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Resumen

En esta tesis presentamos un modelo de control cuántico para transiciones de estados

puros y mixtos, aplicado a un qubit. El modelo está basado en la geometría del espacio

de los estados cuánticos dada por la métrica de Bures y la ecuación de Liouville-von

Neumann, la cuál contiene información sobre los parámetros de los campos de control.

Además, hacemos una revisión y simulación de los modelos o algoritmos de control

cuántico que están bien establecidos en el área de control cuántico. Hemos llegado a

concluir que nuestro trabajo supera a los modelos CRAB y GRAPE cuándo se desea llegar

al estado final en menos pasos; es decir, haciendo evolucionar al estado inicial lo menos

posible, cumpliendo con un rango de valor de infidelidad deseado.
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Abstract

We present a new method in quantum control which consists in starting from a known

initial state, evolve it until reaches a target state. This model combines the Riemannian

geometry of density matrices given by the Bures metric and is applied to a two level

quantum system: the qubit. Our model is a prototype that can challenge well established

models like CRAB, GRAPE and Krotov. In this work, we review and simulate the models

mentioned before and compare them with our model. We can show that our model

outperforms GRAPE and CRAB, if one is interested in arriving to the final state with a

small amount of steps given by the evolution operator of the initial state while keeping a

low value of infidelity.
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Chapter 1

Introduction

Quantum control has gained a considerable interest since 1970 and nowadaysmore with

the emerging of the Quantum Computing revolution (Brif et al. 2010). Quantum control

is the art of steering a known initial quantum state to a known final one (Cong 2014). If

one searches for methods and theory of steering quantum states, there are numerous ways

and algorithms doing it (Cong 2014; Goerz et al. 2019; Machnes et al. 2018; Caneva et al.

2011). In this context, we propose in this thesis a cunning solution to the problem of

steering which concerns the geometry of the density matrix manifold.

In a general sense, we want to study the trajectories in the manifold of density matrices.

A natural way to get a trajectory is by the Hamiltonian evolution of an initial state. On the

other hand, the set of density matrices with Bures metric is a Riemannian manifold. Thus,

there is a geodesic equation between two quantum states. The aim of this work consists

of finding a Hamiltonian or a set of Hamiltonians which accomplishes two things: steers

the initial state to the final one and approximates the path of the geodesic between the two

states.

To motivate the reader we want to present a brief introduction of our proposal of

steering an initial state to a final one in general terms. This is done just to give a hint that

our model can be promising and it can challenge well established models or algorithms in

the quantum control community like CRAB, GRAPE and Krotov. Without being highly

9



CHAPTER 1. INTRODUCTION

specific of our methodology, at first it needs a Hamiltonian � = �0 +�2 of the hole system

with its unitary evolution operator*. The Hamiltonian � consists of two parts: �0 which

is the Hamiltonian of the system without any perturbation and �2 which is the Hamiltonian

that has the control fields parameters. These parameters are very important and they form

a set of real unknown constants given by = = {=G , =H, =I, . . .} and 4C. The set = can be

expanded or diminished depending on the transition that one wants as we will see in § 3.

One will see that the set = gives the “direction” on the Bloch sphere where the final state is

located and 4C gives the “forward” evolution on the Bloch sphere to reach the final state.

Thus, � = � (=G , =H, . . . , 4C) and * = * (=G , =H, . . . , 4C). As one will see, these ideas

are not seen in well establish models like CRAB, GRAPE and Krotov; however, we can

explain a bit more how to get the unknown parameters.

The parameters =G , =H, and =I, that we had used in our model, come from the opti-

mization of the function cosU given by (2.1) which concerns the derivative of the geodesic

equation (1.76) and the Liouville-von Neumann equation which contains the Hamiltonian

and within it the control parameters. The 4C can have a fixed value at first according to

the algorithms reviewed; however we find a feasible idea that it can be gauged according

to the fidelity which is a function that measures how “equal” or “similar” are two states.

This can be seen in section 3.4 of § 3 with the “hybrid model”.

In addition, this work is completed by several graphs and charts in order to explain

what we have done and to contrast with other methodologies or algorithms. We hope that

the reader enjoy our work and believe as we do that our model in the future will be a well

establish quantum control algorithm of steering quantum states.

Having said the field of our investigation, our objectives and a brief resume of our

proposal to solve the steering problem, we want to conclude this introduction by stating

how this work is presented. This thesis is structured as follows. In the introduction,

we revisit how to steer an initial state to a final one and some important methods and

algorithms. Also, we give the mathematical framework that we need in order to study

trajectories of quantum states. Next, we present our methodology where we are going

10



CHAPTER 1. INTRODUCTION

to use concepts of the geometry of the quantum state manifold to solve the problem of

steering using the geodesic of this manifold. Following the methodology, we have results

and discussion and finally we end up this work with conclusions and what we need to work

in the future.

1.1 How to control a two level quantum system, the qubit

After the theoretical and experimental study of separating the geometrical phase from

the dynamical phase in neutron spin experiments (Wagh & Chand Rakhecha 1990; Wagh

& Rakhecha 1993; Wagh et al. 1997), the authors (Wagh & Rakhecha 2001) proposed that

any evolution of a two level quantum system can be implemented by any member of the

following infinite set of Hermitian Hamiltonians expressed in terms of Pauli matrices ®f

as:

� =
~
2
®f · { ®W × ¤®W + F(C) ®W}, (1.1)

where F(C) is an arbitrary real function of time and ®W is the direction of the magnetic field.

In this Hamiltonian set, the first term which contains ( ®W × ¤®W) are the Hamiltonians that

generate geometric phases and the last term which contains F(C) ®W are Hamiltonians that

generate the dynamical phase.

In (Bohm et al. 2003), it is known that the geometric phase appears on eigenstates of

the Hamiltonian when the parameter Ŵ = ®W
|W | traverses a closed path on the parameter space

which in this case is given by the direction of the magnetic field that geometrically can be

represented as points on the sphere (2:

(2 = {Ŵ ∈ R3 : |Ŵ | = 1}, . (1.2)

In a close path represented as C : W(0) → W(C) → W()) = W(0), where ) is the period of

the close path, the Hamiltonian � that depends on W(C), its eigenvalues 1 represented as

1supposed to be discrete
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CHAPTER 1. INTRODUCTION

�= (W(C)) and the projection operators that can be represented as |=, W(C)〉 〈=, W(C) | at W(0)

are the same as W()). In equations this will be:

� (W(0)) = � (W()))

�= (W(0)) = �= (W()))

|=, W(0)〉 〈=, W(0) | = |=, W())〉 〈=, W()) |.

(1.3)

But for eigenstates given by |=, W(C)〉 in general we must have

|=, W(0)〉 = 48n= (W) |=, W())〉 , (1.4)

where 48n= (W) is a phase factor. This is because eigenvectors are defined only up a phase

factor. The important fact about this phase2 is that it contains information about the

geometry of the parameter space. In this work, we are working with trajectories that starts

in an initial state given by |k1〉 and evolves it until it reaches a final state given by |q2〉 with

|k1〉 ≠ |q2〉. Thus, we can neglect in (1.1) the part that generate geometric phases. As a

complement, (Aguiar Pinto et al. 2009) made a theoretical study of a two level quantum

system interacting with a classical electromagnetic field, similar as our case, where they

showed that if the classical electromagnetic field is real, one can not see the geometrical

phase. On the other hand, in the same research appears that working with a complex

classical electromagnetic field, the eigenstates acquire a geometric phase along a close

loop in the parameter space (1.2).

Giving the above explanation, the first term of the set (1.1) can be eliminated for

trajectories that the initial state is different form the final state, given the following generator

of evolution for a two level quantum system

� =
1
2
F(C) ®f · ®W, (1.5)

with ~ = 1, ®W = (WG , WH, WI) is the magnetic field direction.

2that appears after close path on the parameter space

12



CHAPTER 1. INTRODUCTION

Following the above Hamiltonian, in (Cong 2014) a qubit, which is a single spin 1/2

particle, is controlled doing the following. The quantum system called the controlled

system, consisting of a qubit in a fixed magnetic field �0 in the I − 0G8B and a control

magnetic field3 on the G − H plane given by

�G = � cos(FC + q)

�H = −� sin(FC + q).
(1.6)

The Hamiltonian � of the system is the sum of a free Hamiltonian �0 = −
W�0~

2
fI and

a control Hamiltonian �2 =
~W
2
(�GfG + �HfH) with W the magnetic ratio of the particle,

thus

�0 = −~
2
F0fI

�2 (C) = −~Ω
2
(4−8(FC+q)f− + 48(FC+q)f+),

(1.7)

where F0 = W�0 is the natural frequency or eigenfrequency of the system and Ω = W� is

the Rabi frequency of the particle, f− =

0 0

1 0

 and f+ =

0 1

0 0

 .
In matrix form we end up with,

� = �0 + �2 = −
~
2


F0 Ω48(FC+q)

Ω4−8(FC+q) −F0

 . (1.8)

Going into the frame of the control field, using the transformation *2 = 4−8FCfI/2, the

Hamiltonian becomes

�4 5 5 = *2�*
†
2 + 8~ ¤*2*†2 , (1.9)

thus
3complex

13



CHAPTER 1. INTRODUCTION

�4 5 5 =
(F0 − F)~

2
fI −

Ω~
2
fG cos q + Ω~

2
fH sin q =

~
2


F − F0 −Ω48q

−Ω4−8q −F + F0

 . (1.10)

The evolution operator associated to this Hamiltonian is given by*4 5 5 = 4−
8C
~�4 5 5 ,

*4 5 5 (C) =

cos(0C) + 8(F0−F)

2 sin(0C) 8Ω
20 4

8q sin(0C)
8Ω
20 4
−8q sin(0C) cos(0C) − 8(F0−F)

2 sin(0C)

 . (1.11)

where 0 =
√
(F0−F)2

4 + Ω2

4 .

This was done using the Pauli matrix exponentiation given by

481(=̂.®f) = � cos(1) + 8 sin(1) (=̂.®f), (1.12)

where ®1 = 1=̂ and |=̂| = 1. In our case, 1 = 0C, =̂ = 1/1


−ΩC2 cos q
ΩC
2 sin q

−C
2 (F0 − F)


and ®f =


fG

fH

fI


.

In the resonant situation where F = F0, we can get

*4 5 5 (C) =


cos(Ω2 C) 848q sin(ΩC2 )

84−8q sin(ΩC2 ) cos(ΩC2 )

 . (1.13)

Returning to laboratory frame*2 = 4−8F0CfI C/2 and using

� = *†2�
′*2 − 8~*†2 ¤*2, (1.14)

which gives,

� =
−~F0

2
fI −

~Ω
2

cos(F0C + q)fG +
~Ω
2

sin(CF0 + q)fH (1.15)

and the evolution operator in laboratory frame is given by* (C) = *−1
2 *4 5 5

14



CHAPTER 1. INTRODUCTION

* (C) =


48
CF0

2 cos
(
ΩC

2

)
848

CF0+2q
2 sin

(
ΩC

2

)
84−8

(F0C+2q)
2 sin

(
ΩC

2

)
4−8

CF0
2 cos

(
ΩC

2

)  . (1.16)

Factoring this operator we get,

* (C) =

4(8F0C+q)/2 0

0 4−8(F0C+q)/2



cos ΩC2 8 sin ΩC

2

8 sin ΩC
2 cos ΩC2



4−8q/2 0

0 48q/2

 , (1.17)

where the first matrix rotates a point around the I − 0G8B by an angle of (F0C + q), the

second rotates a point around the G − 0G8B by an angle ΩC and the last one again makes a

rotation around the I − 0G8B by an angle of q.

With these matrices one moves points of the sphere by controlling the parameters Ω, q

and C. It is important to notice that we can have different trajectories on the Bloch sphere

when we choose different configurations of the latter parameters, although we have the

same initial and final states.

To get the optimal trajectory under the action of the control Hamiltonian one can choose

between the shortest time or the minimal trajectory. In the following section, we will show

how some algorithms deal with the control.

1.2 Steering an state: the most common methods so far

In general, an optimal quantum control problem can be stated with the following ideas.

One has a Hamiltonian � (acting on Hilbert space H = C# ) that describes the system

which depends on some control parameters D 9 (C) with 9 = 1, . . . , #2, where D′9 B are in

general time dependent (pulse shape) and #2 is the number of controls that one has or could

implement. Thus, the main point of quantum control theory is to find the D′
9
B that extremize

a given objective function F , such as the system energy, the fidelity or entanglement. In

most cases, it is necessary to start with an initial guess of values D0
9
(C) and search for

15



CHAPTER 1. INTRODUCTION

updates or corrections until one arrives to the desired state with a certain error or to get

to the optimal value for the objective function. In the following, we want to present the

mostly used optimization algorithms.

1.3 GRAPE optimization

GRAPE stands for GRadient Ascent Pulse Engineering. It is used for optimizing pulse

sequences for steering the dynamics of coupled nuclear spins (Khaneja et al. 2005). In

the following, we want to describe the theory, the algorithm and some examples around

GRAPE algorithm.

Themethod considers the problem of pulse design for polarization or coherence transfer

in the absence of relaxation. Let d(C) be the state of a spin system. Thus, its equation of

motion is given by the Lioville-von Neumann equation:

¤d(C) = −8[(�0 +
<∑
:=1

D: (C)�: ), d(C)], (1.18)

where �0 is the Hamiltonian of the system without perturbation, �: are the control

Hamiltonians and D(C) = (D1(C), D2(C), . . . , D< (C)) are the amplitudes of the control fields.

We need to find the optimal amplitudes D: (C) of the radio frequency fields that steer

a given initial density operator, the initial state, d(0) = d0 during a specific time ) to a

density operator d()) with maximum overlap to some desired target density operator �,

the final state.

The overlap function is given by the Hilbert-Schmidt scalar product. This product is

defined on the �∗-algebra of bounded linear operators on H , denoted by B(H). In our

case, dealing with finite dimension, the B(H) is the algebra of all =× = complex matrices,

with 38<H = =. The product is given by,

〈�, �〉 = )A (�†�), (1.19)

where �, � ∈ B(H).
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For GRAPE algorithm the overlap function is given by,

Φ0 = 〈� |d())〉 = )A (�†d())) (1.20)

The method divides the time interval ) into # equal parts,

4C = )/#, (1.21)

where D: is constant, according to Fig. 1.1.

Figure 1.1: Schematic representation of a control amplitude D: (C), consisting of # steps of duration

4C = )/# . The arrows represent the gradients XΦ0/XD: ( 9) showing how each D: ( 9) might be

modified in the next iteration to improve the performance of the overlap function Φ0. Image

reproduced from (Khaneja et al. 2005)

The evolution operator at time 9 is given by,

* 9 = 4
−84C (�0+

∑<
:=1 D: ( 9)�: ) . (1.22)

Thus, the evolution of the state is given by

d()) = *# . . . *1d0*
†
1 . . . *

†
#
. (1.23)

Expanding the overlap function,

Φ0 = 〈� |*# . . . *1d0*
†
1 . . . *

†
#
〉

= 〈*†
9+1 . . . *

†
#
�*# . . . * 9+1 |* 9 . . . *1d0*

†
1 . . . *

†
9
〉.

(1.24)
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We can define

_ 9 = *
†
9+1 . . . *

†
#
�*# . . . * 9+1, (1.25)

which is � backward propagated at C = 94C, and

d 9 = * 9 . . . *1d0*
†
1 . . . *

†
9
, (1.26)

which is d0 propagated forwards at time C = 94C.

We might ask: How does Φ0 change when we perturb the control amplitude D: ( 9) ?

The perturbation of D: ( 9) is given by

D: ( 9) −→ D: ( 9) + XD: ( 9). (1.27)

Thus, using time-dependent perturbation theory, a change in * 9 to the first order in

XD: ( 9) is given by

X* 9 = −84CXD: ( 9)�:* 9 , (1.28)

with

�:4C =
∫ 4C

0
* 9 (g)�:* 9 (−g)3g, (1.29)

and with

* 9 (g) = exp (−8g(�0 +
<∑
:=1

D: ( 9)�: )). (1.30)

For small 4C, which is 4C � ||�0 +
∑<
:=1 D: ( 9)�: | |−1, we can assume �: ≈ �: . Thus,

using (1.24) and (1.28),
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XΦ0 = 〈_ 9 |X* 9 . . . *1d0*
†
1 . . . *

†
9
+* 9 . . . *1d0*

†
1 . . . X*

†
9
〉

XΦ0
XD: ( 9)

= 〈_ 9 |
X* 9

XD: ( 9)
(* 9−1 . . . *1d0*

†
1 . . . *

†
9
) +* 9 . . . *1d0*

†
1 . . . *

†
9−1

X*
†
9

XD: ( 9)
〉

= 〈_ 9 | − 84C�:d 9 + 84Cd 9�:〉.

(1.31)

Thus,
XΦ0
XD: ( 9)

= −84C 〈_ 9 | [�: , d 9 ]〉 . (1.32)

Finally, we can increase the performance of Φ0 updating D: ( 9),

D: ( 9) −→ D
′

: = D: ( 9) + n
XΦ0
XD: ( 9)

, (1.33)

where n is small.

1.3.1 GRAPE algorithm

If we want to build an algorithm to maximize the overlap function, the following will

be useful:

1. Guess the initial D: ( 9)

2. Starting from d0, calculate

d 9 = * 9 . . . *1d0*
†
1 . . . *

†
9
, ∀ 9 ≤ #. (1.34)

3. Starting from _# = �, calculate

_ 9 = *
†
9+1 . . . *

†
#
�*# . . . * 9+1, ∀ 9 ≤ # (1.35)

4. Evaluate XΦ0
XD: ( 9) and update the<×# control amplitudes D: ( 9) by D

′

:
= D: ( 9)+n XΦ0

XD: ( 9)

with n a small number, : = 1, . . . , < and 9 = 1, . . . , # . Evaluate the overlap function,

if it has a higher value we are done, if not return to step 2.
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1.3.2 GRAPE in action

As a demonstration of GRAPE, we want to steer the state |0〉 to |G+〉 = 1√
2
( |0〉 + |1〉).

In a pictorical way, we want to go from the North pole |0〉 to one point in the Equator |G+〉.

For this task, we can take

�: = {fG , fH, fI}, and �0 = −
1
2
F0fI (1.36)

with F0 the natural frequency of the system and the evolution operator is given by

* 9 = � cos(D: ( 9)4C) − 8�: sin(D: ( 9)4C), (1.37)

with : = 0, . . . , 3 and D0 = −F0
2 .

The initial values for D(C) are

D =


0 0 0 0 0 0 0

−0.001 −0.001 0 0 0.001 0.001 0.001

F0/2 F0/2 F0/2 F0/2 F0/2 F0/2 F0/2


. (1.38)

The number of rows are the pulses or fields that are controlling the system and the number

of columns are the number of times that we divide the time 4.

With the above information, one produces the trajectory in Fig. 1.2.

Trying another initial state,

|k〉 = cos(c/8) |0〉 + sin(c/8) |1〉 , (1.39)

which is located in the meridian that joins |0〉 and |G+〉 and we want to get to |H+〉 which

is located in the Equator.

This time we want to use the GRAPE algorithm in Qutip (Johansson et al. 2013) which

is a Python package about quantum mechanics and it has the GRAPE algorithm ready to

4The matrix D has been designed only as an illustrative example because in a real simulation there are

more controlled fields and the time is divided more times.
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Initial State

Final State

Figure 1.2: Transition from the initial state |0〉 to the final state |G+〉. The red dot is the initial state

and the blue is the final state. The trajectory on the Bloch sphere is given by GRAPE algorithm.

The graph was made with Mathematica and following the algorithm with (1.38), �0 =
−F0

2 fI ,

F0 = 5, �2 = DGfG + DHfH + DIfI , n = 0.4, # = 7 and 45 iterations to arrive the final state and

Φ0 = 0.999944.

use. We have the trajectory shown in Fig. 1.3 on the Bloch sphere using the the GRAPE

algorithm. This graph is made using �0 = −F0
2 , �2 = DGfG +DHfH with DG and DH unknown

constants and 9 = 1, 2, the total time of evolution is ) = 1 and it is divided in # = 100

parts (4C = )
#
= 1

100 ) and with an infidelity of around ×105.
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Figure 1.3: Transition from the initial state |k〉 = cos(c/8) |0〉 + sin(c/8) |1〉 to the final state

|H+〉, using Qutip package. The trajectory on the Bloch sphere is given by GRAPE algorithm.

Every vector on the sphere shows the path with the optimize parameters for �0 =
−F0

2 fI , �2 =

DGfG + DHfH , F0 = 5, ) = 1, # = 100 and the fidelity error ×10−5

1.4 CRAB Algorithm

CRAB takes the acronym from"ChoppedRAndomBasis" technique. This optimization

is based on the definition of a truncated randomized basis of functions for the control

fields that transform the problem of a functional minimization to a multivariable function

minimization that can be solved by a direct-search method (Caneva et al. 2011). In the

case of state-state transition, the goal of CRAB algorithm is similar as before. Given

a Hamiltonian � acting on a Hilbert space H that depends on a set of time-dependent

driving fields {n 9 (C)}, search for the optimal transformation to drive, in time ) , the initial

state |k0〉 ∈ H into a target state |k�〉 ∈ H but minimizing the infidelity function which is

I()) = 1 − | 〈k()) |k�〉 |2. (1.40)
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1.4.1 CRAB in action

Wewant to present a state to state transitions using CRABmethod. As well as GRAPE,

CRAB is implemented in Qutip. We want to evolve the North pole given by

|k〉 = |0〉 , (1.41)

to the state, |H+〉, given by

|H+〉 =
1
√

2
( |0〉 + 8 |1〉). (1.42)

The path given by this algorithm can be seen in Fig. 1.4. Each vector shows the

trajectory of the initial state |k〉 to the final state.

Figure 1.4: Transition from the initial state |0〉 to the final state |H+〉. The trajectory on the

Bloch sphere is given by the CRAB method of the Qutip package in Python. Every vector on the

sphere shows the path that the initial state follows after the optimization. The graph corresponds to

�0 =
−F0

2 fI , F0 = 5, �2 = nGfG + nHfH , ) = 1, # = 100 and the fidelity error ×10−3

1.5 Krotov’s method

An improvement of GRAPE algorithm is the Krotov’s method or simply Krotov. As

we reviewed, GRAPE rely on forward propagation, backward propagation and update of
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controls. In contrast, Krotov requires sequential updates and it does not need for a line

search in the direction of the gradient (Goerz et al. 2019).

Krotov’s method follows the same procedure as the general control method. The

Hamiltonian � (C) of the system depends on one or more control fields {n; (C)} and it is

assumed that the dependence is linear

� (C) = �0(C) + n1(C)�1 + n2(C)�2 + . . . . (1.43)

Krotov can be use to optimize the control fields {n; (C)} in a state to state transfer and

to get the unitary operator of the evolution.

For state to state transition, the objective is to steer a known state |q〉 or a set of states

{|q: (C)〉} at time zero to a target state |qC6C〉 at time ) . To achieve the objective, Krotov

minimizes the following functional

� [{|q(8)
:
(C)〉}, {n (8)

;
(C)}] = �) ({|q(8): ())〉}) +

∑
;

∫ )

0
60 (n (8); (C))3C +

∫ )

0
61 ({q(8): (C)})3C,

(1.44)

where {q(8)
:
())} are time evolved initial states {|q:〉} controlled by {n (8)

:
(C)} of the 8’th

iteration. If we want to transfer a single state, : is zero and for a single control field ; is

zero. Also for open quantum systems, the states {|q:〉} can be density matrices.

The main parts of the functional are the following:

• �) called the final time functional, which for state to state transition |q〉 → |qC6C〉

has the form

�),BB = 1 − | 〈qC6C |q())〉 |2, (1.45)

where |q())〉 is the evolution of |q〉 at time ) . In general Krotov minimizes one

minus the transition probability. The equation (1.45) is related with the term know as

fidelity which we are going to review some of its properties in the following sections.

• 60 is the running cost on the control fieldswhich helps the convergent of the algorithm

and it depends on the shape of the update fields.
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• 61 (optional) is the state dependent running cost. This encodes time dependent

control targets or to penalize population in a subspace.

1.5.1 Krotov in action

The same as we did with GRAPE, we want to show some transitions. Using the Krotov

package in Python, we want to evolve the initial state

|k〉 = cos(c/8) |0〉 + sin(c/8) |1〉 , (1.46)

to the state

|H−〉 =
1
√

2
( |0〉 − 8 |1〉). (1.47)

The path can be seen in Fig. 1.5.

As another example, we have chosen the transition from the same |k〉 to

|G−〉 =
1
√

2
( |0〉 − |1〉). (1.48)

The trajectory on the Bloch sphere is shown in the Fig. 1.6.

Looking into the algorithms and their graphs, one can see that every method maximize

almost the same function which is the fidelity. Also, one can notice that every trajectory

makes turns until they reach to the destiny instead of going directly to the final state. In

contrast, our work aims to implement the geodesic of the density matrices manifold and

maximize a function that concerns the geodesic and the evolution of the initial state. This is

a completely different approach to solve the same problem. Before reviewing the geodesic

and the objective function that has to be optimized, we want to introduce the geometry of

Quantum states to settle the mathematics behind our methodology.
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Figure 1.5: Transition from the initial state |k〉 = cos(c/8) |0〉 + sin(c/8) |1〉 to the final state

|H−〉. The trajectory on the Bloch sphere is given by the Krotov method. Every vector on the

sphere shows the path that the initial state follows after the optimization. The graph was made

using: �0 = −F0
2 fI , F0 = 5, �2 = nGfG + nHfH , the control parameters are modeled as Blackman

functions with a constant amplitude of 0.2, with C_BC0A = 0, C_BC>? = 1, C_A8B4 = 0.3 and ) = 1,

# = 50 and the fidelity error of ×10−5.

1.6 Geometry of Quantum states

In this section, we want to present the mathematical framework that our work is based

in order to study trajectories of the set of Quantum states.

1.6.1 States viewing from Physics and Maths

The definition of state in physics differs from the mathematical definition but both of

them are related. In quantum mechanics, a state is a complete description of quantum

system. From the mathematical point of view, a state is represented by a vector |k〉 and it is

a ray in a Hilbert spaceH . A ray is a subspace of the Hilbert spaceH because physically,

we can not distinguish between the state |k〉 from the state 2 |k〉 where 2 ∈ C, thus we say

that 2 |k〉 represents the same state as |k〉. The set of rays is the complex projective space
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Figure 1.6: Transition from the initial state |k〉 = cos(c/8) |0〉 + sin(c/8) |1〉 to the final state

|G−〉. The trajectory on the Bloch sphere is given by the Krotov method. Every vector on the

sphere shows the path that the initial state follows after the optimization. The graph was made

using: �0 = −F0
2 fI , F0 = 5, �2 = nGfG + nHfH , the control parameters are modeled as Blackman

functions with a constant amplitude of 0.2, with C_BC0A = 0, C_BC>? = 1, C_A8B4 = 0.3 and ) = 1,

# = 50 and the fidelity error of ×10−5.

denoted by C%#−1 which has 2# − 2 real dimensions. In summary, there is a one to one

correspondence between physical states and rays in H where a ray is an equivalent class

of vectors that differ by a multiplication of a non zero complex scalar.

Being specific, rays are also called pure states and we will work with normalized states,

〈k |k〉 = 1, and with finite dimensional Hilbert spaces of (complex) dimension # .

Pure states describe closed quantum systems but Nature prevent us for having purity.

Working with open systems we are limited to study a part of a large system where states

are not rays (Preskill 2020). Systems with two or more subsystems are called Composite

Systems. For example, a bipartite system has two subsystems, � with Hilbert space H�

and � with Hilbert space H�, thus the Hilbert space of the composite system �� is the

tensor product H� ⊗ H�. If the system � is prepared in the state |k�〉 and the system

� is prepared in the state |k�〉, then the state that belongs to the composite system �� is
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|k�〉 ⊗ |k�〉.

Composite systems are useful whenwe do not have access to a subsystem. For example,

one can imagine that we have a system composed of two qubits. Qubit � which is in the

laboratory and we can manipulate or observe it. On the other hand, qubit � is locked

and we do not have access to it. In a general bipartite system, let {|8�〉} and {| 9�〉} be

orthogonal basis inH� andH�, respectively. Thus, a general pure state can be of the form

|k〉 =
∑
8, 9

28 9 |8〉 ⊗ | 9〉 , (1.49)

where we need
∑
8, 9 |28 9 |2 = 1 in order to be normalized. We can introduce the reduce

density matrix and the density matrix as

d� = )A�d = )A� ( |k〉 〈k |), (1.50)

where d = |k〉 〈k | is the density matrix and d� is the reduce density matrix. In the last

equation, we had traced the space � which we do not have access.

Density matrices has the following properties:

1. d� is self-adjoint

2. d� is positive

3. )A (d�) = 1

4. If the state of the subsystem is a ray, we say that the state is pure. Otherwise it is

mixed.

5. For pure state |k〉, its density matrix dk = |k〉 〈k |, has the property d2
k
= dk

6. Density matrices form a convex set. For any two density matrices d1 and d2, we can

construct another one by taking a convex combination of them:

d = ?d1 + (1 − ?)d2, 0 < ? < 1. (1.51)

As a notation, we call mixture states or mixed density matrices or mixed states.
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7. Following the last idea, we can form a density matrix given an ensemble of a mixture

of pure states. An ensemble is a set of pure states and probabilities: {|k8〉 , ?8}"8=1,

such that ?8 ≥ 0 and
∑
8 ?8 = 1.

8. As a notation, the set of all density matrices d, f, g in a Hilbert space H will be

noted as E(H).

In summary, a state of a quantum system of Hilbert space H is given by a density

matrix d that is a non-negative operator defined on H with the property )Ad = 1. In

particular, pure states are the extreme points of the set E(H) and if |k〉 ∈ H

dk = |k〉 〈k | (1.52)

and ‖k‖ = 1

We want to finish this section with an important theorem of bipartite systems which is

the Schmidt decomposition.

Theorem 1.6.1 (Schmidt decomposition). Any pure state |k〉 ∈ H� ⊗ H� of a bipartite

system admits a decomposition

|k〉 =
=∑
8=1

√
`8 |U8〉 |V8〉 , (1.53)

where = = <8={=�, =�}, `8 ≥ 0, and {|U8〉}=8=1 and {|V8〉}=8=1 are orthonormal families of

H� andH�, respectively. `8 and |U8〉 are eigenvalues and eigenvectors of the reduce state

d� = )A� ( |k〉 〈k |) and |V8〉 are eigenvectors of the reduce state.

1.6.2 The Bures metric

Bures metric generalize the transition probability for pure states | 〈k |q〉 |2, where |k〉

and |q〉 are pure states, to mixed density matrices. This was done by using purifications

(Ericsson 2007).
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Definition 1.6.1 (Purifications). Let d be an arbitrary state on H and K be two Hilbert

spaces. A pure state |k〉 ∈ H ⊗ K such that d = )A: ( |k〉 〈k |) is called a purification of d

onH ⊗ K.

In basic terms, we want to find a pure state |k〉 for a composite system such that the

reduce density matrix of one of the subsystems is d. This is done by doing the following.

Let |k〉 ∈ H ⊗ H in Schmidt decomposition (Theorem 1.6.1)

|k〉 =
∑
8

28 |8〉� ⊗ |D8〉� , (1.54)

taking the trace respect to �, we get

d = )A� |k〉 〈k | =
∑
8

22
8 |8〉 A A 〈8 | , (1.55)

where this is possible if, and only if, |8〉� are eigenvectors of d and 28 are the square roots

of the eigenvalues of d. Notice that we have certain liberty in choosing the basis {|D8〉�}

because it can be any basis of the form {* |D8〉�}, for some* unitary operator. This liberty

will help us construct a fiber bundle in the following.

We can get an operator for every pure state |k〉 = ∑
8 9 28 9 |8〉� | 9〉� by replacing the | 9〉�

with B 〈 9 |, ending with, =
∑
8 9 28 9 |8〉 A B 〈 9 |. This, is also a purification of the reduce

state because

d = ,,†, (1.56)

but as we can see,* with * any unitary operator is also a purification of d. We end up

with a kind of a fiber bundle.

The , operators are called “amplitudes” and we can add a “phase” by applying a

unitary operator,*. We need to add a constrain regarding the trace of density operators,

)A,,† = 1. (1.57)
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The space where the operators , live is a subspace of the Hilbert Schmidt space which

means that the set of , are finite rank operators with (1.57) and will be notedW: . In

summary, a purification is a principal fiber bundle over the space of density operators

E(H). Where the projection is given by,

Π : W: → E(H)

, → Π(,) = ,,†.
(1.58)

The unitary operators of rank : in the Hilbert spaceH noted as* (:) being the symmetry

group and* (:) acts on the right by

'* (,) = ,*. (1.59)

In the spaceW: where purifications live we define distances by

�2(,1,,2) = )A (,1 −,2) (,†1 −,
†
2 ), (1.60)

meanwhile in the base space E(H) distances between two density matrices d1 and d2 are

defined as the length of the shortest path between the corresponding purifications

32
� (d1, d2) = min

*1,*2
�2(,1*1,,2*2) = 2 − 2 max

*
)A (,†1,2*), (1.61)

where* = *2*
†
1 .

In a practical sense, we need to use the polar decomposition5 such that , =
√
d*,

where* is a unitary operator. Thus, if,1 =
√
d1+ , for some + unitary operator,

(,†1,2*)2 = ,†1,2**
†,†2,1 = +

†√d1d2
√
d1+, (1.62)

taking the square root and then the trace,

max
*
)A (,†1,2*) = )A

√√
d1d2
√
d1. (1.63)

5see Appendix: A.2
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The term
√√

d1d2
√
d1 was defined by (Uhlmann 1976) as the generalized “transition

probablity” but it is more known as fidelity � after (Jozsa 1994). In terms of purifications,

� (d1, d2) = max
?DA8 5 820C8>=

| 〈k1 |k2〉 |2 =
(
)A

√√
d1d2
√
d1

)2
. (1.64)

Finally, the Bures distance is given by,

32
� (d1, d2) = 2

(
1 − )A

√√
d1d2
√
d1

)
= 2

(
1 −

√
� (d1, d2)

)
. (1.65)

Workingwith square roots ofmatrices is not an easy task becausewe need to diagonalize

thematrices before taking the root. However, if we are dealingwith qubits, that is dimension

2, there is a trick which use only the trace and the determinant of the matrix (see theorem

A.2.2 in Appendix A).

1.6.3 The Bures tensor metric

In this section we want to show that the Bures distance is Riemannain and determine

its metric 6�. A Riemannian metric on E(H) is a map which associates to each d ∈ E(H)

a scalar product 6d on the tangent space of E(H) at d. The tangent space can be identified

with the (real) vector space of traceless density matrices by the mixture representation of

a tangent vector (Fig. 1.7)(Andersson 2018; Spehner et al. 2017).

From any d ∈ E(H), we can extend it by a curve dC in E(H) with velocity ¤d. The

tangent vector ¤d is identified with the operator d(<) ∈ BB.00 by

¤d = ¤d(<) = lim
C→0

1
C
(dC − d) (1.66)

Clarifying the derivative of a density matrix, we can continue with the Bures metric.

To determine the Bures metric, we need to introduce a parameter C ∈ R such that,

3� (d, d + C3d)2 = 2 − 2)A (�(C)), with �(C) = (√d(d + C3d)√d)1/2. (1.67)

The scalar product will be given in terms of the eigenvectors |:〉 and eigenvalues ?: of d

according to the spectral decomposition d =
∑
: ?: |:〉 〈: |. One can find,
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Figure 1.7: We can identify a tangent vector of a density operator in E(H) with a traceless density

matrix which is in the space of bounded, traceless and self-adjoint operators, BB.00 . This is done by

“parallel transport” in the set E(H). This identification is called the mixture representation.

¤�(0)�(0) + ��(0) ¤�(0) =
√
d3d
√
d

¥�(0)�(0) + 2 ¤�(0) ¤�(0) + �(0) ¥�(0) = 0,
(1.68)

From the first equation,

〈: | ¤�(0) |;〉 =
√
?; ?:

(?; + ?: )
〈: | 3d |;〉 . (1.69)

In the second equation, multiplying by �(0)−1 and taking the trace,

)A ( ¥�(0)) = −)A ( ¤�(0)2�(0)−1) = −
=∑

:,;=1
?−1
: | 〈: | ¤�(0) |;〉 |

2 = −
∑
:,;=1

?; | 〈: | 3d |;〉 |2
(?: + ?;)2

,

(1.70)

where in the last step we have used (1.69).

With this results in mind, we return to the Bures distance and expand the term inside
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the trace until the second order, to get

3� (d, d + C3d)2 ≈ 2
(
1 − )A

(
�(0) + C

1!
¤�(0) + C

2

2!
¥�(0) + O[C3]

))
. (1.71)

We can see that

)A�(0) = )Ad = 1

)A ¤�(0) = )A3d = 0 because 3d is traceless.
(1.72)

In summary,

3� (d, d + C3d)2) = −)A ( ¥�(0))C2 + O[C3] . (1.73)

Thus, the tensor metric for a � ∈ BB.00 ,

(6�)d (�, �) =
1
2

∑
:,;

| 〈: | � |;〉 |2
?: + ?;

, � ∈ BB.00 , d > 0. (1.74)

Using the polar identity we get the Riemannian inner product for � and � in BB.00 ,

(6�)d (�, �) =
1
4

(
6d (� + �, � + �) − 6d (� − �, � − �)

)
; using polarization

=
1
8

∑
:.;

1
?; + ?:

(
| 〈: | (� + �) |;〉 |2 − | 〈: | (� − �) |;〉 |2

)
; from (1.74)

=
1
8

∑
:,;

1
?; + ?:

(
4'4

(
〈: | � |;〉. 〈: | � |;〉

))
; expanding factors

=
1
2
'4

(∑
:,;

〈: | � |;〉. 〈: | � |;〉
?; + ?:

)
; changing ; for :

(6�)d (�, �) =
1
2

∑
:,;

〈: | � |;〉. 〈: | � |;〉
?; + ?:

.

(1.75)

This inner product or the Bures inner product is very important in this work because

this inner product will guide an initial state to a final one with the help of the geodesic

between this two states.
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1.6.4 Geodesic of the density matrices set

Geodesics in the set of density matrices comes from purifications. Being more explicit,

if there is a geodesic between any pair of density matrices in E(H) there is a corresponding

preimage in the Hilbert-Schmidt space W: , having the same length. We know that

geodesics inW: are great circles then the geodesics in E(H) are projections of great

circles.

Turning into a formula, the geodesic of density matrices d and f in E(H) is given by

(Howardf N. Barnum 1998; Ericsson 2005, 2007):

W(C) =
(
cos(C\0) −

sin(C\0)
tan(\0)

)2
d + sin2(C\0)

sin2 \0
f + sin(C\0)

sin \0
×(

cos(C\0) −
sin(C\0)
tan \0

) (
f−1/2(

√
fd
√
f)1/2f1/2 + ℎ2

)
,

(1.76)

where cos \0 =
√
� (d, f), ℎ2 is the transpose conjugate operation, � (d, f) is the fidelity

(Spehner 2014; Jozsa 1994; Ericsson 2005), and C is a parameter between 0 and 1. The

details of how this equation appears is not an easy task for an introduction, thus the reader

can see appendix B.
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Methodology

In general terms, our methodology of steering an initial state is similar as methods like

GRAPE, Krotov and CRAB. However, our function, as we will see in this chapter, that we

want to maximize is the cosine of the angle between the time derivative of the geodesic ¤W(C)

and the time evolution of a density matrix given by the Liouville-von Neumann equation.

Keeping this general idea in mind our methodology stated as follows.

First, we need to select a Hamiltonian � or a set of Hamiltonians that will evolve the

initial state d to the final one f. The Hamiltonian � will depend on some real parameters

{=1, =2, =3, . . .} which may depend or may not in time. This parameters will be chosen in

order to maximize a function. Second, the function is the cosine of U given by the Bures

inner product (1.75):

cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | |

, (2.1)

where ¤W(C) is the derivative of the geodesic, ¤d(C) = −8[�; d] is the Liouville-von Neumann

equation. The norm | | · | | is the square root of the Bures inner product. Every term in the

equation is evaluated at C = 0, thus d(0) = d the initial state. We set the optimization at

C = 0 because we need to be sure that both vectors be at the same point on the sphere.

Third, having the parameters {=1, =2, =3, . . . } that maximize cosU, these will be intro-

duced into the evolution operator * which will evolve our initial state d for a small time

4C. The evolution operator will be given by the Hamiltonian �. Then, we have a new
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initial state d′, this will be the new initial state to proceed to a new maximization of cosU

with new parameters {=1, =2, =3, . . .}, as we can see in Fig. 2.1. Finally, when we are close

to the desired state we finish the optimization algorithm.

Figure 2.1: Schematic representation of our methodology. In the graph, we represent the step 8 of

our method where ¤W8 is the time derivative of the geodesic, ¤d8 is the evolution of the state d8 given

by the Liouville-von Neumann equation, U8 is the angle that we want to optimize in order to find

the direction of the final state given by |q2〉, |k8〉 = * (=G , =H , . . . , 4C) |k8−1〉 , d0 = |k1〉 〈k1 | is the

initial state given as an input, d# = |k# 〉 〈k# | is the final state given by our methodology. |0〉

represents the north pole and |H〉 is |H+〉 on the Bloch sphere, and are plotted just for reference.

As we will see in the following, there are some subtleties that we need to address in

order to accomplish the methodology.

37



CHAPTER 2. METHODOLOGY

2.1 Model

Following (Wagh & Rakhecha 2001; Cong 2014), we have chosen the form of the

Hamiltonian as a linear combination of Pauli matrices, like

� = −F0
2
fI +

=G

2
fG +

=H

2
fH +

=I

2
fI, (2.2)

where ~ = 1, =G , =H, =I are real coefficients, in general are time dependent, that one has to

tune in order to get the final state and f8 with 8 = G, H, I are Pauli matrices. However, we

can set =I = 0 having in mind that an universal quantum gates set can be given by fG , fH

for a single qubit. Also from the experimental view, adding another control field can lead

to a greater error in the fidelity function. Thus, we can work with

� = −F0
2
fI +

=G

2
fG +

=H

2
fH, (2.3)

At first, we started working with the Hamiltonian given by (Cong 2014) where,

=G
2 = −~Ω

2 cos(FC + V)
=H
2 = ~Ω

2 sin(FC + V).
(2.4)

This was done because we have already a defined evolution operator, given by (1.17) with

~ = 1 and at resonance F = F0:

* (C) =


48
CF0

2 cos
(
ΩC

2

)
848

CF0+2V
2 sin

(
ΩC

2

)
84−8

(F0C+2V)
2 sin

(
ΩC

2

)
4−8

CF0
2 cos

(
ΩC

2

)  (2.5)

However, as we are working with Pauli matrices, we can use (2.2) with =G , =H and =I
(here we “turn on” the control field in I − 0G8B and gain another control parameter) being

constant and using Pauli matrices exponentiation given by,

480(=̂·®f) = � cos(0) + 8(=̂ · ®f) sin(0), (2.6)
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for ®0 = 0=̂ and |=̂| = 1. Thus, using (2.3), we find that

0 = C1 = C

√
(−F0 + =I)2

4
+ =

2
G

4
+
=2
H

4

=̂ · ®f = 1
1

(
−F0 + =I

2
fI +

=G

2
fG +

=H

2
fH

)
,

(2.7)

with 1 =
√
(−F0+=I)2

4 + =2
G

4 +
=2
H

4 and also we need to change the sing of the 8 in (2.6) by −8.

It is important to notice that all the reckons we are going to show were made with (2.4),

but we are going to present results from both Hamiltonians, (2.4) and (2.3). Another term

which we need is the time derivative of the geodesic (1.76) which is straightforward,

¤W(C) = \0 csc2(\0)
((
f−1/2(

√
fd
√
f)1/2f1/2 + ℎ2

)
× sin((1 − 2C)\0)

+d sin(2(−1 + C)\0) + f sin(2C\0)
)
.

(2.8)

Next, we need to focus on the states. As we know there are two types: pure and mixed

states. In the following, we are going to focus on pure states because the procedure for

mixed is simpler regarding the reckons but the procedure is the same.

For pure states we have to make some modifications in the geodesic equation and in

its derivative. Pure states are rank one matrices which are not invertible and we need

invertible matrices in (1.76) and (2.8). To solve this problem, we need to use the polar

decomposition.

Let be dk = |k〉 〈k | and fq = |q〉 〈q | pure states. Then
√
fq = fq = f

2
q
= |q〉 〈q | and

the same for √dk = dk . Setting dk = d and fq = f, here comes the trick using polar

decomposition.

We need to check if the following term is correct,

f−1/2(
√
fd
√
f)1/2

√
f =
√
d*
√
f (2.9)

where* is a unitary matrix.

From the polar decomposition and taking the adjoint, we can get

√
d
√
f = * |√d

√
f | ⇒

√
f
√
d = |√d

√
f |*∗ (2.10)
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then the last equation can be modified as

|√d
√
f | =

√
(√d
√
f)∗(√d

√
f) ; definition of |�| =

√
�∗�

=

√√
fd
√
f

=
√
( |q〉 〈q|) |k〉 〈k | ( |q〉 〈q |) ; pure states d and f

= | 〈q |k〉 | |q〉 〈q|

(2.11)

Now, we replace pure states and the last equation in (2.10) and pull out the term* |q〉

to get

|k〉 〈k | |q〉 〈q | = | 〈q |k〉 |* |q〉 〈q | ; factor out the desired term

* |q〉 =
〈k |q〉
| 〈k |q〉 | |k〉 ; with 〈k |q〉 ≠ 0

(2.12)

Also from the first equation of (2.10), we notice that we can have

√
f
√
d* =

√√
fd
√
f ; multiplying from the left by f−1/2 and from the right by f1/2

√
d*
√
f = f−1/2

√√
fd
√
f
√
f ; we arrived at (2.9).

(2.13)

Thus, now we can work with pure states which are not invertibles. With this in mind,

f−1/2
√√

fd
√
f
√
f =

√
d*
√
f ; from last result

= |k〉 〈k |* |q〉 〈q| ; replace (2.12)

=
〈k |q〉
| 〈k |q〉 | |k〉 〈q | ; with 〈k |q〉 ≠ 0

(2.14)

Finally, the geodesic in the case for pure states is given by:

W(C) =
(
cos \0C−

sin \0C

tan \0

)2
|k〉 〈k |+sin2 \0C

sin2 \0
|q〉 〈q|+sin \0C

sin \0

(
cos \0C−

sin \0C

tan \0

) (
〈k |q〉
| 〈k |q〉 | |k〉 〈q|+ℎ2

)
,

(2.15)

notice that 〈k |q〉 gives a phase factor 48X with X = �A6 〈k |q〉 and if C = 0, we get the

initial state |k〉 〈k | and at C = 1, we get the final state |q〉 〈q |. An important property of

the last equation is that W(C) is a pure state, since
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W(C)2 = |k〉 〈k | (�4 + 2| 〈k |q〉 |�3� + �2�2)

+ |q〉 〈q | (�4 + 2| 〈k |q〉 |��3 + �2�2)

+ |k〉 〈q | (2�2�2 〈k |q〉 + �3�
〈k |q〉
| 〈k |q〉 | + ��

3 〈k |q〉
| 〈k |q〉 | + �

2�2 〈k |q〉)

+ |q〉 〈k | (2�2�2 〈q |k〉 + ��3 〈q|k〉
| 〈k |q〉 | + ��

3 〈q|k〉
| 〈k |q〉 | + �

2�2 〈q |k〉)

= �2 |k〉 〈k | + �2 |q〉 〈q| + ��

| 〈k |q〉 |

(
〈k |q〉 |k〉 〈q| + 〈q |k〉 |q〉 〈k |

)
= W(C),

(2.16)

with

� =

(
cos \0C −

sin \0C

tan \0

)
and � =

sin \0C

sin \0
. (2.17)

Then from (2.15), the derivative is given by,

¤W(C) = \0 csc2 \0

((
〈k |q〉
| 〈k |q〉 | |k〉 〈q | + ℎ2

)
× sin (1 − 2C)\0

+ |k〉 〈k | sin (2(−1 + C)\0) + |q〉 〈q| sin (2C\0)
) (2.18)

If C = 0, we get one of the important equations of this work,

¤W(0) = \0 csc2 \0

((
〈k |q〉
| 〈k |q〉 | |k〉 〈q | + ℎ2

)
× sin \0 − |k〉 〈k | sin (2\0)

)
, (2.19)

where |k〉 is the initial state, |q〉 is the final one and \0 is related to the fidelity of the states.

Notice that for mixed states (2.8) is correct and we just need to plug the term in the

inner product.

Another term that we need to look in detail is the inner product between the time

derivative of the geodesic given by the equation (2.19) and time evolution of a state

given by the Liouville-von Neumann equation given by ¤d(0) = −8[�, d(0)]. In the

following reckons we will not yet introduce our Hamiltonian. Let {|k;〉 , ; = 0, 1, . . .} be
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an orthonormal basis of the Hilbert space such that |k0〉 = |k〉, then

6� ( ¤W(0), ¤d(0)) =
1
2

∑
:,;

〈: | ¤W(0) |;〉 〈: | ¤d(0) |;〉
?: + ?;

; with ?: + ?; > 0

=
8

2

∑
:, ;

?: + ?; > 0

〈: | ¤W(0) |;〉 〈: | � (0) |;〉 (?: − ?;)
?: + ?;

=
8

2

(∑
;>1

〈k | ¤W(0) |k;〉 〈k | � (0) |k;〉 (1) +
∑
:>1

〈k: | ¤W(0) |k〉 〈k: | � (0) |k〉 (−1)
)

=
8

2

(∑
;>1

〈k | ¤W(0) |k;〉 〈k | � (0) |k;〉 −
∑
;>1

〈k | ¤W(0) |k;〉 〈k | � (0) |k;〉
)

= −�<
(∑
;>1

〈k | ¤W(0) |k;〉 〈k | � (0) |k;〉
)

= −�<
(∑
;>1

〈k | � (0) |k;〉 〈k; | ¤W(0) |k〉
)

= −�<
(
〈k | � (0)

(
� − |k〉 〈k |

)
¤W(0) |k〉)

)
= −�<

(
〈k | � (0) ¤W(0) |k〉 − 〈k | � (0) |k〉 〈k | ¤W(0) |k〉

)
= −�<

(
〈k | � (0) ¤W(0) |k〉

)
,

(2.20)

in these last reckons we used the following: the Liouville-von Neumann quantum equation

¤d = −8[�, d], knowing that |;〉 and |:〉 are eigenvectors of d we get the factor (?; − ?: ),

we have expanded both
∑

in two parts, one that has |k〉 as eigenvector with eigenvalue

different from zero (it is equal to 1) and |k;〉 as eigenvectors with eigenvalues equal to zero

(we can do this because d is a pure state) but we need to be careful with the condition

?: + ?; > 0 which makes that one term does not contribute in each
∑
, also we use

|k〉 〈k | +∑ |k;〉 〈k; | = � and finally the term 〈k | � (0) |k〉 〈k | ¤W(0) |k〉 vanish due to the

fact that it belongs to R and we want the imaginary part.
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Finally, the last factor can be achieved using (2.19),

〈k | � (0) ¤W(0) |k〉 = \0 csc2(\0)
((
| 〈k |q〉 | 〈k | � |k〉+ 〈k |q〉| 〈k |q〉 | 〈k | � |q〉

)
sin \0−〈k | � |k〉 sin 2\0

)
,

(2.21)

replacing this in (2.20) and noting that 〈k | � |k〉 vanish when we take the imaginary part,

we finally get

6� ( ¤W(0), ¤d(0)) =
−\0

| 〈k |q〉 | sin \0
�<

(
〈k | � |q〉 〈k |q〉

)
. (2.22)

With this result we are almost ready to get the maximum of our objective function.

2.1.1 The objective function cosU and its maximum

In the above section, we have arrived to some parts of our objective function but there

are some missing details to fix until we finish and proceed to present our algorithm of state

to state transfer. As we can see our main goal in this section is to maximize

cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | | (2.23)

where W(0) is the geodesic of the quantum states, d is a density matrices, ¤W(0) is the

time derivative of the geodesic and it is a vector of the tangent space of B(H) , ¤d(0) =

−8[� (0), d(0)], cos(U) is the angle between the two vectors as we can see in Fig. 2.1,

6� is the Bures inner product and | | · | | is the norm given by the same inner product. In

the following, we want to use general pure states and get the results for each term in the

objective function cosU. We will start with the reckon of 6� ( ¤W(0), ¤d(0)) next the terms in

the denominator of the objective function.

We want to calculate the inner product 6� using the most general states. Given two

states: initial and final states, |k1〉 and |q2〉, respectively. The subindices 1 and 2 are just

for denoting which is the initial state “1 ” and the final state “2”,

|k1〉 = cos
(
\1
2

)
|0〉 + sin

(
\1
2

)
48q1 |1〉

|q2〉 = cos
(
\2
2

)
|0〉 + sin

(
\2
2

)
48q2 |1〉

(2.24)
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Also, we want to use a general Hamiltonian1 for the systemwhich is composed of two parts,

the controlled o free Hamiltonian �0 and the control Hamiltonian �2, given by equation

(2.3) with (2.4).

With this information, we want to solve the inner product (2.22) which is in the

numerator of (2.23); thus, we need the following terms

〈q2 |k1〉 = cos(\1/2) cos(\2/2) + 48(q1−q2) sin(\1/2) sin(\2/2)

〈k1 | � (0) |q2〉 =
1
2
4−8(V+q1)

(
− sin(\1/2)

(
Ω cos(\2/2) − 48(V+q2)F0 sin(\2/2)

)
−48(V+q1) cos(\1/2)

(
F0 cos \2/2 + 48(V+q2)Ω sin(\2/2)

))
.

(2.25)

Now, \0 is related to the fidelity of the states cos \0 =
√
| 〈k1 |q2〉 |2 ,

cos \0 = | 〈k1 |q2〉 | =

√
1
2

(
1 + cos \1 cos \2 + cos(q1 − q2) sin \1 sin \2

)
, (2.26)

and

sin \0 = | 〈k1⊥ |q2〉 | =

√
1
2

(
1 − cos \1 cos \2 − cos(q1 − q2) sin \1 sin \2

)
, (2.27)

this last equation comes from the Pythagorean’s theorem and cos \0, then we recognize

that the result of sin \0 is the same as | 〈k1⊥ |q2〉 |, where |k1⊥〉 is given by

|k1⊥〉 = sin(\1/2) |0〉 − 48q1 cos(\1/2) |1〉 . (2.28)

Thus, for the inner product 6� we have

6� ( ¤W(0), ¤d(0)) =
−\0

cos \0 sin \0
�<

(
〈k1 | � |q2〉 〈q2 |k1〉

)
, (2.29)

where we need to take the imaginary part of the product 〈k1 | � |q2〉 and 〈q2 |k1〉 given by

(2.25). We have the numerator part of our objective function.

1We follow (Cong 2014) but the reckons can be done by (2.3)
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Another term is the norm of ¤W(0) given by,

| | ¤W(0) | |2 = 6� ( ¤W(0), ¤W(0)) =
1
2

∑
:,;

| 〈: | ¤W(0) |;〉 |2
?: + ?;

, (2.30)

in terms of the eigenvalues and vectors of W(0) = |k1〉 〈k1 |, which are: ?1 = 1 and its

eigenvector |k1〉 and ?2 = 0 and its eigenvector |k1⊥〉 given by (2.28),

1
2

∑
:,;

| 〈: | ¤W(0) |;〉 |2
?: + ?;

=
1
2

(∑
:

| 〈: | ¤W(0) |k1〉 |2
?: + 1

+
∑
:

| 〈: | ¤W(0) |k1⊥〉 |2
?:

)
; with ?; + ?; ≠ 0

=
1
2

(
| 〈k1 | ¤W(0) |k1〉 |2

2
+ 2| 〈k1⊥ | ¤W(0) |k1〉 |2

)
,

(2.31)

to solve the last equation we need the following results

〈k1 |k1〉 〈q2 |k1〉 = 〈q2 |k1〉

〈k1 |q2〉 〈k1 |k1〉 = 〈k1 |q2〉

〈k1 |k1〉 〈k1 |k1〉 = 1

〈k1⊥ |k1〉 〈q2 |k1〉 = 0

〈k1⊥ |q2〉 〈k1 |k1〉 = 〈k1⊥ |q2〉

〈k1⊥ |k1〉 〈k1 |k1〉 = 0,

(2.32)

replacing ¤W(0) given by (2.19) in (2.31), we need again the following results

〈k1 | ¤W(0) |k1〉 = \0 csc2 \0

(
2| 〈k1 |q2〉 | sin \0 − sin(2\0)

)
= \0 csc2 \0

(
2 cos \0 sin \0 − sin(2\0)

)
; using the cos \0 =

√
� ( |k1, q2〉)

= 0 ; the term in parenthesis is zero

〈k1⊥ | ¤W(0) |k1〉 = \0 csc2 \0

(
〈q2 |k1〉
| 〈k1 |q2〉 |

〈k1⊥ |q2〉
)

sin \0.

(2.33)

Now, replacing the last results in (2.31),

1
2

∑
:,;

| 〈: | ¤W(0) |;〉 |2
?: + ?;

=
1
4
\2

0 csc4 \0
| 〈q2 |k1〉 |2 | 〈k1⊥ |q2〉 |2 sin2 \0

| 〈k1 |q2〉 |2

| | ¤W(0) | |2 = \2
0; simplifying and | 〈k1⊥ |q2〉 | = sin \0.

(2.34)
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The last term that we need is | | ¤d(0) | |, which is given by

| | ¤d(0) | |2 =
1
2

∑
:,;

| 〈: | ¤d(0) |;〉 |2
?: + ?;

=
1
2

∑
:

| 〈: | ¤d(0) |k1〉 |2
?: + 1

+
∑
:

| 〈: | ¤W(0) |k1⊥〉 |2
?:

=
1
2

(
| 〈k1 | ¤d(0) |k1〉 |2

2
+ | 〈k1⊥ | ¤d(0) |k1〉 |2 + | 〈k1 | ¤d(0) |k1⊥〉 |2

)
=

1
2

(
| 〈k1 | ¤d(0) |k1〉 |2

2
+ 2| 〈k1 | ¤d(0) |k1⊥〉 |2

)
.

(2.35)

Now, notice that

〈k1 | − 8[� (0), ¤d(0)] |k1〉 = 0, (2.36)

thus

| | ¤d(0) | |2 = | 〈k1 | ¤d(0) |k1⊥〉 |2

=
1
4

(
(Ω cos \1 cos(V + q1) − F0 sin \1)2 +Ω sin2(V + q1)

) (2.37)

In summary,

• The objective function is given by,

6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | | =

−�<
(
〈k1 | � (0) |q2〉 〈q2 |k1〉

)
cos \0 sin \0

2

√(
(Ω cos \1 cos(V + q1) − F0 sin \1)2 +Ω sin2(V + q1)

) ,
(2.38)

with

〈q2 |k1〉 = cos(\1/2) cos(\2/2) + 48 (q1−q2) sin(\1/2) sin(\2/2)

〈k1 | � (0) |q2〉 =
1
2
4−8 (V+q1)

(
− sin(\1/2)

(
Ω cos(\2/2) − 48 (V+q2)F0 sin(\2/2)

)
−48 (V+q1) cos(\1/2)

(
F0 cos \2/2 + 48 (V+q2)Ω sin(\2/2)

))
.

(2.39)

and

cos \0 = | 〈k1 |q2〉 | =

√
1
2

(
1 + cos \1 cos \2 + cos(q1 − q2) sin \1 sin \2

)
, (2.40)
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and

sin \0 = | 〈k1⊥ |q2〉 | =

√
1
2

(
1 − cos \1 cos \2 − cos(q1 − q2) sin \1 sin \2

)
, (2.41)

We summarized what we want and all the equations in the following diagram
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We want to maximize: cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | |

Where W is the geodesic and ¤d is the density matrix

of the Liouville-von Neumann equation 6� is the

metric of the tangent space of the density matrices

What we know

|k1〉 = cos
(
\1
2

)
|0〉 + sin

(
\1
2

)
48q1 |1〉 Initial state: \1 and q1 are given

|q2〉 = cos
(
\2
2

)
|0〉 + sin

(
\2
2

)
48q2 |1〉 Final state: \2 and q2 are given

� (C) = �0 + �2 (C) = −~F0
2 fI − ~Ω

2 cos(F0C + V)fG + ~Ω
2 sin(F0C + V)fH

A Hamiltonian is given: f8 are Pauli matrices and F0 natural frequency

* (C) =


48

CF0
2 cos

(
ΩC

2

)
848

CF0+2V
2 sin

(
ΩC

2

)
84−8

(F0C+2V)
2 sin

(
ΩC

2

)
4−8

CF0
2 cos

(
ΩC

2

) 
The evolution operator

associated to the Hamiltonian

6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | | =

−�<
(
〈k1 | � (0) |q2〉 〈q2 |k1〉

)
cos \0 sin \0

2

√(
(Ω cos \1 cos(V + q1) − F0 sin \1)2 +Ω sin2 (V + q1)

) ,
The objective function

cos \0 = | 〈k1 |q2〉 |

sin \0 = | 〈k1⊥ |q2〉 |

What we do not know:
V and Ω

The variables in the Hamiltonian V and Ω are given

by the control field or control Hamiltonian �2
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2.1.2 State to state transfer: pure states procedure

The following diagram is our methodology or algorithm of steering a given initial pure

state to a given final pure state:

At C = 0, maximize cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , to get V and Ω

The values of V and Ω are inserted in the Hamiltonian to get a new

initial state |k̂1〉 by doing |k̂1〉 = * (4C) |k1〉, with 4C a small number.

Is |q2〉 ' |k̂1〉? If yes, one is done. If not, continue.

Update ¤W(0) and ¤d(0) with |k̂1〉 as a new initial state.

Recalcule cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , then maximize it.

Get new values for V and Ω.

We are going to follow (Khaneja et al. 2005) to set 4C in terms of F0 the natural

frequency of the system. If F0 is 1 Hz, 4C is in the order of 0.0025B. We finish the

algorithm when

1 − | 〈k̂1 |q2〉 | < 0.01, (2.42)

which is very conservative value due to the fact that themethods reviewed in the introduction

can achieve values less than ×10−5.

Finally, we need to add an experimental constrain in the control amplitude parameters

in order to preserve the two level quantum system (Abraham et al. 2019). In the case using

(2.4), this constrain is given by,

− F0 ≤ Ω ≤ F0, (2.43)
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this prevents that the system will be exited to other greater levels like, |2〉 or |3〉, etc. . In

the case for (2.2),

− F0 ≤ =G ≤ F0, − F0 ≤ =H ≤ F0, − F0 ≤ =I ≤ F0. (2.44)

2.1.3 State to state transfer for mixed states

As we mentioned early, the procedure for mixed states is not difficult; however, we

need to present the details for this procedure. At first, we need to prepare out the initial

and final states. In order to do this, we need a convex sum using pure states. Thus, the

following set of pure states will help us to get our mixed states

{ |0〉 〈0| = 
1 0

0 0

 , |1〉 〈1| =

0 0

0 1

 , |G+〉 〈G+ | =
1
2


1 1

1 1

 ,
|G−〉 〈G− | =

1
2


1 −1

−1 1

 , |H+〉 〈H+ | =
1
2


1 −8

8 1

 , |H−〉 〈H− | =
1
2


1 8

−8 1


}
. (2.45)

The initial d1 and final f2 states are given by a convex sum of this set.

As you remember, we need to deal with root squares of matrices. Fortunately, there is a

relation for a root square of matrix that deals with trace and the determinant of the matrix.

Thus, the root of a 2 × 2 matrix, is given by2

√
� =

1
g

(
� + �34C1/2(�)

)
(2.46)

with

g =

(
)A (�) + 234C1/2(�)

)1/2
. (2.47)

Thus, the term that we need to address is the following

(√f2d1
√
f2)1/2 =

1
ĝ
(√f2d1

√
f2 + 34C1/2(d1)34C1/2(f2)), (2.48)

2for details see A and A.2.2
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with

ĝ = ()Ad1f2 + 234C1/2(d1)34C1/2(f2))1/2. (2.49)

As we did before, we want to present a diagram summarizing what we are searching

for and what do we have,

51



CHAPTER 2. METHODOLOGY

We want to maximize: cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | |

In this case for mixed density matrices

Where W is the geodesic and ¤d is the density
matrix of the Liouville-von Neumann
equation 6� is the metric of the tangent
space of the density matrices manifold.

What we know

Initial state d1 and final state f2
given by a convex combination of pure density matrices

� (C) = �0 + �2 (C) = −~F0
2 fI − ~Ω

2 cos(F0C + V)fG + ~Ω
2 sin(F0C + V)fH

A general Hamiltonian is given: f8 are Pauli matrices and F0 natural frequency

* (C) =


48

CF0
2 cos

(
ΩC

2

)
848

CF0+2V
2 sin

(
ΩC

2

)
84−8

(F0C+2V)
2 sin

(
ΩC

2

)
4−8

CF0
2 cos

(
ΩC

2

) 
The evolution operator
associated to the Hamiltonian

6� ( ¤W(0), ¤d(0)) =
1
2

∑
:

∑
;

〈: | ¤d(0) |;〉 〈: | ¤W(0) |;〉
?: + ?;

The inner product

¤W(0) = \0 csc2 (\0)
((
f
−1/2
2 (√f2d1

√
f2)1/2f1/2

2 + ℎ2
)
× sin(\0) + d1 sin(−2\0)

)
Geodesic in the case of mixed density matrices

� (d1, f2) = )A (d1f2) + 2
√
detd1detf2; from (Jozsa 1994)

\0 = arccos(
√
� (d1, f2)); from Ericsson (2005)

The Fidelity and \0

¤d(0) = −8[� (0), d(0)] with d(0) = d1

The Liouville-von Neumann equation

What we do not know: V and Ω The variables in the Hamiltonian V
and Ω are given by the control field
or control Hamiltonian �2
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2.1.4 State to state transfer: mixed states procedure

The algorithm for state to state transfer for mixed states is very similar as for pure states

and it is given by

At C = 0, maximize cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , to get V and Ω

The values of V and Ω are inserted in the Hamiltonian to get a new

initial mixed state d̂1 by doing d̂1 = * (4C)d1* (4C)†, with 4C a small number.

Is f2 ' d̂1? If yes, one is done. If not continue.

With d̂1 get new values for ¤W(0) and ¤d(0).

Update cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , then maximize it.

Get new values for V and Ω.

We chose 4C as before, if F0 is 1 Hz, 4C is in the order or 0.0025s. We finish the

algorithm when

1 − � (d1, f2) < 0.01 (2.50)

2.2 Using a most general Hamiltonian

Trying another Hamiltonian and we follow the same procedure as before. We only

need to change the Hamiltonian and the evolution operator.

53



CHAPTER 2. METHODOLOGY

The Hamiltonian that we want to try is the following,

� (C) = �0 + �2 = −
F0
2
fI +

=G

2
fG +

=H

2
fH, (2.51)

with ~ = 1 and which gives the following unitary operator

* (C) = 4− 8~�C = cos(=C)� − 8(=̂ · ®f) sin(=C), (2.52)

where we have used = =
√
F2

0
4 +

=2
G

4 +
=2
H

4 and

®= =


=G
2
=H
2

F0
2


, (2.53)

and ®f are the Pauli matrices. The diagram that summarize all the equations is the same as

before with some changes in the Hamiltonian and the Unitary operator. Also, the procedure

to maximize the objective function is the same as the case of mixed states.

54



CHAPTER 2. METHODOLOGY

We want to maximize: cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | | × | | ¤d(0) | |

Using mixed density matrices

Where W is the geodesic and ¤d is the
density matrix of the Liouville-von Neumann
equation 6� is the metric of the
tangent space of the density matrices

What we know

Initial d1 and final f2 states are given by a convex sum

� (C) = �0 + �2 = −~F0
2 fI + =G2 fG +

=H

2 fH , where =G and =H are constants

A general Hamiltonian is given: f8 are Pauli matrices and F0 natural frequency

* (C) = 4−8�C = cos(=C)� − 8(=̂ · ®f) sin(=C), = =
√
F2

0
4 +

=2
G

4 +
=2
H

4

The evolution operator

6� ( ¤W(0), ¤d(0)) =
1
2

∑
:

∑
;

〈: | ¤d(0) |;〉 〈: | ¤W(0) |;〉
?: + ?;

The inner product

¤W(0) = \0 csc2 (\0)
((
f
−1/2
2 (√f2d1

√
f2)1/2f1/2

2 + ℎ2
)
× sin(\0) + d1 sin(−2\0)

)
Geodesic in the case of mixed density matrices

� (d1, f2) = )A (d1f2) + 2
√
detd1detf2; from (Jozsa 1994)

\0 = arccos(
√
� (d1, f2)) ; from (Ericsson 2005)

The Fidelity and \0

¤d(0) = −8[� (0), d(0)] with d(0) = d1 The Liouville-von Neumann equation

What we do not know:
=G and =H

The variables in the Hamiltonian =G
and =H are given by the control
field or control Hamiltonian �2
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In the next chapter we want to show the results of some state to state transfers. The

results will be given by the trajectories that follows the initial to state to the final graphs of

the Bloch sphere
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Results and discussion

In § 2, we derived a methodology to transfer an initial quantum state d1 to a final one

f2 based on the geodesic W(C) of the density matrices manifold, the evolution of a density

matrix E(H) given by the Liouville-von Neumann equation, ¤d(C) = −8[� (C), d(C)] and the

Bures metric 6� which is Riemannian in E(H). The methodology consists in a sequence

of optimizations of some parameters {=G , =H}, given by the Hamiltonian, that maximize

the cosine of the angle U between the time derivative of the geodesics vector ¤W(C) and

the evolution of the initial state d1(C). The evolution of the initial state is given by a

Hamiltonian that is a linear combination of Pauli matrices and the parameters {=G , =H}.

The mentioned methodology was made for pure and mixed states. However, we needed

to adequate the equations for pure states due to the fact that this states do not admit an

inverse matrix. In this chapter, we show how our model behaves steering states on the

Bloch sphere using the Hamiltonian which depends of the trigonometric functions sin and

cos and the other one which consisted in =G and =H.

3.1 Experiments for pure states

In this section, there are some numerical experiments based on the previous method.

In all the following experiments, we have used ~ = 1 and the constant F0 = 5 which are
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consider values to observe the trajectory of the state transfer on the Bloch sphere. In the

following experiments we have used the Hamiltonian given by1 (2.4)

� (C) = �0 + �2 (C) = −
~F0

2
fI −

~Ω
2

cos(F0C + V)fG +
~Ω
2

sin(F0C + V)fH . (3.1)

The initial and final states were chosen without any distinction in particular. However,

the time that runs the simulation, which will be called computational time, is longer when

the initial state is in the North and South pole than on other initial states, we will discuss

this issue at the end of the section.

1. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final state

|q2〉 = |G+〉 = 1√
2
|0〉 + 1√

2
|1〉, (\2 = c/2, q2 = 0). For this evolution, we have used

4C = 0.004 and 20 steps to reach the final state.

Fig. 3.1 shows the trajectory of our method which are the dots in rainbow colors and

the geodesic which is black line. In the plot, the red point is the initial state and the

purple one is the final. In this experiment, if we give another step which is the 21th,

the last dot (related to the last step) will not get close enough to the final state in

order to accomplish our requirement of 0.01 for the infidelity. Thus, the step 20 is

the best approximation to the final state.

2. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final

state |q2〉 = |H+〉 = 1√
2
|0〉 + 8 1√

2
|1〉, (\2 = c/2, q2 = c/2). For this evolution, we

have used 4C = 0.05 and 24 steps to reach the final state. The result is presented

in Fig. 3.2. According to this Fig., the control fields make the motion of the initial

state, given by the red dot, counter clock wise. This makes that the evolution of the

initial state does not follow the geodesic path; however, the method reaches to the

final state.
1keep in mind we can extend the results with (2.3) where =G and =H are unknowns
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Figure 3.1: The red dot is the initial state and the purple is the final state. This evolution is over a

meridian, from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = 1√

2
|0〉 + 1√

2
|1〉 with F0 = 5 and using (3.1).

The Black line is the geodesic between the initial and final states.

3. In this case we swap the initial and final states of the previous experiment. From

the initial state |k1〉 = |H+〉 = 1√
2
|0〉 + 8 1√

2
|1〉, (\1 = c/2, q1 = c/2) to the final

state |q2〉 = cos c8 |0〉 + sin c
8 |1〉, (\2 = c/4, q2 = 0). For this evolution, we have

used 4C = 0.03 and 10 steps to reach the final state. The result is presented in

Fig. 3.3 where the purple point is the initial and the red is the final state, respectively.

The exchange of the states gives a trajectory in a good relation with the geodesic;

however, as we will see the trajectory that follows the geodesic depends on the values

of 4C and the Hamiltonian.

4. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final

state |q2〉 = |H−〉 =
√

1
2 ( |0〉 − 8 |1〉), (\2 = c/2, q2 = 3/2c). For this evolution, we

have used 4C = 0.02 and 15 steps to reach the final state. The result is presented in

Fig. 3.4 where the initial state is the red dot and the final state is the purple. Viewing

this Fig., we find that the trajectory is very similar as the trajectory of the geodesic

in black which means that our Hamiltonian is good enough to replicate the path of
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Figure 3.2: This transition is from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉 = 1√

2
|0〉 + 8 1√

2
|1〉

with F0 = 5 and using (3.1). The red dot is the initial state and the purple (at the end of the

geodesic) is the final state. The evolution is going counter clock-wise and in some steps it follows

the Equator until it reaches to the final state. The Black line is the geodesic between the initial and

final states.

the Hamiltonian for this case given the infidelity of 0.01.

5. From the initial state |k1〉 = |0〉, (\1 = 0, q1 = 0) to the final state |q2〉 = |G+〉 =√
1
2 ( |0〉 + |1〉), (\2 = c/2, q2 = 0). For this evolution, we have used 4C = 0.008 and

105 steps to reach the final state. The result is presented in Fig. 3.5, where the initial

red dot in the initial state and the purple dot is the final state. The computational

time of this plot was greater than the others. This is because the evolution of the

initial state is very small in contrast to the other experiments.

In every experiment we worked with (3.1) and for every value of V and Ω, we have

achieved the maximization of the objective function cosU with value 1, even in the second

experiment which does not follow the geodesic. This means that we are getting the right

60



CHAPTER 3. RESULTS AND DISCUSSION

Figure 3.3: This evolution is from |q1〉 = |H+〉 = 1√
2
|0〉 + 8 1√

2
|1〉 to |k2〉 = cos c8 |0〉 + sin c

8 |1〉

with F0 = 5 and using (3.1) . The purple dot is the initial state and the red is the final state. The

evolution given by the Hamiltonian (3.1) depends of the direction of the final state. The Black line

is the geodesic between the initial and final states.

direction in each step. Also, it is important to notice that we always get to the final state

which is one of our goals, even when the trajectory does not follow the geodesic such as

the second experiment. We have to say that for small 4C we get smooth trajectories but

this turns out in more computational time to wait until the trajectory of our methodology

reach the final state.

In the second experiment with Fig. 3.2, we see that the trajectory of our methodology

does not follow the geodesic but if we use a 4C small in the order of 0.001 we follow

it, as we can see in Fig. 3.6. However as we mentioned early, if we use smaller 4C the

computational time that it takes to get to the final state is longer and in some cases it will

take minutes with a normal portable computer which is ours.

From the experiments, if the evolution of the steering follows a counterclockwise
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Figure 3.4: This evolution is from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H−〉 with F0 = 5 and

using (3.1). The red dot is the initial state and the purple is the final state. In this experiment the

Hamiltonian given by (3.1) replicates the geodesic, the black line, given the infidelity of 0.01.

direction we can set 4C greater values in contrast to the clockwise direction where we need

small 4C in order that the new state in each iteration does not deviate from the geodesic, as

we can see in Fig 3.6. This has to be with the rotation orientation of Pauli matrices, which

in the form that we are working 2, give a counterclockwise rotation.

A similar issue, we have with the fifth experiment in Fig. 3.5, where we need a small

4C to reach to the final state |G+〉. In this type of transition, we have a liberty at the initial

state3 |0〉 which is the angle q where we set 0 but we could chose any value q. This liberty

in q makes that our method lose the geodesic trajectory at the begging of the optimization

of the objective function cosU, but with small values of 4C we can keep the trajectory close

to the geodesic.

2The form of Pauli matrices that we are using: fG =

0 1

1 0

 , fH =

0 −8

8 0

 and fI =

1 0

0 −1


3the ket |0〉 can be made by using \ = 0 and any value of the angle q because, |0〉 = cos( 02 ) |0〉 +

48q sin( 02 ) |1〉 = 1 |0〉 + 0 |1〉
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Figure 3.5: Evolution from |k1〉 = |0〉 to |q2〉 = |G+〉 with F0 = 5 and using (3.1). The red dot is

the initial state and the blue is the final state. The Black line is the geodesic between the initial and

final states.

3.2 Experiments for pure states with a general Hamilto-

nian

In this section we want to change our Hamiltonian for another more general given by

(2.3)

� = −F0
2
fI +

=G

2
fG +

=H

2
fH, (3.2)

with constants =G and =H instead of the function sin and cos. In general terms, the

methodology is the same but we need to use the unitary operator given by (2.52) for the

evolution of the initial state.

In the following, we show some transitions using the Hamiltonian proposed above.
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Figure 3.6: The transition from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉 = 1√

2
|0〉 + 8 1√

2
|1〉 makes

a clockwise rotation. We need 4C = 0.003 in order to have a small deviation from the geodesic.

1. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final state

|q2〉 = |G+〉 = 1√
2
|0〉 + 1√

2
|1〉, (\2 = c/2, q2 = 0). For this evolution, we have used

4C = 0.001 and 5 steps to reach the final state.

The result is in Fig. 3.7, where the red dot is the initial state and the purple is the final.

As before, if we give another step, the last dot (related to the last step) will be located

far from our final state. Thus, the step 5 is the best approximation to the final state.

Our methodology with the Hamiltonian given by (2.3) gives less computational time

which means less points and we keep our infidelity under 0.01.

2. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final state

|q2〉 = |H+〉 = 1√
2
|0〉 + 8 1√

2
|1〉, (\2 = c/2, q2 = c/2). For this evolution, we have

used 4C = 0.00029 and 22 steps to reach the final state. The result is presented in

Fig. 3.8, where the initial state is the red dot and the purple is the final state. As

we can see, the Hamiltonian given by (2.3) follows the geodesic path in a better way
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Figure 3.7: Transition from: |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |G+〉 using the Hamiltonian (2.3) with

=G and =H constants. The red dot is the initial state and the purple is the final state. The blue dot is

the best approximation of the final state according to our method. The Black line is the geodesic

between the initial and final states. Our methodology with this Hamiltonian gives less steps.

than the Hamiltonian with cos and sin functions.

3. From the initial state |k1〉 = cos c8 |0〉 + sin c
8 |1〉, (\1 = c/4, q1 = 0) to the final state

|q2〉 = |H−〉 =
√

1
2 ( |0〉 − 8 |1〉), (\2 = c/2, q2 = 3/2c). For this evolution, we have

used 4C = 0.0008 and 17 steps to reach the final state. The result is presented in

Fig. 3.9, where the red dot is the initial state and the purple is the final state. Viewing

the plot, our method with (2.3) follows almost in an identical way the path of the

geodesic.

4. From the initial state |k1〉 = |0〉, (\1 = 0, q1 = 0) to the final state |q2〉 = |G+〉 =√
1
2 ( |0〉 + |1〉), (\2 = c/2, q2 = 0). For this evolution, we have used 4C = 0.001

and 71 steps to reach the final state. The result is presented in Fig. 3.10, where the

red dot is the initial state and the final state is the blue dot. The purple dot is best

approximation we got with our method.
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Figure 3.8: This evolution is from: |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉 where the red dot is

the initial state and the purple (at the end of the geodesic) is the final state. The driven Hamiltonian

is given by (2.3), with =G and =H unknowns constants. The Black line is the geodesic between the

initial and final states.

Figure 3.9: This evolution is from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H−〉. The red dot is the

initial state and the purple is the final state. The driven Hamiltonian is given by (2.3), with =G and

=H unknowns constants. The Black line is the geodesic between the initial and final states.
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Figure 3.10: Evolution from |k1〉 = |0〉 to |q2〉 = |G+〉. The red dot is the initial state and the blue

is the final state. The purple point is the most accurate final state according to our methodology.

The driven Hamiltonian is given by (2.3), with =G and =H unknowns. The Black line is the geodesic

between the initial and final states.

Using (2.3) with =G and =H unknown constants, our method used less steps than before

which means it is more computational fast. However, our method with this Hamiltonian

keeps the infidelity in the same value for 0.01. Thus, we have not gained in accuracy. Also,

we still have some disagreements respect with the geodesic as we can see with Fig. 3.8 but

in every experiment the maximum for the objective function was 1 which means that we

are always in the direction of the final state. In summary, this Hamiltonian has improved

the efficiency of our methodology while keeping the accuracy.
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3.3 Experiments with mixed states

In the last section, we see that we had better results with the Hamiltonian 2.3, with =G
and =H unknown constants, than the one with cos and sin. Thus, the following experiments

with mixed states are going to be developed with the Hamiltonian with =G and =H.

Dealing with mixed states, we require a convex sum of (2.45) to get the initial and final

states.

• We had chosen the following convex sum for the first state:

d1 =
1
10
|1〉 〈1| + 8

10
|G−〉 〈G− | +

1
10
|H−〉 〈H− | (3.3)

and for the final state

f2 =
1
5
|0〉 〈0| + 1

5
|G+〉 〈G+ | +

3
5
|H+〉 〈H+ | . (3.4)

The trajectory of the transition is given by the Fig. 3.11, where the blue dot is the

initial state and the red is the final state. Also, in the left we can appreciate the

top view and the right is the front view. For this figure, we have used 21 steps and

4C = 0.02. From the top view, we can see that the last step the red dot is the best

approximation of our method, as always with infidelity less than 0.01.

• The second experiment with mixed states, we have chosen the following states.

From the initial state given by

d1 =
1
5
|0〉 〈0| + 3

5
|G−〉 〈G− | +

1
5
|H−〉 〈H− | (3.5)

and the final state

f2 =
1
3
|1〉 〈1| + 2

3
|G+〉 〈G+ | . (3.6)

The trajectory of the transition is in Fig. 3.12, where the red dot is the initial state

and the purple the final state. The blue dot is the best approximation of our method.

For this figure we have used 24 steps and 4C = 0.0008.
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Figure 3.11: Evolution from d1 to f2, two mixed states. The blue dot is the initial state and the

orange is the final state. The Black line is the geodesic between the initial and final states.

In these experiments for mixed states, we have used the Hamiltonian with =G and =H

unknowns constants4. In our results, we got that the maximum of the objective function is

in the range from 0.6 to 0.8. This shows that in each step we are not getting the exactly the

right direction for the evolution, comparing with pure states that always we get 1. Also for

mixed states, our method decreases the accuracy to arrive to the final state because for the

infidelity we have a value of 0.02, comparing with pure states which it was 0.01.

3.4 Improvements

At the moment with our algorithm, we can control the direction of evolution of the

state on the Bloch sphere by the coefficients =G , =H using the Hamiltonian given by (2.3);

however we do not have control on the forward evolution which is given by 4C in every

4If we use the Hamiltonian with sin and cos functions we arrived to almost the same results
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Figure 3.12: Evolution from d1 to f2, two mixed states. The red dot is the initial state and the

purple is the final state. The Black line is the geodesic between the initial and final states. The blue

point is the best approximation of the final state given by our method.

step, also we can see this on Fig. 2.1. This produces a poor convergence to the final state;

thus a greater infidelity. Take in mind that 4C is a fixed value based on other algorithms

reviewed before. Also, we are not satisfied with the trajectory given in Fig. 3.2 and we

want to improve it by adding another control field parameter or coefficient.

A feasible idea that we can use to improve the infidelity5 is by introducing an optimiza-

tion function that depends on time. For example, we can use the fidelity equation between

the simulated evolved state with the coefficients =G , =H and with the final state, the state that

we want to reach. The key point here is that we leave the time 4C as an unknown variable.

Then, what we need to search is the time 4C = C>? at which the fidelity is maximize. This

will help to control the evolution in time and the maximization of the fidelity; however, this

time 4C = C>? must be taken as an approximation of the real time to reach to the final state

because the maximization of the fidelity is not always 1. Then, we can take a fraction of

C>? and evolve the state. Combining this idea with our previous methodology, we can set a

5We want to get lower values of the infidelity which will give us a better final state.
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certain amount of steps denoted by #′ at the end of the hole previous algorithm that will be

using this optimization in the fidelity function. We can call this idea a “hybrid algorithm”

and we can explain it in the following:

1. Weneed to set an error constant given by�''$'whichwill be the threshold that one

search for in the Fidelity function. In reality we want, 1−� ( |k#〉 , |q2〉) < �''$',

where |k#〉 is the final state given by our methodology and |q2〉 is the final state that

we want to arrive.

2. We have to define the total number of steps # , that will steer to initial state to the

final one. This # are the number of dots (and steps in our algorithm) that will be

located on the Bloch sphere.

3. Also, we need to set a number of steps #′ that will lead to the accuracy in the Fidelity

function that one wants. Notice that #′ and # are related to the total time of the

evolution ) of the initial state |k1〉, given by ) = (# − #′) × 4C +∑# ′

8=1 C>?/<, with

< ∈ N. This ) will give us the physical time that our algorithm will take in order to

reach to the final state.

4. In order to explain this hybrid model, we set a counter of steps given by =D<, which

will goes form 1 to # .

In the following chart, we want to present our hybrid algorithm:
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At C = 0: =D< = 1, maximize cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , to get =G and =H

The values of =G and =H are inserted in the Hamiltonian to get a new

initial state |k̂1〉 by doing |k̂1〉 = * (4C, =G , =H) |k1〉.

Is =D< > # − #′ ?

if false

Set 4C a constant value. We get

a new state

|k̂1〉 = * (4C, =G , =H) |k1〉

Clear =G , =H, 4C. Maximize

cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | |

with |k̂1〉 to get =G and =H.

Add 1 to =D<.

if true

Maximize � ( |k̂1(4C)〉 , |q2〉)

to get 4C = C>?.

Divide C>? by < ∈ N

We get a new state |k1〉

by |k1〉 = * (C>?/<, =G , =H) |k̂1〉

Is 1 − � ( |k1〉 , |q2〉) < �''$' and =D< = # ?

If yes, we are done; if not continue

Clear =G , =H, 4C. Maximize

cos(U) = 6� ( ¤W(0), ¤d(0))
| | ¤W(0) | |×| | ¤d(0) | | , with |k1〉

to get =G and =H, add 1 to =D<.

In the following, we present the performance of the hybrid algorithm with a transition
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from |k1〉 = cos c8 |0〉+sin c
8 |1〉 to |q2〉 = |H−〉 using (2.3) with =G , =H unknowns constants.

This transition is similar as Fig. 3.9 and we can see it on the Bloch sphere in Fig. 3.13.

For this experiment, we got an infidelity of 3.5 × 10−5 which is a better result comparing

with 0.01 that we got with our previous model in the same transition. Also, we got a total

time of evolution of ) = 0.29 which is a value of reference according to the geodesic time.

Being specific, the geodesic equation starting from the initial state arrives to the final state

in ) = 1. In this transition, our model arrives to the final state faster than the geodesic

equation.

Figure 3.13: The hybrid algorithm: evolution from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H−〉.

The red dot is the initial state and the purple is the final state. The driven Hamiltonian is given by

(2.3), with =G and =H unknowns constants. The Black line is the geodesic between the initial and

final states. For this experiment, we have used �''$' = ×10−3 , < = 2, # = 17, 4C = 0.2, # ′ = 5

and we got an infidelity of 3.5 × 10−5 and ) = 0.29.

Focusing on the trajectory given by the Fig. 3.2, where we showed that with small

values of 4C our methodology can follow the geodesic in a better form than when using
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large values of 4C. An improvement for this issue will be by adding another control

parameter in the I direction. This can be done by setting the control field variable =I ≠ 0

on our proposed Hamiltonian (2.3). Thus,

� =
−F0 + =I

2
fI +

=G

2
fG +

=H

2
fH, (3.7)

where =I is the new control field parameter and =G and =H are the unknown control field

parameters that we were working with and also taking in mind that F0 = 5 is the natural

frequency of the system6; thus is a fixed value. Applying this new feature to the transition

|k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉, we ended up with an infidelity of 7.5 × 10−5

as one can see the result on Fig. 3.14. Also for this experiment, we used # = 34 steps,

4C = 0.035 and we set a constrain7 in the control fields of−F0 ≤ =I ≤ F0, −F0 ≤ =G ≤ F0,

−F0 ≤ =H ≤ F0 .

Joining both ideas, that is adding in the hybrid algorithm another control parameter in

the =I and applying to the transition |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |H+〉, with �''$' =

×10−5, # = 28, #′ = 8 and < = 2, one can see our result in Fig. 3.15. For this transition,

we got an infidelity of 8.7 × 10−6 which is a value that is in range with the algorithms

reviewed before. In addition with this new improvements with more steps, one can improve

the value of the infidelity even more.

A fact or probably a drawback is that we noticed that the trajectories with our algorithm

has an orientation of rotation. For instance, if we want to go from the |G+〉 to |H+〉 which is a

trajectory in the Ecuadorian plane, our methodology does not follow the smallest trajectory

instead it follows the largest as we can see in the right of Fig. 3.16. This experiments have

been made with the Hamiltonian given by (3.7) and using < = 2 to divide C>? (the hybrid

algorithm).

6According to Abraham et al. (2019), the transmon qubit of IBM Quantum has a natural frequency of

5"�I
7The constrain is due to fact that the transition frequencies must be bounded by the energy difference

between the |1〉 and |0〉 states. Higher amplitudes of the control fields can lead to other unwanted excitation

levels .
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Figure 3.14: This transition is from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉. The red dot is the

initial state and the purple is the final state. Here, we have added a new control coefficient =I in the

direction of the I − 0G8B. The black line is the geodesic.

This issue is due to the fact that the term −F0
2 fI in the Hamiltonian (2.3) makes always

a counterclockwise rotation in the I−0G8B. A practical solution might be changing the sign

of the term −F0
2 fI which gives a solution for this problem. This can be done by applying a

fG to the Hamiltonian �0 given a new Hamiltonian �′0,

�′0 = f
†
G�0fG =

F0
2
fI . (3.8)
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Figure 3.15: This transition is from |k1〉 = cos c8 |0〉 + sin c
8 |1〉 to |q2〉 = |H+〉. The red dot is the

initial state and the purple is the final state. Here, we have added a new control coefficient =I in

the direction of the I − 0G8B. Also, we have implemented an optimization in the Fidelity equation

to get a better time parameter 4C. The black line is the geodesic. For this figure, # = 28, # ′ = 8,

�''$' = ×10−5, < = 2 and we got an infidelity of 8.7 × 10−6 and ) = 1.36

3.5 Analysis and comparison with other models

At first, our methodology of state to state transition for mixed and pure states based on

geometrical equations of the density matrices manifold in general gives trajectories that

follows the geodesic between the two states. For the case of pure states, we have found that

the chosen Hamiltonians, the one that depends on sin and cos functions and the one with

=G , =H unknown constants, follow the geodesic almost in every experiment. Even in the

worst scenario like Fig. 3.2, where we proved that with small 4C and more steps we can get
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Figure 3.16: Left: Transition from |H+〉 to |G+〉. The dark green dot on the right is the initial

state and the light green is the final state. Right: Transition from |G+〉 to |H+〉. The purple dot

on the left is the initial state and the final state is in the cluster of purple dots. The Black line is

the geodesic between the initial and final states. These figures show that our algorithm follows a

counterclockwise rotation with (3.7) and does not follows the geodesic, which is the black line, in

the case of figure on the right.

the final state as we can see in Fig. 3.6. Also for pure states using both Hamiltonians, we

got the same results for the infidelity given by the equation 1 − � (d1, f2) and with value

0.01. We have to say that an infidelity of our value is not in the range of models presented

before like CRAB, GRAPE and Krotov where one can find values of infidelity in the order

of 10−5 and 10−6.

To solve the issue of high value of infidelity in our methodology, we have came up with

a “hybrid model” that joins the optimization of cosU which gives the “direction” of where

the final state is located and the optimization of � ( |k1〉 , |q2〉) which gives the evolution

in time to arrive at the final state. Keeping this hybrid model in mind, we can show that

the performance of our model is better against CRAB and GRAPE algorithms when one

needs few steps to arrive to the final state. The term “few” is 10- 30 steps to arrive to the
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final state. To show this, we set the following experiment.

At first, one needs to know that CRAB and GRAPE receive the following data: the

initial and final states |q1〉 and |q2〉 respectively, the total time of the evolution ) , the

number of time slots given by # (which gives the number of points on the Bloch sphere

and also gives 4C = )/# ), the Hamiltonian of the system �0, the control Hamiltonian �2
and the error in the infidelity. With this, we have planed the following: we set the initial

state given by the North pole, |0〉 and the final state |H−〉, ) = 0.6, # = 22, �0 = −F0
2 fI,

�2 =
=G
2 fG +

=H
2 fH +

=I
2 fI with =G , =H, =I unknown real variables and the infidelity 10−5.

One can see the results using CRAB in Fig. 3.17, using GRAPE in Fig. 3.18 and using our

model Fig. 3.19.

Figure 3.17: Transition from |k1〉 = |0〉 to |q2〉 = |H−〉 using CRAB algorithm with 22 steps. In

both figures, the vectors represent the evolution of the initial state after the optimization. The left

figure is a plot in 3d meanwhile the right figure is a projection in the G − H plane. On the right, we

see that the red vector called final state is the best approximation of CRAB. For this figures we used:

�0 =
−F0

2 , �2 = =G/2fG + =H/2fH + =I/2fI , F0 = 5, # = 22, ) = 0.6, 5 83_4AA_C0A6 = 10−5,

0<?_;1>D=3 = −F0, 0<?_D1>D=3 = F0. The infidelity for this experiment using CRAB is

7.84 × 10−6.

The infidelity of CRAB for this transition is 7.84 × 10−6 and for the GRAPE is 3.47 ×

10−7, meanwhile out hybrid model gives 3.05× 10−8. For this specific transition where we

fix the amount of steps in the transition, our algorithm outperforms CRAB and GRAPE.
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Figure 3.18: Transition from |k1〉 = |0〉 to |q2〉 = |H−〉 using GRAPE algorithm with 22 steps. In

both figures, the vectors represent the evolution of the initial state after the optimization. The left

figure is a plot in 3d meanwhile the right figure is a projection in the G−H plane. On the right, we see

that the red vector called final state is the best approximation of GRAPE. For this figures we used:

�0 =
−F0

2 fI , �2 = =G/2fG + =H/2fH + =I/2fI , F0 = 5, # = 22, ) = 0.6, 5 83_4AA_C0A6 = 10−5,

0<?_;1>D=3 = −F0, 0<?_D1>D=3 = F0. The infidelity for this experiment using GRAPE is

3.47 × 10−7.

Thus, this result is very promising8 because with simple optimization functions inside a

simple algorithm we are capable of getting infidelity values which are in range of powerful

and well established models in the quantum control community which are CRAB, GRAPE

and Krotov. Also, one can see on the Bloch sphere that our model reach to the final state

in a better way than GRAPE and CRAB. We have to admit that Krotov model is better in

every simulation even with a small amount of values of steps.

In particular comparing with GRAPE algorithm, the initial state of our methodology

advance always forward in time, it is sequential, and we do not need to give initial “guess”

values for control fields parameters. In GRAPE algorithm, the evolution in every step is

forward and backward propagated in order to find and update the control coefficients. This

can be seen in equations (1.34) and in (1.35). Also, if one wants to program the GRAPE

algorithm by oneself, at first the algorithm is not a laborious task; however giving the initial

8However, applying these improvements in our algorithm with mixed states we did not get better results.
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Figure 3.19: Transition from |k1〉 = |0〉 to |q2〉 = |H−〉 using the Hybrid algorithm with 22 steps.

In both figures, the dots represent the evolution of the initial state given by our methodology. The

left figure is a plot in 3d meanwhile the right figure is a projection in the G − H plane. The black

line is the trajectory of the geodesic. For this figure, �0 = −1
2F0fI , �2 = =G

2 fG +
=H

2 fH +
=I
2 fI ,

# = 22, # ′ = 3, �''$' = ×10−5, < = 2 and ) = 0.6. With this data, we got an infidelity of

3.05 × 10−8.

“guess” values of the control coefficients, as we did it in (1.38), is not straightforward9.

Even more, if one does not have an educated decision for the guess initial parameters, the

algorithm does not converge. These issues in GRAPE algorithm make our methodology a

better choice.

3.6 Future activities

In the future, we want to address some important facts that the other models have and

the misbehavior of our algorithm in the case of mixed states in order to have a better

transition control algorithm. At first, we need to add interactions with the environment.

9One does not have this issue with the Qutip package. The GRAPE Qutip package is a modification of

the GRAPE algorithm presented in the introduction where the initial guess values are random numbers and

the algorithm has a monotonic convergence.
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Second, the possibility to add more qubits or the scaling to a great number of qubits. A

third, we need to find an improvement for mixed states in our methodology.

The first can be feasible by the Lindblad master equation which is a generalization of

the Liouville-von Neumann equation (Sarandy & Lidar 2005). This master equation uses

a set of damping operators which simulate the environment. The second issue is really

important to have because entanglement is a key point in every quantum communication

protocol, for example.

An idea to fix the issue with mixed states might be by adding the term (W × ¤W) in the

set of Hamiltonians given by (1.1), which gives the adiabatic phase. This idea came from

(Fasihi et al. 2012), where they used the Lewis - Reisenfeld Invariant (LRI) to control

mixed states of a two-level quantum system. This method is an improvement in time from

adiatic quantum control methods (Sarandy et al. 2011). This suggests that we need to

recover the Hamiltonian terms that produces geometrical phases in order to control mixed

states.
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Conclusions

Finally, after presented themethodology and some experiments of transferring quantum

pure and mixed states, we want to present the conclusions of this work.

• For a single qubit, we have found a set of Hamiltonians � given as a linear combina-

tion of Pauli matrices {fG , fH, fI} and with unknown real constants {=G , =H, =I, 4C}

that follows the geodesic of the density matrix manifold, in the transitions presented

in this work. We found some disagreements in the case for mixed states; however

for pure states, our model performed well in transferring these types of states. Even,

we ended with an improved idea called “hybrid model” that maximize the objective

function given by cosU in (2.23) and the fidelity function between the initial and

final state. At the moment, the constrain that our model has, it is in the control

field parameters that in general are bounded by the natural frequency of the system,

−F0 ≤ =G ≤ F0 , −F0 ≤ =H ≤ F0, −F0 ≤ =I ≤ F0, with F0 the natural frequency

of the system; thus making our model plenty room for developing and improving in

the future.

• We have reviewed and simulated well known algorithms in quantum control theory

which are CRAB, GRAPE and Krotov. In general terms, all these models maximize
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the fidelity function or minimize the infidelity given by

� ( |k1〉 , |q2〉) = 1 − � ( |k1〉 , |q2〉), (4.1)

where |k1〉 and |q2〉 are the initial and final pure states and � is the fidelity given

by � ( |k1〉 , |q2〉) =
√
| 〈k1 |q2〉 |. We presented Python simulations of these models

and we found a scenario where our model outperforms these models. We got an

infidelity in the order of 10−8 which is superior against CRAB and GRAPE for the

same number of steps in the time evolution. The scenario that we got this result

was in the transition from the initial state, the North pole |0〉 to the final state given

by|H−〉 using �0 = −1
2F0fI as the system Hamiltonian, �2 = =G

2 fG +
=H
2 fH +

=I
2 fI

as the control Hamiltonian with =G , =H, =I real variables and a total time evolution of

) = 0.6, # = 22 the number of time slots.

• In this work, we have reviewed and used concepts of geometry of the set of density

matrices. For instance, the geodesic of density matrices is a key point in this work

and it comes from purifications of density matrices. Geometrically, purifications

are principal fiber bundles over the set of density matrices. In the case of pure

states, we have changed the geodesic equation such that it is well defined for not

invertible matrices. Also, we have used the tensor metric given by the Bures distance,

which generalize Fubiny-Study distance for pure states, defined between two density

matrices. This tensor metric helps us to define the direction, given by {=G , =H, =I} in

�2, of where the final state is located.

• There are some challenges that we need to address in order to have a complete state

to state transition algorithm. One issue is the interaction between the environment.

Another is the scaling to a bunch of qubits. Finally, we have found that our method-

ology does not follow adequately the geodesic in the case for mixed states. We have

an insight given by (Fasihi et al. 2012) that we need to add the term (W × ¤W) in (1.1)

in order to improve our methodology. However this final fact, can be an starting

point for a future research.
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Appendix A

Mathematical aid

In this chapter, one can find useful properties and theorems of some basic definitions

like positive operators, SVD, polar decomposition, reshaping and vectorization operations.

These algebraic tools, as quantum information theorists call them, are basics bricks to

manipulate and understand quantum information in a mathematical way.

The notation is the following. M<,= will be set of < × = matrices over C. The set of

square matrices is denoted byM=.

A.1 Singular Value Decomposition SVD

Theorem A.1.1 (Singular Value Decomposition). Let � ∈ M<,= with rank : ≤ < then

there are* ∈ M< and + ∈ M= unitary matrices such that

� = *Σ+†, (A.1)

where Σ = {f8 9 } ∈ M<,= such that

f8 9 = 0, for 8 ≠ 9 , (A.2)

and

f11 ≥ f22 ≥ . . . ≥ f:: ≥ f:+1,:+1 = . . . = f@@ = 0, (A.3)

with @ = min{<, =}.
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The numbers f88 ≡ f8 are singular values 1, the columns of* are eigenvectors of ��†

and the columns of + are eigenvectors of �†�.

A.2 Polar decomposition

Definition A.2.1 (Modulus of a matrix). The modulus of � ∈ M<,= is a positive semidefi-

nite matrix |�| = (�†�)1/2 ∈ M=.

Theorem A.2.1 (How to get |�|). Let � ∈ "<,= be nonzero, A0=:� = A ≥ 1, and let

the Singular Value Decomposition (SVD), � = *Σ+† where ΣA = 3806(f1, . . . , fA) are

positive singular values of � such that f1 ≥ f2 . . . ≥ fA ≥ 0. For any integer : ≥ A,

defines Σ: = ΣA ⊕ 0:−A ∈ M: . Then

|�| = +Σ=+† and |�† | = *Σ=*† (A.4)

Definition A.2.2 (Polar decomposition). Let � ∈ M<,= and suppose that A0=:� = A ≥ 1.

Let the SVD, � = +Σ,†.

1. if < ≥ =, let* = +=,
†, in which + = [+=+ ′] and += ∈ M<,=

2. if < ≤ =, let* = +,
†
<, in which, = [,<,

′] and,< ∈ M=,<

3. if < = =, let* = +,†.

then* ∈ M<,= has orthonormal column (if < ≥ =) or orthonormal rows (if < ≤ =) and

� = * |�| = |�† |* (A.5)

Definition A.2.3 (Positive semidefinite square root). If � ∈ "= is positive semidefinite,

the unique positive semidefinite matrix �1/2 such that (�1/2)2 = � is called the positive

semidefinite square root of �. If � is positive definite, we define (�1/2)−1 = �−1/2.
1non-negative square roots of the eigenvalues of ��†
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Theorem A.2.2. let � ∈ M2 be a semidefinite positive and nonzero, and let

g = ()A� + 234C (�)1/2)1/2,

then g > 0 and

�1/2 =
1
g
(� + (34C�)1/2�) (A.6)
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Appendix B

Physical aid

Here are some reckons that explain more this work.

B.1 Index and relative states

We can construct a maximally entangled pure state from a extended quantum system.

Let H( be the Hilbert space of our system which has an orthonormal basis |U:〉 and

38<H( = = andH� the Hilbert space of our environment with |V:〉 an orthornormal basis

with 38<H� = =. A maximally entangled pure state will be given by,

|k(�〉 = 1
√
=

∑
:

|U(: 〉 |V
�
: 〉 . (B.1)

It is practical to use non-normalized states,

|k̃(�〉 =
√
= |k(�〉 . (B.2)

Using (B.1) or (B.2), we can have a one-to-one correspondence between H( and H� .

For every state |1�〉 from the environment there is a unique state |0(〉 in the system such

that
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1
√
=
|0(〉 = 〈1� |k(�〉 (B.3)

|0(〉 = 〈1� |k̃(�〉 . (B.4)

Definition B.1.1 (Index and Relative states). The state |1�〉 is called index state in the

environment that yields to |0(〉 meanwhile the state |0(〉 is called relative state in the

system to |1�〉.

Given a general state |q(〉 of the system, the state |q∗�〉 such that |k(〉 is the relative

state to |q∗�〉 is called the index state of |q(〉. The procedure to find |q∗�〉 from |q(〉 will

be, if we have

|q(〉 =
∑
:

0: |U(: 〉 , (B.5)

then

|q∗�〉 =
∑
:

0∗: |V
�
: 〉 . (B.6)

Actually,

〈q∗� |k̃(�〉 =
∑
:;

0: 〈V�: |V
�
; 〉 |U

(
; 〉

=
∑
:

0: |U(: 〉

= |q(〉

(B.7)

B.2 Where does the geodesic of Quantum states come

from ?

In our problem or let us say in our story, one of our main characters is the geodesic

equation of quantum states. One must show where (1.76) comes from or at least a glance

of the origin of this equation for the sake of the reader. For this, we are going to follow

(Howardf N. Barnum 1998)
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Let begin with |q1〉 ∈ H� ⊗ H� and |q2〉 ∈ H� ⊗ H�, two pure states and _8 and

{|41
8
〉} are eigenvalues and eigenvectors of)A� ( |q1〉 〈q1 |) and `8 and {|42

8
〉} are eigenvalues

and eigenvectors for )A� ( |q2〉 〈q2 |), we will explain explicitly and better where all these

eigenvalues and vectors come from.

Recall the Schmidt decomposition theorem (1.6.1), which states that any pure state,

|q1〉, of a bipartite systems admits the following decomposition,

|q1〉 =
∑
8

√
_8 |41

8 〉 ⊗ | 5 1
8 〉 , (B.8)

where {| 5 1
8
〉} is an orthonormal family (eigenvectors of d1,� = )A� |q1〉 〈q1 |) and _8 are

the eigenvalues of d1,� = d1 = )A� |q1〉 〈q1 |. Thus, we have a similar result for |q2〉 with

d2,� = d2 = )A� |q2〉 〈q2 |

|q2〉 =
∑
8

√
`8 |42

8 〉 ⊗ | 5 2
8 〉 . (B.9)

• Let define, + a unitary operator such that

+ : H� −→ H�

|41
8 〉 ↦−→ |42

8 〉 = + |41
8 〉,

(B.10)

+ changes basis in the spaceH�.

• Similar we can have,*1 a unitary operator such that

*1 : H� −→ H�

|41
8 〉 ↦−→ | 5 1

8 〉 = *1 |41
8 〉,

(B.11)

changes basis fromH� toH�. *1 is well defined according to (B.1), if we have a pure

maximally state (which is |q1〉 and also |q2〉), there is one-to-one correspondence

between states inH� andH� through the pure state.

• Finally,
*2 : H� −→ H�

| 5 1
8 〉 ↦−→ | 5 2

8 〉 = *2 | 5 1
8 〉,

(B.12)

*2 changes basis inH�.
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• Then we can get,

| 5 2
8 〉 = *2*1 |41

8 〉 (B.13)

Also, we need a lemma

Lemma B.2.1 (Transpose Lemma (Jozsa 1994)). Let {|48〉}, 8 = 1, . . . , =, be an orthogonal

basis ofH and let |k〉 ∈ H ⊗ H be a vector,

|k〉 =
∑
8

|48〉 ⊗ |48〉 , (B.14)

then for any operator � onH ,

(� ⊗ �) |k〉 = (� ⊗ �) ) |k〉 , or∑
8

� |48〉 ⊗ |48〉 =
∑
8

|48〉 ⊗ �) |48〉.
(B.15)

The proof is quit easy. Remember that any vector is given by

|4 9 〉 = � |48〉 =
∑
9

0 98 |48〉with 0 98 = 〈4 9 | � |48〉 . (B.16)

Thus,
(� ⊗ �) |k〉 = (� ⊗ �)

∑
8

|48〉 ⊗ |48〉

=
∑
8

∑
:

08: |4:〉 ⊗ |48〉

=
∑
8,:

|4:〉 ⊗ 08: |48〉

=
∑
:

|4:〉 ⊗
∑
8

0):8 |48〉

= (� ⊗ �) )
∑
:

|4:〉 ⊗ |4:〉

= (� ⊗ �) ) |k〉,

(B.17)

which is the end of the proof.
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Using the above equations, the Transpose Lemma and |q1〉,

|q1〉 =
∑
8

√
_8 |41

8 〉 ⊗ |41
8 〉

=
√
d1 ⊗ *1 |k〉

= (√d1 ⊗ �) (*)1 ⊗ �) |k〉, by the Transpose Lemma,

|q1〉 =
∑
8

√
d1*

)
1 |4

1
8 〉 ⊗ |41

8 〉

(B.18)

also we used the fact that

√
d1 =

√
)A |q1〉 〈q1 | =

√∑
8

_8 |41
8
〉 〈41

8
| =

∑
8

√
_8 |41

8 〉 〈41
8 | . (B.19)

The same with |q2〉,

|q2〉 =
∑
9

√
` 9+ |41

9 〉 ⊗ *2*1 |41
9 〉

=
√
d2+ ⊗ *2*1 |k〉

=
√
d2+*

)
1*

)
2 ⊗ � |k〉

=
∑
9

√
d2+*

)
1*

)
2 |4

1
9 〉 ⊗ |41

9 〉

(B.20)

Thus, we get
|q1〉 =

∑
8

√
d1*

)
1 |4

1
8 〉 ⊗ |41

8 〉

|q2〉 =
∑
9

√
d2+*

)
1*

)
2 |4

1
9 〉 ⊗ |41

9 〉.
(B.21)

The inner product of these two states,

〈q1 |q2〉 =
∑
8, 9

〈41
8 | (*)1 )

†√d1
√
d2+*

)
1*

)
2 |4

1
9 〉 〈41

8 |41
9 〉 ; with 〈41

8
|41
9
〉 = X8 9

= )A

(
(*)1 )

†√d1
√
d2+*

)
1*

)
2

)
= )A

(
√
d1
√
d2+*

)
1*

)
2 (*

)
1 )
†
) (B.22)

Taking the maximum of the absolute value,

max
|q2〉
| 〈q1 |q2〉 | = max

*
|)A (√d1

√
d2)* |;with* = +*)1*

)
2 (*

)
1 )
†, (B.23)
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where the left maximum is taking over all state |q2〉 such that d2 = )A� ( |q2〉 〈q2 |) and the

right maximum is taken over* all unitary operators.

Now, we can use the following lemma,

Lemma B.2.2. If � is any operator, D = max
*
|)A�* | (the maximum is taken over all

unitary operators*) is reached when �* is positive and then D = )A |�|.

Proof:

The proof could begin assuming that � is invertible and with polar decomposition � =

|�|*0. Then, we need to maximize |)A |�|+ | over all unitary operators V. In the eigen basis

of |�| where |�| = 3806(_1, . . . , _=) with _8 ≥ 0, one has |)A |�|+ | = |∑8 _8+88 |. We know

that + is unitary and for every 8 is true that |+88 | ≤ 1. Then the maximum is reached when

+ = � and we have |)A |�| | = )A |�|, because |�| is positive. If � is not invertible, we have

to follow the same procedure in the orthogonal complement of the eigenvalue zero space.

Thus, the maximum is reached when

√
d1
√
d2* = |√d2

√
d1 | ⇐⇒ * = d

−1/2
2 d

−1/2
1 |√d2

√
d1 |, (B.24)

here we have used the polar decomposition |�| =
√
��† taken from (Howardf N. Barnum

1998) which is different from ours which is |�† | =
√
�†� but at the end both polar

decomposition give the same geodesic equation.

The correspond state |q2〉 is, in view of (B.21),

|q>?C2 〉 =
∑
8

√
d2+*

)
1*

)
2 |4

1
8 〉 ⊗ |41

8 〉

=
∑
8

d
−1/2
1 |√d2

√
d1 |*)1 |4

1
8 〉 ⊗ |41

8 〉
(B.25)

We are almost there, we can get the geodesic equation by the equation of the trigono-

metric circle on the hypersphere

|qg〉 = (cos g − sin g
tan \
) |q1〉 +

sin g
sin \

|q2〉 (B.26)
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with g ∈ [0, \] and \ is the Hilbert space distance between the two pure states. Finally, the

geodesic equation is

W(C) = )A� |qg〉 〈qg | . (B.27)

If we take a closer look to one of the terms in )A�,

)A� |q1〉 〈q>?C2 | =
∑
8

√
d1*

)
1 |4

1
8 〉 〈41

8 | (*)1 )
† |√d2

√
d1 |d−1/2

1 ;*)1 |4
1
8
〉 〈41

8
| (*)1 )

† = |42
8
〉 〈42

8
|

=
√
d1 |
√
d2
√
d1 |d−1/2

1 ;
∑
8 |42

8
〉 〈42

8
| = �

=
√
d1(
√
d1d2
√
d1)1/2d−1/2

1 ; using polar decomposition.
(B.28)

Now, we need to prove the following

√
d1(
√
d1d2
√
d1)1/2d−1/2

1 = d
−1/2
2 (√d2d1

√
d2)1/2d1/2

2 . (B.29)

To prove this, we are going to use our definition of polar decomposition, |�| =
√
�†�,

√
d1
√
d2 = * |

√
d1
√
d2 |, with* unitary. (B.30)

Thus,

|√d2
√
d1 |2 =

√
d1
√
d2(
√
d1
√
d2)† = * |

√
d1
√
d2 |2*†, (B.31)

then

|√d2
√
d1 | = * |

√
d1
√
d2 |*†. (B.32)

Multiplying by d1/2
1 on the left and by d−1/2

1 on the right, we get (B.28),

d
1/2
1 |
√
d2
√
d1 |d−1/2

1 = d
1/2
1 * |√d1

√
d2 |*†d−1/2

1

= d
−1/2
2
√
d2
√
d1* |
√
d1
√
d2 |*†d−1/2

1 d
−1/2
2 d

1/2
2 .

(B.33)

Now from (B.30)

(√d1
√
d2)−1 = (* |√d1

√
d2 |)−1, (B.34)

which after applying the inverse and the transpose we get

d
−1/2
1 d

−1/2
2 = * |√d1

√
d2 |−1. (B.35)
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Thus, replacing the last equation in (B.33),

d
1/2
1 |
√
d2
√
d1 |d−1/2

1 = d
−1/2
2
√
d2
√
d1* |
√
d1
√
d2 |*†* |

√
d1
√
d2 |−1d

1/2
2

= d
−1/2
2
√
d2
√
d1*d

1/2
2 .

(B.36)

Notice that

(√d1
√
d2)† = (* |

√
d1
√
d2 |)†, (B.37)

which leads us to
√
d2
√
d1 = |

√
d1
√
d2 |*†. (B.38)

Hence, replacing in (B.36),

d
1/2
1 |
√
d2
√
d1 |d−1/2

1 = d
−1/2
2 |√d1

√
d2 |d1/2

2 = d
−1/2
2 (√d2d1

√
d2)1/2d1/2

2 , (B.39)

which is the awful term of (1.76).
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