
PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE

SCHOOL OF ENGINEERING

MODELING AND SIMULATION OF

TIME-HARMONIC WAVE PROPAGATION

IN CYLINDRICAL IMPEDANCE GUIDES:

APPLICATION TO AN OIL WELL

STIMULATION TECHNOLOGY
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Casanova, Gabriel Delgado, Pablo Troncoso, Enrique Mercadal and Álvaro Lorca, for shar-
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RESUMEN

Esta tesis tiene como objetivo calcular el campo difractado y los estados resonantes

que resultan de la radiación acústica de alta frecuencia emanada de un dispositivo que es

sumergido en un pozo de petróleo para incrementar la permeabilidad de la formación rocosa

que lo rodea. Simulaciones de alto desempeño son las que motivan este trabajo debido a su

capacidad para determinar frecuencias óptimas de estimulación. Para lograr obtener dichas

simulaciones, desarrollamos procedimientos matemáticos que permiten resolver problemas

de propagación de ondas tiempo-harmónicas en una guı́a de ondas cilı́ndrica infinita local-

mente perturbada. La condición de borde de impedancia es ampliamente utilizada ya que

resulta adecuada para captar los fenómenos de transmisión de energı́a producidos debido a

las altas frecuencias a las cuales trabaja el dispositivo y la interacción entre el fluido y el

medio poroso. El dominio no acotado es truncado introduciendo una condición de borde

absorbente dada por el operador Dirichlet-a-Neumann, el cual es deducido por medio de

una función de Green. La solución de los problemas resultantes es obtenida por medio

del método de los elementos finitos. Problemas de referencia que comparan las soluciones

exactas con las aproximadas, son resueltos para geometrı́as simples con el fin de probar la

exactitud de los métodos numéricos aquı́ desarrollados.

Palabras Claves: Ecuación de Helmholtz, guı́a de onda cilı́ndrica, función de Green,

problema de difracción de ondas directo, problema de resonancias,

condición de borde de impedancia, operador Dirichlet-a-Neumann,

método de los elementos finitos, perturbación compacta, estimu-

lación acústica de pozos.
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ABSTRACT

This thesis aims to compute the scattered field and the resonant states arising due to

the high-frequency acoustic radiation produced by a device lowered into an oil well with

the purpose of increasing the permeability of the porous rock surrounding it. Accurate sim-

ulations of these physical phenomena motivate this work due to their potential to improve

the performance of this well stimulation method, by means of determining optimal emis-

sion frequencies. To obtain these simulations, we develop numerical procedures to solve

time-harmonic wave propagation problems in a locally perturbed cylindrical waveguide.

The impedance boundary condition is largely employed throughout this thesis because it is

suitable to model the energy dissipation phenomenon resulting from the high-frequencies

at which the device works, and the fluid/porous solid acoustic interaction (the interaction

between the oil and the reservoir rock). The unbounded domain is truncated introducing

an absorbing boundary condition obtained from the Dirichlet-to-Neumann map, which is

deduced from a proper Green’s function. The solution of the resultant problems is carried

out via the finite element method. Benchmark problems are presented to show the efficacy

and reliability of the numerical methods proposed.

Keywords: Helmholtz equation, cylindrical waveguide, Green’s function, direct

scattering problem, resonance problem, impedance boundary condition,

Dirichlet-to-Neumann map, finite element method, compact perturba-

tion, acoustic well stimulation method.
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I. INTRODUCTION

1.1 Motivation

The decrease of oil recovery from a reservoir is one the most important problems in

the oil-producing industry. As a result of this fact, the stimulation of oil wells is a key issue

in the exploitation of this essential natural resource. There are two main causes for the

reduction of oil well production. (1) Typically no more than 10% of the oil is recovered

due to it flows from the formation to the well due to the natural pressure of the reservoir.

The residual oil is difficult to recover because its low mobility and, to the fact that it is

practically trapped in the reservoir unless the well is stimulated. Different methods have

been developed to overcome this difficulty. The most commonly applied are steam, water

and gas flooding; hydraulic and explosive fracturing; injection of surfactants; and layer

burning (cf. Lake 1996). In the most successful case each stimulation method can enhance

the oil recovery up to 50-70% of total oil in the reservoir (cf. Beresnev & Johnson 1994).

(2) The second main cause is the local decrease of the reservoir’s permeability around the

producing wellbore due to the deposition of scales, precipitants and mud penetration during

exploitation that form an impermeable barrier to fluid flow. Different method are used

to combat local deposits, including solvent and acid injection, treatment by mechanical

scrapers and high pressure fracturing. The most commonly employed are chemical solvents

that dissolve the small debris particles that plug the rock’s pores. Each of these methods has

important drawbacks and undesirable effects. For instance, some methods are expensive

and highly polluting, while others require stopping the production producing damage to

the oil well itself or having harmful ecological consequences such as contamination of

underground water resources (cf. Beresnev & Johnson 1994).

An alternative approach to face option (2) that overcomes the drawbacks mentioned

above, is the application of ultrasound. The idea of using mechanical vibrations to stim-

ulate oil wells dates back to the early 50s, when increased oil recovery was observed as

a consequence of cultural noise and earthquakes. A good review of the development of

seismic stimulation in USA and Russia can be found in Beresnev & Johnson (1994), while
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observations of the same phenomenon due to field tests made in China are reported by Guo

et al. (2004).

According to Krylov et al. (1991), seismic waves become an ultrasound when they pass

through a fractured porous media like the zone near the borehole. Therefore, knowledge of

the ultrasound effect on the fluid flow in porous media is critical to the development of a

technology based on the application of acoustic radiation.

The viability of ultrasound as a method to enhance oil recovery was first studied by

Duhon & Campbell (1965). Their observations showed that ultrasonic energy did have a

considerable effect on displacement efficiency. Since that work several studies have tried

to elucidate the physical phenomenon underlying the positive effect of ultrasound in en-

hancing oil recovery (see Hamida & Babadagli (2007) for a review of them). As Hamida

& Babadagli (2007) point out the following mechanisms are believed to be responsible for

the observed improvement in percolation of oil within porous media:

(a) Increase in the relative permeability of the phases (Cherskiy et al. 1977).

(b) Non-linear acoustic effects such as in-pore turbulence, acoustic streaming, cavitation,

and perturbation in local pressures. Such effects reduce the adherence of wetting films

onto the rock matrix and may be relevant at high ultrasonic intensities.

(c) Reduction of surface tension, density and viscosity as a consequence of heating by

ultrasonic radiation. Ultrasound may also be very useful in reducing viscosity of

thixotropic fluids (Fairbanks & Chen 1971).

(d) Mechanical vibration of pore walls initiate peristaltic transport, by which fluid is

squeezed into adjacent pores (Aarts & Ooms 1998, Aarts et al. 1999).

(e) Micro-emulsification of oil in the presence of natural or introduced surfactants (Abis-

mail et al. 1999).

(f) Coalescence and dispersion of oil drops due to the Bjerkness forces (Mettin et al. 1997).

(g) Increase in rock permeability and porosity due to removal of fines and clays, paraffin

wax and and asphalting (Venkitaraman et al. 1995, Roberts et al. 1996, 2000, Champion
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et al. 2004, Wong et al. 2004, Poesio et al. 2004, Poesio & Ooms 2004, 2007, Poesio

2009).

(h) Oscillation and excitation of capillary trapped oil drops to pressure perturbation gen-

erated by cavitating bubbles and mechanical vibrations of rock and fluid (Graham &

Higdon 2000a,b, 2002a,b).

The proven good properties of ultrasound have led to the development of the so-called

acoustic well stimulation (AWS) method, which nowadays has a broad acceptance in oil-

producing industry. This method consists in the application of an ultrasonic field radiated

by a transducer (or a configuration of several of them) that is lowered into the well to the

zone that is in direct contact with the reservoir porous rock. Figure 1.1 (a) shows a dia-

gram of the method, while Figure 1.1 (b) shows the acoustic device. This enhanced oil

recovery method has shown to be effective in only about 40-50% of the cases studied. Due

to these few successful cases studied, the AWS method still needs further research. Many

patents, such as Pechkov et al. (1993), Ellingsen et al. (1994), Wegener, Maloney, Zornes,

Reese & Fraim (2001), Wegener, Zornes, Maloney, Vienot & Fraim (2001), Meyer & Tar-

nawskyj (2002), Abramov, Abramov, Pechkov, Zolezzi-Garreton & Paredes-Rojas (2006),

Abramov, Abramov, Zolezzi-Garreton, Paredes-Rojas & Pechkov (2006), Barrientos et al.

(2006); and studies, such as Venkitaraman et al. (1995), Westermark et al. (2001), West-

ermark & Brett (2002), Mullakaev, Abramov & Pechkov (2009), Mullakaev, Abramov,

Abramov, Gradov & Pechkov (2009), have been carried out so as to improve its perfor-

mance.

The referred works study the influence of ultrasound on oil percolation as-

suming that the acoustic energy is efficiently transmitted from the device’s surface to the

reservoir rock. However, this assumption is not quite true, because in real conditions that

energy transmission may be seriously affected by geometrical and physical effects have

not yet been studied. For instance, most of the energy could be radiated to infinity along

the direction of the well (up and down from the device) as leaky modes (i.e. modes that

radiate energy along the direction of a waveguide) and consequently it would not be able

to penetrate the reservoir rock; or it could remain trapped near the device as trapped modes

3
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(a) Diagram of a completed well and the acoustic well stimulation method.

(b) Photograph of the acoustic device employed for the acoustic stimulation of oil
wells, taken from Mullakaev, Abramov & Pechkov (2009).

FIGURE 1.1. Diagram of the acoustic well stimulation method and a photograph
of the acoustic device.

(i.e. modes that do not radiate energy to infinity along the waveguide direction). On the

other hand, the operation of the AWS method may trigger the occurrence of resonance phe-

nomena, which might result in damage to the well and the device. In this context, a simple

mathematical model is crucial to improve the design of the acoustic device due to numerical

simulations of the AWS method may predict how the acoustic energy is distributed inside
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the well, allowing us to find optimal emission frequencies in the sense that the energy is

effectively radiated towards the damaged zone. Moreover, it can be used to determine the

resonance frequencies in order to avoid them or excite them if this makes it possible to take

advantage of their consequences.

1.2 Geophysical background information

Many works dealing with phenomenological models for the acoustic wave propagation

in boreholes can be found in the geophysical literature. Most of them attempt to simulate

the borehole acoustic logging system, which is the central component of the non-invasive

in-situ assessment of rock formation properties. This system consists of a tool cylindrical

in shape, composed by acoustic sources of excitation and a sensor, that is lowered into the

hole to record the geologic formations penetrated by the borehole, resorting to the use of

data inversion techniques (cf. Paillet & Cheng 1991, Tang & Cheng 2004).

These references use the scalar wave equation and the Biot model for the wave prop-

agation in porous media (cf. Biot 1956a,b) - or the linear elastodynamic equations in the

simplified case - to compute the different kind of waves allowed to propagate along the

fluid inside the borehole, and in the rock and soil surrounding it. A few of them, the most

relevant ones, are Cheng & Toksoz (1981), Tubman et al. (1984), Stephen et al. (1985),

Schmitt & Bouchon (1985), Schmitt et al. (1988), Liu et al. (1996), Tadeu et al. (2000), Liu

& Sinha (2003) and Michler et al. (2009). A survey of the numerical procedures employed

in these articles is presented by Cheng & Blanch (2008). Most of these works regard sim-

ple geometries, consider an acoustic tool considerably different to the one employed by the

AWS method and attempt to solve full-wave problems.

Unfortunately, this model is not quite suitable for our goals due to two main reasons:

(a) Contrary to the full wave model used to perform simulations of the acoustic logging, the

AWS method may be assumed to be time-harmonic. The forced oscillations produced

by the AWS device are at a specific frequency (cf. Mullakaev, Abramov & Pechkov
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2009). It drives the system conformed by the device and the well to achieve a sta-

tionary regime. Consequently, wave propagation becomes time-harmonic as time goes

by, allowing us to assume that the temporal part of the wave fields is given by e−iωt,

where ω is the angular frequency. This assumption leads to a great simplification of the

methods employed to carry out the computations because the temporal variable can be

extracted from the partial differential equations involved.

(b) There is a substantial difference between the boreholes considered in the acoustic log-

ging simulations, and the completed wells in which the AWS method usually operates.

A borehole consists of a hole drilled in the ground inside which the fluid is in inter-

action with the porous rock and the soil that surround the well. Contrariwise, in a

completed well - like the one shown in Figure 1.1 (a) - the fluid and the porous rock

are in contact only through the perforations’ surface, which are small holes made in the

reservoir rock. All the rest of the well’s surface is covered by a steel pipe, the so-called

casing (cf. Hyne 2001). Furthermore, the perforations lead us to consider a compli-

cated computational domain difficult to handle by the methods usually employed in the

acoustic logging simulations, like finite-difference schemes.

1.3 Aims and claims

In this thesis we propose a phenomenological model for the wave propagation prob-

lems arising when an oil well is stimulated by AWS method. The well is assumed to be

filled with oil and we regard it as an infinite waveguide with a local perturbation placed

where the perforations and the acoustic device are located (see Figure 1.1 (a)). A lossy

boundary condition is set on the well’s walls. It allows us to confine the computational

domain to inside the well avoiding to solve a fluid/porous-solid interaction problem. The

resulting model is based on the Helmholtz equation, which rules the scalar time-harmonic

acoustic waves in fluids; and the impedance boundary condition, which models pretty well

the energy dissipation throughout the boundaries of the domain. From a mathematical

point of view two problem are set; a direct scattering problem seeking to determine the
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total acoustic pressure field produced by the radiating device; and a resonance problem,

seeking to determine the resonance frequencies (trapped modes and complex resonances).

We claim that the solution of the scattering problem provides a way of determining

the frequencies at which it is possible to obtain optimal results of the AWS method, in the

sense that most of the energy radiated by the obstacle is effectively transmitted through the

perforations to the sealed pores of the reservoir rock. On the other hand, we claim that from

the solution of the resonance problem it is possible to determine resonance frequencies at

which it is possible to observe energy accumulation inside the perforations. Such resonance

frequencies are highly relevant due to two reasons: they can lead to damage to the well and

the device itself, as usually happens in waveguides when resonance frequencies are excited

(cf. Parker & Stoneman 1989) ; or they may provide a way to optimize the energy, due

to the fact that the energy remains trapped near the fluid/porous-solid interface where the

sealed pores of the reservoir rock are in direct contact with the fluid medium.

1.4 Mathematical background information

Scalar time-harmonic wave propagation problems in unbounded spatial domains, like

the ones we attempt to solve here, pose a unique challenge to numerical computation since

the unbounded region is inappropriate for direct discretization. During the last decades

several numerical techniques have been developed to solve these problems. They may

be classified into four main categories: boundary integral/boundary element methods (cf.

Colton & Kress 1983, Bonnet 1995, Nédélec 2001), infinite elements (cf. Astley 2000,

Gardes 2000, Astley 2008), absorbing layers (cf. Bérenger 1994, Bermúdez et al. 2008,

Givoli 2008), and absorbing boundary conditions (cf. Engquist & Majda 1977, Givoli et al.

1998, Givoli 1999, 2004, 2008). Surveys of these methods are found in Harari (2006),

Thomson (2006), Ihlenburg (1998) and Marburg & Nolte (2008).

For the particular unbounded domain studied in this dissertation, a waveguide, relevant

works on this matter are: Linton & Evans (1992) for integral equation methods; Wu & Fang

(1995) and Singer & Turkel (2004) for absorbing layers; Goldstein (1982), Harari et al.
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(1998) and Bendali & Guillaume (1999) for absorbing boundary conditions; and Pagneux

et al. (1996), Amir et al. (1997), Hazard & Lunéville (2008) for multimodal techniques.

Extensive literature relating to resonance problems in non-perturbed waveguides (in

two and three dimensions) with obstacles placed inside, has been published during the

last decades.The literature distinguishes two sorts of eigenfunctions; trapped modes and

leaky modes. Trapped modes correspond to real resonances of the Helmholtz operator in

an unbounded domain, that is confined to the vicinity of the obstacle and do not radiate

energy, i.e. they are undamped and no energy is radiated to infinity. Therefore, they are of

great physical importance because at the trapped-mode frequencies the response to forced

excitation can be quite high. Mathematically, trapped modes are also of considerable inter-

est because they imply non-uniqueness in the associated scattering problem. Contrary to

trapped modes, leaky modes radiate energy to infinity. They may be damped due to radia-

tion losses when they are associated to complex resonances of the Helmholtz operator; or

may be undamped, when they are associated to real resonances.

Results on sufficient conditions for the existence and non-existence of leaky and trapped

modes are studied by many authors such as: Ursell (1991), Evans et al. (1993, 1994),

McIver & Linton (1995), McIver et al. (2002), Aslanyan et al. (2000), Linton & McIver

(1998a), Linton et al. (2002), Davies & Parnovski (1998) and Duan & McIver (2004).

Semi-analytic techniques based on matched eigenfunction expansions, integral equations

and approximated transcendental equations are developed by Linton & Evans (1992), Lin-

ton & McIver (1998b), Evans & Linton (1994), McIver et al. (2001) and Duan & McIver

(2004) to solve some of these problems. A good review of those works is presented by

Linton & McIver (2007).

From a purely numerical point of view, recent works have dealt with the problem of

the effective computation of resonances and resonance states of problems like those. Hein

et al. (2004), Duan et al. (2007) and Hein & Koch (2008) have successfully employed
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the perfectly matched layer technique introduced by Bérenger (1994), for two and three-

dimensional waveguides with different kind of obstacles inside, while a new full numerical

method that is simple to implement is presented by Levitin & Marletta (2008).

All references mentioned in this section consider lossless boundary conditions, i.e.

Neumann, Dirichlet or Robin with a real parameter. Nevertheless, some references dealing

with impedance waveguide problems are Rawlins (1978, 1995), Rawlins & Mahmood-

Ul-Hassan (2003) and Rawlins (2007), which arise in the context of guides lined with

absorbent materials.

1.5 Methodology

The model for the AWS method proposed here leads to scalar time-harmonic wave

propagation problems in an unbounded spatial domain. To deal with the unbounded domain

we perform an absorbing boundary condition that relies on the computation of the so-called

Dirichlet-to-Neumann (DtN) map. This kind of artificial boundary condition presents ad-

vantages over other techniques because it is perfectly transparent to incident waves and it

does not show a strong dependence on arbitrary parameters like these needed to implement

the perfectly matched layer technique.

In waveguides with a lossless boundary condition, the construction of this operator can

be performed in two ways: from the separation of variables technique and from the Green’s

function for the suitable boundary value problem. However, when the impedance boundary

condition is imposed (i.e. the Robin boundary condition with a proper complex parameter)

it is not possible to use the separation of variable techniques because the functions that

appear are not orthogonal in any known sense. This situation prompts us to study the

Green’s function for the Helmholtz operator in an infinite circular cylindrical waveguide

with the impedance boundary condition, which is also useful to implement the boundary

integral/boundary element method. This Green’s function has not been studied yet, thus a

detailed deduction and analysis is performed using the Fourier transform, complex analysis
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techniques, the limiting absorption principle and several results relating to the zeros of the

so-called Dini function.

The introduction of this absorbing boundary condition allow us to redefine the prob-

lems in a bounded region making them suitable for a numerical discretization. Conse-

quently, the variational formulation is applied to discretize the problems using the finite

element method. This procedure transforms the scattering problem in a linear algebraic

system of equations, while the resonance problem results in a non-linear resonance prob-

lem that is solved finding the local maxima of a real valued function. Benchmark problems

are designed to test the proposed numerical procedures.

Finally, simulations of AWS method in a realistic geometry are worked out solving the

scattering problem for different frequencies and determining for each frequency the energy

proportion transmitted from the radiating surface to the reservoir rock. On the other hand,

the resonance problem is solved to determine the real resonance frequencies. For each

resonance frequency the proportion of energy trapped in the perforation is determined.

It is important to observe that problems like the ones addressed here are frequently

found in various fields of application such as acoustics, aerodynamics, electromagnetism,

plasma physics and so on. Therefore the mathematical methods developed herein may be

applied to other fields without important modifications.

1.6 Outline

The structure of this dissertation is as follows. The next chapter concentrates on the

construction of the mathematical model and the set-up of the problems solved in this the-

sis. Chapter III shows the deduction and analysis of the Green’s function. The DtN map

based on the Green’s function and the variational formulation are presented in Chapter IV.

Subsequently, Chapter V focuses on all the numerical procedures needed to perform the

computations as well as the benchmark problems that validate them. Next, in Chapter VI,

the numerical results for a realistic geometry are shown. Finally, Chapter VII presents the

conclusions of this work.
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II. PHENOMENOLOGICAL MODEL

2.1 The geometry of an oil well

An oil well is created through two successive processes called drilling and completion

(cf. Hyne 2001). The first process begins by drilling a hole in the ground, which may be

straight down or in some angle. Once the hole is drilled, a logging tool is lowered into the

well to determine the composition of each rock layer. If oil is detected, the well’s walls are

covered by a long length metal pipe called casing, that is set to the well’s walls by a layer

of cement. After that completion process begins by shooting with explosives the portion

of the casing that passes the zone where oil was detected. The explosives form small holes

called perforations, that allow oil flow from the reservoir into the well (see Figure 1.1).

Henceforth, we call perforating zone the region where the perforations are located, while

the rest of the well is referred as the casing zone.

The casing zone has a regular shape. Actually, it is a circular cylinder with almost

constant surface acoustic properties because it is composed by an homogeneous material

that is usually steel. On the contrary, the perforating zone has an irregular shape and surface

acoustic properties that depend on the position over the boundary due to the fact that its

surface is composed in part by the perforated casing, and in part by reservoir porous rock

that surounds the perforations. These features lead us to regard the well as an infinite

locally-perturbed vertically oriented waveguide. More precisely, it is assumed that the well

is a circular cylinder in R3, with a local perturbation. We mean by local perturbation that

the domain admits a decomposition by three sets in which two of them, the unperturbed

parts, are perfect semi-infinite right circular cylinders, while the other one, the perturbed

part, is a compact set with Lipshitz boundary located among the unperturbed domains.

Throughout this dissertation we assume that the perturbed part of the domain corresponds

to the perforating zone and the unperturbed domains corresponds to the casing zone.

Up to this point the open set

Ωw := Ω−e ∪ Γ−H ∪ Ωi ∪ Γ+
H ∪ Ω+

e ⊂ R3 (2.1)
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represents the well as was described above. The symbol Ωi denotes the perturbed domain

while Ω−e and Ω+
e denote the unperturbed domains. The unperturbed domain are precisely

defined by

Ω−e :=
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 < R2, x3 ∈ (−∞, H)
}

(2.2a)

Ω+
e :=

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 ∈ (−H,+∞)

}
(2.2b)

where R > 0 is the radius of the casing and H > 0 is large enough such that Ωi ⊂
{(x1, x2, x3) ∈ R3 : |x3| < H}. The artificial boundaries involved are denoted by Γ−H and

Γ+
H and are defined by

Γ−H :=
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 < R2, x3 = −H
}
. (2.3a)

Γ+
H :=

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 = H

}
. (2.3b)

It stems from (2.3) that the boundaries of Ωi, Ω−e and Ω+
e can be expressed as

∂Ωi := Γ−H ∪ Γi ∪ Γ+
H , (2.4a)

∂Ω−e := Γ−H ∪ Γ−e , (2.4b)

∂Ω+
e := Γ+

H ∪ Γ+
e , (2.4c)

where

Γ−e :=
{

(x1, x2, x3) ∈ R3 : x2
1 + x2

2 = R2, x3 ∈ (−∞,−H]
}
, (2.5a)

Γ+
e :=

{
(x1, x2, x3) ∈ R3 : x2

1 + x2
2 = R2, x3 ∈ [H,∞)

}
. (2.5b)

Finally, the acoustic device is assumed to occupy the compact domain Ωd ⊂ Ωi, where

Γd denotes its radiating surface. Let us observe that the definitions made above allow us to

express the unbounded computational domain (i.e. the domain where we want to solve the

problems) as

Ω := Ωw \ Ωd. (2.6)
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Γi

Γd

Γ+
H

Ωi

Ω+
e Γ+

eR3 \ Ω

Ω−eΓ−e

Γ−H

FIGURE 2.1. Diagram of the modeled geometry.

Figure 2.1 depicts a detailed diagram of the domains that we use throughout this thesis.

2.2 Linear acoustics

Here, the oil is assumed to be a compressible ideal fluid with hydrostatic equilibrium

density and pressure ρ0 and p0 respectively. Around these fixed quantities we consider

a small amplitude time-spatial dependent perturbation, ρ(x, t) and P (x, t). It allows us

to obtain the linearized continuity equations and Euler equations around the hydrostatic

equilibrium states in absence of external volumetric forces. These equations, together with

the isentropic relation between the pressure and the density (i.e. the linear material law),
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read as follows:

∂ρ

∂t
+ ρ0 div V = 0, (2.7a)

∂V

∂t
+

1

ρ0

∇P = 0, (2.7b)

P =

(
∂P

∂ρ0

)

s

ρ, (2.7c)

where V (x, t) is the velocity vector field and (∂P/∂ρ0)s = c2, with c > 0 being the

speed of sound in the fluid. Let us observe that (2.7) can be reduced to the following scalar

equation for the pressure field:

∆P = c2∂
2P

∂t2
, (2.8)

which is the classical linear hyperbolic wave equation or d’Alembert equation. More details

about the deduction of the wave equation can be found in Morse & Ingard (1986), Kinsler

et al. (1999) and Filippi et al. (1999).

In this work we assume that there is only one source of sound, the acoustic device. As

was already discussed in the introduction, it is a time-harmonic excitation that interacts with

the fluid throughout its surface. We mean by time-harmonic excitation, that the acoustic

source produces a pure mono-frequency motion at a specific frequency, f = 2πω, with

ω being the angular frequency. Thus, when the system reaches the stationary regime it is

expected that the temporal dependence of the pressure field becomes e−iωt. Of course, in

this case the physically correct pressure field is

P (x, t) = Re
{
p(x) e−iωt} , (2.9)

because imaginary pressure values have no sense.

Replacing (2.9) in (2.8) we obtain that the spatial component of the pressure field

satisfies the Helmholtz equation

∆p+ k2p = 0 (2.10)

where k := ω/c is the wave number.
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Some modifications of (2.10) take place when dissipation is considered. It leads to a

complex wave number that is a function of the angular frequency, i.e.

k =
ω

c
+ i β, β > 0. (2.11)

According to Kinsler et al. (1999) the dissipation or damping constant, β, in (2.11), models

different physical phenomena. For instance, if the viscosity of the fluid is considered, the

damping constant is given by

β =
ω

c

1√
2

(√
1 + τ 2

sω
2 − 1

1 + τ 2
sω

2

)1/2

, τs =
1

ρ0c2

(
4

3
η + ηB

)
, (2.12)

where η and ηb are the coefficients of shear and bulk viscosity respectively; if thermal

conduction is taken into account the damping constant is

β =
ω2

2ρ0c3

(γ − 1)κ

cP
, (2.13)

where κ is the thermal conductivity, cP is the specific heat at constant pressure and γ is

the adiabatic constant; and if the coupled effect between the viscosity and the thermal

conduction is modeled the damping constant is

β =
ω2

2ρ0c3

(
4

3
η +

(γ − 1)κ

cP

)
, (2.14)

where the bulk viscosity effect is avoided.

Let us observe that the speed of sound might depend on the position if the fluid is not

homogeneous, thus in general the wave number is a function of the spatial variables. From

a computational point of view this situation leads to a tough problem unless we assume that

the spatial dependence of the wave number is compactly supported in the interior domain.

Consequently, we assume that the wave number is given by the following complex valued

function:

k : R+ × Ω→ C, (ω,x) 7→ k(ω,x) := ki(ω,x) + ke(ω) (2.15)

where supp {ki(ω, ·)} ⊂ Ωi \ Ωd.
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Remark II.1. At this point it is important to remark that henceforth we assume that the

oil well is infinite in length and is filled with oil. From a physical point of view, these

assumptions mean that we are avoiding the possibility that incoming waves get in to the

perforating zone of the well from its upper and lower ends. Under realistic conditions a

fraction of the energy radiated by the device is reflected on the upper (oil-air interface) and

the lower (the bottom of the well) ends of the well, and then it travels as acoustic waves

toward the device. Despite that, we neglect these waves because the well’s ends are far

away from the obstacle and thus the dissipation severely attenuates them before reaching

the perforating zone.

2.3 Boundary conditions

As was pointed out in the introduction, a key point of this dissertation is to characterize

energy loss through the well’s walls. This is a very important phenomenon in this model

due two main reasons: the high frequency range at which the AWS method works; and the

well-known sound absorption properties of porous materials. Here we claim that a feasible

way to model the energy loss is given by the use of the impedance boundary condition. Two

reasons support this statement. On one hand we have that this boundary condition has been

successfully applied to quantify the surface energy loss in ducts (cf. Munjal 1987), like

the pipe placed in the casing zone of well; and on the other hand, we find that it has been

extensively used to characterize the sound transmission between fluid and several kinds of

porous materials (cf. Delany & Bazley 1970, Miki 1990, Allard & Champoux 1992) like

the reservoir porous rock.

More specifically, we assume that the well’s walls are locally reacting surfaces. These

are surfaces for which the acoustic field at a given point depends only on the properties of

the surface at that point and not on the configuration of the incident wave. This property

can be mathematically represented by the normal acoustic impedance, which is the ratio of

the pressure field to the normal velocity of the particles on the surface, i.e.

Zn :=
P

V · n on ∂Ωw, (2.16)
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with n being the normal unit vector pointing outward of Ωw. In the stationary regime it can

be expressed as

Zn = i ωρ0

(
1

p

∂p

∂n

)−1

= ρc ζ on ∂Ωw, (2.17)

where ζ = χ + i ξ is the dimensionless specific impedance of the surface. Therein χ and

ξ are respectively the resistive and the reactive component of the dimensionless specific

impedance. The usefulness of the impedance model is that under the assumption that the

well’s walls are locally reacting surfaces, we can impose the following boundary condition

∂p

∂n
− α p = 0 on ∂Ωw = Γ−e ∪ Γi ∪ Γ+

e , with α := i k/ζ, (2.18)

known as the impedance or Robin boundary condition.

The resistive part of the dimensionless specific impedance plays a very important role

because it is associated to energy loss through the boundary. In fact, the time-averaged

energy flux density through a boundary during a period T = 2π/ω is given by (cf. Filippi

et al. 1999)

I = − 1

ωρ0T

∫ T

0

Re
{
p e−iωt}Re

{
i∇p · n e−iωt} dt. (2.19)

Therefore, replacing (2.18) in (2.19), it is possible to infer that

Iloss =
|p|2

2ρ0c|ζ|2
χ, (2.20)

and consequently the resistive part of the specific surface impedance is such that χ > 0.

Let us observe that under the assumptions β = Im k > 0 and χ = Re ζ > 0, we get that α

fulfills the condition Imα > 0.

The geometry of the well gives us crucial information about the spatial dependence

of the impedance parameter. In the casing zone of the well the normal impedance does

not change with the position due to the homogeneity of the metal pipe. On the contrary,

in the perforating zone the impedance parameter is a point dependent function due to the

variability of the geometry and the acoustic properties of materials involved (cement, casing

and porous rock). It stems from here that the impedance parameter is assumed a compactly
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supported function of the spatial variables, i.e.,

α : R+ × ∂Ωw → C, (ω,x) 7→ α(ω,x) = αi(ω,x) + αe(ω) (2.21)

where supp {αi(ω, ·)} ⊂ Γi.

Finally, we assume that AWS device has an acoustically hard surface mathematically

described by the Neumann boundary condition (cf. Filippi et al. 1999). The effect of the

radiating surface is modeled by a non-homogeneus term appearing in the boundary condi-

tion, which we assume known and given by the function g ∈ H−1/2(Γd). Consequently the

pressure field fulfills the condition

∂p

∂n
= g on Γd. (2.22)

The choice of a surface source of excitation instead, for instance, a volumetric one, is

motivated by the article of Mullakaev, Abramov & Pechkov (2009), where the AWS device

is designed as a surface-based source supply. Nevertheless, other kinds of sources can be

easily added to the model if their effect on the equations is confined to a compact subset of

Ωi.

For the kind of source chosen we can easily obtain the effective time-averaged acoustic

energy supplied by the device. Then, by using (2.19) we infer that the effective time-

averaged energy flux density (or power density) supplied by the AWS device is

Irad =
1

2ωρ0

Im{pḡ}. (2.23)

2.4 Set-up of the problems

In this section we set the problems that we attempt to solve in the following chapters.

As was already indicated in the introduction, they correspond to a direct wave scattering

problem and a resonance problem.
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The scattering problem consists of the computation of the total pressure field produced

by the AWS device submerged in the well. Making use of the equations deduced in previous

sections, we realize that it is given by the solution of the following problem:

Find p : Ω→ C, p ∈ H1
loc(Ω), such that:





∆p+ k2p = 0 in Ω,

∂p

∂n
− α p = 0 on Γ−e ∪ Γi ∪ Γ+

e ,

∂p

∂n
= g on Γd,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0,

(2.24)

where p is the pressure field, g ∈ H−1/2(Γd) is the surface acoustic source and

H1
loc(Ω) =

{
u ∈ L2

loc(Ω) : |∇u| ∈ L2
loc(Ω)

}

is the space consisting of functions that are locally square integrable as well as their gradi-

ents, i.e. they are absolutely integrable on every compact subset of Ω.

Let us observe that in absence of dissipation, i.e. when the wave number and the

impedance parameter are real numbers, a radiation condition is needed to allow only out-

going wave solutions of the problem. Such radiation condition differs greatly from the

classical Sommerfeld condition and will be stated afterwards in this dissertation.

To introduce the artificial boundary conditions on the transparent boundaries, Γ−H and

Γ+
H , we equivalently reformulate the scattering problem (2.24) as the following three cou-

pled problems (cf. Johnson & Nédélec 1980):
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Find pi : Ωi \ Ωd → C, pi ∈ H1(Ωi \ Ωd), p−e : Ω−e → C, p−e ∈ H1
loc(Ω

−
e ) and

p+
e : Ω+

e → C, p+
e ∈ H1

loc(Ω
+
e ) such that:





∆pi + k2pi = 0 in Ωi \ Ωd,

∂pi
∂n
− α pi = 0 on Γi,

∂pi
∂n

= g on Γd,

∂pi
∂n

=
∂p+

e

∂n
on Γ+

H ,

∂pi
∂n

=
∂p−e
∂n

on Γ−H ,

(2.25)





∆p−e + k2p−e = 0 in Ω−e ,

∂p−e
∂n
− α p−e = 0 on Γ−e ,

p−e = pi on Γ−H ,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0

(2.26)

and 



∆p+
e + k2p+

e = 0 in Ω+
e ,

∂p+
e

∂n
− α p+

e = 0 on Γ+
e ,

p+
e = pi on Γ+

H ,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0,

(2.27)

where the solution of (2.24) can be recovered by setting

pi = p|Ωi , p
−
e = p|Ω−e and p+

e = p|Ω+
e
.

Up to this point we refer to (2.25) as the interior problem, to (2.26) as the lower exterior

problem and to (2.27) as the upper exterior problem.

On the other hand, the resonance problem consists in finding an angular frequency that

has associated a wave number k 6= 0 and a non-identically zero acoustic field p : Ω → C,
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p ∈ H1
loc(Ω), that satisfies the homogenous problem:





∆p+ k2p = 0 in Ω,

∂p

∂n
− α p = 0 on Γ−e ∪ Γi ∪ Γ+

e ,

∂p

∂n
= 0 on Γd,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0 .

(2.28)

As well as the scattering problem, the resonance problem can be equivalently reformu-

lated so as to introduce the artificial boundary conditions on Γ−H and Γ+
H . Thus (2.28) may

be set as:

Find an angular frequency that leads to a wave number k 6= 0 and to non-identically

zero functions pi : Ωi \ Ωd → C, pi ∈ H1(Ωi \ Ωd), p−e : Ω−e → C, p−e ∈ H1
loc(Ω

−
e ) and

p+
e : Ω+

e → C, p+
e ∈ H1

loc(Ω
+
e ) such that:





∆pi + k2pi = 0 in Ωi \ Ωd,

∂pi
∂n
− α pi = 0 on Γi,

∂pi
∂n

= 0 on Γd,

∂pi
∂n

=
∂p−e
∂n

on Γ−H ,

∂pi
∂n

=
∂p+

e

∂n
on Γ+

H ,

(2.29)





∆p−e + k2p−e = 0 in Ω−e ,

∂p−e
∂n
− α p−e = 0 on Γ−e ,

p−e = pi on Γ−H ,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0.

(2.30)
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and 



∆p+
e + k2p+

e = 0 in Ω+
e ,

∂p+
e

∂n
− α p+

e = 0 on Γ+
e ,

p+
e = pi on Γ+

H ,

+ radiation condition at |x| → ∞, if Imαe = Im ke = 0.

(2.31)

It is important to note that due to the regular shape of the exterior domains and due to

the fact that both the impedance parameter and the wave number are assumed to be constant

complex numbers in the exterior domains, the exterior problems (2.26-2.27) and (2.30-

2.31) can be solved analytically if we assume that the solutions of the interior problems,

(2.25) and (2.29), are known data.

Remark II.2. Let us observe that at each resonance frequency, given by (2.28), the scat-

tering problem (2.24) has not a unique solution. It is in virtue of the fact that we can freely

add to the solution of (2.24), a eigenfunction multiplied by an arbitrary constant, obtaining

as a result another distinct solution of (2.24).
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III. THE GREEN’S FUNCTION OF THE INFINITE IMPEDANCE

CIRCULAR CYLINDRICAL WAVEGUIDE

A powerful mathematical tool to solve impedance boundary value problems for the

Helmholtz operator, is the Green’s function. It is often employed in wave scattering, reso-

nance and inverse problems defined on bounded and unbounded domains, where it is used

as a benchmark solution to test numerical schemes or it is applied in conjunction with nu-

merical methods such as the boundary element method and the mixed boundary element

and finite element method. For a broader framework about the Green’s functions and their

use for solving time-harmonic problems, see Nédélec (2001), Colton & Kress (1983) and

Bonnet (1995).

In this chapter we are interested in finding the Green’s function for the Helmholtz

operator in a infinite circular cylindrical waveguide with impedance boundary condition.

In the particular problem that we want to solve in this dissertation, this Green’s function

is employed to represent the solution of the exterior problems (2.26-2.27) and (2.30-2.31).

These representations allow us, in Chapter IV, to obtain the so-called Dirichlet-to-Neumann

map that makes possible to solve the problems (2.24) and (2.28) by means of the finite

element method.

For a infinite cylindrical waveguide with a Dirichlet or Neumann boundary condition,

the Green’s function can be obtained by a series provided by the method of separation

of variables (see for instance Stuwe & Werner (1996) and Duffy (2001) for examples of

a Neumann and a Dirichlet boundary condition, respectively) usually referred to as the

eigenfunction expansion. This representation is highly appreciated because it is easy to

implement on a computer as it does not require that the Fourier transform be numerically

inverted, as other Green’s functions do in problems arising, for example, on impedance

half-planes and half-spaces (Durán et al. 2006, 2007). Moreover, such representation is

suitable to achieve directly the asymptotic behavior at infinity and the radiation condition

that the Green’s function satisfies, which differs from the classical Sommerfeld radiation

condition.
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The separation of variables method works well when the Laplace operator - acting on

a subspace of L2(Ω′), where Ω′ = {x ∈ R2 : |x| < R} is the waveguide’s cross section - is

compact and self-adjoint, and consequently its eigenfunctions form a complete orthonormal

basis of L2(Ω′), which is the case when the boundary condition is Dirichlet or Neumann.

However, when the impedance boundary condition is imposed, the Laplacian is no longer

self-adjoint for all the possible values of the impedance parameter (it is self-adjoint only

for negative real values of the impedance parameter). In spite of that, a real impedance

parameter leads to eigenfunctions that are still orthogonal and the theory of Dini series

(cf. Watson 1966, Chapter 18) may be used to apply the separation of variables method

to our problem. If instead, the impedance parameter is a proper complex number, i.e. it

has a non-zero imaginary part, the eigenfunctions are no longer orthogonal and then it is

necessary to develop another way to construct the Green’s function that does not depend

on the orthogonality and completeness of the eigenfunctions.

In this chapter we perform a detailed deduction of the eigenfunction expansion of the

Green’s function for the Helmholtz operator in an infinite impedance circular cylindrical

waveguide. This deduction is carried out via a Fourier transform and the theory of Green’s

functions for non-self-adjoint singular Sturm-Liouville problems. The eigenfunction ex-

pansion makes it necessary to study the eigenvalues of the Laplacian generated by the roots

of the Dini function zJ ′n(zR) − αJn(zR), where α is the impedance parameter and Jn(z)

is the Bessel function of the first kind with integer order n > 0. Properties of these roots

for α ∈ R, available in Spigler (1975), Ahmed & Calogero (1978) and Landau (1999),

are used here. Furthermore, new results for the properties of these roots are performed for

complex values of α by means of a Mittag-Leffler expansion. One particularly important

result has to do with the existence of non-simple eigenvalues for specific values of α. The

limiting absorption principle is employed to analyze the complete undamped case (i.e. real

wave number and real impedance parameter) where the existence of propagative modes

(which include surface propagative modes) allows obtaining the far-field and the radiation

condition that the Green’s function satisfies.

24



The outline of this chapter is as follows. The next section describes both the problem’s

set up and the Fourier transform used to compute the Green’s function. Next, Section 3.2

summarizes the properties of the Bessel functions used throughout this chapter. Subse-

quently, in Section 3.3, the spectral Green’s function - the solution of the problem in the

Fourier domain - is found. In Section 3.4, the singularities of spectral Green’s function are

studied in detail so as to obtain, in Section 3.5, its series expansion by means of contour

integration. Thereafter, Section 3.6 addresses the inversion of the Fourier transform, using

again contour integration and the limiting absorption principle.

3.1 The Green’s function of the infinite right circular cylinder

The sought Green’s function is given by the solution of the following problem in the

sense of distributions: Find G(x, ·) ∈ D′(Ω∞) such that:




∆yG(x,y) + k2G(x,y) = −δx(y), y ∈ Ω∞,

∂G(x,y)

∂ny

− αG(x,y) = 0, y ∈ Γ∞,
(3.1)

where

Ω∞ =
{
x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 ∈ R

}
= Ω′ × R, (3.2a)

Γ∞ =
{
x = (x1, x2, x3) ∈ R2 : x2

1 + x2
2 = R2, x3 ∈ R

}
= ∂Ω′ × R, (3.2b)

and δx ∈ D ′(Ω∞) is Dirac’s delta distribution supported at a fixed point x ∈ Ω∞ where

D ′(Ω∞) denotes the dual space of D(Ω∞), i.e. the dual of the space of functions infinitely

differentiable and compactly supported in Ω∞.

Due to the physical considerations pointed out in Chapter II, the wave number and

the impedance parameter are respectively k ∈ C, Im k > 01 and α ∈ C, Imα > 0,

because the time dependence of the wave is assumed given by e−iωt, where ω is the angular

1The condition Im k > 0 and Im k2 > 0 are the same, since Re k > 0 always holds.
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FIGURE 3.1. Domain of the Green’s function problem.

frequency. Let us remark that throughout this chapter we assume that k and α do not depend

on the spatial variables.

Once again we have to point out that in absence of dissipation, i.e. when α and k

are real numbers, it is necessary to add a radiation condition to (3.1) in order to obtain a

unique outgoing wave solution. Such radiation condition differs greatly from the classical

Sommerfeld radiation condition and is stated later on, so that, for the time being we assume

that k or α are not real numbers.

To achieve a solution of (3.1) we use integral transformation methods like the ones

described in Duffy (2001). Hence, first we express (3.1) in cylindrical coordinates (see

Figure 3.1) to obtain




1

r

∂

∂r

(
r
∂G

∂r

)
+

1

r2

∂2G

∂θ2
+
∂2G

∂z2
+ k2G=−δρ(r) δζ(z) δϑ(θ)

r
, y ∈ Ω∞,

∂G

∂r
− αG = 0, y ∈ Γ∞,

(3.3)

where ρ ∈ (0, R), y = (r cos θ, r sin θ, z) is the observation point and x = (ρ cosϑ, ρ sinϑ, ζ)

is the source point.

In order to solve (3.3) we resort to the use of the Fourier transform, which is defined

as follows: Let u ∈ D((−π, π)×R), then its Fourier transform û : N0×R→ C is defined

by

û(n, ξ) =

∫

[−π,π]×R
u(θ, z) cos(nθ) e−i zξ dξ dθ
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and its inverse is defined as

u(θ, z) =
1

4π2

∫

N0×R
û(n, ξ) cos(nθ) ei zξ εndξ dn

where N0 = N ∪ {0} and

εn =





1 for n = 0

2 for n > 1.

Assuming that for every fixed x ∈ Ω∞ and r ∈ [0, R], G ∈ D ′ ((−π, π)× R), we can

formally apply the Fourier transform to (3.3) to obtain the following integral representation

(which, for the time being, is interpreted in the sense of distributions)

G(x,y) =
1

4π2

∫

N0×R
gn(r, ρ; k2 − ξ2) cos(n(θ − ϑ)) ei ξ(z−ζ)εn dξ dn (3.4)

where the kernel gn is referred to as the spectral Green’s function and corresponds to the

Green’s function of the Bessel differential equation with an impedance boundary condition,

i.e. 



− d
dr

(
r

dgn
dr

)
+
n2

r
gn − λr gn = δρ, 0 < r < R

dgn
dr
− αgn = 0 r = R

lim
r→0+

|gn(r, ρ;λ)| < ∞,

(3.5)

where λ = k2 − ξ2, ρ ∈ (0, R) and n ∈ N0.

3.2 Properties of the Bessel functions

This section summarizes some properties of the Bessel functions of first kind Jn(z)

and second kind Yn(z) with order n ∈ N0, that will be largely employed throughout this

chapter.

• The Bessel functions Jn(z) and Yn(z) are analytic in the whole complex plane

except Yn(z) which has a branch cut along the negative real axis (cf. Abramovitz

& Stegun 1972, p. 358).

27



• Their asymptotic form for small arguments, i.e. their behavior as |z| → 0 (cf.

Abramovitz & Stegun 1972, p. 360, eq. 9.1.7, 9.1.8 and 9.1.9) is given by:

Jn(z) ∼ 1

n!

(z
2

)n
(3.6)

Yn(z) ∼





2

π
Ln
(z

2

)
if n = 0,

−(n− 1)!

π

(
2

z

)n
if n > 0.

(3.7)

• Their asymptotic form for large argument, i.e. their behavior as |z| → ∞ (cf.

Abramovitz & Stegun 1972, p. 364, eq. 9.2.1 and 9.2.2)) is given by:

Jn(z) ∼
√

2

πz
cos
(
z − nπ

2
− π

4

)
, (3.8)

Yn(z) ∼
√

2

πz
sin
(
z − nπ

2
− π

4

)
, |arg z| < π. (3.9)

• Some recurrence relations (cf. Abramovitz & Stegun 1972, p. 361, eq. 9.1.27) are

J ′n(z) = −Jn+1(z) +
n

z
Jn(z), (3.10)

Y ′n(z) = −Yn+1(z) +
n

z
Yn(z), (3.11)

where J ′n(z) and Y ′n(z) denote the derivatives of the Bessel functions Jn(z) and

Yn(z), respectively.

• The wronskian (cf. Abramovitz & Stegun 1972, p. 360, eq. 9.1.16) is

W [Jn, Yn] (z) = Jn(z)Y ′n(z)− J ′n(z)Yn(z) =
2

πz
. (3.12)

• Some analytic continuation formulas (cf. Abramovitz & Stegun 1972, p. 361, eq.

9.1.35 and 9.1.36) are

Jn(−z) = (−1)nJn(z), (3.13)

Yn(−z) = (−1)n {Yn(z) + 2 i Jn(z)} . (3.14)
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3.3 The spectral Green’s function

To solve (3.5) we resort to the theory of Green’s functions of one variable. Let us

note that for the particular case α ∈ R, (3.5) defines the Green’s function of a singular

self-adjoint Sturm-Liouville problem. It has a well-known solution for the cases α = 0 and

α = ∞, provided by the Fourier-Bessel expansion. Some references that deal with this

topic are Duffy (2001), Folland (1994) and Stakgold (2000). Herein we generalize those

results for an almost arbitrary impedance parameter α ∈ C (see Section 2.3).

To construct gn, we divide the interval (0, R) into two disjoint subintervals (0, ρ) and

(ρ,R). Since the Dirac’s delta distribution is supported only at r = ρ, a candidate to be

a solution of (3.5) must satisfy the homogeneous equation (3.5) in (0, ρ) and in (ρ,R).

Moreover, it has to fulfill the respective boundary condition imposed on r = 0 and on

r = R. Therefore, if r ∈ (0, ρ) the solution of (3.5) is

ϕ1(r;λ) = Jn
(√

λr
)

(3.15)

whereas if r ∈ (ρ,R) the solution is given by

ϕ2(r;λ) =
[√

λJ ′n(
√
λR)− αJn(

√
λR)

]
Yn(
√
λr) (3.16)

−
[√

λY ′n(
√
λR)− αYn(

√
λR)

]
Jn(
√
λr).

According to the procedure followed above, the solution of (3.5) ought to have the

form

gn(r, ρ;λ) =





c1ϕ1(r, λ) if r ∈ (0, ρ) ,

c2ϕ2(r, λ) if r ∈ (ρ,R) ,
(3.17)

where the coefficients c1 and c2 can be computed imposing the continuity requirements of

gn and the jump condition of the derivative at the source point (Duffy 2001, Chapter 2):




lim
r→ρ+

dgn(r, ρ;λ)

dr
− lim

r→ρ−
dgn(r, ρ;λ)

dr
= −1

ρ
,

lim
r→ρ+

gn(r, ρ;λ)− lim
r→ρ−

gn(r, ρ;λ) = 0.

(3.18)
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The continuity of gn at r = ρ compels gn to have the form

gn(r, ρ;λ) = Cϕ1(r<;λ)ϕ2(r>;λ), (3.19)

where r< = min{r, ρ}, r> = max{r, ρ} and the constant C can be computed imposing the

condition (3.18). That condition leads to

gn(r, ρ;λ) = −ϕ1(r<;λ)ϕ2(r>;λ)

ρW [ϕ1,ϕ2] (ρ)
, (3.20)

where W is the wronskian function defined by

W [ϕ1,ϕ2](r) = ϕ1(r;λ)
dϕ2(r;λ)

dr
−ϕ2(r;λ)

dϕ2(r;λ)

dr

=
√
λ
[√

λJ ′n(
√
λR)− αJn(

√
λR)

]
W [Jn, Yn] (

√
λr).

(3.21)

Hence, employing (3.12) we obtain that the spectral Green’s function is given by

gn(r, ρ;λ) =
π

2

√
λY ′n(
√
λR)− αYn(

√
λR)√

λJ ′n(
√
λR)− αJn(

√
λR)

Jn(
√
λr)Jn(

√
λρ)

−π
2





Yn(
√
λρ)Jn(

√
λr) if 0 < r 6 ρ < R,

Yn(
√
λr)Jn(

√
λρ) if 0 < ρ 6 r < R.

(3.22)

Before continuing there is a need to clarify how the square root in the complex plane

will be understood. We define it as the complex map

z 7→ √z, −π < arg z 6 π (3.23)

with range −π/2 < arg
√
z 6 π/2. Let us observe that under our definition of the square

root (3.23), it does not contain the branch cut of Yn(z) and Y ′n(z). Consequently ϕ2(r; ·) is

analytic in {z ∈ C : −π < arg z 6 π}.

3.4 The singularities of the spectral Green’s function

Now we study the singularities of gn as a function of λ. There are two sets of candidate

singularities of the spectral Green’s function. The first one corresponds to the origin in the
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λ-complex-plane due to the behavior of the Bessel functions of the second kind (3.7); and

the second one corresponds to the solutions of
√
λJ ′n(
√
λR) − αJn(

√
λR) = 0. With

respect to the origin we can obtain the following result:

Proposition III.1. If α 6= n/R the point λ = 0 is a removable singularity of gn(r, ρ; ·)
while if α = n/R the point λ = 0 is a simple pole and the residue is given by

Res
λ=0

gn(r, ρ;λ) = −2(n+ 1)

R2

( r
R

)n ( ρ
R

)n

for all n ∈ N0, ρ ∈ (0, R), and r ∈ [0, R].

PROOF. Assume α 6= n/R. Hence, by replacing the derivatives of the Bessel functions

by (3.10) and (3.11) and the Bessel functions by their asymptotic form for small arguments,

(3.6) and (3.7), we can compute the limit directly to get

lim
λ→0

gn(r, ρ;λ) =
1

2n

( ρ
R

)n ( r
R

)n(n+Rα

n−Rα

)

+
1

2n





(
r

ρ

)n
if 0 < r 6 ρ < R,

(ρ
r

)n
if 0 < ρ 6 r < R,

(3.24)

when n > 0 and

lim
λ→0

g0(r, ρ;λ) = − 1

Rα
−





ln
( ρ
R

)
if 0 < r 6 ρ < R,

ln
( r
R

)
if 0 < ρ 6 r < R,

(3.25)

when n = 0. So, as ρ > 0, we conclude that the origin λ = 0 is a removable singularity of

gn for all n ∈ N0.

On the other hand, by employing (3.10) and (3.11) we obtain that

√
λY ′n(
√
λR)− αYn(

√
λR) =

( n
R
− α

)
Yn(
√
λR)−

√
λYn+1(

√
λR),

√
λJ ′n(
√
λR)− αJn(

√
λR) =

( n
R
− α

)
Jn(
√
λR)−

√
λJn+1(

√
λR).
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Consequently, if α = n/R we have that

gn(r, ρ;λ) =
π

2

Yn+1(
√
λR)

Jn+1(
√
λR)

Jn(
√
λr)Jn(

√
λρ)

−π
2





Yn(
√
λρ)Jn(

√
λr) if 0 < r 6 ρ < R,

Yn(
√
λr)Jn(

√
λρ) if 0 < ρ 6 r < R,

(3.26)

and substituting the Bessel functions by their asymptotic forms, (3.6) and (3.7), in (3.26),

we obtain that the residue of gn at λ = 0 is

lim
λ→0

λ gn(r, ρ;λ) = −2(n+ 1)

R2

( r
R

)n ( ρ
R

)n

for all n ∈ N0. �

Continuing with the analysis of the singularities of gn in the λ-complex-plane, we study

the poles of the spectral Green’s function given by the non-zero solutions of the equation
√
λJ ′n(
√
λR)−αJn(

√
λR) = 0, which with the aid of (3.10) can be expressed equivalently

as
Dn(z, α) = zJ ′n(zR)− αJn(zR)

=
( n
R
− α

)
Jn(zR)− zJn+1(zR)

= zJn−1(zR)−
( n
R

+ α
)
Jn(zR)

=
(
α− n

R

)
Jn−1(zR) +

(
α +

n

R

)
Jn+1(zR) = 0,

(3.27)

where λ = z2.

Let us observe that if z is a solution to (3.27) for some given α ∈ C, then −z is a

solution too by virtue of (3.13). Therefore, only the non-zero roots located in the complex

half-plane Re z > 0 are analyzed. Furthermore, it is possible to note that as Dn(·, α) is

an analytic function, its zeros are isolated and form a countable set {zn,m ∈ C, (n,m) ∈
N0 ×N}. Moreover, for the particular cases α = ±n/R, it is possible to achieve explicitly

the values of zn,m by replacing α in (3.27) obtaining that

zn,m = jn±1,m/R, m ∈ N,
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where jn±1,m is the m-th positive root of the Bessel function Jn±1(z). It follows from here

that in this particular case there are infinite simple real roots of (3.27).

TABLE 3.1. Summary of results concerning positive and imaginary roots of
zJ ′n(Rz)− αJn(Rz) for α ∈ R and n ∈ N0.

α = n/R zn,m = jn+1,m/R, m ∈ N
α = −n/R zn,m = jn−1,m/R, m ∈ N
α > n/R zn,1 = i yn (yn > 0), 0 < zn,2 < zn,3 < · · ·
α < n/R 0 < zn,1 < zn,2 < · · ·

For an arbitrary α ∈ R, the equation (3.27) is well studied in the literature. The first

important result about this equation was made by Dixon (1903) who proved that (3.27)

has an infinite number of distinct non-zero simple real roots when n > −1. Resorting to

Dixon’s results, Spigler (1975) obtained an asymptotic and series expansion of the roots

of (3.27). Therein he also proved the existence of two symmetric purely imaginary roots

if and only if α > n/R > −1/R. The generalization of these for arbitrary cylinder

functions instead of Jn(z), is available in Spigler (1978) . Properties of convexity and

concavity of the zeros depending on α ∈ R and n > 0 of these general functions, are

presented in Elbert & Siafarikas (1992). Bounds for the small positive and imaginary zeros

of (3.27) are developed in Ahmed & Calogero (1978), Ifantis & Siafarikas (1988) and

Ifantis et al. (1988); and for the general cylinder functions in Ismail & Muldoon (1995).

Recent results on the monoticity and multiplicity of the positive roots of (3.27) for n, α ∈ R

are presented in Landau (1999). Table 3.1 outlines the known results for zn,m for α ∈ R. It

also establishes the notation assigned to the roots of Dn(·, α) employed throughout the rest

of this chapter.

The following proposition states some results on the roots of Dn(·, α) for α ∈ C that

will be used at a later stage in this chapter.
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Proposition III.2. (a) The roots of Dn(·, α) form a countable infinite set and their asymp-

totic behavior as m→∞ is given by

z ∼ jn+1,m ∼
π

R

(
4m+ 2n+ 1

4

)
. (3.28)

(b) Every non-zero root zn,m is simple if either; α ∈ R or α ∈ C with α fulfilling the

condition α 6= ±
√
n2/R2 − z2

n,m. Nevertheless, if zn,m is not simple, it has at most

multiplicity two.

(c) If Imα 6= 0, the function Dn(·, α) has no imaginary and real roots.

(d) If Imα > 0, the inequality Im z2
n,m < 0 holds for every (n,m) ∈ N0 × N.

PROOF. (a) From (3.8) and (3.27) we may infer straightforwardly that for a large |z|,
it holds that

Dn(z, α) ∼ zJn+1(zR) ∼
√

2z

π
sin
(
z − nπ

2
− π

4

)
, |z| �

∣∣∣ n
R
− α

∣∣∣ .

Hence, we obtain that the zeros of Dn(·, α) have the asymptotic behavior given by

(3.28). From here we may conclude directly that (3.27) has infinite number of zeros

which have an imaginary part that converges to zero.

(b) In order to prove that the zeros are simple, we compute the value of D′n(·, α) at a

non-zero root zn,m. If the pole is simple, D′n(z, α)
∣∣
z=zn,m 6= 0 where D′n denotes

the derivative of Dn with respect to its first variable. Employing the formula for the

derivatives of the Bessel functions (3.10) and the equation (3.27) itself, we find that

D′n(z, α)
∣∣
z=zn,m = −Jn(zn,mR)

zn,mR

(
R2z2

n,m − n2 +R2α2
)
. (3.29)

Therefore, if Imα 6= 0, by the assumption α 6= ±
√
n2/R2 − z2

n,m we obtain that

D′n(z, α)
∣∣
z=zn,m 6= 0 by virtue of the fact that zn,mR 6= jn,m, where jn,m is the j-th

positive zero of Jn(z) (it follows directly replacing zn,mR by jn,m in (3.27) and by

taking into account that J ′n(z) and Jn(z) have interlaced roots).
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On the other hand, we can note from (Dixon 1903, eq. 2) or (Spigler 1975, eq. II.3),

that ∫ R

0

rJ2
n(zr) dr =

1

2
R2J ′ 2n (zR)

d
dR

[
Jn(zR)

zRJ ′n(zR)

]
. (3.30)

Thus, if α ∈ R, we employ (3.10) and (3.27) in the right side of (3.30) to obtain that
∫ R

0

rJ2
n(zn,mr) dr =

J2
n(zn,mR)

2

(
R2z2

n,m − n2 +R2α2

z2
n,m

)
. (3.31)

Then, if zn,m ∈ R we have
∫ R

0

rJ2
n(zn,mr) dr > 0,

while if zn,m = i y1 we have Jn(i y1r) = i nIn(y1r), where In(z) is the modified Bessel

function of the first kind. Consequently

(−1)n
∫ R

0

rI2
n(y1r) dr =

∫ R

0

rJ2
n(zn,mr) dr 6= 0,

D′n(z, α)
∣∣
z=zn,m = − 2zn,m

RJn(zn,mR)

∫ R

0

rJ2
n(zn,mr) dr 6= 0

and consequently, zn,m is simple.

Finally, following Landau (1999) we define the function

Fn(z) =
zJ ′n(zR)

Jn(zR)
,

which allows us to express (3.27) as Fn(z) = α. Differentiating Fn two times we get

that it satisfies the differential equation

F ′′n (z) = −2R− R + 2Fn(z)

z
F ′n(z).

Therefore, if zn,m is a repeated root of Dn(·, α), it satisfies

F ′n(z)
∣∣
z=zn,m = 0,

and F ′′n (z)
∣∣
z=zn,m = −2R 6= 0. This proves that the multiplicity of any root is less or

equal to 2.

35



(c) The Bessel functions can be represented by the following infinite product (cf. Abramovitz

& Stegun 1972):

Jn(z) =
(z/2)n

n!

∞∏

m=1

(
1− z2

j2
n,m

)
,

where jn,m ∈ R are the zeros of Jn(z). It leads to

J ′n(zR)

Jn(zR)
− α

z
=

1

z

( n
R
− α

)
+
∞∑

m=1

2zR

(zR)2 − j2
n,m

= 0,

which is equivalent to the equation (3.27), so that zn,m are the solutions of

∞∑

m=1

2(zR)2

(zR)2 − j2
n,m

= αR− n, (3.32)

for which the left side is the well-known Mittag-Leffler expansion of zRJ ′n(zR)/Jn(zR),

valid for every z 6= jn,m/R (cf. Ifantis et al. 1988, Ismail & Muldoon 1995, Ifan-

tis & Siafarikas 1986). Now, suppose that there is a purely imaginary zero given by

zn,m = i y, y ∈ R. Replacing it in (3.32) we get

∞∑

m=1

2(yR)2

(yR)2 + j2
n,m

= αR− n. (3.33)

Then, since Imα 6= 0 we have that this equation has no solution y ∈ R because the

left side of (3.33) is real while the right side has a non zero imaginary part. It is a

contradiction and then Dn(·, α) has no imaginary zeros. The proof that real roots do

not exist is completely analogous.

(d) Suppose Imα > 0 and that there is a root z of Dn(·, α) such that z2 = (x + i y)/R2

with y > 0. Thus, replacing it in (3.32) we obtain

∞∑

m=1

2(x+ i y)(x− j2
n,m − i y)

(x− j2
n,m)2 + y2

= αR− n. (3.34)

Performing the product in the nominator of each term of the series and taking the imag-

inary part of the equation, we obtain

∞∑

m=1

−2yj2
n,m

(x2 − j2
n,m)2 + y2

= R Imα. (3.35)
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Therefore, since j2
n,m > 0 and y > 0, we obtain a contradiction and consequently

Im z2 < 0.

�

3.4.1 The non-simple roots of zJ ′n(zR)− αJn(zR)

The condition α 6= ±
√
n2/R2 − z2

n,m for α ∈ C, is necessary in order for zn,m to

be a simple zero. Moreover, all the values of α ∈ C for which it is possible to obtain a

non-simple zero, form a countable infinite set. Such particular values of α, denoted by αn,l,

where the subindex l arranges them in ascending order according to their absolute value,

can be found searching the roots of the equation

Dn

(√
n2

R2
− α2, α

)
= 0 (3.36)

in the α-complex-plane. Figure 3.2 shows the location of the values of α leading to a

non-simple root of Dn(·, α) for R = 1 and n = 3. The non-simple zero due to α = ±3

corresponds to the root z = 0, therefore it does not contradict Proposition III.2 (b) in which

the case z 6= 0 is analyzed

−10 −5 5 10

5

10

15

Imα

Reα
3−3

Im Dn(
√
n2/R2 − α2, α) = 0

Re Dn(
√
n2/R2 − α2, α) = 0

FIGURE 3.2. Location of the impedance parameters that lead to non-simple roots
of the Dini function.
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In Subsection 5.1.3 we develop a numerical algorithm to compute the values of these

particular impedance parameters.

3.5 A series representation of the spectral Green’s function

As it can be observed in (3.22), gn(r, ρ; ·) has a branch cut along the negative real

line due to the complex square root. However, in the following proposition we show that

gn(r, ρ; ·) is a meromorphic function in the whole λ-complex-plane, i.e. it is analytic ev-

erywhere except at its poles λn,m, (n,m) ∈ N0 × N given by

λn,m =





z2
n,m if n 6= Rα, m ∈ N

z2
n,m−1 if n = Rα, m > 1

0 if n = Rα, m = 1,

(3.37)

where zn,m, m ∈ N are the non-zero roots of Dn(·, α), which are sorted in increasing order

according to their absolute value.

Proposition III.3. The spectral Green’s function (3.22) is meromorphic in the whole λ-

complex-plane for every α ∈ C, ρ ∈ (0, R), and r ∈ [0, R].

PROOF. Firstly, let us observe that gn(r, ρ; ·) is actually meromorphic in the whole

complex plane except at the negative real axis. Consequently, to prove this proposition we

only have to show that gn(r, ρ; ·) is also meromorphic in a region that contains the negative

real axis. Without losing generality, let us assume that λ 6= −y2
n (where ±yni are the

imaginary roots of Dn(·, α) arising when α > n/R), and then the limits

lim
ε→0+

gn(r, ρ; |λ|ei (π−ε)) and lim
ε→0+

gn(r, ρ; |λ|e−i (π−ε)) (3.38)

exist by virtue of the fact that gn(r, ρ; ·) has no other poles on the negative real line (see

Proposition III.2 (c)). Employing (3.20) we will compute the limits in (3.38) proving that

they are equal. They will lead us to infer that the spectral Green’s function is continuous in

any region that contains the negative real line (except the poles). Immediately afterwards,

a theorem of analytic continuation along curves will ensure that gn(r, ρ; ·) is meromorphic.
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Let us claim that ϕ2(r; ·), defined in (3.16), is continuous in the whole complex plane

as a function of λ, except at λ = 0 where it has a singularity due to the Bessel function of

second kind. To show it we ought to compute

ϕ2(r;λ)
∣∣∣λ=|λ| eiπ

λ=|λ| e−iπ = lim
ε→0+

ϕ2(r; |λ|ei (π−ε))− lim
ε→0+

ϕ2(r; |λ|e−i (π−ε))

where

ϕ2(r;λ)
∣∣∣λ=|λ| eiπ

λ=|λ| e−iπ = (βJ ′n(βR)− αJn(βR))Yn(βr)
∣∣∣β=i |λ|1/2
β=−i |λ|1/2

− (βY ′n(βR)− αYn(βR)) Jn(βr)
∣∣∣β=i |λ|1/2
β=−i |λ|1/2 .

(3.39)

Then, replacing Y ′n(z) and J ′n(z) in (3.39) by the formulas for the derivatives, (3.10) and

(3.11), and observing with the aid of the analytic continuation formulas, (3.13) and (3.14),

that
βJn(βr)Yn+1(βR)

∣∣∣β=i |α|1/2
β=−i |α|1/2 = βJn(βR)Yn+1(βr)

∣∣∣β=i |α|1/2
β=−i |α|1/2

= 2|λ|1/2Jn(i |λ|1/2r)Jn+1(i |λ|1/2R)

and
βJn+1(βR)Yn(βr)

∣∣∣β=i |λ|1/2
β=−i |λ|1/2 = βJn+1(βr)Yn(βR)

∣∣∣β=i |λ|1/2
β=−i |λ|1/2

= 2|λ|1/2Jn+1(i |λ|1/2R)Jn(i |λ|1/2r),
we find that

ϕ2(r;λ)
∣∣∣λ=|λ| eiπ

λ=|λ| e−iπ = 0,

and then ϕ2(r; ·) is continuous in the whole complex plane, except at λ = 0.

On the other hand, evaluating the remaining term of the Green’s function in λ = |λ| eiπ

and λ = |λ| e−iπ, we obtain

ϕ1(r;λ)

ρW [ϕ1(r;λ),ϕ2(r;λ)](ρ)

∣∣∣∣
λ=|λ| eiπ

=
Jn(βr)

βJ ′n(βR)− αJn(βR)

∣∣∣∣
β=i |λ|1/2

=
Jn(i |λ|1/2r)

i |λ|J ′n (i |λ|1/2R)− αJn (i |λ|1/2R)

(3.40)

39



and

ϕ1(r;λ)

ρW [ϕ1(r;λ),ϕ2(r;λ)](ρ)

∣∣∣∣
λ=|λ| e−iπ

=
Jn(βr)

βJ ′n(βR)− αJn(βR)

∣∣∣∣
β=−i |λ|1/2

=
(−1)nJn(i |λ|1/2r)

(−1)n [i |λ|J ′n (i |λ|1/2R)− αJn (i |λ|1/2R)]
.

(3.41)

Therefore, since (3.40) and (3.41) are equal and ϕ2(r; ·) is continuous, it follows that

gn(r, ρ; ·) is continuous in any region that contains the negative real axis (except the poles).

Now, the fact that gn(r, ρ; ·) is meromorphic can be inferred directly from the following

well-known theorem of analytic continuation along curves (cf. Silverman 1984, p. 206): If

f is a function which is continuous on an open set U and analytic on U except possibly at

the points of a simple analytic curve C in U , then f is actually analytic on all of U . �

Having stated the fact that gn(r, ρ; ·) is meromorphic, we proceed to present the main

result of this section, which is a series expansion of gn. To accomplish that, we need first

the following Lemma.

Lemma III.1. There are positive constants C1 and C2 depending on n such that

|gn(r, ρ;λ)| 6 C1

|λ|1/2√rρ

provided that: (i) |λ| > C2, and (ii) either Re
√
λ = (4l+ 2n+ 3)π/4R for some integer l

or |Im
√
λ| > R−1.

PROOF. Let M1 a positive constant such that the asymptotic forms of the Bessel func-

tions for large arguments (3.8) and (3.9) are valid when |λ| > M1. Thus, substituting the

Bessel functions by their asymptotic forms in (3.15) and (3.16) we obtain, after some ma-

nipulation with the complex trigonometric functions, that the asymptotic form of ϕ1 and
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ϕ2 is given by

ϕ1(r;λ) ∼
[

2

π
√
λr

]1/2

cos

(√
λr − π(2n+ 1)

4

)
,

ϕ2(r;λ) ∼ −2

π
√
Rrλ

[√
λ cos

(√
λ(R− r)

)
+
( n
R
− α

)
sin
(√

λ(R− r)
)]
,

for all |λ| > M1.

Considering the properties of the complex trigonometric functions, |cos(x+ i y)| 6
2 e|y| and |sin(x+ i y)| 6 2 e|y| for every x, y ∈ R, we get that for |λ| large enough, the

following inequalities hold

|ϕ1(r<;λ)| 6
[

8

π

]1/2 e|Im
√
λ|r<

|λ|1/4√r<
, (3.42)

|ϕ2(r>;λ)| 6 4

π
√
R

[
1 +

1

M1

∣∣∣ n
R
− α

∣∣∣
]

e|Im
√
λ|(R−r>)

√
r>

, (3.43)

for every |λ| > M1. Multiplying (3.42) by (3.43), we obtain

|ϕ1(r<;λ)ϕ2(r>;λ)| 6 C

|λ|1/4√r<r>
e|Im

√
λ|(R−r>+r<),

and since r> − r< = max(r, ρ)−min(r, ρ) > 0, we have R− r> + r< 6 R and hence

|ϕ1(r<;λ)ϕ2(r>;λ)| 6 C

|λ|1/4√r<r>
e|Im

√
λ|R. (3.44)

On the other hand, the denominator of the spectral Green’s function is Dn(
√
λ, α) and

its asymptotic behavior for large arguments is given by

Dn(
√
λ, α) ∼

[
2

π
√
λR

]1/2{( n
R
− α

)
cos

(√
λR− π(2n+ 1)

4

)

−
√
λ sin

(√
λR− π(2n+ 1)

4

)}
.
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So that for all |λ| > M1 we have

|Dn(
√
λ, α)| ∼

∣∣∣∣∣
2
√
λ

πR

∣∣∣∣∣

1/2 ∣∣∣∣sin
(√

λR− π(2n+ 1)

4

)∣∣∣∣

×
∣∣∣∣

1√
λ

( n
R
− α

)
cot

(√
λR− π(2n+ 1)

4

)
− 1

∣∣∣∣ .
(3.45)

Let us note that for any real x and y, we have

| cos(x+ i y)|2 = cosh2(y)− sin2(x) (3.46)

| sin(x+ i y)|2 = cosh2(y)− cos2(x). (3.47)

Thus, since cosh y > e|y|/2, we have that placing cosx = 0 in (3.47) the sine function can

be bounded by | sin(x + i y)| > e|y|/4. If instead we have |y| > 1, the same bound holds

due to the inequality

| sin(x+ i y)|2 = cosh2(y)− cos2(x) > cosh2(y)− 1 >
e2|y|

4
− 1 >

e2|y|

16
. (3.48)

Consequently, from (3.46) and (3.48), we obtain that

|cot(x+ i y)|2 =

∣∣∣∣
cos(x+ i y)

sin(x+ i y)

∣∣∣∣
2

6
16 cosh2(y)

e2|y| 6 32
e2|y|

e2|y| , (3.49)

provided that either cosx = 0 or |y| > 1.

Now, setting
√
λR− π(2n+ 1)

4
= x+ i y, (3.50)

we can make use of the inequality (3.49) and then choosing a constantC2 = max {M1,M2},
where

M2 > 128
∣∣∣ n
R
− α

∣∣∣
2

,

we obtain that for every |λ| > C2 the following inequality holds
∣∣∣∣

1√
λ

( n
R
− α

)
cot

(√
λR− π(2n+ 1)

4

)
− 1

∣∣∣∣ >

∣∣∣∣1−
1

|λ|1/2
∣∣∣ n
R
− α

∣∣∣
∣∣∣∣cot

(√
λR− π(2n+ 1)

4

)∣∣∣∣
∣∣∣∣ >

1

2
.
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Then, employing it in (3.45), we obtain that

∣∣∣Dn(
√
λ, α)

∣∣∣ > |λ|1/4 e|Im
√
λ|R

8

∣∣∣∣
2

πR

∣∣∣∣
1/2

, (3.51)

and thus finally computing the quotient between (3.44) and (3.51), we get

|gn(r, ρ;λ)| =
∣∣∣∣
ϕ1(r<;λ)ϕ2(r>;λ)

Dn(
√
λ;α)

∣∣∣∣ 6
C1

|λ|1/2√r<r>
,

where by definition r<r> = min{r, ρ}max{r, ρ} = rρ. �

Theorem III.1. Let λ 6= λn,m, then spectral Green’s function (3.22) admits the following

representation:

gn(r, ρ;λ) =
∞∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν ,

with n ∈ N0, r ∈ [0, R], and ρ ∈ (0, R).

PROOF. Let γN be the contour depicted in the Figure 3.3, whereN is a positive integer

large enough such that
π

4R
(4N + 2n+ 3) > C2

π

4R
(4N + 2n+ 3) >

1

R

N > 2|λ|,
and C2 is the second constant in Lemma III.1. Note that in the region bounded by γN

the function gn is meromorphic as a function of λ, i.e. holomorphic expect at the isolated

points λ = λn,m which are its poles, so that the residue theorem applies. Also, we have

that by virtue of Lemma III.1, on γN the function gn is bounded by C1 (|λ|rρ)−1/2 and thus

there are no poles on it.

Hence, according to the residue theorem (cf. Silverman 1984)), the following equality

holds for every λ 6= λn,m:

1

2πi

∫

γN

gn(r, ρ; ν)

λ− ν dν = −gn(r, ρ, λ) +

M(N)∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν , (3.52)

43



π

4R
(4N + 2n+ 3)(1 + i)

π

4R
(4N + 2n+ 3)(1− i)− π

4R
(4N + 2n+ 3)(1 + i)

− π

4R
(4N + 2n+ 3)(1− i)

Re ν

Im ν

γN

FIGURE 3.3. Integration contour used in the proof of the Theorem III.1.

where M(N) is the number of poles ν = λn,m enclosed by γN , which is a monotone

increasing function of N .

On the other hand, thanks to Lemma III.1 we have that the integral over γN can be

bounded in the following way:
∣∣∣∣
∫

γN

gn(r, ρ; ν)

λ− ν dν
∣∣∣∣ 6

∫

γN

∣∣∣∣
gn(r, ρ; ν)

λ− ν

∣∣∣∣ dν 6
C1√
rρ

∫

γN

|ν|−1/2

|ν − λ| dν.

Then, as N > 2|λ| we have that |λ− ν| > N and |ν| 6 π
√

2(4N + 2n + 3)/4R 6 C̃N

for every ν ∈ γN . Consequently

C1|ν|1/2
|λ− ν| 6

C̃

N3/2
, ∀ν ∈ γN (3.53)

and noting that the length of the path γN is l(γN) 6 2π(4N + 2n+ 3)/R, we get
∣∣∣∣
∫

γN

gn(r, ρ; ν)

λ− ν dν
∣∣∣∣ 6

1√
rρ

Ĉ

N1/2
. (3.54)
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Next, taking the absolute value of (3.52), we obtain
∣∣∣∣∣∣
g(r, ρ;λ)−

M(N)∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν

∣∣∣∣∣∣
6

1

2π

∣∣∣∣
∫

γN

gn(r, ρ; ν)

λ− ν dν
∣∣∣∣

6
1√
rρ

Ĉ

N1/2

(3.55)

and hence

gn(r, ρ;λ) = lim
N→∞

M(N)∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν

=
∞∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν .

(3.56)

Moreover, from (3.55) it is possible to conclude that

lim
N→∞

√
rρ

∣∣∣∣∣∣
gn(r, ρ;λ)−

M(N)∑

m=1

Res
ν=z2n,m

gn(r, ρ; ν)

λ− ν

∣∣∣∣∣∣
= 0

uniformly for every r ∈ [0, R] and ρ ∈ (0, R). �

3.5.1 Computing the residues of the spectral Green’s function

To find the residue of gn(r, ρ; ν)/(λ − ν) at ν = λn,m, we will express the spectral

Green’s function as

gn(r, ρ;λ) =
Nn(
√
λ, α)

Dn(
√
λ, α)

Jn(
√
λr)Jn(

√
λρ)− π

2
Jn(
√
λr<)Yn(

√
λr>), (3.57)

where Dn is defined in (3.27) and

Nn(z, α) =
π

2
[zY ′n(zR)− αYn(zR)] . (3.58)

Let us observe that the last term in (3.57) contributes only to the residue at the pole ν = 0,

arising when α = n/R, was obtained in Proposition III.1 and is given by

Res
ν=0

gn(r, ρ; ν)

λ− ν = −2(n+ 1)

λR2

( r
R

)n ( ρ
R

)n
. (3.59)
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Therefore, this term in (3.57) does not exert any influence on the computation of the

residues at the non-zero poles. Consequently, all other residues can be obtained with the

following formula:

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν = Res
ν=z2n,m

[
Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν

]
. (3.60)

At this stage we ought to distinguish two cases; ν = λn,m is a simple pole (i.e. λn,m = z2
n,m

with α ∈ R or Imα 6= 0 with α 6= ±
√
n2/R2 − z2

n,m); or ν = λn,m is a double pole (i.e

λn,m = z2
n,m with Imα 6= 0 and α = ±

√
n2/R2 − z2

n,m).

When ν = λn,m is a simple pole, the following formula holds

Res
ν=λn,m

[
Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν

]
= lim
ν→z2n,m

2
√
νNn(

√
ν, α)

D′n(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

λ− ν (3.61)

where D′n denotes the derivative of Dn with respect to its first variable. Making use of the

wronskian formula (3.12), we get that

lim
ν→z2n,m

Nn(
√
ν, α) =

1

RJn(zn,mR)
, (3.62)

and from Proposition III.2 (b) it follows that

lim
ν→z2n,m

D′n(
√
ν, α) = −Jn(zn,mR)

zn,mR

(
R2z2

n,m − n2 +R2α2
)
. (3.63)

Therefore

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν =
2z2

n,mJn(zn,mr)Jn(zn,mρ)

J2
n(zn,mR)(z2

n,m − λ)
(
R2z2

n,m − n2 +R2α2
) (3.64)

when ν = λn,m 6= 0 is a simple pole.

Now, let us assume that ν = λn,m is a double pole. Thus, the residue must be computed

by the formula

Res
ν=λn,m

gn(r, ρ; ν)

ν − λ = lim
ν→z2n,m

d
dν

[
(ν − z2

n,m)2

(ν − λ)

Nn(
√
ν, α)

Dn(
√
ν, α)

Jn(
√
νr)Jn(

√
νρ)

]
. (3.65)

After performing algebraic manipulation employing the properties of the Bessel functions

and the equations that define non-simple roots, i.e. Dn(zn,m, α) = 0 and α2 = n2/R2 −
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z2
n,m, we obtain

Res
ν=λn,m

gn(r, ρ; ν)

λ− ν = −4

3

Jn(zn,mr)Jn(zn,mρ)

R2J2
n(zn,mR)

[
3z2

n,m

(z2
n,m − λ)2

+
(2Rα− 3n− 2)

z2
n,m − λ

]

−Jn+1(zn,mr)Jn(zn,mρ)

R2J2
n(zn,mR)

2zn,mr

z2
n,m − λ

− Jn(zn,mr)Jn+1(zn,mρ)

R2J2
n(zn,mR)

2zn,mρ

z2
n,m − λ

.

(3.66)

3.6 The spatial Green’s function

In this section we recover the spatial Green’s function from the integral representa-

tion and the spectral Green’s function introduced in (3.4). Two different expressions of

the spatial Green’s function are obtained. The first one corresponds to a series expansion

deduced as a result of Theorem III.1, and the second one shows explicitly the behavior of

the Green’s function at the source point.

3.6.1 Series representation

Thanks to Theorem III.1 we have that if k2 − ξ2 6= λn,m, then the spectral Green’s

function can be expressed as

gn(r, ρ; k2 − ξ2) =
∞∑

m=1

Res
ν=λn,m

gn(r, ρ; ν)

k2 − ξ2 − ν . (3.67)

Paying attention to the condition k2− ξ2 6= λn,m and to Proposition III.2 (d), it may be

noted that such condition holds if Im k2 > 0 or Imα > 0, by virtue of the fact that under

either of those conditions, Im(k2 − ξ2) and Imλn,m have opposite signs. This guarantees

that every term in the series (3.67) belongs to L1(R) when it is viewed as a function of ξ,

due to the functions (k2 − ξ2 − z2
n,m)−1 and (k2 − ξ2 − z2

n,m)−2, that appear in (3.64) and

(3.66), have no singularities on the real line.

Therefore, assuming that Im k2 > 0 or Imα > 0, we utilize (3.4) and Theorem III.1

to obtain the following integral representation of the Green’s function with the aid of the
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Lebesgue convergence theorem

G(x,y) =
1

4π2

∞∑

n=0

∞∑

m=1

εn cos(n(θ − ϑ))

∫

R
Res

ν=λn,m

gn(r, ρ; ν)

k2 − ξ2 − ν ei ξ(z−ζ) dξ. (3.68)

To compute the integral in (3.68) we need the following inverse Fourier transforms

(Magnus & Oberhettinger 1954, p.116)
∫

R

ei zξ

ξ2 + λn,m − k2
dξ= i π

ei kn,m|z|

kn,m
(3.69)

∫

R

ei zξ

(ξ2 + λn,m − k2)2
dξ= i π

ei kn,m|z|

2k3
n,m

[i kn,m|z| − 1] , (3.70)

where

kn,m :=
√
k2 − λn,m (3.71)

are the so-called constant of propagation associated to the mode (n,m). Henceforth in this

chapter, we assume k does not correspond to a cut-off frequency, i.e. kn,m 6= 0.

The formulas (3.69) and (3.70) together with (3.64) and (3.66) lead to:

• If the pole of the spectral Green’s function is λn,1 = 0, which occurs when α =

n/R, then we have that
∫

R
Res
ν=λn,1

gn(r, ρ; ν)

k2 − ξ2 − ν ei ξ(z−ζ) dξ =
2πi (n+ 1)

R2

( r
R

)n ( ρ
R

)n ei k|z−ζ|

k
. (3.72)

• If λn,m = z2
n,m is a simple pole of the spectral Green’s function, i.e. Dn(zn,m, α) =

0 and D′n(zn,m, α) 6= 0, then we obtain that
∫

R
Res

ν=λn,m

gn(r, ρ; ν)

k2 − ξ2 − ν ei ξ(z−ζ) dξ =

2πi z2
n,m

J2
n(zn,mR)

(
R2z2

n,m − n2 +R2α2
)Jn(zn,mr)Jn(zn,mρ)

ei kn,m|z−ζ|

kn,m
.

(3.73)
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• When λn,m = z2
n,m is a double pole of the spectral Green’s function, i.e. Dn(zn,m, α) =

0 and D′n(zn,m, α) = 0, we find that
∫

R
Res

ν=λn,m

gn(r, ρ; ν)

k2 − ξ2 − ν ei ξ(z−ζ) dξ =

1

2R2J2
n(zn,mR)

[
z2
n,mJn(zn,mr)Jn(zn,mρ)

[i kn,m|z − ζ| − 1]

k2
n,m

+zn,mJn+1(zn,mr)Jn(zn,mρ)r + zn,mJn(zn,mr)Jn+1(zn,mρ)ρ

+
2

3
(2Rα− 3n− 2)Jn(zn,mr)Jn(zn,mρ)

]
ei kn,m|z−ζ|

i kn,m
.

(3.74)

Replacing (3.72), (3.73) and (3.74) in (3.68) when it corresponds, we get the series ex-

pansion of the Green’s function. It is important to note that under the assumption Im k2 > 0

or Imα > 0, every term in the series representation of Green’s function, decays exponen-

tially in the direction of the axis of the waveguide (see Proposition III.2 (c)).

Results on the convergence of the series (3.68) for the particular case α = 0 are found

in Stuwe & Werner (1996). More specifically, in that work it is proved that for (x,y) ∈
Ω∞ × Ω∞ \ {z = ζ} and Im k2 > 0, the series converges uniformly. A generalization

of this result for α ∈ C, Imα > 0 seams to be possible to obtain from this work, but

it is out of the scope of this work. Anyway, we assume that the uniform convergence of

the series (3.68) for the domain stated above holds for an arbitrary impedance parameter α

with Imα > 0.

3.6.2 Local behavior at the source point

Let us replace the Bessel function of second kind Yn(z), by

Yn(z) = i
[
Jn(z)−H(1)

n (z)
]
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in (3.22), where H(1)
n (z) is the Hankel function of the first kind (cf. Abramovitz & Stegun

1972). It leads to

gn(r, ρ;λ) = − i π
2

√
λH

(1)′
n (
√
λR)− αH(1)

n (
√
λR)√

λJ ′n(
√
λR)− αJn(

√
λR)

Jn(
√
λr)Jn(

√
λρ)

+
i π
2





Jn(
√
λr)H

(1)
n (
√
λρ) if 0 < r 6 ρ < R,

Jn(
√
λρ)H

(1)
n (
√
λr) if 0 < ρ 6 r < R,

(3.75)

which may be written equivalently as

gn(r, ρ;λ) = g∞n (r, ρ;λ) + gcn(r, ρ;λ), (3.76)

where

g∞n (r, ρ;λ) =
i π
2





Jn(
√
λr)H

(1)
n (
√
λρ) if 0 < r 6 ρ < R,

Jn(
√
λρ)H

(1)
n (
√
λr) if 0 < ρ 6 r < R,

(3.77)

and

gcn(r, ρ;λ) = − i π
2

√
λH

(1)′
n (λR)− αH(1)

n (λR)√
λJ ′n(λR)− αJn(λR)

Jn(λr)Jn(λρ). (3.78)

Now, setting (3.77) and (3.78) in the integral representation of the Green’s function (3.4),

we define

G∞(x,y) :=
1

4π2

∫

R
ei ξ(z−ζ)

∞∑

n=0

g∞n (r, ρ; k2 − ξ2) cos(n(θ − ϑ))εn dξ (3.79)

and

Gc(x,y) :=
1

4π2

∫

N0×R
gcn(r, ρ; k2 − ξ2) cos(n(θ − ϑ)) ei ξ(z−ζ)εn dξ dn, (3.80)

from which the Green’s function is expressed asG = G∞+Gc. Hence, as a result of Graf’s

addition theorem (Magnus & Oberhettinger 1954, p. 21, eq. 3(b)) we find that

H
(1)
0

(√
k2 − ξ2

√
r2 + ρ2 − 2rρ cos(θ − ϑ)

)
=

∞∑

n=0

εnH
(1)
n

(√
k2 − ξ2ρ

)
Jn

(√
k2 − ξ2r

)
cos(n(θ − ϑ)) .

(3.81)
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Therefore, replacing (3.81) in (3.79) we obtain

G∞(x,y) =
i

8π

∫

R
H

(1)
0

(√
k2 − ξ2

√
r2 + ρ2 − 2rρ cos(θ − ϑ)

)
ei ξ(z−ζ) dξ, (3.82)

and then, thanks to Weyrich’s formula (Magnus & Oberhettinger 1954, p. 34),

i
2

∫

R
H

(1)
0

(√
k2 − ξ2%

)
ei ξz dξ =

ei k
√
%2+z2

√
%2 + z2

, (3.83)

which is valid for every k ∈ C such that 0 6 arg
√
k2 − ξ2 < π, 0 6 arg(k) < π, that is

our case, we get that the integral in (3.82) can be solved exactly to obtain

G∞(x,y) =
ei k
√

(z−ζ)2+r2+ρ2−2rρ cos(θ−ϑ)

4π
√

(z − ζ)2 + r2 + ρ2 − 2rρ cos(θ − ϑ)
, (3.84)

where G∞(x,y) = Φ(x− y), with

Φ(x) =
ei k|x|

4π|x| ,

the fundamental solution of the Helmholtz equation in R3. It can be observed that G∞

contains the unique singularity of the Green’s function located at y = x. Therefore, the

remaining termGc is regular in the sense that numerical techniques such as the Inverse Fast

Fourier Transform may be applied with aim of approximating it (cf. Duffy 2004, Durán

et al. 2006, 2007).

3.6.3 Undamped wave propagation and the far-field

Now we turn the attention to the complete undamped case, i.e. when the wave number

and the impedance parameter are such that Im k2 = Imα = 0 and, consequently, all the

poles of the spectral Green’s function λn,m, are simple and lie on the real line.

When these conditions hold, the functions in the inverse Fourier transforms (3.69) and

(3.70), no longer belong to L1(R) for all m ∈ N and n ∈ N0 because when k2 > λn,m for

some m and n, they have poles on the real line at kn,m =
√
k2 − λn,m and −kn,m. Conse-

quently, the integrals (3.69) and (3.70) lack meaning within the frame of Lebesgue integral

and must be understood in a broader sense. To face that problem we appeal to the limiting
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absorption principle (cf. Sveshnikov 1951, Nosich 1994), a mathematical procedure that

allows us to obtain a suitable meaning in physical terms for (3.69) and (3.70), in a way that

leads to a unique outgoing wave solution of (3.1).

To apply the limiting absorption principle we ought to add dissipation to the system

perturbing either the wave number designated as kε = k + i ε, ε > 0 or the impedance

parameter as αε = α + i ε, ε > 0. Subsequently, (3.1) can be solved resorting to the

procedure described above to obtain an ε-dependent Green’s function Gε. Finally, taking

the limit assuming the uniform convergence of the series

G = lim
ε→0

Gε. (3.85)

we get the unique outgoing wave solution of (3.1) that can be represented by the following

series

G(x,y) =
i

4π

∞∑

n=0

∞∑

m=1

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei kn,m|z−ζ|

kn,m
, (3.86)

where

ϕn,m(r) =

√
2zn,mJn (zn,mr)

Jn (zn,mR)
√
R2z2

n,m − n2 +R2α2
, m ∈ N, (3.87)

if α 6= n/R, λn,m = z2
n,m and

ϕn,m(r) =





√
2Jn(jn+1,m−1r/R)

Jn (jn+1,m−1)R
if m > 1,

√
2n+ 2

R

( r
R

)n
if m = 1,

(3.88)

if α = n/R for some n ∈ N0. Let us observe that the set of functions {√rϕn,m(r),m ∈ N}
forms a complete orthonormal basis of L2((0, R)). It can be deduced from the theory

of Dini series (cf. Watson 1966) or equivalently, from the theory of singular self-adjoint

Sturm-Liouville problems (cf. Stakgold 2000).

Unlike the damped case, in the undamped case the Green’s function does not decay

exponentially in the direction of the waveguide’s axis. In fact, from the definition (3.71),

we have that the term i kn,m in (3.86) can be either purely real or purely imaginary. Thus,
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when k2 > λn,m, it holds that kn,m =
√
k2 − λn,m > 0, and then the mode in the series

representation of the time-harmonic Green’s function Re(G(x,y) e−iωt), that is

Re
[
cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ) ei [kn,m|z−ζ|−ωt]] , (3.89)

represents an unattenuated propagative mode that travels out from the point source located

at x = (ρ cosϑ, ρ sinϑ, ζ) in the direction of the waveguide’s axis, with velocity cn,m =

ω/kn,m. On the other hand, when k2 < λn,m we have that i kn,m < 0, and then the mode

(3.89) decays exponentially while it travels out from the source. The latter modes are the

so-called evanescent modes and the former correspond to the propagative modes.

The following result states that in absence of dissipation the number of propagative

modes is finite while the number of evanescent modes is infinite.

Proposition III.4. The cardinality of the set

Λ =
{

(n,m) ∈ N0 × N : D(
√
λn,m, α) = 0 and λn,m < k2

}
(3.90)

is finite.

PROOF. First, let us observe that when α ∈ R we have that λn,m = z2
n,m ∈ R and

z2
n,m → ∞ as m → ∞ for every n ∈ N0. Then, there is M ∈ N such that z2

n,m > k2

for every m > M and every n ∈ N0. On the other hand, according to Ismail & Muldoon

(1995) the following bound holds:

x2
1 >

(Rn− α)(n+ 1)

R(2R + nR− α)
, ∀n > α/R,

where x1 is the first positive (real) root of Dn(·, α). According to that, we can choose a

N > max{α/R, 0} such that

z2
n,1 >

(Rn− α)(n+ 1)

R(2R + nR− α)
> k2, ∀n > N,

and hence we obtain that |Λ| < MN <∞. �
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Now, since the evanescent modes decay exponentially, the far-field form of the Green’s

function is only composed by the propagative modes, i.e.

Gff (x,y) =
i

4π

∑

(n,m)∈Λ

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei kn,m|z−ζ|

kn,m
. (3.91)

This far-field form of G and the orthogonality of the functions

{√
rϕn,m(r) einθ, (n,m) ∈ N0 × N

}

in the L2(Ω′) inner product (where Ω′ is the waveguide’s cross section), allow us to obtain

directly the radiation condition which can be written as

lim
|L|→∞

∫

ΓL

{
∂G

∂z
− i kn,msign(z − ζ)G

}
einθϕn,m(r) dσy = 0, ∀(n,m) ∈ Λ (3.92)

where the convergence of the limit is uniformly for every x ∈ Ω∞, the surface ΓL is defined

by

ΓL :=
{
x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 = L

}
= Ω′ × {L} (3.93)

and the set of indices Λ is defined in (3.90).

An interesting phenomenon arising only when a non-dissipative impedance boundary

condition is imposed on the waveguide’s walls, is the propagation of a surface wave. This

kind of wave decays exponentially to the interior of the waveguide, transporting energy

only near the waveguide’s surface. This wave is the result of the superposition of the

surface wave modes that conform the series expansion of the Green’s function. These

modes appear for any real impedance parameter α > 0 due the negative poles of the spectral

Green’s function that arise when a purely imaginary root of Dn(·, α) exists. It leads to the

fact that the radial component of this modes (3.87) is

ϕn,1(r) =

√
2ynIn(ynr)

In(ynR)
√
R2y2

n + n2 −R2α2
,

where In(x) are the modified Bessel functions of the first kind (cf. Abramovitz & Stegun

1972) which are monotonically increasing functions. Figure 5.5 shows the surface wave
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that composes the Green’s function for the particular case R = 1, k = 5 and α = 2.5, with

source point y = (0, 0.5, 0).

3.7 Green’s function of a semi-infinite circular cylinder

Once we have worked out the Green’s function for the domain consisting of the whole

cylinder, we can use it to easily obtain the Green’s function suitable for the integral/series

representation of the solution of the exterior problems (2.26-2.27) and (2.30-2.31). That is

easy due to the method of images, which works pretty well when the boundary condition

is either Dirichlet or Neumann. A deeper description of this method is found in Stakgold

(1998), Duffy (2001) and Polyanin (2002).

The sought Green’s functions for the integral/series representation of the solutions of

exterior problems (2.26-2.27) and (2.30)- (2.31), are given by the solutions of the problems




∆yG
±
e (x,y) + k2G±e (x,y) = −δx(y), y ∈ Ω±e

∂G±e (x,y)

∂ny

− αG±e (x,y) = 0, y ∈ Γ±e

G±e (x,y) = 0, y ∈ Γ±H

(3.94)

where the sets Ω±e , Γ±e and Γ±H are defined in (2.2), (2.5) and (2.3) respectively. Again,

as in the beginning of this chapter, we assume that Im k2 > 0 as well as Imα > 0, and

subsequently, the undamped case is analysed by means of the limiting absorption principle.

Without loosing generality, we focus in finding G+
e , since the computation of G−e is

slightly different. According to the method of images, we have to consider two point

sources, x ∈ Ω+
e and x̄ ∈ Ω∞ \ Ω+

e , where x̄ = (x1, x2, 2H − x3) when x = (x1, x2, x3).

The system response to the coupling effect of these source terms is given by the super-

position of the respective Green’s functions, G(x,y) and G(x̄,y). Both functions satisfy

the first two equations in (3.94). Therefore, in order to impose the remaining Dirichlet
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boundary condition on Γ+
H , we define a new function

G̃+
e (x,y) = G(x,y)−G(x̄,y),

which satisfies

G̃+
e (x,y) = 0, y ∈ Γ+

H .

Hence, restricting it to Ω+
e , we get that the solution of (3.94) in the upper semi-infinite

cylinder (i.e. in Ω+
e ) is:

G+
e (x,y) = G̃+

e

∣∣∣
Ω+
e

(x,y).

If α 6= ±
√
n2/R2 − z2

n,m, the solution of (3.94) can be expressed by the series

G+
e (x,y) =

1

2π

∞∑

n=0

∞∑

m=1

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei kn,m(z>−H) sin(kn,m(z< −H))

kn,m
(3.95)

which is valid for every k2 6= λn,m (i.e. kn,m 6= 0). Let us observe that here we use the

same notation as in Section 3.3, that is, z< = min{z, ζ} and z> = max{z, ζ}.

In the same manner as is achieved the radiation condition for G, we can obtain it for

the Green’s function of the semi-infinite circular cylinder. Thus, resorting to use of (3.95),

we get that when Imα = Im k2 = 0, the far-field form of G+
e is given by

G+ff
e (x,y) =

1

2π

∑

(n,m)∈Λ

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ)
ei kn,m(z−H) sin(kn,m(ζ −H))

kn,m
.

(3.96)

It follows from here that the radiation condition can be expressed as

lim
L→∞

∫

ΓL

{
∂G+

e

∂z
− i kn,mG+

e

}
einθϕn,m(r) dσy = 0, ∀(n,m) ∈ Λ (3.97)

where the convergence of the limit is uniformly for every x ∈ Ω+
e , the surface ΓL is defined

by (3.93) and the set of indices Λ is defined in (3.90).
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On the other hand, taking into account the local behavior of G at its singularity located

at y = x, we obtain an alternative representation of G+
e given by

G+
e (x,y) = Φ(x− y)− Φ(x̄− y) +Gc(x.y)−Gc(x̄,y), (3.98)

where Φ and Gc are defined in (3.84) and (3.80) respectively. Let us observe that the

function

Ψ(x,y) = −Φ(x̄− y) +Gc(x.y)−Gc(x̄,y)

does not have any singularities for every x,y ∈ Ω+
e . Moreover, it can be proved that it is

continuous in virtue of the fact that Gc(x,y) is continuous and for every x,y ∈ Ω∞, and

Φ(x̄− y) has its singularity outside Ω+
e .

In a completely analogous manner it is possible to take x = (x1, x2, x3) ∈ Ω−e and

x̄ = (x1, x2,−2H − x3), to obtain that when α 6= ±
√
n2/R2 − z2

n,m and k2 6= λn,m, the

Green’s function of the lower semi-infinite cylinder is given by

G−e (x,y) =
1

2π

∞∑

n=0

∞∑

m=1

εn cos(n(θ−ϑ))ϕn,m(r)ϕn,m(ρ)
e−i kn,m(z<+H) sin(kn,m(z> +H))

kn,m
,

(3.99)

its far-field form is

G−ffe (x,y) =
1

2π

∑

(n,m)∈Λ

εncos(n(θ−ϑ))ϕn,m(r)ϕn,m(ρ)
e−i kn,m(z+H) sin(kn,m(ζ +H))

kn,m
,

and the radiation condition that it satisfies is

lim
L→−∞

∫

ΓL

{
∂G−e
∂z

+ i kn,mG−e

}
einθϕn,m(r) dσy = 0, ∀(n,m) ∈ Λ. (3.100)

As well as the Green’s function of the upper semi-infinite cylinder, the representation (3.98)

shows the local behavior of G−e near its singularity.
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IV. DIRICHLET-TO-NEUMANN MAP ABSORBING BOUNDARY

CONDITION
This chapter addresses the problem of finding a way to redefine the scattering problem

(2.24) and the resonance problem (2.28) on a bounded domain. If we want to reduce

them to a boundary value problems on a bounded domain, the first step is to introduce

artificial boundaries that split the original domain into three disjoint sets; a bounded one,

which contains the local perturbation; and two unbounded sets, which do not have any

perturbation. Section 2.1 describes this procedure applied to our problem. There, the

unbounded domain Ω is splitted by the artificial boundaries Γ+
H and Γ−H which divide it into

three sets; the interior domain Ωi, and the exterior domains Ω+
e and Ω−e . As a result of

introducing these artificial boundaries we obtained the coupled problems, (2.25-2.26-2.27)

and (2.29-2.30-2.31), which interact among themselves across the plane surfaces Γ+
e and

Γ−e .

The main issue of the present chapter consist in resorting to the use of a suitable absorb-

ing boundary condition imposed on Γ+
H and Γ−H , to uncouple (2.25-2.26-2.27) and (2.29-

2.30-2.31), in order to achieve equivalent problems defined only on Ωi. As was already

pointed out in the introduction, good surveys of artificial boundary conditions can be found

in Ihlenburg (1998), Thomson (2006) and Givoli (2008). In this dissertation we develop the

DtN map, which is constructed from the Green’s function obtained in the previous chap-

ter. Some specific references about this kind of absorbing boundary condition applied to

similar problems can be found in Goldstein (1982), Harari et al. (1998) and Givoli (1999).

4.1 Representation of exterior solution

In this section we seek for an explicit representation of the solution of the exterior prob-

lems. Without loss of generality, we focus on the problems (2.27) and (2.31) because the

problems (2.26) and (2.30) may be treated in a similar way. To obtain these representations,

we resort to the use of the Green’s function shown in (3.95) and the Green’s theorem in the

following way: let us assume that k 6=
√
λn,m and p+

e : Ω+
e → C, p+

e ∈ C2(Ω+
e )∩C1(Ω+

e ),
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be a solution of either (2.26) or (2.30), and let ε > 0 small enough such that

Bε(x) =
{
z ∈ R3 : |x− z| < ε

}
⊂ Ω+

e , (4.1)

where the point x ∈ Ω+
e is fixed. Now, let L > H and define the set

ΩL
ε =

(
Ω+
e \Bε

)
∩
(
R2 × (H,L)

)
, (4.2)

where L is large enough such that Bε ⊂ ΩL
ε . Figure 4.1 depicts the domains defined above.

y

Γ+
e ∩ ΩL

ε

ΩL
ε Γ+

H

ΓL x

Sε

L

ε

FIGURE 4.1. Domain used for the representation of the exterior solution.

The good properties of G+
e over ΩL

ε allow us to use the Green’s second identity that

reads as follows:
∫

ΩLε

[
G+
e (x,y)∆p+

e (y)− p+
e (y)∆yG

+
e (x,y)

]
dy

=

∫

∂ΩLε

[
G+
e (x,y)

∂p+
e (y)

∂n
− p+

e (y)
∂G+

e (x,y)

∂ny

]
dσy,

(4.3)

where the normal derivatives exist in the sense that the limits

∂p+
e (y)

∂n
= lim

δ→0
ny ·

{
∇p+

e (y)− δny

}
, (4.4a)

∂G+
e (x,y)

∂ny

= lim
δ→0

ny ·
{
∇yG

+
e (x,y)− δny

}
, (4.4b)
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exist uniformly for y ∈ ∂ΩL
ε and x ∈ ΩL

ε . Herein ∇ and ∇y denote the gradient operator

with respect to the variable y , ny denotes the outward pointing normal vector to ΩL
ε , and

∂ΩL
ε denotes the ΩL

ε ’s boundary.

It can be observed that adding and subtracting k2p+
e (y)G+

e (x,y) to the function in the

integral on the left-hand side of (4.3), it becomes
∫

ΩLε

G+
e (x,y)

[
∆p+

e (y)− k2p+
e (y)

]
dy−

∫

ΩLε

p+
e (y)

[
∆yG

+
e (x,y)− k2G+

e (x,y)
]
dy = 0,

(4.5)

in virtue of the fact that G+
e and p+

e satisfy the Helmholtz equation in ΩL
ε , for every L > H

big enough and ε > 0 small enough.

On the other hand, the integral on the right hand side of (4.3), can be splitted into the

following four integrals:

I1 =

∫

Γ+
e ∩ΩLε

[
G+
e (x,y)

∂p+
e (y)

∂n
− p+

e (y)
∂G+

e (x,y)

∂ny

]
dσy (4.6a)

I2 =

∫

Γ+
H

[
G+
e (x,y)

∂p+
e (y)

∂n
− p+

e (y)
∂G+

e (x,y)

∂ny

]
dσy (4.6b)

I3 =

∫

Sε

[
G+
e (x,y)

∂p+
e (y)

∂n
− p+

e (y)
∂G+

e (x,y)

∂ny

]
dσy (4.6c)

I4 =

∫

ΓL

[
G+
e (x,y)

∂p+
e (y)

∂n
− p+

e (y)
∂G+

e (x,y)

∂ny

]
dσy (4.6d)

where the sets Γ+
e and Γ+

H are defined in Section 2.1, ΓL was introduced in (3.93) and Sε

corresponds to the boundary of Bε (i.e. a sphere with radius ε and center at x).

Adding and subtracting αp+
e G

+
e to the functions in the integral (4.6a) and noting that

on Γ+
e the functions G+

e and p+
e satisfy the homogeneous impedance boundary condition,

we get that (4.6a) becomes in I1 = 0.

Likewise, since p+
e = pi on Γ+

H and G+
e satisfies the homogeneous Dirichlet boundary

condition on Γ+
H , the integral in (4.6b) becomes in

I2 = −
∫

Γ+
H

pi(y)
∂G+

e (x,y)

∂ny

dσy. (4.7)
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Subsequently, by means of (3.98) we get that G+
e can be expressed as

G+
e (x,y) = Φ(x− y) + Ψ(x,y), (4.8)

where Φ is the fundamental solution of the Helmholtz operator and Ψ : Ω+
e × Ω+

e 7→ C is

a continuous function. Hence, from Nédélec (2001), Chapter 3, we know that

lim
ε→0

∫

Sε

Φ(x− y)
∂p+

e (y)

∂n
dσy = 0 (4.9a)

lim
ε→0

∫

Sε

p+
e (y)

∂Φ(x− y)

∂ny

dσy = p+
e (x) (4.9b)

and since Ψ is a continuos function, we have

lim
ε→0

∫

Sε

Ψ(x,y)
∂p+

e (y)

∂n
dσy = 0 (4.10a)

lim
ε→0

∫

Sε

p+
e (y)

∂Ψ(x,y)

∂ny

dσy = 0. (4.10b)

Using (4.9) and (4.10), we can compute the limit of (4.6c) as ε tends to zero, which is

lim
ε→0

I3 = −p+
e (x). (4.11)

From the previous chapter we know that when Imα > 0 or Im k > 0, both the

Green’s function and its derivatives, decay exponentially in the direction of the waveguide.

Therefore it is easy to see that

lim
L→∞

I4 = 0. (4.12)

However, when Imα = Im k = 0, this statement is no longer true and we have to introduce

a radiation condition to p+
e . The suitable radiation condition for p+

e is

lim
L→∞

∫

ΓL

{
∂p+

e

∂z
− i kn,mp+

e

}
einθϕn,m(r) dσ = 0, ∀(n,m) ∈ Λ. (4.13)

which is the shown in (3.97), the same that G+
e satisfies. Let us remark that the numbers

kn,m with (n,m) ∈ N0 × N, are defined in (3.71) while the set of indices Λ is defined

in (3.90). To take into consideration the radiation condition we express I4 as the sum of

two series; one containing the evanescent modes of the Green’s function and the other
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containing the propagative modes, i.e.,

I4 = − i
2π

∑

(n,m)∈(N0×N)\Λ
εnϕn,m(ρ)

sin(kn,m(ζ −H)) ei kn,m(L−H)

kn,m

×
∫

ΓL

{
∂p+

e

∂z
− i kn,mp+

e

}
cos(n(θ − ϑ))ϕn,m(r) dσy

− i
2π

∑

(n,m)∈Λ

εnϕn,m(ρ)
sin(kn,m(ζ −H)) ei kn,m(L−H)

kn,m

×
∫

ΓL

{
∂p+

e

∂z
− i kn,mp+

e

}
cos(n(θ − ϑ))ϕn,m(r) dσy.

(4.14)

Then, as i kn,m < 0 when (n,m) 6∈ Λ, we get that the first sum tends to zero as L goes to

infinity. On the other hand, the second sum tends to zero too, due to the radiation condition

(4.13).

Finally, from the results obtained above we find that (4.3) becomes in

p+
e (x) = −

∫

Γ+
H

pi(y)
∂G+

e (x,y)

∂ny

dσy, ∀x ∈ Ω+
e , (4.15)

when L and ε tend to infinity and zero respectively. The relaxation of the condition p+
e ∈

C2(Ω+
e ) ∩ C1(Ω+

e ) to p+
e ∈ Hloc(Ω

+
e ) stems straightforwardly from the density argument.

From (4.4) we have that the normal derivative in (4.15) can be computed in the follow-

ing way:
∂G+

e

∂ny

= − lim
z→H+

∂G+
e

∂z
. (4.16)

Therefore, under the assumption α 6= ±
√
n2/R2 − z2

n,m and the uniform convergence of

the series that defines the Green’s function, we get that

∂G+
e

∂ny

= − 1

2π

∞∑

n=0

∞∑

m=1

εn cos(n(θ − ϑ))ϕn,m(r)ϕn,m(ρ) ei kn,m(ζ−H), (4.17)

and so the integral representation of the exterior solution, (4.15), becomes in the series

p+
e (ρ, ϑ, ζ)=

1

2π

∞∑

n=0

∞∑

m=1

εnϕn,m(ρ) ei kn,m(ζ−H)

∫ R

0

∫ 2π

0

pi(r, θ,H) cos(n(θ−ϑ))ϕn,m(r)r dθ dr,

(4.18)
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which is valid for all ρ ∈ [0, R), ϑ ∈ [0, 2π), ζ > H and kn,m 6= 0.

In a completely analogous way, applying the Green’s theorem to p−e and G−e instead

p+
e and G+

e , and taking into account the radiation condition

lim
L→−∞

∫

ΓL

{
∂p−e
∂z

+ i kn,mp−e

}
einθϕn,m(r) dσ = 0, ∀(n,m) ∈ Λ. (4.19)

we obtain the following representation for p−e

p−e (x) = −
∫

Γ−H

pi(y)
∂G−e (x,y)

∂ny

dσy, ∀x ∈ Ω−e , (4.20)

which becomes in

p−e (ρ, ϑ, ζ)=
1

2π

∞∑

n=0

∞∑

m=1

εnϕn,m(ρ) e−i kn,m(ζ+H)

∫ R

0

∫ 2π

0

pi(r, θ,H) cos(n(θ−ϑ))ϕn,m(r)r dθ dr,

(4.21)

if α 6= ±
√
n2/R2 − z2

n,m. This representation is valid for all ρ ∈ [0, R), ϑ ∈ [0, 2π),

ζ < −H and kn,m 6= 0.

4.2 Dirichlet-to-Neumann map

Now we are in position to introduce the pseudodifferential operator that maps the trace

of the solution of the interior problems (2.25) and (2.29) on Γ+
H , into its normal derivative

on Γ+
H . More specifically, we seek for the map defined by

DN+ : H1/2(Γ+
H)→ H−1/2(Γ+

H)

pi|Γ+
H
7→ ∂pi

∂n
on Γ+

H .

This operator is the so-called DtN map, sometimes named Steklov-Poincaré and Carderòn

operator. To obtain the explicit formula that defines it, we observe that from the problem

decomposition made in Section 2.4, on Γ+
H the normal derivative of pi and p+

e are equal.

Thus, as the the representation of upper exterior solution (4.15) gives the exact solution

of either (2.27) or (2.31), we can easily compute the normal derivative of p+
e on Γ+

H and

replace it in (2.25) and (2.25) respectively, obtaining the following abstract form of the DtN
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map
∂pi(x)

∂nx

= − ∂

∂nx

{∫

Γ+
H

pi(y)
∂G+

e (x,y)

∂ny

dσy

}
, ∀x ∈ Γ+

H . (4.22)

Therefore, assuming that α 6= ±
√
n2/R2 − z2

n,m and performing the formula (4.22),

i.e. taking derivative with respect to ζ on both sides of (4.18) and evaluating the resultant

equation at ζ = H , we obtain

∂p+
e

∂n
=

i
2π

∞∑

n=0

∞∑

m=1

εnkn,mϕn,m(ρ)

∫ R

0

∫ 2π

0

pi(r, θ,H) cos(n(θ−ϑ))ϕn,m(r)r dθ dr (4.23)

where the normal derivative must be interpreted as the normal derivative on Γ+
H , with n

outward pointing with respect to Ωi. It stems from (4.23) that the DtN map for Γ+
H can be

defined by




DN+ : H1/2(Γ+
H) 7→ H−1/2(Γ+

H)

[
DN+pi

]
(ρ, ϑ) =

i
2π

+∞∑

m=1

+∞∑

n=0

εnkn,mϕn,m(ρ)

×
∫ R

0

∫ 2π

0

pi(r, θ,H) cos(n(θ − ϑ))ϕn,m(r)r dθ dr

(4.24)

when the condition α 6= ±
√
n2/R2 − z2

n,m holds.

Analogously, an abstract form of the DtN map for Γ−H can be obtained from the formula

(4.20) and a explicit formula given by




DN− : H1/2(Γ−H) 7→ H−1/2(Γ−H)

[
DN−pi

]
(ρ, ϑ) =

i
2π

+∞∑

m=1

+∞∑

n=0

εnkn,mϕn,m(ρ)

×
∫ R

0

∫ 2π

0

pi(r, θ,−H) cos(n(θ − ϑ))ϕn,m(r)r dθ dr

(4.25)

can be found when the condition α 6= ±
√
n2/R2 − z2

n,m holds.
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Finally, let us observe that the DtN maps are well defined for every physically correct

wave number, thus we remove the condition k 6=
√
λn,m defining by the function zero the

value that the DtN maps take when k =
√
λn,m.

4.3 Variational formulation

From the definition of the DtN maps, (4.24) and (4.25), we get that all the information

that the exterior problems set on the interior problem through the artificial boundaries, may

by supplied by the DtN maps and thus we are able to uncouple them obtaining an uncoupled

problem defined on a bounded computational domain. Consequently, using the DtN maps

we can redefine the interior scattering problem (2.25) as follows




∆pi + k2pi = 0, in Ωi \ Ωd,

∂pi
∂n
− α pi = 0, on Γi,

∂pi
∂n

= g, on Γd,

∂pi
∂n

= DN− pi, on Γ−H ,

∂pi
∂n

= DN+ pi, on Γ+
H .

(4.26)

As (4.26) is defined on a bounded domain, it is suitable to develop some numerical algo-

rithms to solve it. Thus, with the finite element method in sight, we perform the variation

formulation of this problem.

Multiplying the Helmholtz equation in (4.26) by the complex conjugate of a test func-

tion q ∈ H1(Ωi \ Ωd) we obtain
∫

Ωi\Ωd

(
∆pi + k2pi

)
q dx = 0.

Using the first Green’s identity we get that
∫

Ωi\Ωd
(∆pi + k2pi)q dx =

∫

∂Ωi∪∂Ωd

q
∂pi
∂n

dσ −
∫

Ωi\Ωd

(
∇q · ∇pi − k2q pi

)
dx.
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Then, noting that on each part of the boundary ∂Ωi ∪ ∂Ωd = Γ−H ∪ Γ+
H ∪ Γi ∪ Γd, there is

a different boundary condition, we replace the normal derivative in the boundary integrals,

by the correspondent term to achieve that
∫

∂Ωi∪∂Ωd

q
∂pi
∂n

dσ =

∫

Γ+
H

qDN+pi d +

∫

Γ−H

qDN−pi dσ +

∫

Γd

qg dσ +

∫

Γi

α q pi dσ,

Therefore, the variational or weak formulation of (4.26) is




Find pi ∈ H1(Ωi \ Ωd) such that:

a(pi, q) = b(q), ∀q ∈ H1(Ωi \ Ωd)

(4.27)

where

a(pi, q) :=

∫

Ωi\Ωd

(
k2q pi −∇q · ∇pi

)
dx +

∫

Γi

α q pi dσ (4.28a)

+

∫

Γ+
H

qDN+pi dσ +

∫

Γ−H

qDN−pi dσ

b(q) := −
∫

Γd

qg dσ. (4.28b)

In an analog way we can obtain the variational formulation of the resonance problem

(2.28), which thanks to the DtN maps can be equivalently expressed as follows:

Find an angular frequency ω ∈ R+ that leads to a wave number k 6= 0 and to a non

identically zero function pi ∈ H1(Ωi \ Ωd), such that:




∆pi + k2pi = 0 in Ωi \ Ωd,

∂pi
∂n
− αpi = 0 on Γd,

∂pi
∂n

= 0 on Γi,

∂pi
∂n

= DN+pi on Γ+
h ,

∂pi
∂n

= DN−pi on Γ−h ,

(4.29)
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It comes from the variational formulation of the scattering problem (4.27), that the varia-

tional formulation of (4.29) can be written as:




Find ω ∈ R+ that leads to k 6= 0 and 0 6= pi ∈ H1(Ωi \ Ωd), such that:

a(pi, q) = 0, ∀q ∈ H1(Ωi \ Ωd)

(4.30)

where a is defined in (4.28a).

Axisymmetric problems. Let us observe that if the boundary datum g and the domains Ωi

and Ωd present azimuthal symmetry in R3, i.e. they do not depend on the angular variable in

cylindrical coordinates, it is expected to obtain a solution of (4.26) that does not depend on

the angular variable too. Therefore, under these assumptions, the variational formulation

of (4.26) can be rewritten as




Find pi ∈ H1(Ω̃i \ Ω̃d) such that:

a(pi, q) = b(q), ∀q ∈ H1(Ω̃i \ Ω̃d)

(4.31)

in which the bilinear form a and the linear functional b are:

a(pi, q) := 2π

{∫

eΩi\eΩd
(
k2q pi −∇q · ∇pi

)
r dσ +

∫

eΓi α q pir dγ (4.32a)

+

∫

eΓ+
H

qDN+pir dγ +

∫

eΓ−H qDN
−pir dγ

}

b(q) := −2π

∫

eΓd qgr dγ, (4.32b)
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where the modified domains (in two dimensions) involved are

Ω̃i :=
{

(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Ωi, r > 0,∀θ ∈ [0, 2π)
}
, (4.33a)

Ω̃d :=
{

(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Ωd, r > 0,∀θ ∈ [0, 2π)
}
, (4.33b)

Γ̃i :=
{

(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Γi, r > 0,∀θ ∈ [0, 2π)
}
, (4.33c)

Γ̃d :=
{

(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Γd, r > 0,∀θ ∈ [0, 2π)
}
, (4.33d)

Γ̃−H :=
{

(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Γ−H , r > 0,∀θ ∈ [0, 2π)
}
, (4.33e)

Γ̃+
H :=

{
(r, z) ∈ R2 : (r cos(θ), r sin(θ), z) ∈ Γ+

H , r > 0,∀θ ∈ [0, 2π)
}
, (4.33f)

and the DtN maps involved become




DN+ : H1/2(Γ+
H) 7→ H−1/2(Γ+

H)

[
DN+pi

]
(ρ) =

i
2π

+∞∑

m=1

kn,mϕ0,m(ρ)

∫ R

0

pi(r, 0, H)ϕ0,m(r)r dr
(4.34)

and




DN− : H1/2(Γ−H) 7→ H−1/2(Γ−H)

[
DN−pi

]
(ρ) =

i
2π

+∞∑

m=1

kn,mϕ0,m(ρ)

∫ R

0

pi(r, 0,−H)ϕ0,m(r)r dr
(4.35)

in virtue of the azimuthal symmetry of interior solution. It is important to observe that here

dσ represents a element of area in the RZ-plane and dγ represents a line element in the

same plane.

Under the assumption of axisymmetric domains, Ωi and Ωd, a similar procedure may

be carried out for (4.29). However, under these conditions, we can only expect to find the

resonance frequencies that lead to axisymmetric resonance states, i.e. functions pi that do

not depend on the angular variable.
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V. NUMERICAL PROCEDURES

5.1 Computing the poles of the spectral Green’s function

In this section we state some basic procedures to obtain numerical evaluations of the

Green’s function (3.68). To do that, we present two different methods to compute the zeros

of Dn(·, α) (which is defined in 3.27), based on standard algorithms for finding roots of

real valued function when the impedance parameter is real, and based on the finite element

method when the impedance parameter is a proper complex number. We are particularly

interested in obtaining accurate approximations for the smallest zn,m, since the bigger ones

can be approximated by the asymptotic formula obtained in the Proposition III.2. Also, we

develop a numerical procedure to compute the non-simple roots ofDn(·, α), reported in the

Subsection 3.4.1.

5.1.1 Real impedance case

As discussed above, in this case there is an infinite number of real positive roots of

Dn(·, α) and only one purely imaginary root in the positive imaginary axis. Consequently,

the search of the imaginary root does not present difficulties because there are standard

methods to solve that kind of problems. However, the search of the positive real roots

produce more complications. To face them, let us note that the equation Dn(z, α) = 0 can

be expressed as

Fn(z) = α, (5.1)

so that to achieve a good approximation of zn,m we have to compute the intersection points

of the horizontal line w = α and the real valued function w = Fn(z). Thus, since F ′n(z) <

0 for all 0 < z 6= jn,m/R and n > −1 (cf. Landau 1999) and Fn has poles in jn,m, we have

that there is at most one intersection point in every interval [jn,m/R, jm+1,n/R]. So that,

to obtain the positive real roots of Dn(·, α) we only have to search them in every interval

[jn,m/R, jm+1,n/R]. Figure 5.1 shows the location of zn,m for α = 2.5, R = 1 and n = 1.

From a numerical point of view, to obtain the value of zn,m we need first to have jn,m,

the positive zeros of the Bessel function Jn(x). To compute them there are several efficient

69



jn,6jn,4 jn,5

zn,2 zn,3 zn,4 zn,5 zn,6

10

5

−5

−10

5 10 15 20

jn,1 jn,2 jn,3

w

z

w = Hn(z)
w = α

FIGURE 5.1. Roots of the Dini function for a real impedance parameter

numerical methods. Some of them are found in Segura & Gil (1999) and Vrahatis et al.

(1995). Once the numbers jn,m are achieved, we may obtain zn,m using standard algorithms

for finding zeros of functions that change their sign once in a given interval, such as are

found in Brent (1973) (which is implemented in MATLAB).

5.1.2 Complex impedance case

When the impedance parameter is a proper complex number we can not use the method

described above because nothing guarantees that the zeros are real. In fact, they have a non-

zero imaginary part as can be seen from Figure 5.2, which shows the location of zn,m for

α = 2.5 + i , R = 1 and n = 1. Consequently, we have to face the problem of finding zn,m

on the whole complex plane.

To find these values we appeal to the Bessel differential equation. Let us note that

the zeros of Dn(·, α) can be characterized as the eigenvalues of the following differential

70



−2

−4

2

4

5 10−5−10

Im z

Re z

−zn,1

−zn,2−zn,3−zn,4

zn,1

zn,2 zn,3 zn,4

ReDn(z, α) = 0
ImDn(z, α) = 0
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problem for ϕ ∈ C1[0, R] ∩ C2(0, R)





− (rϕ′)
′
+
n2

r
ϕ = rλϕ, 0 < r < R

ϕ′ − αϕ = 0, r = R

lim
r→0+

ϕ(r) < ∞.

(5.2)

where the eigenvalues and the eigenfunctions are λ = z2
n,m and ϕn,m, respectively, and

where the functions ϕn,m are defined in (3.87) and (3.88).

To achieve the numerical values of zn,m, we transform the differential eigenvalue prob-

lem (5.2) into a generalized matrix eigenvalue problem by means of the finite element

method or the finite difference method. To employ the finite element method, we dis-

cretize the interval (0, R) at N regular subintervals [rn, rn+1] of length h = R/N where

rn = nR/N, 0 6 n 6 N , and we construct basis functions that are linear at every

subinterval and satisfy ψn(rm) = δn,m. Thus, multiplying (5.2) by rψ ∈ H1(0, R) and

using integration by parts, the variational formulation is obtained. Next, making use of the

Galerkin method with basis functions ψn, the discretized version of (5.2) is achieved and it
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reads as follows:




Find 0 6= λ(h) ∈ C and 0 6= x ∈ CN such that:

Anx = λ(h)Bx,

(5.3)

where the matrices An, B ∈ CN×N are defined by:

[An]i,j = −αR2ψi(R)ψj(R) +

∫ R

0

r2ψiψ
′
j dr + n2

∫ R

0

ψiψj dr, i, j = 1, . . . , N,

[B]i,j =

∫ R

0

r2ψi(r)ψj(r) dr, i, j = 1, . . . , N.

(5.4)

The generalized matrix eigenvalue problem (5.3) can be solved with ARPACK (or the MAT-

LAB version of it implemented in the function eigs.m) to obtain the eigenvalues λ(h)

with smallest absolute value. They correspond to the first N smallest approximate zeros of

Dn(·, α) and are denoted by z(h)
n,m =

√
λ(h). Table 5.1 shows the results for the particular

cases n = 1, , 2, 3 and 4, where the error is measured by |Dn(z
(h)
n,m, α)|.

Finally, plots of the Green’s function for real and complex impedance case are shown

in Figures 5.3 (for α = 2.5) and 5.4 (for α = 2.5 + i ) respectively, for k = 5, R = 1 and

y = (0, 0.5, 0), where series representation of G is truncated at m = n = 40. The Figure

5.5 shows a plot of sum of the surface wave modes that compose the series representation

of Green’s function for the parameters k = 5, α = 2.5, R = 1 and y = (0, 0.5, 0). In this

case, there are only three surface wave modes arising due to the purely imaginary roots of

Dn(·, α), given by z0,1 = 3.0679i , z1,1 = 2.7700i and z2,1 = 1.7868i .

5.1.3 Computation of the non-simple poles of the spectral Green’s function

This section deals with the problem of achieving numerical values of the impedance

parameters that lead to non-simple roots of Dn(·, α). According to the Subsection 3.4.1,

to find them, we have to compute the solutions of the equation (3.36), i.e. to find complex

numbers, α ∈ C, such that

f(α) = 0, (5.5)
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TABLE 5.1. Numerical results of the finite element method applied to find the first
five zeros of Dn(·, α) for R = 1, n = 0, 1, 2, 3, 4 and α = 2.5 + i . All the values
were computed with h = 10−5.

n m z
(h)
n,m jn+1,m/R |Dn(z

(h)
n,m, α)|

1 0.9701− 3.0594i 3.8317 0.0834 · 10−5

2 3.1926− 0.1935i 7.0156 0.0055 · 10−5

0 3 6.6600− 0.1322i 10.1735 0.0025 · 10−5

4 9.9279− 0.0950i 13.3237 0.0057 · 10−5

5 13.1361− 0.0736i 16.4706 0.0042 · 10−5

1 1.1116− 2.8342i 5.1356 0.5515 · 10−5

2 4.8468− 0.1694i 8.4172 0.0464 · 10−5

1 3 8.2396− 0.1131i 11.6198 0.0394 · 10−5

4 11.4909− 0.0839i 14.7960 0.0295 · 10−5

5 14.6947− 0.0665i 17.9598 0.0281 · 10−5

1 1.5439− 2.1842i 6.3802 0.7108 · 10−5

2 6.2959− 0.1511i 9.7610 0.1933 · 10−5

2 3 9.7081− 0.1009i 13.0152 0.1558 · 10−5

4 12.9761− 0.0762i 16.2235 0.1356 · 10−5

5 16.1923− 0.0613i 19.4094 0.1206 · 10−5

1 2.5572− 1.4060i 7.5883 0.5930 · 10−5

2 7.6507− 0.1378i 11.0647 0.4173 · 10−5

3 3 11.1088− 0.0923i 14.3725 0.3600 · 10−5

4 14.4068− 0.0704i 17.6160 0.3167 · 10−5

5 17.6441− 0.0572i 20.8269 0.2794 · 10−5

1 3.8601− 0.9877i 8.7715 0.8437 · 10−5

2 8.9496− 0.1277i 12.3386 0.6867 · 10−5

4 3 12.4627− 0.0858i 15.7002 0.5919 · 10−5

4 15.7969− 0.0660i 18.9801 0.5265 · 10−5

5 19.0599− 0.0540i 22.2178 0.4756 · 10−5

where f is the complex map

α 7−→
√
n2/R2 − α2J ′n(

√
n2 − α2R2)− αJn(

√
n2 − α2R2). (5.6)
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FIGURE 5.3. Plot of the Green’s function for a real impedance parameter.

Numerical procedures to obtain the values of αn,l can be performed making use of

the so-called logarithmic residue based quadrature method. Some references about this

method are found in Delves & Lyness (1967), the paper that originated these kinds of

methods, and in the book of Kravanja & Barel (2000), where big improvements of this

algorithm are presented.

Herein we describe how to employ the Delves-Lyness algorithm to obtain such partic-

ular values of the impedance parameter. Therefore, first we have to identify the region in

the complex plane where the function f is analytic. To do this, we observe that according

to the physical meaning of the impedance boundary condition (see Chapter II), we only

have to search for the values of α satisfying (3.36) in the upper complex plane, Imα > 0.

In order to identify it, we need to give an exact meaning to the square root in (5.6):

α 7−→
√
n2 − α2R. (5.7)
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FIGURE 5.4. Plot of the Green’s function for a complex impedance parameter.

Then, we define
√
n2 − α2R as the product between

√
n− αR and

√
n+ αR. The first

root uses the analytic branch of the logarithm in the whole complex plane minus the non-

negative imaginary axis; the second one uses an analytic branch of the logarithm in the

whole complex plane minus the non-positive imaginary axis. Thus, the function in (5.7) is

analytic in the simple connected regionW , shown in Figure 5.6. Consequently, f : W → C

is analytic in the upper complex plane in virtue of the fact that W contains it and the Bessel

functions Jn(z) are analytic in the whole complex plane.

Now, let γ, a positively oriented Jordan curve in W that does not pass through any

zero of f . We are interested in solving the problem of computing all the zeros of f that

lie in the interior of γ. Then, let Nγ denotes the number of zeros of f enclosed by γ, i.e.,

the number of zeros where each zero is counted according to its multiplicity. Thus, from

now we assume Nγ > 0 and the sequence αn,1, . . . , αn,Nγ represents the zeros of f that
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FIGURE 5.6. Domain of the complex square root function defined in (5.7).

lie inside γ. Each zero is repeated according to its multiplicity. Since f is analytic on and
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inside γ, we obtain from the Cauchy theorem (cf. Silverman 1984) that

Nγ =
1

2πi

∫

γ

f ′(α)

f(α)
dα. (5.8)

It allow us to obtain numerically, by quadrature methods, the number of zeros enclosed by

γ. Likewise, employing numerical quadrature method, we compute the complex integrals

sp =
1

2πi

∫

γ

αp
f ′(α)

f(α)
dα, p = 1, . . . , Nγ, (5.9)

which by the residues theorem (cf. Silverman 1984), are

sp = αpn,1 + · · ·+ αpn,Nγ , p = 1, . . . , Nγ. (5.10)

Subsequently, we construct a polynomial of degreeNγ that shares the zeros αn,1, . . . , αn,Nγ

with f . Like Delves & Lyness (1967), we make use of the monic polynomial

PNγ (α) =

Nγ∏

l=1

(α− αn,l) = αNγ + σ1α
Nγ−1 + · · ·+ σNγ .

where the coefficients that define it are given by the Newton’s identities (Kravanja & Barel

2000)

s1 + σ1 = 0

s2 + s2σ1 + 2σ2 = 0

...
...

...

sNγ + sNγ−1σ1 + · · ·+ s1σNγ−1 +Nγσ1 = 0.

(5.11)

Therefore, since (5.11) is a linear system of algebraic equations, it can be easily solved.

Once we have computed these coefficients, we find the zeros of the polynomial PNγ ob-

taining an approximation of αn,1, . . . , αn,Nγ . To do this, we employ some of the several

highly efficient method for finding roots of polynomials, such as the one implemented in

the function roots.m of MATLAB.

Table 5.2 shows the values of αn,l for different n’s, computed with the Delves-Lyness

algorithm implemented in MATLAB. From these results we may notice that the non-simple
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zero arising due to the impedance parameter αn,l, is the l-th root of Dn(·, αn,l), i.e. zn,m

with m = l.

Remark V.1. Let us observe that the Delves-Lyness algorithm can be applied to compute

the numbers zn,m in the case of a complex impedance parameter, instead the finite element

method in one dimension described in the Subsection 5.1.2.

TABLE 5.2. Numerical values of the first (in norm) five impedance parameters αn,l
leading to a non-simple root zn,l of the Dn(·, α) computed with the Delves-Lyness
algorithm for R = 1 and n = 0, 1, 2, 3, 4.

n l αn,l zn,l |Dn(zn,l, αn,l)| |D′n(zn,l, αn,l)|
1 1.2796 + 2.9804i 2.9804− 1.2796i 0.0031 · 10−6 0.0031 · 10−6

2 1.6187 + 6.1752i 6.1752− 1.6187i 0.0281 · 10−6 0.0281 · 10−6

0 3 1.8189 + 9.3420i 9.3420− 1.8189i 0.0788 · 10−6 0.0788 · 10−6

4 1.9615 + 12.4985i 12.4985− 1.9615i 0.1260 · 10−6 0.1260 · 10−6

5 2.0723 + 15.6501i 15.6501− 2.0723i 0.1347 · 10−6 0.1347 · 10−6

1 1.5017 + 4.3646i 4.4663− 1.4675i 0.0073 · 10−5 0.0071 · 10−5

2 1.7410 + 7.6320i 7.6941− 1.7270i 0.0345 · 10−5 0.0342 · 10−5

1 3 1.9028 + 10.8299i 10.8746− 1.8949i 0.0862 · 10−5 0.0858 · 10−5

4 2.0251 + 14.0040i 14.0389− 2.0201i 0.1344 · 10−5 0.1341 · 10−5

5 2.1235 + 17.1669i 17.1956− 2.1199i 0.1409 · 10−5 0.1407 · 10−5

1 1.6950 + 5.4908i 5.8169− 1.6000i 0.0491 · 10−6 0.0467 · 10−6

2 1.8590 + 8.9054i 9.1185− 1.8155i 0.2383 · 10−6 0.2331 · 10−6

2 3 1.9870 + 12.1756i 12.3346− 1.9613i 0.5460 · 10−6 0.5393 · 10−6

4 2.0902 + 15.3933i 15.5204− 2.0731i 0.7386 · 10−6 0.7327 · 10−6

5 2.1764 + 18.5855i 18.6914− 2.1640i 0.6197 · 10−6 0.6162 · 10−6

1 1.8701 + 6.4813i 7.1010− 1.7069i 0.0200 · 10−5 0.0185 · 10−5

2 1.9716 + 10.0606i 10.4837− 1.8921i 0.1088 · 10−5 0.1047 · 10−5

3 3 2.0698 + 13.4197i 13.7437− 2.0210i 0.2691 · 10−5 0.2630 · 10−5

4 2.1553 + 16.6943i 16.9575− 2.1219i 0.3827 · 10−5 0.3769 · 10−5

5 2.2298 + 19.9263i 20.1482− 2.2053i 0.3339 · 10−5 0.3303 · 10−5

1 2.0323 + 7.3836i 8.3439− 1.7984i 0.0160 · 10−4 0.0144 · 10−4

2 2.0794 + 11.1310i 11.8075− 1.9603i 0.0778 · 10−4 0.0736 · 10−4

4 3 2.1506 + 14.5865i 15.1145− 2.0755i 0.1657 · 10−4 0.1602 · 10−4

4 2.2198 + 17.9251i 18.3597− 2.1673i 0.1931 · 10−4 0.1886 · 10−4

5 2.2833 + 21.2031i 21.5730− 2.2441i 0.1286 · 10−4 0.1265 · 10−4
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5.2 The Dirichlet-to-Neumann Finite Element Method (DtN FEM)

In this section we introduce the finite element method in order to solve the prob-

lems (2.24) (scattering problem) and (2.28) (resonance problem) by resorting to the use

of Galerkin discretization of their variational forms (4.27) and (4.27), derived from the

utilization of the DtN map absorbing boundary condition. The use of the finite element

method allow us to transform the scattering problem into a linear algebraic system of equa-

tions and the resonance problem in a non-linear matrix eigenvalue problem similar to those

arising in the use of the boundary element method for the solution of resonance problems

(cf. Durán et al. 2001, 2007, Durán et al. 2009). Several well-known algorithm are available

to solve these algebraic problems.

Good references concerning both theoretical and practical issues of the finite element

method, are the classical books of Ciarlet (2002) and Zienkiewicz et al. (2005). Specific

references concerning to the use of the finite element method in conjunction with the DtN

absorbing boundary condition for the solution of scattering problems are Ihlenburg (1998)

and Givoli (1999), while the implementation of the DtN FEM in waveguides is analyzed in

Goldstein (1982) and Harari et al. (1998) for lossless boundary conditions.

Benchmark problems are developed to test the DtN FEM in solving both the scattering

and the resonance problem with impedance boundary condition in axisymmetric and non-

axisymmetric geometries and boundary data.

5.2.1 Numerical discretization by the finite element method

Let Th a family of regular tetrahedral meshes of Ωi \ Ωd (in the sense of Ciarlet 2002,

Chapter 2), such that Ωi \ Ωd =
⋃
T∈Th T , i.e., Ωi\Ωd is assumed a tetrahedral domain. Pa-

rameter h measures the size of the elements (the tetrahedrons) of the mesh in the following

sense:

h = max{diamT : T ∈ Th},

with diamT = max{|x1 − x2| : x1,x2 ∈ T}. Throughout this section we use the stan-

dard linear Lagrange element space to discretize (4.27) and (4.30). Thus, the approximate
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solutions can be written as

ph(x) :=
N∑

n=1

pn φn(x) (5.12)

where N is the number of nodes of the mesh and {φ1, φ2, . . . , φN} is the nodal basis of the

finite dimensional function space

Vh :=
{
q ∈ H1(Ωi \ Ωd) : q |T∈ P1(T ), ∀T ∈ Th

}
, (5.13)

with P1(T ) denoting the polynomials of first order defined on T .

The finite elements space (5.13) leads to the following discrete form of the variational

formulation of the scattering problem (4.27):




Find ph ∈ Vh such that:

a(ph, qh) = b(qh), ∀qh ∈ Vh,
(5.14)

where the bilinear form and the functional on the right hand are defined in (4.28). Replacing

ph by (5.12) and qh by each basis function in the discrete variational formulation (5.14), we

obtain the matrix form of the finite element discretization of the scattering problem, which

can be written as:

Mωp = b, (5.15)

where the matrix Mω ∈MN×N(C) and the vectors b,p ∈ CN are given by

[Mω]i,j := a(φi, φj), i, j = 1, . . . , N, (5.16a)

[b]i := b(φi), i = 1, . . . , N, (5.16b)

[p]i := pi, i = 1, . . . , N. (5.16c)

Because the different kind of integrals present in the variational formulation, we express

the matrix Mω as

Mω = Aω −B + Cω + D+
ω + D−ω . (5.17)
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So that, the following matrices and vectors must be computed in order to obtain a solution

of the linear algebraic system (5.15):

[Aω]i,j :=

∫

Ωi\Ωd
k2φi φj dx, i, j = 1, . . . , N (5.18a)

[B]i,j :=

∫

Ωi\Ωd
∇φi · ∇φj dx, i, j = 1, . . . , N (5.18b)

[Cω]i,j :=

∫

Γi

αφi φj dσ, i, j = 1, . . . , N (5.18c)

[
D±ω
]
i,j

:=

∫

Γ±H

φiDN ±t φj dσ, i, j = 1, . . . , N (5.18d)

[b]i := −
∫

Γd

φi g dσ, i = 1, . . . , N. (5.18e)

The symbol ω makes explicit the fact that these matrices depend on the angular frequency

at which the radiating obstacle works. As can be easily observed from the definition of the

DtN operators, it is impossible to perform the series that defined them because they have an

infinite number of terms. Consequently, the symbols DN+
t and DN−t in (5.18d) represent

the truncated DtN operators, which consider only t terms in the series that defines them.

These terms correspond to the first t (smallest in norm) numbers λn,m. Throughout this

dissertation we assume that t > |Λ|, with Λ defined in (3.90), when undamped problems

are attempted to solve. This is because considering less terms may cause problems of

unicity of solutions in the sense described in Harari et al. (1998).

Let us note that each of the matrices in (5.18) is sparse and consequently, despite

the huge number of nodes that the mesh could have, the linear algebraic system can be

efficiently solved without requiring large amounts of memory.

Using the matrices defined above, we can achieve an approximate solution of the reso-

nance problem (4.30), which is given by the solution of the non-linear eigenvalue problem

that consists of finding a ω ∈ R+ and 0 6= p ∈ CN such that

Mωp = 0. (5.19)
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To attempt to solve this algebraic problem, we look for the values ω1 < ω2 < · · · that

lead to a matrix Mω having a zero eigenvalue. To do this, we first consider the eigenvalue

problem

Mωu = λ(ω)u

for a fixed ω. Then, we define the function

Θ(ω) :=
max16i6N |λi (ω)|
min16i6N |λi (ω)| (5.20)

where λi (ω) ∈ C, 1 6 i 6 N denote the eigenvalues of matrix Mω. There are several

highly efficient algorithms to compute the nominator and denominator of the function in

(5.20), such as the ones implemented in MATLAB by the function eigs.m. Hence, we

can evaluate the function Θ for different values of ω in order to identify its local max-

ima. The local maxima of Θ (located at ωj), will correspond to the approximate resonance

frequencies that we are looking for and the generators of the eigenspace

ker
(
Mωj − λi∗(ωj)I

)
⊂ RN with i∗ = arg min

16i6N
|λi (ωj)| , (5.21)

are the approximate resonance states associated with the resonance frequency ωi.

Axisymmetric problems. From the paragraph at the end of the Section 4.3, we can infer

that the same finite element discretization described above could be applied to problems

having axisymmetric geometry and boundary data, introducing a triangular mesh instead

a tetrahedral mesh. Of course, the use of a triangular mesh implies a great improvement

in the computational performance of the DtN FEM, because much finer meshes can be

employed in the discretization.

5.2.2 Non-axisymmetric scattering benchmark problem

Now we are in a position to perform a numerical benchmark problem designed to test

the DtN FEM for the solution of scattering problems. To construct that problem, we choose

a geometry and a boundary condition that allow us to work out the exact solution of (2.24).
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Subsequently, the DtN FEM is applied to approximate this function and a comparison

between both solutions will give us an idea of the accuracy of this method. Thus, let

us consider that the interior domain is given by an unperturbed cylinder of finite length, i.e.

Ωi =
{
x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 ∈ (−H,H)

}
, (5.22)

with H > 0 . Next, consider that the obstacle is given by the ball

Ωd = {x ∈ Ωi : |y − x| < δ} , (5.23)

where y = (y1, y2, y3) ∈ Ωi, (y1, y2) 6= (0, 0), and δ > 0 is small enough such that

Ωd ⊂ Ωi. Then now we attempt to solve the problem of finding u : Ωi \ Ωd → C,

u ∈ H1(Ωi \ Ωd) such that:




∆u+ k2u = 0, in Ωi \ Ωd,

∂u

∂n
− αu = 0, on Γi,

∂u

∂n
= g, on Γd,

∂u

∂n
= DN+

t u, on Γ+
H ,

∂u

∂n
= DN−t u, on Γ−H ,

(5.24)

where

g(x) :=
∂G(x,y)

∂nx

, x ∈ Γd (5.25)

with G being the Green’s functions of the infinite cylinder. It is easy to see that the exact

solution of (5.24) is given by

u(x) = G(x,y). (5.26)

Then now we can obtain an approximate solution of (5.24) by the DtN FEM (denoted

by uh) and compare it with the exact solution at each point of a mesh. To compare both
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functions we compute the relative error in the following sense:

Error :=
‖uh − Πhu‖L2(Ωi\Ωd)

‖Πhu‖L2(Ωi\Ωd)
, (5.27)

where Πhu denotes the Lagrange interpolation of the exact solution over the mesh.

TABLE 5.3. Relative error obtained in the solution of the non-axisymmetric bench-
mark problem for different meshes and wave numbers.

Number of Number of Number of Relative error
k h nodes triangles tetrahedra α = 2.5 α = 2.5 + i

0.1893 3148 2320 16131 4.33× 10−2 1.95× 10−2

0.1705 6020 3826 31918 2.00× 10−2 1.16× 10−2

0.1441 7748 4584 41730 1.15× 10−2 7.86× 10−3

5 0.1321 10189 5350 56155 9.21× 10−3 6.91× 10−3

0.1122 14885 7250 83018 5.85× 10−3 4.86× 10−3

0.0997 24481 9830 139949 3.46× 10−3 3.79× 10−3

0.0907 33785 12362 195292 2.77× 10−3 3.42× 10−3

0.1893 3148 2320 16131 7.78× 10−1 2.01× 10−1

0.1705 6020 3826 31918 3.94× 10−1 1.69× 10−1

0.1441 7748 4584 41730 2.55× 10−1 1.12× 10−1

10 0.1321 10189 5350 56155 1.85× 10−1 8.67× 10−2

0.1122 14885 7250 83018 1.07× 10−1 5.65× 10−2

0.0997 24481 9830 139949 5.79× 10−2 3.38× 10−2

0.0907 33785 12362 195292 4.93× 10−2 2.76× 10−2

Employing the parameters R = 0.5, H = 1.5, y = (0, 0.25, 0), δ = 0.2 and t =

|Λ| + 10 (the same number of terms is used in the damped case), we compute the relative

error for different mesh resolutions. The meshes used are uniform and are constructed

through the freeware software GMSH (Geuzaine & Remacle 2009). The finite element

method codes are programmed in MATLAB. The elemental calculations needed to assemble

the matrices in (5.18) are taken from Zienkiewicz et al. (2005), and six-point gaussian

quadrature (cf. Cowper 1973) is used to compute the integrals in both (5.18d) and (5.18e).
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FIGURE 5.7. Relative error obtained in the solution of the non-axisymmetric
benchmark problem for different values of the mesh resolution (in logarithmic
scale).

Numerical results are shown in Table 5.3 and in Figure 5.7. Figures 5.8 and 5.9

compare the interpolated exact and the approximate solution of (5.24) on plane surfaces

{x = (x, y, z) ∈ R3 : y = 0} ∩ Ωi and {x = (x, y, z) ∈ R3 : x = 0} ∩ Ωi respectively.

The results displayed correspond to k = 5, α = 2.5, h = 0.1122 and Error = 0.0058.

5.2.3 Axisymmetric scattering benchmark problem

As was stated in the paragraphs at the end of Sections 4.3 and 5.2.1, for problems

with axisymmetric domain and boundary data (i.e. problems where the domain and the

boundary data do not depend on the angular variable in cylindrical coordinates), the three-

dimensional mesh used in Subsection 5.2.2 can be replaced by a two-dimensional one.

To test the DtN FEM in axisymmetric problems employing a two-dimensional mesh, we

consider the same benchmark problem (5.24) with the interior domain given by (5.22) and

radiating obstacle given by (5.23). However, to get an axisymmetric boundary datum on Γd,

we set the punctual source at y = (y1, y2, y3) ∈ Ωi, with (y1, y2) = (0, 0). Assuming this

and a constant impedance parameter, the boundary data become axisymmetric and the finite
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FIGURE 5.8. Level surfaces on the XZ-plane of the approximate and the exact
solution of the scattering benchmark problem (non-axisymmetric case).
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FIGURE 5.9. Level surfaces on the Y Z-plane of the approximate and the exact
solution of the scattering benchmark problem (non-axisymmetric case).

element discretization described in Subsection 5.2.1 can be applied on a two-dimensional

mesh.
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Employing the same parameters: R = 0.5, H = 1.5, δ = 0.2 and t = |Λ| + 10 (the

same number of terms is used in the damped case) with the exception of y = (0, 0, 0), we

compute the relative error for different regular meshes. The values of the relative error are

shown in Table 5.4 and in Figure 5.10. Figure 5.11 compares both solutions for k = 5,

α = 2.5, h = 0.0827 and Error = 0.00907.

TABLE 5.4. Relative error obtained in the solution of the axisymmetric benchmark
problem for different meshes and wave numbers.

Number of Number of Number of Relative error
k h nodes segments triangles α = 2.5 α = 2.5 + i

0.1553 110 49 169 2.50× 10−2 9.59× 10−3

0.1337 141 56 224 1.72× 10−2 7.11× 10−3

0.1112 176 58 292 1.23× 10−2 5.24× 10−3

5 0.0896 197 63 329 1.05× 10−2 4.20× 10−3

0.0827 223 68 376 9.07× 10−3 4.16× 10−3

0.0811 276 74 476 8.60× 10−3 4.11× 10−3

0.0790 326 84 566 7.03× 10−3 3.87× 10−3

0.1553 110 49 169 5.77× 10−1 4.67× 10−1

0.1337 141 56 224 3.43× 10−1 2.72× 10−1

0.1112 176 58 292 2.30× 10−1 1.75× 10−1

10 0.0896 197 63 329 1.53× 10−1 1.20× 10−1

0.0827 223 68 376 1.22× 10−1 9.65× 10−2

0.0811 276 74 476 8.18× 10−2 6.45× 10−2

0.0790 326 84 566 5.63× 10−2 4.44× 10−2

5.2.4 Non-axisymmetric resonance benchmark problem

This subsection aims to construct a benchmark problem designed to test the DtN FEM

in order to solve resonance problems. With this end in view, we attempt to solve analytically

(2.28), where the interior domain considered is the unperturbed cylinder of finite length

given by

Ωi =
{
x = (x1, x2, x3) ∈ R3 : x2

1 + x2
2 < R2, x3 ∈ (−H,H)

}
(5.28)
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FIGURE 5.10. Relative error obtained in the solution of the axisymmetric bench-
mark problem for different values of the mesh resolution (in logarithmic scale).

(a) Reuh (b) Re Πu

(c) Imuh (d) Im Πu

FIGURE 5.11. Level plots of the approximate and the exact solution of the scatter-
ing benchmark problem (axisymmetric case).

and the domain occupied by the obstacle is assumed empty, i.e. Ωd = ∅.

Under these assumptions we get that (2.28) can be written as:
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Find ω ∈ R that leads to a wave number k 6= 0 and a non-identically zero resonance

state φ : Ω∞ → C, such that




∆φ+ k2φ = 0, in Ω∞,

∂φ

∂n
− αφ = 0, on Γ∞,

+ radiation condition at |x| → ∞, if Imα = Im k = 0

(5.29)

where Ω∞ and Γ∞ are defined in (3.2). In order to use the separation of variables tech-

niques we assume that a resonant state can be expressed as φ(r, θ, z) = A(θ)B(r)C(z)

in cylindrical coordinates. Replacing it in (5.29), we get the following one-dimensional

eigenvalue problems:




A′′ + αA = 0, θ ∈ [0, 2π),

A(θ + 2π) = A(θ), θ ∈ [0, 2π),

A′(θ + 2π) = A′(θ), θ ∈ [0, 2π),

(5.30)





− (rB′)
′
+
α

r
B − βrB = 0, r ∈ (0, R),

B′ − αB = 0, r = R,

lim
r→0+

|B(r)| < 0,

(5.31)

and

C ′′ + (k2 − β)C = 0, z ∈ R. (5.32)

Throughout this subsection we assume that the angular frequency and the wave number are

related by the equation k = ω/c with c the speed of sound, and the impedance parameter

such that Imα = 0. These assumptions lead to k ∈ R and λn,m ∈ R, (n,m) ∈ N0×N and

consequently we need to impose the radiation conditions (4.13) and (4.19) to the generic

resonant state so as to guarantee that it corresponds to an outgoing wave. These can be
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expressed as follows:

lim
z→∞

(
dC
dz
− i kn,mC

)(∫ 2π

0

A(θ) einθ dθ
)(∫ R

0

B(r)ϕn,m(r)r dr
)

= 0,

lim
z→−∞

(
dC
dz

+ i kn,mC
)(∫ 2π

0

A(θ) einθ dθ
)(∫ R

0

B(r)ϕn,m(r)r dr
)

= 0,

(5.33)

with (n,m) ∈ Λ.

It can be easily seen that the solutions of (5.30) are

α = n2, An(θ) = a einθ + b e−inθ, n ∈ Z,

while the solutions of (5.31) are given by

β = λn,m, Bn,m(r) = ϕn,m(r), (n,m) ∈ Z× N,

where the numbers λn,m are defined in (3.37) and the functions ϕn,m are defined in (3.87)

and (3.88). Regarding the fact that
∫ 2π

0

An(θ) ei p θ dθ = 2πb δn,p and
∫ R

0

Bn,m(r)ϕn,q(r)r dr = δm,q, (5.34)

we find that the continuous solutions of (5.32) satisfying the radiation condition are

Cn,m(z) =





e−i kn,m|z| if k2 6= λn,m

1 if k2 = λn,m.
(5.35)

From here it is possible to infer that the sought resonance frequencies are

ωn,m = c
√
λn,m, (n,m) ∈ N0 × N (5.36)

and their associated resonant states are

φn,m(x) := ϕn,m(r)
{
a einθ + b e−inθ} (5.37)

where a and b are arbitrary complex constants.
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Resorting to use of the DtN FEM in the way described in Subsection 5.2.1, we obtain

the results shown in Table 5.5. Those results were worked out assuming that the exact value

of the eigenfrequencies are supplied by the method described in Subsection 5.1.1. The

parameters employed in these computations are R = 0.5, c = 1, H = 1.5, t = |Λ| + 10

and α = 2.5 with a mesh size of h = 0.0997. Figure 5.12 shown the local maxima of

the Θ function and the exact values of the resonance frequencies. Figure 5.13 displays the

level sets on the Y Z-plane of the approximate and the exact (with b = 0) eigenfunction

associated with the eigenvalue at ω2,1 =
√
λ2,1 = z2,1 = 4.047 .

TABLE 5.5. Results obtained in the solution of the non-axisymmetric resonance
benchmark problem.

Eigenfrequencies Exact Approximate Relative
n m eigenfrequencies eigenfrequencies error
2 1 4.047 4.000 1.16× 10−2

3 1 6.844 6.985 2.06× 10−2

0 2 7.008 7.050 6.06× 10−3

4 1 9.315 9.475 1.72× 10−2

1 2 10.174 10.325 1.48× 10−2

5.2.5 Axisymmetric resonance benchmark problem

The same benchmark problem (5.29) can be worked out using the DtN FEM for ax-

isymmetric problems. Of course, in this case the function Θ does not have local maxima in

the points corresponding to resonant frequencies that lead to resonant states with angular

variation, due to the fact that the exact axisymmetric resonant states are

φ0,m = ϕ0,m (5.38)

and the resonance frequencies are

ω0,m = c
√
λ0,m,m ∈ N. (5.39)
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FIGURE 5.12. Location of the eigenfrequencies of the benchmark problem as local
maxima of the Θ function (non-axisymmetric case).
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FIGURE 5.13. Plots of the approximated and the exact resonant state of the bench-
mark problem.

Some results are shown in Table 5.6. Figure 5.14 displays the local maxima of the Θ

function in the real line. Clearly we can observe that this function does not have maxima in

the non-axisymmetric eigenfrequencies located at ω2,1 = 4.047, ω3,1 = 6.844, ω4,1 = 9.315

and so on. These results were performed for R = 0.5. c = 1, H = 1.5, α = 2.5,

t = |Λ|+ 10 and a mesh resolution of h = 0.0107.
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TABLE 5.6. Results obtained in the solution of the axisymmetric resonance bench-
mark problem.

Eigenfrequencies Exact Approximated Relative
m eigenfrequencies eigenfrequencies error
2 7.008 7.008 7.14× 10−5

3 13.674 13.675 6.58× 10−5

4 20.101 20.149 2.39× 10−3

5 26.460 26.562 3.87× 10−3

6 32.789 32.973 5.60× 10−3

0 2 4 6 8 10 12 14 16 18 20
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
x 10

5

k

Θ

 

 

Θ
1st real eigenvalue

2nd real eigenvalue

3th real eigenvalue

FIGURE 5.14. Location of the eigenfrequencies of the benchmark problem as local
maxima of the Θ function (axisymmetric case).

5.2.6 Discussion

The numerical results of the scattering problems show that the approximate order of

convergence, derived from the slope of the curves in Figures 5.7 and 5.10, is 3.05 for

non-axisymmetric problems, and 2.17 for axisymmetric problems. Less relative error is

obtained when a complex impedance parameter is used instead of a real one. A possible

reason for this is that the dissipation attenuates the spurious waves reflection arising due

to the artificial boundaries. Likewise, we may notice that less error is obtained for small
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wave numbers. It is related with the well-known errors estimates for the finite element

solution of the Helmholtz equation, which depend on kh (cf. Ihlenburg 1998). It tells us

that the variable that truly explains the error is the number of nodes per wave-lenght rather

than the mesh size by itself. The same effect may be appreciated in the computation of the

eigenfrequencies from the local maxima of function Θ. From Figures 5.12 and 5.14 we

can appreciate that the approximation of the exact eigenfrequencies gets worse as the wave

number grows because the graphs of Θ were made with the mesh size remaining constant.
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VI. NUMERICAL SIMULATION OF THE ACOUSTIC WELL STIM-

ULATION METHOD
In this chapter we perform simulations of the AWS for a realistic geometry and realistic

physical constants. Applying the method developed in the previous chapters, we set two

problems relevant for the design of the AWS method. The first one consists of simulating

the energy emission at different frequencies, determining for each frequency how much of

the radiated energy is transmitted to the reservoir porous rock through the perforations. The

second one consists of finding the resonance frequencies that stem from the real interaction

between an oil well geometry and the acoustic device, determining for each resonance

frequency how much energy is trapped inside the perforations.

6.1 Physical and geometric data

In Chapter II we defined the domain considered throughout this dissertation from an

abstract point of view. In the same manner, there we pointed out which are the physical

variables involved in the phenomenological model. At this stage we have to specify the

quantitative value of the geometric and physical parameters used so as to show how the

interaction of the geometry and physical variables may affect the performance of the AWS

method. We take these values from previous articles where oil-well problems are consid-

ered. Table 6.1 summarizes the geometrical and physical data employed in both of the

problems and Figure 6.1 explains the geometrical parameters.

The geometrical data of the oil well are taken from Hagoort (2007), while the geomet-

rical data of the AWS device is taken from Mullakaev, Abramov & Pechkov (2009). The

fluid density and the speed of sound are taken from Cheng & Blanch (2008).

However, no empirical model for the normal impedance have been found for the sound

transmission between oil-like fluid media and porous materials. Usually these models are

based on experimental data and depend strongly on the particular features of the materials

studied. To face that problem in this chapter we use another impedance model successfully

employed for sound transmission from air to porous media. Specifically, we use the so-

called Delany-Bazley empirical model (cf. Delany & Bazley 1970), which allows us to
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TABLE 6.1. Geometrical and physical input data for numerical computations per-
formed in the realistic geometry.

Parameter Value
Wellbore radius (R) [cm] 11.1
Perforation width [cm] 2.0
Perforation depth [cm] 30.5
Acoustic device length [cm] 70.5
Acoustic device radius [cm] 5.4
Phasing angle between the perforations [rad] π/2

Perforation density [perforations·m−1] 3.33
Speed of sound (c) [m·s−1] 1524
Fluid density (ρ0) [kg·m−3] 1100

Phasing angle

Perforation
length

Perforation
spacing

Perforation
width

Wellbore
radius

Crushed zone

Device
length

Device
radius

FIGURE 6.1. Explanation of the geometrical parameters of the well and the AWS device.

express the dimensionless normal impedance (see 2.17) as a function of frequency and
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flow resistivity (a standard variable that characterize porous media). This model holds that

χ = 1 + 0.0571

(
σ

ρ0f

)0.754

(6.1a)

ξ = 0.087

(
σ

ρ0f

)0.732

(6.1b)

where ρ0 is the fluid density, f = ω/2π is the frequency and σ is flow resistivity.

The numerical values obtained from the simulations performed employing this impedance

model will differ greatly from the real phenomenon because it is derived from the interac-

tion of materials different to those involved in our problem. Nevertheless, they will give

us key qualitative information showing the existence of locally optimal emission and reso-

nance frequencies.

In this chapter we assume that oil does not dissipate energy and is homogenous, thus

we are assuming that the wave number is a real constant and it does not vary with the spatial

variables, i.e. k = ω/c ∈ R. The finite element mesh of the geometry with the parameters

shown in Table 6.1 is constructed by resorting to the freeware software GMSH (Geuzaine &

Remacle 2009). Figure 6.2 displays the mesh of the computational domain Ωi \ Ωd, where

the color-bar depicts the quality of the elements using the Gamma factor, which is defined

as the quotient between the radius of the inscribed and circumscribed sphere.

6.2 Energy transmission

Assuming that the flow resistivity of the casing and the damaged zone are given by

σc = 1.00 × 1012[N·s·m−4] and σp = 2.77 × 108 [N·s·m−4] respectively, we can solve

the scattering problem (2.24) for different frequencies so as to determine the optimal ones

in the sense that the energy transmission through the perforations’ surface reach a local

maximum.

To solve the direct scattering problem we need to specify the boundary datum on Γd,

which will depend on the particular AWS device studied. Thus, for the sake of simplicity

we assume that the energy is radiated uniformly throughout the surface of the AWS device.
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FIGURE 6.2. Mesh of the realistic geometry of the well and the device.

It leads to consider as boundary datum, a constant function given by g = 1 [N·m]. We claim

that results obtained using this boundary datum will best display the effect of the geometry,

because we are not privileging any particular direction. Of course we may choose any

function g ∈ H−1/2(Γd) if we want to model others AWS devices.

To determine the acoustic energy transmission through the perforations’ surface, we

use the formulas (2.20) and (2.23) which give the time-averaged energy flux density dissi-

pated by the locally reacting surface and the effective power density supplied by the AWS

device respectively. To obtain how much energy can be transmitted through each perfo-

ration’s surface, we denote these surfaces by the symbols Γji ⊂ Γi, j = 1, · · · , 6, where

the perforations are considered sorted in descending order according to their z-coordinate.

These definitions lead us to achieve the proportion of energy transmitted by each perfora-

tion’s surface, which is expressed by the formulas

pj := kχ

∫

Γji

|p(x)|2
|ζ(x)|2 dσ

∫

Γd

Im
{
p(x)g(x)

}
dσ
, j = 1, . . . , 6 (6.2a)

p :=
6∑

j=1

pj, (6.2b)
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where the nominator in (6.2a) corresponds to the energy dissipated by the j-th perforation,

and the denominator is the effective energy supplied by the AWS device. As it might

be expected, by the conservation of energy principle, the energy supplied by the acoustic

device is the total energy entering the domain and thus it is greater than the total energy

radiated by the perforations’ surface. Therefore 100 × p is the total percent of energy

dissipated through the perforations’ surface.

Figures 6.3 and 6.4 show the values of pj , j = 1, · · · , 6 and p for different frequencies.
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FIGURE 6.3. Proportion of time-averaged energy dissipated by each perforation’s
surface for different frequencies.

Due to the use of a symmetric source of excitation we observe in Figure 6.3 that the

energy curves of the first and sixth perforation are the same, as well as the curves of the

second and fifth, and the curves of the third and the fourth perforation. From these results

it is also possible to observe that some particular frequencies lead to better energy trans-

mission through specific perforations. For instance, at frequencies near 1 [kHz] the AWS

device transmits energy through the third and the fourth perforation, at frequencies near 2

[kHz] it transmits energy through the second and the fifth perforation, while at frequencies

near 5 [kHz] the energy is transmitted through the first and sixth perforation.
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FIGURE 6.4. Proportion of time-averaged total energy dissipated through the per-
forations’ surface for different frequencies.

Finally, from Figure 6.4, which displays the consolidated plot of the energy curves,

we infer the existence of frequencies that allow us to effectively transmit about 80% of the

energy radiated by the acoustic device, to the damaged zone of the well.

6.3 Resonance frequencies

An important feature of the AWS method that has not been exploited yet, is that the

acoustical stimulation may trigger the occurrence of the resonance phenomenon when the

frequency of the device matches some particular values so-called the resonance frequen-

cies. The resonance phenomenon may be understood as a natural tendency of a mechanical

system to accumulate energy when it is excited by a time-harmonic external force that

oscillates at a resonance frequency and consequently it may produce severe damage to

the components involved, as Parker & Stoneman (1989) point out in their famous paper.

However, for the case studied here, the excitation of some resonance frequencies might be

particulary useful to improve the design of the AWS method because at these frequencies

the mechanical system can be easily excited by the acoustic source to generate high am-

plitude vibrations near the sealed pores of the rock formation. Herein we show that, using
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the numerical procedures developed in the previous chapters, it is possible to find such

resonance frequencies that lead to energy concentration inside the perforations.

As was already reported by Ursell (1991) and Linton & McIver (1998a,b) from a

purely mathematical mathematical point of view, the presence of obstacles inside a circular

cylindrical waveguide may trigger the occurrence of real resonances frequencies (trapped

modes) when the Neumann boundary condition is fulfilled on the boundary of the device

and the cylinder. Although these results do not apply directly to our problem, because the

oil well has a local perturbation and thus it is not a perfect circular cylindrical waveguide,

they provide a clue that it is possible to find them in our problem too. Moreover, from a

physical point of view the Neumann boundary condition corresponds to acoustically hard

surfaces that, from the insight given by the Delany-Bazley model, corresponds to an infinite

flow resistivity, i.e., σc = σp = ∞. This boundary condition models pretty good totally

depleted wells in which there is no oil flow.

Consequently, herein we address the problem of solving (2.28) for an identically null

impedance parameter, i.e., for the Neumann boundary condition on Γi, Γ−e , Γ+
e and Γd. To

do so, we use the method developed in the precedent chapters, and then we have to find the

real local maxima of the function Θ defined in (5.20). A graph of this function showing its

local maxima on the real line is displayed in Figure 6.5.

To evaluate how convenient could it be to excite a particular resonance frequency in the

sense that the energy is concentrated inside the perforations, we define the sets Ωj
i ⊂ Ωi,

j = 1, · · · , 6, that denote the domain occupied by the j-th perforation, which again are

considered sorted in descending order according to their z-coordinate. These definitions

allow us to compute the energy ratio of each perforation over the whole interior domain Ωi.

According to Filippi et al. (1999) the time average energy density is given by |p|2/2ρ0c
2.

Thus the quotient of the energy accumulated inside the j-th perforation and the total energy
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FIGURE 6.5. Real local maxima of the function Θ.

accumulated inside the interior domain may be expressed as follows

ej :=

∫

Ωji

|pi(x)|2 dx

∫

Ωi

|pi(x)|2 dx

, j = 1, . . . , 6, (6.3a)

e :=
6∑

j=1

ej, (6.3b)

where 100 × ej corresponds to the average percent of energy accumulated in the j-th

perforation and 100 × e represents the total average percent of energy concentrated in all

the perforations. Table 6.2 shows the resonance frequencies, the value of the objective

function at each resonance frequency and the value of the variables defined in (6.3).

From Table 6.2 it is possible to appreciate that, as we anticipated, some resonance

frequencies lead to resonance states that trap energy inside the perforations. Moreover,

Figure 6.6 shows how the energy is accumulated inside the perforations in the resonant

states associated to the frequencies 1200.63 [Hz], 3567.94 [Hz], 5971.63 [Hz] and 6084.42

[Hz].
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TABLE 6.2. Neumann approximated real resonances for a real well and device geometry.

f (Hz) Θ e1% e2% e3% e4% e5% e6% e%

1188.51 1.87× 109 3.33 14.30 29.65 31.05 17.13 4.21 99.67

1200.63 5.70× 107 3.82 16.94 28.31 28.75 16.45 3.59 97.86

2226.63 2.30× 109 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2265.44 8.56× 107 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2272.71 9.74× 107 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3068.29 8.41× 107 0.00 0.08 1.42 0.22 0.54 0.00 2.26

3230.79 5.02× 106 0.00 1.16 0.52 0.43 1.36 0.00 3.48

3470.92 8.23× 106 0.03 5.44 1.73 1.84 4.98 0.03 14.05

3567.94 9.03× 106 3.52 10.74 32.88 27.06 12.41 2.57 89.16

3587.35 1.73× 107 33.65 1.71 0.87 0.97 1.63 33.38 72.21

3643.15 3.03× 106 0.57 18.87 8.76 8.93 18.99 0.55 56.68

3897.81 8.05× 106 0.02 0.31 0.82 0.68 0.38 0.01 2.22

5920.69 3.88× 106 11.39 6.71 17.13 16.38 7.48 11.38 70.46

5971.63 3.90× 106 3.50 14.35 18.38 18.66 14.63 3.38 72.90

5988.61 1.07× 107 0.00 0.00 0.00 0.00 0.00 0.00 0.00

6046.82 3.93× 106 0.01 0.00 0.00 0.00 0.02 0.04 0.07

6084.42 3.56× 106 4.89 3.78 3.55 3.85 4.33 5.53 25.94

6291.80 3.82× 106 0.00 0.00 0.00 0.00 0.00 0.00 0.00

8363.20 7.75× 106 0.00 0.00 0.00 0.00 0.00 0.00 0.00
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FIGURE 6.6. Level plots of the absolute value of some resonance states that accu-
mulate energy inside the perforations.
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VII. CONCLUSIONS

A phenomenological model for the study of the AWS method is for the first time de-

veloped. The seeking for optimal emission frequencies leads to a time-harmonic direct

scattering and an eigenvalue problem defined on an unbounded domain with an impedance

boundary condition. The problem that stems from the unbounded domain is faced by de-

veloping the DtN FEM for the impedance boundary condition, which is deduced from the

Green’s function for the Helmholtz operator in an infinite circular cylindrical waveguide.

Benchmark problems show the accuracy of this numerical procedure by comparing the an-

alytical and the approximated solution of problems defined on non-perturbed geometries.

The use of the DtN FEM allow us to perform numerical simulations of the operation of

the AWS method. They confirm our hypothesis of the existence of frequencies that lead

to energy accumulation inside the perforations and optimal energy transmission from the

acoustic device to the damaged zone of the well. Consequently, it is possible to conclude

that the procedures developed in this thesis allow to improve the performance of the AWS

stimulation by taking into account key geometrical and physical information not considered

before.

This thesis presents an initial study on the mathematical modeling and simulation of

the AWS method and consequently, many issues are still pending to clarify. The most

important ones are the following:

• First of all, the preliminary results shown must be contrasted with experimen-

tal data that validate the phenomenological model and give accurate quantitative

information about the physical constants involved. A key point in this possible

future work, is the validity determination of the impedance boundary condition.

• Related to the previous point, it is the extension of the model to cover a portion

of the porous solid that surounds the damaged zone. A model like this, may give

results better adjusted to the real case without requiring the impedance boundary

condition. However, to do that we need to work out accurate simulations of the

wave propagation in a porous solid ruled by the Biot’s model (Biot 1956a,b), and
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it is not well studied yet a reliable method, like the DtN FEM, to truncate these

kind of media.

• Another possible future work has to do with the frequency range at which the

simulations have been performed. As can be observed from the numerical results,

we do not cover the ultrasonic frequency range, that lies up to 20 [KHz]. It is

mainly because the capacity of the computer used here, a MacBook, 2.4 GHz Intel

Core 2 Duo with 2GB RAM, can not yield reliable results at these frequencies

using the numerical procedures developed herein. Therefore, more efficient codes

or numerical schemes could be performed in this sense.

• Several purely mathematical issues remain pending. For instance, studies of the

existence and the properties of the eigenvalues may be very interesting, as well

as the study of existence and unicity of solutions for the differential problems

numerically solved here.

• Finally, it is important to point out that the mathematical procedures herein pro-

posed cover a broad field of different applications such as other kind of acoustic

wave propagation problems, like those arising in ventilation systems and muf-

flers (cf. Munjal 1987); they also can be used in electromagnetic communication

in subterranean tunnels, where the impedance boundary condition on the inner

wall models pretty well the real conditions (cf. Dudley & Mahamund 2006); in

fiber-optic waveguides, where the surface impedance boundary conditions mod-

els a metal-dielectric cladding (cf. Hecht 1990); and so on. Thus, it seems to

be attractive as future research to apply these procedures to other highly relevant

engineering problems.
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