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ABSTRACT

We propose a novel representation of commodity spot prnicesich the cost-of-carry
and the spot price volatility are both driven by an arbitramnber of risk factors, nesting
many existing specifications. The model exhibits unspast@thastic volatility, provides
simple closed-form expressions of commodity futures, aietdg analytic formulas of
European options on futures. The model is estimated usirfgtares and options data,
and find that the pricing of observed contracts is accurate¥ade range of maturities and
strike prices. The results suggest that at least threeaidkfs in the spot price volatility
are needed to fit accurately the volatility surface of ogion oil futures, highlighting the

importance of using general multifactor models in priciogenodity contingent claims.

Keywords: Commodities; Multifactor Models; Stochastic Volatilitiperivatives; Asset

pricing.



RESUMEN

Nosotros proponemos una novedosa representacion deelcispspot de commodi-
ties en la cual el cost-of-carry y la volatilidad del pregimsson ambas explicadas por un
nmero arbitrario de factores de riesgo, anidando asi nsudbdas ya existentes especi-
ficaciones. El modelo exhibe unspanned stochastic vtyatiiovee simples y cerradas
expresiones para los precios futuros y entrega frmulastaaal para opciones europeas
sobre futuros. El modelo es estimado utilizando datos dedaty opciones sobre petrleo,
encontrando que la valorizacin de los contratos obseneslpsecisa para un amplio rango
de madureces y precios de ejercicio. Los resultados sugigre al menos tres factores
de riesgo en la volatilidad del precio spot son necesarimsggastar correctamente la su-
perficie de volatilidad presente en las opciones sobredsatde petrleo, destacando asi la
importancia de usar modelos generales y multifactorialéa ealorizacin de derivados de

commodities.

Palabras Claves Commodities; Modelos Multifactoriales; Volatilidad Bsstica; Deriva-

dos; Valorizacin de Activos.



1. ARTICLE BACKGROUND

1.1. Introduction

Since the beginning of this century, the commodity derixegtimarkets has shown
remarkable growth, both in number of traded contracts aen tiotional value. This in-
crease is due not only to producers and consumers hedgingiskeexposures but also to
a rise of speculative activity, a phenomenon known as firsiaation. This phenomenon
has generated a renewed interest in understanding theastachehavior of commodities

spot prices and derivative contracts observed in theseetsark

In order to achieve this comprehension, several commoditg® models have been
proposed by practitioners and academics. In particulay tave focused most of their
attention into two specific contracts: futures and optidfewever, since these contracts
exhibit linear and convex payoff structure respectiveig televant variables included in

each model might change dramatically.

Given its linear payoff structure, commodity futures psicghow an almost exclu-
sive dependence on the cost-of-carry (the difference lextvilee risk-free interest rate
and the convenience yield), turning its dynamics to one ef d¢hucial points for any
model that seeks to deliver an accurate fit of the observeddsitprices term-structure
(E. S. Schwartz, 1997). The Cortazar and Naranjo (2008actor model is a remarkable
example since, under its framework, futures prices areedrly an arbitrary number of

factors which is crucial to achieve an excellent fit of thertestructure.

The valuation of derivatives contracts with convex paydatsch as options, requires a
far more complex model (Cortazar, Gutierrez, & Ortega, 30lrbthis case, the attention
is primarily drawn to the dispersion and asymmetry of thegreturns distribution. This
has lead researchers to develop elaborated models whiolrggedfor sophisticated fea-
tures such as asymmetric shocks, stochastic volatilitypaiog jumps, where the price of

the contract is computed through an inverse Fourier tramstd an expression involving
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the characteristic function of the price returns distridtiHeston, 1993; Hughen, 2010;
Larsson & Nossman, 2011; Richter & Sgrensen, 2002; TrolleBwrtz, 2009b).

Classical models that consider the aforementioned featiften belongs to the affine
diffusion framework introduced by Dai and Singleton (2Q0Bpwever, due to the com-
plexity of the formulas involved in pricing equations, emgal implementation of these
models over an extensive data panel of futures and optiapstesdifficult with the current
statistical methods and computational capabilities. |[&rahd Schwartz (2009b) are able
to perform a practical implementation of their model butetdngs to the Heath, Jarrow,
and Morton (1992) (HIM) framework. The main reason thatvedid them to do so and
one of their greatest contributions is to realize that comtityalerivative markets exhibit a
phenomenon known as unspanned stochastic volatility (U&kich implies that futures
and other commodity linear contracts are unable to hedgepsise volatility risk, making

options over futures non-redundant assets.

The rest of this chapter is structured as follows: sectiéhstates the main objec-
tives pursued in this work, section 1.3 presents a liteeateview of the main theoretical
framework and models for commodity derivatives pricingstEm 1.4 expose the main
conclusions of this work and section 1.5 trace possibleg#ah future research. Fol-
lowing this, chapter 2 contains the main article of this thedNithin this, section 2.1
presents a brief review on different commodity prices mgdséction 2.2 introduces the
theoretical framework for USV in affine diffusion models atielepens the review early
presented, section 2.3 explains the model and its featseetipn 2.4 presents the details
of the empirical implementation of the affine diffusion mbd&hile its results are re-
ported and discussed in section 2.5. Section 2.6 finallylades. All proofs, details on

the numerical estimation, figures and tables are presentibe iappendix.



1.2. Main Objectives

The main goal of this thesis is to present a novel model faipgicommodity contin-
gent claims that belongs to the classical affine diffusiamfework, with a naturally risen
multifactor structure that exhibits USV. The model may belipreted as a generalization
of the N-factor model by including a rich multifactor structure teetspot price volatility

which is driven byM additional factors.

In order to demonstrate the contributions of this model,atiele has two main ob-
jectives. The first objective is to develop the condition erhet by an affine diffusion
model in order to exhibit USV. As it will be shown, the conditiis quite simple but has
powerful consequences. In this case, it yields closed-filammulas for futures prices,
guasi-analytical expressions for option prices and sépsthe contracts exposure to the
factors. The latter means that futures prices depend sotelye firstV factors while

options prices are explained by the remainiidgactors.

The second objective is to show explicitly the great fit olufes and options prices
that may be fulfilled by the model. To achieve this, an emalrimplementation is carried
out using the Extended Kalman Filter and considering ddfiemumbers of factors and
using an extensive panel of WTI oil futures and options raggrom January 2006 to
December 2014. Within this objective, this application ai$o include a discussion about
the parameters estimated values, an interpretation fovdtagility factors, an analysis
of the model’s robustness through the consideration of arghinple and out-of-sample
results and the study of the implied volatility skewnessachttonstitutes a proxy for the

third moment of the spot price returns distribution.

1.3. Literature Review

Since the seminal work of Black and Scholes (1973), on theataln of equity con-
tingent claims, the modern asset pricing theory is basecherassumption that, in an

equilibrium state, assets are priced in such a way thatragatopportunities are ruled out.
3



This implies the existence of a probability meas@reequivalent to the physical probabil-
ity measureP, under which all assets have the same expected rate of réterrisk-free
rate. A direct implication of this is that any asset may begutias the discounted future
cash flows at the risk-free rate and due to this, the probaliieasureQ is known as

risk-neutral measure.

Equilibrium commodity models often specify an affine pracés model spot price
dynamics, under which the instantaneous return (the itetaous difference of the loga-
rithm of the spot) follows a gaussian distribution. The &ade of the spot price is com-
monly model as the linear combination a set of variableovalhg square-root process
that allows them to remain positive and revert to a mean whely be also stochastic;
while the risk-neutral expected instantaneous returnctis-of-carry, has been classi-
cally modeled as the linear combination of a another set walbkes that may or may not

be related with the variance variables.

However, there are some models that specify the entire fora@venience yield, cost
of carry or interest rate curve instead of their spot coyatgs. This has the advantage of
exactly fit the initial forward curve, but at expenses of di@g an non-arbitrage condition.
Moreover, to empirically implement this models, it must lastanto a non-intuitive state
variable space that exhibits an affine structure. Modeleld@ed under this assumption

are usually stated as being developed under the HIM frankewor

1.3.1. Constant Volatility Models of Commodity Prices

Earlier commodity models found in the literature, regasdiéhe number of factors
considered, often assume that each of these exhibits aacnstlatility. For example,
Brennan and Schwartz (1985) consider a simple process wherspot price follows
a geometric brownian motion along with constant drift andatibty. Since the only
source of uncertainty corresponds to the spot price, ititstbat this is a 1-factor model.
E. S. Schwartz (1997) also proposes a similar 1-factor mbdelvhere the spot price
logarithm follows an Ornstein-Uhlenbeck process.

4



Gibson and Schwartz (1990) present a 2-factor model whexrdirt$t factor corre-
sponds to the spot price which also follows a geometric bramwmotion. The second fac-
tor follows an mean-reverting process which is correlatét the spot price. E. Schwartz
and Smith (2000) also present a 2-factor model where thepsjoa logarithm is the sum
of an arithmetic brownian motion, representing the pegsistariations, and a zero-mean

reverting process, capturing the short-term deviations.

More sophisticated commodity models with constant vatgtdften assume 3-factor
specifications which extends the aforementioned modelisdimg a stochastic process for
interest rates (Casassus & Collin-Dufresne, 2005; Hdli&rReis, 1998; E. S. Schwartz,
1997).

As mentioned earlier, Cortazar and Naranjo (2006) is a reatde example among the
constant volatility models. The authors develop a candmcalel with N factors (where
N is an arbitrary number) which belongs to the affine diffusi@mework presented in
the seminal work of Dai and Singleton (2000). In this mode& $pot price logarithm
is the sum ofV factors following a multivariate mean-reversion process.it is shown
in the article, theN-factor model is equivalent to, up to a rotation, to one whibe
spot price follows a geometric brownian motion where itdtdrorresponds to the sum
of N — 1 factors following a multivariate mean-reversion procebsis model also nest
several models commonly found in the literature and, dutstarbitrary number of factors,

achieves an excellent fit of the futures prices term-stractu

1.3.2. Stochastic Volatility Models of Commodity Prices

Despite of the evidence rejecting the constant volatilgguanption (Duffie, Gray, &
Hoang, 1999; Larsson & Nossman, 2011), it does not have arnmjact in the pric-
ing performance of futures contract due to the presence & ld€ommodity derivative
markets. However, removing this hypothesis is crucial faluation of more complex

derivatives with a convex payoff structure.



The seminal work of Heston (1993) establishes the main fwarieto price options
under the stochastic volatility assumption. He propose$ae@r model composed by the
spot price and the variance factor. The first follows a geambtownian motion whose
volatility is given by the square root of the variance factohich follows a correlated
square root process. The price of an option contract is ctedgay finding the partial dif-
ferential equation solved by the characteristic functibthe spot price and then applying

the Fourier inversion theorem.

Richter and Sgrensen (2002) develop a 3-factor model tevahtions on agricul-
tural commodities including seasonality an stochasti@tity under an affine frame-
work. Hughen (2010) also presents a 3-factor model but,ighcdese, it is maximal under
the affine diffusion framework. More recently, Chiang, Haghand Sagi (2015) explore

a 4-factor model where the convenience yield is driven byfaetors.

Yan (2002) introduces a 4-factor model with spot price juwpere the risk-free in-
terest rate and the convenience yield are separately ntbdglen square-root process and

a mean-reverting process, respectively.

Trolle and Schwartz (2009b) develop a model under the HJIkhdmork with two
volatility factors following a multivariate square rootquess. They interpret their results
as that the first volatility factor captures the short-temwidtions while the second cap-
tures the more persistent ones. They also test their spmiicusing only one volatility
factor which results in a worst fit of options prices. Theirdebexhibits USV since, as

they mention, it arises naturally under the HIM framework.

Finally, some authors have explored models that allow fdeatt some dependence
of futures prices on stochastic volatility. Nielsen and\8atiz (2004) proposes a 2-factor
model which extends the Gibson and Schwartz (1990) modetttynd the volatility to
be proportional to the convenience yield. Liu and Tang (2Qfheralizes the previous
specification by modeling the risk-free interest rate amdcitnvenience yield similarly as

Yan (2002), but in this case, both follows an square-root@ss.



1.4. Main Conclusions

The financialization of commodity derivatives markets res lesearchers to seek a
better understanding of the stochastic behavior of pritsewed in the market. Conse-
guently, different models have been proposed with the aipr@fiding an explanation for
such behavior.

This thesis presents a novel model under the affine diffusemmework of Dai and
Singleton (2000). The model develops a multifactor spetific for the cost-of-carry and
instantaneous volatility of spot price, and nests manytiegjsnodels commonly found in
literature. The model also exhibits USV, yielding closedni formulas for futures prices,

and quasi-analytical expressions for option prices.

An empirical implementation of the model is conducted usiregan extensive panel of
futures and options data ranging from January 2006 to Deee&@il4 while considering
a different number of volatility factors. The results ofghinplementation suggest that
the multifactor structure is crucial to achieve an accufiate futures and options prices.
Moreover, for the WTI oil case, at least two cost-of-carryl @inree volatility factors are

required to obtain accurate valuations.

Additional results of the empirical implementation als@gest that increasing the
number of factors not only provide a better fit of the obserpdades but also delivers
higher robustness of the estimation and offers a better fit@fprice return distribution,

for example, through its third moment.

1.5. Further Research

Given the generality, intuitiveness and robustness of itkifactorial specification, the

model presented in this paper is placed as a very attradéweest for further research.

Since the model belongs to the affine diffusion framewonkat be easily extended to
the affine jump-diffusion framework of Duffie, Pan, and Setgh (2000). The inclusion
7



of jumps provides might be relevant in capturing the dynamiccommodity returns and
when pricing short-term in-the-money options. Howevethat time, is not clear how to
perform an empirical implementation of this model with sesttensive panel as the one

used in this work.

Finally, the model presented in this article allows to chteaze the different com-
modity markets in terms of how many factors are required téope an accurate fit of the
futures and options prices observed. For example, do theecomplied volatility term-
structure also need at least three factors to be properligieeal? This one interesting

guestion may be answered directly by the model implememtati



2. A MULTIFACTOR STOCHASTIC VOLATILITY MODEL OF COMMODITY
PRICES

2.1. Introduction

Commodity contingent claims play a key role in modern finahanarkets. Com-
modity producers and consumers actively use futures andngptontracts to hedge their
exposures to unpredictable price swings. At the same tipegudative activity in these
markets has increased over time, leading to large investfioevs from institutional in-
vestors and wealthy individuals into commaodities, a phesoom commonly known as
financialization (Tang & Xiong, 2012). On the public poliags, there has been increas-
ing pressure to understand whether demand for commoddyekicontracts affects the
behavior of underlying prices (Masters, 2008, 2009). Adgh factors have created a re-
newed interest in understanding the dynamics and stochHastiavior of spot prices, and

the associated derivative contracts traded in these nsarket

In this paper we propose a novel representation of commedites that generalizes
and nests many models commonly found in the literature, ssciasassus and Collin-
Dufresne (2005); E. Schwartz and Smith (2000); E. S. Sclawa@97) and Cortazar and
Naranjo (2006), among many others. In our model, we allowbfath the cost-of-carry
and the spot price volatility to be driven each by an arbjtraumber of risk factors, in
a way that is simple and straightforward to implement. Emoglly, the model performs
well when applied to oil futures and options data, yieldingurate valuations of observed
contracts for a wide range of maturities and strike pricesasonsequence, the model is
able to explain well-known empirical regularities in optimarkets such as the dynamics

of volatility smiles, as well as the skew in risk-neutraltdisutions.

Early models of commodity prices such as E. S. Schwartz (19@®pose multifactor
representations of the convenience yield, but leave thegilit} of the spot price constant.

While providing a good fit to the observed term-structureutfifes prices, these models
9



usually perform poorly when applied to options (Cortazaalgt2015). As a result, recent
studies in the commaodities literature have focused in ipo@ting stochastic volatility

into the dynamics of spot prices (see e.g. Chiang et al.,;Z0bHe & Schwartz, 2009b).

Our model generalizes several recent stochastic vojatilddels such as Chiang et al.
(2015) by adding a rich multifactor structure to the spot@nariance. Specifically, in our
model futures prices are driven By factors (one factor corresponding to the logarithm of
the spot price and the remainiig — 1 factors modeling its cost-of-carry) while options
prices are driven by/ additional volatility factors. Our specification builds thre general
affine diffusion framework of Dai and Singleton (2000), ardibits unspanned stochastic
volatility (USV),* providing simple closed-form expressions of commodityfas, and

yielding easy-to-compute analytic formulas of Europeatioms on futures.

We estimate model parameters using quasi-maximum liketlnend the Extended
Kalman Filter (EKF) on a sample of daily WTI oil futures andiops from January 2006
until December 2014. Our results reveal that the model g&ekian accurate fit of the
term-structure of futures prices, the implied volatilityrface, and the implied volatility
skewness. We test the robustness of the model by comparimagdhout-of-sample cali-

brations.

Our results suggest that the multifactor structure of thelehds crucial in pricing
accurately futures and options contracts alike. Empisicale confirm that only the cost-
of-carry factors and the spot price are used to fit futuresegriwhile the volatility factors
only affect the pricing of options contracts, consisterthwihe USV nature of our model.
Finally, our analysis reveals that at least two cost-ofycand three volatility factors are
required to obtain accurate futures and options valuatiddding a fourth volatility factor

improves the pricing of options in periods of market stress.

1The phenomenon of USV was initially studied in fixed-incomarkets (Collin-Dufresne & Goldstein,
2002; Li & Zhao, 2006), where it refers to the fact that boridsa are unable to hedge interest-rate volatility
risk, making interest-rate options non-redundant asdets.commodities, USV implies that futures and
other commodity linear contracts are unable to hedge spae polatility risk, making options on futures
non-redundant assets.

10



There is recent literature on stochastic volatility modelscommaodity prices that
we survey in Section 2.2. Within this literature, the papsosest to ours are Chiang et
al. (2015) and Trolle and Schwartz (2009b). We believe thatadd to their work. For
example, we show in Section 2.3.3 that the model studied iar@het al. (2015) is a
restricted version of a specification of ours in which we Used factors to model futures
contracts and one factor to explain option prices. Trolld Schwartz (2009b) propose
an USV multifactor model of commodity prices within the Headt al. (1992) (HIM)
framework. We show that we can obtain tractable and genesalts within the widely
used affine-diffusion class of models of the spot price vahg us to generalize a large
body of existing literature by embedding an arbitrary niattior structure in the stochastic
behavior of the variance. Furthermore, we provide simpiigcéent conditions that deliver

USV in multifactor models of the spot price.

The remainder of the article is organized as follows. Sec®@ describes our model
in its most general form, studies broad sufficient condgitivat deliver USV, and reviews
the literature. Section 2.3 explains the affine diffusiopiementation of our model, and
derives formulas for pricing commodity contingent claingection 2.4 presents the em-
pirical methodology, while results are reported and disedsn Section 2.5. Section 2.6
finally concludes. All proofs and details on the numericaineation are presented in the

Appendix.

2.2. General USV Model Formulation

We present our model of commodity prices in its most genayahf and identify
simple, although broad, sufficient conditions that delid8V. For commodities, such
models yield simple valuation formulas for futures prioghijle at the same time allowing
for arbitrarily complex dynamics in the volatility, whick relevant when pricing options
and other derivatives with convex payoffs. On the other hanelre is a large body of
literature that has studied general multifactor modelsarhimodity prices while either

leaving the volatility constant, or allowing the varianoebe driven by a simple univariate

11



process. We show how to naturally embed these well-knowretsaf commodity prices

within the more general USV class.

Throughout this paper we consider a complete probabiliaceft?, .7, P) and a fil-
trationF = (.;),, generated by standafWiener processe§W,),., in RV+** and
satisfying the usual conditions (see e.g. Protter, 2008¢ gpot priceS is described by
the process:

dS;

S (Yt + m)dt + 05d By + \/vidZy, (2.1)
t

where(B;) ., and(Z;),, are standard-Wiener processes iR spanned byW,),., v
represents the cost-of-carry,designates the commaodity risk-premium, angddenotes
the constant component of the variance whildenotes its stochastic component. Under
the pricing measur@, equivalent to the physical measiitethe spot prices is described
by the process:

s _ ydt + ogd B2 + \/u,;dZ2, (2.2)

t
whereB? andZ© are standar@-adaptedQ-Wiener processes iR.

Equations (2.1) and (2.2) capture the essence of our magdafiproach. In the next
section we show how to operationalize the model and write[tfaglapted processes
(Y1) =00 (me),50 @Nd (1), @s multifactor affine diffusions, but for the moment we leave
them unspecified. Nevertheless, it will prove useful in malgsis to put some restrictions
on the statistical relation betwegnv, B¢ andZ< in order to (i) obtain simple futures and
option valuation formulas, and (ii) separate the problefittrig futures and option prices.
Since these two objectives are achieved when the modeliexhlBV, we introduce the

following sufficient (although not necessary) assumptiat yields the result.

ASSUMPTION1. TheF-adapted process{iyt)tzo, (Bi@)m]} areQ-independent of

{(Ut)tzw (Zt(@)tzo}'

Notwithstanding its generality and simplicity, we mustetitat Assumption 1 is not

necessary to obtain USV. In Appendix A we present an exanfpenoodel that exhibits
12



USV but in which Assumption 1 is violated since the conveoesyield is correlated with
the stochastic component of the variance. However, as eghown later in our empirical
analysis, the model written using Assumtion 1 is alreadyilflexenough to fit futures and

option prices well. Hence, we do not find necessary to cormaithe analysis further.

Consider now a futures contragl , at instantt with delivery at timel' = ¢ + 7. It
is well known thatF, ; = E? [St] (Duffie, 2001; Pozdnyakov & Steele, 2004). A direct

application of It 0’s Lemma allows us to write:

T 1 T T 1 T
St = S, exp {/ (yu — 50%) du +/ Ugng} exp {/ <_§U") du +/ \/Eng} ,
t t t t

(2.3)

which implies that

T 1 T
F .= S,EY {exp {/ <yu — Eag) du + / Usng}] (2.4)
t t

since both exponentials in (2.3) ageindependent under Assumption 1, and the second

exponential is &)-martingale.

Equation (2.4) shows that futures prices in this model aebleto hedge the volatility
risk, i.e. the stochastic component of the variance remaispecified. Moreover, futures
prices can be computed “as if” the spot price follows the $&mpomoskedastic process
underQ:

d
?5: — yudt + o5dBY. (2.5)

Notice that in Equation (2.5) the cost-of-canyycan be correlated with the spot priSe
a stylized feature of many constant-variance multifactodets of commodity prices (see
e.g. E. S. Schwartz, 1997). Some recent USV models such asg@ét al. (2015) do not

allow for such dependence. Our modeling approach is ablertdbmne both views.

Models in which futures prices are characterized as in (ta4¢ been widely studied in
the literature. For example, Gibson and Schwartz (1990%. BEchwartz (1997), Hilliard
and Reis (1998), E. Schwartz and Smith (2000), Casassus altid-Bufresne (2005),

13



and Cortazar and Naranjo (2006) model the cost-of-caay a linear combination of cor-
related Gaussian processes that are also correlatedbwitlsing a Gaussian process for
the cost-of-carry has the advantage of delivering simplsexi-form expressions for fu-
tures prices that are suitable for empirical implementetj@ven with an arbitrary number
of risk factors and large data sets (Cortazar & Naranjo, 2006all the aforementioned

studies the volatility of spot returns remains constant.

The assumption of constant volatility, though, contrasith ihe evidence that the
variance of many commodities is stochastic and clustersnes of economic stress (see
e.g. Du, Yu, & Hayes, 2011; Larsson & Nossman, 2011; Naalip§rdem, & Soytas,
2013). Also, stochastic volatility models perform betteart constant volatility ones when

pricing commodity options (Cortazar et al., 2015).

The most common way to introduce stochastic volatility inl{2s to assume that
v, follows a square-root process as in Heston (1993). WithenWIsV class, Larsson
and Nossman (2011) explore the time-series properties af@dehin which the cost-of-
carry is constant and the variance follows a square-roatga® Yan (2002) introduces
a model in which the cost-of-carry at instanis represented ag = r; — J;, where in
interest rate: and the variance follow square-root processes, and the convenience yield
0 follows a Ornstein-Uhlenbeck process. Chiang et al. (2@%p)ore the macro-economic
implications of a model in which the cost-of-camyys driven by two correlated Gaussian

processes, and the variancéllows an square-root process.

Even though USV provides simple futures valuation formusasne authors have ex-
plored models that allow for at least some dependence ofdsitprices on stochastic
volatility. Nielsen and Schwartz (2004) propose a model imcl the cost-of-carry at in-
stantt is y;, = r — d;, where the convenience yiebdfollows a square-root process that
also drives the variance Liu and Tang (2011) generalize the previous specificatipn b
modeling the cost-of-carry ag = r; — §;, where both- and¢ follow independent square-

root processes, and the variancdepends om andé. Richter and Sgrensen (2002) and

14



Hughen (2010) explore more general three-factor modelshiciwthe variance is al-
lowed to follow an independent square-root process. TheemoidHughen (2010) is
maximal within the affined, (3) class of Dai and Singleton (2000) and allows for USV
under suitable parameter restrictions. Notwithstandiegjreater generality of these mod-
els, USV allows for simpler futures and options valuatiomfalas as we show in later in
the paper, which is useful when estimating the model usiraggelpanel of futures and
option prices. Moreover, we show that a multifactor USV efne is rich enough to fit

the cross-section of futures and options prices accurately

A somewhat different strand of literature explores theipgof commodity derivatives
within the HIM framework (Amin, Ng, & Pirrong, 1999; CortazaSchwartz, 1994; Mil-
tersen, 2003; Miltersen & Schwartz, 1998; Trolle & Schwa2@09b). With the exception
of Trolle and Schwartz (2009b), these papers do not allowsfochastic volatility. By
mimicking the reasoning in the fixed-income literature,llerand Schwartz (2009b) con-
clude that USV arises naturally under the HIM framework,nelg in multifactor models
of the spot price like (2.2) the volatility is almost invaslg completely spanned by the
futures contracts. We show that Assumption 1 provides aralatund simple sufficient
condition to obtain USV in multifactor models of commodityas prices. This allows
us to generalize a large body of existing literature by erdbegan arbitrary multifactor

structure in the stochastic behavior of the variance.

We finalize this section by noting that some of the previouslel® also allow for
jumps in the spot price (Casassus & Collin-Dufresne, 200Biaktl & Reis, 1998; Lars-
son & Nossman, 2011; Yan, 2002). Existing studies in equitykets show that jumps
are important in explaining the time-series of equity resufEraker, Johannes, & Polson,
2003; Johannes, Polson, & Stroud, 2009). Larsson and Naosg&fal) find similar ev-
idence for oil prices. Moreover, several studies have shilahjumps are also relevant
in explaining short-term maturity options (Bates, 2000aker, 2004; Pan, 2002). Our
results suggest, however, that our model is able to explaurds and option prices well

without resorting to jumps since we allow for many factorshia variance. Moreover, in
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unreported results, we find that including jumps in our madel@es the pricing ability of
the model almost unchanged, specially for specificatioris thiree or four factors in the

variance.

2.3. USV Affine Diffusion Model Formulation

In this section we show how to model the cost-of-carrihe risk-premiumr, and the
stochastic variance presented in (2.1) and (2.2) using the affine diffusion (A2)rie-
work introduced by Dai and Singleton (2000). Specificaltyour model futures prices
are driven byN factors (one factor corresponding to the logarithm of thet gpice and
the remainingV — 1 factors modeling its cost-of-carry) while options prices driven by
M additional volatility factors.

Our specification, however, satisfies Assumption 1 and herbibits USV. Further-
more, we use the drift normalized specification for the vitaproposed by Joslin (2014)
which allows for richer formulations in the instantaneoasiance of the spot priceThe
proposed model yields simple futures and option pricingiidas, and nests many factor
models commonly found in the commodities literature (e &as&sus & Collin-Dufresne,
2005; Cortazar & Naranjo, 2006; E. Schwartz & Smith, 2000SE Schwartz, 1997).
Hence, our USV-AD formulation is a particular case of theegahAD classA, (N + M)
introduced by Dai and Singleton (2000) where we restrict/thatility of the cost-of-carry
factors to be constant in order to ensure USV. In the restehtticle we refer to our re-
stricted USD-AD specification by, (N + M).

2Cheridito, Filipovic, and Kimmel (2010) provide examptasaffine diffusion processes with state space in
R? x R that are not contained in the Dai and Singleton (2000) remtasion. Joslin (2014) shows that the
Dai and Singleton (2000) representation for affine processthe state space R x RY is exhaustive
onlywhenN <lorM < 1.
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2.3.1. State Vector Dynamics

We consider a state vector at instanX,, which belongs to the state spaké x RY

and is denoted as
Y,

Xi=|logsS, (2.6)
V.
whereY,; = (214, T2y, ..., Ty_1,) IS a State vector ilRV~! driving the cost-of-carrys,
denotes the commodity spot price whereS; = zy, andVy = (tyi14, Tt - - TN4M)

is a state vector iR}’ characterizing the stochastic nature of the spot pricetilibja

The dynamics of the state vect8runder the physical measuPeare characterized by

the following AD specification:

where® ¢ RN+JV[, K € R(N+M)><(N+M)’ Et c R(N+M)><(N+2M)’ anth c RN+2M are

such that
0 K1 --- 0 0 0 0 <. 0
0 0 kn—1 O 0 0 e 0
0 1 1 0 Y v . v
o | K- 1 2 M |
1 0 0 0 KN+1 EN41,N+2 *'° KN+1,N+M
1 0 0 0 Kyyont1 KN+2 o KN+2,N+M
1 0 -+ 0 0 KNnyMN+1 KN4MN4+2 “°°  KN4M
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with k1, ..., knyn > 0, @andeyy; vy < O0fori,j e {1,..., M}, i # 4.2 The matrixX,

is chosen such that the instantaneous covariance niitrix 3,3} satisfies
H,=Ho+Hionii+ ...+ Hyongag, (2.8)
whereHg, H; ..., H,, € RW+M)x(N+M) gre given by

H, — 'y Onxm H, - Ov—iyx(vn=1) Ov—1)x(Mm+1)

fori e {1,..., M},
Onxn Omxnr Om+1)x(v—1) T

andW, is a vector of standarB-Wiener processes. The matiiy ¢ RV*" is positive
definite and specified as

2
07 0102012 -+ O10NPIN
2
0102012 03 ©t+ 020N P2N
FOI
2
O10NPIN O20NpP2N - ON

with o1,...,0n > 0 and|p;| < 1fori,j € {1,...,N},i # j, whereas matrices

Ty,..., Ty € RM+Dx(M+1) gre also positive-definite and given by
7% mesior - 0 %2% 0 - YmSmoOm
r - 71?1@1 §.12 0 Ty, - 0 0o --- 0
0 0o -0 Ymsmom 0 - Sht

3These technical conditions are necessary for the existsech process (Dai & Singleton, 2000) since
they ensure that the drifts of the volatility factors areipios as they approach zero.
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WherE’}/l, ey YM5 STy -

instantaneous volatility matriX; as

s > 0andloy],...,|lom| < 1. Hence, we can express the

Ov—1)x2m
T
Y Y2k o.Mt 0 0 . 0
3, = Gto1 0 - 0 Siey/1— 0 0 - 0
0 Guo2 -+ 0 0 Gu/T— 02 - 0
Onrxn , , . _ : . :
0 0 S?M,tQM 0 0 GM,t /1 _Q%M

(2.9)

where Y, denotes the Cholesky decompositionIdf, i.e. Yo X, = Ty, andq,,; =

Y/ TNtmtr Smt = Sma/TNtme fOrm € {1,..., M}.

We adopt the completely-affine risk-premia specificatiodaf and Singleton (2000)

and define the market price of risk vecty € RV2M as

Al

AN
AN+1/TNF1t

e
I

AN+MA/TNAM ¢
)\N+M+1\/37N+1,t

AN+2M /TN Mt

(2.10)

which implies that dynamics of the state vector under tHemesutral measur@ are

dX, = (0% - KX,) dt + $,dW,

19
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where@? ¢ RN+M KQ ¢ RIN+M)x(N+M) gre sych that

o2 ki -+ 0 0 0 0 e 0
03, 0 ky_1 0 0 0 e 0
I o ke—|? 10 i W 1k |
1 0 0 0 R%H KN+1,N4+2 ' KN4+1,N+M
1 0 0 0 Knyont1 H%H “r+ KN42,N+M
1 0 .- 0 0 KN+M,N+1 KN+M,N+2 H%JFM
with
9 = (Alw(})m T Aim)w) forne {1,...,N 1},
9% =0 — <)‘1(T0)N,1 + )‘Z(TO)N,Z +.ot )‘N(TO)N,N> )

KN = KNtm + S <)\N+QO + AN mm V1 — an) >0 forme{l,...,M}.

There are several comments to make on our AD specificatiost, Eiis apparent from
(2.11) that the cost-of-carry

_ nQ
Y = 91\7 — X1t — Xt — ... T TN-1

follows a Gaussian process, as in the models of E. S. Schy#8%7), E. Schwartz and
Smith (2000), Casassus and Collin-Dufresne (2005), anta&ar and Naranjo (2006),

among others.

Second, the econometric identification of the model in (B Quaranteed by the fact
that we impos&y.,, = 1 forall m € {1,..., M}. Even though we could have set
~vm = 1 to achieve the same objective, we prefer the former altenaince it normalizes
the volatility dynamics while keeping their values and tetbparameters of the same order

of magnitude.
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Third, the model presented in (2.7) is nested by the genpedification (2.1) since

we have the following natural correspondances:

T = Al(TO)N,l + )‘Q(TO)N,Q +..t )‘N(TO)N,N
+ ANFIVITN+1, + AN42YV2TN42,6 + - T ANEMYMEN £

0s = 0N,

\/'th = \/7%$N+1,t + 7§$N+2,t + ...+ 7]2\4$N+M,t,
(Yo)y i Wit + (To)yoWar + ..+ (To) y y Wit

t — )
ON

7 VTNV N1+ Yo S TN 2 W2 + oo+ Y /TN W
t pr— .
2 2 2

VIRENFLE + V3TNL20 + o VAN

Hence, innovations to the log-spot price are driven by @misand stochastic volatility
shocks, and the log-spot price exhibits correlation witlthbitve cost-of-carry and the

stochastic component of the variance.

Fourth, our model allows for a rich correlation structureosag the cost-of-carry fac-
tors, among the stochastic variance factors, and betweecott-of-carry and stochastic
variance factors with the spot price. First, if we denote by

COVt [dl’i’t, dl’j,t] _ (Ht>i,j
VVildai/Vilde]  /(Heian/(Hy)j,

the instantaneous correlation between andxﬂ,“ a direct computation reveals that

(Zt)ij =

(Et)z',j = pij fori,j=1,...,N.

Hence, the instantaneous correlation among the factormgrhe cost-of-carry, and be-
tween those factors and the spot price, is constant andetat by the parameters; in
the full matrixI'y. Furthermore, forn € {1,..., M} we have that

OmVmA/TN+m,t

2 2 2 2 !
VOok + Vo + V3TNt + -+ VTN ML

(Et)N,N-l-m -

4Here(Et)z-,j denotes the elemefi, j) of matrix =;.
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revealing that the instantaneous correlation betweerattters driving the stochastic vari-
ance and the spot price is itself time-varying, and boundeabsolute value byp,,|. In
contrast, the instantaneous correlation among the fadtotisg the stochastic variance is
zero, but these factors are indirectly correlated throbgtparametersy.; x.; in the full
block insideK.

Fifth, the risk-neutral specification presented in (2.5INested by (2.2) since we also

have

BQ . (T())N,IWI% + (T())N,QWQ(% +..F (TO)N,NW](%t
t 9
ON

7Q _ 71\/$N+1,tW%+1 + 72\/$N+2,th+2,t +.o..+ ’VM\/Z'N-l-M,th_;_M,t
= .
\/7%$N+1,t + V3TN tos + - VTN ME

Assumption 1 is then trivially satisfied because the stmectf K¢ implies that under
the risk-neutral measur@ the processeY andV do not have common terms in their
drifts, and as may be seen from the expressiordfom (2.9), their diffusive noises are
uncorrelated. Hence, we can conclude that the AD model ptegén (2.11) exhibits USV.
This characterization will be explicitly verified when werapute closed-form expressions

for futures prices.

2.3.2. Pricing of Commodity Derivatives

Our USV-AD model yields closed-form expressions for futupgices and simple
guasi-analytical formulas for the European option pridé. follow Duffie et al. (2000)
and use the joint moment generating function of the stateové€. Givengp ¢ CVN M,

consider the transform
Uy (¢) = Ef [ed”XT] 2.12)

whereT = t + 7 andE{ [-] denotes the time-conditional expectation under the risk-
neutral measuré). This transform has an exponentially affine solution as show

proposition 1.
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PrRoOPOSITIONL. The transformV defined in(2.12)is given by

log ¥, () = a(T; ) + B(1; )’ X, (2.13)

wherea and 3 satisfy the complex-valued ODEs

6= 08+ JFH,B (2.14)

: L

B=-KYB+) 5B HuBen (2.15)
m=1

with initial conditionsa(0; ¢) = 0 and 3(0; ¢) = ¢, ande,, denotes a basis vector in

RN+M whosen-th element is equal to one, and zero otherwise.
PROOF See Appendix B.1. O

Furthermore, due to the structure of the maki&, it is possible to compute closed-

form expressions fofy, . .., By in (2.14):

—x%r
Q e .
g, + S T2y fn <N,
Rn

Bn = (2.16)

¢N ifn::JV,

which yields closed-form expressions for futures priceshamsvn by Proposition 2.

2.3.2.1. Futures Prices

Let F}, denote the futures price at instanwith delivery at time7l’ = ¢ + 7. Itis
a well known fact (e.g. Duffie, 2001; Pozdnyakov & Steele,20at the futures price

corresponds to the risk-neutral expectation of the futpoa price
lQ;::}EP[S&]::ﬁQ;(eN).
Hence, futures price can be obtained directly from the foans¥ introduced in (2.12).
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PROPOSITIONZ2. The futures price at instamtwith delivery at timel”’ = ¢ + 7 is given
by
log I}, = QF(T) + ﬁF(T)/Xt

wherea and 8" are given by

N1 po (1 _ s 1 X
NCRTE M 1L ) pr e

kn i=1 j=1

K
y (1) = 1 if n=N,
0 ifn> N,

Ry K; K; K Kfi@ + K
(=<2 1 (1—-e"T .
Gis(7) K@( ye _T> ifi<j=N,
& ifi=j=N.
PROOF See Appendix B.2. O
We note that in Proposition 2 the functiofi§, ;. . .., 5%, are equal to zero, which

verifies that the model presented in (2.11) indeed exhib8¥.U

2.3.2.2. European Options Prices

Let P, ., (K') denote the price at timeof an European put option expiring at time
Ty = t + 7o with strike K written on a futures contract expiring at tirfig = 7, + 1. The

option price is then given by

T,
Ptﬂ'oﬂ'l (K) = E? e Je? rads (K - FToﬂ'l)
24
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wherel 4 denotes the indicator function of the sétandr denotes the instantaneous risk-
free rate. For the purpose of simplifying valuation fornsjlave assume thdt+),., is
independent ofX,),.,, which gives a very accurate approximation of the true poite

short-term or medium-term options (Trolle & Schwartz, 2609
We first define the auxiliary transform

\I/F

t,70,71

(u) = E? [6“1°gFTOvT1} , (2.17)

for someu € C. In our USV-AD setting, " can be computed in closed-form as shown
in the following proposition.

PROPOSITIONS. The transforml? defined in(2.17)is given by

log Wi, ., (u) = u (o’ (n) = o (r + 7)) + a (ro;uB" (7))

M (2.18)
tu log Ft,’ro—l—n + Z BN-‘rm (7-0; U/BF(Tl)) Ut

m=1

PROOF See Appendix B.3. U

We can then apply this result to obtain a quasi-analytic tdafor P, ., -, .

PROPOSITION 4. The price at instant of a European put option expiring at time
Ty = t + 1o with strike K written on a futures contract expiring at timfig = Ty + 71 is

given by
Pt,m,n(K) =B 5, (KGO,l (7'07 71; log K) - G1,1 (7'0, T1; logK))
whereB, ,, denotes the price at instahbf a zero-coupon bond maturing 19, and

. _ " tmo,m
Gop(T0, 13 k) = — s

e (a) 1 /OO Im W] (a+iub)e™ "]
A du,
0

Uu

with Im[c] denoting the imaginary part of € C andi = /—1 corresponding to the
imaginary unit.
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PROOF See Appendix B.4. U

Following an analogous procedure, we can also price a Earogall option with the

same characteristics as shown in the following proposition

PROPOSITION 5. The price at instant of a European call option expiring at time
T, = t + 7o with strike K written on a futures contract expiring at tinlg = Ty + 7 is

given by
Ct,m,n(K) :Bt,m (Gl,—l (7'0, T1; — log K) - KGO,—l (7'0, T — log K))

whereB, ., andG, (7o, 71; k) are defined in Proposition 4.

PROOF See Appendix B.5. O

2.3.3. Nested Models

Due to its general structure, our model nests several madetsnonly found in the
commodities literature. Some of these models, howevewateen in a different although
equivalent form. We denote kf the state vector of a different model, and say that this

model is equivalent to ours if there exists an affine tramsédion
X;=LE + (2.19)

such that the matrik. is invertible and the state vector spaces are preserved(Sai-

gleton, 2000). The last condition is trivially satisfiedifhas the form

0 Lpy

whereLpy € RM*M js a diagonal matrix with positive entries, apg ., = 0 for each

m € {1,..., M}. Inthat case{ also follows an AD processes as in (2.11) with parameters
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0%, K¢, £, andH, for eachi € {0, 1,..., M}, that relate to the original model by

0% = LOY + LKL ',

K9 =LKL,
Et = Litv
H, = LHL/,

H,, = LH,L, me{l,. .. M}.

(L)N-l-m,N-i-m

Note that market prices of risk are invariant to affine transfations.

For example, the model studied in Cortazar and Naranjo (R0@fduces a state
vectorg, atinstant which belongs to the state spaké&, where the spot pricg at instant
t is defined as

logS; =&+ ...+ E&v—1t +Ene

In their model, the state vector dynamics un@eare determined by

01 K1 . 0 0

éQ - _ 9 KQ = 9
On-_1 0 Ky—1 O
On 0O ... 0 0

where the covariance matrix is constant and given by

72 — E— — JE—
g1 P£120102 ... PINO1ON
— . 72 — JE—
- P120102 O3 -+« P2NO20N
EtEt -
= P =2
PINO1ON pP2NO20N ... On
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Consider the affine transformation (2.19) parameterized by

K1 0 0 0
L= , and ¢ =

0 En—1 0

1 1 1 0

Observe that, under this transformation, the spot pricé&vengoylog S; = zn,. The

resulting state vectoX; satisfies (2.11) where

K161 K1 ... 0 O
Q _ Q _
@ - _ — ) K - _ )
/<;N_19N_1 0 ... KN-—1 0
0 +...+0n_1+ 0y 0 ... 0 0
_2 2 — e — —  —
K107 P12R101K202 ... PINKR1010N
, P12K101K202 R0 ... P2NK2020N
tht = . )
o —_— 2
PINK1O1ON  Pa2NK2020N ... On

N N N _ _ — -
Zf o 01p1i + 0202; . .. + ONPiN
oN = 0'22 + 2 E E Pij0i0; and PiN = ’ 0-2 : .
- : = N
=1 i=1 j=i+1

SinceL is invertible, we conclude that the model presented by @artand Naranjo
(2006), which in turn nests the models of Cortazar and Sdaw@003); Gibson and
Schwartz (1990); E. Schwartz and Smith (2000); E. S. SclhwafA97), is equivalent to
our A§ (N) specification. Also, note that by using a more general maskiee of risk
specification ourd§ (3) model is also equivalent to the one presented in Casassus and
Collin-Dufresne (2005).

28



The model introduced by Hughen (2010) with USV restrictimequivalent to our
AY (3) specification. Hughen (2010) includes a parameter denote the minimum level

of the instantaneous spot variance, a role performegbin our model.

The model presented in Chiang et al. (2015) is nested byAdur) specification. In
their model, the log-spot price corresponds to the sum ofanAneverting and a persistent
factor, where only the later exhibits stochastic volatiliThe authors introduce a state
vectorg, at instantt which belongs to the state spaké x R, and define the spot price
S atinstant as

log Sy = &1 + &3

The state vector dynamics undg@rare determined by

0 kK 0 0 0
6% _ 0, KO- 0 Ry 0 O |
0 0 -1 0 1
0, 0 0 0 Rs
while the covariance matrix is given by
o P11 -2 0 00 O 0
_ 01010 o —p10103 0 00 O 0
thiz P10102 2 P10102 n Eur.
—07  —p10102 o1 0 00 1 pa0os
0 0 0 0 0 0 poo3 G2

L0 0 0 0
0 -1 0 0 0
L= and o= | "
1 0 10 0
0 0 0 1 0

Observe that, under this transformation, the spot pricévisngoy log S; = x5, while its
instantaneous volatility is given by, ;. The resulting state vectd, satisfies the affine
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diffusion (2.11) where

0 k1 0 0 O
6% — 0 KO- 0 Ry 0 O |
L 1 10 %
Ra
s 0 0 0 FKs
while the covariance matrix is given by
ko3 —p1R101G9 | 0| 0 00 0 0
—p1R1010 o3 00 00 O 0
By = [N 2 + Tay
010 0 0 1 poos3
0 0 0 0 0 0 po3 02

SinceL is invertible, we conclude that the model presented by Ghetral. (2015)
is nested by ouAY (4) specification. The two models, though, are not equivalergesi
the authors set the constant volatility parameter to zerciwlorces the spot price to be
uncorrelated with the cost-of-carry factors. As a consagegall the coefficients inside

the box in the previous expression are equal to zero.

2.4. Data and Estimation Procedure

2.4.1. Data

Our dataset includes daily WTI futures and option pricemftianuary, 3rd 2006 until
December, 31st 2014 traded at NYMEX, which corresponds teddsyof data. In what
follows, we apply the same filters and data definitions asl@and Schwartz (2009b).

For futures, we select twelve generic contracts: the finstogth futures (M1-M6),
the following two contracts with expiration either in Marchune, September and De-
cember (Q1-Q2), and the next four contracts with expiratiobecember (Y1-Y4). We
discard all futures with fourteen or fewer days to expinatsince they report a significant

reduction in their open interest.
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Figure D.1 presents the evolution of the term-structureitfres prices for the sample
period. If we use the closest-to-maturity contract as aypfok the spot price, the figure
displays strong variability of oil prices reaching almossJ 150 per barrel at the end
of 2008, and dropping below USD 40 per barrel short after. fldnere also shows that
the term-structure changes its shape continuously dunegample period, going from
contango to backwardation, and vice-versa. Finally, theréglisplays a sustained drop

in prices at the end of 2014.

For options, moneyness is defined as the strike price diMiyeithe price of the un-
derlying futures contract. For each maturity we split thegeof moneyness into eleven
intervals: 0.78-0.82, 0.82—0.86, 0.86—0.90, 0.90—0.9¥4-@.98, 0.98-1.02, 1.02-1.06,
1.06-1.10,1.10-1.14,1.14-1.18, and 1.18-1.22. For agnaturity and moneyness, we

select the contract that is closest to the medium-pointefriterval.

Since options on oil futures are American, we use equivdtembpean option prices
obtained by first computing implied volatilities using thpaoximation detailed in Barone-
Adesi and Whaley (1987), and then computing the correspgrigiiropean price using the
method of Black (1976).

We only include out-of-the-money (OTM) and at-the-money¥¥A options, which
has the advantage of minimizing the errors of our early-@gerapproximation. Moreover,
OTM options tend to be more liquid than in-the-money (ITM}iops® Furthermore,
we only include contracts with open interest greater thab, pbice over 10 cents, and
written over the first eight futures (M1-Q2) to minimize timepact of the early-exercise

approximation for longer dated contracts.

SGiven a certain maturity, it may occur that there is a put andlawith moneyness exactly to one, or two
options with the same moneyness distance to the mediunt-gfdtmeir interval. In such cases we keep both
contracts.
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Figure D.2 displays the implied volatility for ATM optionhat moves significantly
during the sample period. Similar to futures prices, thentstructure of implied volatil-
ities also changes its shape through time. We can observ@e ilacrease in implied

volatilities at the end of 2008 and more recently at the er2Dd#4.

After applying the filters to the data, we are left with 27 156ufes and 175938 op-

tions over a period of 2 263 trading days.

2.4.2. Estimation Procedure

We estimate the unobserved state-veXousing the Extended Kalman filter (EKF),
and model parameters through quasi maximume-likelifb®tde Euler-discretized transi-
tion equation is given by

X =AX;_ 1 +b+w

whereA andb may be computed directly from (2.7), afw; ), , are random independent

Gaussian variables such tit | [w;] = 0 andV,_, [w] = 3,2/ A¢.”
Measurement equations are given by:

1, = a(Xy) + €,

(iid)

wheren, denotes the vector of observationsis a differentiable function, an@;),., ~

N(0, R;) denotes measurement errors which are cross-sectionaltrmatated with con-
stant variance that is different for futures and optionsoriater to update the prediction of

the state vectoK, the EKF uses the first order approximation aroﬁhg_l:

1y = OxCy (Xt\t—l) Xi+ ¢ (Xt\t—l) — Oy (Xﬂt—l) Xt\t—l +€4,
———— ~ ~ -

Ct dt

Trolle and Schwartz (2009a) study the small-sample prasesf estimated parameters using this approach
in a multi-factor term-structure model of interest ratedemstochastic volatility, and find negligible biases
in the estimates.

’Since our database consist of daily observations, we appat& the time discretized interval 8¢ =
1/252.
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whereod,c; (xq) denotes the jacobian matrix of evaluated ak,.

For futures, Proposition 2 shows that log-prices are liivettie state-vector, implying
that:

log F, , = o (1) + BF (1) X, + €rt,
whereer, denotes the measurement error with variamge In this case no-linearization

is required.

For options, we scale prices B their Black (1976) vegas,

Otﬂ'OyTl o Otﬂ'oﬂ'l
- + 60,157
Vt,‘ro Vt,To

whereeo , denotes the measurement error with variangeNote thate, ; approximately
represents the measurement error in implied volatilitiesesthe vega corresponds to the
derivative of the option premium with respect to its impledatility, yielding

Otﬁom _ Ot,To,ﬁ
VthO

€ot =

The discount factoB; ., in Propositions 4 and 5 was obtained by fitting the Nelson
and Siegel (1987) curve each trading day to 1W, 1M, 3M, 6M, @kl 12M LIBOR
rates, and the 2Y LIBOR SWAP rate. We avoid using overnighiNj@.IBOR rates since
they display strong credit-risk effects in the later pare008. Hence, our anchor for the
interpolation is the 1W LIBOR rate.

The formulas presented in Propositions 4 and 5 allow us tduisees prices directly,
generating measurement equations that are driven exelydiy the volatility factors.

Therefore, the measurement maiixis block-diagonal.
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2.5. Results

We estimate the model presented in Section 2.3 using theaddtastimation proce-
dure of Section 2.4. We analyze several models in which we thee number of volatil-
ity factors while keeping the number of factors driving thesteof-carry constant. We
do this since it is well known in the commodities literatu@o(tazar & Naranjo, 2006;
E. S. Schwartz, 1997) that models with two factors driving tbst-of-carry usually per-
form well in pricing the term-structure of futures prices.erte, it is more interesting
to know how many factors are needed to accurately price wedarptions for different
strikes and maturities, knowing that futures are alreadyietely priced. Therefore, we

focus our study in analyzing the modél§, (3 + M) asM varies over0, 1,2, 3,4}.

2.5.1. Parameter Estimates and Interpretation of Volatilty Factors

Tables E.1 and E.2 report parameter estimates using the esatmple period from
2006 to 2014. Standard errors computed using the outeuptarf the log-likelihood

gradient are reported in parenthesis.

The standard deviation of the measurement error for fuforiess ¢ ) is practically
the same across all models (39 bp), confirming that addirgfilit} factors does not im-
prove the pricing of futures contracts. This behavior iseetpd since our model exhibits
USV, making the pricing of futures and options independemthfeach other. On the other
hand, adding extra volatility factors does improve sigaifitty the pricing of options as
can be seen by looking at,. This parameter reveals that the model of Cortazar and
Naranjo (2006), which corresponds to di}f (3) specification, produces pricing errors in
implied volatility (IV) of 1117 bp. Adding one stochastic latility factor reduces this
number to 235 bp, while introducing a second factor yieldsraor of 136 bp. Using four
factors in the variance reduces this number by two, whichgklir economically signifi-

cant since reducing the error in IVs by 50 bp reduces the p&ge option pricing error
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by 500 bp if the Vega is 1& These estimates are consistent with the analysis of thiagric

performance of the model that we perform in Section 2.5.3.

The parameters that describe the dynamicg gtfe. the mean-reverting parameteis
andk,, the volatility parameters, ando,, the instantaneous correlation between the two
processeg,., and the risk-neutral drift paramete?g and 62, present similar estimates
across models. This is expected since we keep the numbectofdanY fixed across
models, and they do not affect the measurement equationptmocontracts. Since
k1 > Ko @ando; > oo, We interpretr; as the factor capturing short-term shocks in the
cost-of-carry, whiler, captures more persistent ones. Finally, the correlatioongnthese

two factors is negative and ranges betweén50 and—0.30.

The addition of the first volatility factor decreases sharple value ofss. Indeed,
whereas in the model of Cortazar and Naranjo (2006) thispater measures the average
spot price volatility, in our model it represents a lower bddor the stochastic spot price
volatility. As a consequence, the correlation parameigrs,3 andp,; also change when

adding stochastic volatility factors.

The estimates of the parameters that describe the dynaficsioggest the following
interpretation for the volatility factors und€r. Given its high mean-reversion coefficient
(x) and its high volatility ¢,), we interpret the first volatility factor, as the one cap-
turing short-term shocks to spot volatility. With the extiep of the Aj (5) model, this
factor displays negative correlatiom § with the spot price, allowing spot returns to exhibit

negative skewness.

The second volatility factor; presents the lowest mean-reversiaB)(and volatility
(s2), leading us to interpret it as the one capturing long-tenocks. Moreover, sinces,
is statistically non-significant anel;; has a similar order of magnitude thaﬁ (except

for the AY (7) model, see below), we may interpret as a long-term mean far, which

8In our sample, Veega varies from 0.7 to 52.6 with an averageevaf 16.2.
35



is consistent with the volatility process suggested by Bugfial. (2000), and the findings
presented in Trolle and Schwartz (2009b).

The third volatility factorzg displays intermediate values of mean-reversicﬁzb @nd
volatility (¢3) compared with those presented before. It is important seofe that it adds
flexibility to the model since it presents positive corr@atwith the spot §3). In the
AY (5) model, due to the absence of additional volatility facttnis task is performed by
the first factor. Adding a third volatility factor allowss to maintain its negative correlation
with the spot price. This feature is important in order toiaeé a good fit to option prices

in periods where the overall skewness is positive.

Lastly, the fourth volatility factorz; captures medium-term perturbations since it
presents a mean-reversio;ﬁ% and volatility ,) coefficients in between the ones ob-
tained for second and first factors, i.e2 < x¥ < k3 andg, < ¢ < ¢. Also, by
analyzing the values fot,; and k57, we conclude that the addition of the fourth factor
modifies the behavior of5 as it becomes the long-term mean i6r abandoning its role

as long-term mean far, which is now performed by the extra factor.

The risk-premia parameters are in general difficult to estém The drift parameters
for the cost-of-carry under the risk-neutral measwi% gnd 99) and the mean reverting
parameters of the volatility factors under the physical sne@ ¢4, . . . , <7), present com-
paratively higher estimation errors than other parametBiesvertheless, the completely
affine risk-premia specification yields statistically sfgrant estimates, which is consis-
tent with Pan (2002) and Broadie, Chernov, and Johanne§200

2.5.2. Volatility Comparison

We would like to highlight that the instantaneous spot vbitatfiltered by the EKF

agrees with other standard methods used in practice toa@ststochastic volatility.

9See section 2.5.4 for more details.
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Figure D.3 plots the volatility of oil spot returns filtereding the EKF methodology,
and compares it with the volatility estimated using a GARCH) model with Gaussian
errors using the simple residues of the spot price extrdcted the AY (7) model. The
figure shows that our estimate of the spot returns volatititows closely the volatility
estimate obtained from the GARCH model. The correlatiomvben the two time-series
is 0.9458, which confirms the results observed from the grifureover, the correlations
for the AY (4), AY (5) andAY (6) models are also high and equal to 0.9090, 0.9533 and
0.9584, respectively.

2.5.3. Pricing Performance

We compute theoretical futures and option prices from therét state variables of
the AY, (3 + M) model for eachM/ € {0,1,2,3,4}, and compare them with observed

transactions.

Table E.3 reports the percentage root mean square errorSERMor futures contracts
computed as the differences in logarithms of the fitted ahabhtutures prices. Consistent
with previous studies (e.g. Casassus & Collin-Dufresn@p2Cortazar & Naranjo, 2006;
E. S. Schwartz, 1997), the term-structure of futures prisasell explained by the first
three factors of our model: the first two driving the dynano€she cost-of-carry and the
third representing the spot price. The average pricingefor different futures contracts
are relatively low, ranging from 19 to 66 bp, yielding an aleaverage error of 35 bp.
Consistent with the USV nature of our model, the number dbfscdriving the variance

has negligible influence in the pricing of futures contracts

The top panel in Figure D.4 plots the time series of daily petage RMSESs for futures
prices and for all models. As can be observed from the figiues pticing performance
of all models is stable through our sample period except éetmwthe end of 2008 and
the beginning of 2009, just after the collapse of Lehman iBg. As can be observed

from Figure D.1, during the crisis period of 2008-2009 oikps drop significantly, and
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the term-structure of futures contracts displays a prooedrcontango shape. A similar

phenomenon seems to be occurring at the end of 2014.

Table E.4 reports the RMSEs for options computed as therdiftees between fitted
and actual Black (1976) IVs (in percentages). In this taiy¢ions are grouped by matu-
rity. As expected (see e.g. Cortazar et al., 2015) AtHé3) model performs very poorly
due to its constant volatility specification. Also, it is @pent that introducing additional
volatility factors reduces monotonically the RMSE for alaturities. The table reveals
that at least three volatility factors are needed to ach&aveverall RMSE below 100
bp. Also, the table shows that] (7) model achieves a pricing performance that is quite

homogeneous across the term, except for the shortest tgatontracts.

The bottom panel in Figure D.4 plots the time-series of theralv option RMSE for
all models. We omit in the graph the RMSE plot for th§ (3) model since it is an
order of magnitude larger than for the other models. As fturks contracts, thay (4)
model produces larger errors during the 2008-2009 crisisghelntroducing additional
volatility factors substantially reduces the pricing emlaring this period. For thay (5),

AjY (6), andAY (7), however, the larger pricing errors are observed duringéae 2011.

Tables E.5 and E.6 report RMSEs for options by maturity andeyoess for all mod-
els. Remember that we only use OTM options, implying thatreats with moneyness
below one represent puts, and options with moneyness gitbaie one describe calls.
For short-term options, th&y (3) model produces higher errors when pricing OTM put
options, whereas th&Y (7) struggles more with OTM call options. For all models, ATM
contracts are priced more accurately than OTM options. ¢rag-term options, all models

perform similarly across different maturities.

Figure D.5 plots average 1Vs by moneyness, for differenumiés and for all models,
and compares them with the average observed IV. First,ntésesting to note that in our
sample, short-term options display a characteristic smiteereas medium- and long-term

contracts exhibit a pronounced skew. Note however thatitheghg have different scales,
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so the magnitude of the smile for short-term options is magaificant than the skew
for medium- and long-term contracts. Second, it is also eppdhan adding stochastic
volatility factors significantly improves the fit of all moldecompared to the constant
volatility one. Finally, the figure also confirms than usihgee or four volatility factors

significantly improves the pricing of short-term options.

2.5.4. Risk-Neutral Skewness

A different approach to analyze the pricing performancéefrhodel is to look at how
well it can replicate the skew of the risk-neutral distribat In the literature, this quantity
is usually proxied by the implicit volatility skewness (I¥8w), which is a measure of the
difference between the tails of the implied volatility senilBakshi, Kapadia, and Madan

(2003) conclude that IVSkew measures are good proxies afdkeneutral skewness.

The literature proposes several measures of [VSkew. Mi0A 1) surveys many of
them, and concludes that the normali2&d\ risk-reversal on 3-month options is a good

proxy for the risk-neutral skewness:

25A call IV — 25A put IV

[VSkew = SOATY

(2.20)

Due to our particular sorting of data, we implement (2.20hgshe IV on M3 contracts

as
1.2 moneyness call I\~ 0.8 moneyness put 1\{,

ATM IV
Note that the sign of our measure yields an intuitively pesitorrelation with the skew-

[VSkew = (2.21)

ness of returns, as mentioned in Bali, Hu, and Murray (20A4)egative IVSkew means
that the probability density is skewed to the left, wherepesitive value represents skew-

ness to the right.

Figure D.6 displays the IVSkew of traded contracts, and amegit with the IVSkew
generated by th&} (7) model. First, the figure documents that the IVSkew of oil nesu

1OWhen a moneyness interval contains two observations, weuatarthe representative implicit volatility
as the average of both.
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is in general negative, although it becomes positive in 20@62011. Second, the IVSkew
measure varies significantly during our sample period, gg&iom -0.5 to 0.2. Third, the
figure confirms the\} (7) model is able to accurately replicate the dynamics of tHe ris

neutral skew during our sample period.

2.5.5. Robustness

We check the robustness of our model by checking whethenpeas estimated in
different samples can price futures and option contractama out-of-sample. For this
exercise, we define three panels: Panel A corresponds tantlie sample period from
January 3rd, 2006 to December 31st, 2014; Panel B goes fronada3rd, 2006 to De-
cember 31st, 2010; Panel C comprises the period from Jardudry2011 to December
31st, 2014.

Table E.7 reports RMSEs for futures contracts computed ch panel and for all
models, using parameters that were calibrated using eatheddifferent panels. For
example, Calibration B - Panel C displays the errors geedray each model calibrated
using the data on Panel B, when pricing all contracts inadudd®anel C. In this example,
Panel B contains the in-sample data while Panel C represemtsf-sample data. As
expected, RMSEs in the example are larger than the onesnelbtan Calibration C -
Panel C (in-sample), but are nevertheless small. Simildepe are observed for other

cases, showing that all models are reasonably stable wiengfutures contracts.

Table E.8 is similar to Table E.7 but reports RMSEs for optiontracts. The table
shows that all models are also robust when pricing optionpatticular, the\} (7) model

achieves in- and out-of-sample RMSEs ranging from 60 to 11 b

2.6. Conclusions

This article proposes a general affine diffusion model famowdity prices in the
spirit of Dai and Singleton (2000). Our model develops a ifadtor specification for the
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cost-of-carry and the instantaneous volatility of the gmite, and nests many existing
models commonly found in literature. The model also exBibiBV, yielding closed-form

formulas for futures prices, and quasi-analytical expogssfor option prices.

We implement our model using WTI futures and options comsr&iom January 3rd,
2006 to December 31st, 2014. The model is estimated usingj-quaximum likelihood

and the Extended Kalman Filter.

Our results suggest that the multifactor structure of thel@hds crucial in pricing
accurately futures and options contracts alike. Its USVimaand the way we derive our
option pricing formulas guarantee that only the cost-afycéactors and the spot price
are used to fit futures prices, while the volatility factordyoaffect the pricing of options
contracts. We conclude from our analysis that at least tweb-obcarry (V > 3) and three
volatility factors (\/ > 3) are required to obtain accurate futures and options vahmt
Adding a fourth volatility factor improves the pricing of tipns in periods of market

stress.
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A. AMORE GENERAL CASE OF USV

Under the risk-neutral measugg consider the affine diffusion model given by
dX, = (0% - K®X,) dt + £, dW

where the state vectdf, belongs tdR® x R and

62 K20 0 kY
o _ 02 zo_ |0 kY 0 Ky
03 1 1 0 377
1 0 0 0 k¥
while the covariance matrix is given by
o} p120102  p130103 0 1 0 0 *14
f}ti}, _ P120102 U% P30y 0 " 0 0 0 0 Zas
P130103 P230203 a§ 0 0 0 7% 017161
0 0 0 0 x1u 0 oma f

In this case, the components@f satisfies the ODEs

B = —riB — B85
B = —ry By — B
B =0
: 1
B = —kUB — KBy — 5B — KiAT

1 2 2 2
+ 3 (*15{ + 2%y ﬁfﬁf + V%ﬁ:f + 20171618384 + §12 f )

with the initial condition3” (0) = e;. The solution for the first three coordinates is given

by



1 < Q
F Ky T
By = — (e ™2 —1)
2 K;Q

We replace the solutions on the fourth ODE and observe thiattalthe uniqueness

and existence theorem for ODESs, the model (A.1) exhibits if@¥d only if

Q Q
0= 1 <6—H?T _ 1) _ Fa <6—H(37 — 1) + *1 : (6—2;@?7 _9eHT 4 1) . (A2)

ng 2/1(1@

If we assume

ng = 2/{?

then (A.2) may be written as

_ [ _m K3y —2x%r ¥ Ky *1 Kh | Koy
0= L L LI + o2
Q2 Q Q2 Q Q2 Q Q

2Ky 2ky Ky k1 2K Ki o 2hy

So (A.2) is equivalent to impose the following restrictions

7
Ky
Ky
Q
*q K
5 A+ =0
Ky 2
which results in
Q_ _,Q__*
kig = =Ry = =73
Ky

making the last restriction redundant.

We note that in this specification, the first of the two costaifry factors can exhibit
stochastic volatility by simply restricting the paramstef, and Y as we just showed
(supposing that we Iet? and x, free). Hence, by allowing similar restrictions on the

mean-reverting coefficients, each new volatility factattive add to this model allows us
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to add a new pair of cost-of-carry factors where one of thehibgts stochastic volatility
and such that the model admits USV.

B. PROOFS

B.1. Proof of Proposition 1

In this proof we follow the Proposition 1 in Duffie et al. (200&®ssume thatV is of
the form (2.13). By the law of iterated expectatidnis aQ-martingale and, from a direct
application of the It 0’s Lemma, we conclude thand3 must satisfy the complex-valued
ODEs

6= 08+ JHH,0

M
1
B=-K¥B+) - FH.Bey,n
m=1

with initial conditionsa/(0; ¢) = 0 and3(0; ¢) = ¢ and whereey ., denotes a basis

vector inRN+M

B.2. Proof of Proposition 2

SinceF,, = E? [St] = ¥, .(en), the result follows from Proposition 1 if we show
thata (1) = a(r;eyx) andB” (1) = B(r;en). Forn € {1,..., N}, the last statement is
a consequence of the closed-form solution given in (2.180 Arom the ODEs in (2.14),
it is easy to see thaty,,(7) = 0 for eachm € {1,..., M} is a unigue solution to the

system. Replacing these results in the ODEd@nd integrating finishes the proof.

B.3. Proof of Proposition 3

From Proposition 2, notice that

E? [eu log FTO»Tl] _ E? [eu(aF(ﬂ)-l-ﬁF(n)/XTo)
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_ euaf (n)RQ |:€U,3F(Tl)'XToi|

_ euaF (11 )+Ol(7'0§uﬁF (Tl))+B(TO uB” (Tl))lxt

where Proposition 1 has been used in the last step.

Using the closed-form expression in (2.16) and ProposRidorn < N we have that

—H%To —

B (10;uB (1)) = e upl (1)) + (%) uBn(71)

Rn

R erim — 1 n e _
= U n - -
o o
e—lig(70+71) -1
=u
K

= Uﬁr}; (’7'0 —I—Tl) .

The result is finally obtained by replacing the expressiandg £ ., .., obtained in

Proposition 2.

B.4. Proof of Proposition 4

We follow Duffie et al. (2000). Assuming that the risk-freéarest rate and the futures
prices are uncorrelated under t@aneasure, the price at timef an European put option
expiring at timel, = t+7, with strike K on a futures contract expiring at tirfig¢ = Ty+7n,
is given by

- TO Tsads
Pt,To,ﬁ(K) = EitQ |:6 Jirad (K - FTo,Tl) 1{FTO,71<K}}

_ Q Q | JlogFr, »
= Bt,To (KEt |:1{logFToyTl<logK}] _Et |:€ &+, 11{10gFT0’.,-1<10gK}i|)

= By, (KGoa (10, 71;log K) — G114 (10, 713 log K))
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where, as shown in Proposition 2 of Duffie et al. (2000),

Ga,b(TO, 71, k) - EitQ |:6a10gFTO’T1 1{blogFTO,7—1 <y}i|

_ Vi@ 1 /°° Im [UF _ (a+i ub)e™ ]
0

— d
2 T U s

with Im|c] denoting the imaginary part of € C andi = \/—1 corresponding to the

imaginary unit.

B.5. Proof of Proposition 5

In an analogous way to Appendix B.4, the price at titvad an European call option
expiring at timel, = t+7, with strike K on a futures contract expiring at tirfi¢ = T+,

is given by
_[To rsds
Ct,To,n (K) :EitQ [6 JiPred (FTo,Tl - K) I{FTO,71>K}]

_ Q | log Fr, .+ _ Q
_Btﬂ'o (Et [60 7o 1:L{logFTO,Tl>10gK}i| KEt |:1{logFTO,Tl>logK}}>

=D, -, (Gl,—1 (7'0,7'1; - logK) - KGO,—l (TO, T — logK))

whereG,, (79, 71; ) is defined as in Appendix B.4.

C. NUMERICAL ISSUES

The system of ODEs presented in Proposition 1 is solved ubmglassical Runge-
Kutta fourth order methddand, following Trolle and Schwartz (2009b), the Fourielnv
sion integrals in Proposition 4 and Proposition 5 are evatliasing the Gauss-Legendre
quadrature formula with 30 points: 15 for the [0,50] intdasad 15 for the [50,400] inter-

val.

lgpecifically, we used the MATLABde45 routine.
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In order to speed our algorithm, we first solve numericalgndg for different initial
conditions, and only then compute the EKF iteration. Usiméydel Core 15-2500 proces-
sor with 8 Gb of RAM, a log-likelihood evaluation for the colafe sample takes between

3.5 and6.5 seconds, depending on the number of volatility factors.

The maximization of the log-likelihood function is perfoech by switching between

Nelder-Mead and semi-quadratic programming algoritims.

The gradients involved in the computation of the estimagioors were calculated us-

ing an adaptive Jacobian routine based on finite-differ®acel Romberg extrapolatidf.

12These algorithms are implemented in MATLAB's Optimizatidoolbox inside thef mi nsear ch and

f m ncon routines, respectively.

13Speciﬁcally, we used thieacobi anest routine which was published in MATLAB Central under Adap-
tive Robust Numerical Differentiation by John D’Erricedodchi ps@ ochester. rr. com.
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Figure D.2. WTI implied volatility term-structures of dté¢-money op-
tions written on the M1, M2, M3, M4, M5, M6, Q1, and Q2 futuresne
tracts from January 3rd, 2006 to December 31st, 2014. Talaloitering
the figure, we display only the data on Wednesdays.
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Figure D.4. Time-series of daily root mean squared erroM$Rs) ob-
tained by different models on WTI futures and options fromuiay 3rd,
2006 to December 31st, 2014. The top panel presents the RM8Eumes
defined as the difference between the logarithms of fitted absgrved
futures prices. The bottom panel shows the RMSE on impligtos

volatility defined as the difference between fitted and olegimplied
volatilities. We avoid reporting the RMSE of th&} (3) model since it
is an order of magnitude larger than the other stochastatilibf models.
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E. TABLES

Table E.1. Maximum-likelihood estimates fa}, (3 + M) models for differentd/. Outer-product standard

errors are reported in parentheses.

Ag (3) AY (4) AY () A (6) A3 ()

63 00311 (0.0691) 0.1097 (0.0660) -0.0961 (0.0821)  -0.166%.08@3) -0.0347  (0.1063)
N 0.1067 (0.2110) -0.0638 (0.0484)  -0.0117 (0.0356)  -0.0309(0.0227)

Do 0.0081 (0.0390)  0.0469 (0.0574)  0.0591  (0.0168)
5 -0.0140 (0.0080)  -0.0010  (0.0061)
N 0.0233  (0.0133)
k1 1.7297 (0.0047) 1.7343 (0.0051) 1.7809 (0.0051)  1.7148 00@B)  1.7620  (0.0051)
ke 03753 (0.0011) 0.3783 (0.0012) 0.3792 (0.0012)  0.3802 00(B)  0.3698  (0.0013)
K 0.7810 (0.4695) 1.0817 (0.5411)  8.6556 (0.1720)  8.5772 616H)

K 1.3722 (0.5826)  0.8388 (0.1787)  0.7774  (0.2913)
Ko 2.6045 (0.3333)  0.2658  (0.1292)
K7 3.0888  (0.2755)
K -8.4807 (0.4290) -13.9706 (0.8442)  -0.0002  (0.0765)
K -0.0004 (0.0024)  -0.0003 (0.0037)  -0.0002  (0.0242)
K56 -0.0075 (0.0011)  0.0000  (0.0001)
Kz 0.0000 (0.0034) -15.3240 (11.5165)
K57 -0.0060 (0.0896)  -0.0051  (0.0165)
Ko7 -0.1147 (0.1756)  -0.0059  (0.0832)
K54 -0.0021  (0.0149)
K4 0.0000  (0.1154)
K4 -1.2676  (0.9543)
Kes -3.9571  (1.1150)
K -2.6596  (1.0285)
K76 -0.0033  (0.0053)
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Table E.2. This table is the continuation of Table E.1.

Ag (3) A7 (4) A3 (5) A§ (6) A7 (7)
1 0.2477 (0.0041) 0.1806 (0.0030) 0.2304 (0.0042)  0.2040 008B)  0.1681 (0.0027)
o2 0.0873 (0.0012) 0.0894 (0.0014) 0.0916 (0.0015)  0.0908 00@%)  0.0878 (0.0013)
o3 0.3117 (0.0004)  0.0892 (0.0007) 0.1054 (0.0006)  0.1313 00(B)  0.1194 (0.0005)
pi2  -0.3010 (0.0188) -0.4090 (0.0195) -0.5065 (0.0177) -07480(0.0179) -0.3817 (0.0196)
pi3 01237 (0.0148) 0.2042 (0.0318) -0.2003 (0.0269)  0.1189.01@8) -0.0217 (0.0222)
ps 07007 (0.0107) 0.7737 (0.0217) 0.9406 (0.0108)  0.813502(B) 0.8650 (0.0247)
" 0.3628 (0.0008) 0.1654 (0.0042)  0.1449 (0.0036)  0.1086 03(I5)
72 0.1414 (0.0009)  0.0262 (0.0010)  0.0408 (0.0027)
3 0.0553 (0.0037)  0.0616 (0.0056)
o 0.0200  (0.0027)
G 1.8995 (0.0083) 6.0216 (0.1607)  9.8926 (0.2479) 18.1935.11@)
% 3.6217 (0.0227) 11061 (0.0098)  2.4223 (0.1705)
S 14.3025 (0.9328) 15.1783 (1.3829)
S 3.3056  (0.4422)
o -0.3751  (0.0018)  0.0740 (0.0006) -0.6981 (0.0014)  -0.9550.0033)
02 -0.9743  (0.0036) -0.8136 (0.0508) -0.9843 (0.0177)
03 0.6089 (0.0045)  0.5391 (0.0034)
01 -0.9474  (0.0442)
67 0.2151 (0.0916) 0.2124 (0.0644) 0.2203 (0.0967)  0.2186 084%)  0.2206  (0.0650)
6y  -0.0249 (0.0294) -0.0095 (0.0384) -0.0172 (0.0364) -0801§0.0357) -0.0139 (0.0343)
03 0.0500 (0.0733) 0.1000 (0.0839) 0.0833 (0.0729)  0.0867 06@!)  0.0925 (0.0766)
Ky 1.6640 (0.0016)  4.5265 (0.0079)  5.2207 (0.0101) 13.2371.048D)
Ko 1.5201 (0.0078) 15973 (0.0067)  1.3458 (0.0129)
kg 2.3160 (0.0210)  3.8454 (0.0157)
K 4.7629 (0.0407)
op  0.0039 (0.0000) 0.0039 (0.0000) 0.0039 (0.0000)  0.0039 00(W)  0.0039  (0.0000)
oo 01117 (0.0000) 0.0235 (0.0000) 0.0136 (0.0000)  0.0083 00(W)  0.0068 (0.0000)
log L 425059 695 930 788718 872380 903 740
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Table E.3. Root-mean-square pricing errors (RMSEs) farrfst contracts obtained by thé, (3 + M) models
for different /. RMSE is defined as the difference between the logarithmbeofitted and observed futures
prices, and is reported in percentage points.

Contract
Model M1 M2 M3 M4 M5 M6 Q1 Q2 Y1 Y2 Y3 Y4 Overall

Ay(3) 065 019 032 032 027 023 022 030 041 040 019 043 5 0.3
AY(4) 066 021 032 032 028 023 022 031 041 041 019 042 5 0.3
AY() 065 020 032 032 027 022 022 030 041 041 019 043 503
AY(6) 066 020 032 032 028 023 022 030 041 040 019 042 503
AY(7) 066 021 032 032 027 023 023 031 042 041 019 043 6 0.3

Table E.4. Root-mean-square pricing errors (RMSEs) fapaptcontracts obtained by the!, (3 + M) models
for different M. RMSE is defined as the difference between the fitted and wedemplied volatility, and is
reported in percentage points.

Contract
Model M1 M2 M3 M4 M5 M6 Q1 Q2 Overall
AOU (3) 15.98 13.27 12.27 11.33 10.57 9.62 9.20 8.18 11.54
A? (4) 4.30 2.46 1.66 1.42 1.57 1.79 2.17 2.85 2.38
Ag (5) 2.68 1.59 1.24 1.05 0.94 0.89 1.00 1.23 1.41
A}j (6) 1.63 0.82 0.72 0.66 0.59 0.53 0.58 0.84 0.84
A}f (7) 1.32 0.76 0.59 0.52 0.51 0.50 0.50 0.58 0.70




Table E.5. Root-mean-square pricing errors (RMSESs) fabaptcontracts
obtained by the\y, (3 + M) models for different\/ per contract and ma-
turity. RMSE is defined as the difference between the fittedl@served
implied volatility, and is reported in percentage points.

Contract
Moneyness  Model M1 M2 M3 M4 M5 M6 Q1 Q2
0.78-0.82 Ag’ (3 26.57 1582 1350 12.12 11.27 10.06 9.65 8.71

)
AY (4) 5.95 2.83 2.24 2.17 231 243 263 3.13
AY (5) 6.10 2.83 2.02 1.65 1.39 1.08 0.84 0.86
AY (6) 2.58 1.12 1.16 1.20 1.06 082 065 0.78
AY (7) 1.62 1.00 0.86 0.85 0.84 0.79 0.76 0.74

0.82-0.86 Aj(3) 20.08 13.92 1293 11.87 10.95 9.70 9.26 8.38
AY (4) 4.35 2.36 1.84 1.81 2.03 219 244 3.00
AY (5) 4.29 2.28 1.66 1.31 1.05 0.78 0.65 0.84
AY (6) 1.78 0.84 0.81 0.81 0.70 056 052 0.72
AY (7) 1.07 0.74 0.54 0.50 0.54 056 059 0.62

0.86-0.90 Ay 16.12 1359 1260 11.61 10.42 943 9.20 8.18

(3)
AY (4) 3.53 2.00 1.47 151 1.76 196 236 2.86
AY (5) 2.96 1.81 1.34 1.02 0.76 0.58 0.60 0.87
AY (6) 1.31 0.70 0.65 0.62 0.53 046 050 0.69
AY (7) 0.72 0.66 0.47 0.36 0.41 044 050 054
0.90-0.94 A§(3) 1444 1329 1229 11.28 10.49 9.73 9.07 7.87
AY (4) 3.42 1.77 1.13 1.21 1.52 1.80 220 2.77
AY (5) 2.22 1.41 1.04 0.78 0.59 054 065 094
AY (6) 1.07 0.66 0.61 0.56 0.49 049 050 0.70
AY (7) 0.65 0.69 0.51 0.39 0.39 043 044 049
0.94-0.98 AjJ(3) 1433 13.14 1218 1123 10.25 9.44 9.07 8.07
AY (4) 3.72 1.72 0.85 0.90 1.27 162 213 281
AY (5) 1.94 1.08 0.80 0.61 0.50 055 0.71 1.01
AY (6) 1.09 0.63 0.61 0.53 0.46 046 048 0.72
AY (7) 0.88 0.69 0.53 0.41 0.38 0.38 0.37 047
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Table E.6. This table is the continuation of Table E.5.

Contract
Moneyness  Model M1 M2 M3 M4 M5 M6 Q1 Q2
0.98-1.02 AOU (3) 1425 1288 12.02 1094 1047 946 898 7.89

AV(4) 400 183 077 065 109 146 198 270
AY() 179 081 062 051 052 062 081 1.09
AV(6) 128 061 057 047 041 042 048 0.76
AV(7) 112 067 053 040 035 034 032 046
1.02-1.06 AY(3) 1417 12.87 12.02 1098 1044 973 919 7.89
AV(4) 416 205 094 064 1.04 143 1.96 2.69
AY(5) 155 070 061 058 065 077 096 1.22
AV() 135 064 057 047 042 044 051 081
AU(7) 117 065 053 043 037 036 031 0.46
1.06-1.10 AY(3) 1387 1289 1210 1122 1063 9.77 937 8.38
AY(4) 421 237 133 092 115 146 198 282
AY(5) 131 079 079 079 084 094 112 141
AV(6) 127 066 059 050 047 048 058 091
AV(7) 105 059 053 047 045 043 039 053
1.10-1.14 AY(3) 1424 1254 1191 11.18 1053 9.42 928 8.38
AV(4) 451 275 177 129 132 152 200 285
AY(5) 183 108 105 102 103 109 129 160
AV(6) 156 074 061 051 049 050 065 1.00
AV(7) 130 061 052 051 050 048 050 0.64
1.14-1.18 AY(3) 16.03 1242 11.77 1111 1042 949 915 827
AV(4) 512 320 223 166 155 164 202 285
AV(5) 276 153 133 125 121 122 141 166
AV(6) 226 096 070 057 056 053 069 1.01
AU(7) 202 080 059 057 057 053 056 0.66
1.18-1.22 AY(3) 1913 1261 11.49 11.06 1031 951 898 8.00
AV(4) 606 372 263 199 182 188 208 285
AY(5) 388 208 159 144 140 141 153 1.80
AV(6) 329 132 088 072 067 062 075 1.10
AU(7) 306 116 075 069 067 063 065 0.75
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Table E.7. Root-mean-square pricing errors (RMSEs) farrfst contracts obtained by thé, (3 + M) models
for different M and panels. In Calibration- Panel; each model is estimated using the data included in Panel
i, while the RMSE is computed using the data in Pghetherei, ; € {A, B, C'}. Panel A corresponds to the

entire sample period from January 3rd, 2006 to December 30&#; Panel B goes from January 3rd, 2006 to
December 31st, 2010; Panel C comprises the period from daBud, 2011 to December 31st, 2014. RMSE
is defined as the difference between the logarithms of thedlfdind observed futures prices, and is reported in
percentage points.

Calibration A Calibration B Calibration C
Model Panel A Panel B Panel C Panel A Panel B Panel C Panel A | Bane Panel C
AOU (3) 0.35 0.40 0.28 0.36 0.39 0.32 0.37 0.43 0.26
A? (4) 0.35 0.40 0.28 0.36 0.40 0.32 0.37 0.43 0.27
Ag (5) 0.35 0.40 0.28 0.36 0.40 0.31 0.36 0.42 0.27
A}j (6) 0.35 0.40 0.28 0.36 0.40 0.30 0.36 0.43 0.27
A}f (7) 0.36 0.40 0.28 0.36 0.40 0.31 0.37 0.44 0.27
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Table E.8. Root-mean-square pricing errors (RMSEs) fapaptcontracts obtained by the/, (3 + M) models

for different M and panels. In Calibration- Panel; each model is estimated using the data included in Panel
i, while the RMSE is computed using the data in Pghelherei, ; € {A, B,C'}. Panel A corresponds to the
entire sample period from January 3rd, 2006 to December 30&#; Panel B goes from January 3rd, 2006 to
December 31st, 2010; Panel C comprises the period from daBtd 2011 to December 31st, 2014. RMSE is
defined as the difference between the fitted and observedednmlatility, and is reported in percentage points.

Calibration A Calibration B Calibration C
Model Panel A Panel B Panel C Panel A Panel B Panel C Panel A | Bane Panel C
AOU (3) 11.54 13.51 8.41 11.39 11.84 10.79 13.45 16.33 8.49
A? (4) 2.38 2.53 2.18 3.58 2.34 4.70 2.88 3.48 1.85
Ag (5) 1.41 1.30 1.54 1.83 1.18 2.43 1.43 1.40 1.47
A}j (6) 0.84 0.79 0.91 1.09 0.74 1.41 0.89 0.94 0.82
A}f (7) 0.70 0.64 0.77 0.86 0.60 1.11 0.76 0.82 0.68
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