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Introduction

In this thesis, we will be interested in the dynamics and questions related to the algorithms

of different numerical systems. We understand a numerical system as a way of writing a

real number x. We can find, associated with a numerical system, a set of digits necessary to

construct that writing. For example, our decimal system daily used has {0, 1, . . . , 9} as the

set of digits. In the algorithm of the expansion we can find associated to it, a map T (usually

defined on the interval [0, 1]). The dynamics of T will allows us to recover the writing of

some x as well as the set of digits.

On the other hand, there are examples of properties in number theory which holds for a

full Lebesgue measure set, hence the set of numbers that do not satisfy such property have

zero Lebesgue measure. We will be interested in describing the size of particular sets which

are number-theoretically defined, where size means the Hasudorff dimension. The ergodic

properties of T will be useful to our purposes by means of thermodynamic formalism.

The structure of this thesis is the following. In Chapter 1, we will review all the nu-

meric expansions used along the whole text: continued fractions and generalizations, base-b

and Cantor expansions, and finally, Lüroth and Q- Lüroth expansions. We take advantage

of any expansion introduced to study dynamical and ergodic properties of the associated

transformation. As an example, for any k > 0, the dynamics of the interval map defined by

Tk(x) =
k(1− x)

x
−
[
k(1− x)

x

]
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allows to construct expansions of the form

[a1, a2, . . . , ]k :=
k

a1 + k +
k

a2 + k +
k

. . .

.

called k-continued fractions. Note that, when k = 1 we recover the Gauss map. The Tk

maps were previously considered in [HM], where the authors studied a more general class of

Möbius transformations. Also, a linear version of the map Tk is contemplated in Chapter 1.

The k-Lüroth maps Lk : [0, 1]→ [0, 1] defined as

Lk(x) :=

{
x (n+k)(n+k+1)

k
− (n+ k), if x ∈

[
k

n+k+1
, k
n+k

)
, n ∈ N0

0, if x = 0

guarantees the expansion of suitable x ∈ [0, 1] in the form

x =
∞∑
n=1

kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)
.

In general, note that a numerical expansion is essentially defined by the common arithmetic

structure (which is the same for all x). Moreover, the sequence of digits and their positions

added to the structure of the expansion, characterizes (up to a countable set) the expansion

of any real number. From a dynamical point of view, that last means that both maps Tk and

Lk are modeled symbolically by a fullshift on countable symbols. The fullshift with alphabet

A ⊆ N0 is defined by the pair (ΣA, σ) where

ΣA := {(xn)n∈N0 : xn ∈ A}

and σ : ΣA → ΣA is the shift-map σ(x0, x1, x3, . . .) := (x1, x2, . . .). The elements of A

iii



are called the symbols. We have that this space endowed with the topology generated by

cylinders is a non-compact space. That will be one of the main difficulties on the thesis,

since ergodic theory on non-compact spaces is more subtle than the compact case.

In Chapter 2 we collect main properties of thermodynamic formalism, a branch of ergodic

theory which has been vastly studied during the last fifty years. It allows, among other things,

to choose a remarkable kind of invariant measures. We will follow mainly [Sar1, MU2, Wal].

One of the fundamental objects in this context is the pressure map defined as follows. If

ϕ : ΣN0 → R satisfies some regularity assumptions, then the pressure of ϕ is

P (ϕ) = lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)

when the limit exists. Pressure function and its properties can be applied to dimension

theory. For instance, and as we will see in Chapter 3, it allows to describe the Lyapunov

spectra for the Tk maps. In other words, we show that the function

α 7→ dimH

{
x ∈ [0, 1] : lim

n→∞

1

n
log |(T (n)

k )′(x)| = α

}

has a domain of the form [αmin,∞), and moreover, it is real analytic there (see Theorem

3.2.4). It is important to note that the results obtained in Chapter 3 are highly supported

by those from [Iom], where the author studied the Lyapunov spectra for a larger class of

interval maps.

In the case of Lüroth maps Lk, the Lyapunov spectra is also analytic in some interval of

the form [αkmin,∞). Note that we have a family of real analytic curves indexed on k > 0. In

Chapter 4, we will interested in the behavior of this family of curves when the dynamics is

perturbated. In fact, we show the following theorem.

Theorem (Theorem 4.3.2). Let M > 0 and fix α > 0 such that the Lyapunov spectra for Lk

iv



is defined on α, for all k ∈ (0,M ]. Then, the function

(0,M ]→ R

k 7→ dimH

{
x ∈ [0, 1] : lim

n→∞

1

n
log |(T (n)

k )′(x)| = α

}

is real analytic.

From the dynamical systems point of view, this theorem describes how does the multi-

fractal spectrum of Lyapunov exponents varies along a one parameter family of dynamical

systems. On the other hand, we show in fact that Lyapunov exponents are measuring the

speed of approximation of the partial sums involved in the Lüroth expansion. Therefore,

this theorem characterizes how does the size of the set of points with same speed of approx-

imations by their n-approximants varies in the different numerical systems provided by the

k-Lüroth.

Further in Chapter 5, we will study normality in a new numeric expansion inspired in

Cantor series [Can]. LetQ = {qn}n≥1 be a sequence of positive real numbers qn > 0. Consider

the family of Lüroth maps LQ := {Lqn}n≥1. We define the non-autonomous dynamical

system generated by the sequence. In other words, the orbits of some x ∈ [0, 1] are given by

LnQ(x) := Lqn ◦ Lqn−1 ◦ · · · ◦ Lq1(x) for n ≥ 1. Again, for suitable x, we have the expansion

(see Section 1.7 for further details)

x =
∞∑
n=1

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)

for some unique sequence of positive integers {an}n≥1. We say that x ∈ [0, 1] is normal with

respect to the Q-Lüroth expansion, if for every a ∈ N,

lim
n→∞

#{1 ≤ i ≤ n : ai(x) = a}∑n
i=1 |I

qn
a |

= 1

v



where Ikn :=
[

k
n+k+1

, k
n+k

)
. We prove the following theorem which is an analogous to the

Borel’s theorem on normal numbers (see Section 1.1).

Theorem (Theorem 5.3.1). Let Q = {qn}n≥1 be a sequence of positive real numbers. Then,

Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Lüroth expansion

if and only if for all a ≥ 1, the series
∑

n |Iqna | is divergent.

The main difference with the autonomous case is that there is no similar result to Birkhoff

ergodic theorem for non-autonomous dynamical systems. We follow the probabilistic tech-

niques used in [Man2, Rén, Rév] where the authors reached comparable results in the context

of Cantor series. In addition, using tools from thermodynamic formalism in the setting of

non-autonomous dynamics [RGU], we prove the following theorem.

Theorem (Theorem 5.1.2). The set of non-normal numbers in the Q-Lüroth expansion has

Hausdorff dimension equal to one.

Finally in Chapter 6, we will deal with part of fractal analysis of the derivative of con-

jugacies between any two maps Tk1 , Tk2 for k1, k2 > 0. Let us explain about this. Recall

that for every k > 0, the map Tk is topologically conjugated to the full-shift on countable

symbols. Denote by πk this conjugacy. Note that πk acts sending any coding (xn)n≥1 ∈ ΣN0

to the k-continued fraction expansion [x1, x2, . . .]k. Then, given two positive numbers k1, k2,

we can construct a function πk1,k2 : [0, 1] → [0, 1] defined by πk1 ◦ π−1
k2

. Note that πk1,k2

sends any continued fraction of the form [x1, x2, . . .]k2 to [x1, x2, . . .]k1 . We will be interested

in the derivative of πk1,k2 . In particular, we will prove that it is a singular function, which

means that, πk1,k2 is non-constant and π′k1,k2(x) = 0 holds Lebesgue a.e. in [0, 1]. So, from a

dimension theory point of view, the following problem can be posed: finding the Hausdorff

dimension of the sets

D∞ := {x ∈ [0, 1] : π′k1,k2(x) =∞}

vi



and

D∼ := {x ∈ [0, 1] : π′k1,k2(x) does not exists}.

In the literature, we can find similar questions in different contexts. For example, in

[KS1, Mun] the authors studied the Hausdorff dimension of those sets for the Minkowski’s

question mark function, which is the conjugation between the Farey map and the Tent map.

See also [JMS], where were considered for conjugacies of maps that converge pointwise to

some map on the interval. In all of these articles mentioned, thermodynamic formalism tools

has been used. In our case, we obtain the following theorem.

Theorem. Let k1, k2 be two positive numbers. Then the sets D∞,D∼ defined as above have

the following Hausdorff dimensions:

1/2 < dimH(D∞) = dimH(D∼) = δ0 < 1

where

δ0 := sup{δ ∈ (1/2, 1] : for all q ∈ R, P (qψ − δ log |T ′k2|) > 0}.

Here P (·) denotes the pressure function associated to Tk2 .
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Chapter 1

Classical Numeric Expansions

A numeration system encompasses a way of representing a number. The base

10 numeric expansion is the most widely used numeration system and it has

several advantages that, aside form the fact that we have 10 fingers, has es-

tablished it as the standard representation. It is simple to perform arithmetic

operations in base 10 as we learn from an early age. There are simple analogues

of this system in which the base 10 is replaced by other positive integer b. An-

other well known numeration system, based on the Euclidean algorithm, is that

of continued fractions. This system has the advantage that several arithmetic

properties, such rationality or irrationality, are readily seen in the expansion.

It also provides, in a simple fashion, the best rational approximations of an ir-

rational number. However, performing simple arithmetic operations is rather

difficult. While these are the best known numerical systems there exists a wide

range of other systems with particular features. In this chapter we will not only

survey base b and continued fraction expansion, but we will also study Lüroth

and Cantor expansions. Moreover, central to the study developed in this thesis

will be generalizations of these systems such as the k-continued fractions and

1



the Q-Lüroth expansions. The later one, introduced by the author in [Con1].

A common feature to all of these numeration systems is that it is possible

to associate them a (maybe non-autonomous) dynamical system. Iterations

of the system provide a way to obtain the representation. More interestingly,

the whole theory of dynamical systems can be used to describe in detail the

properties of each numeration system. A classical example along these lines is

the simple proof of the Borel Theorem of Normal Numbers provided by Riesz

as a direct application of the Ergodic Theorem.

In this chapter we present different numeration systems and the dynamical

system associated to the them. This will pave the way to a deeper study of the

arithmetic properties of the numbers and their representations.

2



1.1 Base-b expansions

Let b ≥ 2 be an integer. Every real number x can be written in base-b as a the series

x =
∞∑
n=1

εn(x)

bn

where, for all n ≥ 1, εn(x) ∈ {0, 1, . . . , b − 1}. We call εn(x) the digits of the expansion of

x in the base-b expansion. A very well known fact is that the base-b expansion is closely

related to the dynamics of the map Tb : [0, 1]→ [0, 1], defined by Tb(x) := bx− [bx] = {bx},

where [·] denotes the integer part of a number. Observe that digits in the expansion of a

number x can be obtained by the formula εn(x) = [bT n−1
b x].

There is a wide range of interesting questions that the relation with dynamical systems

suggest. We will begin with that of the frequency of the digits. Given a set A, we denote its

cardinality by #A.

Definition 1.1.1. Let b ≥ 2 be an integer and x ∈ R. Given d ∈ {0, 1, . . . , b − 1}, we call

the frequency of appearance of the digit d in the base-b expansion of x, to

fb(x, d) := lim
n→∞

1

n
# {1 ≤ i ≤ n, εi(x) = d} ,

whenever the limit exists.

From the formula εn(x) = [bT n−1
b x], we have that the frequency of appearance of d can

be written as the following average

fb(x, d) = lim
n→∞

1

n

n−1∑
i=0

1Id(T
i
bx),

where 1A denotes the characteristic function of some set A and Id = [d/b, (d+ 1)/b). Thus,

the frequency can be seen as an average of the characteristic function 1Id along the orbit of

3



x under the map Tb. Such expressions are called Birkhoff averages and actually are one of

the main objects in Ergodic Theory. In 1931, G. Birkhoff proved one of the most important

results of this theory that now bear his name. The Birkhoff ergodic theorem proves that,

under an ergodicity assumption, the time averages coincide with the space average of the

system. It will be useful to understand the behavior of the function fb(x, d). Before to state

the theorem, we recall some definitions. Let (X,B, µ) be a probability space.

Definition 1.1.2. A map T : X → X is called measure preserving if T is measurable and

µ(T−1A) = µ(A) for all A ∈ B. When this occurs, µ is called a T -invariant measure.

As an example, for any positive integer b, the map Tb preserves the Lebesgue measure.

From now on, |A| will denote the Lebesgue measure of a Borel subset of R. In fact, if

(c, d] ⊂ [0, 1], then

T−1(c, d] =
b−1⋃
i=0

(
c− i
b

,
d− i
b

]
and then we have that |T−1(c, d]| = |(c, d]|.

Definition 1.1.3. Let T : X → X be a measure-preserving transformation with respect to

µ. We call T ergodic if for any B ∈ B such that T−1B = B then we have that µ(A) =

0 or µ(B) = 1.

The map Tb is ergodic with respect to the Lebesgue measure (see [Wal, p. 30]).

Theorem 1.1.1 (Birkhoff, 1931). If T : (X,B, µ) → (X,B, µ) is an ergodic map and f is

µ-integrable, then for µ-almost every x ∈ X,

lim
n→∞

1

n

n−1∑
i=0

f(T ix) =

∫
X

fdµ.

We have now the following corollary regarding the frequency of appearance of a digit d

in base-b expansions.

4



Corollary 1.1.2. For any digit d ∈ {0, 1, . . . , b− 1}, we have that

fb(x, d) = lim
n→∞

1

n
#{1 ≤ i ≤ n, εi(x) = d} =

1

b

for almost every x with respect to the Lebesgue measure.

Proof. This is a direct consequence of Birkhoff’s ergodic theorem. Since

fb(x, d) = lim
n→∞

1

n

n−1∑
i=0

1Id(T
i
bx);

the integrability of χId and the ergodicity of Tb with respect to the Lebesgue measure, we

have that, fb(x, d)→
∫

[0,1]
χId(x)dx = 1

b
, for Lebesgue-almost every point x ∈ [0, 1].

This simple consequence of the Birkhoff’s theorem is coherent with classical work by

Borel [Bor]. Indeed, in 1909 Borel defined the notion of normality : a number x ∈ R is called

normal in base b if fb(x, d) = 1/b for every digit d ∈ {0, 1, . . . , b}. Hence, Corollary 1.1.2

can be rephrased as the form of Borel’s theorem on normal numbers:

Theorem 1.1.3. Lebesgue-almost every number x ∈ [0, 1] is normal.

Typically in x any digit appears with frequency 1/b in the expansion. So, a natural

question can be posed: are there points x ∈ [0, 1] for which fb(x, d) 6= 1/b, when d ∈

{0, 1, . . . , b − 1}? The answer is positive, and it is not difficult to construct such kind of

numbers. For example, in base 4, if x is defined by

ε4k+1(x) = 0, ε4k+2(x) = ε4k+1(x) = 3; ε4k+4(x) = 2

for all k ∈ N0, then we have that f4(x, 0) = 1/4, f4(x, 1) = 0, f4(x, 2) = 1/2 and f4(x, 3) =

1/4. Moreover, in [Bes, Egg] the authors gave an explicit formula for the “size” of the set of
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points having a prescribed vector of frequencies. Since any of these set is of null Lebesgue

measure, we mean “size” by the Hausdorff dimension .

1.2 Cantor expansions

In 1869, Cantor [Can] generalized the notion of b-expansion in the following direction. Let

B = {bn}n≥1 be a sequence of integers each of which is greater than 2. Cantor showed that

every real number x ∈ [0, 1) can be written as infinite series of the form

x =
∞∑
n=1

cn
b1b2 · · · bn

,

with cn ∈ {0, 1, . . . , bn − 1}. Observe that if for every n ∈ N we have bn = b then we recover

the base b-expansion. As in the case of base b−expansion, the Cantor series is related to a

dynamical system. However, in this case it is a non-autonomous system. Indeed, consider

the maps defined in [0, 1] by Tbn(x) = {bnx}. The iteration is defined by

T nB(x) = Tbn ◦ Tbn−1 ◦ · · · ◦ Tb1(x).

The dynamics is, therefore, obtained applying different maps Tbi at prescribed times. Note

that, as in the case of the base b−expansion, we have cn = [bnT
n−1
B ]. Unfortunately, there is

no analog of Birkhoff’s ergodic theorem for non-autonomous systems. Therefore, questions

related to frequencies of digits as Corollary 1.3.5 or Theorem 1.1.3 cannot be solved by

means of Birkhoff averages. For instance the question about normality in this setting has

to be addressed with different methods. It was actually shown by Renyi [Rén] the following

result.

Theorem 1.2.1. Lebesgue almost every number is normal for B = {bn}n≥1 if and only if∑∞
n=1 1/bn =∞
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More recently, constructions and properties of normal numbers for Cantor series have

been studied by Mance [Man2].

1.3 Continued Fractions

This section is devoted to the study of continued fractions and their properties. We start

recalling some definitions. We follow [EW, Kin].

Definition 1.3.1. Given a sequence of positive integers {an}n∈N, we define a infinite con-

tinued fraction (or simply, continued fraction) as the formal expression

1

a1 +
1

a2 +
1

a3 + · · ·

which will be denoted by [a1, a2, a3, . . .]. A finite continued fraction is given by the rational

number

[a1, a2, a3, . . . , an] :=
1

a1 +
1

a2 + · · ·+
1

an−1 +
1

an

(1.3.1)

.

A priori, the concept of infinite continued fraction is merely formal since an infinite

iterative process is implicitly involved. Moreover, the last definition suggests thinking infinite
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continued fraction as a limit of finite continued fractions. We will see that indeed this is

true.

Lemma 1.3.1. Let {an}n∈N be a sequence of positive integers. For n ≥ 1 let pn, qn the

coprime numerator and denominator of the irreductible fraction

pn
qn

= [a1, a2, . . . , an].

Then, for all n ≥ 1

[
pn pn−1

qn qn−1

]
=

[
a0 1

1 0

][
a1 1

1 0

]
· · ·

[
an 1

1 0

]
(1.3.2)

with p0 := a0 and q0 := 1.

Proof. [EW, p. 71].

Let [a1, a2, . . .] be a a continued fraction. For all n ≥ 1, an is called a digit of the continued

fraction and pn/qn is called a convergent of the continued fraction. The next proposition

summarizes some properties about digits and convergents.

Proposition 1.3.2. If pn/qn are the convergents associated to [a1, a2, . . .], then for all n ≥ 1,

we have the following properties

1. pn+1 = an+1pn + pn−1

2. qn+1 = an+1qn + qn−1

3. pnqn−1 − pn−1qn = (−1)n+1

4. pn ≥ 2(n−2)/2

5. qn ≥ 2(n−2)/2.
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Proof. [EW, p. 71].

It is possible to show from the Proposition 1.3.2 that a continued fraction defines a real

number. More precisely, we have that

[a1, a2, . . .] = lim
n→∞

[a1, a2, . . . , an] = lim
n→∞

pn
qn

=
∞∑
n=1

(−1)n+1

qn−1qn

where the last serie is absolutely convergent [EW, p. 72].

Definition 1.3.2. The Gauss map is the function G : [0, 1] → [0, 1] defined by G(0) := 0

and

G(x) :=
1

x
−
[

1

x

]
for x 6= 0.

Figure 1.1: Graphic of Gauss map

The interaction between the Gauss map and continued fractions is explained in the next

proposition. More details in [HW, p. 135, continued fraction algorithm].
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Proposition 1.3.3. If x ∈ [0, 1] \Q then the digits of the expansion in continued fractions

of x are given by

an =

[
1

Gn−1(x)

]
, n ≥ 1.

Proof. [EW, p. 78].

We now study ergodic properties of G. In contrast with the base-b maps Tb, the Lebesgue

measure is not invariant for the Gauss map. In fact, we have that

G−1

(
0,

1

2

)
=
∞⋃
n=1

(
2

2n+ 1
− 1

n

)

and ∣∣∣∣G−1

(
0,

1

2

)∣∣∣∣ = 2− 2 log 2 6= 1

2
.

However, Gauss proved that there exists a G-invariant measure absolutely continuous with

respect to the Lebesgue measure, that we now call the Gauss measure, defined for any Borel

set A ⊂ [0, 1] by

µG(A) =
1

log 2

∫
A

dx

x+ 1
.

Theorem 1.3.4. The Gauss map preserves the measure µG and it is µG-ergodic.

Proof. [EW, p. 77-79].

The ergodic theorem implies the following results. For a proof see [EW, p. 82].

Corollary 1.3.5. For Lebesgue almost every x = [a1, a2, . . .] ∈ [0, 1] we have that

1. Any digit d ∈ N appears with frequency

log
(d+ 1)2

d(d+ 2)
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2. The arithmetic averages of the digits diverges

lim
n→∞

1

n

n∑
i=1

ai =∞

3. The exponential growth of the denominators is given by

lim
n→∞

1

n
log qn(x) =

π2

12 log 2
(1.3.3)

4. The exponential speed of approximation by the convergents is

lim
n→∞

1

n
log

∣∣∣∣x− pn
qn

∣∣∣∣ = − π2

6 log 2
(1.3.4)

The right side of 1.3.3 is known as the Kintchine-Lévy constant. The name of Kintchine

comes since he proved in 1935 that the limit in 1.3.3 is constant almost everywhere and

Lévy gave the explicit expression for that limit. On the other hand, the identity 1.3.4 says

that convergents approaches to x with speed of approximation e−n
π2

6 log 2 . Nevertheless, it is

possible to extract more dynamical information from 1.3.4 (see Chapter 3 for further details).

1.4 Generalized Continued Fractions

In this section we will study a family of maps defined in [0, 1] which generalize the Gauss

map G. From the dynamics of each map a new continued fraction expansion of x ∈ [0, 1]

arises. We follow [HM].

Definition 1.4.1. A 2× 2 matrix

C =

[
a b

c d

]

with real entries and determinant ad − bc = ±1 acts on the Riemann sphere C ∪ {∞} as a
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Moebius transformation by

C(z) :=
az + bc

cz + d
, C(∞) =

a

c
and C(−d/c) =∞.

Remark 1.4.1. Given an interval I ⊂ R and a matrix C with the conditions established in

Definition 1.4.1 we denote by CI the set CI := {Cx : x ∈ I}.

For k > 0, we will consider the matrices

Ak =

[
k√
k

−k√
k

−1√
k

0

]

and the family of Moebius transformations parametrized by k, given by

Ak(x) =
k(1− x)

x
.

Then we can consider the corresponding family of transformations Tk : [0, 1]→ [0, 1], defined

by Tk(0) = 0 and

Tk(x) = Ak(x)− [Ak(x)],

for x 6= 0. Each map Tk is called Gauss-like transformations. If we denote the fractional part

of a real number w by 〈w〉 = w − [w], then we shall be writing Tk(x) = 〈Ak(x)〉. We stress

that this is in fact a generalization, in the sense of that we can recover the Gauss map when

k = 1. Figure 1.2 shows a comparison between the graphs of Tk for three values of k with

respect to Gauss map.

We now define the k-continued fraction. For k > 0, the set of k-digits is defined as

Dk = {l ∈ Z : [Ak(x)] = l for some x ∈ (0, 1)}.

Remark 1.4.2. It is not difficult to prove that Dk = N0 for all k > 0.
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Figure 1.2: Graph of Tk when k =
√

3, 1
3
, 5 respectively. The black graph is that of Gauss

map.

Definition 1.4.2. Given any finite sequence of integers in Dk we define the cylinder of level

n as the subset of [0, 1] given by

∆(n)
a1a2...an

= A−1
k Ba1A−1

k Ba2 · · ·A−1
k Ban(0, 1), with B =

(
1 1

0 1

)
.

In [HM], the authors proved the following proposition.

Proposition 1.4.1. For each n ≥ 1, we have the following properties related to the cylinders

of level n,

1. The cylinders ∆
(n)
a1a2...an are the maximal open subintervals of (0, 1), on which the n-th

iterate of Tk is a homeomorphism.

2. On each ∆
(n)
a1a2...an, the map Tk acts as a shift, that is, Tk∆

(n)
a1a2...an = ∆

(n−1)
a2a3...an.

3. T nk restricted to the cylinder of level n is equal to the Möbius transformation Cn given

by

Cn = B−anAk · · ·B−a1Ak

which maps ∆
(n)
a1a2...an onto (0, 1).

Proof. [HM, Propositions 1, 3].
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Definition 1.4.3. If a1, . . . , an is a finite sequence of k-digits, then we define the finite

k-continued fraction expansion by

[a1, a2, . . . , an] = A−1
k Ba1A−1

k · · ·A
−1
k BanA−1

k (∞) = C−1
n A−1

k (∞).

Consequently, if we write

C−1
n A−1

k :=

[
pk rn
qn sn

]
(1.4.1)

then [a1, a2, . . . , an] = C−1
n A−1

k (∞) = pn
qn
. We now define an infinite continued fraction.

Definition 1.4.4. Given a infinite sequence of k-digits {an}n∈N we define the infinite k-

continued fraction by the limit

[a1, a2, . . .]k = lim
n→∞

[a1, a2, . . . , an] = lim
n→∞

pn
qn
.

Remark 1.4.3. This last limit is well defined since the fractions pn
qn

are always a endpoint of

the closed interval ∆
(n)

a1a2...an
which is a sequence of nested closed sets [HM, page 2856].

As in the classical setting, we can partition de interval (0, 1) in cylinders at level n modulo

a countable set. Given n ≥ 1, let Q(n)
k be the set

Q(n)
k := {x ∈ [0, 1] : Tmk (x) = 0 for some m ≤ n}.

Proposition 1.4.2. For each n ≥ 1

[0, 1] =

( ⋃
a1,...,an∈Dk

∆(n)
a1,a2,...,an

)
∪Q(n)

k .

Proof. [HM, Page 2855, Proposition 2].
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Definition 1.4.5. We will call the set of k-rational numbers to the union

Qk :=
∞⋃
n=1

Qn
k .

The complement of Qk in [0, 1] is called the set of k-irrational numbers.

Proposition 1.4.3. Each k-irrational x has a unique, infinite k-expansion in continued

fractions. We have k-expansion x = [a1, a2, . . . , an, . . .] if and only if

x ∈ ∆(n)
a1,a2,...,an

for all n ≥ 1,

if and only if

T n−1
k (x) ∈ ∆(1)

an for all n ≥ 1.

Proof. [HM, Page 2856, Proposition 3].

Proposition 6.2.3 allows to write a k-irrational x as a limit of k-rationals

x = lim
n→∞

pn
qn
.

Definition 1.4.6. For each n ≥ 1, the rationals pn
qn

are called the convergents of the k-

continued fraction.

Convergents have similar properties that in the case of classical continued fractions. The

following proposition summarizes some of them which will be useful for our purposes.

Proposition 1.4.4. Let x = [a1, a2, . . .] be a k-irrational. Then, the following properties

related to convergents are satisfied:

1. pn = 1√
k
((an + k)pn−1 +

√
kpn−2), n ≥ 2

2. qn = 1√
k
((an + k)qn−1 +

√
kqn−2), n ≥ 2
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3. sn = kqn +
√
kqn−1

4. rn = kpn +
√
kpn−1

5. |pnqn−1 − qnpn−1| = 1√
k

Proof. This follow from Lemma 2; Propositions 4 and 5 of [HM] .

Now, we relate the k-continued fractions with the transformations Tk.

Proposition 1.4.5. If x = [a1, a2, . . .]k is a k-irrational continued fraction, then we have

an = [Ak(T
n−1
k (x))]

and

x =
k

a1 + k +
k

a2 + k +
k

. . .+
k

an + k + T nk (x)

(1.4.2)

for all n ≥ 1.

Proof. By Proposition 6.2.3 we have x = [a1, a2, . . .]k if and only if x ∈ ∆
(n)
a1a2...an for all n ≥ 1,

and this implies T n−1
k (x) ∈ ∆

(1)
an . In particular, Ak(T n−1(x)) ∈ Ban(0, 1) = (an, an+1) which

means an = [Ak(T
n−1(x))], n ≥ 1. On the other hand, we have Tk(x) = {Ak(x)} = Ak(x)+a1.

Solving for x in this last equation we obtain

x =
k

a1 + k + Tk(x)
.
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Now let suppose (1.4.2) for some n ≥ 1. Since an+1 = [Ak(T
n
k (x))] then T nk (x) = k

an+1+k+Tn+1(x)
.

Replacing in (1.4.2) we obtain the equality for n+ 1.

We conclude this section with a relation between k-continued fractions and their tails.

Given a k-irrational number x = [a1, a2 . . . , an, . . .]k ∈ [0, 1], we define its nth tail by xn :=

[an+1, an+2, . . .]k. The main property of the tail corresponds to the following proposition.

Proposition 1.4.6. Let x = [a1, a2, a3, . . .]k ∈ I be a k-irrational. If xn = [an+1, an+2, . . .]k

denotes the nth-tail of x, then

x =
pnxn+1 + pnan+1 + rn
qnxn+1 + qnan+1 + sn

for all n ≥ 1.

Proof. Using the definition of C−1
n A−1

k we note that if j ≥ 1 is an integer, then

[
pn+j

qn+j

]
= C−1

n+jA
−1
k

[
1

0

]

= A−1
k Ba1A−1

k Ba2 · · ·A−1
k BanA−1

k Ban+1 · · ·A−1
k Ban+jA−1

k

[
1

0

]

= C−1
n A−1

k Ban+1 · · ·A−1
k Ban+jA−1

k

[
1

0

]

= C−1
n A−1

k Ban+1

[
pj−1(xn+1) rj−1(xn+1)

qj−1(xn+1) sj−1(xn+1)

][
1

0

]

where pj−1(xn+1), rj−1(xn+1), qj−1(xn+1), sj−1(xn+1) are the entries of the matrix C−1
j A−1

k for

the continued fraction xn+1. Therefore
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pn+j

qn+j

=
pnpj−1(xn+1) + pnan+1qj−1(xn+1) + rnqj−1(xn+1)

qnpj−1(xn+1) + qnan+1qj−1(xn+1) + snqj−1(xn+1)

=
pn

pj−1(xn+1)

qj−1(xn+1)
+ pnan+1 + rn

qn
pj−1(xn+1)

qj−1(xn+1)
+ qnan+1 + sn

and we conclude the proposition doing j →∞.

1.5 Ergodic properties of Tk and their consequences

As the Gauss map, the Tk transformations have dynamical and ergodic related to continued

fractions. In [HM] it was shown that there exists a measure absolutely continuous to the

Lebesgue measure for which each transformation Tk is ergodic.

Theorem 1.5.1. Let k > 0. The transformation Tk : [0, 1]→ [0, 1] preserve the measure µk

defined on Borel subset of [0, 1] as

µk(A) =

∫
A

ck
x+ k

dx

where ck =
(
log k+1

k

)−1. Moreover, µk is Tk-ergodic.

We have the following consequences from Birkohff’s ergodic theorem.

Proposition 1.5.2. For all k > 0 and for Lebesgue almost every k-irrational x = [a1, a2, . . .] ∈

[0, 1],

lim
n→∞

1

n

n∑
i=1

ai =∞,

lim
n→∞

n
√

(a1 + 1)(a2 + 1) · · · (an + 1) =
∞∏
i=2

(
(i+ k)2

(i+ k)2 − 1

)log i/ log( k+1
k

)

.
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1.5.1 Diophantine Approximation

The following proposition corresponds to a version for k-continued fractions of the classical

Dirichlet theorem.

Proposition 1.5.3. For each k-irrational number x ∈ (0, 1) the convergents pn
qn

satisfy

∣∣∣∣x− pn
qn

∣∣∣∣ < 1

kq2
n

.

Proof. [HM, Corollary 1].

Also, the exponential growth of the denominators.

Theorem 1.5.4. For k > 0 and Lebesgue almost every all x ∈ I we have

lim
n→∞

log qn
n

= log
√
k −

(
log

k + 1

k

)−1

L2

(
−1

k

)
,

where L2(z) =
∫ 0

z
log(1−t)

t
dt is the Euler dilogarithm.

Proof. [HM, Theorem 4].

We know that one end point of the cylinder at level n is pn
qn
. From [HM, Proposition 5],

it is possible to show that the other endpoint is

√
kpn + pn−1√
kqn + qn−1

.

Therefore, the length of ∆
(n)
a1,a2,...,an is given by

|∆(n)
a1,a2,...,an

| =

∣∣∣∣∣pnqn −
√
kpn + pn−1√
kqn + qn−1

∣∣∣∣∣ =
1

qn(
√
kqn + qn−1)

.

As a corollary we obtain the exponential growth of the length of the cylinders.
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Corollary 1.5.5. For k > 0 and Lebesgue almost all x ∈ [0, 1]

lim
n→∞

1

n
log |∆(n)

a1,a2,...,an
| = − log k + 2

(
log

k + 1

k

)−1

L2

(
−1

k

)

Proof. [HM, Corollary 2].

Finally, we finish this section with the exponential speed of approximation by convergents.

Theorem 1.5.6. For k > 0 and Lebesgue almost all x ∈ [0, 1]

lim
n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ = − log k + 2

(
log

k + 1

k

)−1

L2

(
−1

k

)

Proof. [HM, Theorem 5].

Remark 1.5.1. Note that, for k > 0 and Lebesgue almost x ∈ [0, 1]

2 lim
n→∞

log qn
n

= − lim
n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ = lim
n→∞

1

n
log |∆(n)

a1,a2,...,an
|

1.6 Lüroth expansions and generalizations

In 1883, J. Lüroth [Lür] proved that every real number x ∈ (0, 1] can be written in the form

x =
1

a1

+
1

a1 (a1 − 1) a2

+ . . .+
1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an
+ · · ·

=
∞∑
n=1

1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an

where an ≥ 2, for all n ≥ 1. This expansion is called the Lüroth series of x and the numbers

{an}n∈N are called the digits. Arithmetic properties of the numbers can be read from its

corresponding series, and moreover, it is closely related to the dynamical properties of the
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transformation L : [0, 1)→ [0, 1) defined by

L(x) :=


n(n+ 1)x− n if x ∈

[
1

n+1
, 1
n

)
, n ∈ N

0 if x = 0.

If x has a Lüroth expansion with digits {an}n∈N then the following relation holds:

an = a1(Ln−1(x)) for n ≥ 1, where a1(u) := n+ 1 if u ∈
[

1

n+ 1
,

1

n

)
.

Partial sums in the Lüroth series of an irrational number x can be thought of, in analogy

to the continued fractions, as rationals approximations for the irrational number x. For

n ≥ 1, denote those partial sums by pn/qn, that is,

pn
qn

=
1

a1

+
1

a1 (a1 − 1) a2

+ · · ·+ 1

a1 (a1 − 1) a2 · · · an−1 (an−1 − 1) an
.

The number pn/qn is called n-th approximant of x. We stress that the Lüroth map can be

thought of as a linear version of the Gauss map and that the Lüroth series is analogous to

the continued fraction expansion.

Note that L can be thought as a linear version of the Gauss map. Furthermore, linear

versions of Tk maps can be defined. For each k > 0, the k-Lüroth map Lk : [0, 1)→ [0, 1) is

defined by

Lk(x) :=

{
x (n+k)(n+k+1)

k
− (n+ k), if x ∈

[
k

n+k+1
, k
n+k

)
, n ∈ N0

0, if x = 0

Each k-Lüroth map induces a series expansion of every x ∈ [0, 1] whose n-th iterated

Lnk(x) different from zero, and a set playing the role of rational numbers in the Lüroth

expansion. Proposition 4.2.1 gives that if Lnk(x) 6= 0 for all n ≥ 1, then we have the
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expansion

x =
∞∑
n=1

kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)

where

an = a1(Ln−1
k (x)), n ≥ 1,

and

a1(u) := n+ 1 if u ∈
[

k

n+ 1 + k
,

k

n+ k

)
, n ≥ 0.

Further details about k-Lüroth expansions, see Chapter 4.

1.7 Q-Lüroth expansions

This section introduces a new numeric expansion which combines the k−Lüroth maps and

the Cantor series expansion. Let Q = {qn}n≥1 be a sequence of positive real numbers qn > 0.

Consider the family of Lüroth maps {Lqn}n≥1, that we will denote by LQ. This family of

transformations induces a non-autonomous dynamical system ([0, 1), LQ) in a similar way as

in Section 1.2. Indeed, the time evolution of the system is defined by composing the maps

Lqn in the prescribed order given by the sequence Q = {qn}n≥1. In other words, for all n ≥ 1,

we define:

LnQ := Lqn ◦ Lqn−1 ◦ · · · ◦ Lq1 .

The orbit of x ∈ [0, 1] is the sequence {Lqn(x)}n≥1. The Q-Lüroth expansion is given by the

following theorem.

Theorem 1.7.1. Each x ∈ [0, 1) such that LnQ(x) 6= 0 for all n ≥ 0, can be expanded uniquely

22



in a infinite series of the form

x =
∞∑
n=1

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)

where an =

[
qn

Ln−1
Q (x)

− qn
]

+ 1.

See Chapter 5 for further details about Q-Lüroth expansions.
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Chapter 2

Thermodynamic Formalism

In this chapter we recall notions and results from Thermodynamic Formalism which is a

set of tools and methods brought into hyperbolic dynamics with great success in the early

seventies from statistical physics. It allows for the selection of relevant measures from the,

sometimes very large, set of invariant measures. It has been used as tool in the dimension

theory of dynamical systems at least since the work of Bowen in the 70s [Bow], where the

author developed the theory on compact spaces and in particular for fullshifts on finitely many

symbols. Section 2.2 is devoted to this theory in the compact case, we will follow [Wal]. On

the other hand, thermodynamic formalism for dynamical systems defined in non-compact

spaces has been studied and developed over the last 20 years. The particular case of the

fullshift on countable many symbols has been throughly studied, see [BS, MU2, Sar2]. In

Section 2.3 we recall the main definitions and results. Finally, we apply the theory of Section

2 for the case of EMR maps, which are transformations of the unit interval [0, 1] modeled by

the fullshift.
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2.1 Entropy

2.1.1 Metric Entropy

Let (X,A, µ) be a probability space. A partition of X is a collection of measurable disjoint

sets whose union is equal to X.

Definition 2.1.1. The entropy of a countable (or finite) partition α of X is given by

Hµ(α) := −
∑
A∈α

µ(A) log µ(A)

with the convention 0 log 0 := 0.

Given two partitions α, β we define their join by α∨ β := {A∩B : A ∈ α,B ∈ β}. Also,

if T : X → X is a µ-invariant map and n ≥ 0 is an integer, then we define T−nα as the

partition T−nα := {T−nA : A ∈ α}. It follows that Hµ(T−nα) = H(α).

Note that if α, β are two partitions, then Hµ(α ∨ β) ≤ Hµ(α) + Hµ(β). Therefore, if

Hµ(α) <∞, then Hµ(
∨n−1
i=0 T

−iα) ≤ nHµ(α) <∞, for all n ≥ 0.

Proposition 2.1.1. Let α be a countable partition of X such that Hµ(α) < ∞. Then, the

limit

lim
n→∞

1

n
Hµ

(
n−1∨
i=0

T−iα

)

exists and it is equals to infn
1
n
Hµ

(∨n−1
i=0 T

−iα
)
.

Proof. [Wal, Corollary 4.9.1; p. 96, Remark 1]

Denote the limit stated above by

hµ(T, α) := lim
n→∞

1

n
Hµ

(
n−1∨
i=0

T−iα

)
.
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Definition 2.1.2. Let (X,A, µ) be a probability space and T a map preserving µ. We define

the metric entropy of T as the supremum

hµ(T ) = sup{hµ(T, α) : α is a countable measurable partition with Hµ(α) <∞}.

2.1.2 Topological Entropy

Let (X, d) be a metric space and T : X → X a continuous transformation.

Definition 2.1.3. Let n be a natural number ε > 0 and K ⊂ X be a compact subset. A

subset E ⊂ K is called (n, ε)-separated subset of K with respect to T if x, y ∈ E, x 6= y

implies d(T jx, T jy) > ε for some j ∈ {0, . . . , n− 1}.

We call sn(ε,K, T ) the largest cardinality of any (n, ε)-separated subset ofK with respect

to T . Also, denote by

s(ε,K, T ) := lim sup
n→∞

1

n
log sn(ε,K, T )

and

h(K,T ) := lim
ε→0

s(ε,K, T ).

Definition 2.1.4. We define the topological entropy of T as the supremum

h(T ) = sup{h(K,T ) : K ⊂ X is a compact subset of X}

The relationship between the topological entropy and the metric entropy is given by

the following theorem known as the variational principle. Denote by MT (X) the space of

T−invariant probability measures.

Theorem 2.1.2. Let T : X → X be a continuous map of a compact metric space X. Then

h(T ) = sup{hµ(T ) : µ ∈MT (X)}.
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Proof. [Wal, Theorem 8.6].

The variational principle provides a natural way to distinguish particular measures in

MT (X). If there is a measure that attains the supremum in Theorem 2.1.2, we call it a

maximal entropy measure. See [Wal, Section 8.3] for further details.

2.2 Thermodynamic Formalism: the compact case

2.2.1 Topological Pressure

Let (X, d) be a metric space and T : X → X a continuous transformation and consider

ϕ : X → R a continuous function.

Definition 2.2.1. For each n ≥ 1 and ε > 0, we define

Pn(T, ϕ, ε) = sup

{∑
x∈E

eSnϕ(x) : E is an (n, ε)-separated set for X

}

and

P (T, ϕ, ε) = lim sup
n→∞

1

n
logPn(T, ϕ, ε).

Theorem 2.2.1. If ϕ : X → R is continuous, then the limit limε→0 P (T, ϕ, ε) exists.

Proof. [Wal, Theorem 9.1]

We define the topological pressure or only pressure of the potential ϕ as

P (T, ϕ) = lim
ε→0

P (T, ϕ, ε).

Note that when ϕ ≡ 0, then we recover the topological entropy of T . In other words,

P (T, 0) = h(T ). So, we can think the topological pressure as a weighted entropy, where any

x in a separated set contributes with “weight” Snϕ(x).
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Denote by C0(X) the space of continued functions on X to R and consider C0(X) with

the supremum norm ‖ϕ‖ = sup{|ϕ(x)| : x ∈ X}. The next proposition gives properties of

P (f, ·) seen as a function from C0(X) to R ∪ {∞}.

Proposition 2.2.2. The pressure function P (f, ·) : C0(X)→ R ∪ {∞} is

1. a Lipschitz function, that is, |P (f, ϕ)− P (f, ψ)| ≤ ‖ϕ− ψ‖, for all potentials ϕ, ψ;

2. a convex function, that is P (f, (1 − t)ϕ + tψ) ≤ (1 − t)P (f, ϕ) + tP (f, ψ), for all

potentials ϕ, ψ and t ∈ [0, 1].

Proof. [Wal, Theorem 9.7]

Similarly as Theorem 2.1.2, the pressure satisfies also a variational principle.

Theorem 2.2.3 (Variational Principle). Let T : X → X be a continuous function. Then,

for all continuous potential ϕ : X → R, we have

P (ϕ, T ) = sup

{
hµ(T ) +

∫
ϕdµ : µ ∈MT

}
(2.2.1)

Proof. [Wal, Theorem 9.10]

Observe that if ϕ ≡ 0, then we recover the variational principle for the entropy of T . Also,

Theorem 2.2.3 motivates the study of measures on which the supremum (2.2.1) is attained.

Such measures are called equilibrium states. The existence of equilibrium measures is a non-

trivial question. In fact, stronger assumptions on regularity of ϕ are required. Moreover,

the transfer operator theory is one of the tools used to prove the existence of such measures

[PP].
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2.3 Fullshift on countable symbols

This section is devoted to the study of thermodynamical formalism for the fullshift on count-

able symbols. We follow [Sar1, Sar5] in which the author developed the theory for a larger

class of dynamical systems called Topological Markov Shifts. The main difference with the

result obtained in the previous sections is that the space is no longer assumed to be compact.

Let S be a countable set and A = (aij)i,j∈S be a matrix with entries equal to 0 or 1 but

not having rows or columns identically zero.

Definition 2.3.1. The topological Markov shift generated by the matrix A = (aij)i,j∈S is

the pair (X, σA), where X is the set defined by

X := {x ∈ SN0 : axixi+1
= 1, for all i ≥ 0}

equipped with the topology generated by subsets of the form

Ca0,...,an−1 := {x ∈ X : xi = ai, 0 ≤ i ≤ n− 1},

where n ∈ N, a0, . . . an−1 ∈ S. Note that the set may be empty. Also, σA : X → X is the

map given by σA(x0, x1, . . .) = (x1, x2, . . .). We call S the alphabet, Ca0,...,an−1 a cylinder (of

length n) and σA the shift map.

Remark 2.3.1. On a topological Markov shift we define the metric d(x, y) := 2−min{n≥0:xn 6=yn}

when x 6= y, and d(x, y) := 0 when x = y. The topology generated by this metric is equivalent

to that generated by the cylinders.

Definition 2.3.2. The fullshift with alphabet S = N0 is the pair (Σ, σ) defined by the

topological Markov shift Σ := X generated by the matrix A = (aij)i,j∈S with ai,j = 1 for all

(i, j) ∈ S × S.
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The fullshift endowed with the topology generated by the cylinders (as in Definition 2.3.1)

is not compact. Hence, the thermodynamic formalism theory of Section 2.2 does not apply

to this setting.

2.3.1 Regularity of functions

Let ϕ : Σ→ R be a function defined on the fullshift.

Definition 2.3.3. Let n ∈ N. We define the n-th variation of ϕ by the supremum

Vn(ϕ) := sup{|ϕ(x)− ϕ(y)| : x, y ∈ Σ, xi = yi, 0 ≤ i ≤ n− 1}.

Definition 2.3.4. We say that ϕ is weakly Hölder if there exists θ ∈ (0, 1) and a constant

C > 0 such that, for all n ≥ 2, Vn(ϕ) ≤ Cθn. If in addition V1(ϕ) <∞ , then we say that ϕ

is locally Hölder.

Definition 2.3.5. We say that ϕ has summable variations if

∞∑
n=2

Vn(ϕ) <∞.

Proposition 2.3.1. Let ϕ : Σ→ R. Then

1. If φ is weakly Hölder continuous, then φ is of summable variations.

2. If φ is of summable variations, then φ is uniformly continuous.

3. If q, t ∈ R and ϕ, ψ are locally Hölder, then qϕ+ tψ is locally Hölder.

Proof. The first implication follows directly from definitions 2.3.5 and 2.3.4. If φ is of

summable variations, there exists n ∈ N such that Vn(φ) < ε. Therefore, if x, y ∈ Σ with
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d(x, y) < 2−n, then |φ(x)− φ(y)| < ε. On the other hand, if q, t ∈ R then

Vn(qϕ+ tψ) ≤ qVn(ϕ) + tVn(ψ) ≤ qC1θ
n
1 + tC2θ

n
2 ≤ (qC1 + tC2)θn

where C1, C2 > 0; θ1, θ2 ∈ (0, 1) and θ = max{θ1, θ2}.

Definition 2.3.6. We say that two functions ϕ, ψ : Σ → R of summable variations are

cohomologous if there exists h : Σ→ R with summable variations such that ϕ = ψ+h−h◦T .

When a function ϕ is cohomologous to the function identically zero, then we say that ϕ is a

coboundary.

Theorem 2.3.2 (Livsic). Suppose that ϕ, ψ : Σ → R have summable variations. Then

ϕ, ψ are cohomologous if and only if for all x ∈ X and n ∈ N such that σnx = x, then

Snφ(x) = Snψ(x).

Proof. See [Sar4]

2.3.2 Definition and properties

Thermodynamic formalism on countable Markov shifts has been developed initially by Mauldin,

Urbanski [MU2] and Sarig [Sar2]. We will follow [Sar2] to describe the theory. For any

i0 ∈ N0, denote by 1Ci0 the characteristic function of the cylinder Ci0 .

In what follows (Σ, σ) denotes the full shift on the alphabet N.

Proposition 2.3.3. Suppose that ϕ : Σ → R is a function of summable variations. Then,

the limit

PG(ϕ) := lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)
1Ci0

(x)

exists and is independent of i0 ∈ N. Moreover, PG(ϕ) > −∞.

Definition 2.3.7. Let ϕ : Σ → R a function of summable variations. We call PG(ϕ) the

Gurevich pressure of ϕ.
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Proposition 2.3.4. Suppose that ψ, ϕ : Σ → R have summable variations. Then, the

following holds

1. If c ∈ R, then PG(ϕ+ c) = PG(ϕ) + c

2. The Gurevich pressure is convex: for every t ∈ [0, 1], PG(tϕ + (1 − t)ψ) ≤ tPG(ϕ) +

(1− t)PG(ψ)

3. The Gurevich pressure is invariant under cohomologous functions: if ϕ, ψ are coho-

mologous, then PG(ϕ) = PG(ψ).

Proof. Let a ∈ N, c ∈ R and t ∈ [0, 1]. Then

PG(ϕ+ c) = lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

(ϕ+ c)(σix)

)
1Ci0

(x)

= c+ lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)
1Ci0

(x)

= c+ PG(ϕ).

The convexity follows from convexity of exponential function and Hölder’s inequality ,

∑
σnx=x
x0=a

exp

(
n−1∑
i=0

(tϕ+ (1− t)ψ)(σix)

)
≤
∑
σnx=x
x0=a

exp

(
t
n−1∑
i=0

ϕ(σix)

)
exp

(
(1− t)

n−1∑
i=0

ψ(σix)

)

≤

 ∑
σnx=x
x0=a

exp
n−1∑
i=0

ϕ(σix)


t ∑

σnx=x
x0=a

exp
n−1∑
i=0

ψ(σix)


1−t

which implies that PG(tϕ + (1 − t)ψ) ≤ tPG(ϕ) + (1 − t)PG(ψ). Finally, the invariance on

cohomologous functions follows from Livsic’s Theorem 2.3.2.

The following proposition was proved in [Sar3, p. 1755]
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Proposition 2.3.5. Suppose that ϕ : Σ → R has summable variations and V1(ϕ) < ∞.

Then

PG(ϕ) = lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)
. (2.3.1)

Remark 2.3.2. In [MU1, p. 117] and [MU2, p. 7] the authors developed the theory using a

different definition of the pressure. Indeed, they defined the pressure basically as the right

side of 2.3.1. Hence, Proposition 2.3.5 shows that both definitions are equivalent in the

fullshift.

Henceforth, we will denote P instead of PG that will be named simply as pressure of

ϕ. The following theorem relates this last definition with pressure defined in Section 2.2 for

compact spaces [Sar1, Corollary 1].

Theorem 2.3.6. Let ϕ : Σ→ R be a weakly Hölder continuous potential. If K = {K ⊂ Σ :

K compact and σ-invariant, K 6= ∅} then

P (ϕ) = sup{P (ϕ|K) : K ∈ K}

where P (ϕ|K) is the pressure defined as in Section 2.2 for ϕ|K : K → R.

Theorem 2.3.7 (Variational Principle). Assume that ϕ : Σ→ R has summable variations.

Then

P (ϕ) = sup

{
h(µ) +

∫
ϕdµ : µ ∈Mσ and −

∫
ϕdµ <∞

}
.

Proof. [Sar5, Theorem 5.3] and [IJT, Lemma 2.9].
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2.3.3 Equilibrium measures

Definition 2.3.8. A measure µ ∈ Mσ is called an equilibrium state for ϕ if µ attains

the supremum in the Variational Principle, that is, µ is a σ-invariant measure such that

−
∫
ϕ <∞ and

P (ϕ) = h(µ) +

∫
ϕdµ.

Theorem 2.3.8. Assume that ϕ : Σ→ R has summable variations, V1(ϕ) <∞ and P (ϕ) <

∞. Then there exists at most one equilibrium measure for the potential ϕ.

Proof. See [BS, Theorem 1.1 ].

Definition 2.3.9. Given a potential ϕ : Σ → R, we say that a measure µ on Σ is a Gibbs

measure if there exists numbers C > 0 and P ∈ R such that for every cylinder Ci0i1...in−1 we

have
1

C
≤

µ(Ci0i1...in−1)

exp(−nP +
∑n−1

i=0 ϕ(σix))
≤ C

for all x ∈ Ci0i1...in−1 .

This definition gives a description of the measure of a cylinder in the sense of that we can

compare it with exp(−nP +
∑n−1

i=0 ϕ(σix)) which involves the Birkhoff sum of the potential

ϕ.

Remark 2.3.3. When we consider Gibbs measures, open sets have positive measure.

Theorem 2.3.9. Suppose that ϕ : Σ→ R has summable variations and V1(ϕ) <∞. Assume

that P (ϕ) < ∞. Then, there exists a unique Gibbs measure for ϕ. Denote by µϕ such

measure. Moreover, if
∫
ϕdµϕ > −∞ then µϕ is the unique equilibrium measure.

Proof. The existence was proved in a more strong result in [Sar3, Theorem 1]: there, the

author proved the result for topological Markov shifts satisfying the big images and preimages

(BIP) property (see [Sar3] for a definition), which is the case of the fullshift. The uniqueness
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of the Gibbs measure was proved in [MU2, Theorem 2.2.4] and the last part of the theorem,

correspond to [MU2, Theorem 2.2.9].

2.3.4 Regularity of the pressure and consequences

The following result was proved in [Sar3, Corollary 4] and [MU2, Theorem 2.6.12].

Theorem 2.3.10. Suppose that ϕ, ψ : Σ → R have summable variations and finite first

variation. Let I ⊂ R an open interval such that P (ϕ + tψ) < ∞ for all t ∈ I. Then, the

function t 7→ P (ϕ+ tψ) is real analytic in I.

Theorem 2.3.11. Let ϕ, ψ : Σ→ R be two functions with summable variations and having

finite first variations. Moreover, suppose that P (ϕ + t0ψ) < ∞ for some t0 ∈ R. Let µt0 be

the Gibbs measure for ϕ + t0ψ and suppose that
∫
−(ϕ + tψ)dµt0 < ∞ for all t in an open

neighborhood of t0. Then
d

dt
P (ϕ+ tψ)

∣∣∣∣
t=t0

=

∫
ψdµt0

and
d2

dt2
P (ϕ+ tψ)

∣∣∣∣
t=t0

= σ2
t0

(ϕ, ψ)

where

σ2
t (ϕ, ψ) = lim

n→∞

1

n

∫
Sn

(
ϕ−

∫
ϕdµt

)
Sn

(
ψ −

∫
ψdµt

)
dµt.

Proof. [MU2, Proposition 2.6.14]

Example. Suppose that ϕ : Σ→ R is a negative locally Hölder potential such that P (ϕ) <∞.

Then, there exists a critical value t∗ ∈ (0, 1] such that

P (tϕ) is

{
infinite , if t < t∗

finite , if t > t∗.
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Moreover, when t > t∗ the pressure function t 7→ P (tϕ) is real analytic and convex. Observe

that if t > t∗, there exists a Gibbs measure for tϕ. Let µt be such measure. If ϕ is µt-

integrable, then µt is an equilibrium measure for tϕ and t 7→ P (tϕ) is a strictly decreasing

function with first derivative given by

d

dt
P (tϕ) =

∫
ϕdµt.

Assuming also that ϕ is not a coboundary, then t 7→ P (tϕ) is strictly convex.

2.4 Thermodynamic formalism for EMR maps

Denote by I = [0, 1]. This section is devoted to studying thermodynamic formalism for

dynamical systems T : I → I modeled by a fullshift on countable symbols. Gauss-like maps

or Lüroth maps are examples of such dynamics. Since the fullshift is a non-compact space,

the results of Section 2.3 will be used. Moreover, as regularity assumptions on potentials

are required to define the pressure, we need to put some conditions on T to get comparable

results for potentials on I. In [PW] a special class of maps T : I → I called Expanding-

Markov-Rényi maps (EMR) was studied. We start recalling the definition of Markov map.

Definition 2.4.1. We say that T : I → I is a Markov map if there exists a countable (or

finite) collection {On}n∈A⊂N0 of open non-empty subintervals of I satisfying the following

properties

1. T
∣∣
On

: On → T (On) is a homeomorphism,

2. On ∩Om = ∅ for n 6= m,

3. If for some n 6= m,T (On) ∩ Om 6= ∅ them Om ⊂ T (On). The collection {On}n∈N is

called a Markov partition.
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Remark 2.4.1. Along this thesis, the maps considered satisfies in general that (0, 1] ⊂⋃
n∈AOn. Further details on Markov maps on the interval, see [KMS2].

Example. The Tk maps defined on Section 1.4 are Markov maps with Markov partition

{Ikn}n≥0 :=

{(
k

n+ k + 1
,

k

n+ k

]}
n≥0

.

Definition 2.4.2. A map T : I → I is an EMR map, if there exists a countable family {Ii}i

of closed intervals (with disjoint interiors int(In)), with In ⊂ I for every i ∈ N, satisfying

1. If In = [an, bn], then an, bn are decreasing sequences, b1 = 1, and bn → 0.

2. The map is C2 on
⋃∞
i=1 int(Ii).

3. (Expansiveness) There exists a constant α > 1 and N ∈ N such that for every x ∈⋃∞
i=1 int(Ii), we have |(TN)′(x)| > α.

4. (Markov) The sequence {int(In)}n≥1 is a Markov partition for T .

5. (Rényi) There exists a positive number K > 0 such that

sup
n∈N

sup
x,y,z∈In

|T ′′(x)|
|T ′(y)||T ′(z)|

≤ K.

We will be interested in the points of I such that all the orbit is well defined. We call

the repeller of T to the set

Λ :=

{
x ∈

∞⋃
i=1

Ii : T n(x) is well defined for every n ∈ N

}
.

The Markov assumption in definition of EMR maps allows us to codify the system in a

well defined way. More precisely, we can represent the system T : Λ → Λ by a fullshift on

a countable alphabet (Σ, σ), with a continuous map π : Σ → Λ such that π ◦ σ = T ◦ π. In
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fact, if we define the set E of end points of the partition {In}n, then we have that the map

π : Σ→ Λ \
⋃
n∈N T

−nE is an homeomorphism. If Ca1,...,an denotes a typical cylinder on the

fullshift (Σ, σ), we define I(a1, . . . , an) := π(Ca1,...,an) a cylinder of level n for T .

The Rényi condition gives the following relation between the derivative along the orbit

of points that belong to a same cylinder of level n (see [CFS, Chapter 7, Section 4]).

Proposition 2.4.1 (Bounded distortion property). There exists a positive constant C > 0

such that for all n ≥ 1 and for every x ∈ I(a1, . . . , an) the following holds

1

C
≤
∣∣∣∣(T n)′(x)

(T n)′(y)

∣∣∣∣ ≤ C

for all y ∈ I(a1, . . . , an).

Moreover, the expansiveness together with the bounded distortion property, allows to

estimate the length of the cylinders I(a1, . . . , an).

Corollary 2.4.2. Let n ≥ 1. If N and α are the constants involved in the expansiveness

condition in Definition 2.4.2, then the length of the cylinder I(a, . . . , an) is bounded above,

up to a positive factor, by αn/N .

Proof. First, note that, for all n ≥ 1, x ∈ I(a1, . . . , an), then

1

C
≤ |(T n)′(x)||I(a1, . . . , an)| ≤ C.

If n = mN for some m ≥ 1 then |(T n)′(x)| > αm = αn/N . In particular, |I(a1, . . . , an)| <

Cα−n/N . Assume that n/N > 1 is not an integer. Then

|I(a1, . . . , an)| ≤ |I(a1, . . . , a[n/N ]N)| ≤ |(f [n/N ]N)′|−1 < Cα−[n/N ] ≤ Cα1−n/N .

When 0 < n/N < 1, then |I(a1, . . . , an)| < 1 = α−[n/N ] ≤ α1−n/N .
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We conclude this subsection with the definition of the pressure for a EMR map T . Denote

by Λ̃ := Λ \
⋃
n∈N T

−nE.

Definition 2.4.3. Let ϕ : Λ̃ → R a function such that ϕ ◦ π : Σ → R has summable

variations and V1(ϕ ◦ π) <∞. We define the pressure of ϕ with respect to T by

PT (ϕ) := PG(ϕ ◦ T ) = lim
n→∞

1

n
log

∑
Tnx=x

exp

(
n−1∑
i=0

ϕ(T ix)

)
.

If there is not risk of confusion we write P instead of PT .

Examples. In the following examples, we assume that T is an EMR map with intervals {In}n.

1. Let ϕ : Λ̃ → R to be constant at cylinders of level 1 for T , of the form ϕ
∣∣
Iai

= log λi,

for all i. In particular ϕ◦π is constant (equal to log λi) at cylinders of level 1 in (Σ, σ).

In this case, ϕ ◦ π is called locally constant and note that it satisfies all regularity

assumptions for results from Section 2.3. Therefore

P (ϕ) = log
∞∑
n=1

λn.

2. (pressure function) Let ϕ : Λ̃→ R given by ϕ = − log |T ′|. We will prove that ϕ ◦ π is

a locally Hölder potential. In fact, if x, y ∈ Σ with x0 = y0, . . . xn−1 = yn−1 then, there

exist w between π(x) and π(y) such that

| log |T ′|(π(x))− log |T ′|(π(y))| = |T
′′(w)|
|T ′(w)|

|π(x)− π(y)| ≤ |T
′′(w)|
|T ′(w)|

|π(Cx0...xn−1)|

=
|T ′′(w)|
|T ′(w)|

|I(x0 . . . xn−1)| ≤ C
|T ′′(w)|
|T ′(w)|

|(T n)′(z)|−1

≤ C
|T ′′(w)|

|T ′(w)||T ′(T n−1(z))|
|(T n−1)′(z)|−1

for any z ∈ I(x0 . . . xn−1). The Rényi hypothesis of T and Corollary 2.4.2 implies
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the existence of a positive constant M > 0 (independent of the cylinder) such that

| log |T ′(π(x))| − log |T ′(π(y))|| ≤Mα−(n−1)/N . Thus, for all n ≥ 1

Vn(ϕ ◦ π) ≤Mα1/Nα−n/N .

Note that the same calculations are valid for ϕt = −t log |T ′| and t > 0. The pressure

of this potential is given by

P (ϕt) = lim
n→∞

1

n
log

∑
Tnx=x

exp
n−1∑
i=0

log |T ′(T ix)|−t = lim
n→∞

1

n
log

∑
Tnx=x

n−1∏
i=0

|T ′(T ix)|−t

and we can apply results from Section 2.3 when it is finite. From now on, we will call

t 7→ P (ϕt) the pressure function.
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Chapter 3

Lyapunov Spectrum for Tk maps

In this chapter we will apply the tools from thermodynamic formalism to multifractal analysis

theory of Lyapunov exponents of Tk maps. Given α ∈ R we will be interested in the Hausdorff

dimension of level sets for the Lyapunov exponents, that is, in the set of points x ∈ [0, 1]

having Lyapunov exponent equal to α. Then, the Lyapunov spectrum consist in studying the

dimension of the level sets as a function in α. When k = 1 (i.e. the Gauss map), the Lya-

punov spectrum was completely determined by Pollicott-Weiss and Kessebömer-Stratmann

[PW, KS2]. In concrete, we will prove that the Lyapunov spectrum is real analytic. We use

results from [Iom].
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As we saw in Chapter 1, one of the consequences of Birkhoff ergodic theorem applied

to the Gauss map G is that Lebesgue almost every x = [a1, a2, . . .] ∈ [0, 1] the exponential

speed of approximation by the convergents is

lim
n→∞

1

n
log

∣∣∣∣x− pn
qn

∣∣∣∣ = − π2

6 log 2
. (3.0.1)

This implies that the lengths of the cylinders associated to Gauss map G tends to zero

exponentially fast since the LHS of 3.0.1 is equal to limn→∞
1
n

log |In(x)|. From a dynamical

point of view, the bounded distortion property applied to G, allows to know the behavior of

the orbits by means of the equality

lim
n→∞

1

n
log |(Gn)′(x)| = − lim

n→∞

1

n
log |In(x)|.

Definition 3.0.1. Let (T, [0, 1]) be a piecewise differentiable dynamical system. The Lya-

punov exponent of x with respect to T is defined by the limit

λT (x) = lim
n→∞

1

n
log |(T n)′(x)| = lim

n→∞

1

n

n−1∑
i=0

log |T ′(T i(x))|

whenever exists.

From 3.0.1 we have that, Lebesgue almost every x ∈ [0, 1] has Lyapunov exponent

λG(x) = π2

6 log 2
which is not the only possible value: if x0 is a fixed point of G, then

λG(x0) = log |G′(x0)| = −2 log x0. In fact, the range of all possible values of Lyapunov

exponents for the Gauss map is the interval [−2 log 1+
√

5
2
,∞) [PW]. On the other hand,

the Lyapunov exponent of any rational number x does not exists since Gn(x) = 0 for some

n ≥ 1. Also, the Liouville’s number x =
∑∞

k=1 10−k! is a non-trivial example for which its

Lyapunov exponent does not exists [PW, p.164].

In [PW, KS2] the authors gave a complete description of the multifractal analysis for
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Lyapunov exponents for the Gauss map. Multifractal analysis is a branch of the dimension

theory of dynamical systems. It typically involves decomposing the phase space into level

sets where some local quantity takes a fixed value. Questions that are usually addressed are

determining the the size of each of the level sets and how does this dimension varies with

the parameter. Let us explain how this analysis works in the case of Lyapunov exponents

for the Gauss map. Given α ∈ [2 log 1+
√

5
2
,∞) define the level set

J(α) := {x ∈ [0, 1] : λG(x) = α}.

Then we get a decomposition

[0, 1] =
⋃
α

J(α) ∪ J ′

where J ′ := {x ∈ [0, 1] : λG(x) does not exists} is called the irregular set. Observe that if

α 6= π2

6 log 2
, then J(α) has null Lebesgue measure therefore a good way to measure those sets

is using the Hausdorff dimension (see Section 5.4 or [Fal, Chapter 2] for further details).

Thus, multifractal analysis study the function α 7→ dimH J(α). The following theorem

[PW, KS2] characterize this functions by means of thermodynamic formalism tools.

Theorem 3.0.1 (Pollicott-Weiss, Kesseböhmer-Stratmann). If P (·) denotes the pressure

function for the Gauss maps, then the following holds:

g(α) := dimH J(α) =
1

α
inf
t∈R

(P (−t log |G′|) + tα).

Moreover, the function g : [2 log 1+
√

5
2
,∞)→ [0, 1] is real analytic.

The hidden technical tool in Theorem 3.0.1 which connects dimension theory and ther-

modynamic formalism is the Legendre transform. Let I ⊂ R be an interval and let f : I → R
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be a convex function. We define the Legendre transformation f̂ of f by

f̂(α) := sup
t∈I
{αt− f(t)}.

Therefore, Theorem 3.0.1 shows that the multifractal analysis for Lyapunov expoenents for

the Gauss map is completely understood, essentially, by the Legendre transformation of the

pressure function since g(α) = P̂ (−α)/ − α. Moreover, this formula was extended in [Iom].

We rephrase this result in the case of EMR maps.

Theorem 3.0.2. Let T be a EMR map, and let P (·) be the pressure function of T . Then

the Lyapunov spectrum satisfies

dimH{x ∈ [0, 1] : λT (x) = α} =
P̂ (−α)

−α

for all α in an unbounded interval of the form [αmin,∞). Moreover on this domain the

Lyapunov spectrum is real analytic.

From now on, this chapter is concerned to understand the Lyapunov spectra of Tk maps.

3.1 Pressure function for Tk maps

Along this section we will be interested in studying the pressure function for the maps Tk

defined on Section 1.4.

Proposition 3.1.1. The map Tk is EMR.

Proof. We will prove the hypothesis given in Definition 2.4.2 for the countable family {Ik1 (n)}n∈N0 ,

where

Ik1 (n) =

(
k

n+ k + 1
,

k

n+ k

]
.
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As discussed in Section 2.4, the collection of intervals {int(Ik1 (n))}n∈N0 is a Markov partition

for Tk. Also, note that Tk is a C2 map. We need to prove the expansiveness of Tk and the

Rényi condition. Let us first to prove the expansiveness. Let n ≥ 0 such that Tk(x) ∈ Ik1 (n).

Note that T ′′k (x) = 2k/x which is always positive and therefore T ′k is increasing. Thus

(T 2(x))′ = T ′k(Tk(x))T ′k(x) >
k

(k/(n+ k + 1))2
· k
x2

> (n+ k + 1)2 ≥ (k + 1)2.

In order to prove property (5) of Definition 2.4.2, we note that |T ′k(x)| = k/x2 and |T ′′k (x)| =

k2/x3. Then, on the interval In

|T ′′k (x)|
|T ′k(y)||T ′k(z)|

=
y2z2

x3
≤ k(n+ k + 1)3

(n+ k)4

then

sup
n≥0

k(n+ k + 1)3

(n+ k)4
=

(k + 1)3

k3
<∞.

The last proposition allows us to calculate the pressure for the potential ϕ = −t log |T ′k|.

Recall from Example 2.4 that, Pk(t) take the form

Pk(t) = lim
n→∞

1

n
log

∑
Tnk x=x

|(T nk )′x)|−t. (3.1.1)

Proposition 3.1.2. Let k > 0. The pressure function t 7→ P (−t log |T ′k|) is finite if t > 1/2

and it is equal to∞ if t < 1
2
. When t > 1/2, P (−t log |T ′k|) is real analytic, strictly decreasing

and strictly convex. Moreover P (−t log |T ′k|)→∞ when t→ 1
2

+.

Proof. For each n, the mean value theorem guarantees the existence of z ∈ Ik1 (n) such that

|T ′k(z)| = 1

|Ik1 (n)|
,
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then, for all x ∈ Ik1 (n) we have
1

C
≤ |T ′k(x)|
|Ik1 (n)|−1

≤ C.

Therefore

C−tn
∑

(j1,...,jn)∈Nn0

n∏
i=1

|Ik1 (ji)|t ≤
∑
Tnk x=x

n−1∏
i=0

|T ′k(T ikx)|−t ≤ Ctn
∑

(j1,...,jn)∈Nn0

n∏
i=1

|Ik1 (ji)|t

We note that each one of the sums at left and right are equal to
(∑∞

j=0 |Ik1 (j)|t
)n

, which

implies

−tn logC + n log
∞∑
j=0

|Ik1 (j)|t ≤ log
∑
Tnk x=x

n−1∏
i=0

|T ′k(T ikx)|−t ≤ −tn logC + n log
∞∑
j=0

|Ik1 (j)|t

and

−t logC + log
∞∑
j=0

|Ik1 (j)|t ≤ P (−t log |T ′k|) ≤ −t logC + log
∞∑
j=0

|Ik1 (j)|t (3.1.2)

First two assumptions are given by the convergence of series involved in inequality (3.1.2).

For the limit, we first note that by Fatou’s lemma

lim inf
n→∞

∞∑
j=0

1

(j + k + 1)
1
2

+ 1
n (j + k)

1
2

+ 1
n

≥
∞∑
j=0

lim inf
n→∞

1

(j + k + 1)
1
2

+ 1
n (j + k)

1
2

+ 1
n

=∞.

From Section 2.3.4 P (−t log |T ′k|) is a real analytic, strictly convex and strictly decreasing

function on (1
2
,∞) since

dP (−t log |T ′k|)
dt

= −
∫

log |T ′k|dµkt < 0.

Using that and the inequality (3.1.2) we have that P (−t log |T ′k|)→∞, when t→ 1/2+.
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3.2 Lyapunov spectrum

In this section we calcule the Lyapunov exponents of x ∈ [0, 1], for Tk maps. Since the

Lyapunov exponent of x ∈ [0, 1] with respect to Tk is defined by the limit

λ(x) = lim
n→∞

1

n
log |(T nk )′(x)| = lim

n→∞

1

n

n−1∑
i=0

log |T ′k(T ik(x))|

whenever exists, and by Birkhoff Ergodic Theorem, we have

λ(x) =

∫ 1

0

log |T ′k|dµk

for µk-a.e. x ∈ [0, 1], where µk is the Tk invariant measure defined in section 1.4. From

Theorem 1.5.4 and Corollary 1.5.4 we have that, Lebesgue almost every x ∈ [0, 1]

λ(x) = 2 lim
n→∞

log qn
n

= 2 log
√
k − 2

(
log

k + 1

k

)−1

L2

(
−1

k

)

where

L2(z) =

∫ 0

z

log(1− t)
t

dt.

Now, we are interested on the range of the function x 7→ λ(x) whenever the Lyapunov

exponent exists. Note that, when x is a fixed point of Tk, then

λ(x) = lim
n→∞

1

n

n−1∑
i=0

log

∣∣∣∣−kx2

∣∣∣∣ = log k − 2 log x.

Let k > 0. On each subinterval In, n ≥ 0, there exists a unique fixed point xkn given by

xkn :=
−(n+ k) +

√
(k + n)2 + 4k

2
.
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Note that xkn is equal to the k-continued fraction having the constant coding [[n]]k :=

[n, n, n, . . .]. Thus the Lyapunov exponent of each fixed point is

λ(xkn) = log k − 2 log

(
−(n+ k) +

√
(n+ k)2 + 4k

2

)

for all n ≥ 0. In particular, we have that x 7→ λ(x) is unbounded.

Lemma 3.2.1. Let x ∈ [0, 1] such that λ(x) exists. Then

λ(x) ≥ 2 log

(√
k +
√
k + 4

2

)
= λ([0]k).

Before proving this lemma, we will first a prove a simple property on convergents that

will be useful. From Proposition 1.4.4 we have the following recursion

qn =
1√
k

((an + k)qn−1 +
√
kqn−2), n ≥ 2;

q0 = q1 = 1. The next simple lemma will be useful for our calculations.

Lemma 3.2.2. If x = [a1, . . . , an, . . .]k and y = [b1, . . . , bn, . . .]k are two k-continued fractions

with an ≤ bn for all n ≥ 1, then qn(x) ≤ qn(y) for all n ≥ 1. Here qn(x) represents the

denominator of nth convergent associated to x.

Proof. The proof is by induction. For n = 1 we have q1(x) = 1 = q1(y). Now, suppose that

qk(x) ≤ qk(y) for all k ≤ n. Then

qn+1(x) =
1√
k

((an+1 + k)qn(x) +
√
kqn−1(x))

≤ 1√
k

((bn+1 + k)qn(y) +
√
kqn−1(y))

= qn+1(y)
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and thus we conclude the proof.

Proof of Lemma 3.2.1. Let x be a k-irrational number. For any n ≥ 1, we have that qn(x) ≥

qn([0]k) where [0]k is the largest fixed point of Tk. By simplicity, denote qn := qn([0]k). Note

that qn = qn−1

√
k + qn−2, which is a linear difference equation with initial conditions given

by q0 = q1 = 1. To solve this equation, we observe that x2 =
√
kx+ 1 has two roots given by

φk =

√
k +
√
k + 4

2
; φk =

√
k −
√
k + 4

2
,

with −1 < φk < 0 < φk < 1. Then, there exist A,B ∈ R such that, for any n ≥ 1, we have

qn = Aφnk +Bφ
n

k . Thus, qn ≥ Cφnk for some constant C > 0. Finally,

λ(x) = 2 lim
n→∞

log qn(x)

n
≥ 2 lim

n→∞

(
1

n
logC + log φk

)
= 2 log(φk).

Denote by λkmin := λ([0]k) = 2 log φk.

Proposition 3.2.3. We have that {λ(x) ∈ R : x ∈ [0, 1]} = [λkmin,∞).

Proof. Let t > 1/2 and let µkt be the equilibrium state of Pk(t) := P (−t log |T ′k|). By Tk-

ergodicity of µk, we have that
∫

log |T ′k|dµt = λ(x) for some x ∈ [0, 1]. Then

{∫
log |T ′k|dµkt : t > 1/2

}
⊂ {λ(x) ∈ R : x ∈ [0, 1]}

By Proposition 3.1.2, t 7→ Pk(t) is analytic on (1/2,∞) and in particular t 7→ P ′(t) =

−
∫

log |T ′k|dµt is continuous on (1/2,∞). Therefore {
∫

log |T ′k|dµkt : t > 1/2} is an interval

in R and

inf
t>1/2

∫
log |T ′k|dµkt ≥ λmin.
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On the other hand,

sup
t>1/2

−
∫

log |T ′k|dµkt = lim
t→∞

P ′k(t)

= lim
t→∞

Pk(t)

t
≥ −

∫
log |T ′k|dδ[0]k

= −λmin

where δ[0]k
denotes the Dirac’s delta measure supported on the fixed point [0]k. Hence

inft>1/2

∫
log |T ′k|dµkt ≥ λmin. We conclude that

(λmin,∞) =

{∫
log |T ′k|dµkt : t > 1/2

}

and

{λ(x) ∈ R : x ∈ [0, 1]} = [λmin,∞).

Finally, applying Theorem 3.0.2 we obtain,

Theorem 3.2.4. The Lyapunov spectrum of Tk is given by the function

α 7→ P̂ (−α)

−α
=

1

α
inf
t∈R

(P (−t log |T ′k|) + tα)

for all α ∈ [λkmin,∞). Moreover on this domain is a real analytic function.

50



Chapter 4

k-rational approximations in k-Lüroth

expansions

In this chapter we study a one parameter family of numerical systems called k- Lüroth ex-

pansions. Every irrational number has an infinite expansion and associated to it there is a

sequence of k-rational approximations. We are interested in the size of sets of points having

the same exponential speed of approximations by k-rationals for different values of k. We

prove that the Hausdorff dimension of these sets varies analytically with respect to the param-

eter k. Our techniques come from ergodic theory, in particular thermodynamic formalism for

countable Markov shifts. The results obtained in this chapter appear in the article [Con2].
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4.1 Introduction

In 1883, J. Lüroth [Lür] proved that every real number x ∈ (0, 1] has an expansion in the

form

x =
1

a1

+
1

a1 (a1 − 1) a2

+ . . .+
1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an
+ · · ·

=
∞∑
n=1

1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an

where an ≥ 2, for all n ≥ 1. This expansion is called the Lüroth series of x and it is

denoted by x = [a1, a2, . . . ]1. Arithmetic properties of the number can be read form its

corresponding series. Indeed, rational numbers of [0, 1] are characterized by the fact that

its expansion is either finite or periodic. Every irrational number has a unique infinite

expansion. Interestingly, the Lüroth series is closely related to the dynamical properties of

the transformation L : [0, 1)→ [0, 1) defined by

L(x) :=


n(n+ 1)x− n if x ∈

[
1

n+1
, 1
n

)
, n ∈ N

0 if x = 0.

If x = [a1, a2 . . . ]1 then the following relation holds: an = a1(Ln−1(x)) for n ≥ 1, where

a1(u) := n + 1 if u ∈ [ 1
n+1

, 1
n
). Partial sums in the Lüroth series of an irrational number x

can be thought of, in analogy to the continued fractions, as rationals approximations for the

irrational number x = [a1, . . . ]1. For n ≥ 1, denote by pn/qn := [a1, . . . , an]1 that is,

pn
qn

=
1

a1

+
1

a1 (a1 − 1) a2

+ · · ·+ 1

a1 (a1 − 1) a2 · · · an−1 (an−1 − 1) an
.

The number pn/qn is called n-th approximant of x. We stress that the Lüroth map can be

thought of as a linear version of the Gauss map and that the Lüroth series is analogous to
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the continued fraction expansion.

In this article we study a generalization of this series expansion that will be defined by

means of the following family of maps. For each k > 0, the k-Lüroth map Lk : [0, 1)→ [0, 1)

is defined by

Lk(x) :=

{
x (n+k)(n+k+1)

k
− (n+ k), if x ∈

[
k

n+k+1
, k
n+k

)
, n ∈ N0

0, if x = 0

Note that the map L1(x) corresponds to the Lüroth map. Our interest in this family steams

from work of Haas and Molnar [HM], where they studied metrical properties of a family of

continued fractions, each of which is defined by an interval map obtained as the fractional

part of a Möbius transformation taking the endpoints of the interval to zero and infinity. In

particular, considering fractional parts of a family of Möbius tranfsormations k(1−x)
x

, k > 0.

The family of k-Lüroth maps can be thought of as linear versions of the Gauss-like maps

studied in [HM]. Families of this type were also studied by Kesseböhmer, Munday and

Stratmann in [KMS1].

It turns out that each k-Lüroth map induces a series expansion of every x ∈ [0, 1] whose

n-th iterated Lnk(x) different from zero, and a set playing the role of rational numbers in the

Lüroth expansion. Proposition 4.2.1 gives that if Lnk(x) 6= 0 for all n ≥ 1, then we have the

expansion

x =
∞∑
n=1

kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)

where

an = a1(Ln−1
k (x)), n ≥ 1,

and

a1(u) := n+ 1 if u ∈
[

k

n+ 1 + k
,

k

n+ k

)
, n ≥ 0.
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We stress that an depends on k. This series is called the k-Lüroth series of x and it will

be denoted by [a1, a2 . . . ]k. The natural numbers an are called the digits of the expansion.

Details are provided in sub-section 4.2.1. As in the case of the Lüroth expansion, for every

x ∈ [0, 1] having an infinite k-Lüroth expansion x = [a1, . . . ]k we can define the n-th k-

approximant of x by pkn/qkn := [a1, . . . , an]k. That is,

pkn
qkn

=
k

a1 + k
+ · · ·+ kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)
.

This article is devoted to study the exponential speed of approximations of a number

x ∈ [0, 1] by its n-th k-approximant (pkn/q
k
n)n, as the parameter k varies. More precisely we

are interested in the following numbers

lim
n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ ,
whenever the limit exists. We study the range of possible values, the size of the set of

elements having a fixed exponential speed of approximation and how do these quantities

varies with both, the parameter and the value of k. More precisely, for every α ≥ 0 we

consider the set

Nk(α) :=

{
x ∈ [0, 1) : lim

n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ = α

}
.

Thus, we will be interested in the range of values for which the sets Nk(α) are non-empty

and the regularity properties of the maps α 7→ dimH(Nk(α)), k 7→ dimH(Nk(α)). Here dimH

denotes the Hausdorff dimension of a set. This is an appropriate way to compute the size of

the level sets since, as we will see in section 4.2.4, for every value of α (except for a single

value, see Lemma 4.2.7) the Lebesgue measure of the level set is zero.

Our tools are dynamical in nature and are based in the following quantity which measures

the exponential rate of divergence of infinitesimally close orbits.

54



Definition. The Lyapunov exponent of the transformation Lk : [0, 1) → [0, 1) at the point

x ∈ [0, 1) is defined by

λk(x) := lim
n→∞

1

n
log |(Lnk)′(x)|

whenever the limit exist.

The following relation, which will be proved in Proposition 4.2.8, allows to bring in all

the ergodic theory machinery to our problem:

lim
n→∞

1

n
log |(Lnk)′(x)| = − lim

n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ .
Note that it provides arithmetic information by dynamical means. Thus, it will be equivalent

and simpler to consider the level sets determined by the Lyapunov exponents. We will

therefore study the map

τk(α) := dimH ({x ∈ [0, 1) : λk(x) = α}) .

For fixed values of k this map was completely described in the work of Barreira and Iommi [BI]

and in that of Kesseböhmer, Munday and Stratmann in [KMS1]. Indeed, this corresponds

to the multifractal spectrum of Lyapunov exponents and with tools from thermodynamic

formalism it can be shown that (in the appropriate domain) the map α → τk(α) is real

analytic. The main novelty of our work, from the dynamical systems point of view, is

that we describe how does the multifractal spectrum of Lyapunov exponents varies along a

one-parameter family of dynamical systems. That is, we describe how does the Hausdorff

dimension of a level set changes with the dynamics. More precisely,

Theorem 4.1.1. Let M > 0 and fix α ∈ R such that τk(α) is well defined for all k ∈ (0,M ].
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Then, the function of domain (0,M ] defined by

k 7→ τk(α)

is real analytic.

From an arithmetic point of view, Theorem 4.1.1 characterizes how does the size of the set

of points with same speed of approximations by their n-approximants varies in the different

numerical systems provided by the k-Lüroth transformations.

4.2 Ergodic Theory preliminaries and series expansions

4.2.1 Dynamics of k-Lüroth expansions

In this section we discuss arithmetic as well as dynamical properties of the k-Lüroth expan-

sions. Let k > 0.

Proposition 4.2.1. Let x ∈ (0, 1).

1. Let m ≥ 1 be the smallest positive integer such that Lm−1
k x = 0. Then

x =
k

a1 + k
+ · · ·+ km

(a1 + k) (a1 − 1 + k) · · · (am−1 + k) (am−1 − 1 + k) (am + k)
.

2. If Lnk(x) 6= 0 for all n ≥ 0, then

x =
k

a1 + k
+ · · ·+ kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)
+

+
knLnk(x)

(a1 + k) (a1 − 1 + k) · · · (an−1 + k)(an−1 − 1 + k)(an + k)(an − 1 + k)
.
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The proof of Proposition 4.2.1 is obtained inductively similarly as in the Lüroth case (see

[DK], pages 38-39).

The subset of k-rationals, denoted by Qk, is defined by

Qk = {x ∈ [0, 1) : there is n ∈ N0 such that Lnk(x) = 0}.

The complement of Qk in the unit interval [0, 1) is the so-called set of k-irrationals. We

observe that when k ∈ Q, then Qk ⊂ Q.

Remark 4.2.1. For every k > 0, the set Qk is a countable set which contains every number

of the form

k

a1 + k
+ · · ·+ kn

(a1 + k) (a1 − 1 + k) · · · (an−1 + k) (an−1 − 1 + k) (an + k)
,

with a1, a2, . . . , an ∈ N and n ≥ 1.

As a consequence of Proposition 4.2.1 we obtain the following.

Proposition 4.2.2. Let k > 0. Every k-irrational x ∈ [0, 1) can be expanded in a infinite

k-Lüroth expansion, that is

x = lim
n→∞

[a1, a2, . . . , an]k,

where an are obtained as in Proposition 4.2.1.

Proof. By Proposition 4.2.1, we have

∣∣∣∣x− pkn
qkn

∣∣∣∣ =
knLnk(x)

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)

≤ 1

(1 + k)n

which goes to zero when n tends to infinity.
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Definition 4.2.1. Let a1, a2, . . . , an be positive integers. We define the cylinder of level n

corresponding to (a1, a2, . . . , an) as the subset of (0, 1] given by

∆k(a1, a2, . . . , an) = {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, . . . , an(x) = an}.

In other words, ∆k(a1, a2, . . . , an) is the set of numbers in [0, 1) whose k-Lüroth expansion

starts with the digits a1, a2, . . . , an.

Lemma 4.2.3. Let k > 0. Then ∆k(a1, a2, . . . , an) is the subinterval of [0, 1) given by

[
pn
qn
,
pn
qn

+
kn

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)

)
(4.2.1)

where
pn
qn

=
n∑
j=1

kj

(a1 + k) (a1 − 1 + k) · · · (aj−1 + k) (aj−1 − 1 + k) (aj + k)
.

Proof. Let I be the interval given in equation (4.2.1). By Proposition 1, we have that

x ∈ ∆k(a1, . . . , an) if and only if

x =
pn
qn

+
knLnk(x)

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)

which is equivalent that x ∈ I, because Lnk : [0, 1)→ [0, 1) is onto. In conclusion ∆k(a1, a2, . . . , an) =

I.

As a consequence, each cylinder ∆k(a1, a2, . . . , an) is a subinterval of [0, 1] with Lebesgue

measure equal to

|∆k(a1, a2, . . . , an)| = kn

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)
.

Recall that a probability measure µ in [0, 1] is invariant for the map T : [0, 1]→ [0, 1] if
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for every Borel set A ⊂ [0, 1] we have µ(A) = µ(T−1A). Moreover, we say that an invariant

measure µ is ergodic if for every set with the property that A = T−1A we have that µ(A) = 0

or µ(A) = 1, see [Wal, Chapter 1]. It was shown in [KMS1, Lemma 2.4] that:

Proposition 4.2.4. For every k > 0, the map Lk is an ergodic transformation with respect

to the Lebesgue measure.

Therefore, all k-Lüroth maps have Lebesgue measure as a common invariant ergodic

measure.

4.2.2 Symbolic Dynamics

The dynamics of the k-Lüroth map can be coded by the full-shift on a countable alphabet.

This will allow us to reduce the study of the ergodic properties of the map to those of the

shift, which are well known. The full-shift on a countable alphabet (Σ, σ) is the set

Σ := {(xn)n∈N : xn ∈ N for every n ∈ N} ,

together with the shift map σ : Σ → Σ defined by σ(x1, x2, . . . ) = (x2, x3, . . . ). The set

Ca1...an := {(xn)n ∈ Σ : x1 = a1 . . . xn = an} is called a symbolic cylinder of length n. The

space Σ endowed with the topology generated by the cylinder sets is a non-compact space.

This fact is one of the main difficulties that need to be addressed to develop the theory. The

map

πk : Σ→ [0, 1] \Qk

(x1, x2, . . .) 7→ [x1, x2, . . .]k.

is a topological conjugacy between the full-shift and the k-Lüroth map.
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Remark 4.2.2. We observe that every cylinder is the projection of a symbolic cylinder Ca1,...,an ,

that is ∆(a1, . . . , an) = πk(Ca1,...,an).

4.2.3 Thermodynamic formalism

Thermodynamical formalism is a set of tools and methods brought into hyperbolic dynamics

with great success in the early seventies from statistical physics. It allows for the selection

of relevant measures from the, sometimes very large, set of invariant measures. It has been

used as tool in the dimension theory of dynamical systems at least since the work of Bowen

in the 70s [Bor]. Thermodynamic formalism for dynamical systems defined in non-compact

spaces has been studied and developed over the last 20 years. The particular case of the

full-shift on countable many symbols (Σ, σ) has been very well studied, see [BS, MU2, Sar2].

In this section we recall the main definitions and results.

Definition 4.2.2. We say that a potential ϕ is locally Hölder if there exists θ ∈ (0, 1) such

that for all n ≥ 1, we have

sup {|ϕ(x)− ϕ(y)| : x, y ∈ Σ, xi = yi for i = 1, . . . , n} ≤ Cθn

for some positive constant C independent of n.

Definition 4.2.3. Let (Σ, σ) be the full-shift on a countable alphabet and ϕ : Σ → R a

locally Hölder function. The pressure of ϕ is defined by

P (ϕ) := lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)
.

The limit exists, but it can be infinity [BS, MU2, Sar2].

Theorem 4.2.5. Let ϕ : Σ→ R be a locally Hölder negative function such that P (ϕ) <∞.
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Then, there exists a critical value t∗ ∈ (0, 1] such that

P (tϕ) is

{
infinite , if t < t∗

finite , if t > t∗.

Moreover, when t > t∗ the pressure function t 7→ P (tϕ) is real analytic and strictly convex.

Example. If the function ϕ : Σ → R is locally constant, that is ϕ|Cxi = log λi, for every

i ∈ N, then we can explicitly calculate the pressure:

P (ϕ) = lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)

= lim
n→∞

1

n
log

∑
(j0,...,jn−1)∈Nn

λj0λj1 · · ·λjn−1

= lim
n→∞

1

n
log

(∑
i∈N0

λi

)n

= log
∞∑
i=1

λi.

We are interested in the locally constant functions ϕk|Cn = log (n+k+1)(n+k)
k

, since they

correspond to the symbolic version log |L′k|. We observe that ϕk is a locally Hölder function.

In this case, the pressure function is given by

Pk(t) := P (−tϕk) = log
∞∑
n=0

(
k

(n+ k + 1)(n+ k)

)t
.

This explicit expression and Theorem 6.3.1 implies the following result.

Proposition 4.2.6. For every k > 0, the pressure function t 7→ Pk(t) is finite if t > 1
2
and

infinite if t ≤ 1/2. When Pk(t) is finite, then it is real analytic and strictly convex.

We note that the critical value after which the pressure becomes finite is independent of

the value of k.
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4.2.4 Multifractal analysis for Lyapunov exponents

Multifractal analysis is a branch of the dimension theory of dynamical systems. It typically

involves decomposing the phase space into level sets where some local quantity takes a fixed

value. Questions that are usually addressed are determining the the size of each of the level

sets and how does this dimension varies with the parameter. Thermodynamic formalism has

been employed as tool to answer this questions. The theory is well understood for uniformly

hyperbolic systems defined over compact phase spaces. In this section we will describe the

multifractal spectrum of Lyapunov exponentes for the k-Lüroth maps. We stress in that in

this context the phase space is no longer compact. Note that the the Lyapunov exponent of

Lk at the point x satisfies

λk(x) := lim
n→∞

1

n
log |(Lnk)′(x)| = lim

n→∞

1

n

n∑
i=1

log |L′k(Li−1
k (x))|,

whenever the limit exists. In particular, it is a Birkhoff sum. The phase space [0, 1) can be

decomposed into level sets. Indeed, for α ∈ R we define

Jk(α) := {x ∈ [0, 1) : λk(x) = α}.

Thus,

[0, 1) =
⋃
α

Jk(α) ∪ J ′k

where J ′k = {x ∈ [0, 1) : λk(x) does not exists}. We are interested in the multifractal

spectrum of Lyapunov exponent which is defined by the function

τk(α) := dimH Jk(α).

As observed in Proposition 4.2.4, the Lebesgue measure in [0, 1), that we denote by Leb,
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is invariant and ergodic for every Lüroth map Lk. It directly follows from the Birkhoff

ergodic theorem that:

Lemma 4.2.7. Let k > 0, then for Lebesgue almost every x ∈ [0, 1) the Lyapunov exponent

with respect to Lk is given by

λk(x) =

∫ 1

0

log |L′k|dLeb =
∞∑
n=0

k

(n+ k)(n+ k + 1)
log

(n+ k)(n+ k + 1)

k
.

That is, for each fixed map Lk the Lyapunov exponent is constant Lebesgue almost

everywhere. Note that λkmin := min{λk(x) : x ∈ [0, 1)} = log(k + 1) which is attained at

the largest fixed point of Lk. As we will see below, the range of values that the Lyapunov

exponent can attain is the interval [λkmin,∞).

The relationship between Lyapunov exponents and the speed of convergence of pkn/qkn to

x is given by the following.

Proposition 4.2.8. If x ∈ [0, 1) is such that the Lyapunov exponent with respect to Lk exists

then

λk(x) = − lim
n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ .
Proof. Let x ∈ ∆k(a1, . . . , an). Since the map Lk is piecewise linear, we observe that

|(Lnk)′(x)| is constant equal to 1/|∆k(a1, . . . , an)|. Therefore

λk(x) = − lim
n→∞

1

n
log |∆k(a1, . . . , an)|

= − lim
n→∞

1

n
log

kn

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)
.
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On the other hand,

lim
n→∞

1

n
log

∣∣∣∣x− pkn
qkn

∣∣∣∣ = lim
n→∞

1

n
log

knLnk(x)

(a1 + k)(a1 − 1 + k) · · · (an + k)(an − 1 + k)

≤ lim
n→∞

1

n
log

kn

(a1 + k) (a1 − 1 + k) · · · (an + k)(an − 1 + k)

= −λk(x).

To obtain the other inequality, we observe that

∣∣∣∣x− pkn
qkn

∣∣∣∣ =
∞∑

j=n+1

kj

(a1 + k) (a1 − 1 + k) · · · (aj−1 + k) (aj−1 − 1 + k) (aj + k)

then

∣∣∣∣x− pkn
qkn

∣∣∣∣ ≥ kn+1

(a1 + k) (a1 − 1 + k) · · · (an + k) (an − 1 + k) (an+1 + k)

≥ kn+2

(a1 + k) (a1 − 1 + k) · · · (an + k) (an − 1 + k) (an+1 + k)(an+1 − 1 + k)

which implies that

lim
n→∞

1

n
log

∣∣∣∣x− pn
qn

∣∣∣∣ ≥ −λk(x)

and we conlcude the proof.

Therefore, understanding the properties of the function τk(α) corresponds to understand

the level sets determined by the exponential speed of approximation of number by the Qk

approximants. It turns out that a description of the multifractal spectrum of the Lyapunov

exponents of the Lüroth maps was done in [BI]. This was later extended to handle generalized

Lüroth maps in [KMS1]. In both cases the main result is that the map τk(α) can be described

in terms of the Legendre transform of the pressure function. More precisely,

Definition 4.2.4. Let I ⊂ R be an interval and let f : I → R be a convex function. We
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define the Legendre transformation f̂ of f by

f̂(α) := sup
t∈I
{αt− f(t)}.

Remark 4.2.3. When f is convex and differentiable everywhere in I then

f̂(α) = α(f ′)−1(α) + f((f ′)−1(α)).

The following was proved in [BI, KMS1] and completely describes the multifractal spec-

trum.

Theorem 4.2.9. Fix k > 0. Then the following holds:

τk(α) =
P̂ (−α)

−α
=

1

α
inf
t∈R

(P (−t log |L′k|+ tα)).

Moreover,

1. The set Jk(α) is non empty if and only if α ∈ [log(k + 1),∞).

2. The map τk : [log(k + 1),∞)→ [0, 1] is real analytic.

3. We have that limα→∞ τk(α) = 1/2.

4. If α ∈ [log(k + 1),∞) then the set Jk(α) is dense in [0, 1].

5. The irregular set has full Hausdorff dimension, that is dimH J
′
k = 1.

That is, despite the fact that the decomposition is extremely complicated, each level set

is dense, the function that encodes it is as regular as it can be, real analytic.
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4.3 Pressure and Lyapunov spectra in terms of the pa-

rameter k

In the previous section we described the multfractal spectrum for a fixed dynamical system,

Lk. We now address the question as how does this function varies as a function of the

dynamics. In this section we prove that, for every t and α fixed, the functions k 7→ Pk(t)

and k 7→ τk(α) are real analytic functions.

Theorem 4.3.1. Fix t > 1/2, then the function defined in (0,∞) by k 7→ Pk(t) is real

analytic.

Proof. Note that

Pk(t) = t log k + log
∞∑
n=0

1

(n+ k + 1)t(n+ k)t
.

Since sums, compositions of real analytic functions is real analytic, it is sufficient to prove

the real analyticity of the function

∞∑
n=0

1

(n+ k + 1)t(n+ k)t
.

In order to do so, we consider the extension of this series to the complex domain D = {z ∈

C : Re(z) > 0}. Let F : D → C be defined by

F (z) :=
∞∑
n=0

1

(n+ z + 1)t(n+ z)t
.

Observe that F is well defined for every z ∈ D and furthermore, it is an infinite sum of

holomorphic functions in D. As a result of Weierstrass M -test (see [GKR, Corollary 7.3])

we have that F (z) is a holomorphic function. In fact, let fn(z) = 1
(n+z+1)t(n+z)t

and r > 0.

For each n we will prove that there exists Mn > 0 (possibly depending on r) such that for
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all z ∈ Br := {z ∈ D : |z| < r} we have

|fn(z)| ≤Mn.

Moreover,
∑
Mn <∞. Let n > r then for every z ∈ Br we have

1

|(n+ z + 1)(n+ z)|t
≤ 1

(n+ 1− |z|)t(n− |z|)t
≤ 1

(n+ 1− r)t(n− r)t
.

Let

Mn :=
1

(n+ 1− r)t(n− r)t
.

Observe now that, since t > 1/2 we have

∑ 1

(n+ 1− r)t(n− r)t
<∞.

Thus, we deduce the uniform convergence of F (z) on Br, for every r > 0. Hence, the uniform

convergence of F (z) on every compact subset of D implies that F (z) is holomorphic on D. In

particular F
∣∣
R is real analytic. Finally, the pressure function Pk(t) is real analytic in k.

We now address the question as how the family of Lyapunov spectra {τk : [λkmin,∞) →

R}k changes for different values of k. In our next result we prove that it varies real analytically

when we fix α in a common domain.

Theorem 4.3.2. Let M > 0 and fix α ∈ [λMmin,∞). Then, the function

(0,M ]→ R

k 7→ τk(α)

is real analytic.
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Proof. Recall that the Lyapunov spectrum is given by the following formula:

τk(α) =
1

α
inf
t>1/2

(P (−t log |T ′k|) + tα) =
1

α
inf
t>1/2

(Pk(t) + tα) =
P̂k(−α)

−α

where P̂k is the Legendre transform of Pk. By convexity of Pk(t), we have

τk(α) =
1

α
(α(P ′k)

−1(−α) + (Pk ◦ (P ′k)
−1)(−α))

where all derivatives are with respect to t. We already have proved that k 7→ Pk(t) is a real

analytic function in k, when we fix t bigger than 1/2 (see Theorem 4.3.1). Therefore, it is

sufficient to show the analyticity of P ′k(t).

Let t > 1/2 and recall that

Pk(t) = t log k + log
∞∑
n=0

1

(n+ k + 1)t(n+ k)t
.

Hence

d

dt
Pk(t) = log k +

d

dt
log

∞∑
n=0

1

(n+ k + 1)t(n+ k)t

= log k +

(
∞∑
n=0

1

(n+ k + 1)t(n+ k)t

)−1
d

dt

∞∑
n=0

1

(n+ k + 1)t(n+ k)t
(4.3.1)

Claim. We have that

d

dt

∞∑
n=0

1

(n+ k + 1)t(n+ k)t
=
∞∑
n=0

d

dt

1

(n+ k + 1)t(n+ k)t
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Proof of the Claim. According to [Rud, Theorem 7.17], the equality holds when

∞∑
n=0

d

dt

1

(n+ k + 1)t(n+ k)t
(4.3.2)

converges uniformly on the set [1/2 + ε,∞), for ε > 0. Note that

d

dt

1

(n+ k + 1)t(n+ k)t
=
− log(n+ k + 1)(n+ k)

(n+ k + 1)t(n+ k)t

then

∣∣∣∣− log(n+ k + 1)(n+ k)

(n+ k + 1)t(n+ k)t

∣∣∣∣ ≤ log(n+ k + 1)(n+ k)

(n+ k + 1)1/2+ε(n+ k)1/2+ε

≤ (n+ k + 1)ε/2(n+ k)ε/2

(n+ k + 1)1/2+ε(n+ k)1/2+ε

=
1

(n+ k + 1)1/2+ε/2(n+ k)1/2+ε/2
≤ 1

n1+ε

which implies that ∑ 1

(n+ k + 1)1/2+ε/2(n+ k)1/2+ε/2
<∞

and by Weierstrass criterion, we have the uniform convergence of (4.3.2) on the set [1/2 +

ε,∞), for all ε > 0. In consequence

d

dt
Pk(t) = log k +

(
∞∑
n=0

1

(n+ k + 1)t(n+ k)t

)−1 ∞∑
n=0

− log(n+ k + 1)(n+ k)

(n+ k + 1)t(n+ k)t
.

We now prove that k 7→ P ′k(t) is real analytic in the variable k. By algebra of analytic
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functions, it is sufficient to prove the analyticity of the series

∞∑
n=0

− log(n+ k + 1)(n+ k)

(n+ k + 1)t(n+ k)t
.

Let r > 0. We will work in the subset of complex numbers Br = {|z| < r}. Since

fn(k) =
− log(n+ k + 1)(n+ k)

(n+ k + 1)t(n+ k)t

is analytic, we have to show that the series is uniformly convergent on compact subset of Br.

Note that

|fn(k)| ≤ | log(n+ k + 1)(n+ k)|
|(n+ k + 1)t(n+ k)t|

≤ log(n+ r + 1)(n+ r) + 2π

(n+ 1− r)t(n− r)t

for n sufficiently large. The series of this last sequence is convergent, then we conclude the

uniform convergence on compacts of Br, by Weierstrass theorem. In consequence, k 7→ P ′k(t)

is analytic. By the inverse function theorem for analytic functions (see [KP, Theorem 1.8.1]),

we obtain the analyticity of (P ′k)
−1(t). Finally, we obtain that

τk(α) =
1

α
(α(P ′k)

−1(−α) + (Pk ◦ (P ′k)
−1)(−α))

is analytic in k.
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Chapter 5

Normal numbers in Q-Lüroth expansions

In analogy to the Cantor series expansions, we introduce the so called Q−Lüroth expansion of

a real number, where Q is a sequence of positive numbers. We describe some of its properties,

define a notion of normal number, and go on to prove an analog of Borel’s normal number

theorem. That is, we prove that Lebesgue almost every real number is normal for Q−Lüroth

expansions, if and only if we have a divergence of a series whose summands depends on

the sequence Q = (qn). On the other hand, although normal numbers form a large set with

respect to the Lebesgue measure, we prove that its complement in [0,1] has full Hausdorff

dimension. Namely, we prove that the Hausdorff dimension of non-normal numbers is equal

to one. The results obtained in this chapter appear in the preprint [Con1]

5.1 Introduction

Let b ≥ 2 be an integer. Every real number x ∈ R can be written in base b as

x =
∞∑
n=1

εn(x)

bn
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where εn(x) ∈ {0, 1, . . . , b− 1}. This representation is unique except for a countable number

of points. A number x ∈ R is b−normal (in the weak sense) if the frequency of appearance

of every digit is equal to 1/b. That is, for every d ∈ {0, 1, . . . , b− 1}

lim
n→∞

1

n
# {i ∈ {1, . . . , n} : εi(x) = d} =

1

b
,

where #A denotes the cardinality of the set A. A classical result by Borel [Bor] states that

Lebesgue almost every number is b−normal with respect to every base b. It is well known that

the base b expansion is closely related to the following dynamical system, Tb : [0, 1] 7→ [0, 1],

defined by

Tb(x) := bx mod 1 = bx− [bx] = {bx}

where [x] denotes the integer part of x and {x} its fractional part. Indeed, εn(x) = [bT n−1
b x].

The Lebesgue measure, that we denote by λ, is invariant and ergodic for every map Tb.

Therefore, Borel’s normal number theorem is a simple consequence of Birkhoff’s ergodic

theorem. The frequency of the digit d in the base-b expansion of the point x ∈ [0, 1] is given

by

lim
n→∞

1

n

n−1∑
i=0

1[d](T
i
bx),

where [d] := {x ∈ [0, 1] : ε1(x) = d} and 1[d] is the characteristic function of [d]. It directly

follows from Birkhoff’s theorem that for Lebesgue almost every x ∈ [0, 1] this limit equals

the Lebesgue measure of [d], which is 1/b.

In 1869, Cantor [Can] generalized the notion of b-expansion in the following direction.

Let B = {bn}n≥1 be a sequence of integers each of which is greater than 2. Cantor showed

that every real number x ∈ [0, 1) can be written as infinite series of the form

x =
∞∑
n=1

cn
b1b2 · · · bn

,
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with cn ∈ {0, 1, . . . , bn − 1}. Observe that if for every n ∈ N we have bn = b then we recover

the base b-expansion. As in the case of base b−expansion, the Cantor series is related to a

dynamical system. However, in this case it is a non-autonomous system. Indeed, consider

the maps defined in [0, 1] by Tbn(x) = {bnx}. The iteration is defined by

T nB(x) = Tbn ◦ Tbn−1 ◦ · · · ◦ Tb1(x).

The dynamics is, therefore, obtained applying different maps Tbi at prescribed times. Note

that, as in the case of the base b−expansion, we have cn = [bnT
n−1
B ]. Unfortunately, there is

no analog of Birkhoff’s ergodic theorem for non-autonomous systems. Therefore, the question

for normality in this setting has to be addressed with different methods. It was actually

shown by Renyi [Rén] that Lebesgue almost every number is normal for B = {bn}n≥1 if and

only if
∑∞

n=1 1/bn =∞. More recently, constructions and properties of normal numbers for

Cantor series have been studied by Mance [Man2].

In this note we introduce a new numerical system, the so called Q-Lüroth system. In

analogy to the Cantor expansion, the role played by the base b−expansion is played by the

so called k−Lüroth expansion (see section 5.2). Again, the associated dynamical system is

a non-autonomous system. However, in this case each interval map has countably many

branches and infinite entropy. This lack of compactness yields several complications that

have to be addressed in order to first, define a notion of normality and second to prove that

Lebesgue almost every point is indeed normal. In this paper we provide such a definition

and prove the analog of Borel’s result in this setting.

Let Q = {qn}n≥1 be a sequence of positive real numbers. Consider the family of interval

maps Lqn : [0, 1)→ [0, 1) defined by

Lqn(x) := x
(n+ qn)(n+ qn + 1)

qn
− (n+ qn), if x ∈

[
qn

n+ qn + 1
,

qn
n+ qn

)
, n ∈ N0
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and Lqn(0) := 0. The maps {Lqn}n≥1 will be called the family of Q-Lüroth maps. The

associated non-autonomous dynamical system is defined by LQ : [0, 1)→ [0, 1)

LnQ(x) := Lqn ◦ Lqn−1 ◦ · · · ◦ Lq1(x).

Denote by E := {x ∈ [0, 1) : there exists n ∈ N such that LnQ(x) = 0}. As in the the case

of the b−expansion or in the Cantor series expansion, to every real number x ∈ [0, 1) \ E

it corresponds a unique infinite sequence of positive integers [a1(x), . . . , an(x), . . . ]Q that

determines its Q−Lüroth expansion (details are provided in section 5.2). In definition 5.3.1

we propose a notion of normal number in this setting. Our main result in this setting is

Theorem 5.1.1. Let Q = {qn}n≥1 be a sequence of positive real numbers. Then we have that

Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Lüroth expansion

if and only if for all a ≥ 1, the series
∑

n λ(Iqna ) is divergent.

This result extends previously known normality results on Cantor series expansions to

the (non-compact) setting Q-Lüroth expansions.

In a complementary direction, we also study the Hausdorff dimension of the set of non-

normal numbers in Q-Lüroth expansions. We prove,

Theorem 5.1.2. The set of non-normal numbers in the Q-Lüroth expansion has Hausdorff

dimension equal to one.

To prove this theorem, we use tools from dimension theory and thermodynamic formalism

put in the setting of non-autonomous dynamics. The idea of relating this two theories goes

back to the work of Bowen [Bow] in the late 1970s. The setting we consider is, however,

very different in that non-autonomous dynamical systems are considered. In this setting the

work of Rempe-Gillen and Urbański [RGU] will be of use. Ir is well known that the set of

badly-approximable numbers has Hausdorff dimension equal to one. Our proof of Theorem

5.1.2 provides a version of that result in the setting of Q-Lüroth expansions.
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5.2 Lüroth expansions

5.2.1 Classical Lüroth expansions

The concept of Lüroth expansions was introduced in the 1883 work of Lüroth [Lür], when

he proved that every irrational x ∈ (0, 1] has a unique infinite expansion in the form

x =
1

a1

+
1

a1 (a1 − 1) a2

+ . . .+
1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an
+ · · ·

=
∞∑
n=1

1

a1 (a1 − 1) · · · an−1 (an−1 − 1) an

where an ≥ 2, for all n ≥ 1. This expansion is closely related to the dynamics (see [DK]) of

the function L : [0, 1)→ [0, 1) defined by

L(x) :=


n(n+ 1)x− n if x ∈

[
1

n+1
, 1
n

)
, n ∈ N

0 if x = 0.

The classical Lüroth expansion can be generalized in the following direction (see [KMS1]).

Let k > 0 and consider the map Lk : [0, 1)→ [0, 1) defined by

Lk(x) :=

{
x (n+k)(n+k+1)

k
− (n+ k) if x ∈

[
k

n+k+1
, k
n+k

)
, n ∈ N0

0 if x = 0.

Note that L1 = L. Observe that each map Lk induces a partition {Ikn}n≥0 of [0, 1), where

Ikn :=

[
k

n+ k + 1
,

k

n+ k

)
.

For every k > 0 the map Lk has countably many branches and infinite entropy. Moreover,

for each k > 0 a k−Lüroth expansion can defined such that the map Lk acts as the shift on

it (see [KMS1]).
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Proposition 5.2.1. Let k > 0. Every x ∈ [0, 1) such that Lnk(x) 6= 0 for all n ≥ 1 can be

expanded in a infinite k-Lüroth expansion, that is

x =
∞∑
n=1

kn

(a1 + k) (a1 + k − 1) · · · (an−1 + k) (an−1 + k − 1) (an + k)

where an = [Ln−1
k (x)] + 1, for all n ≥ 1.

We denote the k−Lüroth expansion of x ∈ [0, 1) by x = [a1(x), . . . , an(x), . . . ]k. Recall

that a probability measure µ in [0, 1] is invariant for the map T : [0, 1] → [0, 1] if for every

Borel set A ⊂ [0, 1] we have µ(A) = µ(T−1A). Moreover, we say that an invariant measure

µ is ergodic if for every set with the property that A = T−1A we have that µ(A) = 0 or

µ(A) = 1, see [Wal]. Denote by λ the Lebesgue measure on the interval [0, 1]. It was shown

in [KMS1, Lemma 2.4] that:

Proposition 5.2.2. For every k > 0, the map Lk is an ergodic transformation with respect

to the Lebesgue measure.

The following is a natural definition of normal numbers with respect to k-Lüroth expan-

sions.

Definition 5.2.1. Let x ∈ [0, 1] , a > 1 and k > 0. Denote by

Nk
n(a, x) := #{1 ≤ i ≤ n : ai(x) = a}.

We say that x ∈ [0, 1] is normal with respect to the k-Lüroth expansion, if for every integer

a > 1, we have

lim
n→∞

Nk(a, x)

nλ(Ika )
= 1.

Note that definition 5.2.1 is analogous to the definition of normal number in the continued

fraction expansion. The following result is a direct consequence of the ergodicity of the

76



Lebesgue measure with respect to Lk and Birkhoff’s ergodic theorem.

Proposition 5.2.3. For every k > 0, Lebesgue almost every point x ∈ [0, 1] is normal with

respect to the k-Lüroth expansion.

5.2.2 Q-Lüroth expansions

In this subsection we introduce a new numerical expansion based on the k−Lüroth maps. Let

Q = {qn}n≥1 be a sequence of integers qn ≥ 2. Consider the family of Lüroth maps {Lqn}n≥1,

that we will denote by LQ. This family of transformations induces a non-autonomous dy-

namical system ([0, 1), LQ). Indeed, the time evolution of the system is defined by composing

the maps Lqn in the prescribed order given by the sequence Q = {qn}n≥1. In other words,

for all n ≥ 1, we define:

LnQ := Lqn ◦ Lqn−1 ◦ · · · ◦ Lq1 .

The orbit of x ∈ [0, 1] is the sequence {Lqn(x)}n≥1.

Proposition 5.2.4. Let x ∈ [0, 1) and suppose that Ln+1
Q (x) 6= 0 for all n ≥ 1. Then,

x =
n∑
i=1

q1q2 · · · qi
(a1 − 1 + q1)(a1 + q1) · · · (ai − 1 + qi)

+

q1q2 · · · qnLnQ(x)

(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)

where an is the unique positive integer satisfying

Ln−1
Q (x) ∈

[
qn

an + qn
,

qn
an − 1 + qn

)
⇐⇒ an =

[
qn

Ln−1
Q (x)

− qn

]
+ 1.

The proof of Proposition 5.2.4 is analogous to the corresponding results for classical

Lüroth expansions. For further details, see [DK, pages 88-89].
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Theorem 5.2.5. Each x ∈ [0, 1) such that LnQ(x) 6= 0 for all n ≥ 0, can be expanded uniquely

in a infinite series of the form

x =
∞∑
n=1

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)

(5.2.1)

where an =

[
qn

Ln−1
Q (x)

− qn
]

+ 1.

Proof. By proposition 5.2.4, there exists a unique sequence (an)n≥1 ⊂ N such that

x =
n∑
i=1

q1q2 · · · qi
(a1 − 1 + q1)(a1 + q1) · · · (ai − 1 + qi)

+ (5.2.2)

q1q2 · · · qnLnQ(x)

(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)
(5.2.3)

for all n ≥ 1. Let Sn be the sum involved in 5.2.3. We will prove that Sn → x when n→∞.

In fact

|x− Sn| =
q1 . . . qnL

n
Q(x)

(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)
≤ 1

2n
→ 0,

which prove that

x =
∞∑
n=1

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)

.

For x ∈ [0, 1) we denote by x = [a1(x), a2(x), . . . ]Q the Q−Lüroth expansion of x and call

the numbers ai(x) digits. We stress that the expansion can be either finite (see Proposition

5.2.4) or infinite (see Theorem 5.2.5).

Lemma 5.2.6. The set of x ∈ [0, 1) having a finite Q-Lüroth expansion is countable.
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Proof. Recall that such subset of [0, 1) is denoted by E. The lemma follows since

E =
⋃
n≥1

{x ∈ [0, 1) : LnQ(x) = 0, LjQ(x) 6= 0, for j < n}

and the fact that each equation Lqn(x) = 0 has countably many solutions.

Definition 5.2.2. Given integers a1, a2, . . . , an ≥ 1 we define ∆
(n)
Q (a1, a2, . . . , an) as the

subset of the interval [0, 1) containing every number x ∈ [0, 1) whose first n digits in its

Q−Lüroth expansion are (a1, a2, . . . , an). In other words

∆
(n)
Q (a1, a2, . . . , an) := {x ∈ [0, 1) : a1(x) = a1, a2(x) = a2, . . . , an(x) = an}.

Proposition 5.2.7. Let (a1, . . . , an) be a word of length n with ai ∈ N for every i ∈

{1, . . . , n}. Denote by

Sn(a1, . . . , an) :=
n∑
i=1

q1q2 · · · qi
(a1 − 1 + q1)(a1 + q1) · · · (ai − 1 + qi)

.

Then ∆
(n)
Q (a1, a2, . . . , an) is the subinterval

[
Sn(a1, . . . , an), Sn(a1, . . . , an) +

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)

)
.

Proof. By Proposition 5.2.4, we have that x ∈ ∆Q(a1, . . . , an) if and only if

x = Sn(a1, . . . , an) +
q1q2 · · · qnLnQ(x)

(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)
. (5.2.4)

Since the n-th composition LnQ : [0, 1) → [0, 1) is onto (each Lqi is onto [0, 1)), we observe
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that equality (5.2.4) is equivalent to x belongs to

[
Sn(a1, . . . , an), Sn(a1, . . . , an) +

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)

)
.

As a consequence, each cylinder ∆
(n)
Q (a1, a2, . . . , an) is a subinterval of [0, 1] with Lebesgue

measure equal to

λ(∆
(n)
Q (a1, a2, . . . , an)) =

q1q2 · · · qn
(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)

.

5.3 Normality in Q−Lüroth expansions

The notion of normality for Q-Lüroth expansions is captured by the following definition. It

generalizes the normality notion for k−Lüroth expansions (see definition 5.2.1). Recall that

λ is the Lebesgue measure.

Definition 5.3.1. Let x ∈ [0, 1) and a ∈ N \ {1}. For Q = {qn}≥1 let

NQ
n (a, x) = #{1 ≤ i ≤ n : ai(x) = a}.

The number x ∈ [0, 1] is normal with respect to the Q-Lüroth expansion, if for every a ∈ N,

lim
n→∞

N(a, x)∑n
i=1 λ(Iqna )

= 1

Our main result can be thought of as a Borel normal number theorem for Q-Lüroth

expansions.

Theorem 5.3.1. Let Q = {qn}n≥1 be a sequence of positive real numbers. Then we have that
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Lebesgue almost every real number in [0, 1] is normal with respect to the Q-Lüroth expansion

if and only if for all a ≥ 1, the series
∑

n λ(Iqna ) is divergent.

Remark 5.3.1. The proof of this result is based on work by Erdös [Rén] about normality

in Cantor Series. See also [Rév, page 152] and [Man1]. In the original work of Erdös,

the corresponding assumption on the series
∑

n λ(Iqna ) is the divergence of the series
∑

1
qn
.

Observe that, if qn 9 0 when n → ∞, the divergence of
∑

n λ(Iqna ) (for all a ≥ 1) is

equivalent to the divergence of
∑

1
qn
. On the other hand, it is possible to have qn → 0 and

that
∑
λ(Iqna ) be convergent. Actually, qn = 1/n2 implies that λ(Iqna ) ∼ 1/n2.

5.3.1 Preliminaries from Probability Theory

We consider the probability space given by ([0, 1],B, λ), where B is the sigma-algebra of

Borel sets in [0, 1] and λ denotes the Lebesgue measure on [0, 1].

Definition 5.3.2. We consider the following objects,

1. A measurable function X : [0, 1]→ R is called a random variable.

2. A random variable is called discrete if the image of [0, 1] under X is a countable subset

of R.

Definition 5.3.3. We say that a sequence of random variables {Xn}n∈N is independent if

and only if

λ(X1 = x1, X2 = x2, . . . , Xk = xk) =
k∏
i=1

λ(Xi = xi)

for every xi that belongs to the range of Xi and for every k ∈ N.

Example. Given x ∈ [0, 1] we define the random variable an(x) = an, i.e. the function an

gives the n-th digit of x in the Q-Lüroth expansion. We observe that the random variables
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{an} are independent. Indeed,

λ(a1(x) = a1, . . . , an(x) = an) = λ(∆(a1, a2, . . . , an))

=
q1q2 · · · qn

(a1 − 1 + q1)(a1 + q1) · · · (an − 1 + qn)(an + qn)

=
n∏
i=1

λ(ai(x) = ai)

Definition 5.3.4. The mean of a random variable X is defined by

E(X) :=

∫
Xdλ

and the variance of X is defined by

Var(X) := E(X2)− (E(X))2.

The following theorem, known as the Law of iterated Logarithm (see [Gal, page 49], [Rév,

page 69]), will be the main tool to proof our main result.

Theorem 5.3.2. Let {Xi} be a sequence of independent random variables. Assume that there

exists a constant c > 0 such that |Xi| < c for all i ∈ N and that sn :=
∑n

i=1 Var(Xi) → ∞

when n→∞. Then, with probability one,

lim sup
n→∞

∑n
i=1Xi −

∑n
i=1 E[Xi]√

sn log log sn
= 1.
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5.3.2 Proof of Theorem 5.3.1

Assume that the series
∑
λ(Iqna ) = +∞ for all a ≥ 1. For a, i ∈ N we consider the random

variable ξi,a(x) = χ{ai(x)=a}. We note that

λ(ξi,a(x) = 1) = λ(ai(x) = a) = λ(∆(a)) =
qi

(a− 1 + qi)(a+ qi)

and

λ(ξ1,a1(x) = 1, ξ2,a2(x) = 1, . . . , ξn,an(x) = 1) = λ(∆(a1, a2, . . . , an))

=
n∏
i=1

qi
(ai − 1 + qi)(ai + qi)

=
n∏
i=1

λ(ξi,ai(x) = 1).

Thus, the sequence of random variables Φ = {ξi,a}i∈N is independent. We will verify the

hypothesis of Theorem 5.3.2. The sequence Φ is uniformly bounded. On the other hand,

E(ξi,a) =
qi

(a− 1 + qi)(a+ qi)
;

n∑
i=1

E(ξi,a) =
n∑
i=1

λ(Iqia )

and

Var(ξi,a) = E(ξ2
i,a)− E2(ξi,a) =

qi
(a− 1 + qi)(a+ qi)

(
1− qi

(a− 1 + qi)(a+ qi)

)
.

Now, we will prove that, when n→∞, we have

sn =
n∑
i=1

qi
(a− 1 + qi)(a+ qi)

(
1− qi

(a− 1 + qi)(a+ qi)

)
→∞.
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In fact, if qn → ∞ we observe that the divergence of
∑
λ(Iqna ) for all a ≥ 1 implies that

sn → ∞ by comparing both series. The same reasoning holds when qn → 0. In the case of

qn has a convergent subsequence qnk → l /∈ {0,∞}, then we have that

λ(I
qnk
a )(1− λ(I

qnk
a ))→ l

(a− 1 + l)(a+ l)

(
1− l

(a− 1 + l)(a+ l)

)
6= 0.

In consequence

lim
n→∞

sn ≥
∑
k

λ(I
qnk
a )(1− λ(I

qnk
a )) =∞.

If we write N(a, x) =
∑n

i=1 ξi,a(x), then by Theorem 5.3.2 we have, for Lebesgue-almost all

x ∈ [0, 1],

1 = lim
n→∞

Nn(a, x)−
∑n

i=1 λ(Iqia )

sn log log sn
= lim

n→∞

∑n
i=1 λ(Iqia )√

sn log log sn

(
Nn(a, x)∑n
i=1 λ(Iqia )

− 1

)
.

Let

bi =
qi

(a− 1 + qi)(a+ qi)
.

To finishing the proof of the first implicance, it is sufficient to show that

lim
n→∞

∑n
i=1 λ(Iqia )√

sn log log sn
= lim

n→∞

∑n
i=1 bi√∑n

i=1 bi(1− bi) log log
∑n

i=1 bi(1− bi)
=∞,

which is true since the divergence of
∑
bi, the inequality

∑n
i=1 bi√∑n

i=1 bi(1− bi) log log
∑n

i=1 bi
≥

∑n
i=1 bi√∑n

i=1 bi log log
∑n

i=1 bi

and x/
√
x log log x → ∞ when n → ∞. We conclude that, for Lebesgue-almost every

x ∈ [0, 1] we have

lim
n→∞

Nn(a, x)∑n
i=1 λ(Iqia )

− 1 = 0,
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for all a ≥ 1.

To prove the other direction, suppose that there exists a ≥ 1 such that the series∑
n λ(Iqna ) is convergent. We will prove that the set

Ωa := {x : for all n ≥ 1, an(x) 6= a}

has positive Lebesgue measure. Let N ∈ N. Note that, by independence of the random

variables an(x) (see Example 5.3.1), we have

λ(Ω) = lim
N→∞

λ

(
N⋂
n=1

{x : an 6= a}

)

= lim
N→∞

N∏
n=1

λ({x : an 6= a})

= lim
N→∞

N∏
n=1

(1− λ({x : an = a}))

= lim
N→∞

N∏
n=1

(1− λ(Iqna ))

which converges to some positive number because
∑

n λ(Iqna ) <∞.

5.4 Hausdorff dimension of non-normal numbers

In the main result of the previous section, Theorem 5.3.1, we proved that under some mild

assumptions the set of normal numbers is large from the measure theoretic point of view.

Indeed, it has full Lebesgue measure. Consequently, the set of non-normal numbers has zero

Lebesgue measure. The purpose of this section is to show that, despite the above, from the

point of view of dimension theory the set of non-normal numbers is as large as possible. In

Theorem 5.4.3 we prove that the set of non-normal numbers has Hausdorff dimension equal

to one. Actually, we prove that the set of numbers for which its Q−Lüroth expansion only
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has finitely many digits has Hausdorff dimension one. More precisely, for N ∈ N we consider

the set

AN := {x = [a1(x)a2(x) . . . ]Q ∈ [0, 1] : ai(x) ≤ N for every i ∈ N} ,

and go on to prove that limN→∞ dimH AN = 1, where dimH denotes the Hausdorff dimension.

This result should be compared to the fact that the set of real numbers having a continued

fraction with finitely many digits also has Hausdorff dimension equal to one.

5.4.1 Hausdorff Dimension

We start by recalling the definition of Hausdorff dimension, see [Fal, Chapter 2] for further

details. Given a subset G ⊂ R, we say that a countable family of sets {Un}n≥1 is a δ-cover

of G if G ⊂
⋃
n Un and every set Un has diameter at most δ. Given s > 0, we define

Hs(G) := lim
δ→0

Hs
δ (G),

where

Hs
δ (G) := inf

{
∞∑
n=1

|Un|s : {Un}n≥1 is a δ-cover of G

}
.

The Hausdorff dimension of the set G is defined by

dimH(G) := inf{s > 0 : Hs(G) = 0}.

5.4.2 Non-autonomous iterated function systems

In this subsection we will consider the Q-Lüroth series from the iterated function systems

(IFS) point of view.

Definition 5.4.1. A non-autonomous iterated function system Φ on [0, 1] is a sequence
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Φ := {Φ(n)}n∈N, where

Φ(n) = {φ(n)
j : [0, 1]→ [0, 1]}j∈J(n)

is a collection of contractions of [0, 1], and, for all n ∈ N, J (n) is an index set (finite or

countably infinite).

Given n ≥ 1, we denote by Jn =
∏n

m=1 J
(m). To any element w = w1w2 · · ·wn ∈ Jn we

associate the function

ϕnw = ϕ(1)
w1
◦ ϕ(2)

w2
◦ · · · ◦ ϕ(n)

wn .

The limit set of Φ is defined by

J (Φ) :=
∞⋂
n=1

⋃
w∈Jn

ϕnw([0, 1]).

Definition 5.4.2. The Q-Lüroth non-autonoumous IFS is given by the sequence Θ =

{Θ(n)}n∈N, where Θ(n) = {θnj : [0, 1] → [0, 1]}j∈N and θnj (x) is the inverse branch of Lqn :

[0, 1]→ [0, 1] restricted to Iqnj , namely:

θnj (x) := x
qn

(j + qn)(j + qn + 1)
+

1

j + qn + 1
. (5.4.1)

for all j, n ≥ 1.

There exists a well established theory that relates thermodynamic formalism with the

Hausdorff dimension of attractors (see [MU2]). Recently, a thermodynamic formalism has

been developed by Rempe-Gillen and Urbański [RGU] in this (non-autonomous) setting

with the purpose of studying the dimension theory of non-autonomous IFS. Given a dif-

ferentiable function f : [0, 1] → [0, 1], we denote by Df(x) its derivative at x and let

‖Df‖ := supx∈[0,1] |f(x)|.
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Definition 5.4.3. For any t ≥ 0 and n ∈ N, the lower pressure function is defined by

PΦ(t) := lim inf
n→∞

1

n
log

∑
w∈In
‖Dϕnw‖t.

Remark 5.4.1. When finite, the lower pressure function is strictly decreasing, see [RGU,

Lemma 2.6].

Remark 5.4.2. For the Q-Lüroth non-autonomous IFS, the pressure function is given by

PΘ(t) = lim inf
n→∞

1

n
log

∑
w∈Nn

w=(w1,...,wn)

n∏
i=1

qti
(wi + qi)t(wi + qi − 1)t

= lim inf
n→∞

1

n
log

n∏
i=1

∞∑
wi=1

qti
(wi + qi)t(wi + qi − 1)t

= lim inf
n→∞

1

n

n∑
i=1

log
∞∑

wi=1

qti
(wi + qi)t(wi + qi − 1)t

= lim inf
n→∞

1

n

n∑
j=1

Pqi(t)

where, for k > 0,

Pk(t) := P (−t log |L′k|) = log
∞∑
n=1

kt

(n+ k)t(n+ k − 1)t

denotes the pressure function for the k-Lüroth map Lk : [0, 1)→ [0, 1) (see [Con2, BI, MU2,

Sar1]). The above shows that the non-autonomous pressure can be understood as an average

of the autonomous ones. This has several consequences, for example, if qn → q when n→∞,

we have that PΘ(t) = Pq(t). Observe that PΘ(t) <∞ if and only if t < 1/2.

The following approximation by compact non-autonomous systems of the pressure will

be our main technical device in the proof of Theorem 5.4.3, but it is also of independent

interest.
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Proposition 5.4.1. Let Φ = {Φ(n)}n∈N be a non-autonomous IFS. Suppose that, for all

n ≥ 1, the index set J (n) = N. Then the pressure function PΦ(t) satisfies the following

approximation property:

PΦ(t) := lim
N→∞

PΛN (t)

where

PΛN (t) = lim inf
n→∞

1

n
log

∑
w∈ΛnN

‖Dϕnw‖t

and Λn
N :=

∏n
j=1{1, 2, . . . , N}, for all n ≥ 1.

Proof. We note that the sequence {PΛN (t)}N≥1 is increasing in N and bounded above by

PΦ(t). Moreover

lim
N→∞

PΛN (t) = lim
N→∞

lim
n→∞

inf
m≥n

1

m
log

∑
w∈ΛmN

‖Dϕmw ‖t =: lim
N→∞

lim
n→∞

aNn

and aNn is increasing in N (when we fix n), and increasing in n (when we fix N). Since

PΛN
N (t) is convergent, we can change the order of the limits (see [BB, Theorem 7.3]) to obtain

lim
N→∞

PΛN (t) = lim
n→∞

lim
N→∞

inf
m≥n

1

m
log

∑
w∈ΛmN

‖Dϕmw ‖t

= lim
n→∞

inf
m≥n

1

m
lim
N→∞

log
∑
w∈ΛmN

‖Dϕmw ‖t

= PΦ(t).

The next result was obtained by Rempe-Gillen and Urbański [RGU, Theorem 1.1]. It is

a non-autonomous version of the so called Bowen-formula that relates the pressure with the

Hausdorff dimension of the attractor.
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Theorem 5.4.2. Suppose that Φ is a non-autonomous iterated function system of sub-

exponential growth, that is

lim
n→∞

1

n
log #J (n) = 0.

Then,

dimH(J Φ) = sup{t ≥ 0 : P (t) > 0} = inf{t ≥ 0 : P (t) < 0}

Remark 5.4.3. In particular, Theorem 5.4.2 holds for any Φ = {Φ(n)}J(n) having a uniform

bound for the size of the index sets J (n), for any n ≥ 1.

We can now prove the main result of this section.

Theorem 5.4.3. The set of non-normal numbers in the Q-Lüroth expansion has Hausdorff

dimension equal to one.

Proof. Let Ω be the subset of non-normal numbers. Observe that if we define AN as the

set of x ∈ [0, 1] whose digits in the Q-Lüroth expansion are bounded above by N , then

AN ⊂ Ω, for all N ≥ 1. Moreover AN is the limit set of the Q-Lüroth non-autonomous IFS

by restricting all the alphabets to be ΛN = {1, . . . , N}. In particular, from Theorem 5.4.2,

we have that PΛN (tN) = 0 if and only if tN = dimH(AN). Define t := limN→∞ tN and note

that

t = dimH

∞⋃
N=1

AN ≤ dimH Ω ≤ 1.

We claim that t = 1. Assume by way of contradiction that t < 1. Since tN ≤ t and

the pressure functions are strictly decreasing, we have that PΛN (t) ≤ 0. Therefore, by

Proposition 5.4.1, PΘ(t) ≤ 0. This is a contradiction with the fact that PΘ(t) > 0 when

t < 1.
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Chapter 6

The Dimension of non-differentiability

points of conjugacies between Gauss-like

maps

In this chapter1, we consider a family of interval maps {Tk}k>0 which generalize the Gauss

map on continued fractions. Any map Tk can be modeled by a fullshift on countable symbols.

Using that fact, we construct a topological conjugacy between any two maps of the family and

study the derivative of this conjugacy. In particular, we will prove that it is a singular map on

the interval; that is, a non-constant function with derivative zero, Lebesgue a.e. point. From

a fractal analysis point of view, we will calculate the exact value of the Hausdorff dimension of

the set where the derivative does not exist and the set where the derivative is equal to infinity.

It is important to remark that we will use strongly tools from thermodynamic formalism on

non-compact spaces applied to dimension theory.
1Joint work with Thomas Jordan
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6.1 Introduction

In 1770 Lagrange [Lag] proved a theorem on continued fractions, which states that real roots

of quadratic polynomials with integer coefficients, corresponds to numbers with eventually

periodic continued fraction expansion. This property motived to Minkowski [Min] who, at

the beginning of the 20th century, was interested in mapping quadratic surds of [0,1] into

the non-dyadic rational numbers and for that constructed the so-called Minkowski’s question

mark function denoted by Q : [0, 1]→ [0, 1]. This function is defined on rationals by

Q(0) = 0, Q(1) = 1, Q

(
p+ p′

q + q′

)
=
Q(p/q) +Q(p′/q′)

2

and can be extended to irrationals by continuity. The question mark function has been a

matter of study of several mathematicians. For example, in 1938 Denjoy [Den] proved that

Q can be expressed as

Q([x1, x2, . . .]) = −2
∞∑
k=1

(−1)k2−
∑k
i=1 xi

where [x1, x2, . . .] denotes the classic expansion in continued fractions.

On the other hand, Salem [Sal] proved that Q is a strictly increasing function and that

it is singular with respect to the Lebesgue measure, that is, Q′ exists and it is equal to 0,

Lebesgue-almost everywhere in [0, 1]. Therefore, Q is an example of a slippery devil’s staircase

function, a concept that was introduced firstly by Gutzwiller and Mandelbrot in 1988 [GM]

and that now refer to strictly increasing and singular functions. Moreover, questions about

different values of the derivative ofQ can be posed. In fact, the problem of finding points with

derivative non zero was solved by Paradis, Viader [PVB] and by Kesseböhmer, Stratmann

[KS1]. The authors proved that, when the derivative of Q exists, then Q′(x) ∈ {0,∞}. This
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result cause the following partition of the interval [0, 1] = D0 ∪D∞ ∪D∼, where

D0 := {x ∈ [0, 1] : Q′(x) = 0}, D∞ := {x ∈ [0, 1] : Q′(x) =∞}

and

D∼ := [0, 1] \ (D0 ∪D∞).

In [KS1], the authors were interested in the fractal analysis of Q′. They asked how large are

the sets where the derivative is different to zero, with respect to the Hausdorff dimension.

In particular, they proved that

0.875 < dimH D∞ = dimH D∼ < 1.

Thermodynamic formalism tools associated to Stern-Brocot partitions of the interval [0, 1]

were used in the proof (see [KS2]). In addition, it is important to note that in [KS2] the

authors completed the multifractal analysis of Lyapunov exponents for the Gauss map.

From the dynamical systems point of view, we remark the fact that the question mark

function is the topological conjugation between the Farey map (F ) and the Tent map (T ):

T ◦ Q = Q ◦ F, (see [KS1] for more details). This observation allows us to ask about the

derivative of conjugations between two dynamical systems. In the trivial case when the

dynamics are the same, the identity map is a topological conjugacy. Therefore the derivative

of the conjugacy is always equal to one. Thus, conjugacies in general can be thought of as

perturbations of the identity. Actually, in [JMS] the impact of pointwise perturbations of

conjugacies into the Hausdorff dimensions of the points where the derivative is non-zero was

studied. See also [Mun] where the authors considered the fractal analysis of conjugations

between generalized Lüroth maps.

In this article, we consider a family of Markov expanding maps defined on [0, 1]. More
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precisely, let k be a positive number. We define the map Tk : [0, 1] → [0, 1] by Tk(0) := 0

and, if x ∈ (0, 1]

Tk(x) =
k(1− x)

x
−
[
k(1− x)

x

]
.

We remark that this family belongs to a more general class of maps which are defined in

[HM]. Moreover, since they generalize the Gauss map on continued fractions, each map Tk

gives a more general class of continued fractions (see Subsection 2.2 and [HM] for further

details).

The Markov property allows to code each Tk by the full-shift on countable symbols. This

gives a conjugacy πk1,k2 between any two maps Tk1 , Tk2 , k1 6= k2. The aim of this article is

to study the derivative of πk1,k2 . In first place, we will prove that it is a singular function.

Also, and in a dimension theory direction, we will interested in how large are the sets

D∞ := {x ∈ [0, 1] : π′k1,k2(x) =∞}

and

D∞ := {x ∈ [0, 1] : π′k1,k2(x) does not exists},

in terms of the Hausdorff dimension. The main result of this article will be to prove the

following theorem.

Theorem. Let k1, k2 be two positive numbers. Then the sets D∞,D∼ defined as above have

the following Hausdorff dimensions:

1/2 < dimH(D∞) = dimH(D∼) = δ0 < 1

where

δ0 := sup{δ ∈ (1/2, 1] : for all q ∈ R, P (qψ − δ log |T ′k2|) > 0}.
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Here P (·) denotes the pressure function associated to Tk2 . The proof of this theorem

involves applications of thermodynamic formalism. In particular, the behavior of the pressure

function of maps Tk will be one of the main tools.

Notation. If f, g : R → R are two functions, we denote by f � g when there exists a

positive constant C (independent of x) such that f ≤ Cg. Also, we write f � g when we

have f � g and g � f .

6.2 Preliminaries on continued fraction maps

This section is devoted to define a family {Tk}k>0 of maps that generalize the classical Gauss

map. We also collect some ergodic properties of Tk. At the end of this section, we will review

the continued fraction expansions defined by Tk and will prove some useful results for our

purposes. We mainly follow [HM].

6.2.1 Definitions and dynamic properties

Let k be a positive number. We define the map Tk : [0, 1] → [0, 1] by Tk(0) := 0 and, if

x ∈ (0, 1]

Tk(x) =
k(1− x)

x
−
[
k(1− x)

x

]
where [w] denotes the integer part of the real number w. As the Gauss map, Tk has a

Tk-invariant measure absolutely continuous with respect to Lebesgue. In [Haa], the authors

proved the following theorem.

Theorem 6.2.1. Let k > 0. The transformation Tk : [0, 1]→ [0, 1] preserve the measure µk

defined on Borel subsets A ⊂ [0, 1] by

µk(A) =

∫
A

ck
x+ k

dx

95



where ck =
(
log k+1

k

)−1. Moreover, it is an ergodic measure for Tk.

The Markov structure of Tk can be described in a similar way. The sequence of intervals

{Ik(n)}n∈N0 :=

{(
k

n+ k + 1
,

k

n+ k

]}
n∈N0

is a Markov partition for the map Tk. Observe that x ∈ Ik(n) if and only if [k(1−x)
x

] = n. Let

n ≥ 1. To each finite sequence {a1, . . . , an} ⊂ N0, we associate the n-th cylinder by

Ikn(a1, . . . , an) :=
n⋂
i=1

T
−(i−1)
k Ik(ai).

Note that x ∈ Ikn(a1, . . . , an) if and only if T i−1(x) ∈ Ik1 (ai), for all i ∈ {1, . . . , n}. As in

the classical setting of Gauss map, cylinders at level n gives a partition of the interval [0, 1]

modulo a countable set. Given n ≥ 1, let Q(n)
k be the set

Q(n)
k := {x ∈ [0, 1] : Tmk (x) = 0 for some m ≤ n}.

Proposition 6.2.2. For each n ≥ 1

[0, 1] =

 ⋃
a1,...,an∈Nn0

Ikn(a1, a2, . . . , an)

 ∪Q(n)
k .

Proof. [HM, p. 2855, Proposition 2].

Definition 6.2.1. We will call the set of k-rational numbers to the union

Qk :=
∞⋃
n=1

Qn
k .

The complement of Qk in [0, 1] is called the set of k-irrational numbers.
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Now, we pass to define the k-continued fractions. Also, we will see how the maps Tk are

the key in the algorithm to find an expansion in k-continued fractions of some x ∈ [0, 1].

Definition 6.2.2. Let n ∈ N. If {a1, . . . , an} ⊂ N0 is a finite sequence, then we define the

finite k-continued fraction expansion by

[a1, a2, . . . , an]k :=
k

a1 + k +
k

a2 + k +
k

. . .+
k

an + k

=:
pkn
qkn
.

We say that a1, a2, . . . , an are the digits of the k-continued fraction. The set of possible digits

is N0.

Observe that pkn/qkn depend on a1, a2, . . . , an although it is not evident from the notation.

In that follow, and if the context is clear, we will write just pn/qn instead of pkn/qkn. We will

define an infinite k-continued fraction.

Definition 6.2.3. If {a1, an, . . .} ⊂ N0 is a infinite sequence, then we define (formally) the

infinite k-continued fraction expansion by

[a1, a2, . . .]k :=
k

a1 + k +
k

a2 + k +
k

. . .

.

Proposition 6.2.3. Each k-irrational x has a unique, infinite expansion in k-continued
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fractions. We have x = [a1, a2, . . .]k if and only if

x ∈ Ikn(a1, a2, . . . , an) for all n ≥ 1,

if and only if

T n−1
k (x) ∈ Ik1 (an) for all n ≥ 1.

Proof. [HM, p. 2856, Proposition 3].

Remark 6.2.1. 1. This proposition implies that the cylinders are given by

Ikn(a1, a2, . . . , an) = {x ∈ [0, 1] : a1(x) = a1, a2(x) = a2, . . . , an(x) = an}

where ai(x) denotes the i-th digit of x in the k-continued fraction expansion.

2. The definition 6.2.3 now is well-defined, an infinite continued fraction represent a real

number in [0, 1], since

[a1, a2, . . .]k = lim
n→∞

[a1, a2, . . . , an]k = lim
n→∞

pn
qn
.

and, for all n ∈ N, pn/qn is a endpoint of the closed interval Ikn(a1a2 . . . an) which is a

sequence of nested closed sets [HM, p. 2856].

3. From Proposition 6.2.3 we can deduce that the digits are given by an = [Ak(T
n−1
k (x))],

for all n ≥ 1. Observe also that allows us to write a k-irrational x as a limit of

k-rationals

x = lim
n→∞

pn
qn
.

Definition 6.2.4. For each n ≥ 1, the rationals pn
qn

are called the convergents of the k-

continued fraction.
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Convergents have similar properties that in the case of classical continued fractions. The

following proposition summarise some of them which will be useful for our purposes.

Proposition 6.2.4. Let x = [a1, a2, . . .] be a k-irrational. Then, the following properties

related to convergents are satisfied:

1. pn = 1√
k
((an + k)pn−1 +

√
kpn−2), n ≥ 2

2. qn = 1√
k
((an + k)qn−1 +

√
kqn−2), n ≥ 2

3. |pnqn−1 − qnpn−1| = 1√
k

4. qn >
√
kqn−1

Proof. This follow from Lemma 2; Propositions 4 and 5 of [HM] .

We finish this section with a useful result for our purposes.

Lemma 6.2.5. For any sequence of digits (xn)n≥1 ⊂ N0 we have that

Ikn+1(x1, . . . , xn, xn+1)

Ikn(x1, . . . , xn)
� 1

(xn+1 + k)2

where the constants involved depend only on k.

Proof. We know that

Ikn+1(x1, . . . , xn+1) =
1

qkn+1(
√
kqkn+1 + qkn)

.

Using the equation for qn from Lemma (6.2.4), we have that

Ikn(x1, . . . , xn+1) =

√
k

(xn+1 + k)2q2
n

(
1 +

√
kqn−1

(xn+1+k)qn

)(
1 + 1

xn+1+k
+

√
kqn−1

(xn+1+k)qn

) .
Then
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Ikn+1(x1, . . . , xn, xn+1)

Ikn(x1, . . . , xn)
=

√
kqn(
√
kqn + qn−1)

(xn+1 + k)2q2
n

(
1 +

√
kqn−1

(xn+1+k)qn

)(
1 + 1

xn+1+k
+

√
kqn−1

(xn+1+k)qn

)
≤

√
kq2

n

(√
k + 1√

k

)
(xn+1 + k)2q2

n

=
k + 1

(xn+1 + k)2
.

On the other hand,

Ikn+1(x1, . . . , xn, xn+1)

Ikn(x1, . . . , xn)
≥ kqn

(xn+1 + k)2qn

(
1 +

√
k

(xn+1+k)
√
k

)(
1 + 1

xn+1+k
+

√
k

(xn+1+k)
√
k

)
=

k

(xn+1 + k)2
(

1 + 1
xn+1+k

)(
1 + 2

xn+1+k

)2

≥ k

(xn+1 + k)2
(
1 + 1

k

) (
1 + 2

k

)2

which ends the proof.

6.2.2 Symbolic model

The Markov structure of Tk implies that the dynamic associated can be coded by a full-shift

on countable symbols. More precisely, let

Σ := {(xn)n∈N : xn ∈ N0 for every n ∈ N} ,

and the shift map σ : Σ→ Σ defined by σ(x1, x2, . . . ) = (x2, x3, . . . ). We call the pair (Σ, σ)

the full-shift on countable symbols. The set

Ca1...an := {(xn)n ∈ Σ : x1 = a1 . . . xn = an}
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is called a symbolic cylinder of length n. The space Σ endowed with the topology generated

by the cylinder sets is a non-compact space. This fact is one of the main difficulties that

need to be addressed to develop the theory. The map

πk : Σ→ [0, 1] \
⋃
n∈N

T−nk (0)

(x1, x2, . . .) 7→ [x1, x2, . . .]k.

is a topological conjugacy between the full-shift and Tk.

Remark 6.2.2. We observe that every cylinder is the projection of a symbolic cylinder Ca1,...,an ,

that is Ikn(a1, . . . , an) = πk(Ca1,...,an). Note that

⋃
n∈N

T−nk (0) = Qk.

6.2.3 Conjugacies

In this subsection we will consider the main objects in this article. Let k1, k2 be two different

positive numbers. Observe that this define a topological conjugation between the systems

Tk2 and Tk1 given by

πk1,k2 : ([0, 1] \Qk2 , Tk2)→ ([0, 1] \Qk1 , Tk1)

x 7→ πk1 ◦ π−1
k2

(x).

Note that, in terms of continued fractions expansions, the action of πk1,k2 is given by

πk1,k2([a1, a2, . . .]k2) = [a1, a2, . . .]k1 .

In particular, πk1,k2(Ik2n (a1, a2, . . . , an)) = Ik1n (a1, a2, . . . , an).
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6.2.4 The EMR class

In this subsection we will consider the class of EMR (Expanding-Markov-Rényi) interval

maps. This class of maps was considered by Pollicott and Weiss in [PW] to study multifractal

analysis of Lyapunov exponents for the Gauss map (see Section 6.3 for further details).

Definition 6.2.5. A map T : I → I is an EMR map, if there exists a countable family {Ii}i

of closed intervals (with disjoint interiors int(In)), with In ⊂ I for every i ∈ N, satisfying

1. If In = [an, bn], then an, bn are decreasing sequences, b1 = 1, and bn → 0.

2. The map is C2 on
⋃∞
i=1 int(Ii).

3. (Expansiveness) There exists a constant α > 1 and N ∈ N such that for every x ∈⋃∞
i=1 int(Ii), we have |(TN)′(x)| > α.

4. (Markov) The sequence {int(In)}n≥1 is a Markov partition for T .

5. (Rényi) There exists a positive number K > 0 such that

sup
n∈N

sup
x,y,z∈In

|T ′′(x)|
|T ′(y)||T ′(z)|

≤ K.

Remark 6.2.3. It is not difficult to prove that Tk is an EMR map, for each k > 0. The Rényi

condition can be verified with constant M = (k+1)3

k3
. The expansiveness condition (b) can

be proved with the second iterate of Tk. Let n ≥ 0 such that Tk(x) ∈ Ik1 (n). Note that

T ′′k (x) = 2k/x which is always positive and therefore T ′k is increasing. Thus

(T 2(x))′ = T ′k(Tk(x))T ′k(x) >
k

(k/(n+ k + 1))2
· k
x2

> (n+ k + 1)2 ≥ (k + 1)2.

We finish this subsection recalling that the Rényi condition in Definition 6.2.5 of an EMR

map, gives the following behaviour of the derivatives of iterates on cylinders of level n: there
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exists a constant C such that, for any n ≥ 1 and any x ∈ Ikn(a1, . . . , an), then

C−1 ≤ |(T
n)′(x)|

|(T n)′(y)|
≤ C

for any y ∈ Ikn(a1, . . . , an). This property is known as Bounded Distortion.

6.3 Thermodynamic Formalism and Dimension Theory

Thermodynamical formalism is a set of tools and methods brought into hyperbolic dynamics

with great success in the early seventies from statistical physics. It allows for the selection

of relevant measures from the, sometimes very large, set of invariant measures. It has been

used as tool in the dimension theory of dynamical systems at least since the work of Bowen

in the 70s [Bow].

6.3.1 Thermodynamic formalism on the full-shift on countable sym-

bols

Thermodynamic formalism for dynamical systems defined in non-compact spaces has been

studied and developed over the last 20 years. The particular case of the full-shift on countable

many symbols (Σ, σ) has been very well studied, see [BS, MU2, Sar2]. In this section we

recall the main definitions and results.

Definition 6.3.1. We say that a potential ϕ is weakly Hölder if there exists θ ∈ (0, 1) such

that for all n ≥ 1, we have

sup {|ϕ(x)− ϕ(y)| : x, y ∈ Σ, xi = yi for i = 1, . . . , n} ≤ Cθn

for some positive constant C independent of n.
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Definition 6.3.2. Let (Σ, σ) be the full-shift on a countable alphabet and ϕ : Σ → R a

weakly Hölder function. The pressure of ϕ is defined by

P (ϕ) := lim
n→∞

1

n
log

∑
σnx=x

exp

(
n−1∑
i=0

ϕ(σix)

)
.

The limit exists, but it can be infinity [BS, MU2, Sar2]. The following theorem summa-

rizes results proved in [MU2, Sar2].

Theorem 6.3.1. Let ϕ : Σ → R be a weakly Hölder function such that P (ϕ) < ∞. Then,

there exists a critical value t∗ ∈ (0, 1] such that

P (tϕ) is

{
infinite , if t < t∗

finite , if t > t∗.

Moreover, when t > t∗ the pressure function t 7→ P (tϕ) is real analytic and strictly convex.

Also, for any t > t∗ there exists an equilibrium measure µt, that is, a measure such that

P (tϕ) = h(µt) + t

∫
ϕµt,

where h(µt) denotes the entropy of the measure. We have also that the derivative of P is

given by the following formula
dP

dt
=

∫
φdµt.

Finite symbols

We recall that the theory and properties of the pressure remain true when we consider the

compact case, that is, when finite symbols are considered. In other words, if we denote ΣN as

the subset of Σ consisting in all sequences with symbols only in {0, 1, . . . , N}, any potential

φ : Σ → R can be restricted to ΣN and we can define the pressure in a similar way as in

Definition 6.3.2. See [Wal] for further details. Denote as PN(ϕ) the pressure of a potential
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ϕ restricted to ΣN . A remarkable property that relates the two definitions is the following

approximation theorem which was proved in [Sar1].

Theorem 6.3.2. If ϕ : σ → R is a weakly Hölder potential, then

P (ϕ) = sup
N∈N
{PN(ϕ)} .

6.3.2 Pressure for Tk maps

Recall that the Markov property of Tk allows to codify the map T by the conjugation

πk : Σ→ [0, 1] \Qk defined on Σ. We will use this fact to define a pressure.

Definition 6.3.3. Let φ : [0, 1] \ Qk → R such that φ ◦ πk : Σ → R is a weakly Hölder

potential. Then the pressure of φ with respect to Tk is defined by

PTk(ϕ) := lim
n→∞

1

n
log

∑
Tnk x=x

exp

(
n−1∑
i=0

ϕ(T ikx)

)
.

Henceforth, we will use P (φ) instead of PTk(φ). A classical example is when the potential

is ϕ = log |T ′k|. In [KS2, PW] the authors studied the thermodynamic formalism for Gauss

map. They gave a complete description of the pressure function t 7→ P (−t log |T ′|) and used

this analysis to describe the size (with respect the Hausdorff dimension) of the points having

the same speed of approximations by rationals in the classical continued expansions. One of

the main tools to our results will be to know how is the pressure function t 7→ P (−t log |T ′k|).

Observe that this function can be written explicitly in the following way

P (− log |T ′k|) = lim
n→∞

1

n
log

∑
Tnk x=x

|(T nk )′(x)|−t.

Proposition 6.3.3. Let k > 0. The pressure function t 7→ P (−t log |T ′k|) is finite if t > 1/2

and it is equal to∞ if t < 1
2
. When t > 1/2, P (−t log |T ′k|) is real analytic, strictly decreasing
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and strictly convex. Moreover P (−t log |T ′k|)→∞ when t→ 1
2

+.

Proof. For each n, the Mean Value theorem guarantees the existence of z ∈ Ik1 (n) such that

|T ′k(z)| = 1

|Ik1 (n)|
,

then, for all x ∈ Ik1 (n) we have
1

C
≤ |T ′k(x)|
|Ik1 (n)|−1

≤ C.

Therefore

C−tn
∑

(j1,...,jn)∈Nn0

n∏
i=1

|Ik1 (ji)|t ≤
∑
Tnk x=x

n−1∏
i=0

|T ′k(T ikx)|−t ≤ Ctn
∑

(j1,...,jn)∈Nn0

n∏
i=1

|Ik1 (ji)|t

We note that each one of the sums at left and right are equal to
(∑∞

j=0 |Ik1 (j)|t
)n

, which

implies

−tn logC + n log
∞∑
j=0

|Ik1 (j)|t ≤ log
∑
Tnk x=x

n−1∏
i=0

|T ′k(T ikx)|−t ≤ −tn logC + n log
∞∑
j=0

|Ik1 (j)|t

and

−t logC + log
∞∑
j=0

|Ik1 (j)|t ≤ P (−t log |T ′k|) ≤ −t logC + log
∞∑
j=0

|Ik1 (j)|t (6.3.1)

First two assumptions are given by the convergence of series involved in inequality (6.3.1).

For the limit, we first note that by Fatou’s lemma

lim inf
n→∞

∞∑
j=0

1

(j + k + 1)
1
2

+ 1
n (j + k)

1
2

+ 1
n

≥
∞∑
j=0

lim inf
n→∞

1

(j + k + 1)
1
2

+ 1
n (j + k)

1
2

+ 1
n

=∞.

By Theorem 6.3.1 P (−t log |T ′k|) is a real analytic, strictly convex and strictly decreasing
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function on (1
2
,∞) since

dP (−t log |T ′k|)
dt

= −
∫

log |T ′k|dµkt < 0.

Using that and the inequality (6.3.1) we have that P (−t log |T ′k|)→∞, when t→ 1/2+.

6.3.3 Dimension Theory

We start recalling the definition of Hausdorff dimension, see [Fal, Chapter 2] for further

details. Given a subset G ⊂ R, we say that a countable family of sets {Un}n≥1 is a δ-cover

of G if G ⊂
⋃
n Un and every set Un has diameter at most δ. Given s > 0, we define

Hs(G) := lim
δ→0

Hs
δ (G),

where

Hs
δ (G) := inf

{
∞∑
n=1

|Un|s : {Un}n≥1 is a δ-cover of G

}
.

The Hausdorff dimension of the set G is defined by

dimH(G) := inf{s > 0 : Hs(G) = 0}.

Given a probability measure µ on [0, 1], we define the Hausdorff dimension of µ by

dimH µ := inf{dimH(A) : µ(A) = 1}.

On the other hand, we define the Lyapunov exponent of the measure µ with respect a

countable Markov map by

λ(µ) =

∫
log |T ′|dµ.
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A useful result that link the last two notions is the following (see [MU2]).

Proposition 6.3.4 (Volume Lemma). Suppose that T : [0, 1]→ [0, 1] is a countable Markov

map and µ is an ergodic T -invariant probability measure on [0, 1] with finite entropy h(µ).

Then

dimH µ =
h(µ)

λ(µ)
.

6.4 Statement and proofs of main results

6.4.1 About the derivative of πk1,k1

In this subsection we will prove several results about the derivative of πk1,k2 . We first prove

the same result proved by Salem, but in the case of maps πk1,k2 , that is, πk1,k2 are singular

maps. After that, we will interested in to find a criteria which will help us to decide if a

point x belongs to D∞ or D∼.

To prove the singularity of πk1,k2 , we use the following characterization. See [Leo, p. 107]

for a proof.

Theorem 6.4.1. Let I ⊂ R be an interval and let u : I → R be a non constant function

such that u′(x) exists (possible infinite) for Leb-a.e. x ∈ I. Then u is a singular function if

and only if there exists a Lebesgue measurable set E ⊂ I such that the Leb(I \ E) = 0 and

Leb(u(E)) = 0.

Proposition 6.4.2. The conjugation maps πk1,k2 are singular.

Proof. For any borel set B ⊂ [0, 1], we define the measure

ν(A) := µk1(πk1,k2(B)).

We observe that ν is ergodic with respect to Tk2 . Since µk2 is also an ergodic measure
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for Tk2 , then they are either equal or mutually singular. Suppose that ν(B) = µk2(B)

for every Borel subset B of the unit interval. In particular, taking B = ( k1
k1+1

, 1) then

µk1(
k1
k1+1

, 1) = µk2(
k2
k2+1

, 1). This implies the equality

ck1

(
log(k1 + 1)− log

k1

k1 + 1

)
= ck2

(
log(k2 + 1)− log

k2

k2 + 1

)

which is impossible because of the function defined for x > 0 given by g(x) := cx(log(x+1)−

log( x
x+1

+ x)) is strictly decreasing. Thus ν 6= µk2 and therefore they are mutually singular.

In consequence, there is a Borel measurable set B, such that

µk1(πk1,k2(B)) = 0 and µk2(B) = 1.

The equivalence of those measures with the Lebesgue measure and the Theorem 6.4.1 allows

to deduce that the function πk1,k2 is singular.

In the following, we will denote by Ikn(x) the unique cylinder of level n which contains x

in the dynamic of Tk.

Proposition 6.4.3. Suppose that π′k1,k2(x) exists in a generalized sense, that is, π′k1,k2(x) ∈

[0,∞]. Then

π′k1,k2(x) = lim
n→∞

|πk2,k2(Ik2n (x))|
|Ik2n (x)|

Proof. Let n ≥ 1. Denote by ln and rn the left and right endpoints of the interval Ik2n . We

note that there are two cases about the position of the point (x, πk1,k2(x)) in regard to the

line L joining the points (ln, πk1,k2(ln)) and (ln, πk1,k2(ln)):

1) The point (x, πk1,k2(x)) is above or on L. Comparing the slopes of the segments, we
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obtain

πk1,k2(x)− πk1,k2(ln)

x− ln
≥ πk1,k2(rn)− πk1,k2(ln)

rn − ln
≥ πk1,k2(rn)− πk1,k2(x)

rn − x
.

2) The point (x, πk1,k2(x)) is below or on L. Analogously, we obtain

πk1,k2(x)− πk1,k2(ln)

x− ln
≤ πk1,k2(rn)− πk1,k2(ln)

rn − ln
≤ πk1,k2(rn)− πk1,k2(x)

rn − x

The proposition is therefore deduced from the fact that

lim
n→∞

πk1,k2(x)− πk1,k2(ln)

x− ln
= lim

n→∞

πk1,k2(rn)− πk1,k2(x)

rn − x
= π′k1,k2(x)

since the derivative exists or is equal to infinity.

Lemma 6.4.4. Let x be a k2-irrational number. Then, for all n ≥ 1

|πk1,k2(Ik2n (x))|
|Ik2n (x)|

� eSnψ(x)

where

ψ(x) = − log |T ′k1(πk1,k2(x))|+ log |T ′k2(x)|

Proof. Follows directly from the Bounded distortion property.

Proposition 6.4.5. Let x be a k2-irrational number. If the following conditions holds for x:

lim inf
n→∞

eSnψ(x) = 0 and lim sup
n→∞

eSnψ(x) =∞ (6.4.1)

then x ∈ D∼.

Proof. Suppose that the derivative exists in the generalized sense at x. By Proposition 6.4.3,
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we have

π′k1,k2(x) = lim
n→∞

|πk2,k2(Ik2n (x))|
|Ik2n (x)|

.

Moreover, from the conditions (6.4.1) and Proposition 6.4.4 we obtain the following limits:

lim sup
n→∞

|πk2,k2(Ik2n (x))|
|Ik2n (x)|

=∞

and

lim inf
n→∞

|πk2,k2(Ik2n (x))|
|Ik2n (x)|

= 0,

which is a contradiction with the existence of π′k1,k2(x).

Proposition 6.4.6. Let x = [x1, x2, . . .]k2 , y = [y1, y2, . . .]k2 ∈ (0, 1) be two k2-irrational

numbers in [0, 1]. Suppose that there exists n ≥ 1 such that xi = yi for all 1 ≤ i ≤ n and

xn+1 6= yn+1. Then
πk1,k2(x)− πk1,k2(y)

x− y
� eSnψ(x).

Proof. First we prove the inequality �. Suppose first that x < y. To ease the exposition,

we will denote by π := πk1,k2 . The main idea of the proof is to find lower and upper bounds

for |x− y| and |π(x)− π(y)| respectively, which will depend on the digits of x and y.

We will use Lemma 6.4.4 and Lemma 6.2.5 repeatedly.

Case 1. Suppose that the cylinders of level n + 2 are accumulating at the right side of

π(x). In particular, xn+1 > yn+1 ≥ 0. Denote by rk1n+1 the right end-point of the cylinder

Ik1n+1(x1, . . . , xn+1) (see Figure (6.1)).

The equality |π(x)− π(y)| = (π(y)− rk1n+1) + (rk1n+1 − π(x)) will allow us to discriminate

into two sub-cases which will help to find upper bounds for |π(x)− π(y)|.
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Figure 6.1: The biggest intervals are denoting the interior of the cylinders of level n + 1
containing π(x) and π(y) respectively. The smallest intervals denote the cylinders of level
n+ 2 which are accumulating at rk1n+1.

• Sub-case 1.1. π(y) − rk1
n+1 ≤ rkn+1 − π(x). Observe that

|x− y| ≥
∞∑

j=xn+2+1

|Ik2n+2(x1, . . . , xn+1, j)|

� |Ik2n+1(x1, . . . , xn+1)|
∞∑

j=xn+2+1

1

(j + k2)2

≥ |Ik2n+1(x1, . . . , xn+1)|
∫ ∞
xn+2+1

dt

(t+ k2)2

≥ |Ik2n+1(x1, . . . , xn+1)| 1

xn+2 + 1 + k2

.

Note that in this sub-case |π(x)− π(y)| ≤ 2(rk1n+1 − π(x)). If xn+2 6= 0, then

|π(x)− π(y)| ≤ 2
∞∑

j=xn+2

|Ik1n+2(x1, . . . , xn+1, j)|

� |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

∞∑
j=xn+2

1

(j + k1)2

≤ |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

∫ ∞
xn+2−1

dt

(t+ k1)2

= |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2(xn+2 − 1 + k1)
.
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Then

|π(x)− π(y)|
|x− y|

�
|Ik1n+1(x1, . . . , xn+1)|
|Ik2n+1(x1, . . . , xn+1)|

(xn+2 + 1 + k2)

(xn+2 − 1 + k1)

� eSnψ(x) (xn+1 + k2)2(xn+2 + 1 + k2)

(xn+1 + k1)2(xn+2 − 1 + k1)
.

If xn+2 = 0, then |π(x)− π(y)| ≤ 2|Ik1n+1(x1, . . . , xn+1)| and

|π(x)− π(y)|
|x− y|

�
|Ik1n+1(x1, . . . , xn+1)|(k2 + 1)

|Ik2n+1(x1, . . . , xn+1)|
� eSnψ(x) (xn+1 + k2)2

(xn+1 + k1)2
.

• Sub-case 1.2. π(y)− rk1
n+1 ≤ π(y)− rk1

n+1.

1.2.1 . In first place, we will suppose that there is at least one cylinder of level n + 1

between Ik1n+1(x1, . . . , xn, xn+1) and Ik1n+1(x1, . . . , xn, yn+1). In particular yn+1 6=

xn+1 + 1. Then

|x− y| ≥
xn+1−1∑

j=yn+1+1

|Ik2n+1(x1, . . . , xn, j)|

� |Ik2n (x1, . . . , xn)|
xn+1−1∑

j=yn+1+1

1

(j + k2)2

≥ |Ik2n (x1, . . . , xn)|
∫ xn+1

yn+1+1

dt

(t+ k2)2

= |Ik2n (x1, . . . , xn)| xn+1 − yn+1 − 1

(yn+1 + 1 + k2)(xn+1 + k2)
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To find an upper bound for |π(x)− π(y)|, suppose first that yn+1 6= 0. Then

|π(x)− π(y)| ≤ 2

xn+1−1∑
j=yn+1

|Ik1n+1(x1, . . . , xn, j)|

� |Ik1n (x1, . . . , xn)|
xn+1−1∑
j=yn+1

1

(j + k1)2

≤ |Ik1n (x1, . . . , xn)|
∫ xn+1−1

yn+1−1

dt

(t+ k1)2

= |Ik1n (x1, . . . , xn)| xn+1 − yn+1

(yn+1 − 1 + k1)(xn+1 − 1 + k1)

Thus

π(x)− π(y)

x− y
� |I

k1
n (x1, . . . , xn)|
|Ik2n (x1, . . . , xn)|

xn+1 − yn+1

xn+1 − yn+1 − 1

(yn+1 + 1 + k2)(xn+1 + 1 + k2)

(yn+1 − 1 + k1)(xn+1 − 1 + k1)

� eSnψ(x) xn+1 − yn+1

xn+1 − yn+1 − 1

(yn+1 + 1 + k2)(xn+1 + 1 + k2)

(yn+1 − 1 + k1)(xn+1 − 1 + k1)

Now, if we suppose that yn+1 = 0, we have that

|x− y| � |Ik2n (x1, . . . , xn)| xn+1 − 1

(1 + k2)(xn+1 + k2)

and |π(x)− π(y)| ≤ |Ik1n (x1, . . . , xn)|. Then

π(x)− π(y)

x− y
� |I

k1
n (x1, . . . , xn)|
|Ik2n (x1, . . . , xn)|

(1 + k2)(xn+1 + k2)

xn+1 − 1
.

1.2.2. Secondly, we will suppose that the cylinders of level n+ 1 of x and y respectively,

are neighbour cylinders. In other words, yn+1 = xn+1 + 1. Assume yn+2 6= 0.
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Then

|π(x)− π(y)| ≤ 2(π(y)− rk1n+1)

≤ 2|Ik1n+1(x1, . . . , xn, yn+1)|

� 1

(yn+1 + k1)2
|Ik1n (x1, . . . , xn)|

and

|x− y| ≥ |Ik1n+2(x1, . . . , xn, yn+1, 0)|

� |Ik1n+1(x1, . . . , xn, yn+1)|

� 1

(yn+1 + k2)2
|Ik1n (x1, . . . , xn)|

and therefore
π(x)− π(y)

x− y
� eSnψ(x) (yn+1 + k2)2

(yn+1 + k1)2
.

Now, suppose that yn+2 = 0. In this case, we will pass to compare the distances

|π(x)− π(y)| and |x− y| with lengths of cylinders of level n+ 3.

|x− y| ≥
∞∑

j=yn+3+1

|Ik2n+3(x1, . . . , xn, yn+1, 0, j)|

� |Ik2n+2(x1, . . . , xn, yn+1, 0)|
∞∑

j=yn+3+1

1

(j + k2)2

� |Ik2n+1(x1, . . . , xn, yn+1)|
∫ ∞
yn+3+1

t

(t+ k2)2

� |Ik2n (x1, . . . , xn)| 1

(yn+1 + k2)2(yn+3 + 1 + k2)
.

To find the upper bound for |π(x) − π(y)|, we will suppose two cases yn+3 = 0
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and yn+3 6= 0. If yn+3 6= 0,

|π(x)− π(y)| ≤ 2(π(y)− rn+1) ≤
∞∑

j=yn+3

|Ik1n+3(x1, . . . , xn, yn+1, 0, j)|

� |Ik1n+2(x1, . . . , xn, yn+1, 0)|
∞∑

j=yn+3

1

(j + k1)2

� |Ik1n (x1, . . . , xn)| 1

(yn+1 + k1)2

∫ ∞
yn+3−1

dt

(t+ k1)2

= |Ik1n (x1, . . . , xn)| 1

(yn+1 + k1)2(yn+3 − 1 + k1)

then
π(x)− π(y)

x− y
� eSnψ(x) (yn+1 + k2)2(yn+3 + k2)

(yn+1 + k1)2(yn+3 − 1 + k1)
.

When yn+3 = 0, we have

|x− y| � |Ik2n (x1, . . . , xn)| 1

(yn+1 + k2)2

and

|π(x)− π(y)| ≤ 2|In+3(x1, . . . , xn, yn+1, 0, 0)|

� |Ik1n (x1, . . . , xn)| 1

(yn+1 + k1)2

then
π(x)− π(y)

x− y
� eSnψ(x) (yn+1 + k2)2

(yn+1 + k1)2
.

Case 2. Suppose that the cylinders of level n + 2 are accumulating at the left side of

π(x). In particular, 0 ≤ xn+1 < yn+1. Denote by lk1n+1 the right end-point of the cylinder

Ik1n+1(x1, . . . , xn, yn+1) (see Figure (6.2)).

116



Figure 6.2: The biggest intervals are denoting the interior of the cylinders of level n + 1
containing π(x) and π(y) respectively. The smallest intervals denote the cylinders of level
n+ 2 which are accumulating at lk1n+1.

• Subcase 2.1. π(x) − lk1
n+1 ≤ lkn+1 − π(y).

|x− y| ≥
∞∑

j=yn+2+1

|Ik2n+2(x1, . . . , xn, yn+1, j)|

� |Ik2n+1(x1, . . . , xn, yn+1)|
∞∑

j=yn+2+1

1

(j + k2)2

� |Ik2n (x1, . . . , xn)| 1

(yn+1 + k2)2(yn+2 + 1 + k2)

On the other hand, |π(x)− π(y)| ≤ 2(lk1n+1 − π(y)). If yn+1 6= 0

|π(x)− π(y)| ≤
∞∑

j=yn+2

|Ik1n+2(x1, . . . , xn, yn+1, j)|

� |Ik1n (x1, . . . , xn)| 1

(yn+1 + k1)2

∫ ∞
yn+2−1

dt

(t+ k1)2

= |Ik1n (x1, . . . , xn)| 1

(yn+1 + k1)2(yn+2 − 1 + k1)

Then
π(x)− π(y)

x− y
� eSnψ(x) (yn+1 + k2)2(yn+2 + 1 + k2)

(yn+1 + k1)2(yn+2 − 1 + k1)
.

If yn+2 = 0 then

|π(x)− π(y)| ≤ 2|In+1(x1, . . . , xn, yn+1)| � |In(x1, . . . , xn)| 1

(yn+1 + k1)2
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and

|x− y| � |Ik1n (x1, . . . , xn)| 1

(yn+1 + k2)2(1 + k2)
.

In consequence
π(x)− π(y)

x− y
� eSnψ(x) (yn+1 + k2)2

(yn+1 + k1)2
.

• Subcase 2.2. π(y) − lk1
n+1 ≤ lkn+1 − π(x).

2.2.1 . In first place, we will suppose that there is at least one cylinder of level n + 1

between Ik1n+1(x1, . . . , xn, xn+1) and Ik1n+1(x1, . . . , xn, yn+1). In particular xn+1 6=

yn+1 + 1. Then

|x− y| ≥
yn+1−1∑
j=xn+1+1

|Ik2n+1(x1, . . . , xn, j)|

� |Ik2n (x1, . . . , xn)|
yn+1−1∑
j=xn+1+1

1

(j + k2)2

≥ |Ik2n (x1, . . . , xn)|
∫ yn+1

xn+1+1

dt

(t+ k2)2

= |Ik2n (x1, . . . , xn)| yn+1 − xn+1 − 1

(xn+1 + 1 + k2)(yn+1 + k2)
.

To find an upper bound for |π(x) − π(y)|, let suppose two cases: xn+1 6= 0 and

xn+1 = 0. If xn+1 6= 0 then

|π(x)− π(x)| ≤ 2

yn+1−1∑
j=xn+1

|Ik1n+1(x1, . . . , xn, j)|

� |Ik1n (x1, . . . , xn)|
∫ yn+1−1

xn+1−1

dt

(t+ k1)2

= |Ik1n (x1, . . . , xn)| yn+1 − xn+1

(xn+1 − 1 + k1)(yn+1 − 1 + k1)
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therefore

π(x)− π(y)

x− y
� eSnψ(x) yn+1 − xn+1

yn+1 − xn+1 − 1

(xn+1 + 1 + k2)(xn+1 + k2)

(xn+1 − 1 + k1)(yn+1 − 1 + k1)
.

Now, if xn+1 = 0 then

|x− y| � |Ik2n (x1, . . . , xn)| yn+1 − 1

(1 + k2)(yn+1 + k2)

and |π(x)− π(y)| ≤ |Ik1n (x1, . . . , xn)| and therefore

π(x)− π(y)

x− y
� eSnψ(x) (1 + k2)(yn+1 + k2)

yn+1 − 1

2.2.2 . Secondly, we will suppose that the cylinders of level n + 1 of x and y respectively,

are neighbour cylinders. In other words, xn+1 = yn+1 + 1. Assume xn+2 6= 0. Then

|π(x)− π(y)| ≤ 2(lk1n+1 − π(x)) ≤ 2|Ik1n+1(x1, . . . , xn+1)| � |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

and

|x− y| ≥ |Ik2n+2(x1, . . . , xn+1, 0)|

� |Ik2n (x1, . . . , xn)| 1

(xn+1 + k2)2

Therefore-
π(x)− π(y)

x− y
� eSnψ(x) (xn+1 + k2)2

(xn+1 + k1)2
.
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When xn+2 = 0 we pass to the level n+ 3.

|x− y| ≥
∞∑

j=xn+3+1

|Ik2n+3(x1, . . . , xn+1, 0, j)|

� |Ik2n (x1, . . . , xn)| 1

(xn+1 + k2)2

∞∑
j=xn+3+1

1

(j + k2)2

≥ |Ik2n (x1, . . . , xn)| 1

(xn+1 + k2)2

∫ ∞
xn+3+1

dt

(t+ k2)2

= |Ik2n (x1, . . . , xn)| 1

(xn+1 + k2)2(xn+3 + 1 + k2)
.

Now, to find an upper bound for |π(x)−π(y)|, we will suppose two cases xn+3 6= 0 and

xn+3 = 0. If xn+3 6= 0

|π(x)− π(y)| ≤ 2(lk1n+1 − π(x)) ≤ 2
∞∑

j=xn+3

|Ik1n+3(x1, . . . , xn+1, 0, j)|

� |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

∞∑
j=xn+3

1

(j + k1)2

� |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

∫ ∞
xn+3−1

dt

(t+ k1)2

� |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2(xn+3 − 1 + k1)

therefore
π(x)− π(y)

x− y
� eSnψ(x) (xn+1 + k2)2(xn+3 + 1 + k2)

(xn+1 + k1)2(xn+3 − 1 + k1)
.

Observe that when xn+3 = 0, we have

|x− y| � |Ik2n (x1, . . . , xn)| 1

(xn+1 + k2)2(1 + k2)
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and

|π(x)− π(y)| ≤ |Ik1n+2(x1, . . . , xn+1, 0)| � |Ik1n (x1, . . . , xn)| 1

(xn+1 + k1)2

therefore
π(x)− π(y)

x− y
� eSnψ(x) (xn+1 + k2)2

(xn+1 + k1)2
.

Observe that in any case we found a estimation of the form

π(x)− π(y)

x− y
� eSnψ(x)an

where an is depending on the digits of x, but, in any case, an is bounded independently of

the behavior of the sequence of digits. The case x > y is proved by a symmetric argument

and the proof of the inequality � is analogous.

A useful consequence of the last proposition is the following corollary.

Corollary 6.4.7. Let x be a k2-irrational number. We have that

1. x ∈ D∞ if and only if lim supn→∞ e
Snψ(x) =∞

2. {x : limn→∞ e
Snψ(x) = 0} ⊂ D0.

We finish this section proving that ψ is a bounded potential.

Lemma 6.4.8. For all k1, k2 positive numbers, the potential

ψ(x) = − log |T ′k1(πk1,k2(x))|+ log |T ′k2(x)|

is bounded in (0, 1]. Moreover

inf
x∈(0,1]

ψ(x) sup
x∈(0,1]

ψ(x) < 0.
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Proof. Recall that the partition of level 1 corresponding to Tk2 is

Ik2n =

(
k2

n+ k2 + 1
,

k2

n+ k2

]
, n ≥ 0.

We know also that πk1,k2(Ik2n ) = Ik1n . Let n ≥ 0 and x ∈ Ik2n . Since

log
|T ′k2(x)|

|T ′k1 ◦ πk1,k2(x)|
= log

k2π
2
k1,k2

(x)

k1x2

then, for all n ≥ 0

log
k1(n+ k2)2

k2(n+ k1 + 1)2
≤ log

|T ′k2(x)|
|T ′k1 ◦ πk1,k2(x)|

≤ log
k1(n+ k2 + 1)2

k2(n+ k1)2
. (6.4.2)

Observing that both expressions bounding ψ in the last inequality converge to log k1
k2

when

n tends to ∞, we deduce that ψ is bounded in (0, 1]. To obtain infx∈(0,1] ψ(x) < 0 and

supx∈(0,1] ψ(x) > 0, assume k1 > k2. In this case we have ψ(1) = log k2
k1
< 0. Moreover, since

the limit of the bounds in (6.4.2) is log k1
k2
> 0, in particular ψ(x) > 0 for x sufficiently close

to zero. The case k1 < k2 is analogous.

6.4.2 Main result

Proposition 6.4.9. Let δ be a number in (1/2, 1]. Define the function Gδ by the formula

Gδ(q) = P (qψ − δ log |T ′k2|) = P (q(− log |T ′k1 ◦ πk1,k2|+ log |T ′k2 |)− δ log |T ′k2|).

Then,

(1) for all δ ∈ (1/2, 1], Gδ(q) is finite for every q ∈ R;

(2) for every q ∈ R, the function δ 7→ Gδ(q) is strictly decrasing;
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(3) G1(q) = 0 if and only if q = 0 or q = 1;

(4) there exists δ ∈ (1/2, 1] such that Gδ(q) > 0 for all q ∈ R.

Proof. Let δ ∈ (0, 1/2]. By Proposition 6.4.8, there exists real numbers a, b such that ab < 0

and a ≤ ψ(x) ≤ b, for all x ∈ (0, 1]. In consequence

aq + P (−δ log |T ′k2|) ≤ Gδ(q) ≤ bq + P (−δ log |T ′k2|).

Since P (−δ log |T ′k2|) is finite for δ ∈ (0, 1/2], we obtain the finiteness of Gδ(q), for all q ∈ R.

This shows (1). Observe that (2) holds by Theorem 6.3.1 and Proposition 6.3.3. To prove

(3), we note that

G1(0) = P (− log |T ′k2|) = 0 and G1(1) = P (− log |T ′k1 ◦ πk1,k2|) = 0.

By convexity of G1, we can have only two possibilities, namely, G1(q) is a constant function

equal to zero, or, G1(q) = 0 if and only if q = 0, 1. We will prove that G1(q) 6≡ 0. From the

variational principle, we have that

G1(q) ≥ h(µ[0]k2
) +

∫
q(− log |T ′k1 ◦ πk1,k2|+ log |T ′k2|)− log |T ′k2|dµ[0]k2

(6.4.3)

= q log
|T ′k2([0]k2)|

|T ′k1 ◦ πk1,k2([0]k2)|
− log |T ′k2([0]k2)| =: l(q)

where

[0]k =
−k +

√
k2 + 4k

2

denotes the fixed point of Tk2 in Ik20 and µ[0]k2
denotes the Dirac measure supported at [0]k2 .
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It is sufficient to prove that l(q) is a non-horizontal line. The slope of l(q) is given by

log
|T ′k2([0]k2)|

|T ′k1 ◦ πk1,k2([0]k2)|
= log

k2(
√
k2

1 + 4k1 − k1)2

k1(
√
k2

2 + 4k2 − k2)2
.

We note that the slope is equal to zero, if and only if,

(
√
k2

1 + 4k1 − k1)2

k1

=
(
√
k2

2 + 4k2 − k2)2

k2

which is a contradiction because the function x 7→ (
√
x2+4x−x)2

x
is strictly decreasing on (0,∞).

Therefore (3) is proved. We pass now to prove (4). Let δ ∈ (1/2, 1). Since Gδ(q) is strictly

decreasing in δ and G1(0) = G1(1), we deduce that, if Gδ(q) = 0 then q must belong to the

interval (0,1). Let q ≥ 0. By Proposition 6.4.8 we have

aq + P (−δ log |T ′k2|) ≤ Gδ(q) ≤ bq + P (−δ log |T ′k2|).

Let δ ∈ (1/2, 1) such that
P (−δ log |T ′k2|)

−a
> 1

which exists since P (−δ log |T ′k2 |)→ +∞ when δ → 1/2+ and −a > 0. In consequence

Gδ(q) > aq + P (−δ) > 0

when q ∈ (0, 1). Therefore, Gδ(q) > 0 for all q ∈ R.

Proposition 6.4.10. Let δ0 be defined by

δ0 := sup{δ ∈ (1/2, 1] : for all q ∈ R, P (qψ − δ log |T ′k2|) > 0}

then q 7→ Gδ0(q) has a unique zero.
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Proof. First of all, observe that Gδ0(q) ≥ 0 for all q ∈ R. In fact, if Gδ0(q
∗) < 0 for some

q∗ ∈ R, then by continuity of δ 7→ Gδ(q
∗), we have that Gδ0−ε(q

∗) < 0 for some ε > 0.

Moreover, by definition of δ0, there exists δ > δ0− ε such that Gδ(q) > 0 for all q ∈ R which

is a contradiction with the fact that Gδ(·) is strictly decreasing in δ.

Now, we will prove that Gδ0(q) has a unique zero. Let n ∈ N be large enough. By

definition of δ0 we have that Gδ0+ 1
n
(q) = P (qψ − (δ0 + 1

n
) log |T ′k2|) has at least one zero, for

all n.

Assume that Gδ0+ 1
N

(q) has a unique zero q0, for some N . Then, by (2) of Proposition

6.4.9 we have that Gδ0+ 1
n
(q) = 0 if and only if q = q0, for all n ≥ N . By continuity in δ0,

taking n→∞, we have that Gδ0(q0) = 0 which is unique again by (2) of Proposition 6.4.9 .

On the other hand, suppose that Gδ0+ 1
n
(q) has two zeros for all n. Let qn1 < qn2 be the

zeros. Assume that the diameter of [q1
n, q

2
n] tends to zero and let q0 =

⋂
n[q1

n, q
2
n]. Then

Gδ0+ 1
n
(q0) ≤ 0, for all n. By continuity in δ0, Gδ0(q0) ≤ 0. and moreover Gδ0(q0) = 0

because Gδ0 is non-negative. Observe that if the diameter [q1
n, q

2
n] does not tend to zero, then

we would have two points q1 6= q2, both in
⋂
n[q1

n, q
2
n], and satisfying Gδ0(q1) = Gδ0(q2) = 0

which is a contradiction with the strictly convexity of Gδ(q) in q, for any δ.

Corollary 6.4.11. Let δ > 0 be such that Gδ(q) > 0 for all q ∈ R. Then, there exists N ∈ N

such that the function

q 7→ PN(qψ − δ log |T ′k2|)

is positive for all q ∈ R.

Proof. We will argue by contradiction. Suppose that for all N ∈ N, the function q 7→

PN(qψ − δ0 log |T ′k2|) have at least one zero. By Theorem 6.3.2, we have that for all q ∈ R,

lim
N→∞

PN(qψ − δ0 log |T ′k2|) = Gδ0(q).
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In particular, and also by convexity of PN(qψ − δ0 log |T ′k2 |) in q, we have that PN(qψ −

δ0 log |T ′k2|) tends to infinity when q → ∞. Consequently, for N large enough, PN(qψ −

δ0 log |T ′k2 |) has at most two zeros. We observe that, if for some N ∈ N, PN(qψ− δ0 log |T ′k2|)

has a unique zero called qN , then Pn(qψ−δ0 log |T ′k2|) has a unique zero at qN , for all n ≥ N ,

in view of

Pn(qψ − δ0 log |T ′k2|) ≤ Pn+1(qψ − δ0 log |T ′k2|) (6.4.4)

for all n ∈ N. Therefore, we can assume that PN(qψ − δ0 log |T ′k2|) has two zeros: qN1 ≤ qN2 .

Let JN := [qN1 , q
N
2 ]. Because the inequality (6.4.4) holds for all n ≥ 1, then JN+1 ⊂ JN for

all N . This implies that the intersection
⋂
N JN is non-empty. Let q∗ ∈

⋂
N JN . We deduce

that PN(qψ − δ0 log |T ′k2 |) ≤ 0 for all N and, by the approximation property, Gδ0(q
∗) ≤ 0

which is a contradiction with Proposition 6.4.9.

6.4.3 Lower bounds

Theorem 6.4.12. We have that

dimH(D∼) ≥ δ0 > 1/2,

where δ0 = sup{δ ∈ (1
2
, 1] : P (qψ − δ log |T ′k2 |) > 0, for all q ∈ R}.

Proof. Let δ ∈ (1
2
, 1] such that P (qψ − δ log |T ′k2|) > 0 for all q ∈ R. By Proposition 6.4.11,

we know that there exists N such that

H(q) := PN(qψ − δ log |T ′k2|) > 0

for all q ∈ R. Also, by convexity and the fact that H(q) → ∞ when q → ±∞, there exists
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q0 ∈ R such that H ′(q0) = 0. In other words,

∫
ψdµq0 = 0

which is equivalent to

∫
log |T ′k2|dµq0 =

∫
log |T ′k1 ◦ πk1,k2 |dµq0 .

Moreover, since H(q0) > 0 and using the variational principle, we obtain

h(µq0) +

∫
qψ − δ log |T ′k2 |dµq0 > 0

and therefore the bound
h(µq0)

λ(µq0)
> δ.

This implies, by Theorem 6.3.4

dimH µq0 > δ

and by [JMS, Lemma 4.7] and Proposition 6.4.5 we deduce that

dimH D∼ ≥ dimH{x : lim inf
n→∞

eSψ(x) = 0; lim sup
n→∞

eSnψ(x) =∞} ≥ dimH µq0 > δ.

In conclusion

dimH(D∼) ≥ δ0 > 1/2.

Proposition 6.4.13. We have that

dimH({x : lim sup eSnψ(x) =∞}) ≥ δ0
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and moreover

dimH D∞ ≥ δ0.

Proof. Again, let q0 the zero of the function Gδ0(q) and let q > q0. By the variational

principle, for every q > q0, there exist a unique equilibrium measure µq such that

Gδ0(q) = h(µq) +

∫
qψ − δ0 log |T ′k2|dµq > 0.

Observe that

dimµq > −q
∫
ψdµq
λ(µq)

+ δ0.

On the other hand, we note that, for µq-a.e. point x ∈ [0, 1] we have that

1

n
Snψ(x)→

∫
ψdµq > 0

and therefore, eSnψ(x) →∞ when n tends to infinity. We deduce that, for all q ≥ q0

dimH({x : lim sup eSnψ(x) =∞}) > −q
∫
ψdµq
λ(µq)

+ δ0,

and in consequence

dimH({x : lim sup eSnψ(x) =∞}) ≥ δ0

since, when q → q0,
∫
ψdµq → 0 and λ(µq) is uniformly bounded below by a positive

constant. The second affirmation follows from the Corollary 6.4.7, part (a).
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6.4.4 Upper bounds

Let η > 0 and define the set

Aη =

{
x : lim sup

n→∞
eSnψ(x) > η

}
.

Proposition 6.4.14. For all η > 0, we have that dimH Aη ≤ δ0. Moreover dimD∞ ≤ δ0.

Proof. In first place, we will prove that, for all N ≥ 1, we have

Aη ⊂
⋃
n≥N

{
Ik2(x1, x2, · · · , xn) : eSnψ([x1,x2,··· ,xn]k2 ) >

η

C1C2

}
,

where C1, C2 are the constants involved in the bounded distortion property for Tk1 and Tk2

respectively. In fact, let x ∈ Aη. There exists M ∈ N such that eSMψ(x) > η. By bounded

distortion, we have that there exists C1, C2 > 0 such that

|(TMk1 )′(πk1,k2([x1, x2, · · · , xM ]k2))|
|(TMk1 )′(πk1,k2(x))|

� C1

and
|(TMk2 )′(x)|

|(TMk2 )′([x1, x2, · · · , xM ]k2)|
� C2.

Then
eSM (log |T ′k2 |)(x)

eSM (log |T ′k2 |)([x1,x2,··· ,xM ]k2 )
� C1

and
eSM (− log |T ′k1◦πk1,k2 |)([x1,x2,··· ,xM ]k2 )

eSM (− log |T ′k2◦πk1,k2 |)(x)
� C1.

Multiplying both estimations, we get

eSMψ(x)

eSMψ([x1,x2,...,xM ])
� C1C2
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and in particular

eSMψ([x1,x2,...,xM ]) >
eSMψ(x)

C1C2

>
η

C1C2

.

Now, we will pass to show that dimH Aη ≤ δ0. Let ε > 0 and r < 1/e < 1 such that

|Ik2(x1, x2, . . . , xn)| < rn for all n. We will prove that the (δ0 + ε)-Hausdorff measure is equal

to zero. In fact

Hδ0+ε
rN

(Aη) ≤
∑
n≥N

∑
Ik2 (x1,...,xn)

|Ik2(x1, . . . , xn)|δ0+ε

≤
∑
n≥N

rnε
∑

Ik2 (x1,...,xn)

|Ik2(x1, . . . , xn)|δ0

≤ C2

∑
n≥N

rnε
∑

Ik2 (x1,...,xn)

e−δ0Sn(log |T ′k2 |)([x1,...,xn]k2 )

≤ C2

(
C1C2

η

)q0 ∑
n≥N

rnε
∑

Ik2 (x1,...,xn)

eq0Snψ([x1,...xn]k2 )−δ0Sn(log |T ′k2 |)([x1,...,xn]k2 ) (6.4.5)

�
∑
n≥N

rnε
∑

Tnk2
(x)=x

eq0Snψ(x)−δ0Sn(log |T ′k2 |)(x)

where, in (6.4.5), q0 ∈ (0, 1) denotes the zero of the function Gδ0 . By definition of the

pressure function, ∑
Tnk2

(x)=x

eq0Snψ(x)−δ0Sn(log |T ′k2 |)(x) ≤ enε,

and thus we obtain that

Hδ0+ε
rN

(Aη)�
∑
n≥N

(re)nε.

Therefore Hδ0+ε
rN

(Aη) → 0 when N → ∞. We deduce that dimH(Aη) ≤ δ0 + ε, for all

ε > 0.

Proposition 6.4.15. dimD∼ ≤ δ0.

Proof. Observe that, if x is such that lim sup eSnψ(x) = 0 then lim eSnψ(x) = 0 and then, by
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Corollary 6.4.7 part (b), we obtain that x ∈ D0. Therefore D∼ ⊂ ∪ηAη which implies that

dimD∼ ≤ δ0.

Collecting all results of the last two subsections, we have proved the main theorem:

Theorem 6.4.16. Let k1, k2 be two positive numbers. Then the sets D∞,D∼ have the fol-

lowing Hausdorff dimensions:

1/2 < dimH(D∞) = dimH(D∼) = δ0 < 1.
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