices). The model uses 26 potential predictors that are classified into six 

groups: supply factors (global crude oil production, OPEC surplus crude oil production 

capacity, US crude oil closing stock, among others), demand factors (growth rate of China 

real GDP, world steel production, ISM manufacturing index, among others), financial 

factors (three month U.S. Treasury bill rate, S&P 500 Index, among others), commodity 

markets factors (S&P GSCI Non-Energy index and CRB Raw Materials Index), 

speculative factors (ratio of trading volume of oil futures contracts to global oil 

production) and political factors (total amount of terrorist attack in the Middle East and 

North Africa). 

A.6.1 Data 

 

The data spans the period from January 2002 to September 2015, and the model is 

estimated over various fixed length rolling windows (5, 6 and 7 years), we will present 
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the 5-years rolling window results. They do not provide an out-of-sample analysis, so we 

are not going to use their results as a benchmark. 

A.6.2 Model 

 

The LASSO model selects the variables by adding a penalty term to the cost function, 

allowing the estimated value of the regression coefficients small. Once the variables are 

selected, the model minimizes the residual sum of squares subject to the sum of the 

absolute value of the coefficients being less than a constant (D), which controls the degree 

of shrinkage that is applied to the estimates: 

uJë = 4@{e5/ í~åf& − s −~u&,? ∗ G&,?

@

&A,

ç

(@

&A,

ì 

Subject to: 

~|uKJë|

L

?A,

≤ D	(\?/B04/0) 

In order to obtain a pre-determined sequence of LASSO solutions, they use a 

computationally efficient method, all the other LASSO solutions are obtained by linear 

interpolation form the sequence of LASSO solutions. 

A.6.3 Results 

 

Table A.5 reports both Relative MSPE and Directional Accuracy in-sample results for 

1, 2, 4 and 8 months horizons.  
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Table A. 5: Forecast accuracy of the LASSO regression model developed by Miao et al. (2017). In sample 
results for the 5-years rolling window. 

Horizon 
(months) Error metric LASSO 

h=1 
Relative MSPE 0.924 

Success Ratio 0.572 

h=2 
Relative MSPE 0.911 

Success Ratio 0.533 

h=4 
Relative MSPE 0.896 

Success Ratio 0.544 

h=8 
Relative MSPE 0.873 

Success Ratio 0.562 

Boldface indicates improvements on the no-change forecast. Statistically significant reductions in the MSPE 

according to the Diebold and Mariano (1995) test and statistically significant improvements in Directional 

Accuracy according to the Pesaran-Timmermann test (2009) are marked using * (10% significance level), 

** (5% significance level) and  *** (1% significance level) respectively. 

 

 

Relative to the no-change and futures-based models, LASSO forecasts at the 8-step 

ahead horizon yield significant reductions in MSPE with a ratio of 0.87, while the most 

impressive Success Ratio is above 0.57 (one-month horizon). 
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Appendix B: Parameters 
 

In the following Appendix,  we present the parameters obtained after the calibration 

process and used to make forecasts using the indicated years of data. 

 

Table B. 1:  Parameter estimates for the 3-factor model. 

Parameter 
Calibration Data Years 

2007-2008 2007-2009 2007-2010 2007-2011 2007-2012 

A11 0.000 0.000 0.000 0.000 0.000 

A12 -0.043 -0.093 1.441 1.414** 1.391** 

A13 -0.010 0.565 0.566 0.595 0.606 

A22 1.919*** 0.244* 3.831* 4.406** 3.987** 

A23 1.190 0.214 -0.265 0.612 0.648 

A33 0.241** 1.718*** 1.082*** 0.583*** 0.559*** 

Λ11 -0.018*** -0.002 0.000 -0.009*** -0.014*** 

Λ12 -0.024 0.067 -1.527 -1.374** -1.307** 

Λ13 -0.006 -0.642 -0.662 -0.582 -0.573 

Λ21 -0.056** -0.034* -0.011 0.002 0.000 

Λ22 -1.077*** -0.035 -3.089 -3.125 -2.710 

Λ23 -0.785 -0.420 0.744 -0.130 -0.173 

Λ31 -0.055* -0.036*** -0.022 -0.003 0.006 

Λ32 0.643*** 0.010 0.532*** 0.347 0.329 

Λ33 0.444 -0.698*** -0.118 -0.279 -0.275 

h1 0.13*** 0.122*** 0.29*** 0.258*** 0.23*** 

h2 0.694*** 0.252*** 0.008 0.323*** 0.309*** 

h3 0.178 0.711*** 0.416*** 0.409*** 0.385*** 

λ1 -0.061 -0.047 -0.017 0.015 0.049 

λ2 2.682*** 1.5* -0.111 -0.306 -0.317 

λ3 1.515 1.476*** 0.172 0.162 0.045 

b1 -0.713** -0.135 -0.18*** -0.195* -0.247* 

σf 0.006*** 0.007*** 0.005*** 0.007*** 0.006*** 

σe 0.129*** 0.126*** 0.123*** 0.143*** 0.143*** 
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Table B.1 (cont.) 

Parameter 
Calibration Data Years 

2007-2013 2007-2014 2007-2015 2007-2016 2007-2017 

A11 0.000 0.000 0.000 0.000 0.000 

A12 1.718*** 0.098 -0.049 -0.116 1.986** 

A13 0.623 -0.043 -0.132 3.634** 0.409 

A22 3.061** 0.710 0.331* 0.43*** 2.276*** 

A23 0.570 1.499*** 1.674*** -0.351 0.609 

A33 0.544** 0.349 1.45*** 2.158*** 0.748*** 

Λ11 -0.015*** 0.000 0.012 -0.001 -0.027 

Λ12 -1.616*** -0.097 -0.004 0.067 -2.008** 

Λ13 -0.581 0.184 0.237 -3.579** -0.401 

Λ21 -0.014 -0.063*** -0.082*** -0.07*** -0.169*** 

Λ22 -1.792 -0.303** -0.146 -0.221* -1.097 

Λ23 -0.105 -1.001 -1.647*** 0.361 -0.112 

Λ31 0.014 -0.007 -0.063*** -0.095*** 0.011 

Λ32 0.292 0.473 0.098* 0.124** 0.314 

Λ33 -0.251 1.052*** -0.053 -0.786* -0.317 

h1 0.228*** 0.142*** 0.078*** 0.081*** 0.144*** 

h2 0.337** 0.359*** 0.319*** 0.317*** 0.416* 

h3 0.382*** 0.180 0.526*** 0.512*** 0.467** 

λ1 0.007 -0.061 -0.751 -0.229 0.781 

λ2 0.000 2.003*** 4.874*** 4.267** 5.249*** 

λ3 0.000 -0.003 3.527*** 5.336*** 0.000 

b1 -0.316** -0.042 -0.002 -0.212 -0.142** 

σf 0.006*** 0.006*** 0.006*** 0.006*** 0.006*** 

σe 0.146*** 0.146*** 0.141*** 0.133*** 0.129*** 

Notes: Significance levels are given by ***1%, **5% and *10%. Each column –  after the parameter 
column – represents one set of parameters, obtained after the calibration process with the indicated years. 
The forecast that use each set of parameters is made for the following year after the calibration set of 
years. 

As anticipated, the amount of data increases, starting from two years, to eleven years. 

For example, the column “2007-2013” contains the set of parameters obtained using seven 

years of data (from January 2007 to December 2013), and they are used to generate the 

forecast for 2014 (from January to December, both included). 


