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We consider a chiral bag model at finite temperature, with a thermal skyrmion of Eskola and Kajantie modelling 
the exterior sector. Supposing that the "Cheshire Cat" scenario takes care of all zero temperature effects, we show the 
existence of a critical temperature over which there can only exist a quark-gluon plasma phase, since the bag is no 
longer stable. This fact is interpreted as the occurrence of a deconfinement phase transition. 

It turns out that the critical temperature has an important dependence on the boundary conditions, due to the finite 
size of the bag, obeyed by the quarks and gluons of the thermal vacuum inside the bag. In fact, the corrections due to 
these boundary conditions imply a critical temperature bigger by almost a factor two compared to the case where the 
boundary conditions are ignored. 

The analysis of  a possible deconfining phase transi- 
tion of  the hadronic world, due to thermal effects, has 
given rise to an impor tant  amount  of  work during the 
last years. Different procedures and techniques yield 
a critical deconfining temperature between 120 MeV 
and 160 MeV. In particular,  in a recent paper  [1 ], 
this problem has been discussed invoking the hybrid 
models [2]. The main ingredients of  this discussion 
were a chiral bag and a non-perturbat ive external pion 
field configuration, given by a thermal skyrmion of  
Eskola and Kajantie  [ 3 ]. 

It is impor tant  to remark here that the pure 
skyrmion model  at zero temperature provides a no- 
table successful descript ion of  the nucleon and other 
baryons and mesons after a suitable modif icat ion of  
the basic model  [4]. This represents a strong mo- 
t ivation for discussing the occurrence of  thermal 
deconfinement  in this frame. 

As it is well known, the consistent construction of  
chiral bag models requires a careful analysis of  the 
zero point  energies at the one loop order, as well as 
the cancellation of  ultraviolet divergences due to the 
presence of  the bag wall [5]. These considerations,  
together with an external skyrmionic tail, provide a 
"Cheshire Cat" descript ion of  the nucleon, where all 

low energies physical observables, as, for example, 
the mass, the rms radius, the isoscalar and vector 
magnetic moments,  etc., turn out to be essentially in- 
dependent  of  the bag radius [ 5,6 ]. This radius seems 
to play an irrelevant role in the determinat ion of  
physical quantities. It corresponds only to a demar-  
cation between two different descriptions of  the rele- 
vant degrees of  freedom: quarks and gluons inside the 
bag and, outside, free pions and the non-perturbative 
skyrmion configuration. 

The purpose of  this letter is to improve the dis- 
cussion presented in [ 1 ], by taking explicitly into ac- 
count the effect of  the boundary conditions, obeyed 
by the quarks and gluons of  the thermal vacuum in- 
side the bag, on the equil ibrium condit ion between 
both phases. As we will see, the critical temperature 
emerging from this analysis turns out to be substan- 
tially bigger than the value given in [1 ], where the 
boundary conditions were neglected. 

We will assume here, as in [ 1 ], that all zero point  
effects have been taken into account at zero temper- 
ature, giving rise to the "Cheshire Cat" scenario. The 
value of  the equil ibrium radius at finite temperature 
should be determined by the thermal contributions. I f  
for a certain temperature the model  is unable to pro- 
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i l ibrium radius, we will interpret  this fact 
rence of  thermal  deconfinement.  
;sume that the populated thermal vacuum 
d gluons inside the bag does not have any 
t the baryonic number  of  the hadron, ne- 
chemical  potential.  The hadronic  quan- 
rs are provided by the valence quarks, 
~urse, do not play any role in the ther- 
ies. The descript ion of  the external vac- 
a superposi t ion of  the thermal  skyrmion 

free massless pions. Nevertheless, the cru- 
ation for deconfinement  comes from to 
:urbative configuration. 
ts at finite temperature  comes from an 
between the external and internal vari- 

essure due to thermal effects. Normally,  
on used for the internal pressure of  the 
L plasma is just  the one of  an ideal gas, i.e. 

37 _2,7,4 -- ~1~ I , (1) 

favors and three colors are assumed [7]. 
rer, we will calculate the pressure directly 
t i t ion function, taking into account in this 
:t o f  the finite size bag through the bound-  
ns. These produce, as usual, a set of  dis- 
levels for the thermal partons. The wave 
he quarks (and ant iquarks) ,  according to 
mdary  condit ion,  obeys 

))lr=R = ~ ( r ) l r = R ,  (2) 

,0 o) 
k--O" 

,ell known [8], the free solution of  the 
ion with spherical symmetry is given by 

' Jl~ (pr)X~ 

I _ ~ T ~ E -  ~c E - mOmo Jt-,:(pr)XU--,¢ ) , (3) 

c (pr) are spherical Bessel functions and 

c ( l l  j;/t - m , m )  y / u - m x  m 

:tions associated to the spin (X m) and 
tees of  f r e e d o m  (y /u -m)  through the 
rdan coefficients (C) .  

In the expressions above, j is the total angular mo- 
mentum and lx is given by 

l,~ = { x  x > 0 .  
- x - I  x < 0 '  

l_ ,~= { x - I  x > O  
- x  x < 0 " (4) 

From the boundary condit ions we get 
(a) I f x > 0 ~ l _ ~  = I x - l ,  

E~E - + mo Jr,,-1 (pR). (5) Jt,~ (p R ) = - rno 

(b) I f x < 0 ~ l _ x  = I x +  1, 

/ / 'E - /9 , / 0  . 
Jt~ (pR) = V ~ Jt~+l (pR). (6) 

Since the mass of  the u and d quarks are very small 
[9] compared  to the nucleon mass, we will take here 
the chiral limit. We will not consider possible contri- 
butions due to heavy flavors, since they are strongly 
suppressed by the Boltzmann factor. In this way, the 
energy spectrum can be obtained from the equations 
(a) x > 0  (l~ = x _ = l ) , l =  1,2 . . . .  (x  = 1,2 . . . .  ), 

j t(pR) + Jl-I(pR) = 0. (7) 

(b) x < 0 ( Ix= - x -  1 - l ) , l  = 0 ,1 ,2  . . . .  (x  = 
- 1 , - 2  . . . .  ), 

j t(pR) - Jt+L (pR) = 0. (8) 

The free gluons inside are treated here as eight copies 
of  an Abelian gauge field, i.e. as eight photons. The 
gluon confinement can be model led through the so- 
lution of  the Maxwell equations inside a conducting 
spherical cavity. As it is well known [10], we have 
two kinds of  solutions: the transverse magnetic (TM) 
and transverse electric (TE) cases which are given by 

B l m  = ft(kr)LYtm, 

Et,, = ( i / k ) V  x BIm, 

and 

(9) 

Elm = fl(kr)LYlm, 

Btm = - ( i / k ) V  x Elm , 

respectively. 

(lO) 



Volume 322, number 4 PHYSICS LETTERS B 24 February 1994 

The appropriate boundary conditions emerge from 
imposing 

quarks and antiquarks, vanishes. The pressure of  this 
system is given then by 

Etangentiallr=R = O. (11 ) 

Avoiding the singular solutions at the origin, we get 
for the TE mode 

j t ( k R )  = 0 

and for the TM mode 

(12) 

(l + 1 ) j t ( kR)  - kRjt+l  ( kR)  = 0. (13) 

In order to compute the partition function, we need 
the degeneration factor for the different energy lev- 
els. For the fermionic case we have a global factor 
12 coming from the two flavors and the three colors, 
and an extra factor two since we have quarks and an- 
tiquarks in the thermal vacuum. Additionally, since 
the degeneration of  the levels is (2j  + 1 ), we have 
for the e~ level, associated to x, a total degeneration 
g2(e~) = 2 l .  1 2 i f x  > 0 (he r e l  = l~). It is con- 
venient to denote the energy as eln = aln/R where 
R is the bag radius. The atn are determined from 
jt(atn) + j t - l  (atn) = 0, i.e. as the nth solution for 
a given 1, which corresponds to radial excited states 
[ l l ] . F o r x < 0 ,  g2(ex) = 2 ( l +  1) .12 .  I n th i s ca se  
if we denote the energy levels by etn = btn/R, the btn 
are obtained from Jt (btn) - J t+ l  (bl~) = 0. For glu- 
ons we have a global factor 16 due to the two helicity 
states and the eight different gluons. We define in an 
analogous way, the coefficients Ctn and dtn such that 
jt(ctn) = 0 and (l + 1 ) j t ( d t n ) -  dtnjt+l(dtn) = O, 
where etn = c l , /R  and et, = d t , /R  are the respective 
energy levels. 

Since we do not know the number of  particles be- 
longing to the thermal vacuum, we will use the grand 
canonical ensemble. The partition function is given 
by 

= I I ( 1  -4-2 e-ae~) ±ate~) . (14) 
~K 

In this expression we have included the degeneration 
factor for each state. The + ( - )  sign refers to the 
Fermi-Dirac (Bose-Einstein) case, fl = 1 / k T  and 
2 = e uu/kr. Here 2 = 1 since #, the total chemical 
potential associated to the baryonic number of  the 

P V  = ± k T  y ~  g2(ex)ln(1-4- e-~e~). (15) 

Now we need only to sum the different contributions 
to the pressure due to the quarks, including the anti- 
quarks, and the gluons. We will use the unit system 
where k = 1. The bag volume is 4nR3. 
(a) Quarks: ifK > 0, 12(et,) = 12.2 l ,  where etn = 
atn/ R, 

o o  o o  

p l =  l n ~ 3 ~ l Z l n ( l + e - a ' " / r g ) .  (16) 
/=1 n = l  

I f x  < 0, 12 (et,) = 12 .2 ( l  + 1) where etn = btn/R, 

18T ~-~(l P2 = nR 3 L a  + l ) Z l n ( l  + e-bl"/rR)" (17) 
/=0 n = l  

(b) Gluons: for the TE mode, from -t'2(etn) = 
8 . 2 .  (2l + 1) and etn = ct,,/R, 

o o  o ~  

1 2 T z ( 2 1  + 1 ) Z l n ( 1 -  e -ct"/rR) (18) 
P3 --  ~zR3 

1=1 n = l  

Finally, for the TM mode from et~ = dtn/R we have 

o o  o c  

1 2 T z ( 2 / +  1 ) Z l n ( 1 -  e -a"/rR) (19) 
174 -- r t R  3 

l = l  n = l  

The total internal pressure is given by 

Pin = P l  + P2 + P3 "4- P 4 .  (20) 

For the external pressure nothing changes with respect 
to the treatment in [ 1 ]. The contribution of  the free 
pion gas is 

Ppions = 3 7 ~ 2 T 4 .  (21) 

The variation of  the pressure due to the skyrmion, 

APsk(T) = Psk(T) -- Psk(0), (22) 

can be calculated from the dependence of  the thermal 
skyrmion energy as a function of  the bag volume. The 
energy (mass) of  the skyrmion outside the bag, in 
units of F~/4e (where e is the constant in front of  the 
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~. 1. In fig. 1 we show the difference between the internal 
:1 external pressures (Piin - Pext) as a function of the bag 
lius (R) for different temperatures: - - - : T = 0.5, 
. . . .  : T = 0.6. Here T = (2/eFn)T corresponds to 
', dimensionless temperature and Tc to the critical tem- 
:ature. 

tbilizing term in the Skyrme Lagrangian, and F~ is 
," pion decay constant [ 12 ] ) is given by 

o o  
/ ,  

(R,T) = / l(r,T)dr, (23) 
J 
R 

th 

r , T )  = 4n{[r2(Of) 2 ] + 2 sin 2 f 

sin2 f [2r2 ( ~ r ) 2  s in2 f ]  ) ,  (24) 
+ ---7y-- + 

Lere R is the radius of  the bag measured in units 
2~eFt. In the previous expression, f denotes the 
3file function of  the thermal skyrmion of  EK [3]. 
is given by 

[ vr+---½__22(ltC_.oth(ltr_~)-(_l/r)____ 2 ) +  1//2;{4 + /~r22 coth (pr)  ] "  r, T) = rt 1 - ,/r 2 

(25) 

te constant/z in this formula is 2nT, where the tem- 
rature has been expressed in units of  eFt~2, and 
s the size (in the same units as R) of  the instan- 

which gives rise to the skyrmion. Now, the pres- 
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Fig. 2. As fig. l, with the critical temperature also included: 
- - :  Tc = 0 . 6 5 , - - - :  T = 0.7. 

sure of  the skyrmion at radius R and temperature T, 
Psk = OM/OVbag, is given by 

I(R,T) 
Psk (R, T) - 4nR2 (26) 

At a given temperature, a state of  equilibrium be- 
tween the internal and external phases can exist only 
if there is a radius at which the pressures are equal. 
The equilibrium condition is Pin = Pext. In terms of  
the dimensionless variables defined above, the expres- 
sion for the internal pressure should be multiplied by 
(e4F~/16). So we have 

Pin = (I(g,O)se27~R 2 -  I(R, T)) + 37~2T4. (27) 

For the numerical analysis of  this expression we 
have used the constant values for F~ and e according 
to ref. [ 12 ], fitted from the proton and A masses. In 
ref. [3 ] it is shown that the size 2 varies between 1.45, 
for / t  -- 0, and 2.5 in a reasonable range of  variation 
of  T. It is important to remark that the value of  Fn we 
have used, 129 MeV, is smaller than the experimental 
one, 186 MeV, using the normalization of  ref. [ 12]. 

We find that eq. (27) in general has two solutions 
(i.e. two possible values of  the radius for each temper- 
ature), up to a point where both values coincide. Be- 
yond this point there is no solution. This is shown in 
figs. 1 and 2. Below the critical temperature, only one 
of  the two radii is physical. The real physical radius 
emerges from imposing the thermodynamical equilib- 
rium criteria, according to which the second deriva- 
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tive of  the thermodynamical  functions should be neg- 
ative. In this way, by looking at fig. 1 it is easy to see 
that the physical radius corresponds to the smaller ra- 

dius. 
We interpret  the absence of  a real solution of  

eq. (27) as the occurrence of  a deconfining phase 
transition, since for higher temperatures  only the 
quark-gluon plasma phase does exit. For  our esti- 
mates we have taken 2 = 1.45. For  the parameters  
written above, we find that the critical temperature is 
Tc = 228 MeV. This temperature is almost a factor 
two bigger than the value given in [ 1 ]. The effect of  
the finite size of  the bag turns out to be extremely 
important .  

The critical temperature grows linearly with F~. The 
critical temperature  turns out to be much more depen- 
dent on F~ than on e. In general, according to EK [3] 
the value of;t  grows with temperature,  i f  we minimize 
the mass of  the thermal skyrmion for each value of  
T, diminishing the value of  the critical temperature 
for each value of  F~. The dependence on the param- 
eter e turns out to be much less sensitive than in the 
case with a constant value of  2. F rom our discussion, 
it turns out that F~ is the most relevant parameter  
in order  to fix the critical temperature.  The detailed 
discussion about the dependence on the different pa- 
rameters is presented in [ 1 ]. 

The mechanism responsible for the occurrence of  
this phase transit ion can be viewed as a concentra- 
t ion of  the skyrmion around the origin as the temper- 
ature grows [3]. This has the effect of  increasing the 
pressure on the bag due to the tail of  the skyrmion, 
compared to the zero temperature  pressure .  In other 
words, the tail of  the skyrmion always "sucks" the bag 
to the outside, being the pressure proport ional  to the 
height of  the profile function at R. The temperature 
diminishes this height, giving rise to an increase of  
the external pressure. This can compensate  the corre- 
sponding increase of  the internal pressure only up to 
Tc. Note that this critical temperature is smaller than 
1/2 ~ 234 MeV. In fact, 1/2 is a natural bound for 
the temperature in order to avoid instanton interac- 
tions. We have to remark here that although we have 
now a higher critical temperature it is still less than 
this natural  bound. 

We would like to note that from our analysis the 
values for the equil ibr ium radius R are around 0.7 
and 1.3 fm. However, this value should not necessarily 

be identif ied with the physical radius of  the hadron, 
since the tail of  the skyrmion is part  of  the hadronic 
structure in this picture. 

It is possible to carry out the same analysis for the 
case of  genuine chiral boundary conditions,  where a 
chiral angle 05 is introduced. The chiral bag has been 
thoroughly discussed in the l i terature [5, 13] and we 
will not present here the details, but  only mention the 
principal differences. In the chiral bag there are more 
energy levels than in our case. These levels are classi- 
fied according to the so-called grand angular momen-  
tum K, a peculiar mixture between angular momen-  
tum and isospin degrees of  freedom K = (L + S )  + / .  

The higher abundance of  energy levels implies that 
the critical temperature becomes about a 15% smaller 
than the value we have presented here, for the same 
values of  the parameters  and for small chiral angle 
values (not close to 05 = ½zt). The critical tempera-  
ture develops a smooth dependence on the chiral an- 
gle, as long as 05 remains small. For  05 = i n  a sin- 
gularity occurs for the ground state because it starts 
to dive into the Dirac sea. 
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