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DANIEL OLIVARES QUERO

JORGE MORENO DE LA CARRERA

YADRAN ETEROVIC SOLANO

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Santiago de Chile, July 2018

c©MMXVIII, ENRIQUE VÉLIZ SANZANA
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ABSTRACT

The continuous growth in variable renewable penetration in power systems has led

to the appearance of several operational challenges. The ability of dealing with them is

known as power system flexibility. This feature is present to a greater or lesser extent

in every element within a power system, either generation, load, networks or storage de-

vices, among others. Although flexibility resources are scheduled in a day-ahead process,

they are deployed when uncertainty is realized in real-time operation. A Look-Ahead

Economic Dispatch with affine policies is proposed, where real-time operation is solved

with traditional modeling and look-ahead horizon is addressed through these policies for

dealing with short-term uncertainties. A comprehensive analysis which unveils the impor-

tance of the election methodology to model the uncertain sources is carried out, in which

performance of the proposed model is compared to current industry practices, existing

approaches in literature and other formulations that can come off the proposed model.

Keywords: Affine Policy, Adjustable Robust Optimization, Look-Ahead Economic Dis-

patch, Uncertainty Set.
x



RESUMEN

El continuo crecimiento de la penetración de energı́as renovables variables en los sis-

temas de potencia ha determinado la aparición de diversos desafı́os en la operación de

estos. El atributo de un sistema que le permite hacer frente a estos desafı́os es conocido

como flexibilidad. Esta caracterı́stica se encuentra presente en mayor o menor medida en

cada uno de los elementos de un sistema eléctrico, ya sea generación, demanda, trans-

misión o almacenamiento, entre otras. A pesar de que los recursos de flexibilidad son

programados en el proceso del dı́a anterior, estos son desplegados cuando la incertidum-

bre es develada durante la operación de tiempo real. Un Despacho Económico con Mirada

hacia el Futuro es propuesto, donde la operación de tiempo real es resuelta mediante el

modelamiento tradicional y el horizonte futuro se aborda con el uso de polı́ticas afines

para considerar la incertidumbre de corto plazo. Un exhaustivo análisis que muestra la

importancia de la elección en la metodologı́a de modelación de la incertidumbre es real-

izado, en el que el desempeño del modelo propuesto es comparado con prácticas actuales

de la industria, propuestas de la literatura y otras formulaciones que pueden desprenderse

de la modelación propuesta.

Palabras Clave: Polı́tica Afı́n, Optimización Robusta Ajustable, Despacho Económico

con Mirada hacia el Futuro, Conjunto de Incertidumbre.
xi
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1. INTRODUCTION

1.1. Context

The continuous growth of greenhouse gas emissions to the atmosphere as a product of

the intensive use of fossil fuel has set a big challenge among countries. Paris Agreement

in 2015 has meant an important milestone in the struggle against climate change, aiming

an increase on global temperatures not greater than 2 celsius degrees for 2050 (UN, 2015).

One of the instrumental paths to achieve the goals imposed has been the implemen-

tation of new technologies in the energy matrix, such as wind and solar generation. This

has been harnessed in late years due to the progressive decrease of production costs. For

instance, levelized costs of solar panels are lower than coal costs in countries as Germany

and United States, and they are expected to diminish even an additional 66 % for 2040,

wind follows this trend with an expectation of a 47 % decrease (BNEF, 2017).

Renewable shares in power systems has grown continuously as a result of the efforts

previously mentioned. Towards the end of 2015, ten countries had overcome the barrier

of double-digits shares of variable renewable generation, even noting values beyond 20 %

in cases like Germany, Ireland and Denmark (IEA, 2017b).

1.2. Literature Review

1.2.1. Uncertainty, Variability and the need for Power System Flexibility

The increasing penetration of variable renewable energy (VRE), has led to the appear-

ance of two operational problems produced for their non-controllable nature: variability

and uncertainty.

Variability refers to the changes in power output that a system can experiment in a

given period of time as a result of fluctuations of generation and/or demand. When the

penetration of variable generation increases, variability becomes a challenge due to the
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Figure 1.1. Effects on variability for one week operation in Germany given
by hypothetical scaling on wind generation. Source IEA (2014)

major requirements imposed to the system. Figure (1.1) presents one week operation of

Germany in 2010, figure shows the effect produced by the actual wind share (6.7 %) and

by hypothetical scalings of this generation.

Other system operators who have experimented the variability proper of high shares

of VRE are Bonneville Power Administration (BPA) and Electric Reliability Council of

Texas (ERCOT). BPA has passed from hourly ramps of 1000 MW in 2008 (Kamath, 2010)

to more than 1400 MW in 2016 (BPA, 2016), with its wind installed capacity varying from

1700 MW to 4000 MW in the same period (BPA, 2017). On the other hand, ERCOT being

the power system with the highest amount of wind installed capacity, hit more than 20 GW

wind installed capacity by the end of 2017 according to Matevosyan (2017), overcoming

the total coal plants capacity across the state (19800 MW).

Figure (1.2) shows the distribution of wind power ramps in ERCOT during the first

semester of 2016 in one specific hour of the day. Power ramps for duration of 25 minutes

exceed 500 MW with frequency, which is a demanding operation condition.

The second operational problem is uncertainty, and is related with the difficulties to

predict in an accurate manner the output of a non-controllable source. This situation com-

plicates the decision of how many units turn on given that a scenario of excess generation



3

Power Ramps (MW)

1000
500

0
500

1000

Time (m
inutes)

5

10

15

20

25

Fr
eq

ue
nc

y

0

50

100

150

200

250

300

350

400

450

Wind Variability Evolution in ERCOT

Figure 1.2. Histograms of wind power ramps of three different durations
(5, 15 and 25 minutes) in ERCOT Power System. Source: ERCOT (2016)

may occur, or another scenario where the renewable generation was overestimated, leading

to a need to turn emergency units or shed load.

The attribute which enables a power system to cope with variability and uncertainty

has received the name of flexibility.

On one hand, power system flexibility has many definitions within literature, all of

them quite similar:

• “The ability of a power system to keep a continuous service in presence of big

and fast variations in load, i.e keep the stability in a cost-effective manner” (Pa-

paefthymiou et al., 2014)

• “The capacity to cope with variability and uncertainty, while keeping a satisfac-

tory performance temporally and spatially” (Lannoye et al., 2012)
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• “The ability of a system to deploy its resources to respond to changes in net

load” (Holttinen et al., 2013)

On the other hand, different strategies have been proposed to measure this attribute as

a way to determine the sufficiency of it or to make it comparable with the flexibility of

other system:

• Flexibility Charts: Graphs which allocates values to different attributes such

as interconnections, CCGT or Hydro Generation with the purpose to compare

amounts of flexibility between different systems (Yasuda et al., 2013).

• Flexibility Assessment Tool (FAST, FAST2): It is a measure of the total ramping

capacity given different time frames and the resources available (IEA, 2011).

• Polytopes: 3d plot which represent feasible operation regions for generators (Ul-

big et al., 2017), interconnections (Bucher et al., 2016) and zones (Bucher et al.,

2015).

• Do-Not-Exceed Limits: Feasible region where a non-controllable generator can

vary without jeopardizing the grid (Zhao et al., 2015)

From the definitions of flexibility is possible to conclude that it is closely related with

the balance of quick and unexpected changes in net load (load minus renewable genera-

tion), meanwhile from the ways of measuring flexibility it can be noticed that a system

utilizes different flexible resources (either generation, storage or transmission devices) to

deploy this attribute. In effect, flexibility is present everywhere in a power system. How-

ever, a key aspect of flexibility is that as important to account with flexible resources is to

have the efficient procedures to deploy them (Cochran et al., 2014). The most acknowl-

edge operational procedures in power systems, where flexibility has to be managed, are

the Unit Commitment and the Economic Dispatch. They will be revised on next section.
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Figure 1.3. Flexibility is everywhere in a power system

1.2.2. The Economic Dispatch Problem

As it was mentioned above, flexibility needs to be modeled in the Unit Commitment

and Economic Dispatch problems in order to consider the flexibility requirements given

by the uncertainty and variability.

The Unit Commitment (UC) problem consists of deciding which units are going to be

turned on during a day, and also defines the times when units that are offline will enter

on operation. This procedure is made one day-ahead, so the flexibility requirements are

included here as scheduled reserves, which then have to be deployed in Economic Dispatch

(ED) when more accurate information is available.

Economic Dispatch consists of deciding the power output of the units which are al-

ready online in the power system. This problem is commonly solved with a time resolu-

tion between 5 and 30 minutes. The following optimization model represents the compact

formulation of an ED problem.
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min
Pg

∑
g∈G

C(Pg)

s.t
∑
g∈G

Pg = PD

Pmin
g ≤ Pg ≤ Pmax

g ∀g ∈ G

Hedging the system against uncertainty is critical in ED because given the time frame, the

option of committing an additional base or load following unit is not available, leaving as

only options the commitment of a quick start unit and the load shedding, which are very

expensive and not desirable solutions. This determines that management of the flexibility

during real-time operation is key.

1.2.3. Uncertainty Management in Economic Dispatch

Management of reserves in real-time markets is being widely studied not only in

academia but also in industry.

Traditional procedure to perform real-time operation has been the use of ED with spin-

ning reserves (SR), which are scheduled in day-ahead markets and deployed according to

Automatic Generation Control participation factors during operation (Wood & Wollen-

berg, 2012). In recent years, some System Operators, such as MISO (2016) and CAISO

(n.d.), have proposed new products for the real-time operations, called Flexible Ramping

Products (FRP). They act as an additional reserve for unexpected variations of net load.

FRP are intended to cover a statistical range of values for net load ramps, given by the

confidence interval of histograms or gaussian-sigma rules (Wang et al., 2017), which then

are implemented through additional constraints in the operation model. Another mech-

anism which has been recently implemented in some systems such as PJM (2011) and

MISO (2017) is the Look-Ahead Economic Dispatch (LAED). This variation of the tradi-

tional Myopic Economic Dispatch is an application of model predictive control in power

systems, and consists of solving a receding horizon optimization problem where only the
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solutions correspondent to current time are implemented, whereas the finite look-ahead

horizon is utilized to hedge against short-term uncertainties (Xie & Ilic, 2008).

In academia, introduction of uncertainty and variability into ED models has been

mostly made through the utilization of stochastic and robust optimization models. Sto-

chastic optimization (SO) addresses the uncertainty problem by representing it in a group

of scenarios. For instance, a stochastic LAED with flexible ramping products is proposed

in (Zhang & McCalley, 2015).

When the number of scenarios is large, strategies for keeping tractability are needed

in order to apply SP in ED. For instance, a LAED decomposed into a deterministic and a

stochastic horizon is presented in Gu & Xie (2017), whereas a multi-time scale LAED for

modeling slow and fast generators is developed in Gangammanavar et al. (2016). Other

decomposition techniques such as optimality condition decomposition are applied to di-

minish the computational burden and thus allow the optimal dispatch of dispatchable units

and energy storage devices under a stochastic framework (Zhu & Hug, 2014).

Robust optimization (RO) appears as a solution to the tractability issue, since the prob-

lem considers a reduced amount of scenarios obtained by the column and constraint gen-

eration (C&CG) algorithm, thus obtaining a set with the worst case realizations of uncer-

tainty. This technique has been applied to both UC and ED. A fully adaptive robust model

for the security constrained UC is presented by Bertsimas et al. (2013). Thatte & Xie

(2016) developed a Robust LAED with zonal reserve requirements that allows the inter-

change of power flows within areas while keeping a simple grid representation. A robust

LAED with conditional value-at-risk (CVaR) to evaluate the risk of wind power accom-

modation is presented in (P. Li et al., 2018). The adjustability of uncertainty sets has also

been a research line within robust optimization, in Z. Li et al. (2015b) the conservativeness

of the uncertainty sets is allowed to be updated varying the confidence level.

Main challenge of robust programming is the design of the uncertainty set, which is

usually build using budgets or cardinality constraints (Bertsimas et al., 2011), and how to
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consider correlations. A way to account for it is the use of dynamic uncertainty sets as it

is shown in the multi-stage robust economic dispatch proposed in Lorca & Sun (2015).

Robustness also can be considered in power system operations by generating envelopes

or single scenarios which encloses all the possible realizations of the uncertainty Nosair

& Bouffard (2015a), thus protecting system against worst realizations of uncertain source.

According to this strategy, a dispatch can be considered adequate if flexibility envelope of

resources covers envelopes defined by net load requirements. This approach has also been

extended to introduce a dynamic representation more complete for flexibility resources

and requirements (Nosair & Bouffard, 2015b), to consider the energy limitations of de-

mand response and energy storage through the implementation of energy-based envelopes

constraints (Nosair & Bouffard, 2016) and to consider tree-scenario structures by using

probabilistic envelopes (Nosair & Bouffard, 2017). Another proposal in the literature pro-

posed by Dvorkin et al. (2014) develops a methodology to obtain non-parametric or dis-

tribution free reserve requirements, through the solution of a MILP that has a complexity

dependent of the amount of the historical data to analyze.

1.2.4. State-of-the-art on Affine Policies Modeling

Within RO framework, there exists a modeling approach named Affinely Adjustable

Robust Optimization (AARO), where decision variables are forced to be linear functions

of the uncertain parameter,instead of being fully adaptive. AARO has gained attention

since the work of Ben-Tal et al. (2004), and has been extensively applied recently because

of its simplicity to allocate uncertainties amongst generators using affine policies (AP).

This accompanied by the closeness with traditional operation procedures such as the AGC

participation factors in secondary control.

Some contributions within AARO framework have been made in the field of ED: Jabr

(2013) proposed AP to change the fixed nature of participation factors in OPF. Z. Li et

al. (2015a) solved an adjustable robust dispatch differentiating AGC from non AGC units.

Warrington et al. (2013) developed a high resolution LAED with AP and set prices for
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these products. An extension which allows to consider scheduling of quick-start units is

presented in (Warrington et al., 2016). Ye & Li (2018) addressed the congestion issue in

existing formulation of FRP by introducing an Adjustable Robust Model, which ensures

deliverability of ramp capacity.

1.3. The Chilean Case

Chile is no unrelated to the phenomena that has been generated around renewable en-

ergy. Acording to IEA (2018), carbon emissions in Chile increased from 54.4 MtCO2 in

2005 to 81.6 MtCO2 in 2015, where almost the 40 % was produced by power generation,

as it is presented in figure (1.4).

* Other energy industries includes other transformations and energy own-use. 
** Industry includes CO₂ emissions from combustion at construction and manufacturing industries. 
*** Commercial includes commercial and public services, agriculture/forestry and fishing. 
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Figure 1.4. Energy-related CO2. Source: IEA (2017a)

Figure (1.5) shows the evolution of the electricity generation for the period 1973-2015,

where coal generated the greatest amount of energy during 2015, more than one-third of

the total energy.
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Note: Data are estimated for 2016. 
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Figure 1.5. Electricity generation by type. Source: IEA (2017a)

In 2015, the Ministry of Energy developed joint with industries the Energy Policy

2050, a long-term road map which aims to achieve a secure and clean energy supply

towards 2050. According to de Energı́a (2015), the four pillars of the documents are:

• Security and quality of the supply

• Energy as a motor of development

• Environmentally friendly energy

• Energy efficiency and energy education

The third main objective involves the task of generating the 70 % of the energy with

renewable sources (including hydro). Simultaneously with the implementation of this

agenda, many changes in auction processes have been made in order to make the market

more competitive by simplifying the rules for renewable generators.

Currently, 8 % of the installed capacity is solar, whereas 6 % is wind, varying the

renewable penetration in the system from 1 % in 2011 to 10 % in 2017 (Asociación de

Generadoras, 2018).

As a result of this, the amount of renewable capacity present in the system has in-

creased dramatically during the last years, which has impacted on the levels of variability
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and uncertainty. A study realized in 2018 by PSR-Moray (2018) concluded that flexibility

costs given by cycling and load following will increase up to 30 % due to the flexibility

requirements.

The Independent System Operator from Chile, named Coordinador Eléctrico Na-

cional, currently has realized studies to determine flexibility requirements and strategies

to cope with them. These studies have been developed independently for the two intercon-

nected systems, Sistema Interconectado del Norte Grande (SING) (CDEC-SING, 2016)

and Sistema Interconectado Central (SIC). Meanwhile SING is mainly composed by ther-

mal generation such as coal and combined cycles, SIC has hydro reservoirs. This feature

implies, given the flexibility differences between these technologies, that the procedures

in SING must be more stringent. For instance, the proposed measures for AGC in SING

were the following (CDEC-SING, 2016):

• The ramp capacity for the AGC must be 8MW
min

.

• AGC must be supplied at least for 3 units.

• No unit can provide more than half of the AGC.

1.4. Contributions

Current approaches for quantifying reserves utilize histograms or distributions, and

use up and down reserves to allocate requirements. The objective of this work is to study

the impacts of using more complex representations of uncertainty, and implement them in

a LAED model within AARO framework, given that it is easier to define responsibilities

when uncertainty set has more than one dimension.

Main contributions of this work are the following:

• A new design methodology to build an uncertainty set based on net load power

data is proposed, to reflect in an accurate way its sub-hourly behavior. This un-

certainty set will be used to capture the potential variability in the future steps
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of power system operation. Methodology can also be applied to build the uncer-

tainty set by only considering wind power.

• A LAED model based on AARO is proposed for allocating reserve requirements

given by the uncertainty set, allowing generators to have sufficient reserve for

any of the possible operation conditions given their own flexibility attributes.

• Performance of proposed model is evaluated in terms of costs and other metrics

in real-time operation in comparison to existing approaches in literature and

traditional industry practice. A comparison with other uncertainty sets that can

come off the proposed formulation is also carried out, unveiling the importance

of selecting an efficient methodology to use the sub-hourly information in order

to prepare the system against the uncertainties.

1.5. Document Organization

The work has the following structure: Chapter 2 explains robust nature of the ap-

proach, including the compact formulation of an AARO, the methodology to design the

uncertainty set is presented, and the functioning of affine policies in power system op-

eration is explained. Chapter 3 presents the complete model formulation for the Look-

Ahead Economic Dispatch with Affine Policies. Chapter 4 details the study cases to

test the performance of the proposed model, present and discuss the obtained results. Fi-

nally, Chapter 5 concludes the work and presents different possible future directions for

research.
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2. AFFINELY ADJUSTABLE NATURE OF A ROBUST OPIMIZATION MODEL

2.1. Robust Optimization

Economic Dispatch presented in the introduction is called deterministic because all the

parameters of the problem are known. In reality, many input parameters in an optimization

model are unknown. Therefore, the nature of these inputs must be incorporated within the

model.

In economic dispatch models and power system problems in general, one of the most

uncertain parameters is net load, composed by load and variable renewable generation.

The most exploited techniques in literature to hedge a system against uncertainty have

been stochastic and robust optimization.

Stochastic optimization aims to minimize the expected value of a finite number of

realizations of the uncertain parameter. Taking net load as uncertain, it would be possible

to formulate a stochastic economic dispatch as follows:

min
P

∑
g∈G

E[C(Pg,s)]

s.t
∑
g∈G

Pg,s = PD
s ∀s ∈ S

Pmin
g ≤ Pg,s ≤ Pmax

g ∀g ∈ G, s ∈ S

Robust Optimization is based on getting an optimal solution for the worst-case sce-

nario within a pre-defined uncertainty set.

min
P

max
PD∈D

∑
g∈G

C(Pg)

s.t
∑
g∈G

Pg = PD ∀PD ∈ D
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Pmin
g ≤ Pg ≤ Pmax

g ∀g ∈ G, PD ∈ D

Many parameters can be actually modelled as uncertain: parameters of units, outages

and reserve requirements, among others. Consider the following compact formulation

for an economic dispatch problem. This formulation is fully adaptive since dispatch is a

function of the uncertain parameter, no matter what parameter is.

min
P(u)

max
u∈U

cTP(u)

αT
mP(u) + βT

mu ≤ fm ∀u ∈ U ,∀m ∈M

Where U and M are the set of uncertainties and constraints, respectively. It can be

proved that under a polyhedral uncertainty set, the optimal solution must be in an extreme

point of it, we refer to (Lorca & Sun, 2014) for the complete demonstration.

2.2. Compact Formulation of the Affinely Adjustable Counterpart

If P(u) is restricted to be an affine function of the uncertainty, the model becomes the

Affinely Adjustable Counterpart of the Fully Adaptive Robust Model.

Call x =

P0

λ


min

x
max

u
xTC̃u

α̃T
mx + β̃T

mu + xTRmu ≤ f̃m u ∈ U ,∀m ∈M

Even though decisions variables are restricted to be affine functions of uncertainty, affinely

adjustable counterpart has the same structure than the fully adaptive model. This means

that regardless of the feasible space of P(u), the worst-case realization of uncertainty

always takes place on the extreme points of U . Moreover, as long as the uncertainty is

polyhedral and it has low dimensions, the affinely adjustable counterpart is more likely to

be solved by enumerating the extreme points.



15

2.3. Design Methodology for the Uncertainty Set

Previous section showed why finding the extreme points is enough to characterize a

polyhedral uncertainty set in RO frameworks. In order to take advantage of these proper-

ties for capturing sub-hourly behaviors through this technique, it is necessary to design an

uncertainty set which complies with the property of being polyhedral.

For that, we consider the profile of 1 hour net load generation shown in figure 2.1.

The 12 power values of each time period can be reformulated as 12 coordinates, where x

represents the deviation with respect to the average and y is the consecutive power ramp.

Steps (5 min)

Power (MW)

1 2 3 4 5 6 7 8 9 10 11 12

820
850 855

830 837 815 800 800 785 810 825 816 817

Net Load Hourly Average
Net Load 5 min resolution

Steps (5 min)

Power (MW)

1 2 3 4 5 6 7 8 9 10 11 12

820
(30,5) (35,-25) (10,7) (17,-22) (-5,-15) (-20,0) (-20,-15)(-35,25) (-10,15) (5,-9) (-4,1) (-3,0)

Net Load Hourly Average
Net Load Power Deviation (x)
Net Load Ramp (y)

Figure 2.1. Net load profile and reformulation in power deviations and ramps

These coordinates can also be mapped in a X-Y plot, where x axis represents the power

deviations and y the consecutive ramps. By collecting more historical data in the plot, it

is possible to generate a more robust modeling of the uncertain parameter. For instance,

figures 2.2a and 2.2b show the regions for wind system wide generation in ERCOT during

the period January-June 2016.
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Figure 2.2. Deviation-Ramp Plot for ERCOT. Source: ERCOT (2016)

In order to generate a region with a finite number of extreme points which allow us to

exploit the properties studied in last section, we propose an algorithm to enclose a certain

percentage of the scatter plot with six extreme points as much.
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Figure 2.3. Algorithm
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This algorithm needs as inputs the set of coordinates x, upper and lower percentiles

for power deviations and ramps (pmindev , p
max
dev , p

min
r , pmaxr ) and upper and lower percentiles

for distance from upper and lower coordinates to the linear regression of scatter plot

(psupdist, p
inf
dist) for enclosing the region, the function of these last inputs will be explained

in the algorithm. Figure 2.3 illustrates each step explained below.

Algorithm 1 Proposed Uncertainty Set

Input: Coordinates (x,y), percentiles (pmindev , p
max
dev , p

min
r , pmaxr ), percentiles (psupdist, p

inf
dist).

1: Given pmindev , p
max
dev , p

min
r , pmaxr , obtain power and ramp requirements

dminpth
, dmaxpth

, rminpth
, rmaxpth

.
2: Define coordinates inside the box x ∈ Csq, where Csq : [dminpth

, dmaxpth
]× [rminpth

, rmaxpth
]

3: Compute regressionR(x) of coordinates (x, y) ∈ Csq

4: Separate:

Csq :=

{
Csq
up if y ≥ R(x)

Csq
down if y ≤ R(x)

5: Calculate distance l as: ‖y −R(x)‖
6: Given (x,y),pupdist and pinfdist:

Lupsup = pupdist(l
up) Lupinf = pdowndist (lup)

Ldownsup = psupdist(l
down) Ldowninf = pinfdist(l

down)

7:

Cenv
up ⊂ Csq

up if Lupinf ≤ ‖y −R(x)‖ ≤ Lupsup

Cenv
down ⊂ Csq

down if Ldowninf ≤ ‖y −R(x)‖ ≤ Ldownsup

8: Compute regressionsR2(x)up from Cenv
up andR2(x)down from Cenv

down, respectively.
9: Get points inside rhomboid as:

Csq
up,2 ⊂ Csq

up if ‖y‖ ≤ R2(x)up

Csq
down,2 ⊂ Csq

down if ‖y‖ ≥ R2(x)down

10: z = (card(Csq
up,2) + card(Csq

down,2))/card(Csq)
11: while z ≤ 0.95 do
12: pupdist+ = ε
13: Repeat 6-10
14: end while



18

−800 −600 −400 −200 0 200 400 600 800
Wind Power Deviation (MW)

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

W
in

d 
Ra

m
p 

(M
W

)
ERCOT 15 min Ramps

(a) 15 min

−800 −600 −400 −200 0 200 400 600 800
Wind Power Deviation (MW)

−1000

−800

−600

−400

−200

0

200

400

600

800

1000

W
in

d 
Ra

m
p 

(M
W

)

ERCOT 30 min Ramps

(b) 30 min

Figure 2.4. Deviation-Ramp Plot for ERCOT. Source: ERCOT (2016)

The outcome of the presented algorithm is shown in figures 2.4a and 2.4b. As it can be

noticed from the algorithm, distance percentiles from coordinates to the regression are the

same for upper and lower coordinates, which leads to symmetrical steps in both directions.

A more accurate algorithm to iterate regressions is left to future work.

From now on, we will refer to the coordinates of the extreme points as follow:

(i) ∆dkh : power deviation for hour h and extreme point k

(ii) rkh,p: net load ramp for hour h, duration p and extreme point k

These parameters compose the reserve requirements and are introduced as inputs into the

model presented in section V. It is worth mentioning that classification of power and ramp-

ing reserves have already been studied in a Unit Commitment context. In Morales-España

et al. (2016) these reserves are hourly-based and are included in a Deterministic Power-

Based UC, whereas a Stochastic UC with this type of reserves is presented in Marneris et

al. (2017). Although the classification of reserves has already been made, the methodology

to obtain them is different.
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If the scatter plots for different ramp durations are shown together along with their

uncertainty models the increase on the slope of the clouds of points becomes more evident,

as it is presented in figure (2.5)
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Figure 2.5. Evolution of the Proposed Uncertainty Model

2.4. Affine Policies in Power System Operations

After reserve requirements are quantified, a mechanism for distributing them amongst

generators is needed. A simple rule to perform this task is the use of affine policies, which

consist on defining the generation as a linear function of the scheduled generation and the

uncertain load.

Pg = P 0
g + λg∆d
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∑
g∈G

P 0
g = d

∑
g∈G

λg = 1

Second equation means that the forecast load profile must be satisfied, whereas third

equation enforces the balance of deviations. For instance, consider 2 generators producing

100 MW each to balance a load profile of 200 MW. Unit 1 has a λ1 = 0.2 and unit 2

λ2 = 0.8, if load results to be 120 MW, the rule will lead to the following dispatches:

P1 = P 0
1 + λ1∆d = 100 + 0.2 · 20 = 104MW

P2 = P 0
2 + λ2∆d = 100 + 0.8 · 20 = 116MW

To solve a problem with affine policies two inputs are needed: ∆d and λ. The first one

can be obtained through an algorithm as the one presented previously, whereas policies

need to be optimized in a dispatch model.

When affine policies are going to be used as hourly decision variables to model sub-

hourly behaviors, it is necessary to model them adequately in order to not violate physical

constraints of the units.

For instance, consider a 1-bus system with 2 generators whose features are detailed in

Table 2.1. Suppose C(P1) ≤ C(P2).

Table 2.1. Features

Gen Pmin (MW ) Pmax (MW ) R MW
5min

1 125 500 10

2 125 500 15

Suppose the we want to solve the economic dispatch for 1 hour load profile from figure

(2.1). Then the problem can be solved using a 5-min resolution ED, or utilize another
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strategy. As it was mentioned, a dispatch based on affine policies would need to find a

∆d. We can incorporate this by reformulating the hourly profile in 12 coordinates as in

subsection 2.3, where x will be the deviation with respect to the average and y will be the

power ramp, and mapping them in a X-Y plot shown in figure (2.6). As the number of

points in the cloud is low, we will utilize the entire data instead of defining the polyhedral

uncertainty set to show how the policy dispatch works.
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Figure 2.6. X-Y Plot

Consider d the net load, m the index for intra-hour steps and d the average.

min
P0,λ

C(P1) + C(P2)

P 0
1 + P 0

2 = 820 (2.1)

λ1 + λ2 = 1 (2.2)

P 0
g + λg(d

m − d) ≤ Pmax
g g = 1, 2,m = 1, ..., 12 (2.3)

P 0
g + λg(d

m − d) ≥ Pmin
g g = 1, 2,m = 1, ..., 12 (2.4)
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(P 0
g + λg(d

m+1 − d))− (P 0
g + λg(d

m − d))

≤ Rup
g g = 1, 2, m = 1, ..., 11 (2.5)

(P 0
g + λg(d

m+1 − d))− (P 0
g + λg(d

m − d))

≥ Rdown
g g = 1, 2, m = 1, ..., 11 (2.6)

(P 0
g + λg(d

m+1 − d))− (P 0
g + λg(d

m − d))

≤ Pmax
g − (P 0

g + λg(d
m − d)) g = 1, 2, m = 1, ..., 11 (2.7)

(P 0
g + λg(d

m+1 − d))− (P 0
g + λg(d

m − d))

≥ Pmin
g − (P 0

g + λg(d
m − d)) g = 1, 2, m = 1, ..., 11 (2.8)

Since the load is the same within the hour, constraints (2.5)-(2.8) can be simplified to:

λg(d
m+1 − dm) ≤ Rup

g g = 1, 2, m = 1, ..., 11 (2.9)

λg(d
m+1 − dm) ≥ Rdown

g g = 1, 2, m = 1, ..., 11 (2.10)

P 0
g + λg((d

m − d) + (dm+1 − dm)) ≤ Pmax
g g = 1, 2, m = 1, ..., 11 (2.11)

P 0
g + λg((d

m − d) + (dm+1 − dm)) ≥ Pmin
g g = 1, 2, m = 1, ..., 11 (2.12)

The way to solve this problem is by replacing the coordinates (dm − d, dm+1 − dm),

or by finding the coordinates which generate the most binding constraints: (−35, 25),

(35,−25), (30, 5) and (−20,−15).

λ1 · 25 ≤ 10 (2.13)

λ2 · 25 ≤ 15 (2.14)

λ1 · −25 ≥ −10 (2.15)

λ2 · −25 ≥ −15 (2.16)

P1 + λ1 · (30 + 5) ≤ 500 (2.17)
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P2 + λ2 · (30 + 5) ≤ 500 (2.18)

P1 + λ1 · (−15− 20) ≥ 125 (2.19)

P2 + λ2 · (−15− 20) ≥ 125 (2.20)

The policy solution for this problem is λ1 = 0.4 and λ2 = 0.6,whereas the dispatch

solution is P1 = 486MW , P2 = 334MW . The intra-hour trajectory of each generator is

shown in figure (2.7).
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Figure 2.7. Intra-hour trajectories for Generators 1 and 2

It is worth mentioning that this problem is possible to be solved by enumerating all the

points because the number is very low. In case of the information available is similar to

the ERCOT database presented in previous section, it is necessary to develop a strategy to

enclose them. The complete policy formulation in the dispatch model can be obtained by

replacing (dm − d, dm+1 − dm) by (∆dkh, r
k
h,p).

There are several ways to implement affine policies to solve economic dispatch prob-

lems. One could be to dispatch the system only using policies. This approach might be

significantly expensive though, because it implies the development of boundary condi-

tions between hours to connect hourly variables on a consistent way. Another drawback

is that a model with hourly resolution presents more difficulties to curtail wind. Another

option would be to apply the traditional practices in industry, where the most traditional is
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myopic dispatch with spinning reserves. In recent years, the addition of look-ahead time

periods to prepare the system for the future has been implemented in some System Oper-

ators. We propose to include policy modeling into the look-ahead framework as a forecast

tool, hedging the system against uncertainty. Complete formulation for the two periods

look-ahead dispatch with policies is presented in following section.
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3. MODEL FORMULATION

This chapter details the nomenclature and the complete formulation to model the Look-

Ahead Economic Dispatch with Affine Policies.

3.1. Nomenclature

3.1.1. Sets and Indexes

g: Index of Generators, g ∈ G.

t: Index of Time Steps, t ∈ T

h: Index of Hours, h ∈ H

k: Index of Extreme Points of the Uncertainty Set for Net Load, k ∈ K

p: Index of ramp duration (1 represents the interval 0-5, whereas the second 0-10)

3.1.2. Parameters

FCg: Fixed cost of generator g [US $]

V Cg: Variable cost of generator g [US $/MWh]

Pmin
g : Minimum power output of generator g [MW]

Pmax
g : Maximum power output of generator g [MW]

Rup
g : Upward 5 min ramp capability of generator g [MW]

Rdown
g : Downward 5 min ramp capability of generator g [MW]

∆dkh: Net load power deviation for hour h and extreme point k [MW]

rkh,p: Net load ramp for hour h, duration p and extreme point k [MW]

r5uph : Upward reserve requirement for 5 minutes given by Gaussian-sigma rule (2σ)

[MW]

r5downh : Downward reserve requirement for 5 minutes given by Gaussian-sigma rule (2σ)

[MW]

dt: Net load for time step t [MW]
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dh: Net load for the hourly look-ahead horizon h [MW]

3.1.3. Decision Variables

pg,t: Power output of unit g for time step t [MW]

rupg,t: Upward reserve capacity of unit g for time step t [MW]

rdowng,t : Downward reserve capacity of unit g for time step t [MW]

P 0
g,h: Scheduled power output of unit g in hour h for look-ahead policy dispatch [MW]

λg,h: Affine policy for power deviation for unit g in hour h for look-ahead policy

dispatch

3.2. Optimization Problem

min
p,P0,λ

∑
g∈G

∑
t∈T

FCg
12

+
V Cg
12
· pg,t

+
∑
g∈G

∑
h∈H

FCg + V Cg · P 0
g,h + η (3.1)

η ≥
∑
g∈G

V Cgλg,h∆d
k
h ∀h, k (3.2)

∑
g∈G

pg,t = dt ∀t (3.3)

∑
g∈G

P 0
g,h = dh ∀h (3.4)

∑
g∈G

λg,h = 1 ∀h (3.5)

pg,t + rupg,t ≤ Pmax
g ∀g, t (3.6)

pg,t − rdowng,t ≤ Pmin
g ∀g, t (3.7)

P 0
g,h + λg,h ·∆dkh ≥ Pmin

g ∀g, h, k (3.8)

P 0
g,h + λg,h ·∆dkh ≤ Pmax

g ∀g, h, k (3.9)
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pg,t − pg,t−1 ≤ Rup
g ∀g, t = 2 (3.10)

pg,t − pg,t−1 ≥ Rdown
g ∀g, t = 2 (3.11)

P 0
g,h + λg,h · (∆dkh + rkh,p) ≤ Pmax

g ∀g, h, p, k (3.12)

λg,h · rkh,p ≤ p ·Rup
g ∀g, h, p, k (3.13)

P 0
g,h + λg,h · (∆dkh + rkh,p) ≥ Pmin

g ∀g, h, p, k (3.14)

λg,h · rkh,p ≥ p ·Rdown
g ∀g, h, p, k (3.15)

P 0
g,h − pg,t ≤ Rup

g ∀g, t, h (3.16)

P 0
g,h − pg,t ≥ Rdown

g ∀g, t, h (3.17)

rupg,t ≤ Rup
g ∀g, t (3.18)

rdowng,t ≤ Rdown
g ∀g, t (3.19)∑

g∈G

rupg,t ≥ r5uph ∀g, t (3.20)

∑
g∈G

rdowng,t ≥ −r5downh ∀g, t (3.21)

(3.1) is the objective function, which comprises the dispatch costs, (3.2) is the cost

of the policy reserves. (3.3) is the power balance constraint for deterministic horizon,

whereas (3.4) ensures hourly balance of look-ahead, intra-hourly balance is given by (3.5).

(3.6)-(3.7) limit maximum and minimum power output for all deterministic set-points and

(3.8)-(3.9) for policy dispatch, (3.10)-(3.11) and (3.12)-(3.15) are the ramp constraints for

set-points and policy dispatch respectively. Constraints (3.16)-(3.17) impose continuity

between deterministic and look-ahead horizons. Maximum up and down reserves are

addressed in (3.18)-(3.19), and coverage of requirements is modeled in (3.20)-(3.21).
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4. SIMULATIONS AND RESULTS

4.1. Definition of Study Cases

In order to assess the proposed formulation, two analysis were carried out over three

different study cases:

• Performance analysis: The performance is evaluated in terms of costs and other

metrics such as expected energy not served for the proposed model, using T = 2

and H = 1 in the model, and two benchmarks, one from literature and one

representing current practice:

– Literature: Flexibility envelopes Nosair & Bouffard (2015a) are adapted to

replace the proposed uncertainty model, envelopes are ramping constraints

defined by a certain confidence interval of a Laplace Distribution. This

distribution is obtained from the historical data available, and its parameters

are obtained for different ramp durations, some of them are presented in

figure (4.1). This benchmark uses T = 2 and H = 1.

– Traditional practice: Two periods Look-Ahead Dispatch. This model is

obtained by setting T = 2 and H = 0.

• Uncertainty modeling analysis: In this analysis, 3 additional modeling approaches

for the uncertain source were developed in order to compare the proposed model

with other bidimensional approaches that result in regions of different sizes. Two

of these approaches use a new enclosure technique called convex hull, a method

of computational geometry that consists of enclose a set of points with the con-

vex figure of lowest perimeter. Formulations are shown in figure 4.2. In this

analysis, all the models use T = 2 and H = 1.

– Policy Sq: Region formed by Step 1 of Algorithm, corresponding to a

square delimited by the upper and lower percentiles defined.

– Policy Sq CH: Convex hull of Policy Sq region.

– Policy CH: Convex hull of the proposed Policy region.
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Figure 4.2. Benchmarks for Uncertainty Modeling Analysis

To measure performance, both analysis utilize an oracle model, which is a full de-

terministic economic dispatch with 5 min resolution. The proposed model uses ramp

constraints with durations of 5, 15, 30 and 45 minutes. Percentiles pmindev , p
max
dev , p

min
r , pmaxr
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were selected using a Laplace Distribution in order to enclose the 95 % of the deviations

and the consecutive ramps. Percentiles (psupdist, p
inf
dist) were initialized as 96 and 93.

Cases 1 and 2 utilizes 300 daily wind power scenarios obtained from NREL Wind

Database and 1 load scenario for BPA replicated 300 times, whereas Case 3 analyses 140

days. Penetration levels of renewable energy achieves roughly 20 % in cases 1 and 2,

whereas in case 3 it reaches 35 %. Simulations were carried out using a Dell PowerEdge

R360 server with an Intel Xeon CPU E5-2630 v4 processor running at 2.20GHz, and 64

GB of RAM.

Although models were parallelized to diminish simulation time, they were registered

to compute the required time to perform scenarios sequentially. Case 1 uses glpk and

cases 2 and 3 uses gurobi solver. Shedding cost is defined as 5000 ( US$
MWh

) while the cost

of violating a flexibility constraint is set to 3000 ( US$
MWh

).

4.2. Use of Scenario Data for Simulations

The information of the 300 scenarios must be used respecting the model formulation

previously presented. Therefore, in each step of the simulation, each model takes the first

two time steps for dispatch, and the following 12 points are averaged as it is shown in

figure (4.3). In this manner, the structure of T = 2 and H = 1 is respected. As it was

mentioned, in the case of two periods look-ahead dispatch only the information of the two

time steps is utilized. When the simulation advances to the next step in order to solve

dispatch for the new conditions, the average of net load is updated for the points between

minutes 15 and 70.

4.3. Case 1

Case 1 consists of two identical generators whose features are shown in Table 4.1.

Maximum load for the 300 scenarios is 270 MW while the maximum wind generation is

215 MW.
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Figure 4.3. Net Load Evolution during Simulation

Table 4.1. Features Case 1

Gen FC (US $) VC ( US$
MWh

) Pmin Pmax R MW
5min

1 0 20 50 150 6

2 0 40 50 150 6

4.3.1. Performance Analysis

The outcome of performance analysis for case 1 is summarized in Table 4.2. The re-

sults show that the lowest operational costs are achieved by the envelopes model, whereas

the highest are obtained by the look-ahead dispatch. This is mainly explained in the ex-

pected energy not served caused for the lack of a forecast tool.
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Table 4.2. Summary performance metrics case 1

Model Oracle Gap EENS (MWh) CPU Time (s)

Policy 3.01 % 0.11 10073

Envelopes 2.95 % 0.12 9814

Look-Ahead 12.04 % 2.54 8056

Figure (4.4a) shows the oracle gap for different percentiles of the cost distribution, the

results for p95 reaffirm the load shedding as the cause of the costs of look-ahead. Figure

(4.4b) shows the energy generated by the 2 generators in the system, it can be seen that

policy model is the one saving more generator for the cheapest generator in order to have

more reserves. It can be also noticed that Look-Ahead generates less with unit 1 than

envelopes, despite of it requires less reserve. This occurs because when the model with

forecast see that wind is increasing but later it will decrease dramatically, the operator can

curtail some generation in order to soften the downward ramp of wind generation. This

additional generation is taken by unit 1, given that it is the cheapest of the 2 generators.
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Figure 4.4. Results performance analysis case 1
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Total costs of operating with envelopes based constraints in comparison to policy

model are barely lesser, and they occur due to the dispatch formulation of that model,

where the reserves are decoupled according direction (up and down reserves) and the du-

ration (5, 15 min, etc). This feature allows to manage flexibility in a more efficient manner.

4.3.2. Uncertainty Modeling Analysis

Table 4.3 presents the results for the uncertainty modeling analysis. The results show

that Policy Sq and Policy Sq CH formulations have operational costs significantly higher

than the other models. From the table it is possible to observe that this influence of load

shedding in the difference is very weak.

Table 4.3. Summary uncertainty modeling metrics case 1

Model Oracle Gap EENS (MWh) Sim Time (s)

Policy 3.01 % 0.11 10073

Policy CH 2.86 % 0.10 23847

Policy Sq 5.31 % 0.15 10367

Policy Sq CH 3.73 % 0.12 20482

The source of the difference in costs appear from the results presented by Figures

(4.5a) and (4.5b). It can be observed that differences in costs exists in all the percentiles

analyzed, whereas the energy generated by unit 1 is noticeably lower in the last two mod-

els. This is related with the amount of reserve required by Policy Sq and Policy Sq CH,

which defines larger regions of uncertainty than the other formulations. As the policy is a

symmetrical reserve, if unit 1 has scheduled a big amount of upward reserve, it will have

to provide downward reserve as well, operating further than the technical minimum.
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Figure 4.5. Results uncertainty modeling analysis case 1

4.4. Case 2

Case 2 consists of the two generators from case 1 with their minimum output dimin-

ished to 45 MW and their maximum output to 120 MW each. A third unit with the ability

of being committed during the real-time operation is also available, this generator has a

start up cost of 100 US $. The LAED needs to be modified to allow the real-time com-

mitment of the additional unit, the assumptions for the provision of reserve by the quick

start unit and the formulation for this dispatch model are available in Appendix C and D,

respectively. New features are shown in Table 4.4. Load and wind data remain the same

with respect to case 1.

Table 4.4. Features Case 2

Gen FC (US $) VC ( US$
MWh

) Pmin Pmax R MW
5min

Type

1 0 20 45 120 6 Base

2 0 40 45 120 6 Base

3 0 60 10 60 8 QSU
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4.4.1. Performance Analysis

Main results of case 2 are presented in Table 4.5. They show that envelopes model has

higher operation costs than the policy model, whereas look-ahead continues to obtain the

more expensive performance due to the shed load.

Table 4.5. Summary performance metrics case 2

Model Oracle Gap EENS (MWh) Comm U3 Sim Time (s)

Policy 2.48 % 0.033 1.49 22884

Envelopes 2.83 % 0.030 2.64 20186

Look-Ahead 3.47 % 0.440 2.27 16516

The expected real-time commitments realized by unit 3 are also shown as Comm U3

in the table. The results show that envelopes formulations lead to a more often schedule

of this unit due to the amount of reserve required. Policy model has the closest expected

number of commitments in comparison with the optimal operation, which is 1.5. The

effects of the different reserve schemes on the net energy generated with respect to the

Oracle are shown in Figure (4.6b), where the difference in the energy generated by unit 3

is relevant. This is produced by the extra upward reserves required in envelopes model.

The energy generated by unit 3 significantly impacts the costs in more expensive scenarios,

as shown in Figure (4.6a). Costs are increased in a lesser extent because of the additional

start ups that the model realize in the case of envelopes and look-ahead dispatch.
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Figure 4.6. Results performance analysis case 2

4.4.2. Uncertainty Modeling Analysis

The experiment of performing the dispatch using different uncertainty sets were re-

peated including the start up unit, whose results are depicted in Table 4.6.

Table 4.6. Summary uncertainty modeling metrics case 2

Model Oracle Gap EENS (MWh) Comm U3 Sim Time (s)

Policy 2.48 % 0.033 1.49 22884

Policy CH 2.32 % 0.033 1.5 44049

Policy Sq 5.26 % 0.032 2.26 22418

Policy Sq CH 3.21 % 0.032 2.11 39039

Although expected energy not served is low in all models, it is possible to see the trade

off that exists between the amount of reserve scheduled and the energy not served. Policy

and Policy CH models have the greatest values of shedding whereas they schedule the

lowest amount of reserve. Other interesting result is that the outcomes of these models

are very similar, this means the model of 6 extreme points approximates with accuracy
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the convex hull. The resemblance in the operation can also be seen in figures (4.7a) and

(4.7b) which presents the oracle gap by percentile and the generation per unit, respectively.

Differences in oracle gap among the models remain similar in all the percentiles under

study, this difference is mostly explained by the energy generated with more expensive

units in the case of Policy Sq and Policy Sq CH models.

p95 p75 p50
Percentiles

0

4

8

12

Va
lu

e (
%

)

Oracle Gap by percentile
Policy

Policy CH

Policy Sq

Policy Sq CH

(a) Oracle Gap by percentile

Gen 1 Gen 2 Gen 3
Generators

−160

−120

−80

−40

0

40

80

120

160

Ge
ne

ra
tio

n 
di

ffe
re

nc
e w

ith
 O

ra
cle

 (M
W

h) Generation per unit
Policy

Policy CH

Policy Sq

Policy Sq CH

(b) Generation

Figure 4.7. Results uncertainty modeling analysis case 2

4.5. Case 3: Modified IEEE 118-Buses System

The Modified IEEE 118-Buses System consists of using the 54 generators of the origi-

nal system in only 1 bus. This allows us to isolate from the analysis the effects of network

congestions. Data of the IEEE 118-Buses System was obtained from (Morales-España et

al., 2016) and is available in Appendix D. In order to simulate a real-time operation with

this system, a Unit Commitment is solved for each day under study. The UC has a reserve

constraint of 10 % of the load of the hour. Then, the operation is carried out allowing the

commit of quick start units, in the same way than previous case.
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4.5.1. Performance Analysis

The results for the performance analysis are summarized in Table 4.7, they show that

the operation with Policy model is slightly cheaper than the envelopes based dispatch.

This difference comes from the generation costs, given that EENS is greater in the case of

policies. With respect to computation time, Policy formulation has more burden due to the

larger number of constraints and the need to couple all the reserves in only one variable.

Despite the above, as each day is solved in approximately 400 seconds, each dispatch

period it is solved within 2 seconds. Therefore, under a scheme of 5 minutes resolution,

the model achieves a good performance in terms of simulation time.

Table 4.7. Summary performance metrics case 3

Model Oracle Gap EENS (MWh) Sim Time (s)

Policy 13.5 % 1.11 63605

Envelopes 14.0 % 0.96 41905

Look-Ahead 21.5 % 17.32 13203
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Figure 4.8. Results uncertainty modeling analysis case 3
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Figures (4.8a) and (4.8b) give information about the costs by percentile and the cost

of committing resources during real time. From the first figure it can be observed that

the difference between policy and envelopes models become noticeable for the higher

percentiles of costs, because of the need of accounting with more quick reserve, which

also elevates the generation costs and is the other factor that explains the differences in

operation costs.

4.5.2. Uncertainty Modeling Analysis

Results of the uncertainty modeling analysis for the modified IEEE 118 Buses are pre-

sented in Table 4.8. The oracle gap of models with larger regions of uncertainty achieve

the highest operation costs. This is occasioned by the amount of reserve required. Another

interesting result of the simulation is in the difference between oracle gaps of Policy and

Policy CH models. This means that the uncertainty set of the first model does not approx-

imate in a very accurate way the second set. The difference in operation costs with respect

to models Policy and Policy CH is present in all the percentiles of the cost distribution, as

it is shown in Figure (4.9a).

Table 4.8. Summary uncertainty modeling metrics case 3

Model Oracle Gap EENS (MWh) Sim Time (s)

Policy 13.5% 1.11 63605

Policy CH 12.3 % 0.67 256807

Policy Sq 21.4 % 1.61 48144

Policy Sq CH 17.5 % 1.71 229168

Figure (4.9b) shows the costs of incurring in commitment of quick start units during

the real-time operation. It can be noticed that Policy Sq and Policy Sq CH models ob-

tained lower costs than the other models. This occurs because the large amount of reserve

required forces the system to keep some quick start units committed, whereas the other
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models only commit those generators when their reserve requirements determine it or it is

necessary to balance an episode of upward ramp. This situation also determines that the

EENS is superior in those cases, because the ramp constraint of QSU has an additional

component given by the start-up process which can only be seized by the models whose

units are off.
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5. CONCLUSIONS AND FUTURE WORK

The increasing penetration of variable renewable generation is posing several chal-

lenges in real-time operation due to its uncertain behavior. This work presented a novel

design methodology to represent the potential sub-hourly variations through a polyhedral

uncertainty set based on historical data of wind generation and load. The uncertainty set

was implemented in a Look-Ahead Economic Dispatch under the Affinely Adjustable Ro-

bust Optimization Framework. Therefore, the reserve responsibilities of each generator

are established according to the uncertainty set previously designed. Performance of the

proposed approach was tested under several days of operation in three different systems,

and compared to other methodologies to size reserves available in literature, industry prac-

tices and other proposed formulations that can come off the proposed modeling. Results

showed that under high amounts of scheduled reserves the operation costs may be less

efficient due to either the distribution of generation between units and the need to commit

additional units which are not needed and increase the total operation costs. This deter-

mines that an accurate modeling for uncertain sources is critical to ensure a secure and

cost-efficient operation.

Many directions of future work are open. In relation with the uncertainty modeling,

results demonstrated that keeping a reduced number of extreme points under a polyhedral

uncertainty set would be desirable. Therefore, it could be possible to test new method-

ologies to enclose the historical data. For instance, using a technique of computational

geometry called rotating calipers. It consists of enclosing a convex hull with the small-

est parallelogram. Another option would be to implement non-linear designs such as 2

or 3 order regressions. This last option, however, would need a modification in the way

the economic dispatch is being currently solved, because the enumeration of the extreme

points is not a feasible option when the uncertainty set is not linear, given that the number

of extreme points is infinite.
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Another possible extension would be the use of piece-wise linear cost functions for

generators. This is a challenge in AARO frameworks since implies to model piece-wise

affine policies as well. The methodology to define the cost of the affine policy, either linear

or piece-wise, is another interesting research line. The cost of providing reserves through

affine policies could also be set as an offer in a market, which would be a new design to

remunerate flexibility.

Uncertainty models could also be used to generate a market for wind offers. In that

market, a wind producer could present its uncertainty model, and if the behavior does not

comply with the margins, the generator could be penalized. This design would favor the

offers of less uncertainty, and would be an incentive to keep it an a low level.

An additional analysis that would be possible to realize is to adjust the size of the

uncertainty set based on the information available, this adjustment would be made au-

tomatically during the day and could diminish operational costs related with scheduled

reserves.

Finally, it would be desirable to develop a policy-based dispatch where the entire dis-

patch is defined by the linear decision rule. This model would allow to develop novel

market designs, but it needs improvements in order to achieve competitive costs. One op-

tion under analysis would be the reformulation of the dispatch model into a power-based

dispatch, using trajectories instead of energy blocks.
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A. UNIT COMMITMENT FORMULATION

Unit Commitment is deterministic and considers a 10 % of reserve given the load of

the correspondent hour:

A.1. Sets and Indexes

g: Index of Generators, g ∈ G.

h: Index of Hours, h ∈ H

B: Set of Base Units {4,5,10,11,27,28,36,39,43,44,45}

A.2. Sets and Parameters

Base: Set of Base Units

LSU : Set of Low Start Units

QSU : Set of Quick Start Units

FCg: Fixed cost of generator g [US $]

V Cg: Variable cost of generator g [US $/MWh]

SUg: Start up cost of generator g [US $]

SDg: Shut down cost of generator g [US $]

SDg: Shut down cost of generator g [US $]

Minupg : Minimum up time of generator g in hours

Mindowng :Minimum down time of generator g in hours

Pmin
g : Minimum power output of generator g [MW]

Pmax
g : Maximum power output of generator g [MW]

Rup
g : Upward 5 min camp capability of generator g [MW]

Rdown
g : Downward 5 min ramp capability of generator g [MW]

dh: Load for hour h
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A.3. Decision Variables

P 0
g,h: Scheduled power output of unit g in hour h [MW]

ug,h: Start up variable of unit g in hour h

vg,h: Shut down variable of unit g in hour h

wg,h: On/off status of unit g in hour h

min
u,v,w,P0

∑
g∈G

∑
h∈H

ug,h · SUg + vg,h · SDg

+
∑
g∈G

∑
h∈H

wg,h · FCg + V Cg · P 0
g,h (A.1)

∑
g∈G

P 0
g,h = dh ∀h (A.2)

P 0
g,h ≥ wg,h · Pmin

g ∀g, h (A.3)

P 0
g,h ≤ wg,h · Pmax

g ∀g, h (A.4)

P 0
g,h − Pg,h−1 ≤ 12 ·Rup

g ∀g, h > 0 (A.5)

P 0
g,h − Pg,h−1 ≥ 12 ·Rdown

g ∀g, h > 0 (A.6)∑
g∈G

wg,h · Pmax
g − P 0

g,h ≥ 0.1 · dh ∀h (A.7)

ug,h − vg,h = wg,h − wg,h−1 g, h > 0 (A.8)

ug,h + vg,h ≤ 1 ∀g, h (A.9)

Minup
g∑

n=0,h−n≥0

wg,h−n ≥Minupg · vg,h ∀g, h (A.10)

Mindowng −
Mindown

g∑
n=0,h−n≥0

wg,h−n ≥Mindowng · ug,h ∀g, h (A.11)

wg,h = 1 ∀g if g ∈ Base, h (A.12)

wg,h = 0 ∀g if g ∈ QSU, h (A.13)
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wg,h, ug,h, vg,h ∈ {0, 1} ∀g, h (A.14)

A.1 is the objective function, which minimizes start up, shut down, fixed and variable

costs. A.2 is the power balance, A.3 and A.4 set the technical limits for generators, A.5 and

A.6 are the upward and downward ramping constraints. A.7 is the reserve requirement.

A.8 and A.9 are the logical constraints for the binary variables, A.10 and A.11 are the

Minimum Up and Down Time limits of the units. A.12 enforces that all the base units

must be turned on, whereas A.13 determines that quick start units can not be committed

in day-ahead unit commitment. A.14 is the constraint of nature of variables.
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B. BOUNDARY CONDITION BETWEEN TWO PERIOD DISPATCH AND POLI-

CIES

Consider w1 and w2 as the commitment solutions for the on/off status of a unit for

intra-hourly periods 1 and 2, respectively. Then, it is possible to express the on/off status

parameter wpol for the policy horizon of the unit as:

wpol =



1, if w1 = 1 and w2 = 1

0, if w1 = 1 and w2 = 0

1, if w1 = 0 and w2 = 1

0, if w1 = 0 and w2 = 0
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C. LOOK-AHEAD ECONOMIC DISPATCH WITH QUICK START UNITS

g: Index of Generators, g ∈ G.

t: Index of Time Steps, t ∈ T

h: Index of Hours, h ∈ H

k: Index of Extreme Points of the Uncertainty Set for Net Load, k ∈ K

p: Index of ramp duration (1 represents the interval 0-5, whereas the second 0-10)

C.1. Sets and Parameters

Base: Set of Base Units

LSU : Set of Low Start Units

QSU : Set of Quick Start Units

FCg: Fixed cost of generator g [US $]

V Cg: Variable cost of generator g [US $/MWh]

SUCg: Start up cost of generator g [US $]

SDCg: Shut down cost of generator g [US $]

Pmin
g : Minimum power output of generator g [MW]

Pmax
g : Maximum power output of generator g [MW]

Rup
g : Upward 5 min ramp capability of generator g [MW]

Rdown
g : Downward 5 min ramp capability of generator g [MW]

∆dkh: Net load power deviation for hour h and extreme point k [MW]

rkh,p: Net load ramp for hour h, duration p and extreme point k [MW]

r5uph : Upward reserve requirement for 5 minutes given by Gaussian-sigma rule (2σ)

[MW]

r5downh : Downward reserve requirement for 5 minutes given by Gaussian-sigma rule (2σ)

[MW]

dt: Net load for time step t [MW]

dh: Net load for the hourly look-ahead horizon h [MW]
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wg,h: UC Solution for on/off status of the generator g in hour h

ug,h: UC Solution for start-up of the generator g in hour h

vg,h: UC Solution for shut down of the generator g in hour h

C.2. Decision Variables

pg,t: Power output of unit g for time step t [MW]

rupg,t: Upward reserve capacity of unit g for time step t [MW]

rdowng,t : Downward reserve capacity of unit g for time step t [MW]

P 0
g,h: Scheduled power output of unit g in hour h for look-ahead policy dispatch [MW]

λg,h: Affine policy for power deviation for unit g in hour h for look-ahead policy

dispatch

wg,t: On/Off status of the generator g in time step t

ug,t: Start-up of the generator g in time step t

vg,t: Shut down status of the generator g in time step t

wpolg,h: On/Off status of the generator g in look-ahead horizon h

min
p,P0,λ

∑
g∈G

∑
t∈T

wg,t · FCg
12

+
V Cg
12
· pg,t

+
∑

g∈QSU

∑
t∈T

SUCg · ug,t + SUDg · vg,t

+
∑
g∈G

∑
h∈H

wpolg,h · FCg + V Cg · P 0
g,h + η (C.1)

η ≥
∑
g∈G

V Cgλg,h∆d
k
h ∀h, k (C.2)

∑
g∈G

pg,t = dt ∀t (C.3)

∑
g∈G

P 0
g,h = dh ∀h (C.4)
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∑
g∈G

λg,h = 1 ∀h (C.5)

λg,h ≤ wpolg,h ∀g, h (C.6)

pg,t + rupg,t ≤ wg,t · Pmax
g ∀g, t (C.7)

pg,t − rdowng,t ≤ wg,t · Pmin
g ∀g, t (C.8)

P 0
g,h + λg,h ·∆dkh ≥ wpolg,h · Pmin

g ∀g, h, k (C.9)

P 0
g,h + λg,h ·∆dkh ≤ wpolg,h · Pmax

g ∀g, h, k (C.10)

pg,t − pg,t−1 ≤ Rup
g ∀g, t = 2 (C.11)

pg,t − pg,t−1 ≥ Rdown
g ∀g, t = 2 (C.12)

P 0
g,h + λg,h · (∆dkh + rkh,p) ≤ wpolg,h · Pmax

g ∀g, h, p, k (C.13)

λg,h · rkh,p ≤ p · wpolg,h ·Rup
g ∀g, h, p, k (C.14)

P 0
g,h + λg,h · (∆dkh + rkh,p) ≥ wpolg,h · Pmin

g ∀g, h, p, k (C.15)

λg,h · rkh,p ≥ p · wpolg,h ·Rdown
g ∀g, h, p, k (C.16)

P 0
g,h − pg,t ≤ Rup

g ∀g, t, h (C.17)

P 0
g,h − pg,t ≥ Rdown

g ∀g, t, h (C.18)

rupg,t ≤ wg,t ·Rup
g ∀g, t (C.19)

rdowng,t ≤ wg,t ·Rdown
g ∀g, t (C.20)∑

g∈G

rupg,t ≥ r5uph ∀g, t (C.21)

∑
g∈G

rdowng,t ≥ −r5downh ∀g, t (C.22)

ug,t − vg,t = wg,t − wg,t−1 g ∈ QSU, h > 0 (C.23)

ug,t + vg,t ≤ 1 ∀g ∈ QSU, h (C.24)

wg,t = wg,h ∀g ∈ LSU, t (C.25)

ug,t = ug,h ∀g ∈ LSU, t (C.26)
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vg,t = vg,h ∀g ∈ LSU, t (C.27)

wg,t, ug,t, vg,t ∈ {0, 1} ∀g, t (C.28)

(C.1) is the objective function, which comprises the dispatch costs and the costs of

commit and shut down quick start units, (C.2) is the cost of the policy reserves. (C.3) is

the power balance constraint for deterministic horizon, whereas (C.4) ensures hourly bal-

ance of look-ahead, intra-hourly balance is given by (C.5). limits the provision of reserves

to the units that are active during the look-ahead horizon. (C.7)-(C.8) limit maximum and

minimum power output for all deterministic set-points and (C.9)-(C.10) for policy dis-

patch, (C.11)-(C.12) and (C.13)-(C.16) are the ramp constraints for set-points and policy

dispatch respectively. Constraints (C.17)-(C.18) impose continuity between deterministic

and look-ahead horizons. Maximum up and down reserves are addressed in (C.19)-(C.20),

and coverage of requirements is modeled in (C.21)-(C.22). (C.23)-(C.24) are the logical

constraints for commitment variables. (C.25)-(C.27) ensures the commitment status of a

LSU is consistent with its UC Solution. Finally, (C.28) is the constraint of the nature of

variables.
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D. IEEE 118 BUSES DATABASE

Table D.1. Generator Data IEEE 118 Buses

- Pmax Pmin Rup Rdown FC VC MinUp MinDw SDCost SUCCost

- [MW] [MW] [MW/h] [MW/h] [$/h] [$/MWh] [h] [h] [$] [$]

G1 30 5 25 25 26.55 27.08 1 1 0 120

G2 30 5 25 25 25.85 31.30 1 1 0 120

G3 30 5 25 25 26.10 27.90 1 1 0 120

G4 300 150 60 60 8.05 12.06 8 8 0 1320

G5 300 100 60 60 7.82 11.04 8 8 0 330

G6 30 10 25 25 28.87 28.51 1 1 0 120

G7 100 25 20 20 12.26 14.64 5 5 0 150

G8 30 5 25 25 28.51 30.45 1 1 0 120

G9 30 5 25 25 26.38 26.44 1 1 0 120

G10 300 100 60 60 7.12 11.72 8 8 0 300

G11 350 100 70 70 35.59 10.11 8 8 0 300

G12 30 8 25 25 29.49 29.17 1 1 0 120

G13 30 8 25 25 27.62 30.89 1 1 0 120

G14 100 25 20 20 11.96 14.13 5 5 0 150

G15 30 8 25 25 27.95 29.76 1 1 0 120

G16 100 25 20 20 11.61 16.76 5 5 0 150

G17 30 8 25 25 29.17 26.76 1 1 0 120

G18 30 8 25 25 27.25 28.10 1 1 0 120

G19 100 25 20 20 10.64 14.85 5 5 0 177

G20 250 50 50 50 30.48 10.83 8 8 0 300

G21 250 50 50 50 30.74 10.60 8 8 0 300

G22 100 25 20 20 12.59 15.37 5 5 0 150

G23 100 25 20 20 11.87 15.19 5 5 0 150

G24 200 50 40 40 43.01 11.31 8 8 0 300

G25 200 50 40 40 39.49 13.01 8 8 0 300

G26 100 25 20 20 12.12 15.34 5 5 0 150

G27 420 100 84 84 72.78 7.93 10 10 0 750

G28 420 100 84 84 69.33 8.28 10 10 0 750
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G29 300 80 60 60 7.91 10.99 8 8 0 300

G30 80 30 66.7 66.7 66.83 17.83 4 4 0 135

G31 30 10 25 25 29.35 29.59 1 1 0 120

G32 30 5 25 25 27.59 30.83 1 1 0 120

G33 20 5 16.7 16.7 15.75 43.75 1 1 0 90

G34 100 25 20 20 11.94 15.09 5 5 0 150

G35 100 25 20 20 11.93 15.18 5 5 0 150

G36 300 150 60 60 8.22 12.28 8 8 0 1320

G37 100 25 20 20 11.73 14.73 5 5 0 150

G38 30 10 25 25 29.17 29.44 1 1 0 120

G39 300 100 60 60 35.29 10.17 8 8 0 1320

G40 200 50 40 40 7.73 11.14 8 8 0 1200

G41 20 8 16.7 16.7 15.22 44.87 1 1 0 90

G42 50 20 41.7 41.7 48.05 23.87 1 1 0 135

G43 300 100 60 60 7.28 12.65 8 8 0 300

G44 300 100 60 60 7.92 11.17 8 8 0 300

G45 300 100 60 60 7.41 12.10 8 8 0 330

G46 20 8 16.7 16.7 16.74 40.36 1 1 0 90

G47 100 25 20 20 11.24 14.73 5 5 0 150

G48 100 25 20 20 11.25 15.41 5 5 0 150

G49 20 8 16.7 16.7 15.77 40.55 1 1 0 90

G50 50 25 41.7 41.7 48.88 25.28 2 2 0 135

G51 100 25 20 20 11.18 15.01 5 5 0 150

G52 100 25 20 20 10.93 15.01 5 5 0 150

G53 100 25 20 20 12.04 16.22 5 5 0 150

G54 50 25 41.7 41.7 50.68 26.73 2 2 0 135
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