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Introduction

In this thesis, we will be interested in the dynamics and questions related to the algorithms
of different numerical systems. We understand a numerical system as a way of writing a
real number x. We can find, associated with a numerical system, a set of digits necessary to
construct that writing. For example, our decimal system daily used has {0,1,...,9} as the
set of digits. In the algorithm of the expansion we can find associated to it, a map T" (usually
defined on the interval [0, 1]). The dynamics of 7" will allows us to recover the writing of
some x as well as the set of digits.

On the other hand, there are examples of properties in number theory which holds for a
full Lebesgue measure set, hence the set of numbers that do not satisfy such property have
zero Lebesgue measure. We will be interested in describing the size of particular sets which
are number-theoretically defined, where size means the Hasudorff dimension. The ergodic
properties of T" will be useful to our purposes by means of thermodynamic formalism.

The structure of this thesis is the following. In Chapter 1, we will review all the nu-
meric expansions used along the whole text: continued fractions and generalizations, base-b
and Cantor expansions, and finally, Liiroth and ()- Liiroth expansions. We take advantage
of any expansion introduced to study dynamical and ergodic properties of the associated

transformation. As an example, for any k > 0, the dynamics of the interval map defined by

L)~ HL= D) [

T

k(1 —;c)]

X

1



allows to construct expansions of the form

a1+k‘+
k
a2+k+_

called k-continued fractions. Note that, when & = 1 we recover the Gauss map. The T}
maps were previously considered in [HM]|, where the authors studied a more general class of
Moébius transformations. Also, a linear version of the map 7T} is contemplated in Chapter 1.

The k-Liiroth maps Ly : [0, 1] — [0, 1] defined as

n+k+17 n+k

0, ifx=0

guarantees the expansion of suitable z € [0, 1] in the form

o0 k”
i S ey Py e P P Y R ST PR

n=1

In general, note that a numerical expansion is essentially defined by the common arithmetic
structure (which is the same for all x). Moreover, the sequence of digits and their positions
added to the structure of the expansion, characterizes (up to a countable set) the expansion
of any real number. From a dynamical point of view, that last means that both maps T}, and
L, are modeled symbolically by a fullshift on countable symbols. The fullshift with alphabet

A C Ny is defined by the pair (X4, 0) where

Ya:={(xn)nen, : Tn € A}

and o : ¥4 — Y4 is the shift-map o(zg,x1,23,...) := (21, 22,...). The elements of A

1l



are called the symbols. We have that this space endowed with the topology generated by
cylinders is a non-compact space. That will be one of the main difficulties on the thesis,
since ergodic theory on non-compact spaces is more subtle than the compact case.

In Chapter 2 we collect main properties of thermodynamic formalism, a branch of ergodic
theory which has been vastly studied during the last fifty years. It allows, among other things,
to choose a remarkable kind of invariant measures. We will follow mainly [Sarl, MU2| [Wall.
One of the fundamental objects in this context is the pressure map defined as follows. If

¢ Xy, — R satisfies some regularity assumptions, then the pressure of ¢ is

n—1
1 ,
P(p) = lim ~log ¥ Y el
() Jim -~ log exp (izo (o x))

ohr=x

when the limit exists. Pressure function and its properties can be applied to dimension
theory. For instance, and as we will see in Chapter 3, it allows to describe the Lyapunov

spectra for the T;, maps. In other words, we show that the function
1
a — dimy {x €[0,1] : lim —log |(T,§n))’(x)| = a}
n—oo N,

has a domain of the form [api,, 00), and moreover, it is real analytic there (see Theorem
. It is important to note that the results obtained in Chapter 3 are highly supported
by those from [Ioml|, where the author studied the Lyapunov spectra for a larger class of
interval maps.

In the case of Liiroth maps L;, the Lyapunov spectra is also analytic in some interval of

the form [aF ,,, 00). Note that we have a family of real analytic curves indexed on k > 0. In
Chapter 4, we will interested in the behavior of this family of curves when the dynamics is

perturbated. In fact, we show the following theorem.

Theorem (Theorem [4.3.2)). Let M > 0 and fix o > 0 such that the Lyapunov spectra for Ly,

v



is defined on «, for all k € (0, M]. Then, the function

(0,M] - R

1
ks dimy { € [0,1]: Tim log [(T™) (2)] = a}

n—oo N

15 real analytic.

From the dynamical systems point of view, this theorem describes how does the multi-
fractal spectrum of Lyapunov exponents varies along a one parameter family of dynamical
systems. On the other hand, we show in fact that Lyapunov exponents are measuring the
speed of approximation of the partial sums involved in the Liiroth expansion. Therefore,
this theorem characterizes how does the size of the set of points with same speed of approx-
imations by their n-approximants varies in the different numerical systems provided by the
k-Liiroth.

Further in Chapter 5, we will study normality in a new numeric expansion inspired in
Cantor series [Can|. Let Q = {g,}n>1 be a sequence of positive real numbers ¢, > 0. Consider
the family of Liiroth maps Lo = {Lg, }n>1. We define the non-autonomous dynamical
system generated by the sequence. In other words, the orbits of some z € [0, 1] are given by
Lg(z) := Ly, 0 Ly, , 00 Ly (x) for n > 1. Again, for suitable z, we have the expansion

(see Section 1.7 for further details)

mzi 4192 qn
(a1 =1+ aqg)(ar+q) - (an —1+4qy)

n=1

for some unique sequence of positive integers {a, },>1. We say that x € [0,1] is normal with

respect to the @Q-Liiroth expansion, if for every a € N,

lim #{1§i§n:ai(az):a}:

1
n—oo Z?:l |Ign‘




where ¥ := [ﬁ, nLJrk) . We prove the following theorem which is an analogous to the

Borel’s theorem on normal numbers (see Section 1.1).

Theorem (Theorem [5.3.1)). Let Q = {qn}n>1 be a sequence of positive real numbers. Then,
Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Liiroth expansion

if and only if for all a > 1, the series ) |I"| is divergent.

The main difference with the autonomous case is that there is no similar result to Birkhoff
ergodic theorem for non-autonomous dynamical systems. We follow the probabilistic tech-
niques used in [Man2, [Rén, [Rév| where the authors reached comparable results in the context
of Cantor series. In addition, using tools from thermodynamic formalism in the setting of

non-autonomous dynamics [RGU], we prove the following theorem.

Theorem (Theorem [5.1.2). The set of non-normal numbers in the Q-Liroth expansion has

Hausdorff dimension equal to one.

Finally in Chapter 6, we will deal with part of fractal analysis of the derivative of con-
jugacies between any two maps Ty, , Ty, for ki, ko > 0. Let us explain about this. Recall
that for every k£ > 0, the map T}, is topologically conjugated to the full-shift on countable
symbols. Denote by 7 this conjugacy. Note that 7 acts sending any coding (z,)n>1 € X,
to the k-continued fraction expansion [z1, xa, .. .. Then, given two positive numbers ki, ko,
we can construct a function 7, k, : [0,1] — [0,1] defined by m, o !. Note that m, x,
sends any continued fraction of the form [z, za, .. ]k, to [x1, 22, .. ]k, We will be interested
in the derivative of 7y, r,. In particular, we will prove that it is a singular function, which
means that, 7y, r, is non-constant and 7, , (x) = 0 holds Lebesgue a.e. in [0, 1]. So, from a
dimension theory point of view, the following problem can be posed: finding the Hausdorff
dimension of the sets

Dy = {z € [0,1] : mp, 4,(x) = o0}

vi



and

D.:={x €[0,1] : m}_ ;,(x) does not exists}.

In the literature, we can find similar questions in different contexts. For example, in
IKS1, Mun| the authors studied the Hausdorff dimension of those sets for the Minkowski’s
question mark function, which is the conjugation between the Farey map and the Tent map.
See also [JMS], where were considered for conjugacies of maps that converge pointwise to
some map on the interval. In all of these articles mentioned, thermodynamic formalism tools

has been used. In our case, we obtain the following theorem.

Theorem. Let kq, ke be two positive numbers. Then the sets Do, D~ defined as above have

the following Hausdorff dimensions:

1/2 < dlmH(Doo) = dlmH(DN) = 50 <1

where

(50 = SUp{5 € (1/27 1] : fOT all q € Rap<qw - 610g ’TIQJ) > O}

Here P(-) denotes the pressure function associated to Tj,.
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Chapter 1

Classical Numeric Expansions

A numeration system encompasses a way of representing a number. The base
10 numeric expansion is the most widely used numeration system and it has
several advantages that, aside form the fact that we have 10 fingers, has es-
tablished it as the standard representation. It is simple to perform arithmetic
operations in base 10 as we learn from an early age. There are simple analogues
of this system in which the base 10 is replaced by other positive integer b. An-
other well known numeration system, based on the Euclidean algorithm, is that
of continued fractions. This system has the advantage that several arithmetic
properties, such rationality or wrrationality, are readily seen in the expansion.
It also provides, in a simple fashion, the best rational approrimations of an ir-
rational number. However, performing simple arithmetic operations is rather
difficult. While these are the best known numerical systems there exists a wide
range of other systems with particular features. In this chapter we will not only
survey base b and continued fraction expansion, but we will also study Liroth
and Cantor expansions. Moreover, central to the study developed in this thesis

will be generalizations of these systems such as the k-continued fractions and



the Q-Liiroth expansions. The later one, introduced by the author in [Conly.

A common feature to all of these numeration systems is that it is possible
to associate them a (maybe non-autonomous) dynamical system. Iterations
of the system provide a way to obtain the representation. More interestingly,
the whole theory of dynamical systems can be used to describe in detail the
properties of each numeration system. A classical example along these lines is
the simple proof of the Borel Theorem of Normal Numbers provided by Riesz
as a direct application of the Ergodic Theorem.

In this chapter we present different numeration systems and the dynamical
system associated to the them. This will pave the way to a deeper study of the

arithmetic properties of the numbers and their representations.



1.1 Base-b expansions

Let b > 2 be an integer. Every real number x can be written in base-b as a the series

oo

€n (33)
bn

n=1

xr =

where, for all n > 1,¢,(z) € {0,1,...,b—1}. We call ¢,(z) the digits of the expansion of
x in the base-b expansion. A very well known fact is that the base-b expansion is closely
related to the dynamics of the map T : [0, 1] — [0, 1], defined by Ty (x) := bz — [bx] = {bz},
where [-] denotes the integer part of a number. Observe that digits in the expansion of a
number z can be obtained by the formula e,(z) = [bT}" ' z].

There is a wide range of interesting questions that the relation with dynamical systems
suggest. We will begin with that of the frequency of the digits. Given a set A, we denote its

cardinality by #A.

Definition 1.1.1. Let b > 2 be an integer and z € R. Given d € {0,1,...,b— 1}, we call

the frequency of appearance of the digit d in the base-b expansion of x, to

fo(z,d) := lim l#{1 <1< n,e(x)=d},

n—oo N

whenever the limit exists.
From the formula ¢, (x) = [bT}*'z], we have that the frequency of appearance of d can
be written as the following average
n—1

1 i
fb(mv d) = nh—>r20 E ZO ﬂfd(Tbx>7

where 14 denotes the characteristic function of some set A and I; = [d/b, (d + 1)/b). Thus,

the frequency can be seen as an average of the characteristic function 1;, along the orbit of

3



x under the map Tj. Such expressions are called Birkhoff averages and actually are one of
the main objects in Ergodic Theory. In 1931, G. Birkhoff proved one of the most important
results of this theory that now bear his name. The Birkhoff ergodic theorem proves that,
under an ergodicity assumption, the time averages coincide with the space average of the
system. It will be useful to understand the behavior of the function fy(z,d). Before to state

the theorem, we recall some definitions. Let (X, B, i) be a probability space.

Definition 1.1.2. A map T : X — X is called measure preserving if T is measurable and

u(T—1A) = p(A) for all A € B. When this occurs, p is called a T-invariant measure.

As an example, for any positive integer b, the map T} preserves the Lebesgue measure.
From now on, |A| will denote the Lebesgue measure of a Borel subset of R. In fact, if

(¢,d] C [0,1], then

T_l(c’d]:bLj(cgi’d;i]

1=0

and then we have that |[T7(c,d|| = |(c, d]|.

Definition 1.1.3. Let 7' : X — X be a measure-preserving transformation with respect to
p. We call T ergodic if for any B € B such that T-'B = B then we have that u(A) =
0or u(B) =1

The map Ty, is ergodic with respect to the Lebesgue measure (see [Wal, p. 30]).

Theorem 1.1.1 (Birkhoff, 1931). If T': (X, B,u) — (X, B, ) is an ergodic map and f is

pu-integrable, then for p-almost every x € X,

n—1
1 .
lim — g f(T'z :/ fdpu.
n—0o00 1 P ( ) X

We have now the following corollary regarding the frequency of appearance of a digit d

in base-b expansions.



Corollary 1.1.2. For any digit d € {0,1,...,b— 1}, we have that

folw,d) = lim ~4{1 <i < n,ei(x) = d} = %

n—oo 1

for almost every x with respect to the Lebesque measure.

Proof. This is a direct consequence of Birkhoft’s ergodic theorem. Since

n—1

1 Z-
folz,d) = lim - Z; 1,(Tyx);

the integrability of x;, and the ergodicity of 7} with respect to the Lebesgue measure, we

have that, fy(z,d) — f[o,u x1,(z)dz = 1, for Lebesgue-almost every point z € [0, 1]. O

This simple consequence of the Birkhoff’s theorem is coherent with classical work by
Borel [Bor|. Indeed, in 1909 Borel defined the notion of normality: a number x € R is called
normal in base b if fy(z,d) = 1/b for every digit d € {0,1,...,b}. Hence, Corollary

can be rephrased as the form of Borel’s theorem on normal numbers:
Theorem 1.1.3. Lebesgue-almost every number x € [0, 1] is normal.

Typically in = any digit appears with frequency 1/b in the expansion. So, a natural
question can be posed: are there points =z € [0,1] for which fy(z,d) # 1/b, when d €
{0,1,...,b — 1}? The answer is positive, and it is not difficult to construct such kind of

numbers. For example, in base 4, if x is defined by

€ar1(2) =0, egpro(x) = €1 () = 35 egppa(z) =2

for all k& € Ny, then we have that fy(x,0) = 1/4, fy(z,1) = 0, fa(x,2) = 1/2 and f4(x,3) =

1/4. Moreover, in |Bes, [Egg| the authors gave an explicit formula for the “size” of the set of



points having a prescribed vector of frequencies. Since any of these set is of null Lebesgue

measure, we mean “size” by the Hausdorff dimension .

1.2 Cantor expansions

In 1869, Cantor [Can| generalized the notion of b-expansion in the following direction. Let
B = {b,}n>1 be a sequence of integers each of which is greater than 2. Cantor showed that

every real number x € [0, 1) can be written as infinite series of the form

0o cn
x:;blbg"'bn7

with ¢, € {0,1,...,b, — 1}. Observe that if for every n € N we have b, = b then we recover
the base b-expansion. As in the case of base b—expansion, the Cantor series is related to a
dynamical system. However, in this case it is a non-autonomous system. Indeed, consider

the maps defined in [0, 1] by Ty, () = {b,x}. The iteration is defined by
Tg(l’) = Tbn ] Tbn—l o0---0 Tb1 (l’)

The dynamics is, therefore, obtained applying different maps 7}, at prescribed times. Note
that, as in the case of the base b—expansion, we have ¢, = [b,T’ g_l]. Unfortunately, there is
no analog of Birkhoff’s ergodic theorem for non-autonomous systems. Therefore, questions
related to frequencies of digits as Corollary or Theorem [I.1.3] cannot be solved by
means of Birkhoff averages. For instance the question about normality in this setting has
to be addressed with different methods. It was actually shown by Renyi [Rén| the following

result.

Theorem 1.2.1. Lebesque almost every number is normal for B = {b,}n>1 if and only if

Zle 1/b, = o0



More recently, constructions and properties of normal numbers for Cantor series have

been studied by Mance [Man2].

1.3 Continued Fractions

This section is devoted to the study of continued fractions and their properties. We start

recalling some definitions. We follow [EW] [Kin)|.

Definition 1.3.1. Given a sequence of positive integers {a,}nen, we define a infinite con-

tinued fraction (or simply, continued fraction) as the formal expression

1
1
ay +
1
a2 + ag _|_ e
which will be denoted by [ay, as, as,...]. A finite continued fraction is given by the rational
number
1
lay, a0, as, ... a,) = (1.3.1)
1
a; +
1
Qg + -+
1
Gp—1 + —

A priori, the concept of infinite continued fraction is merely formal since an infinite

iterative process is implicitly involved. Moreover, the last definition suggests thinking infinite



continued fraction as a limit of finite continued fractions. We will see that indeed this is

true.

Lemma 1.3.1. Let {a,}nen be a sequence of positive integers. For n > 1 let p,,q, the

coprime numerator and denominator of the irreductible fraction

Pn
n

SR E IS
dn  Gn-1 I 0|1 O 10 o

with py := ag and qy := 1.

= [al,ag, e ,an].

Then, for alln > 1

Proof. [EW, p. 71]. O

Let [a1, as, .. .] be a a continued fraction. For all n > 1, a, is called a digit of the continued
fraction and p,/q, is called a convergent of the continued fraction. The next proposition

summarizes some properties about digits and convergents.

Proposition 1.3.2. If p,,/q, are the convergents associated to [ay, as, . ..], then for alln > 1,

we have the following properties
1. Dnt1 = Gny1Pn + Pn—1
2. Qnt1 = Gny1Gn + Gn—1
3. Pnn-1 = Pn1gn = (=1)""
4. pn > 2007272

5. qn > 2007272,



Proof. [EW], p. 71]. O
It is possible to show from the Proposition that a continued fraction defines a real

number. More precisely, we have that

Pn . (_1)n+1

la1,as,...] = lim[a,as,...,a,] = lim — = E
n—00 n—oo (y, 1 Gn—19n

where the last serie is absolutely convergent [EW] p. 72].

Definition 1.3.2. The Gauss map is the function G : [0,1] — [0, 1] defined by G(0) := 0

and

for x # 0.

Figure 1.1: Graphic of Gauss map

The interaction between the Gauss map and continued fractions is explained in the next

proposition. More details in [HW| p. 135, continued fraction algorithm|.
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Proposition 1.3.3. If z € [0,1] \ Q then the digits of the expansion in continued fractions

of x are given by
1
o = [—} >l

Proof. [EW, p. 78|. O

We now study ergodic properties of G. In contrast with the base-b maps T}, the Lebesgue

measure is not invariant for the Gauss map. In fact, we have that

G_l(o’%) ::[j (2ni—1_-%)

n=1

and
1 1
-1 — ) =2—-2log2 # -

However, Gauss proved that there exists a G-invariant measure absolutely continuous with
respect to the Lebesgue measure, that we now call the Gauss measure, defined for any Borel

set A C [0,1] by

1 dz
Ha(4) = log2/Ax+T

Theorem 1.3.4. The Gauss map preserves the measure pg and it is pg-ergodic.

Proof. [EW, p. 77-79]. O
The ergodic theorem implies the following results. For a proof see [EW] p. 82].

Corollary 1.3.5. For Lebesgue almost every x = [ay, as, ...] € [0,1] we have that

1. Any digit d € N appears with frequency

(d+1)?
log (d+2)

10



2. The arithmetic averages of the digits diverges

3. The exponential growth of the denominators is given by

7T2

1
lim —logg,(z) = 1.3.3
Jim - 10g ga(x) 1210g 2 (1.3.3)
4. The exponential speed of approximation by the convergents is
1 n 2
lim —log |z — 22 = -~ (1.3.4)
n—oo N Gn 6 log 2

The right side of is known as the Kintchine-Lévy constant. The name of Kintchine
comes since he proved in 1935 that the limit in is constant almost everywhere and
Lévy gave the explicit expression for that limit. On the other hand, the identity says

2

that convergents approaches to x with speed of approximation e "Elog? Nevertheless, it is

possible to extract more dynamical information from m (see Chapter 3 for further details).

1.4 Generalized Continued Fractions

In this section we will study a family of maps defined in [0, 1] which generalize the Gauss
map G. From the dynamics of each map a new continued fraction expansion of z € [0, 1]

arises. We follow [HM].

Definition 1.4.1. A 2 x 2 matrix

C:

a b
c d
with real entries and determinant ad — bc = £1 acts on the Riemann sphere C U {cc0} as a

11



Moebius transformation by

C(z) := a;—:_bdc, C(o0) = % and C(—d/c) = 0.

Remark 1.4.1. Given an interval I C R and a matrix C' with the conditions established in

Definition we denote by C1 the set CI :={Cx:z € I}.

For k > 0, we will consider the matrices

k. =k
Ak:@%ﬁ]
-

and the family of Moebius transformations parametrized by k, given by

k(1 —z)

Then we can consider the corresponding family of transformations 7T} : [0, 1] — [0, 1], defined
by T5(0) = 0 and
Ti(x) = Ag(x) — [Ax(z)],

for = # 0. Each map T}, is called Gauss-like transformations. If we denote the fractional part
of a real number w by (w) = w — [w], then we shall be writing Ty (z) = (Ax(x)). We stress
that this is in fact a generalization, in the sense of that we can recover the Gauss map when
k = 1. Figure [1.2] shows a comparison between the graphs of T} for three values of k with
respect to Gauss map.

We now define the k-continued fraction. For k > 0, the set of k-digits is defined as
Dy ={l €Z:[Ax(x)] = for some x € (0,1)}.

Remark 1.4.2. Tt is not difficult to prove that D, = Ny for all £ > 0.

12



Figure 1.2: Graph of T, when k = v/3, %, 5 respectively. The black graph is that of Gauss
map.

Definition 1.4.2. Given any finite sequence of integers in D; we define the cylinder of level

n as the subset of [0, 1] given by

11
AM = A 'BYA B ... A B (0,1), with B = ( ) .

al1ag...an 0 1

In [HM], the authors proved the following proposition.

Proposition 1.4.1. For each n > 1, we have the following properties related to the cylinders

of level n,

1. The cylinders Afﬁ?}z_,,an are the mazimal open subintervals of (0,1), on which the n-th

iterate of Ty, is a homeomorphism.
2. On each Ag’f@.,,am the map T}, acts as a shift, that is, TkA((ﬁleman = Afl’;;;?,an.

3. T} restricted to the cylinder of level n s equal to the Mdobius transformation C,, given

by
C,=B"%"A,---B A,

which maps AT), o, onto (0,1).
Proof. [HM, Propositions 1, 3. O

13



Definition 1.4.3. If a4,...,a, is a finite sequence of k-digits, then we define the finite

k-continued fraction expansion by

[a,ag, ... ,a,) = A "B A - AT B A (00) = O P A (00).

Consequently, if we write

ClAT = [p’“ T"] (1.4.1)
4n  Sn
then [ay, ag, ..., a,) = C; LA (00) = £2. We now define an infinite continued fraction.

Definition 1.4.4. Given a infinite sequence of k-digits {a,},en We define the infinite k-

continued fraction by the limit

la1,as,...Jr = lim [ay,aq,...,a,] = lim —.
n—oo n—oo qn

Remark 1.4.3. This last limit is well defined since the fractions IZ—Z are always a endpoint of

the closed interval A" which is a sequence of nested closed sets [HM, page 2856].

aiaz...an

As in the classical setting, we can partition de interval (0, 1) in cylinders at level n modulo

a countable set. Given n > 1, let Ql({n) be the set
Q,(gn) = {x €0,1] : TJ"(x) = 0 for some m < n}.

Proposition 1.4.2. For each n > 1

[07 1] = < U AEL??ag,...,(m) U Ql(cn)

ai,...,an €Dy,

Proof. [HM,, Page 2855, Proposition 2|. O
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Definition 1.4.5. We will call the set of k-rational numbers to the union

Q= J Q.
n=1

The complement of Qy, in [0, 1] is called the set of k-irrational numbers.

Proposition 1.4.3. Fach k-irrational x has a unique, infinite k-expansion in continued

fractions. We have k-expansion x = [a1, as, ..., ay,...] if and only if
T e At(;ll?az,...,an foralln > 1,

if and only iof
T z) € AY for alln > 1.
Proof. [HMJ, Page 2856, Proposition 3|. ]

Proposition allows to write a k-irrational x as a limit of k-rationals

. Pa
r = lim —.
n—oo qn

Definition 1.4.6. For each n > 1, the rationals éﬁ are called the convergents of the k-
continued fraction.

Convergents have similar properties that in the case of classical continued fractions. The

following proposition summarizes some of them which will be useful for our purposes.

Proposition 1.4.4. Let © = [ay,as,...] be a k-irrational. Then, the following properties

related to convergents are satisfied:

1. Pn = \/LE((an + k)pn—l + \/Epn—2)7 n > 2
2- dn = ﬁ((an + k>QTL—1 + \/EQn—2>a n 2 2
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3. sp, =kq, + \/Eqn—l
4. T = kpn + Vkpn_
5. [Putn—1 = @upu—1| = 77
Proof. This follow from Lemma 2; Propositions 4 and 5 of [HM] . O
Now, we relate the k-continued fractions with the transformations 7j,.

Proposition 1.4.5. If x = [ay, as, .. .|x is a k-irrational continued fraction, then we have
ay = [Ap(T} " (2))]

and

T = (1.4.2)

CL1+I€+

CL2+]€+

_I._
an, + k+ 17 (x)

for alln > 1.

Proof. By Proposition we have z = [ay, a, .. |p if and only if z € AT, 4, foralln > 1,
and this implies 7' (z) € A In particular, Ay(T"(z)) € B*(0,1) = (an, a, + 1) which
means a,, = [A,(T" (z))],n > 1. On the other hand, we have Ty (z) = {Ay(2)} = Ap(x)+a;.

Solving for z in this last equation we obtain

k
ar + k+ Typ(x)
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Now let suppose ([1.4.2)) for some n > 1. Since ap 41 = [Ax(T}(x))] then T (z) = m
Replacing in (1.4.2) we obtain the equality for n + 1. O

We conclude this section with a relation between k-continued fractions and their tails.

Given a k-irrational number x = [a1,ay ..., ay,...Jr € [0,1], we define its n'" tail by z,, =
[@ni1, @nya, .. k. The main property of the tail corresponds to the following proposition.
Proposition 1.4.6. Let © = [ay, as,as,...|x € I be a k-irrational. If x, = [api1, Gnro, - - i

denotes the n'"-tail of =, then

T = PnTni1 +pnan+1 + T
gnTn+1 + Qnan+1 + Sp

for alln > 1.

Proof. Using the definition of C;;1 A" we note that if j > 1 is an integer, then

Dn+j 14 |1
— O A
[CIn—i-j n+j*k 0
1
— A[;lBalA];lBag . A;lBanAllea"‘H . A];lBanJrjAI;l 0

1
— C;lAllea"-H . A;lBa"+jAlg1

:CqulBanH Pj-1(Tny1) rj_l(an)I [1]

¢-1(Tni1)  8j-1(Tni1)| |0

where pj_1(n+1), 7j-1(Tnt1), ¢—1(Tnt1), Sj—1(@n41) are the entries of the matrix Cj’lA/,;1 for

the continued fraction x,,.,. Therefore
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Pt PaPj—1(Tns1) + Pnlni1@i—1(Tng1) + rngi—1(Tng1)

Qn+j B @nPj-1(Tnt1) + Gnns19i—1(Tnt1) + 5nqi—1(Tny1)
Pi=1(*nt1)
- P gj—1(Tn+1)

Pi=1(@n+1)
qj—1(Tn41)

+ Pnln+1 + Tn

Gn + GnQan+1 + Sn

and we conclude the proposition doing 7 — oo.

1.5 Ergodic properties of 7; and their consequences

As the Gauss map, the T} transformations have dynamical and ergodic related to continued

fractions. In [HM] it was shown that there exists a measure absolutely continuous to the

Lebesgue measure for which each transformation 7} is ergodic.

Theorem 1.5.1. Let k > 0. The transformation Ty : [0,1] — [0, 1] preserve the measure u*

defined on Borel subset of [0,1] as

’fA:/ —
p(A) Rl

-1 . .
k“) . Moreover, ji* is Tj-ergodic.

where ¢, = (log =

We have the following consequences from Birkohft’s ergodic theorem.

Proposition 1.5.2. For allk > 0 and for Lebesgue almost every k-irrational x = [ay, ag, . .

[0,1],

lim /(a1 + 1)(az + 1) - (@, + 1) =

n—oo

oo < (Z—f—k’)Q logi/log(%)
)

o \(i+k)?—1

18
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1.5.1 Diophantine Approximation

The following proposition corresponds to a version for k-continued fractions of the classical

Dirichlet theorem.

Proposition 1.5.3. For each k-irrational number x € (0,1) the convergents IZ—: satisfy

Proof. [HM|, Corollary 1]. O
Also, the exponential growth of the denominators.

Theorem 1.5.4. For k > 0 and Lebesgue almost every all x € I we have

] E+1\ " 1
28 (1) ().

n—oo n

where Lo(z) = fzo Wdt is the Euler dilogarithm.

Proof. [HM| Theorem 4]. O

We know that one end point of the cylinder at level n is Z—:. From [HM| Proposition 5|,

it is possible to show that the other endpoint is

\/Epn + Prn—1
VEgn + qni

is given by

----- n

1

Pu  VEpy+pai| _
Qn(\/EQn + anl)

G Nk + Gn

N

a1,a2;..., an

As a corollary we obtain the exponential growth of the length of the cylinders.
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Corollary 1.5.5. For k > 0 and Lebesgue almost all x € [0, 1]

.1 n k+1\" 1
nhjEOE log |A((11 gy, | = —logk +2 <log ’ ) Lo <_E)
Proof. [HM, Corollary 2]. O

Finally, we finish this section with the exponential speed of approximation by convergents.

Theorem 1.5.6. For k > 0 and Lebesgue almost all x € [0, 1]

! 1
:—logk‘—i—2<logk—;;) £2<—E)

Proof. [HM, Theorem 5]. O

1
lim —log |x

k
_n
n—oo 1, 7’2

Remark 1.5.1. Note that, for k£ > 0 and Lebesgue almost x € [0, 1]

1
= lim —log|A™

n—oo M

log qy, 1
2 lim O8dn _ _ lim —log |z

n—o0 n n—oo N,

k

_&n ‘
k a1,a2,..., an
n

1.6 Liroth expansions and generalizations

In 1883, J. Liiroth [Liir] proved that every real number x € (0, 1] can be written in the form

R S 1 L
aq aq (a1 —1) a1 (a1 ) * Ap— 1((Ln 1 — ].)
_OO 1
—;al (ar — 1 (An-1 — 1) ay

where a,, > 2, for all n > 1. This expansion is called the Liroth series of x and the numbers
{an}nen are called the digits. Arithmetic properties of the numbers can be read from its

corresponding series, and moreover, it is closely related to the dynamical properties of the
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transformation L : [0,1) — [0, 1) defined by

nin+1)z—n ifzre|[25,1),neN

L(z) :=
0 it v =0.

If x has a Liiroth expansion with digits {a, },en then the following relation holds:

1 1
an = a1 (L™ (z for n>1, where ai(u):=n+1 if ve|—— —]).
(L) for n> () )
Partial sums in the Liiroth series of an irrational number x can be thought of, in analogy
to the continued fractions, as rationals approximations for the irrational number z. For

n > 1, denote those partial sums by p,/¢,, that is,

Po_ 1, ! 4+ !
dn a1 a1 (G1 - 1) a2 ] ((h - 1) A2 - Qp—1 (anfl - 1) Gn.

The number p,/q, is called n-th approzimant of x. We stress that the Liiroth map can be
thought of as a linear version of the Gauss map and that the Liiroth series is analogous to
the continued fraction expansion.

Note that L can be thought as a linear version of the Gauss map. Furthermore, linear
versions of T maps can be defined. For each k > 0, the k-Liroth map Ly : [0,1) — [0,1) is
defined by

k n+k+17 n+k

PR — (n 4 k), ifw € [, 75) n €N
Ly(x) := i
0. fz=0

Each k-Liiroth map induces a series expansion of every z € [0, 1] whose n-th iterated
Ly (x) different from zero, and a set playing the role of rational numbers in the Liiroth

expansion. Proposition m gives that if L} (x) # 0 for all n > 1, then we have the
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expansion

o0 k.n
i D ey ey s S v Y e Y e

n=1

where

an = ay (L} (z)),n > 1,

and

k k
ar(u) :==n+1ifue n+1—|—k:’n+k;)’n_0

Further details about k-Liiroth expansions, see Chapter [4]

1.7 Q-Liiroth expansions

This section introduces a new numeric expansion which combines the k—Liiroth maps and
the Cantor series expansion. Let @ = {¢,}.»>1 be a sequence of positive real numbers ¢, > 0.
Consider the family of Liiroth maps {L,, }n>1, that we will denote by Lg. This family of
transformations induces a non-autonomous dynamical system ([0, 1), L) in a similar way as
in Section [1.2] Indeed, the time evolution of the system is defined by composing the maps
L,, in the prescribed order given by the sequence () = {¢, }»>1. In other words, for all n > 1,

we define:

gn—1 qi-

L =1Ly, 0Ly, 0oL

The orbit of x € [0, 1] is the sequence {L,, (z)},>1. The Q-Liiroth expansion is given by the

following theorem.

Theorem 1.7.1. Each z € [0,1) such that L¢y(x) # 0 for alln > 0, can be expanded uniquely
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i a infinite series of the form

oo

Z q192 q
—t a1—1+(]1 (al—l—ql)---(an—1+qn)

_ qdn _
where a,, = [Lgl(w) qn] + 1.

See Chapter [5] for further details about @)-Liiroth expansions.
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Chapter 2

Thermodynamic Formalism

In this chapter we recall notions and results from Thermodynamic Formalism which is a
set of tools and methods brought into hyperbolic dynamics with great success in the early
seventies from statistical physics. It allows for the selection of relevant measures from the,
sometimes very large, set of invariant measures. It has been used as tool in the dimension
theory of dynamical systems at least since the work of Bowen in the 70s [Bouj, where the
author developed the theory on compact spaces and in particular for fullshifts on finitely many
symbols. Section 2.2 is devoted to this theory in the compact case, we will follow [Wall. On
the other hand, thermodynamic formalism for dynamical systems defined in non-compact
spaces has been studied and developed over the last 20 years. The particular case of the
fullshift on countable many symbols has been throughly studied, see [BS, [MUZ, [Sar2]. In
Section 2.3 we recall the main definitions and results. Finally, we apply the theory of Section
2 for the case of EMR maps, which are transformations of the unit interval [0, 1] modeled by
the fullshaft.
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2.1 Entropy

2.1.1 Metric Entropy

Let (X, A, p) be a probability space. A partition of X is a collection of measurable disjoint

sets whose union is equal to X.

Definition 2.1.1. The entropy of a countable (or finite) partition o of X is given by

==Y pu(A)logu(A

A€a

with the convention 0log0 := 0.

Given two partitions «, 8 we define their join by aV g :={ANB: A€ «a,B € g}. Also,
it T': X — X is a pu-invariant map and n > 0 is an integer, then we define T "« as the
partition 7 "a := {T""A: A € a}. It follows that H,(T "a) = H(a).

Note that if a, 5 are two partitions, then H,(a Vv ) < H, (o) + H,(B). Therefore, if
H,(a) < oo, then H,(\/'—y T-'a) < nH,(a) < oo, for all n > 0.

Proposition 2.1.1. Let o be a countable partition of X such that H,(a) < co. Then, the
limat

Ji 2 A, <\/ r “)
exists and it is equals to inf,, H, (\/?;01 T a).

Proof. [Wal, Corollary 4.9.1; p. 96, Remark 1| O

Denote the limit stated above by
h(T, ) : —Jl_)IgonH (\/T 04) :
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Definition 2.1.2. Let (X, A, 1) be a probability space and 7" a map preserving p. We define

the metric entropy of T as the supremum

h,(T) = sup{h,(T, @) :  is a countable measurable partition with H,(a) < oo}.

2.1.2 Topological Entropy

Let (X, d) be a metric space and 7" : X — X a continuous transformation.

Definition 2.1.3. Let n be a natural number ¢ > 0 and K C X be a compact subset. A
subset F C K is called (n,¢e)-separated subset of K with respect to T if z,y € E,x # y

implies d(T7z,T?y) > ¢ for some j € {0,...,n — 1}.

We call s, (g, K, T) the largest cardinality of any (n, €)-separated subset of K with respect
to T'. Also, denote by
1
s(e, K,T) :=limsup —log s, (e, K, T)

n—oo N

and

hK,T) :=lims(e, K,T).
e—0

Definition 2.1.4. We define the topological entropy of T as the supremum
R(T) = sup{h(K,T) : K C X is a compact subset of X}

The relationship between the topological entropy and the metric entropy is given by
the following theorem known as the variational principle. Denote by Mr(X) the space of

T—invariant probability measures.

Theorem 2.1.2. Let T : X — X be a continuous map of a compact metric space X. Then

h(T) = sup{h,(T) : p € Mp(X)}.
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Proof. [Wal, Theorem 8.6]. O

The variational principle provides a natural way to distinguish particular measures in
Mp(X). If there is a measure that attains the supremum in Theorem 2.1.2, we call it a

maximal entropy measure. See [Wal, Section 8.3 for further details.

2.2 Thermodynamic Formalism: the compact case

2.2.1 Topological Pressure

Let (X,d) be a metric space and T : X — X a continuous transformation and consider

¢ : X — R a continuous function.

Definition 2.2.1. For each n > 1 and € > 0, we define

P,(T,p,e) = sup {Z 5@+ F is an (n, )-separated set for X}

zelR

and

1
P(T,p,e) = limsup —log P, (T, , ).
n

n—oo

Theorem 2.2.1. If ¢ : X — R is continuous, then the limit lim._,o P(T, p,€) exists.
Proof. [Wal, Theorem 9.1] O

We define the topological pressure or only pressure of the potential ¢ as
P(T, ¢) = lim P(T', ¢, ¢).

Note that when ¢ = 0, then we recover the topological entropy of 7. In other words,
P(T,0) = h(T). So, we can think the topological pressure as a weighted entropy, where any

x in a separated set contributes with “weight” S, ().
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Denote by C°(X) the space of continued functions on X to R and consider CY(X) with
the supremum norm |[|¢|| = sup{|o(z)| : * € X}. The next proposition gives properties of
P(f,) seen as a function from C°(X) to R U {oc}.

Proposition 2.2.2. The pressure function P(f,-) : C°(X) — R U {oo} is
1. a Lipschitz function, that is, |P(f, ) — P(f, V)| < ||l¢ — ||, for all potentials ,;

2. a convex function, that is P(f,(1 —t)p +t) < (1 —t)P(f, ) + tP(f, ), for all

potentials ¢, and t € [0,1].
Proof. [Wal, Theorem 9.7| O
Similarly as Theorem [2.1.2} the pressure satisfies also a variational principle.

Theorem 2.2.3 (Variational Principle). Let T': X — X be a continuous function. Then,

for all continuous potential p : X — R, we have

P(p,T) = sup {hM(T) + /god,u pe MT} (2.2.1)

Proof. [Wal, Theorem 9.10] O

Observe that if ¢ = 0, then we recover the variational principle for the entropy of T'. Also,
Theorem motivates the study of measures on which the supremum is attained.
Such measures are called equilibrium states. The existence of equilibrium measures is a non-
trivial question. In fact, stronger assumptions on regularity of ¢ are required. Moreover,

the transfer operator theory is one of the tools used to prove the existence of such measures

IPP).
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2.3 Fullshift on countable symbols

This section is devoted to the study of thermodynamical formalism for the fullshift on count-
able symbols. We follow [Sarll, [Sar5| in which the author developed the theory for a larger
class of dynamical systems called Topological Markov Shifts. The main difference with the
result obtained in the previous sections is that the space is no longer assumed to be compact.

Let S be a countable set and A = (a;;); jes be a matrix with entries equal to 0 or 1 but

not having rows or columns identically zero.

Definition 2.3.1. The topological Markov shift generated by the matrix A = (a;;)i jes is

the pair (X, 04), where X is the set defined by

X :={recs™:a,,, , =1, foralli>0}

Ti+1
equipped with the topology generated by subsets of the form

a_ ={r€X 2 =0;,0<i<n-—1}

77777

where n € N, aq,...a,_1 € S. Note that the set may be empty. Also, o4 : X — X is the

map given by o4(zg, z1,...) = (21, 22,...). We call S the alphabet, Cy, . _, a cylinder (of

.....

length n) and o4 the shift map.

Remark 2.3.1. On a topological Markov shift we define the metric d(z,y) := 2~ ™in{n=0:wn7yn}
when z # y, and d(x,y) := 0 when 2 = y. The topology generated by this metric is equivalent

to that generated by the cylinders.

Definition 2.3.2. The fullshift with alphabet S = Ny is the pair (X,0) defined by the
topological Markov shift ¥ := X generated by the matrix A = (a;;); jes with a; ; = 1 for all
(i,7) € S x S.
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The fullshift endowed with the topology generated by the cylinders (as in Definition|2.3.1)
is not compact. Hence, the thermodynamic formalism theory of Section does not apply

to this setting.

2.3.1 Regularity of functions

Let ¢ : ¥ — R be a function defined on the fullshift.

Definition 2.3.3. Let n € N. We define the n-th variation of ¢ by the supremum

Vo(p) == sup{|p(z) — oY) : 2,y € ¥,z =4;,0 < i <n—1}.

Definition 2.3.4. We say that ¢ is weakly Hélder if there exists 6 € (0,1) and a constant
C' > 0 such that, for all n > 2,V,,(p) < CO". If in addition V;(¢) < oo , then we say that ¢

is locally Hélder.

Definition 2.3.5. We say that ¢ has summable variations if

D Vilp) < .

Proposition 2.3.1. Let ¢ : ¥ — R. Then
1. If ¢ is weakly Holder continuous, then ¢ is of summable variations.
2. If ¢ is of summable variations, then ¢ is uniformly continuous.

3. If g, t € R and ¢, are locally Holder, then qp + t is locally Holder.

Proof. The first implication follows directly from definitions [2.3.5| and [2.3.4] If ¢ is of

summable variations, there exists n € N such that V,,(¢) < e. Therefore, if x,y € 3 with
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d(z,y) <27, then |p(z) — ¢(y)| < e. On the other hand, if ¢, € R then
V(g +t1h) < qVi() + tVa(1h) < qCL07 + tCally < (qCy + tCy)0"

where C1,Cy > 0;01,05 € (0,1) and 0 = max{6,0-}. O

Definition 2.3.6. We say that two functions ¢,¢ : ¥ — R of summable variations are
cohomologous if there exists h : ¥ — R with summable variations such that ¢ = ¢+h—hoT.
When a function ¢ is cohomologous to the function identically zero, then we say that ¢ is a

coboundary.

Theorem 2.3.2 (Livsic). Suppose that p,v : X — R have summable variations. Then

v, are cohomologous if and only if for all x € X and n € N such that o"x = x, then

Proof. See [Sard] O

2.3.2 Definition and properties

Thermodynamic formalism on countable Markov shifts has been developed initially by Mauldin,
Urbanski [MU2] and Sarig [Sar2]. We will follow [Sar2] to describe the theory. For any
19 € Np, denote by ]lcio the characteristic function of the cylinder Cj,.

In what follows (X, o) denotes the full shift on the alphabet N.

Proposition 2.3.3. Suppose that ¢ : ¥ — R is a function of summable variations. Then,

the limit

n—oo n, -
otr=x i=0

Palg) = lim ~log 3 exp( : so(o—im) e, (x)

exists and is independent of iy € N. Moreover, Pg(p) > —oo.

Definition 2.3.7. Let ¢ : ¥ — R a function of summable variations. We call Pg(y) the

Gurevich pressure of .
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Proposition 2.3.4. Suppose that ¥, : X — R have summable variations. Then, the

following holds
1. Ifc € R, then Pa(p+c¢) = Pa(p) + ¢
2. The Gurevich pressure is convex: for every t € [0,1], Pa(te + (1 — t)v) < tPa(p) +
(1 —=1)Pe(v)

3. The Gurevich pressure is invariant under cohomologous functions: if ¢, are coho-

mologous, then Pg(p) = Pa(y).

Proof. Let a € N;c € R and t € [0, 1]. Then

Polp+c)= lim ~log 3 exp (iwcxaix)) e, (x)

ohr=x =0

n—1
.1 ;
=c+ T}LH;O - log E exp ( (o x)) Le, ()

ohx=x =0

=c+ Ps(yp).

The convexity follows from convexity of exponential function and Hélder’s inequality

2 o (i“‘” (1‘“@/’)(“%)) SO (tijso(a"@) exp ((1 —t)z_:¢(aiw)>

To=a To=a
t 1—t

< Z exp 2_: o(o'z) Z exp i Y(o'x)

or=x or=x
To=a T0=0a

which implies that Pg(te + (1 —t)y) < tPg(¢) + (1 — t)Ps(v). Finally, the invariance on

cohomologous functions follows from Livsic’s Theorem [2.3.2] O

The following proposition was proved in [Sar3l p. 1755]
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Proposition 2.3.5. Suppose that ¢ : ¥ — R has summable variations and Vi(p) < oo.

Then

n—1
1 ;
Pa(p) = lim ~log » exp( p(o x)>. (2.3.1)
0

or=x =

Remark 2.3.2. In [MUI1], p. 117] and [MU2) p. 7| the authors developed the theory using a
different definition of the pressure. Indeed, they defined the pressure basically as the right
side of 2.3.1] Hence, Proposition [2.3.5 shows that both definitions are equivalent in the
fullshift.

Henceforth, we will denote P instead of Py that will be named simply as pressure of
¢. The following theorem relates this last definition with pressure defined in Section [2.2] for

compact spaces [Sarll Corollary 1].
Theorem 2.3.6. Let ¢ : 3 — R be a weakly Hoélder continuous potential. If K = {K C X :
K compact and o-invariant, K # ()} then

P(p) =sup{ P(p|K) : K € K}

where P(¢|K) is the pressure defined as in Section[2.4 for |k : K — R.

Theorem 2.3.7 (Variational Principle). Assume that ¢ : X — R has summable variations.

Then
P(p) =Sup{h(u)+/sﬁdu:u€/\/la and —/god,u< oo}.

Proof. [Sarbl, Theorem 5.3| and [[JT, Lemma 2.9]. O
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2.3.3 Equilibrium measures

Definition 2.3.8. A measure u € M, is called an equilibrium state for ¢ if p attains
the supremum in the Variational Principle, that is, p is a o-invariant measure such that

— [ ¢ < o0 and

P(e) = h(u) +/<pdu-

Theorem 2.3.8. Assume that ¢ : 3 — R has summable variations, Vi(p) < co and P(p) <

00. Then there exists at most one equilibrium measure for the potential .
Proof. See |[BS, Theorem 1.1 |. O

Definition 2.3.9. Given a potential ¢ : ¥ — R, we say that a measure p on X is a Gibbs
measure if there exists numbers C' > 0 and P € R such that for every cylinder C;;, ;. _, we

have
l < /’L(Cioil---infl)

— n—1 ; < C
C exp(—nP + Zi:o p(o'z))

for all x € C;

0%1..-tn—1"

This definition gives a description of the measure of a cylinder in the sense of that we can
compare it with exp(—nP + 3.1 ¢(o'z)) which involves the Birkhoff sum of the potential
©.

Remark 2.3.3. When we consider Gibbs measures, open sets have positive measure.

Theorem 2.3.9. Suppose that ¢ : ¥ — R has summable variations and Vi(p) < co. Assume
that P(¢) < oo. Then, there exists a unique Gibbs measure for p. Denote by p, such

measure. Moreover, if [ @dp, > —oo then uy, is the unique equilibrium measure.

Proof. The existence was proved in a more strong result in [Sar3, Theorem 1|: there, the
author proved the result for topological Markov shifts satisfying the big images and preimages

(BIP) property (see [Sar3] for a definition), which is the case of the fullshift. The uniqueness
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of the Gibbs measure was proved in [MU2, Theorem 2.2.4] and the last part of the theorem,

correspond to [MU2, Theorem 2.2.9]. O

2.3.4 Regularity of the pressure and consequences

The following result was proved in [Sar3, Corollary 4| and [MU2, Theorem 2.6.12].

Theorem 2.3.10. Suppose that p,v : ¥ — R have summable variations and finite first
variation. Let I C R an open interval such that P(p + ti) < oo for allt € I. Then, the

function t — P(p + t) is real analytic in I.

Theorem 2.3.11. Let ¢,1 : X — R be two functions with summable variations and having
finite first variations. Moreover, suppose that P(p + tg)) < oo for some to € R. Let py, be
the Gibbs measure for ¢ + totp and suppose that [ —(¢ + t)duy, < oo for all t in an open
neighborhood of to. Then

d
GPertw)| = [,
t=to
and
2
—Plo+ty)] =0y (p,0)
dt —to
where
o1
o (o, ) = ggo;/Sn <s0 - /wdut) Sn (w - /Wm) dpu.
Proof. [MU2, Proposition 2.6.14| O

Ezample. Suppose that ¢ : 3 — R is a negative locally Holder potential such that P(y) < oo.

Then, there exists a critical value t* € (0, 1] such that

infinite , ift <t*
finite ,  if t > t*.

P(ty) is {
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Moreover, when t > t* the pressure function ¢ — P(ty) is real analytic and convex. Observe
that if ¢ > t*, there exists a Gibbs measure for tp. Let p; be such measure. If ¢ is -
integrable, then p, is an equilibrium measure for tp and ¢ — P(ty) is a strictly decreasing

function with first derivative given by

d
S P(te) = / pdyis.

Assuming also that ¢ is not a coboundary, then t — P(typ) is strictly convex.

2.4 Thermodynamic formalism for EMR maps

Denote by I = [0,1]. This section is devoted to studying thermodynamic formalism for
dynamical systems T : I — I modeled by a fullshift on countable symbols. Gauss-like maps
or Liiroth maps are examples of such dynamics. Since the fullshift is a non-compact space,
the results of Section will be used. Moreover, as regularity assumptions on potentials
are required to define the pressure, we need to put some conditions on 7" to get comparable
results for potentials on /. In [PW] a special class of maps T : I — [ called Ezpanding-

Markov-Rényi maps (EMR) was studied. We start recalling the definition of Markov map.

Definition 2.4.1. We say that 7' : I — [ is a Markov map if there exists a countable (or
finite) collection {O,}necacn, of open non-empty subintervals of I satisfying the following

properties

1. T|O— : 0, — T(0,,) is a homeomorphism,
2. 0,N0,, =0 for n#m,

3. If for some n # m,T(0,) N O,, # () them O,, C T(O,). The collection {O,}en is

called a Markov partition.
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Remark 2.4.1. Along this thesis, the maps considered satisfies in general that (0,1] C

U,.c4 On. Further details on Markov maps on the interval, see [KMS2].

Example. The T}, maps defined on Section [1.4] are Markov maps with Markov partition

k k
]k n = ) ’

Definition 2.4.2. A map 7' : I — [ is an EMR map, if there exists a countable family {/;};

of closed intervals (with disjoint interiors int(1,)), with I, C I for every i € N, satisfying
1. If I, = [an, by], then a,, b, are decreasing sequences, b; = 1, and b,, — 0.

2. The map is C? on |J;=, int(I;).

w

. (Expansiveness) There exists a constant a > 1 and N € N such that for every = €

U5z, int(Z;), we have [(TV) (z)| > a.

=~

. (Markov) The sequence {int(1,)},>1 is a Markov partition for 7'

5. (Rényi) There exists a positive number K > 0 such that

7" ()]
Sup Sup T o >
neN xy,z€Il, |T/(y)||T/(Z>|

We will be interested in the points of I such that all the orbit is well defined. We call

the repeller of T to the set
A= {x € UIZ' : T"(z) is well defined for every n € N} :
i=1

The Markov assumption in definition of EMR maps allows us to codify the system in a
well defined way. More precisely, we can represent the system 7' : A — A by a fullshift on

a countable alphabet (3, o), with a continuous map 7 : ¥ — A such that roo =T ox. In
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fact, if we define the set E of end points of the partition {I,},, then we have that the map

7:3% = A\ U,eny T "E is an homeomorphism. If C, . ,, denotes a typical cylinder on the

.....

fullshift (X2, o), we define I(ay, ..., a,) := 7(Cq,.. . a,) a cylinder of level n for T

77777

The Rényi condition gives the following relation between the derivative along the orbit

of points that belong to a same cylinder of level n (see [CFS|, Chapter 7, Section 4]).

Proposition 2.4.1 (Bounded distortion property). There exists a positive constant C' > 0

such that for all n > 1 and for every x € I(ay,...,a,) the following holds

<C

|
L

(1) (y)

forally € I(ay,...,a,).

Moreover, the expansiveness together with the bounded distortion property, allows to

estimate the length of the cylinders I(ay, ..., a,).

Corollary 2.4.2. Let n > 1. If N and « are the constants involved in the expansiveness
condition in Definition then the length of the cylinder I(a, ..., a,) is bounded above,

up to a positive factor, by a™N.

Proof. First, note that, for all n > 1,2 € I(ay,...,a,), then

1 n
G <N T™)(x)||I(ay,...,a,)| < C.
If n = mN for some m > 1 then |(T")(x)| > o™ = o™N. In particular, |I(ai,...,a,)| <

Ca~™N. Assume that n/N > 1 is not an integer. Then
[(ay,...,a,)| <|I(ay,... ,a[n/N}N)] < |(f[n/N}N)I’71 < Ca~n/N] < Cal=N.

When 0 < n/N < 1, then |I(a1,...,a,)| <1 =a PN < qt=n/N, O
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We conclude this subsection with the definition of the pressure for a EMR map T'. Denote
by A=A\ Upen TE.

Definition 2.4.3. Let ¢ : A — R a function such that ¢ o 7 : ¥ — R has summable

variations and V(¢ o m) < co. We define the pressure of ¢ with respect to T' by
Pr(p) = Pg(poT) = nlggo " longz: exp (Z(p (T'x )
If there is not risk of confusion we write P instead of Py.
Ezamples. In the following examples, we assume that 7" is an EMR map with intervals {1, },,.
1. Let ¢ : A — R to be constant at cylinders of level 1 for T, of the form 90‘1 = log \;,
for all 7. In particular o7 is constant (equal to log \;) at cylinders of level 1 in (X, o).

In this case, ¢ o 7 is called locally constant and note that it satisfies all regularity

assumptions for results from Section [2.3] Therefore
= log Z An-
n=1

2. (pressure function) Let ¢ : A — R given by ¢ = —log |T"|. We will prove that o7 is
a locally Holder potential. In fact, if x,y € ¥ with o = yo,...T,_1 = yn_1 then, there

exist w between 7(x) and 7(y) such that

[T (w)] [T (w)]

108 7 ) — g (0D = ) = o)) < TN e, )
= ) < Ay
@)y
=ty e

for any z € I(zg...2,-1). The Rényi hypothesis of 7" and Corollary implies
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the existence of a positive constant M > 0 (independent of the cylinder) such that

|log [T"(m(z))| — log |T" (7 (v))|| < Ma~=V/N_ Thus, for all n > 1
Vi(pom) < MatNa=/N,

Note that the same calculations are valid for ¢, = —tlog |T”| and ¢ > 0. The pressure

of this potential is given by

n—1 n—1
.1 N 1 N
Plg) = lim ~log »  exp) log|T"(T"x)["" = lim —log > [ [T"(T"x)[""
0

Tnp—g i= Trx=x 1=0

and we can apply results from Section [2.3| when it is finite. From now on, we will call

t — P(p;) the pressure function.
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Chapter 3

Lyapunov Spectrum for 7; maps

In this chapter we will apply the tools from thermodynamic formalism to multifractal analysis
theory of Lyapunov exponents of Ty, maps. Given o € R we will be interested in the Hausdorff
dimension of level sets for the Lyapunov exponents, that is, in the set of points x € [0, 1]
having Lyapunov exponent equal to . Then, the Lyapunov spectrum consist in studying the
dimension of the level sets as a function in «. When k =1 (i.e. the Gauss map), the Lya-
punov spectrum was completely determined by Pollicott-Weiss and Kessebomer-Stratmann
[PW, [KS2]. In concrete, we will prove that the Lyapunov spectrum is real analytic. We use

results from [lom)].
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As we saw in Chapter 1, one of the consequences of Birkhoff ergodic theorem applied
to the Gauss map G is that Lebesgue almost every z = [a1,as,...] € [0, 1] the exponential

speed of approximation by the convergents is

7T2

=~ ~Flog2 (3.0.1)

Pn
xr — —

an

1
lim —log
n—oo M,

This implies that the lengths of the cylinders associated to Gauss map G tends to zero
exponentially fast since the LHS of is equal to lim,,_,~ % log |I,(x)|. From a dynamical
point of view, the bounded distortion property applied to G, allows to know the behavior of

the orbits by means of the equality

1 1
lim —log [(G")(x)] = — lim —log |I,(x)]|.

n—oo 1 n—oo N,

Definition 3.0.1. Let (7', [0, 1]) be a piecewise differentiable dynamical system. The Lya-

punov exponent of x with respect to 7" is defined by the limit
. 1 mn / %
Ar(x) = JingoﬁlogKT )V (z)| = hm Zlog|T T (x))|

whenever exists.

From we have that, Lebesgue almost every x € [0,1] has Lyapunov exponent

2
AG(‘/E) = 617(r)g2

Aa(zo) = log|G'(zg)] = —2logxy. In fact, the range of all possible values of Lyapunov

if xy is a fixed point of G, then

exponents for the Gauss map is the interval [—2log 1+\f oo0) [PW]. On the other hand,
the Lyapunov exponent of any rational number z does not exists since G"(z) = 0 for some
n > 1. Also, the Liouville’s number z = 3 .-, 10~ is a non-trivial example for which its
Lyapunov exponent does not exists [PW), p.164].

In [PW], [KS2] the authors gave a complete description of the multifractal analysis for
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Lyapunov exponents for the Gauss map. Multifractal analysis is a branch of the dimension
theory of dynamical systems. It typically involves decomposing the phase space into level
sets where some local quantity takes a fixed value. Questions that are usually addressed are
determining the the size of each of the level sets and how does this dimension varies with

the parameter. Let us explain how this analysis works in the case of Lyapunov exponents

for the Gauss map. Given a € [2log 1+‘[ 00) define the level set

J(a):={z € 0,1]: Aa(z) = a}.

Then we get a decomposition
=JJ(@yur

where J' := {z € [0,1] : Ag(z) does not exists} is called the irregular set. Observe that if

a # 6%22, then J(«) has null Lebesgue measure therefore a good way to measure those sets

is using the Hausdorff dimension (see Section 5.4 or [Fal, Chapter 2| for further details).
Thus, multifractal analysis study the function o — dimgy J(«). The following theorem

[PW], [KS2] characterize this functions by means of thermodynamic formalism tools.

Theorem 3.0.1 (Pollicott-Weiss, Kessebohmer-Stratmann). If P(-) denotes the pressure

function for the Gauss maps, then the following holds:

1
g(a) :==dimg J(a) = - igﬂg(P(—tlog |G']) + ta).

1+xf

Moreover, the function g : [2log ,00) = [0, 1] is real analytic.

The hidden technical tool in Theorem [3.0.1] which connects dimension theory and ther-

modynamic formalism is the Legendre transform. Let I C R be an interval and let f : I — R
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be a convex function. We define the Legendre transformation fof f by

F(a) == sup{at — f(O)}.

tel

Therefore, Theorem shows that the multifractal analysis for Lyapunov expoenents for
the Gauss map is completely understood, essentially, by the Legendre transformation of the
pressure function since g(a) = P(—a)/ — a. Moreover, this formula was extended in [Tom.

We rephrase this result in the case of EMR maps.

Theorem 3.0.2. Let T' be a EMR map, and let P(-) be the pressure function of T. Then

the Lyapunov spectrum satisfies

dimg{z € [0,1] : A\p(z) = a} =

for all « in an unbounded interval of the form [amin,00). Moreover on this domain the

Lyapunov spectrum s real analytic.

From now on, this chapter is concerned to understand the Lyapunov spectra of T}, maps.

3.1 Pressure function for 7, maps

Along this section we will be interested in studying the pressure function for the maps T}

defined on Section [1.4

Proposition 3.1.1. The map T} is EMR.

Proof. We will prove the hypothesis given in Definition for the countable family {If(n)}nen, s

where

k k
If(n) = :
1) (n—i—k—i—l?n—i—k}
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As discussed in Section 2.4, the collection of intervals {int(I}(n))}.en, is a Markov partition
for T},. Also, note that T}, is a C? map. We need to prove the expansiveness of 7}, and the
Rényi condition. Let us first to prove the expansiveness. Let n > 0 such that Ty (z) € I¥(n).

Note that T}'(z) = 2k/x which is always positive and therefore 7}, is increasing. Thus

b £>(n+k+1)22(k’+1)2.

In order to prove property (5) of Definition [2.4.2] we note that |T}(z)| = k/z?* and |T}(z)| =

k%/x3. Then, on the interval I,

| T} ()] B Y222 < k(n+k+1)>3
T (=) 2* = (n+k)*

then

. k(n+k+1)3 B (k+1)3 o
nZ% (n + k)4 N k3 ’

]

The last proposition allows us to calculate the pressure for the potential ¢ = —tlog |T}|.

Recall from Example [2.4] that, Py (t) take the form

Pelt) = lim ~log Y I(T7Y)| (3.1.0)

M e —
Tl z=x

Proposition 3.1.2. Let k > 0. The pressure function t — P(—tlog |T}|) is finite if t > 1/2
and it is equal to oo if t < % Whent > 1/2, P(—tlog|T}|) is real analytic, strictly decreasing

and strictly convezx. Moreover P(—tlog|T}|) — oo when t — %Jr.

Proof. For each n, the mean value theorem guarantees the existence of z € I¥(n) such that

T = T
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then, for all z € If(n) we have

| )
C ST S

Therefore

cm Y H|ijz|t ZH|Tkam|t<Ct” > Hum

(J15--Jdn)ENg =1 TP z=z i=0 (J15-rdn ) END =1

We note that each one of the sums at left and right are equal to (Z;io |]f(j)|t>n, which

implies

00 n—1 [e'e]
—tnlog C +nlog Y |IF(j)|' <log > [ ITu(Tix)|™ < —tnlog C +nlog > _ [If(5)I"

J=0 Tra=z i=0 =0
and
—tlogC’—f—logZUk )|t < P(—tlog|T}|) < —tlogC+logZ|Ik (3.1.2)
Jj=0 7=0

First two assumptions are given by the convergence of series involved in inequality ((3.1.2)).

For the limit, we first note that by Fatou’s lemma

= 1
ZZliminf T T = 0%
=0 nree (]+k+1)2 "(]+k)2 n

h?:ili) 1£f Z T

(j+k+1) 2%U+m

w\»—t
:\’—‘

From Section [2.3.4] P(—tlog|T}|) is a real analytic, strictly convex and strictly decreasing

function on (3, co) since

dP(~tlog |T}))
dt

:—/mynmﬁ<0

Using that and the inequality (3.1.2)) we have that P(—tlog|T}|) — oo, when ¢t — 1/2%. [
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3.2 Lyapunov spectrum

In this section we calcule the Lyapunov exponents of = € [0,1], for T, maps. Since the

Lyapunov exponent of z € [0, 1] with respect to Ty is defined by the limit

n—1

1 1 .
= lim —1 oK = lim — log |T}(T}
Aw) = Jim 2 log (T3 ()] = Jim =3 log T4 (Ti(e))

n—o0

whenever exists, and by Birkhoff Ergodic Theorem, we have

1
Na) = [ tog [Tildya
0

for pg-a.e. = € [0,1], where py is the T} invariant measure defined in section 1.4. From

Theorem and Corollary we have that, Lebesgue almost every z € [0, 1]

1 1\~ 1
A(z) =2 lim 0gqn:2log\/E—2(logk+ ) Loy (——)

where

Lo(2) = /O wdt.

t

Now, we are interested on the range of the function = +— A(z) whenever the Lyapunov

exponent exists. Note that, when x is a fixed point of T}, then

n—1

o1
Az) = 7111_)1[20 - Zolog =logk —2logx.

a2
Let k > 0. On each subinterval I,,,n > 0, there exists a unique fixed point z* given by

o —(n+k)+/(k+n)?+ 4k
b= 5 :
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Note that x* is equal to the k-continued fraction having the constant coding [[R]], :=

[n,n,n,...]. Thus the Lyapunov exponent of each fixed point is

— 2 4
)\(xﬁ>:10gk_210g< (n+k)+ 2(n+k:) + k:)

for all n > 0. In particular, we have that x — A(z) is unbounded.

Lemma 3.2.1. Let x € [0,1] such that \(x) exists. Then

= A([0]1)-

A(z) > 2log (M) 0

Before proving this lemma, we will first a prove a simple property on convergents that

will be useful. From Proposition we have the following recursion

1

4n = ﬁ((an + E)gn1 + Vkn_2),n > 2;

qgo = q¢1 = 1. The next simple lemma will be useful for our calculations.

Lemma 3.2.2. Ifx = [ay,...,Gp,...]r andy = [by, ..., by, .. .]x are two k-continued fractions
with a, < b, for all n > 1, then q,(x) < q,(y) for all n > 1. Here q,(x) represents the

denominator of nth convergent associated to x.

Proof. The proof is by induction. For n = 1 we have ¢;(x) = 1 = ¢;(y). Now, suppose that

qx(z) < qi(y) for all & < n. Then

G (2) = %«anﬂ T R)u() + VEge ()

< —=((bus1 + K)qu(y) + VEgo1(y))

Sl-

= QnJrl(y)
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and thus we conclude the proof. O

Proof of Lemma[3.2.1. Let x be a k-irrational number. For any n > 1, we have that ¢, (z) >
¢.([0]) where [0] is the largest fixed point of Ty. By simplicity, denote ¢, := ¢,,([0]x). Note
that ¢, = qn_l\/E + @n,_2, which is a linear difference equation with initial conditions given

by ¢o = q1 = 1. To solve this equation, we observe that 22 = vkz + 1 has two roots given by

\/E+\/k+4-$ VE—VE+4

¢k: 9 ) k — 2

with —1 < ¢, < 0 < ¢, < 1. Then, there exist A, B € R such that, for any n > 1, we have

qn = AP} + BEZ. Thus, ¢, > C¢} for some constant C' > 0. Finally,

A(z) =2 lim 10g ¢u(2) > 2 lim <llogC’—i— log qbk) = 2log(ds).
n

n—00 n n—oo

Denote by A\r . = \([0]) = 2log ¢%.

Proposition 3.2.3. We have that {\(z) € R:z € [0,1]} = [\F,,, 00).

min?

Proof. Let t > 1/2 and let pf be the equilibrium state of Py(t) := P(—tlog|T}|). By T}-

ergodicity of pg, we have that [ log|T}|dp: = A(x) for some z € [0,1]. Then

{/log]T,ﬂdﬂf > 1/2} C{\z)eR:ze€]0,1]}

By Proposition [3.1.2) ¢ — Pg(t) is analytic on (1/2,00) and in particular ¢ — P’'(t) =
— [log |T}|dp; is continuous on (1/2,00). Therefore { [log |T}|duy : ¢ > 1/2} is an interval
in R and

inf /log T} dpf > Amin-

t>1/2
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On the other hand,

sup —/log|T,g|duf = lim P;(t)

t>1/2 t—oo

P

= lim (t)
t—ro0

>~ [ 1og[T4d5g, = A

where O, denotes the Dirac’s delta measure supported on the fixed point [0]x. Hence

inf,~1/2 [ log [T} |duf > Amin. We conclude that

O, 50) = {/1og\T,;|duf; t> 1/2}

and

(Mz) €R: 2 € [0,1]} = [Amin, 00).

Finally, applying Theorem [3.0.2| we obtain,

Theorem 3.2.4. The Lyapunov spectrum of T}, is given by the function

P(za) _ Lsb(p(—t1og |TL]) + ta)

—x «a teR

for all a € [\F

min?

o0). Moreover on this domain is a real analytic function.
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Chapter 4

k-rational approximations in k-Luroth

expansions

In this chapter we study a one parameter family of numerical systems called k- Liiroth ex-
pansions. Every irrational number has an infinite expansion and associated to it there is a
sequence of k-rational approximations. We are interested in the size of sets of points having
the same exponential speed of approximations by k-rationals for different values of k. We
prove that the Hausdorff dimension of these sets varies analytically with respect to the param-
eter k. Our techniques come from ergodic theory, in particular thermodynamic formalism for

countable Markov shifts. The results obtained in this chapter appear in the article [Con2|.
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4.1 Introduction

In 1883, J. Liiroth [Liir] proved that every real number x € (0, 1] has an expansion in the

form

1 1 1
aq aq (CLl — 1) a1 (CLl ) cAp—1 (CLn 1 — 1)
—a (@ — 1) ap_q(ap_1 —1)ay,

where a,, > 2, for all n > 1. This expansion is called the Liiroth series of x and it is
denoted by x = [aj,aq,...];. Arithmetic properties of the number can be read form its
corresponding series. Indeed, rational numbers of [0, 1] are characterized by the fact that
its expansion is either finite or periodic. Every irrational number has a unique infinite
expansion. Interestingly, the Liiroth series is closely related to the dynamical properties of

the transformation L : [0,1) — [0, 1) defined by

nn+ 1)z —n ifze ,),meN
L(z) == )
0 if v =0.
If z = [a1,as...]; then the following relation holds: a, = a;(L" (z)) for n > 1, where
aj(u) ==n+1ifue€ [?, 1). Partial sums in the Liiroth series of an irrational number z

can be thought of, in analogy to the continued fractions, as rationals approximations for the

irrational number x = [a4,...|;. For n > 1, denote by p,/q, := [a1, ..., a,]1 that is,
b _ 1, ! +- 4 !
G ar ap(ar—1)ay ap(ar —1)ag---any (an1 —1)ay

The number p, /q, is called n-th approzimant of x. We stress that the Liiroth map can be

thought of as a linear version of the Gauss map and that the Liiroth series is analogous to
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the continued fraction expansion.

In this article we study a generalization of this series expansion that will be defined by
means of the following family of maps. For each k > 0, the k-Liroth map Ly : [0,1) — [0,1)
is defined by

PO 4 by e [, ) ne N
Li(x) := i
0, ifz=0

Note that the map Li(x) corresponds to the Liiroth map. Our interest in this family steams
from work of Haas and Molnar [HM], where they studied metrical properties of a family of
continued fractions, each of which is defined by an interval map obtained as the fractional
part of a Mobius transformation taking the endpoints of the interval to zero and infinity. In
particular, considering fractional parts of a family of M&bius tranfsormations @, k> 0.
The family of k-Liiroth maps can be thought of as linear versions of the Gauss-like maps
studied in [HM]. Families of this type were also studied by Kessebohmer, Munday and
Stratmann in [KMSI].

It turns out that each k-Liiroth map induces a series expansion of every x € [0, 1] whose
n-th iterated L} (z) different from zero, and a set playing the role of rational numbers in the
Liiroth expansion. Proposition gives that if L} (z) # 0 for all n > 1, then we have the

expansion

o kn
xzz(a1+k:)(a1—1+k)---(an_1+k)(an_1—1+k:)(an+k)

n=1

where

an = ay (L (), n > 1,

and

k k
ar(u) =n+1lifue n+1—|—k:’n+k;)’n_0
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We stress that a, depends on k. This series is called the k-Liroth series of x and it will
be denoted by [ai,as...|g. The natural numbers a, are called the digits of the expansion.

Details are provided in sub-section 4.2.1] As in the case of the Liiroth expansion, for every

x € [0,1] having an infinite k-Liiroth expansion = [ay,...]; we can define the n-th k-
approzimant of x by pk /¢ :=lai,..., a,]x. That is,
Po _ K K"

=" ... .
@  a+k (a1 +k)(ar —1+Ek) - (an_1 + k) (a1 — 1+ k) (a, + k)

This article is devoted to study the exponential speed of approximations of a number
x € [0,1] by its n-th k-approzimant (pf/q¥),, as the parameter k varies. More precisely we

are interested in the following numbers

1
lim —log |z —

n—oo M,

I

k
Pn
k
n

whenever the limit exists. We study the range of possible values, the size of the set of
elements having a fixed exponential speed of approximation and how do these quantities
varies with both, the parameter and the value of k. More precisely, for every a > 0 we

consider the set

Ni(a) = 4z e [0,1) : lim -1 P
ko) i = ST s nl_g)lonogx ﬁ = .

Thus, we will be interested in the range of values for which the sets Ny(«) are non-empty
and the regularity properties of the maps o — dimp(Nk(«)), k — dimpy(Ng(«)). Here dimpy
denotes the Hausdorff dimension of a set. This is an appropriate way to compute the size of
the level sets since, as we will see in section , for every value of a (except for a single
value, see Lemma the Lebesgue measure of the level set is zero.

Our tools are dynamical in nature and are based in the following quantity which measures

the exponential rate of divergence of infinitesimally close orbits.
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Definition. The Lyapunov exponent of the transformation Ly : [0,1) — [0,1) at the point
x € [0,1) is defined by
.1 n
Ar(z) := lim ﬁlog |(LY) (z)]

n—oo

whenever the limit exist.

The following relation, which will be proved in Proposition [£.2.8] allows to bring in all

the ergodic theory machinery to our problem:

Note that it provides arithmetic information by dynamical means. Thus, it will be equivalent
and simpler to consider the level sets determined by the Lyapunov exponents. We will

therefore study the map

Te(a) = dimy ({z € [0,1) : \p(z) = a}).

For fixed values of k this map was completely described in the work of Barreira and Iommi [BI]
and in that of Kessebohmer, Munday and Stratmann in [KMSI1]. Indeed, this corresponds
to the multifractal spectrum of Lyapunov exponents and with tools from thermodynamic
formalism it can be shown that (in the appropriate domain) the map a — 7(«) is real
analytic. The main novelty of our work, from the dynamical systems point of view, is
that we describe how does the multifractal spectrum of Lyapunov exponents varies along a
one-parameter family of dynamical systems. That is, we describe how does the Hausdorft

dimension of a level set changes with the dynamics. More precisely,

Theorem 4.1.1. Let M > 0 and fix a € R such that 7 () is well defined for all k € (0, M].
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Then, the function of domain (0, M| defined by
k— ()

15 real analytic.

From an arithmetic point of view, Theorem characterizes how does the size of the set
of points with same speed of approximations by their n-approximants varies in the different

numerical systems provided by the k-Liiroth transformations.

4.2 Ergodic Theory preliminaries and series expansions

4.2.1 Dynamics of k-Liiroth expansions

In this section we discuss arithmetic as well as dynamical properties of the k-Liiroth expan-

sions. Let k > 0.
Proposition 4.2.1. Let z € (0,1).

1. Let m > 1 be the smallest positive integer such that L?‘lx = 0. Then

k k™
a; + k (a1 +k)(ag — 14+ k) (am1 + k) (am-1 — 1 + k) (@, + k)

2. If L (x) # 0 for alln > 0, then

k k™
= ot +
S (@ + k) (@ —14k) (a1 + &) (a1 — L+ k) (an + k)
k" Li ()

T ) (@ —1+h) (st M) — 1+ E)(an + K)(an — 11 K)
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The proof of Proposition is obtained inductively similarly as in the Liiroth case (see
IDK], pages 38-39).

The subset of k-rationals, denoted by Q, is defined by
Qr = {z €0,1) : there is n € Ny such that Lj(x) = 0}.

The complement of Q4 in the unit interval [0,1) is the so-called set of k-irrationals. We

observe that when k € Q, then Q, C Q.
Remark 4.2.1. For every k > 0, the set QQ; is a countable set which contains every number

of the form

K o
kT T A — 1) (@ R) (@ — 1K) (an + )

with ay,a2,...,a, € Nand n > 1.

As a consequence of Proposition 4.2.1] we obtain the following.

Proposition 4.2.2. Let k > 0. Every k-irrational x € [0,1) can be expanded in a infinite
k-Liiroth expansion, that is

x = lim [ay,aq, ..., ax,
n—oo

where a,, are obtained as in Proposition [{.2.1]

Proof. By Proposition [£.2.1], we have

-] P L)
g~ (ay +k)(ay —1+k)--(an + k)(a, — 1+ k)
1
< -
T (L4 k)
which goes to zero when n tends to infinity. O]
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Definition 4.2.1. Let aq,ao,...,a, be positive integers. We define the cylinder of level n

corresponding to (aj,as, ..., a,) as the subset of (0, 1] given by

AF(ay,ay,... 0,) ={x €1]0,1): a1(x) = ay, a3(z) = as, ..., a,(x) = a,}.

In other words, A*(ay,as,...,a,) is the set of numbers in [0,1) whose k-Liiroth expansion

starts with the digits ay,as, ..., a,.

Lemma 4.2.3. Let k > 0. Then A¥(ay,as,...,a,) is the subinterval of [0,1) given by

ot 42.1
{Qn dn (a1+k?)<6l1—1+/{;)~'-(an—|—]{;)(an_1+k)) ( )
where

Pn _z”: %

- (a1 + k) (e —1+k)--(aj_1 + k) (aj_1 — 1+ k) (a; + k)

Proof. Let I be the interval given in equation (4.2.1). By Proposition 1, we have that

r € A¥(ay,...,a,) if and only if

s k" Ly (x)
¢ (a1 +k)(ar —14+k)--(an + k) a, — 1+ k)

which is equivalent that = € I, because L} : [0,1) — [0, 1) is onto. In conclusion A*(ay, as, ..., a,) =
I ]

As a consequence, each cylinder A*(ay, as, ..., a,) is a subinterval of [0, 1] with Lebesgue
measure equal to

kn
|AF(ay,aq,...,a,)| =

(a1 +k)(ay —1+Ek) - (an + k) (a, — 1+ k)

Recall that a probability measure p in [0, 1] is invariant for the map 7" : [0, 1] — [0, 1] if
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for every Borel set A C [0, 1] we have u(A) = u(T—'A). Moreover, we say that an invariant
measure /i is ergodic if for every set with the property that A = T~'A we have that u(A) =0

or u(A) =1, see [Wal, Chapter 1|. It was shown in [KMSI, Lemma 2.4] that:

Proposition 4.2.4. For every k > 0, the map Ly, is an ergodic transformation with respect

to the Lebesgue measure.

Therefore, all k-Liiroth maps have Lebesgue measure as a common invariant ergodic

measure.

4.2.2 Symbolic Dynamics

The dynamics of the k-Liiroth map can be coded by the full-shift on a countable alphabet.
This will allow us to reduce the study of the ergodic properties of the map to those of the

shift, which are well known. The full-shift on a countable alphabet (3, o) is the set

Y = {(n)nen : n € N for every n € N},

together with the shift map o : ¥ — X defined by o(z1,29,...) = (22,23,...). The set
Coyoay, = {(xp)n €221 =ay...2, = a,} is called a symbolic cylinder of length n. The
space X endowed with the topology generated by the cylinder sets is a non-compact space.
This fact is one of the main difficulties that need to be addressed to develop the theory. The

map

szﬁ[o,l]\(@k

(1’1,.%‘2, .. ) — [l’l,l‘g, .. ']k‘

is a topological conjugacy between the full-shift and the k-Liiroth map.
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Remark 4.2.2. We observe that every cylinder is the projection of a symbolic cylinder C,, . ,,,
that is A(ay,...,a,) = m(Cay...a)-

4.2.3 Thermodynamic formalism

Thermodynamical formalism is a set of tools and methods brought into hyperbolic dynamics
with great success in the early seventies from statistical physics. It allows for the selection
of relevant measures from the, sometimes very large, set of invariant measures. It has been
used as tool in the dimension theory of dynamical systems at least since the work of Bowen
in the 70s [Bor|. Thermodynamic formalism for dynamical systems defined in non-compact
spaces has been studied and developed over the last 20 years. The particular case of the
full-shift on countable many symbols (X, o) has been very well studied, see [BS, MU2, [Sar2].

In this section we recall the main definitions and results.
Definition 4.2.2. We say that a potential ¢ is locally Hélder if there exists 6 € (0,1) such
that for all n > 1, we have

sup {|o(z) —(y)| :zyy € X,xy =y; fori=1,...,n} < CO"

for some positive constant C' independent of n.

Definition 4.2.3. Let (X, 0) be the full-shift on a countable alphabet and ¢ : ¥ — R a

locally Holder function. The pressure of ¢ is defined by

P(p) = Ji)lgonlogZexp<Zgoax).

The limit exists, but it can be infinity [BS, MU2, [Sar2].

Theorem 4.2.5. Let ¢ : ¥ — R be a locally Holder negative function such that P(p) < 0o.
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Then, there exists a critical value t* € (0,1] such that

' ¥ ft <t
Plty) is mﬁm e, .Zf
finite | if t > t*.

Moreover, when t > t* the pressure function t — P(ty) is real analytic and strictly convex.

Ezample. If the function ¢ : X — R is locally constant, that is ¢|c, = logA;, for every

1 € N, then we can explicitly calculate the pressure:

P(p) :Jggnlog Z exp (ng 093)

onr=x

= lim — log Z Njo gy Nj s

(Jo,e-rsjn—1)ENR

:nlggonlog (ZA) logg)\i.

1€Np

k+1)(ntk)
w, since they

We are interested in the locally constant functions ¢i|c, = log
correspond to the symbolic version log |L;|. We observe that ¢y, is a locally Holder function.

In this case, the pressure function is given by

Felt) := P(=tir) logz(n-i—k—f—l(n-i-k)).

This explicit expression and Theorem [6.3.1] implies the following result.

Proposition 4.2.6. For every k > 0, the pressure function t — Py (t) is finite if t > % and

infinite if t < 1/2. When Py(t) is finite, then it is real analytic and strictly conver.

We note that the critical value after which the pressure becomes finite is independent of

the value of k.
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4.2.4 Multifractal analysis for Lyapunov exponents

Multifractal analysis is a branch of the dimension theory of dynamical systems. It typically
involves decomposing the phase space into level sets where some local quantity takes a fixed
value. Questions that are usually addressed are determining the the size of each of the level
sets and how does this dimension varies with the parameter. Thermodynamic formalism has
been employed as tool to answer this questions. The theory is well understood for uniformly
hyperbolic systems defined over compact phase spaces. In this section we will describe the
multifractal spectrum of Lyapunov exponentes for the k-Liiroth maps. We stress in that in
this context the phase space is no longer compact. Note that the the Lyapunov exponent of
L, at the point = satisfies

1
(@) = lim ~log|(L)'(x) = lim — Zlog|L’ (LY (x))],

n—oo N

whenever the limit exists. In particular, it is a Birkhoff sum. The phase space [0,1) can be

decomposed into level sets. Indeed, for @ € R we define
Jp(a) :={z €10,1) : Me(x) = a}.

Thus,

UJk ) U Jj

where J;, = {x € [0,1) : Ag(z) does not exists}. We are interested in the multifractal

spectrum of Lyapunov exponent which is defined by the function
Te() := dimpy Ji ().
As observed in Proposition the Lebesgue measure in [0, 1), that we denote by Leb,
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is invariant and ergodic for every Liiroth map L;. It directly follows from the Birkhoff

ergodic theorem that:

Lemma 4.2.7. Let k > 0, then for Lebesque almost every x € [0,1) the Lyapunov exponent

with respect to Ly, is given by

! > k (n+k)(n+k+1)
= log | Ly |dLeb = 1 :
Mle) /0 o8| LyldLeb ;}(n+k)(n+k+1) o k

That is, for each fixed map L, the Lyapunov exponent is constant Lebesgue almost
everywhere. Note that \f. := min{\y(x) : z € [0,1)} = log(k + 1) which is attained at
the largest fixed point of Ly. As we will see below, the range of values that the Lyapunov
exponent can attain is the interval [Af,  o00).

The relationship between Lyapunov exponents and the speed of convergence of p¥ /¢~ to

x is given by the following.

Proposition 4.2.8. If x € [0,1) is such that the Lyapunov exponent with respect to Ly exists

then
1 i
() = —T}Lrgoglog xr — ik
Proof. Let © € A¥(ay,...,a,). Since the map L; is piecewise linear, we observe that

|(L?)(z)| is constant equal to 1/|A¥(ay,. .., a,)|. Therefore

1
Me(z) = — lim —log |A*(ay, ..., a,)|

n—oo M,

1 k
— — lim —1 .
o 8 (ar + k) (@1 — 1+ k) (an + k) (an — 1+ K)
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On the other hand,

lim l10 xr— —2 = lim l10 R Li(z)
nheon BTk T e B k) (ar — 1K) (an + k) (an — 11 k)
< 1l lo w
im —
T nooon g(a1+k)(a1—1+k)---(an+k)(an—1+k)
= —Ak(z)
To obtain the other inequality, we observe that
Pl _ N K’
‘ o _j;ﬂ (a1 + k) (ar = L+ k) -+~ (a0 + F) (051 — 1+ k) (a5 + k)
then
pk kn+1
r—=t>
’ ar |~ (ar+k) (a1 =1+ k) (an + k) (@ = 1 + k) (an1 + k)
k,n+2

£ 0 (=T k) (an T ) (@ — T4 5) (s + ) (ais — 11 F)

which implies that

Pn
r — —

dn

1
lim — log
n—oo M

> —Ai(7)

and we conlcude the proof. O

Therefore, understanding the properties of the function 74 (a) corresponds to understand
the level sets determined by the exponential speed of approximation of number by the Qg
approximants. It turns out that a description of the multifractal spectrum of the Lyapunov
exponents of the Liiroth maps was done in [BI|. This was later extended to handle generalized
Liiroth maps in [KMSI]. In both cases the main result is that the map 7 (a) can be described

in terms of the Legendre transform of the pressure function. More precisely,

Definition 4.2.4. Let I C R be an interval and let f : I — R be a convex function. We
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define the Legendre transformation onf f by

F(a) == sup{at — f(1)}.

tel

Remark 4.2.3. When f is convex and differentiable everywhere in I then

fla) = a(f) ™M) + F((F) 7 @)
The following was proved in [BI, [KMSI| and completely describes the multifractal spec-

trum.

Theorem 4.2.9. Fix k > 0. Then the following holds:

]3 — 1.
o) = PED _ L ing(p(-t1og| 4] + ).

Moreover,
1. The set Jg(a) is non empty if and only if o € [log(k + 1), 00).
2. The map T, : [log(k + 1),00) — [0, 1] is real analytic.
3. We have that lim,_, () = 1/2.
4. If a € [log(k + 1), 00) then the set Jx(«) is dense in [0, 1].
5. The irregular set has full Hausdorff dimension, that is dimy J;, = 1.

That is, despite the fact that the decomposition is extremely complicated, each level set

is dense, the function that encodes it is as regular as it can be, real analytic.
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4.3 Pressure and Lyapunov spectra in terms of the pa-
rameter k

In the previous section we described the multfractal spectrum for a fixed dynamical system,
L;. We now address the question as how does this function varies as a function of the
dynamics. In this section we prove that, for every ¢ and « fixed, the functions k +— Py(?)

and k — 75 () are real analytic functions.

Theorem 4.3.1. Fiz t > 1/2, then the function defined in (0,00) by k +— Py(t) is real
analytic.

Proof. Note that
1

n+k+1)tn+k)t

P(t) =tlogk + logz (
n=0

Since sums, compositions of real analytic functions is real analytic, it is sufficient to prove

the real analyticity of the function

- 1
Z (n+k+1Hn+k)t

n=0

In order to do so, we consider the extension of this series to the complex domain D = {z €

C:Re(z) > 0}. Let F': D — C be defined by

- 1
Fz) = Z (n+z+1DHn+ 2)t

n=0

Observe that F' is well defined for every z € D and furthermore, it is an infinite sum of
holomorphic functions in D. As a result of Weierstrass M-test (see [GKR, Corollary 7.3|)

we have that F'(z) is a holomorphic function. In fact, let f,(z) = 1 e and 7 > 0.

(n+z+1)t(n+z

For each n we will prove that there exists M,, > 0 (possibly depending on r) such that for
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all z € B, :={z € D :|z| <r} we have

[fa(2)] < M.

Moreover, > M, < co. Let n > r then for every z € B, we have

1 _ 1 _ 1
(n+z+D)n+2) ~ (n+1-]2)(n—|z) =~ (n+1=r)(n—7)"

Let
1

(n+1—=r)t(n—r)

n T

Observe now that, since ¢ > 1/2 we have

1
Z(n+1—r)t(n—r)t =0

Thus, we deduce the uniform convergence of F'(z) on B,, for every r > 0. Hence, the uniform

convergence of F'(z) on every compact subset of D implies that F'(z) is holomorphic on D. In

particular F |R is real analytic. Finally, the pressure function Py(t) is real analytic in k. O

We now address the question as how the family of Lyapunov spectra {7 : |

R}, changes for different values of k. In our next result we prove that it varies real analytically

when we fix o in a common domain.

Theorem 4.3.2. Let M > 0 and fir o € [\M. o0). Then, the function

(0, M] - R

k— 1.(a)

15 real analytic.
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Proof. Recall that the Lyapunov spectrum is given by the following formula:

B 1 . ’ . 1 . . Pk(—Oé)
Te(a) = at;IgQ(P( tlog [Ty[) + tar) = at;qu(Pk(t)Ha) =

where ﬁk is the Legendre transform of Py. By convexity of Py(t), we have

(a) = é(a(Pé)_l(—a) +(Peo (P)7)(—a))

where all derivatives are with respect to t. We already have proved that k +— Py (t) is a real
analytic function in k, when we fix ¢ bigger than 1/2 (see Theorem 4.3.1)). Therefore, it is

sufficient to show the analyticity of P/(t).

Let t > 1/2 and recall that

1
(n+k+ 1(n+ k)

Py(t) = tlogk +log >
n=0

Hence

d
—P(t) = logk + — logz

dt +k+ )i (n + k)t

= log k — 4.3.1
o8 +<ZO n+k+4 1) n+k)t> dt;(n—i—k—l—l)t(n—i—k)t (43.1)

Claim. We have that

d <& 1 = d 1
d_z (n+k+1)i(n+ k) Zd_ (n+k+1)tn + k)t
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Proof of the Claim. According to [Rud, Theorem 7.17|, the equality holds when

= d 1
— 4.3.2
;%dt(n+k+1)t(n+k:)t (43.2)
converges uniformly on the set [1/2 4 ¢, 00), for € > 0. Note that

d 1 _ —log(n+k+1)(n+k)

dt(n+k+1Din+k)t  (n+k+1Din+k)

then

—log(n+k+1)(n+ k) < log(n+k+1)(n+k)
(n+k+1DHn+k) | = (n+k+1)Y24e(n 4 k)1/2+e
(n+ k4 1)6/2(n+ k)s/2
= (n+ k+ 1)/2(n + k)1/2<
1 < 1
(n + k 4 1)V/2+e/2(n + k)1/2+e/2 = plie

which implies that
1
Z (n+ k + 1)1/2+e/2(n + k)1/2+e/2 =

o

and by Weierstrass criterion, we have the uniform convergence of (4.3.2)) on the set [1/2 +

g,00), for all € > 0. In consequence

. c | &~ log(n+ k4 1)(n+ k)
EPk(t)—logk—i- (; (n+k+1)t(n+k)t> ; (n+k+1tn+k):

O

We now prove that k — P/ (t) is real analytic in the variable k. By algebra of analytic
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functions, it is sufficient to prove the analyticity of the series

o0

—log(n+k+1)(n+ k)
Z (n+k+1)tn+ k)

n=0

Let 7 > 0. We will work in the subset of complex numbers B, = {|z| < r}. Since

—log(n+k+1)(n+k)
(n+k+ 1D n + k)

fn(k) =

is analytic, we have to show that the series is uniformly convergent on compact subset of B,.

Note that

|log(n +k+1)(n+ k)|
(n+k+ 1) (n+ k)

log(n+r+1)(n+7r)+ 27
n+1—=r)t(n—r)

[fu(F)] <

<

for n sufficiently large. The series of this last sequence is convergent, then we conclude the
uniform convergence on compacts of B,, by Weierstrass theorem. In consequence, k — P} (t)
is analytic. By the inverse function theorem for analytic functions (see [KP, Theorem 1.8.1]),
we obtain the analyticity of (P})~!(¢). Finally, we obtain that
1 _ _
(@) = —(a(P) 7 (=) + (Pi o (F)7)(=a))

is analytic in k. O
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Chapter 5

Normal numbers in ()-Luroth expansions

In analogy to the Cantor series expansions, we introduce the so called (Q— Liiroth expansion of
a real number, where Q) is a sequence of positive numbers. We describe some of its properties,
define a notion of normal number, and go on to prove an analog of Borel’s normal number
theorem. That is, we prove that Lebesgue almost every real number is normal for (Q— Liiroth
expansions, if and only if we have a divergence of a series whose summands depends on
the sequence @ = (q,). On the other hand, although normal numbers form a large set with
respect to the Lebesque measure, we prove that its complement in [0,1] has full Hausdorff
dimension. Namely, we prove that the Hausdorff dimension of non-normal numbers is equal

to one. The results obtained in this chapter appear in the preprint [Conl/

5.1 Introduction

Let b > 2 be an integer. Every real number x € R can be written in base b as

. Gn(@

bn

n=1

xr =
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where €,(z) € {0,1,...,b—1}. This representation is unique except for a countable number
of points. A number x € R is b—normal (in the weak sense) if the frequency of appearance
of every digit is equal to 1/b. That is, for every d € {0,1,...,b— 1}

1 1
lim (i € {1} ala) = d} = 5,

n—oo

where #A denotes the cardinality of the set A. A classical result by Borel [Bor| states that
Lebesgue almost every number is b—normal with respect to every base b. It is well known that
the base b expansion is closely related to the following dynamical system, Ty : [0, 1] — [0, 1],
defined by

Ty(z) :==bxr mod 1 = bz — [bx] = {bx}

where [r] denotes the integer part of z and {z} its fractional part. Indeed, €,(z) = [bT}" 'z].
The Lebesgue measure, that we denote by ), is invariant and ergodic for every map T5.
Therefore, Borel’s normal number theorem is a simple consequence of Birkhoft’s ergodic
theorem. The frequency of the digit d in the base-b expansion of the point x € [0, 1] is given
by

where [d] := {z € [0,1] : ¢(x) = d} and 1|4 is the characteristic function of [d]. It directly
follows from Birkhoff’s theorem that for Lebesgue almost every x € [0, 1] this limit equals
the Lebesgue measure of [d], which is 1/b.

In 1869, Cantor |[Can| generalized the notion of b-expansion in the following direction.
Let B = {b,},>1 be a sequence of integers each of which is greater than 2. Cantor showed

that every real number x € [0,1) can be written as infinite series of the form
= c
n
xr = —_
; biby by
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with ¢, € {0,1,...,b, — 1}. Observe that if for every n € N we have b, = b then we recover
the base b-expansion. As in the case of base b—expansion, the Cantor series is related to a
dynamical system. However, in this case it is a non-autonomous system. Indeed, consider

the maps defined in [0, 1] by T}, (x) = {b,x}. The iteration is defined by
Tg(x) =Ty, 0Ty, , 0+ 0 Ty, (x).

The dynamics is, therefore, obtained applying different maps 7}, at prescribed times. Note
that, as in the case of the base b—expansion, we have ¢, = [b, 75 ']. Unfortunately, there is
no analog of Birkhoft’s ergodic theorem for non-autonomous systems. Therefore, the question
for normality in this setting has to be addressed with different methods. It was actually
shown by Renyi |[Rén| that Lebesgue almost every number is normal for B = {b,, },>1 if and
only if >, 1/b, = co. More recently, constructions and properties of normal numbers for
Cantor series have been studied by Mance [Man2].

In this note we introduce a new numerical system, the so called @-Liiroth system. In
analogy to the Cantor expansion, the role played by the base b—expansion is played by the
so called k—Liiroth expansion (see section . Again, the associated dynamical system is
a non-autonomous system. However, in this case each interval map has countably many
branches and infinite entropy. This lack of compactness yields several complications that
have to be addressed in order to first, define a notion of normality and second to prove that
Lebesgue almost every point is indeed normal. In this paper we provide such a definition
and prove the analog of Borel’s result in this setting.

Let @ = {¢n}n>1 be a sequence of positive real numbers. Consider the family of interval
maps L, : [0,1) = [0,1) defined by

(n+ go)(n+ g, + 1)

. Qn dn
L, (z):==x —(n+gq,), ifzxe , ,neN
0 (2) - (et g, itae |t ) e
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and L, (0) := 0. The maps {L,, }»>1 will be called the family of @)-Liiroth maps. The

associated non-autonomous dynamical system is defined by Lg : [0,1) — [0, 1)

Lgy(w) := Ly, 0 Lg,_, 00 Ly (2).

dn—1

Denote by E := {z € [0,1) : there exists n € N such that L{(x) = 0}. As in the the case
of the b—expansion or in the Cantor series expansion, to every real number z € [0,1) \ E
it corresponds a unique infinite sequence of positive integers [a1(x),...,a,(z),...]g that
determines its ()—Liiroth expansion (details are provided in section . In definition

we propose a notion of normal number in this setting. Our main result in this setting is

Theorem 5.1.1. Let Q = {q,}n>1 be a sequence of positive real numbers. Then we have that
Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Liiroth expansion

if and only if for all a > 1, the series Y A(II") is divergent.

This result extends previously known normality results on Cantor series expansions to
the (non-compact) setting @)-Liiroth expansions.
In a complementary direction, we also study the Hausdorff dimension of the set of non-

normal numbers in Q)-Liiroth expansions. We prove,

Theorem 5.1.2. The set of non-normal numbers in the QQ-Liiroth expansion has Hausdorff

dimension equal to one.

To prove this theorem, we use tools from dimension theory and thermodynamic formalism
put in the setting of non-autonomous dynamics. The idea of relating this two theories goes
back to the work of Bowen [Bow]| in the late 1970s. The setting we consider is, however,
very different in that non-autonomous dynamical systems are considered. In this setting the
work of Rempe-Gillen and Urbanski [RGU| will be of use. Ir is well known that the set of
badly-approximable numbers has Hausdorff dimension equal to one. Our proof of Theorem

provides a version of that result in the setting of Q)-Liiroth expansions.
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5.2 Liiroth expansions

5.2.1 Classical Liiroth expansions

The concept of Liiroth expansions was introduced in the 1883 work of Liiroth [Liir|, when

he proved that every irrational « € (0, 1] has a unique infinite expansion in the form

1 1 1
t=—+—"—+...+ + -
a;  ay(a; —1)as aj (ag — 1) ap_q1(an_1—1)a,

=3 !
ay (ag — 1) ap_q1(an—1 —1)ay

n=1

where a, > 2, for all n > 1. This expansion is closely related to the dynamics (see [DK]) of

the function L : [0,1) — [0,1) defined by

nin+l)z—n ifze] 1)y,neN

1
n+1’n

L(z) :=
0 it v =0.

The classical Liiroth expansion can be generalized in the following direction (see [KMSI]).

Let k& > 0 and consider the map Ly, : [0,1) — [0,1) defined by

k n+k+17 n+k

PR gy ifpe [—E B ) peN,

Note that L; = L. Observe that each map Lj, induces a partition {I¥},5¢ of [0,1), where

[k k
" n+k+1"n+k)’

For every £ > 0 the map L; has countably many branches and infinite entropy. Moreover,
for each k > 0 a k—Liiroth expansion can defined such that the map L; acts as the shift on

it (see [KMSI]).
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Proposition 5.2.1. Let k > 0. Every x € [0,1) such that L} (x) # 0 for alln > 1 can be

expanded in a infinite k-Liiroth expansion, that is

o kn
xzz(a1+k)(a1+k—1)---(an_1—i—k:)(an_1+k—1)(an+k;)

n=1
where a, = [L} ' (z)] + 1, for alln > 1.

We denote the k—Liiroth expansion of z € [0,1) by = [ai(z),...,a,(z),...]r. Recall
that a probability measure p in [0, 1] is invariant for the map 7" : [0,1] — [0, 1] if for every
Borel set A C [0,1] we have u(A) = u(T~1A). Moreover, we say that an invariant measure
p is ergodic if for every set with the property that A = T—'A we have that u(A) = 0 or
wu(A) =1, see [Wal|. Denote by A the Lebesgue measure on the interval [0, 1]. It was shown
in [KMSI, Lemma 2.4| that:

Proposition 5.2.2. For every k > 0, the map Ly, is an ergodic transformation with respect

to the Lebesgue measure.

The following is a natural definition of normal numbers with respect to k-Liiroth expan-

sions.

Definition 5.2.1. Let 2 € [0,1] , a > 1 and k& > 0. Denote by
NF(a,7) = #{1 <i <n:aix) =a}.

We say that = € [0, 1] is normal with respect to the k-Liiroth expansion, if for every integer

a>1, we have
N
li k(a,x)

— = 1.
n—o0 n)\(ffj)

Note that definition [5.2.1|is analogous to the definition of normal number in the continued

fraction expansion. The following result is a direct consequence of the ergodicity of the
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Lebesgue measure with respect to L, and Birkhoff’s ergodic theorem.

Proposition 5.2.3. For every k > 0, Lebesgue almost every point x € [0, 1] is normal with

respect to the k-Liiroth expansion.

5.2.2 (@-Liiroth expansions

In this subsection we introduce a new numerical expansion based on the k—Liiroth maps. Let
@ = {gn}n>1 be a sequence of integers ¢, > 2. Consider the family of Liiroth maps {L,, }n>1,
that we will denote by Lg. This family of transformations induces a non-autonomous dy-
namical system ([0, 1), Lg). Indeed, the time evolution of the system is defined by composing
the maps L,, in the prescribed order given by the sequence ) = {g,}n>1. In other words,
for all n > 1, we define:

5::anoL o---0L

qn—1 q1-

The orbit of x € [0, 1] is the sequence {L,, (z)}n>1.

Proposition 5.2.4. Let x € [0,1) and suppose that Lgrl(a:) £ 0 for alln > 1. Then,

n

142" q;
xr = —+
;(a1—1+q1)(a1+ql)---(ai—1+qi)

Q142+ g Ly (2)
((11 —1 + Ql)(al + Q1) o (an —1 + qn)(an + Qn)

where a, is the unique positive integer satisfying

+ 1.

- qn dn qn
LTI, 1.ZE G 5 <:> an: —— — (qn
o @We | an—1+qn) [Lg—%x) !

The proof of Proposition is analogous to the corresponding results for classical

Liiroth expansions. For further details, see [DK, pages 88-89].
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Theorem 5.2.5. Fachx € [0, 1) such that L§y(x) # 0 for alln > 0, can be expanded uniquely

in a infinite series of the form

o0 q1q2 o« o -qn
xr = 52.1
)3 P pripn TS Sy (5:2.1)

n=1

_ dn _
where a,, = |:—Lg_1(x) qn] + 1.

Proof. By proposition [5.2.4] there exists a unique sequence (a,),>1 C N such that

n

q1q2 - g
T = + 5.2.2
Z(al_1+Q1)(a1+Q1)"'(ai_1+q@‘) ( )

=1

011Gz - G L5 ()
(al —1 + q1)(a1 + Q1) o (a'n —1 + qn)(an + Qn)

(5.2.3)

for all n > 1. Let S, be the sum involved in [5.2.3l We will prove that S,, — x when n — oo.

In fact

QL
i) <L

(a1 =T+q)(ar+q) - (an =1+ qu)(an +qn) — 27

|z — S| =

which prove that

x:i 4192 - dn
(a1 =1+ag)(ar+q1) - (an—1+4q)

n=1

]

For x € [0,1) we denote by = = [a1(x), az(x), . .. ] the Q—Liiroth expansion of z and call

the numbers a;(x) digits. We stress that the expansion can be either finite (see Proposition

5.2.4)) or infinite (see Theorem [5.2.5)).

Lemma 5.2.6. The set of x € [0,1) having a finite Q-Liiroth expansion is countable.
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Proof. Recall that such subset of [0,1) is denoted by E. The lemma follows since

E = U{x €[0,1): Li(z) = O,Lé(x) #0, for j <n}

n>1
and the fact that each equation L,, (z) = 0 has countably many solutions. O
Definition 5.2.2. Given integers ai,as,...,a, > 1 we define Ag)(al,az, ...,a,) as the

subset of the interval [0,1) containing every number x € [0,1) whose first n digits in its

()—Liroth expansion are (ai, ag, ..., a,). In other words
A (a1, a2, .. an) = {z €[0,1) s a1(w) = ar, a2(x) = az, ..., an(¥) = @0}

Proposition 5.2.7. Let (ai,...,a,) be a word of length n with a; € N for every i €

{1,...,n}. Denote by

n

4192 - - 4;
Splay,...,a,) = )
(@ ) Z(Cll—1+91)(Cl1+Q1)"'(Gi—1+Q¢)

Then Agl) (a1, as,...,a,) is the subinterval
q1492* * " Gn
Splay, ... a,), Splay, ... a,) + )
(7 m), S, 00) Y ) (4w — 15 6 (an + )

Proof. By Proposition [5.2.4) we have that x € Ag(ay,...,a,) if and only if

Q1q2 -~ qn L ()
(al -1 +(11)(CL1 + Q1) e (an —1 + QH)(an + Qn)

r=S,(a1,...,a,)+ (5.2.4)

Since the n-th composition Lg, : [0,1) — [0,1) is onto (each L, is onto [0,1)), we observe
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that equality (5.2.4]) is equivalent to = belongs to

@142 - qn
Splay, ... ay), Splay, ... a,) + )
(oo, Sl o) o S ar T gn) -~ (an — 1 ) + 40)
O
As a consequence, each cylinder Ag ) (ay,as,...,a,)is a subinterval of [0, 1] with Lebesgue

measure equal to

)\A(")a,aa"'7a” = e .
(AG (a1, az e I | PRSTRS SO PR B PR

5.3 Normality in ()—Liiroth expansions

The notion of normality for @)-Liiroth expansions is captured by the following definition. It
generalizes the normality notion for k—Liiroth expansions (see definition |5.2.1]). Recall that

A is the Lebesgue measure.

Definition 5.3.1. Let z € [0,1) and a € N\ {1}. For Q = {¢.}>1 let
N@(a,z) = #{1 <i<n:ax) =a}.

The number x € [0, 1] is normal with respect to the @-Liiroth expansion, if for every a € N,

N
lim @)y

n—00 z;l:l /\(]g")

Our main result can be thought of as a Borel normal number theorem for @-Liiroth

expansions.

Theorem 5.3.1. Let Q = {gn}n>1 be a sequence of positive real numbers. Then we have that
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Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Liiroth expansion

if and only if for all a > 1, the series Y A(I2") is divergent.

Remark 5.3.1. The proof of this result is based on work by Erdés |[Rén| about normality
in Cantor Series. See also |[Révl page 152] and [Manl]. In the original work of Erdds,
the corresponding assumption on the series > A(I2) is the divergence of the series ) qin.
Observe that, if g, - 0 when n — oo, the divergence of > A(I") (for all @ > 1) is
equivalent to the divergence of > i. On the other hand, it is possible to have g, — 0 and

that >° A(I%) be convergent. Actually, ¢, = 1/n? implies that A\(I9") ~ 1/n?.

5.3.1 Preliminaries from Probability Theory

We consider the probability space given by ([0,1], B, \), where B is the sigma-algebra of

Borel sets in [0, 1] and A denotes the Lebesgue measure on [0, 1].
Definition 5.3.2. We consider the following objects,
1. A measurable function X : [0,1] — R is called a random variable.

2. A random variable is called discrete if the image of [0, 1] under X is a countable subset

of R.

Definition 5.3.3. We say that a sequence of random variables {X,, },en is independent if
and only if
)\(Xl = 33'1,X2 = T2,... ,Xk = l’k) = H)\(XZ = xl)

for every x; that belongs to the range of X; and for every k € N.

Example. Given x € [0,1] we define the random variable a,(z) = a,, i.e. the function a,

gives the n-th digit of z in the Q-Liiroth expansion. We observe that the random variables
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{a,} are independent. Indeed,

Mai(z) = aq,...,a,(z) = a,) = MA(ay, a9, . ..,a,))

qi1492 -+ " gn
(al —1 +Q1)(a1 + Q1> e (an -1 +Qn)(an + qn)

Definition 5.3.4. The mean of a random variable X is defined by

E(X):= /Xd)\
and the variance of X is defined by
Var(X) := E(X?) — (E(X))>.

The following theorem, known as the Law of iterated Logarithm (see |Gal, page 49|, [Rév,

page 69]), will be the main tool to proof our main result.

Theorem 5.3.2. Let {X;} be a sequence of independent random variables. Assume that there
exists a constant ¢ > 0 such that | X;| < ¢ for all i € N and that s, := > Var(X;) — oo

when n — oco. Then, with probability one,

X, =YY" ELX;
lim sup Zz:l Zz:l [ ] — 1.
n—s00 V/sp loglog s,
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5.3.2 Proof of Theorem [5.3.1]

Assume that the series Y A(/d") = 400 for all @ > 1. For a,i € N we consider the random

variable & 4(%) = X{a;(z)=a}- We note that

AGia(r) = 1) = Mai(z) = a) = AMA(a)) =

and

Il
2
>

(al,ag, Ce ,an))

A(fl,m (.’L’) = 1752,&2(1.) = 17 ce 7€n,an('r) = 1)

4
(ai — 1+ gi)(a; + qi)

I
=

1

7

I
=

)‘(gi,ai ($) = 1)'

i=1

Thus, the sequence of random variables ® = {¢; ,}ien is independent. We will verify the

hypothesis of Theorem [5.3.2] The sequence ® is uniformly bounded. On the other hand,

_ 4 . - ) - a
E(&i,(l) - (CL — 1+ Qz)(a n qz)v ;E(gl,a) - ; )\(Ia )
and
_ 2\ W2/ N\ _ q; _ q;
Vi) =€) B6) = s (- o)

Now, we will prove that, when n — oo, we have

_n i _ qi 00
Sn_;(a—1+qz~)(a+%)<l (a—1+qz~)(a+qz-)>_> '
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In fact, if g, — oo we observe that the divergence of Y A(/d") for all @ > 1 implies that
Sn, — o0 by comparing both series. The same reasoning holds when ¢, — 0. In the case of

¢» has a convergent subsequence ¢, — [ ¢ {0, 00}, then we have that

qny, dny, l l
ML) (1 = A1) — D (1_ (a—l—i—l)(a—l—l)) #0

In consequence

. qny, o qny, —
Jljgosnzzk:x(fa )(1 = A1) = o0.

If we write N(a,z) = > | & o(x), then by Theorem we have, for Lebesgue-almost all

e [0,1],
1= lim Np(a,z) = >0 AJE) — im S A1) N,(a, ) )
=11 = — — .
n=r00 sp loglog s, n—oc \/s, loglog s, \ > i, A(Id")
Let

qi
(0= 1+ a)a+a)

i
To finishing the proof of the first implicance, it is sufficient to show that

i AUE) 2 i bi

lim &=L e/ iy = 0,

n—o0 /s, loglog s, n—>oo\/221 (1—0b;)loglog> " bi(1—10;)

which is true since the divergence of »_ b;, the inequality

Z? 1 bi 27 1 bi
\/Zz 1 )lOg IOg Zz 1 \/Zz 1b lOg lOg Zz 1

and x/v/xloglogx — oo when n — oo. We conclude that, for Lebesgue-almost every
€ [0, 1] we have
lim (@)
e S A(IE)
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for all a > 1.
To prove the other direction, suppose that there exists a > 1 such that the series

> A(I2") is convergent. We will prove that the set
Q, :={x :for all n > 1,a,(x) # a}

has positive Lebesgue measure. Let N € N. Note that, by independence of the random

variables a,(z) (see Example [5.3.1)), we have

AQ) = ]\}gréo)\ (ﬂ{x L, # a})

n=1

= A}l_lgogk({x a, #a})

N
= lim | |(1—-X{x:a,=a}))
N—>o<>n:1
N
_ 3 _ dn
= lim. 71(1 A(LG))

which converges to some positive number because ) A(I2") < oo.

5.4 Hausdorff dimension of non-normal numbers

In the main result of the previous section, Theorem [5.3.1] we proved that under some mild
assumptions the set of normal numbers is large from the measure theoretic point of view.
Indeed, it has full Lebesgue measure. Consequently, the set of non-normal numbers has zero
Lebesgue measure. The purpose of this section is to show that, despite the above, from the
point of view of dimension theory the set of non-normal numbers is as large as possible. In
Theorem we prove that the set of non-normal numbers has Hausdorff dimension equal

to one. Actually, we prove that the set of numbers for which its )—Liiroth expansion only
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has finitely many digits has Hausdorff dimension one. More precisely, for N € N we consider
the set

Ay :={z = [a1(z)az(x)...]g € [0,1] : a;(x) < N for every i € N},

and go on to prove that limy_,,, dimy Ay = 1, where dimy denotes the Hausdorff dimension.
This result should be compared to the fact that the set of real numbers having a continued

fraction with finitely many digits also has Hausdorff dimension equal to one.

5.4.1 Hausdorff Dimension

We start by recalling the definition of Hausdorff dimension, see [Fal, Chapter 2| for further
details. Given a subset G C R, we say that a countable family of sets {U,},>1 is a d-cover

of G if G C |, U, and every set U, has diameter at most . Given s > 0, we define

H*(G) :=lim Hj(G),

§—0

where

Hj3(G) = inf {Z \Up|® : {Uy }n>1 1s a d-cover of G} .

n=1

The Hausdorff dimension of the set G is defined by

dimg(G) :=inf{s > 0: H*(G) = 0}.

5.4.2 Non-autonomous iterated function systems

In this subsection we will consider the @-Liiroth series from the iterated function systems

(IF'S) point of view.

Definition 5.4.1. A non-autonomous iterated function system ® on [0, 1] is a sequence
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b = {(P(n)}nEN; where
o = {6\ :[0,1] = [0,1]} e s

is a collection of contractions of [0,1], and, for all n € N, J™ is an index set (finite or

countably infinite).

Given n > 1, we denote by J" =[] _, J™  To any element w = wyws - - - w, € J" we

associate the function

1) 5,2 (n)

Py = Pun © Pusy O 0 Py
The limit set of ® is defined by
J(@) =) U #i0,1].
n=1weJn”
Definition 5.4.2. The @-Liiroth non-autonoumous IFS is given by the sequence © =
{0}, en, where ©® = {7 : [0,1] — [0,1]};en and 67(z) is the inverse branch of L, :
[0,1] = [0, 1] restricted to IJ", namely:

n 1
0" (x) ;= x— - 4+ — . 5.4.1
@ = i+ as D T Fa 1 (5:41)

for all j,n > 1.

There exists a well established theory that relates thermodynamic formalism with the
Hausdorff dimension of attractors (see [MU2|). Recently, a thermodynamic formalism has
been developed by Rempe-Gillen and Urbariski [RGU| in this (non-autonomous) setting
with the purpose of studying the dimension theory of non-autonomous IFS. Given a dif-

ferentiable function f : [0,1] — [0,1], we denote by Df(x) its derivative at = and let

IDI:= sup,epo 1f()]-
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Definition 5.4.3. For any ¢t > 0 and n € N, the lower pressure function is defined by
P2(t) := nmmflk)g > IDg I
- n—oo n, e w

Remark 5.4.1. When finite, the lower pressure function is strictly decreasing, see [RGU,

Lemma 2.6].

Remark 5.4.2. For the @-Liiroth non-autonomous IFS, the pressure function is given by

_P® (t) = liminf l log Z ﬁ q

n—oc 1 S i (wit @) (wi+q — 1)

w:(wlv---vwn)

= liminf — lo ‘
mint e 112 e

t

1 & e ¢
= lim inf — lo i

R
= 11521;le - Z P, (1)
j=1
where, for k£ > 0,

kt
n+k—1)

Pu(t) i= P(=tlog|Lil) = log 3 ey

denotes the pressure function for the k-Liiroth map Ly : [0,1) — [0,1) (see [Con2, BI, MU2,
Sarl]). The above shows that the non-autonomous pressure can be understood as an average

of the autonomous ones. This has several consequences, for example, if ¢, — ¢ when n — o0,

we have that P°(t) = P,(t). Observe that P°(t) < oo if and only if ¢ < 1/2.

The following approximation by compact non-autonomous systems of the pressure will
be our main technical device in the proof of Theorem [5.4.3 but it is also of independent

interest.
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Proposition 5.4.1. Let ® = {®™}, oy be a non-autonomous IFS. Suppose that, for all
n > 1, the index set J™ = N. Then the pressure function P*(t) satisfies the following
approrimation property:

P®(t) := lim P*¥(t)

- N—oo

where

1
AN 1 . - n ||t
PN (1) = hggggf - log E |IDen ||

weAY;

and Ay = [[;_{1,2,..., N}, for alln > 1.

Proof. We note that the sequence {P*¥(¢)}y>; is increasing in N and bounded above by
P?®(t). Moreover

lim P (t) = lim lim inf —log Z | D™ ||t =: hm lim ayy,

N—o0 N—oon—oom>n M, 00 N—+00
weATy

and ap, is increasing in N (when we fix n), and increasing in n (when we fix N). Since

PyN (t) is convergent, we can change the order of the limits (see [BB], Theorem 7.3]) to obtain

lim P*(t) = lim lim inf —log Z | Do ||t

N—oo n—oo N—oom>n M,
weAR

= lim inf — hm log Z HDSOSHt

n—oom>n 1M, N—
wEAR

= P?(1).

]

The next result was obtained by Rempe-Gillen and Urbariski [RGUL Theorem 1.1]. It is
a non-autonomous version of the so called Bowen-formula that relates the pressure with the

Hausdorff dimension of the attractor.
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Theorem 5.4.2. Suppose that ® is a non-autonomous iterated function system of sub-

exponential growth, that is

1
lim — log #J™ = 0.

n—oo M

Then,
dimg(J*) =sup{t > 0: P(t) > 0} =inf{t > 0: P(t) < 0}

Remark 5.4.3. In particular, Theorem holds for any ® = {®™} ) having a uniform

bound for the size of the index sets J™, for any n > 1.

We can now prove the main result of this section.

Theorem 5.4.3. The set of non-normal numbers in the QQ-Liiroth expansion has Hausdorff

dimension equal to one.

Proof. Let € be the subset of non-normal numbers. Observe that if we define Ay as the
set of x € [0,1] whose digits in the @Q-Liiroth expansion are bounded above by N, then
An C €, for all N > 1. Moreover Ay is the limit set of the Q-Liiroth non-autonomous IFS
by restricting all the alphabets to be Ay = {1,..., N}. In particular, from Theorem m,
we have that PAV(ty) = 0 if and only if ¢ty = dimy(Ay). Define ¢ := limy_, 5 and note
that

t = dimy U Ay < dimy Q < 1.
N=1

We claim that ¢ = 1. Assume by way of contradiction that ¢ < 1. Since ty < t and
the pressure functions are strictly decreasing, we have that P ¥(¢) < 0. Therefore, by
Proposition [5.4.1, P®(¢) < 0. This is a contradiction with the fact that P®(t) > 0 when

t<1. OJ

90



Chapter 6

The Dimension of non-differentiability
points of conjugacies between Gauss-like

maps

In this chapterﬂ we consider a family of interval maps {Ty}r=o0 which generalize the Gauss
map on continued fractions. Any map T} can be modeled by a fullshift on countable symbols.
Using that fact, we construct a topological conjugacy between any two maps of the family and
study the derivative of this conjugacy. In particular, we will prove that it is a singular map on
the interval; that is, a non-constant function with deriwvative zero, Lebesque a.e. point. From
a fractal analysis point of view, we will calculate the exact value of the Hausdorff dimension of
the set where the derivative does not exist and the set where the derivative is equal to infinity.
It is important to remark that we will use strongly tools from thermodynamic formalism on

non-compact spaces applied to dimension theory.

1 Joint work with Thomas Jordan
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6.1 Introduction

In 1770 Lagrange [Lag| proved a theorem on continued fractions, which states that real roots
of quadratic polynomials with integer coefficients, corresponds to numbers with eventually
periodic continued fraction expansion. This property motived to Minkowski [Min| who, at
the beginning of the 20th century, was interested in mapping quadratic surds of [0,1] into
the non-dyadic rational numbers and for that constructed the so-called Minkowski’s question

mark function denoted by @ : [0,1] — [0, 1]. This function is defined on rationals by

Qp/a) + QW' /)
2

QU)=0, QU)=1, Q(zig):

and can be extended to irrationals by continuity. The question mark function has been a
matter of study of several mathematicians. For example, in 1938 Denjoy [Den| proved that

() can be expressed as

o

Q[z1,72,...]) = =2 Z(—l)k2727{'€:11i

where [x1,Zs, . ..] denotes the classic expansion in continued fractions.

On the other hand, Salem [Sal| proved that @ is a strictly increasing function and that
it is singular with respect to the Lebesgue measure, that is, Q' exists and it is equal to 0,
Lebesgue-almost everywhere in [0, 1]. Therefore, @ is an example of a slippery devil’s staircase
function, a concept that was introduced firstly by Gutzwiller and Mandelbrot in 1988 [GM]|
and that now refer to strictly increasing and singular functions. Moreover, questions about
different values of the derivative of () can be posed. In fact, the problem of finding points with
derivative non zero was solved by Paradis, Viader [PVB]| and by Kessebohmer, Stratmann

[KST]. The authors proved that, when the derivative of @ exists, then @'(x) € {0,00}. This
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result cause the following partition of the interval [0, 1] = Dy U Do, U D, where

Dy:={z€[0,1]: Q(z) =0}, Dy :={xe€l0,1]:Q (x)=o00}

and

Do :=1[0,1]\ (D U Do)

In [KST], the authors were interested in the fractal analysis of @)’. They asked how large are
the sets where the derivative is different to zero, with respect to the Hausdorff dimension.

In particular, they proved that

0.875 < dimpy Dy, = dimy D < 1.

Thermodynamic formalism tools associated to Stern-Brocot partitions of the interval [0, 1]
were used in the proof (see [KS2|). In addition, it is important to note that in [KS2| the
authors completed the multifractal analysis of Lyapunov exponents for the Gauss map.

From the dynamical systems point of view, we remark the fact that the question mark
function is the topological conjugation between the Farey map (F') and the Tent map (7'):
To@ = Qo F, (see [KS1| for more details). This observation allows us to ask about the
derivative of conjugations between two dynamical systems. In the trivial case when the
dynamics are the same, the identity map is a topological conjugacy. Therefore the derivative
of the conjugacy is always equal to one. Thus, conjugacies in general can be thought of as
perturbations of the identity. Actually, in [JMS] the impact of pointwise perturbations of
conjugacies into the Hausdorff dimensions of the points where the derivative is non-zero was
studied. See also [Mun| where the authors considered the fractal analysis of conjugations
between generalized Liiroth maps.

In this article, we consider a family of Markov expanding maps defined on [0, 1]. More
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precisely, let k be a positive number. We define the map T}, : [0,1] — [0, 1] by Tx(0) := 0

and, if x € (0,1]
To(z) = k(1 —x) B [

T

k(l—x)}‘

x
We remark that this family belongs to a more general class of maps which are defined in
[HM|. Moreover, since they generalize the Gauss map on continued fractions, each map T},
gives a more general class of continued fractions (see Subsection 2.2 and [HM] for further
details).

The Markov property allows to code each T} by the full-shift on countable symbols. This
gives a conjugacy T, x, between any two maps Ty, , Ik,, k1 7# ko. The aim of this article is
to study the derivative of 7y, j,. In first place, we will prove that it is a singular function.

Also, and in a dimension theory direction, we will interested in how large are the sets
Dy :={x€]0,1] : ﬂ;m(az) = oo}

and

Dy = {z € [0,1] : m, 4, () does not exists},

in terms of the Hausdorff dimension. The main result of this article will be to prove the

following theorem.

Theorem. Let ki, ks be two positive numbers. Then the sets Do, D.. defined as above have

the following Hausdorff dimensions:

where

do :=sup{d € (1/2,1] : for all ¢ € R, P(qip — 0 log |T122|) > 0}
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Here P(-) denotes the pressure function associated to Ty,. The proof of this theorem
involves applications of thermodynamic formalism. In particular, the behavior of the pressure
function of maps T} will be one of the main tools.

Notation. If f,g : R — R are two functions, we denote by f < ¢ when there exists a
positive constant C' (independent of z) such that f < Cg. Also, we write f =< ¢g when we

have f < g and g < f.

6.2 Preliminaries on continued fraction maps

This section is devoted to define a family {7} }x~o of maps that generalize the classical Gauss
map. We also collect some ergodic properties of Tj. At the end of this section, we will review
the continued fraction expansions defined by T} and will prove some useful results for our

purposes. We mainly follow [HM].

6.2.1 Definitions and dynamic properties

Let k be a positive number. We define the map T} : [0,1] — [0,1] by T%(0) := 0 and, if

x € (0,1]

D) = M=) [

T T

k(1 — x)}
where [w] denotes the integer part of the real number w. As the Gauss map, T has a
T-invariant measure absolutely continuous with respect to Lebesgue. In [Haal, the authors

proved the following theorem.

Theorem 6.2.1. Let k > 0. The transformation Ty, : [0,1] — [0, 1] preserve the measure jy,

defined on Borel subsets A C [0,1] by




k+1

~1 L, ‘
where ¢, = (log T) . Moreover, it is an ergodic measure for Ty.

The Markov structure of T), can be described in a similar way. The sequence of intervals

{I*(n) }new, = { (n +Z+ 1'n —kF k] }neNo

is a Markov partition for the map T},. Observe that 2 € I*(n) if and only if [£1=2)

T

] =n. Let

n > 1. To each finite sequence {ay,...,a,} C Ny, we associate the n-th cylinder by

n

IFay,. . a) = (T V1)),

=1

Note that z € I*(ay,...,a,) if and only if T }(x) € I}(a;), for all i € {1,...,n}. Asin
the classical setting of Gauss map, cylinders at level n gives a partition of the interval [0, 1]

modulo a countable set. Given n > 1, let Q,ﬁ”) be the set
@,(f”) ={z €[0,1] : T} (z) = 0 for some m < n}.

Proposition 6.2.2. For eachn > 1

Proof. [HM, p. 2855, Proposition 2]. O

Definition 6.2.1. We will call the set of k-rational numbers to the union
Q= J Q.
n=1
The complement of Qy, in [0, 1] is called the set of k-irrational numbers.
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Now, we pass to define the k-continued fractions. Also, we will see how the maps T}, are

the key in the algorithm to find an expansion in k-continued fractions of some x € [0, 1].

Definition 6.2.2. Let n € N. If {ay,...,a,} C Ny is a finite sequence, then we define the

finite k-continued fraction expansion by

k k
[a1,az,...,a,]k = =: p_z
k In
a1+k+
k
CL2+]€+
k
+
an, + k

We say that aq, as, ..., a, are the digits of the k-continued fraction. The set of possible digits
is No.

Observe that pf /¢® depend on ay, as, . . ., a, although it is not evident from the notation.
In that follow, and if the context is clear, we will write just p, /g, instead of p* /¢. We will

define an infinite k-continued fraction.

Definition 6.2.3. If {a1,a,,...} C Ny is a infinite sequence, then we define (formally) the

infinite k-continued fraction expansion by

[al,az, .. -]k =

a1+k—|—

k
a2+k’+_

Proposition 6.2.3. Fach k-irrational x has a unique, infinite expansion in k-continued
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fractions. We have x = [ay, aq, .. .|y if and only if
x € 1%y, a9,...,a,) for alln > 1,
if and only iof
TP (x) € I (a,) for alln > 1.

Proof. [HM), p. 2856, Proposition 3|. ]

Remark 6.2.1. 1. This proposition implies that the cylinders are given by
IFay,ag, ... a,) = {z €[0,1] : ay(x) = a1, as(x) = as, ..., an(z) = a,}

where a;(x) denotes the i-th digit of z in the k-continued fraction expansion.

2. The definition |6.2.3| now is well-defined, an infinite continued fraction represent a real

number in [0, 1], since

lay,az,...Jp = lim [ay,aq,...,a,)x = lim iy
n—oo n—oo qn

and, for all n € N, p,/q, is a endpoint of the closed interval I¥(ajas .. .a,) which is a

sequence of nested closed sets [HM) p. 2856].

3. From Proposition we can deduce that the digits are given by a,, = [A,(T} ' (2))],
for all n > 1. Observe also that allows us to write a k-irrational z as a limit of
k-rationals

DPn

r = lim —.
n—oo qn

Definition 6.2.4. For each n > 1, the rationals z’—: are called the convergents of the k-

continued fraction.
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Convergents have similar properties that in the case of classical continued fractions. The

following proposition summarise some of them which will be useful for our purposes.

Proposition 6.2.4. Let © = [ay,as,...] be a k-irrational. Then, the following properties

related to convergents are satisfied:

1. pn = (a0 + K)pos + Vhpas),  n>2

2. o= J((an + B)gur + V@),  n>2
3. [Pudn1 = Gpni| = 77
4o o> Vo
Proof. This follow from Lemma 2; Propositions 4 and 5 of [HM] . O

We finish this section with a useful result for our purposes.
Lemma 6.2.5. For any sequence of digits (z,)n>1 C No we have that

Ik

n+1($1,...,$n,l‘n+1) - 1
I’rlf(xh B axn) (xn—‘,—l + k)2

where the constants involved depend only on k.

Proof. We know that

1

I* .
qln€+1(\/Eq:~f+1 +qF)

n+1(3§'1, ce ,$n+1) =

Using the equation for ¢, from Lemma , we have that

Vk

Vkgn 1 Vkgn— .
(@nr1+ k)%qq <1 T (zn +1+k‘;Qn) <1 T Tni1tk + (xn+1+k)1qn>

Irlf(l’l, .. ,$n+1) =

Then
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I1]§+1(x17 R xn-&-l) \/EQn(\/EQn + anl)

IF(xq, ..., 2, B Va1 L Vgn
n (1 ) (Tnt1 + k)% (1 t (xn+1+k;qn) (1 T Zoath T (wn+1+k;qn>
2 1
< VEg: (VE+ &) k1
(Tpt1 + k)3q2 (i1 + k)2
On the other hand,
Ivli—‘rl(xla R ) xn—‘,—l) kqn
My, ... - 2 Ve L v
( 1 ) (xn—l-l + k) In <1 + (xn+1+k)\/E> (1 * Tpt1+k T (xn+1+k)‘/E>
k
— . 9 2
(anrl + k>2 (1 + xn+1+k> (1 + xn+1+k)
k
>

T (@ R2 (14 1) (14 2)°

which ends the proof.

6.2.2 Symbolic model

The Markov structure of T}, implies that the dynamic associated can be coded by a full-shift

on countable symbols. More precisely, let
Y= {(Tn)nen : T, € Ny for every n € N},

and the shift map o : ¥ — ¥ defined by o (21, x9,...) = (22, 23,...). We call the pair (X, 0)

the full-shift on countable symbols. The set
Coyoan, ={(@n)n €X 11 =0a1...2, = a,}
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is called a symbolic cylinder of length n. The space ¥ endowed with the topology generated
by the cylinder sets is a non-compact space. This fact is one of the main difficulties that

need to be addressed to develop the theory. The map

w2 = 0,1\ [ T.7(0)

neN

(.Tl,ZEQ, .. ) — [.CEl,ZL‘Q, .. }k

is a topological conjugacy between the full-shift and T}.

Remark 6.2.2. We observe that every cylinder is the projection of a symbolic cylinder Cy, . 4, ,

that is I¥(ay, ..., a,) = m(Cy,. a,). Note that

U T:"(0) = Q.

neN

6.2.3 Conjugacies

In this subsection we will consider the main objects in this article. Let ki, ks be two different
positive numbers. Observe that this define a topological conjugation between the systems

T}y, and Ty, given by

Ty ko - ([07 1] \kakaz) - ([07 1] \QIﬂ’Tkl)

T > o™ ().
Note that, in terms of continued fractions expansions, the action of 7y, j, is given by
ﬂ-kl,kQ([ah a2, . . ]]{72) - [al, ag, . . ’]kl‘

In particular, m, 1, (I¥2(ay, as, ..., a,)) = ¥ (a1, a9, . .., ay,).
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6.2.4 The EMR class

In this subsection we will consider the class of EMR (Expanding-Markov-Rényi) interval
maps. This class of maps was considered by Pollicott and Weiss in [PW] to study multifractal

analysis of Lyapunov exponents for the Gauss map (see Section for further details).

Definition 6.2.5. A map 7' : [ — [ is an EMR map, if there exists a countable family {I;};

of closed intervals (with disjoint interiors int(1,)), with I, C I for every i € N, satisfying
1. If I, = [a,, by], then a,,b, are decreasing sequences, b; = 1, and b,, — 0.
2. The map is C? on |J;=, int(I;).

3. (Expansiveness) There exists a constant @ > 1 and N € N such that for every = €

U5z, int(Z;), we have [(TV) (z)| > a.
4. (Markov) The sequence {int(I,)},>1 is a Markov partition for 7'

5. (Rényi) There exists a positive number K > 0 such that

" (a)|
SUp SUP o S
neN zy,z€I, |T/(y)||T,(Z)|

Remark 6.2.3. It is not difficult to prove that T}, is an EMR map, for each k£ > 0. The Rényi

(k+1)3
k3

condition can be verified with constant M = . The expansiveness condition (b) can
be proved with the second iterate of Ty. Let n > 0 such that Ty(xz) € IF(n). Note that

T} (x) = 2k/x which is always positive and therefore T} is increasing. Thus

k k
—>Mm+k+1)2*>(k+1)>%

(T*@)) = )T > e 5

We finish this subsection recalling that the Rényi condition in Definition [6.2.5 of an EMR

map, gives the following behaviour of the derivatives of iterates on cylinders of level n: there
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exists a constant C' such that, for any n > 1 and any = € I*(ay,...,a,), then

for any y € I*(ay, ..., a,). This property is known as Bounded Distortion.

6.3 Thermodynamic Formalism and Dimension Theory

Thermodynamical formalism is a set of tools and methods brought into hyperbolic dynamics
with great success in the early seventies from statistical physics. It allows for the selection
of relevant measures from the, sometimes very large, set of invariant measures. It has been
used as tool in the dimension theory of dynamical systems at least since the work of Bowen

in the 70s [Bow].

6.3.1 Thermodynamic formalism on the full-shift on countable sym-

bols

Thermodynamic formalism for dynamical systems defined in non-compact spaces has been
studied and developed over the last 20 years. The particular case of the full-shift on countable
many symbols (3, 0) has been very well studied, see [BS, MU2| [Sar2]. In this section we

recall the main definitions and results.

Definition 6.3.1. We say that a potential ¢ is weakly Holder if there exists 6 € (0, 1) such

that for all n > 1, we have
sup{|g0(x) - gO(y)| ST,y € Y, xp = Yi for i = 1,...,71} <Co"

for some positive constant C' independent of n.
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Definition 6.3.2. Let (X,0) be the full-shift on a countable alphabet and ¢ : ¥ — R a

weakly Holder function. The pressure of ¢ is defined by

P(p) := nggonlogZeXp<Zgoax).

ohr=x

The limit exists, but it can be infinity [BS, MU2| [Sar2|]. The following theorem summa-

rizes results proved in [MU2] [Sar2].

Theorem 6.3.1. Let ¢ : ¥ — R be a weakly Holder function such that P(p) < oco. Then,

there exists a critical value t* € (0, 1] such that

nfinit ft <t*
Plty) is mﬁm e, .zf
finite | if t >t~

Moreover, when t > t* the pressure function t — P(ty) is real analytic and strictly convex.

Also, for any t > t* there exists an equilibrium measure i, that is, a measure such that

P(ty) = h(p) +t/90,uta

where h(u;) denotes the entropy of the measure. We have also that the derivative of P is

dpP
It = /deﬂt-

giwen by the following formula

Finite symbols

We recall that the theory and properties of the pressure remain true when we consider the
compact case, that is, when finite symbols are considered. In other words, if we denote X as
the subset of ¥ consisting in all sequences with symbols only in {0,1,..., N}, any potential
¢ : X — R can be restricted to Xy and we can define the pressure in a similar way as in

Definition [6.3.2] See [Wal| for further details. Denote as Py(¢) the pressure of a potential
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@ restricted to Y. A remarkable property that relates the two definitions is the following

approximation theorem which was proved in [Sarl].

Theorem 6.3.2. If ¢ : 0 — R is a weakly Hélder potential, then

P(p) = sup {Pn(p)}.

NeN

6.3.2 Pressure for 7 maps

Recall that the Markov property of 7} allows to codify the map T by the conjugation

7 5 — [0,1] \ Qk defined on . We will use this fact to define a pressure.

Definition 6.3.3. Let ¢ : [0,1] \ Q¢ — R such that ¢ o, : ¥ — R is a weakly Holder

potential. Then the pressure of ¢ with respect to T}, is defined by

n—1
Pr (¢) == nlij&%log Z exp (Z @(T,ix)) :

o i=0
Henceforth, we will use P(¢) instead of Pr, (¢). A classical example is when the potential
is ¢ = log |T{|. In [KS2, PW]| the authors studied the thermodynamic formalism for Gauss
map. They gave a complete description of the pressure function ¢ — P(—tlog|7”|) and used
this analysis to describe the size (with respect the Hausdorff dimension) of the points having
the same speed of approximations by rationals in the classical continued expansions. One of
the main tools to our results will be to know how is the pressure function ¢t — P(—tlog|77]).

Observe that this function can be written explicitly in the following way

.1 n _
P(~log|T{]) = lim —log 3 |(T7) ()| ™"

T —
TV e=x

Proposition 6.3.3. Let k > 0. The pressure function t — P(—tlog|T}|) is finite if t > 1/2

and it is equal to oo ift < 5. Whent > 1/2, P(—tlog|T}|) is real analytic, strictly decreasing
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and strictly convezx. Moreover P(—tlog|T}]|) — oo when t — %+.

Proof. For each n, the Mean Value theorem guarantees the existence of z € I¥(n) such that

1
Ti(2)| = ,
)]
then, for all z € IF(n) we have
1 _ 7))l
e O
C = |IE(n)

Therefore

cm Y H|]kjl|t ZH|Tkax|t<Ct" > H|]ka

(J1,-+-,Jn) ENG =1 TP z=z i=0 (J15erdn) ENG i=1

We note that each one of the sums at left and right are equal to (Z;’io \[f(])]t> , which

implies

—tnlogC’%—nlogz:Lf’C )| < log Z H|Tk‘ (Tix)| ™" < —tnlogC’—l—nlogZUk

7=0 TP z=z i=0 7=0
and
—zflogC’—l—logz:\[’C (D < P(—tlog|T}|) < —tlogC—{—logZHk (6.3.1)
J=0 j=0

First two assumptions are given by the convergence of series involved in inequality (6.3.1)).

For the limit, we first note that by Fatou’s lemma

1
JH+k4+1)ztu(j+ k)2t

1 o
lim inf — > lim inf = 00.
HOZJHH Deta(j+ k)2t ;’H“’ (

l\.’)\»—‘
3\’—‘

By Theorem P(—tlog|T}|) is a real analytic, strictly convex and strictly decreasing

106



,00) since

function on (3

dP(—tlog|T}|)
o B = —/10g|T,2|alu7’i€ < 0.

Using that and the inequality (6.3.1]) we have that P(—tlog|T}|) — oo, when ¢t — 1/2%7. O

6.3.3 Dimension Theory

We start recalling the definition of Hausdorff dimension, see [Fal, Chapter 2| for further
details. Given a subset G C R, we say that a countable family of sets {U, },>1 is a d-cover

of G if G C |, U, and every set U, has diameter at most §. Given s > 0, we define

H*(G) = lim Hi(G),

6—0

where

Hj3(G) :=inf {Z \Up|” - {Uy }n>1 s a 6-cover of G} .

n=1

The Hausdorff dimension of the set GG is defined by
dimy (G) :=inf{s > 0: H*(G) = 0}.

Given a probability measure p on [0, 1], we define the Hausdorff dimension of p by
dimpy p = inf{dimg(A) : u(A) = 1}.

On the other hand, we define the Lyapunov exponent of the measure p with respect a

countable Markov map by

Ao) = [ tog | T'ldp.
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A useful result that link the last two notions is the following (see [MU2]).

Proposition 6.3.4 (Volume Lemma). Suppose that T : [0,1] — [0,1] is a countable Markov
map and p is an ergodic T-invariant probability measure on [0, 1] with finite entropy h(w).
Then

h(p)

dimyg p = —=

(1)
6.4 Statement and proofs of main results

6.4.1 About the derivative of 7 ,

In this subsection we will prove several results about the derivative of 7, r,. We first prove
the same result proved by Salem, but in the case of maps 7y, ,, that is, m, 5, are singular
maps. After that, we will interested in to find a criteria which will help us to decide if a
point x belongs to D, or D..

To prove the singularity of 7, x,, we use the following characterization. See [Led, p. 107]

for a proof.

Theorem 6.4.1. Let I C R be an interval and let w : I — R be a non constant function
such that u'(x) exists (possible infinite) for Leb-a.e. x € 1. Then u is a singular function if
and only if there exists a Lebesgue measurable set E C I such that the Leb(I \ E) = 0 and
Leb(u(E)) = 0.

Proposition 6.4.2. The conjugation maps 7y, k, are singular.

Proof. For any borel set B C [0, 1], we define the measure

V(A> = My (Wkl,l@ (B))

We observe that v is ergodic with respect to Tj,. Since py, is also an ergodic measure
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for Tj,, then they are either equal or mutually singular. Suppose that v(B) = pu,(B)

for every Borel subset B of the unit interval. In particular, taking B = (klkjrl, 1) then

,ukl(%, 1) = ukz(&, 1). This implies the equality

]{31 k2
I 1) —1 = 1 1) —1
Chy (og(k‘l +1) —log o 1) Chy (og(k2 +1) —log P 1)

which is impossible because of the function defined for > 0 given by g(z) := ¢, (log(z+1) —
log(mi+1 + x)) is strictly decreasing. Thus v # g, and therefore they are mutually singular.

In consequence, there is a Borel measurable set B, such that

:U/k1<ﬂ-k1,k2(B>> =0 and ,qu(B) =1

The equivalence of those measures with the Lebesgue measure and the Theorem allows

to deduce that the function 7, 1, is singular. O

In the following, we will denote by I*(x) the unique cylinder of level n which contains x

in the dynamic of Tj.

Proposition 6.4.3. Suppose that m . () exists in a generalized sense, that is, m, . (v) €

[0,00]. Then

[ (122 (2))]
Ty (@) = 1t =00 )

Proof. Let n > 1. Denote by [, and r,, the left and right endpoints of the interval I*2. We
note that there are two cases about the position of the point (z, 7k, x,(z)) in regard to the

line L joining the points (I, Tk, &, (1n)) and (Ln, Te, k, (1n)):

1) The point (x, 7, k,(z)) is above or on L. Comparing the slopes of the segments, we

109



obtain

Tky ko (.73) — Ty, ko (ln)
x — 1,

Ty, ko (Tn) — Thy ko (ln) > Tky ko (Tn) — Tk ko (3:)

rn — Iy, Ty — T

>

2) The point (z, Tk, k,(x)) is below or on L. Analogously, we obtain

Tkq ko (:L‘) — Tk, ko (ln) < Tk, ko (Tn) - 7Tk1,k2<ln) < Tkq ko (rn) Ty ,ko (ZL‘)
x— 1, -

Tn — Iy T — T

The proposition is therefore deduced from the fact that

. Tk, ko (I) — Ty ko (ln) T Ty ko (Tn) — Ty ko (I) 0
am " = . = Ty 1, (@)
since the derivative exists or is equal to infinity. O]
Lemma 6.4.4. Let x be a kyo-irrational number. Then, for alln > 1
|7k o (132 ()] = Snth(@)
|12 ()]
where
(@) = —log [Ty, (mry ko ()] + log | T, ()]
Proof. Follows directly from the Bounded distortion property. O

Proposition 6.4.5. Let x be a ko-irrational number. If the following conditions holds for x:

liminf e5¥@ =0 and limsup e5¥® = 0o (6.4.1)

n—00 n—00

then x € D..

Proof. Suppose that the derivative exists in the generalized sense at z. By Proposition [6.4.3]
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we have

k2
T (x) — lim |7Tk27k‘2(]n (IL‘))|
R 0]

Moreover, from the conditions (6.4.1) and Proposition we obtain the following limits:

|7Tk’2,k2 (171:2 (ZL‘))|

lim su =00
el |12 ()]
and
ko
lim inf |7Tk‘2,k2k(ln (I‘))| =0,
n—o00 Inz (ZL‘) |

which is a contradiction with the existence of 7}, . (z).

]

Proposition 6.4.6. Let © = [x1,%2,.. k¥ = [Y1,%2,- -k € (0,1) be two kq-irrational
numbers in [0,1]. Suppose that there exists n > 1 such that x; = y; for all 1 < i <n and

Tpil 7 Ynar1- Then
Thy ko (JJ) — Mk ko (y) = Sn¥(2)
r—y '

Proof. First we prove the inequality <. Suppose first that x < y. To ease the exposition,
we will denote by 7 := 7, x,. The main idea of the proof is to find lower and upper bounds
for |x — y| and |7 (x) — 7(y)| respectively, which will depend on the digits of = and y.

We will use Lemma [6.4.4) and Lemma [6.2.5 repeatedly.

Case 1. Suppose that the cylinders of level n 4+ 2 are accumulating at the right side of
m(x). In particular, x,+1 > y,+1 > 0. Denote by rﬁﬁrl the right end-point of the cylinder
IF (21, ..., 20p1) (see Figure (6.1)).

The equality |7(z) — 7(y)| = (7(y) — r¥ ) + (r, — 7(x)) will allow us to discriminate

into two sub-cases which will help to find upper bounds for |7(z) — 7(y)|.
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k1
L (@15 @ni1,@ng2)

— ) — 3
\ m(z) k} \ m(y) /
Tn+1

Figure 6.1: The biggest intervals are denoting the interior of the cylinders of level n + 1
containing 7(z) and 7(y) respectively. The smallest intervals denote the cylinders of level

n + 2 which are accumulating at rﬁﬂrl.

o Sub-case 1.1. w(y) — r¥, < rk,  — 7(x). Observe that
n+1 n+1

[e.e]

|.§U—y| Z Z |Irlfi_2($17"'7xn+laj)|
J=Tn42+1
- 1
> |12 (21, T Z YRRV
J=Tnt2+1 (‘7 + kZ)
oo dt
> |I" (21, .., 20 —
__’ n+1< 1 +1)’ $n+2+1(t-+-k2)2
1
DD AT O/ U S | (R —
S PE s

Note that in this sub-case |7 (z) — 7(y)| < 2(rF,, — 7(2)). If 2,0 # 0, then

|7T<.l’> - W(y)| S 2 Z |Irk£}%2(‘r17 <o 7:En+17j)|

J=Tn+2
1 = 1
<<Ifj1x,...,xn —_— —_—
13 ) o — m)zj;g G

1 o0 dt
< |[[+ B o | o —— _—
S e )|($n+1 +k1)2/1‘ (t+ k)2

nt+2—1
= |I"(zy, ... 2)] ! .
" 7 (Tnt1 + k1)?(Tni2 — 1+ k1)
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Then

m(z) = w(y)| IR (@1 Bas)] (T2 + 14+ k)
|z —y| 1172 (21, .. )| @2 — 1+ Ky)
(g1 + k2)? (Tnso + 1 + ko)

(xn+1 + k1)2($n+2 -1+ kjl)

< eSnw(w)

If 2yip = 0, then [m(z) — 7 (y)| < 21} (21, -, 2041)| and

‘7’(’(1’) B 7T(y)| |]7’j}H (xla B 7x'rl+1)|(k2 + ]-) < €Sn¢’($) (xn—i-l + k2)2

[~y ‘1511(451,---733%1)’ (Tng1 + k1)

o Sub-case 1.2. w(y) — Tiﬁl < 7m(y) — ""fl1+1'

1.2.1 . In first place, we will suppose that there is at least one cylinder of level n 4 1
between Iffirl(xl, ey Tpy Tpyr) and Iffirl(azl, ey Ty Yne1). In particular y,yq #

ZTni1 + 1. Then

Tn+1-1
|$_y| Z Z |]7}fi_1(l'1,...,$n,j)|
J=Yn41+1
Tn+1-1 1
> () Y
PR (J + k2)
g

> |17 (2, ..., x)] —
i1 (E+ ko)?

Tpgl — Yngp1 — 1
Ynt1 + 14 ko) (@pt1 + k2)

= |I7’fz(:v1,...,xn)|(
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To find an upper bound for |7(z) — 7(y)|, suppose first that y,+1 # 0. Then

Tp41—1
m(@) —w) <2 Y I (21, 2, )]
J=Yn+1
xn#»lfl 1
<<]£1:E,...,J:n S EE—
D D rwry:
J=Yn+1
o=l gy
< |I£1(x1,...,:cn)\ -
Ynt1—1 (t + k1)2
Tp4+1 — Yn+1
zlﬁlx,...,xn *
' (o )|(yn+1—1+k1)($n+1—1+k1)

Thus

7T(:E) — 7T(y) |]£1($1, ce 7$n)| Tn+1 — Yn+1 (yn—H + 1+ kQ)(xn-&-l + 1+ kQ)

r=y |]7I§2(5E17 oy @) Tl — Yn1 — 1 (Y1 — 1+ k1) (Tpe1 — 1+ k1)
T+l — Yn+1 (ynJrl +1+ k2)(l’n+1 + 1+ kz)
Tpg1 = Yng1 — L (Yng1 — L+ k1) (Tpg1 — 14 k1)

< Y@

Now, if we suppose that y,,.1 = 0, we have that

Tpi41 — 1
1+ ko) (@pg1 + ko)

|z —y| > |I£2(x1, . ,:Un)\<

and |7(x) — 7(y)| < [I¥(xq,...,2,)|. Then

m(r) — 7(y) |Iﬁl($1a con )| (T4 ko) (Tnga + k2)
r—y |]52(x1,...,xn)| Tpa1 — 1

1.2.2. Secondly, we will suppose that the cylinders of level n+ 1 of x and y respectively,

are neighbour cylinders. In other words, y,11 = 41 + 1. Assume ¥y, # 0.
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Then

[m(x) = m(y)| < 2(n(y) —rik)

S 2|Ifr]§}&—1(x17 ceey Tp,y yn+1)|
1

L | (.. 2
PR )

and

|$ - y| 2 ‘[712—2(1'17 s >$n7yn+170)|

> ‘IS}H<$17 <oy I, ynJrl)‘
1

> |IM (2, ..., 20
G e ()

and therefore

2
(@) Z7W) o sy Gt Fo)”
Tr—Yy (yn—l—l + kl)

Now, suppose that y,,» = 0. In this case, we will pass to compare the distances

|7(z) — 7(y)| and |z — y| with lengths of cylinders of level n + 3.

|I'—y| Z Z |-[S?|-3(x17-"axnayn+1707j)|
J=Yn+3+1
- 1
> |‘[512(I17"'7xn7yn+1a0>| Z m
j:yn+3+1 j 2
> |Iki1($1 s Ty Y1) N #
" Yn+3+1 (t+ k2)2
1

> 172 (xy,. .., 2, .
1 )‘(yn+1+k2>2(yn+3+1+k2)

To find the upper bound for |w(z) — 7(y)|, we will suppose two cases yn3 = 0
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and Yn+3 7é 0. If Yn+3 3& 07

[m(z) = m(y)| < 2(n(y) — rps1) < Z |fﬁi3 (@1, Ty Ynt1, 0, 7))

J=Yn+3
k
< |Ini2(l‘1) .. xmyn-i-la | Z _|_ kl
Jj= yn+3
1 o dt
<<Islx,...,xn —/ RS
o N ¥ 807 Jys G Ra7
1

= 1M (2q,.. ., 2p
5! )|(yn+1 + k1)*(Yngs — 1+ k1)

then

m(x) — 7(y) < Sni(@) (Yny1 + kQ)Z(yn—i{% + k)

T =Y (Y1 + k1)*(Ynys — 1+ K1)

When 4,3 = 0, we have

1

T —yl > I:f?x,...,xn—
| Yl |12 (21 )|(yn+1+/€2)2

and
’W(ZL’) - ﬂ-(y)| S 2|In+3(x17 c ooy Ty Yn1, 07 0)'
1
< Iﬁl Tl .., Ty)|————
|, (21 )| REYAE
then
2
m(z) —7(y) < Snvl@) (Yni1 + k2)2.
r—Y (yn—i-l + kl)

Case 2. Suppose that the cylinders of level n + 2 are accumulating at the left side of

m(x). In particular, 0 < 2,41 < yny1. Denote by ln ', the right end-point of the cylinder

1511(331,---,%,%“) (see Figure (6.2)).
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k1
In+2(w17---7wn7yn+lyyn+2)

ARV VA. A A
\ r@ \ ry)
lnl—i-l

Figure 6.2: The biggest intervals are denoting the interior of the cylinders of level n + 1
containing 7(z) and 7(y) respectively. The smallest intervals denote the cylinders of level

n + 2 which are accumulating at lflﬁrl.

e Subcase 2.1. w(x) — l,,’fbl+1 <UL —m(y).

\x—y\ Z Z |I7]:3_2(371’---7xn7yn+17j>’
J=Yn+2+1
= 1
>0 (@ T i) Y s
iyt (J + k2)
1

> [I™(xy,... 1,
| ( ' )’(yn+1+k2)2(yn+2+1+k2>

On the other hand, |7 (z) — 7 (y)| < 2(1%, — 7(y)). If Y41 #0

[e.e]

‘ﬂ'(x) - ﬂ.(y)‘ < Z [SEFQ(']:D' .- axnaynJrlaj)‘
J=Yn+2
1 o dt
< | (2, .. 2, —/ -
(e )‘<yn+1+k1)2 ynio—1 (t+ K1)
1

= |I* (2, .. 2z,
1L (@ )|(yn+1+k:1)2(yn+z — 14 k)

Then

m(x) —7(y) < Snt(@) (Ynt1 + k2)?(Yni2 + 1+ ko)
T—y (Yns1 + E1)?(Yny2 — 1+ K1)

If y,12 = 0 then

1
w(x) — <2\l i1z, ..., Ty, Yn L N (21, ..., )| —————
(@) = 7 W) < AL (@10 )| < V)
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and
1

Ynt1 + Fk2)?(1 + ko)

|z —y| > |I,’§1(:c1,...,xn)|(

In consequence

7r(x) - 7r(y) < Sn(@) (yn+1 + k2)2

T—y (Y1 + Kk1)?

o Subcase 2.2. w(y) — lflﬂrl <k

ntl m(x).

2.2.1 . In first place, we will suppose that there is at least one cylinder of level n + 1

k k .
between I} (21,...,%n, Tnq1) and L)L (21,..., n, Yng1). In particular x,q #

Yn+1 + 1. Then

yn+1*1
w—yl> > |21, 70, )]
J=Tnt+1+1
yn+1_1 1
ST TERPRI I g p——
J=Tn41+1 (J - k2)
Yn+1 dt
> \122(x1,...,xn)| —_—
m'anl“!‘l (t + k2>2
Yngl — T — 1
:]SZ:E,...,xn .
112 (@ ) (Tnt1 + 1+ k2)(Ynt1 + k2)

To find an upper bound for |7(z) — m(y)|, let suppose two cases: z,.; # 0 and

L+l = 0. If | 7é 0 then

Ynt+1—1

m(@) —m(@)| <2 Y L (e 20, )]

j:mn+1
il gy

(4 k)2

Yn+1 — Tn+1
Tpp1 — L+ K1) (Yns1 — 1+ Fy)

< |]£1($1, ]

xn+1—l

= |[£1($1, o ,ZL’n)|(
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therefore

m(z) —7(y) < eSnt(@) _Yn+l T Tntl (Tni1 + 1+ ko) (Tnia + k2)
r—Yy Yn+1 — Tn+1 _1(xn+1 - 1+k1)(yn+1 - 1+k1)

Now, if x, 41 = 0 then

Ynt1 — 1
L+ ko) (Yns1 + k2)

|$_y| > |]7’:2($177:Bn)|<

and |7(x) — 7(y)| < [I¥(xq,. .., 2,)| and therefore

(@) = 7(W) s (Lt k) Wnir £ ko)
r—=1y Ynt1 — 1

2.2.2 . Secondly, we will suppose that the cylinders of level n + 1 of x and y respectively,

are neighbour cylinders. In other words, z,.1 = y,+1 + 1. Assume x,,5 # 0. Then

1
— <2, — < 2|I* e T L 2T | S —
[m(x) —m(y)| <204 — m(2) < 2[4 (21, 2ng)| < LM (20,02 )l(xn+1+k1)2
and
|z —y| >[I, (21, ..., Tny1, 0))]
1
> IR (xy, . 2) | ———————
) s
Therefore-
2
m(x) — 7 (y) < Snt(@) (Tpy1 + k’2)2.
r—y (xn—i-l +k1)
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When z,,12 = 0 we pass to the level n + 3.

o0

=yl = D R, 2041, 0, 5)]
Jj=Tpn43+1

1 = 1

> |z, w5 Z —_—

(Tny1 + ka) PR (j + k)

1 & dt

>]7'f?x,...,xn —/ —_—

= | ( 1 )|($n+1 +I€2)2 oyt (t+]€2)2

1
Tni1 + ko) 2 (@pgs + 1+ ko)

Now, to find an upper bound for |7(z) — 7w (y)|, we will suppose two cases z,,+3 # 0 and

Tpy3 = 0. If 2y 3 #0

m(2) —w(y)l < 2k —7(2)) <2 Y [Iks(@n .. 20s1,0, )]

J=Tn+3
1 = 1
<<Iﬁlx,...,xn —_— —_—
| ( 1 )|(:En+1+k1>2 szwr3 (j+]€1)2
1 o dt
< M (2, .. 2y —/ -
' (o )|(90n+1+7<?1)2 npa—t (L4 F1)?
1

< | (2. .., 2,
L (n )‘(xn+1+k1)2(xn+3_1+kl)

therefore

m(x) —7(y) < Sntl@) (Tnt1 + k2)*(nis + 1+ ka)
r—Yy ($n+1 +k1)2($n+3 - 1+k1)

Observe that when x,.3 = 0, we have

1
(Tn1 + k2)2(1 + ko)

|z —y| > ]152(371,...,.7:”)]
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and

1
_ <™ e Xnat, 0 e T | R —
[m(z) = w(y)| < |Lho(w, ... Ty, 0)] < I (21 T )|(:)3n+1+1€1)2
therefore
2
7(x) — 7(y) < Sn(@) (Tpy1 + k’2)2'
r—y (xn+1 +k1>

Observe that in any case we found a estimation of the form

m(z) = 7(y)

r—y

< esrﬂ/)(m) Qn,

where a,, is depending on the digits of x, but, in any case, a, is bounded independently of
the behavior of the sequence of digits. The case x > y is proved by a symmetric argument

and the proof of the inequality > is analogous. O

A useful consequence of the last proposition is the following corollary.
Corollary 6.4.7. Let x be a ko-irrational number. We have that

1. € Dy if and only if limsup,, , . 5@ = oo

2. {x : lim,_,o 5%®) = 0} C Dy.

We finish this section proving that v is a bounded potential.

Lemma 6.4.8. For all ky, ko positive numbers, the potential

b(x) = —log |Ty, (7ky by (2))| + log [Ty, (z)]

is bounded in (0,1]. Moreover

inf () sup ¢(z) <O0.

z€(0,1] z€(0,1]
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Proof. Recall that the partition of level 1 corresponding to T, is

]TI?: e , ks , n > 0.
7’L—|—k’2—|—1 n+k‘2

We know also that g, ,(152) = I, Let n > 0 and x € I*. Since

log — 1 Te@N ) e iy (2)
|Tl;1 O Ty ko (.73)‘ /{1332
then, for all n > 0
2 T 2
0g fu(n + k) < log 1T, (@)l < log fa(n + ks + 1) . (6.4.2)
kg(ﬂ"i‘kl + 1)2 |T]21 O7Tk1,k2<l‘>’ /{Q(Tl—i‘kl)z
Observing that both expressions bounding v in the last inequality converge to log % when

n tends to oo, we deduce that 1 is bounded in (0,1]. To obtain inf,cq1¢(x) < 0 and
SUDP,e(0,1) ¥(2) > 0, assume &y > ky. In this case we have 9(1) = log % < 0. Moreover, since
the limit of the bounds in (6.4.2) is log 2—; > 0, in particular ¥ (z) > 0 for z sufficiently close

to zero. The case k1 < ks is analogous. ]

6.4.2 Main result

Proposition 6.4.9. Let 6 be a number in (1/2,1]. Define the function Gs by the formula
Gs(q) = Plq — dlog |Ty, |) = P(q(—1log [T}, © mi, | + log [Ty, |) — 6 log | Tk, ).

Then,
(1) for all § € (1/2,1], Gs(q) is finite for every q € R;

(2) for every q € R, the function § — Gs(q) is strictly decrasing;
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(3) G1(q) =0 if and only if =0 or ¢ = 1;
(4) there exists § € (1/2,1] such that Gs(q) > 0 for all g € R.

Proof. Let § € (0,1/2]. By Proposition |6.4.8] there exists real numbers a, b such that ab < 0

and a < ¢(z) <b, for all z € (0,1]. In consequence
aq + P(=0log|T},|) < Gs(q) < bg + P(=dlog Ty, |).

Since P(—dlog|T},|) is finite for 0 € (0,1/2], we obtain the finiteness of G5(g), for all ¢ € R.
This shows (1). Observe that (2) holds by Theorem and Proposition [6.3.3] To prove

(3), we note that
G1(0) = P(—log|T},|) =0 and Gy(1) = P(—log|T} o mk k) =0.

By convexity of GG1, we can have only two possibilities, namely, G(¢) is a constant function
equal to zero, or, G1(q) = 0 if and only if ¢ = 0,1. We will prove that G1(¢q) # 0. From the

variational principle, we have that

Gila) = hlug,) + [ a8 [Ty, omuysa] +log Ty, ) ~ log | Th, dg,, (643

B T4, ([0]x,)] N
—qbggaomeﬁbﬂ—bMEAM@ﬂﬁﬂw

where

— =k + Vit 4k

0]k 5

denotes the fixed point of T}, in I5? and 1oy, denotes the Dirac measure supported at [0],.
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It is sufficient to prove that [(g) is a non-horizontal line. The slope of I(g) is given by

7%, ([0]k,) o(V K2 + Ak —
‘Tlgl Oﬂkhkz([ﬁ]kz)’ \/ Ifz +4k’2

log

We note that the slope is equal to zero, if and only if,

(VE+ 4k — k)® (/B3 + 4ks —
kl k2

@ is strictly decreasing on (0, c0).

which is a contradiction because the function x
Therefore (3) is proved. We pass now to prove (4). Let § € (1/2,1). Since G5(q) is strictly
decreasing in § and G1(0) = G4(1), we deduce that, if Gs5(q) = 0 then ¢ must belong to the

interval (0,1). Let ¢ > 0. By Proposition we have
aq + P(=dlog|Ty,[) < Gs(q) < bg + P(—dlog T}, |).

Let 6 € (1/2,1) such that
P(—dlog|T},1)

—a

>1

which exists since P(—¢log|Ty,|) — 400 when § — 1/27 and —a > 0. In consequence

Gs(q) > aqg+ P(—=d) >0

when ¢ € (0,1). Therefore, Gs(q) > 0 for all ¢ € R. O

Proposition 6.4.10. Let 6y be defined by

6o :==sup{d € (1/2,1] : for all g € R, P(qyp — dlog|T},|) > 0}

then q — Gs,(q) has a unique zero.
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Proof. First of all, observe that Gs,(¢) > 0 for all ¢ € R. In fact, if G4,(¢*) < 0 for some
¢* € R, then by continuity of § — Gs(¢*), we have that Gs,—.(¢*) < 0 for some ¢ > 0.
Moreover, by definition of &y, there exists 0 > &y — € such that G;(q) > 0 for all ¢ € R which
is a contradiction with the fact that Gs(-) is strictly decreasing in 9.

Now, we will prove that Gg,(q) has a unique zero. Let n € N be large enough. By
definition of §, we have that G50+%(q) = P(qy — (6o + ) log |T7,|) has at least one zero, for
all n.

Assume that Gy, +%(q) has a unique zero ¢y, for some N. Then, by (2) of Proposition
we have that G50+%(q) = 0 if and only if ¢ = qq, for all n > N. By continuity in dg,
taking n — oo, we have that Gs,(qo) = 0 which is unique again by (2) of Proposition :

On the other hand, suppose that G50+%(q) has two zeros for all n. Let ¢ < ¢} be the
zeros. Assume that the diameter of [g),¢?] tends to zero and let g9 = ), g5, ¢2]. Then
G(;DJF%(qO) < 0, for all n. By continuity in dyg, Gs,(q) < 0. and moreover Gs,(q) = 0
because Gy, is non-negative. Observe that if the diameter [g., 2] does not tend to zero, then
we would have two points ¢ # g2, both in (), [¢}, ¢2], and satisfying Gs,(¢1) = Gs,(q2) = 0

which is a contradiction with the strictly convexity of Gs(q) in ¢, for any §. O]

Corollary 6.4.11. Let 6 > 0 be such that Gs(q) > 0 for all ¢ € R. Then, there exists N € N

such that the function

¢ Px(q¢ —dlog|Ty,|)
15 positive for all ¢ € R.

Proof. We will argue by contradiction. Suppose that for all N € N, the function ¢ —
P (qp — 0o log [T}, |) have at least one zero. By Theorem we have that for all ¢ € R,

lim Py(qy — dolog|T},|) = Gs,(q).
N—oo
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In particular, and also by convexity of Py(qi) — dglog|T},|) in ¢, we have that Py(qy —
dolog|Ty,|) tends to infinity when ¢ — oo. Consequently, for N large enough, Py(qy —
dolog |T},|) has at most two zeros. We observe that, if for some N € N, Py(qy — dolog T}, )
has a unique zero called gy, then P,(qy» —dg log [T}, ]) has a unique zero at gy, for alln > N,

in view of

P(qp = dolog [T}, ) < Poya(q¥ — dolog|Ty, 1) (6.4.4)

for all n € N. Therefore, we can assume that Py(qi) — dolog|T},|) has two zeros: ¢f' < ¢5'.
Let Jy == [¢}, ¢)Y]. Because the inequality holds for all n > 1, then Jy,1 C Jy for
all N. This implies that the intersection (), Jy is non-empty. Let ¢* € () Jv. We deduce
that Py (qy — dolog|T},|) < 0 for all N and, by the approximation property, Gs,(¢*) < 0

which is a contradiction with Proposition [6.4.9] O

6.4.3 Lower bounds

Theorem 6.4.12. We have that

where §y = sup{d € (%, 1]: P(qy — élog|T},]) > 0, for all ¢ € R}.

Proof. Let 6 € (3, 1] such that P(q — §log |T%,|) > 0 for all ¢ € R. By Proposition (6.4.11}

we know that there exists N such that
H(q) := Pn(q¢ — dlog|T,[) > 0
for all ¢ € R. Also, by convexity and the fact that H(q) — oo when ¢ — £00, there exists
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go € R such that H'(go) = 0. In other words,

/ by, =0

which is equivalent to

/log |T122|d:uqo = /log |TI;1 o 7Tk17k2|dll’q0'

Moreover, since H(qy) > 0 and using the variational principle, we obtain

o) + [ 00— 810813 Jdie, >0

and therefore the bound

This implies, by Theorem [6.3.4

dimp fig, > 6

and by [JMS, Lemma 4.7] and Proposition we deduce that

dimy D > dimg{z : liminf %*® = 0; limsup e*"*®) = 0o} > dimy prgy > 0.

n—oo n—o00

In conclusion

Proposition 6.4.13. We have that

dimy ({z : limsup e*"¥®) = o0}) > 4,
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and moreover

Proof. Again, let qo the zero of the function Gs,(q) and let ¢ > ¢o. By the variational

principle, for every g > qo, there exist a unique equilibrium measure p, such that

Gio (@) = hluig) + / 4t — 8o log | TL, |dyty > 0.

Observe that
f g
)‘(,Uq)

On the other hand, we note that, for y,-a.e. point x € [0, 1] we have that

dim p, > —q + do.

1
~Sn(a) = /wduq >0

and therefore, e57¥(*) — 00 when n tends to infinity. We deduce that, for all ¢ > o

dimp ({z : limsup e5"¥@ = o00}) > —¢

and in consequence

dimy ({z : limsup ¥ = o0}) > 4,

since, when ¢ — qo, [du, — 0 and A(p,) is uniformly bounded below by a positive
constant. The second affirmation follows from the Corollary [6.4.7, part (a). O
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6.4.4 Upper bounds

Let n > 0 and define the set

A, = {x - lim sup e5¥(®) > n} .

n—o0

Proposition 6.4.14. For all n > 0, we have that dimy A,) < 6. Moreover dim Dy, < 0.

Proof. In first place, we will prove that, for all N > 1, we have

R Ty T e n
An C U {]kQ(ZL‘l,IQ, . 7xn) . 65n¢([m1,m2, T lky) > } ;
et C1Cs

where C}, (5 are the constants involved in the bounded distortion property for 7T}, and Ty,
respectively. In fact, let x € A,. There exists M € N such that eSv¥(@) > p By bounded

distortion, we have that there exists C7, Cy > 0 such that

‘(Té‘;j)/(ﬂk17k2([x1a L2y 7xM]k2))’ = O,
(T2 (ks ()]
and
e,
|(TI£\2/[)/([$17 Loy 7-TM]k2)‘
Then
oSm(log [Ty, )(2)
oS (log T, N([FTzz 7 nilky) Gy
and
BSM(—105\T;QIOWkl,bl)([ﬂﬁhmv“' TN ko)
= Cl.

6SM(— log |}, 07k ko |) ()

Multiplying both estimations, we get

eSm(z)

) = 0102

eSMY([F1,32, 7]
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and in particular
eSu(x) n

Sy ([T1,@2,- @)
e > > .
C1Cq C1Cq

Now, we will pass to show that dimy A, < &,. Let € > 0 and r < 1/e < 1 such that
|72 (21,29, ..., 2,)] < r" for all n. We will prove that the (Jy+ €)-Hausdorff measure is equal

to zero. In fact

HYA) <> Y (w7

n>N 152 (zq,...,20)

DD DI R Lk

n>N IkZ(xl,,..,xn)

< 02 Z yne Z e*&gSn(log\TéQ\)([xl,...,xn]kQ)

n>N IkQ(l‘l,-.-,Z'n)
=C (C@?) Sogme S cmSllenraliy) =00 (os Ty DETL) - (6.4.5)
n>N IkQ (T1,yTn)

< Z e Z o105 (x) =605 (log [T}, ) ()
n>N T,;’;(ac):w

where, in (6.4.5)), go € (0,1) denotes the zero of the function Ggs,. By definition of the
pressure function,
Z 105 (@) =805n (log [T}, [)(2) - ne

e

P )

T];LQ ()=

and thus we obtain that

H(4,) < 3 (o)

n>N
Therefore H%“(A,) — 0 when N — oo. We deduce that dimp(4,) < & + ¢, for all
e > 0. n

Proposition 6.4.15. dimD., < ;.
Proof. Observe that, if = is such that limsup e¥%® = 0 then lim e*¥® = 0 and then, by

130



Corollary part (b), we obtain that x € Dy. Therefore D. C U, A, which implies that
dimD.. < b,. 0

Collecting all results of the last two subsections, we have proved the main theorem:

Theorem 6.4.16. Let ki, ky be two positive numbers. Then the sets D, D~ have the fol-

lowing Hausdorff dimensions:
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