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ABSTRACT

We propose a novel representation of commodity spot prices in which the cost-of-carry

and the spot price volatility are both driven by an arbitrarynumber of risk factors, nesting

many existing specifications. The model exhibits unspannedstochastic volatility, provides

simple closed-form expressions of commodity futures, and yields analytic formulas of

European options on futures. The model is estimated using oil futures and options data,

and find that the pricing of observed contracts is accurate for a wide range of maturities and

strike prices. The results suggest that at least three risk factors in the spot price volatility

are needed to fit accurately the volatility surface of options on oil futures, highlighting the

importance of using general multifactor models in pricing commodity contingent claims.

Keywords: Commodities; Multifactor Models; Stochastic Volatility; Derivatives; Asset

pricing.
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RESUMEN

Nosotros proponemos una novedosa representación de los precios spot de commodi-

ties en la cual el cost-of-carry y la volatilidad del precio spot son ambas explicadas por un

nmero arbitrario de factores de riesgo, anidando ası́ muchas de las ya existentes especi-

ficaciones. El modelo exhibe unspanned stochastic volatility, provee simples y cerradas

expresiones para los precios futuros y entrega frmulas analı́ticas para opciones europeas

sobre futuros. El modelo es estimado utilizando datos de futuros y opciones sobre petrleo,

encontrando que la valorizacin de los contratos observadoses precisa para un amplio rango

de madureces y precios de ejercicio. Los resultados sugieren que al menos tres factores

de riesgo en la volatilidad del precio spot son necesarios para ajustar correctamente la su-

perficie de volatilidad presente en las opciones sobre futuros de petrleo, destacando ası́ la

importancia de usar modelos generales y multifactoriales en la valorizacin de derivados de

commodities.

Palabras Claves: Commodities; Modelos Multifactoriales; Volatilidad Estocstica; Deriva-

dos; Valorizacin de Activos.
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1. ARTICLE BACKGROUND

1.1. Introduction

Since the beginning of this century, the commodity derivatives markets has shown

remarkable growth, both in number of traded contracts and their notional value. This in-

crease is due not only to producers and consumers hedging their risk exposures but also to

a rise of speculative activity, a phenomenon known as financialization. This phenomenon

has generated a renewed interest in understanding the stochastic behavior of commodities

spot prices and derivative contracts observed in these markets.

In order to achieve this comprehension, several commodity prices models have been

proposed by practitioners and academics. In particular, they have focused most of their

attention into two specific contracts: futures and options.However, since these contracts

exhibit linear and convex payoff structure respectively, the relevant variables included in

each model might change dramatically.

Given its linear payoff structure, commodity futures prices show an almost exclu-

sive dependence on the cost-of-carry (the difference between the risk-free interest rate

and the convenience yield), turning its dynamics to one of the crucial points for any

model that seeks to deliver an accurate fit of the observed futures prices term-structure

(E. S. Schwartz, 1997). The Cortazar and Naranjo (2006)N-factor model is a remarkable

example since, under its framework, futures prices are driven by an arbitrary number of

factors which is crucial to achieve an excellent fit of the term-structure.

The valuation of derivatives contracts with convex payoffs, such as options, requires a

far more complex model (Cortazar, Gutierrez, & Ortega, 2015). In this case, the attention

is primarily drawn to the dispersion and asymmetry of the price returns distribution. This

has lead researchers to develop elaborated models which accounts for sophisticated fea-

tures such as asymmetric shocks, stochastic volatility andprice jumps, where the price of

the contract is computed through an inverse Fourier transform of an expression involving
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the characteristic function of the price returns distribution (Heston, 1993; Hughen, 2010;

Larsson & Nossman, 2011; Richter & Sørensen, 2002; Trolle & Schwartz, 2009b).

Classical models that consider the aforementioned features often belongs to the affine

diffusion framework introduced by Dai and Singleton (2000). However, due to the com-

plexity of the formulas involved in pricing equations, empirical implementation of these

models over an extensive data panel of futures and options isquite difficult with the current

statistical methods and computational capabilities. Trolle and Schwartz (2009b) are able

to perform a practical implementation of their model but it belongs to the Heath, Jarrow,

and Morton (1992) (HJM) framework. The main reason that allowed them to do so and

one of their greatest contributions is to realize that commodity derivative markets exhibit a

phenomenon known as unspanned stochastic volatility (USV), which implies that futures

and other commodity linear contracts are unable to hedge spot price volatility risk, making

options over futures non-redundant assets.

The rest of this chapter is structured as follows: section 1.2 states the main objec-

tives pursued in this work, section 1.3 presents a literature review of the main theoretical

framework and models for commodity derivatives pricing, section 1.4 expose the main

conclusions of this work and section 1.5 trace possible paths for future research. Fol-

lowing this, chapter 2 contains the main article of this thesis. Within this, section 2.1

presents a brief review on different commodity prices models, section 2.2 introduces the

theoretical framework for USV in affine diffusion models anddeepens the review early

presented, section 2.3 explains the model and its features,section 2.4 presents the details

of the empirical implementation of the affine diffusion model, while its results are re-

ported and discussed in section 2.5. Section 2.6 finally concludes. All proofs, details on

the numerical estimation, figures and tables are presented in the appendix.
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1.2. Main Objectives

The main goal of this thesis is to present a novel model for pricing commodity contin-

gent claims that belongs to the classical affine diffusion framework, with a naturally risen

multifactor structure that exhibits USV. The model may be interpreted as a generalization

of theN-factor model by including a rich multifactor structure to the spot price volatility

which is driven byM additional factors.

In order to demonstrate the contributions of this model, thearticle has two main ob-

jectives. The first objective is to develop the condition to be met by an affine diffusion

model in order to exhibit USV. As it will be shown, the condition is quite simple but has

powerful consequences. In this case, it yields closed-formformulas for futures prices,

quasi-analytical expressions for option prices and separates the contracts exposure to the

factors. The latter means that futures prices depend solelyon the firstN factors while

options prices are explained by the remainingM factors.

The second objective is to show explicitly the great fit of futures and options prices

that may be fulfilled by the model. To achieve this, an empirical implementation is carried

out using the Extended Kalman Filter and considering different numbers of factors and

using an extensive panel of WTI oil futures and options ranging from January 2006 to

December 2014. Within this objective, this application will also include a discussion about

the parameters estimated values, an interpretation for thevolatility factors, an analysis

of the model’s robustness through the consideration of and in-sample and out-of-sample

results and the study of the implied volatility skewness which constitutes a proxy for the

third moment of the spot price returns distribution.

1.3. Literature Review

Since the seminal work of Black and Scholes (1973), on the valuation of equity con-

tingent claims, the modern asset pricing theory is based on the assumption that, in an

equilibrium state, assets are priced in such a way that arbitrage opportunities are ruled out.

3



This implies the existence of a probability measureQ, equivalent to the physical probabil-

ity measureP, under which all assets have the same expected rate of return, the risk-free

rate. A direct implication of this is that any asset may be priced as the discounted future

cash flows at the risk-free rate and due to this, the probability measureQ is known as

risk-neutral measure.

Equilibrium commodity models often specify an affine process to model spot price

dynamics, under which the instantaneous return (the instantaneous difference of the loga-

rithm of the spot) follows a gaussian distribution. The variance of the spot price is com-

monly model as the linear combination a set of variables following square-root process

that allows them to remain positive and revert to a mean whichmay be also stochastic;

while the risk-neutral expected instantaneous return, thecost-of-carry, has been classi-

cally modeled as the linear combination of a another set of variables that may or may not

be related with the variance variables.

However, there are some models that specify the entire forward convenience yield, cost

of carry or interest rate curve instead of their spot counterparts. This has the advantage of

exactly fit the initial forward curve, but at expenses of deriving an non-arbitrage condition.

Moreover, to empirically implement this models, it must be cast into a non-intuitive state

variable space that exhibits an affine structure. Models developed under this assumption

are usually stated as being developed under the HJM framework.

1.3.1. Constant Volatility Models of Commodity Prices

Earlier commodity models found in the literature, regardless the number of factors

considered, often assume that each of these exhibits a constant volatility. For example,

Brennan and Schwartz (1985) consider a simple process wherethe spot price follows

a geometric brownian motion along with constant drift and volatility. Since the only

source of uncertainty corresponds to the spot price, it is said that this is a 1-factor model.

E. S. Schwartz (1997) also proposes a similar 1-factor modelbut where the spot price

logarithm follows an Ornstein-Uhlenbeck process.
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Gibson and Schwartz (1990) present a 2-factor model where the first factor corre-

sponds to the spot price which also follows a geometric brownian motion. The second fac-

tor follows an mean-reverting process which is correlated with the spot price. E. Schwartz

and Smith (2000) also present a 2-factor model where the spotprice logarithm is the sum

of an arithmetic brownian motion, representing the persistent variations, and a zero-mean

reverting process, capturing the short-term deviations.

More sophisticated commodity models with constant volatility often assume 3-factor

specifications which extends the aforementioned models including a stochastic process for

interest rates (Casassus & Collin-Dufresne, 2005; Hilliard & Reis, 1998; E. S. Schwartz,

1997).

As mentioned earlier, Cortazar and Naranjo (2006) is a remarkable example among the

constant volatility models. The authors develop a canonical model withN factors (where

N is an arbitrary number) which belongs to the affine diffusionframework presented in

the seminal work of Dai and Singleton (2000). In this model, the spot price logarithm

is the sum ofN factors following a multivariate mean-reversion process.As it is shown

in the article, theN-factor model is equivalent to, up to a rotation, to one wherethe

spot price follows a geometric brownian motion where its drift corresponds to the sum

of N − 1 factors following a multivariate mean-reversion process.This model also nest

several models commonly found in the literature and, due to its arbitrary number of factors,

achieves an excellent fit of the futures prices term-structure.

1.3.2. Stochastic Volatility Models of Commodity Prices

Despite of the evidence rejecting the constant volatility assumption (Duffie, Gray, &

Hoang, 1999; Larsson & Nossman, 2011), it does not have a major impact in the pric-

ing performance of futures contract due to the presence of USV in commodity derivative

markets. However, removing this hypothesis is crucial for valuation of more complex

derivatives with a convex payoff structure.
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The seminal work of Heston (1993) establishes the main framework to price options

under the stochastic volatility assumption. He proposes a 2-factor model composed by the

spot price and the variance factor. The first follows a geometric brownian motion whose

volatility is given by the square root of the variance factor, which follows a correlated

square root process. The price of an option contract is computed by finding the partial dif-

ferential equation solved by the characteristic function of the spot price and then applying

the Fourier inversion theorem.

Richter and Sørensen (2002) develop a 3-factor model to value options on agricul-

tural commodities including seasonality an stochastic volatility under an affine frame-

work. Hughen (2010) also presents a 3-factor model but, in this case, it is maximal under

the affine diffusion framework. More recently, Chiang, Hughen, and Sagi (2015) explore

a 4-factor model where the convenience yield is driven by twofactors.

Yan (2002) introduces a 4-factor model with spot price jumpswhere the risk-free in-

terest rate and the convenience yield are separately modeled as an square-root process and

a mean-reverting process, respectively.

Trolle and Schwartz (2009b) develop a model under the HJM framework with two

volatility factors following a multivariate square root process. They interpret their results

as that the first volatility factor captures the short-term deviations while the second cap-

tures the more persistent ones. They also test their specification using only one volatility

factor which results in a worst fit of options prices. Their model exhibits USV since, as

they mention, it arises naturally under the HJM framework.

Finally, some authors have explored models that allow for atleast some dependence

of futures prices on stochastic volatility. Nielsen and Schwartz (2004) proposes a 2-factor

model which extends the Gibson and Schwartz (1990) model by letting the volatility to

be proportional to the convenience yield. Liu and Tang (2011) generalizes the previous

specification by modeling the risk-free interest rate and the convenience yield similarly as

Yan (2002), but in this case, both follows an square-root process.
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1.4. Main Conclusions

The financialization of commodity derivatives markets has led researchers to seek a

better understanding of the stochastic behavior of prices observed in the market. Conse-

quently, different models have been proposed with the aim ofproviding an explanation for

such behavior.

This thesis presents a novel model under the affine diffusionframework of Dai and

Singleton (2000). The model develops a multifactor specification for the cost-of-carry and

instantaneous volatility of spot price, and nests many existing models commonly found in

literature. The model also exhibits USV, yielding closed-form formulas for futures prices,

and quasi-analytical expressions for option prices.

An empirical implementation of the model is conducted usingthe an extensive panel of

futures and options data ranging from January 2006 to December 2014 while considering

a different number of volatility factors. The results of this implementation suggest that

the multifactor structure is crucial to achieve an accuratefit of futures and options prices.

Moreover, for the WTI oil case, at least two cost-of-carry and three volatility factors are

required to obtain accurate valuations.

Additional results of the empirical implementation also suggest that increasing the

number of factors not only provide a better fit of the observedprices but also delivers

higher robustness of the estimation and offers a better fit ofthe price return distribution,

for example, through its third moment.

1.5. Further Research

Given the generality, intuitiveness and robustness of its multifactorial specification, the

model presented in this paper is placed as a very attractive element for further research.

Since the model belongs to the affine diffusion framework, itmay be easily extended to

the affine jump-diffusion framework of Duffie, Pan, and Singleton (2000). The inclusion

7



of jumps provides might be relevant in capturing the dynamics of commodity returns and

when pricing short-term in-the-money options. However, atthis time, is not clear how to

perform an empirical implementation of this model with suchextensive panel as the one

used in this work.

Finally, the model presented in this article allows to characterize the different com-

modity markets in terms of how many factors are required to perform an accurate fit of the

futures and options prices observed. For example, do the copper implied volatility term-

structure also need at least three factors to be properly explained? This one interesting

question may be answered directly by the model implementation.
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2. A MULTIFACTOR STOCHASTIC VOLATILITY MODEL OF COMMODITY

PRICES

2.1. Introduction

Commodity contingent claims play a key role in modern financial markets. Com-

modity producers and consumers actively use futures and options contracts to hedge their

exposures to unpredictable price swings. At the same time, speculative activity in these

markets has increased over time, leading to large investment flows from institutional in-

vestors and wealthy individuals into commodities, a phenomenon commonly known as

financialization (Tang & Xiong, 2012). On the public policy side, there has been increas-

ing pressure to understand whether demand for commodity related contracts affects the

behavior of underlying prices (Masters, 2008, 2009). All these factors have created a re-

newed interest in understanding the dynamics and stochastic behavior of spot prices, and

the associated derivative contracts traded in these markets.

In this paper we propose a novel representation of commodityprices that generalizes

and nests many models commonly found in the literature, suchas Casassus and Collin-

Dufresne (2005); E. Schwartz and Smith (2000); E. S. Schwartz (1997) and Cortazar and

Naranjo (2006), among many others. In our model, we allow forboth the cost-of-carry

and the spot price volatility to be driven each by an arbitrary number of risk factors, in

a way that is simple and straightforward to implement. Empirically, the model performs

well when applied to oil futures and options data, yielding accurate valuations of observed

contracts for a wide range of maturities and strike prices. As a consequence, the model is

able to explain well-known empirical regularities in option markets such as the dynamics

of volatility smiles, as well as the skew in risk-neutral distributions.

Early models of commodity prices such as E. S. Schwartz (1997) propose multifactor

representations of the convenience yield, but leave the volatility of the spot price constant.

While providing a good fit to the observed term-structure of futures prices, these models

9



usually perform poorly when applied to options (Cortazar etal., 2015). As a result, recent

studies in the commodities literature have focused in incorporating stochastic volatility

into the dynamics of spot prices (see e.g. Chiang et al., 2015; Trolle & Schwartz, 2009b).

Our model generalizes several recent stochastic volatility models such as Chiang et al.

(2015) by adding a rich multifactor structure to the spot price variance. Specifically, in our

model futures prices are driven byN factors (one factor corresponding to the logarithm of

the spot price and the remainingN − 1 factors modeling its cost-of-carry) while options

prices are driven byM additional volatility factors. Our specification builds onthe general

affine diffusion framework of Dai and Singleton (2000), and exhibits unspanned stochastic

volatility (USV),1 providing simple closed-form expressions of commodity futures, and

yielding easy-to-compute analytic formulas of European options on futures.

We estimate model parameters using quasi-maximum likelihood and the Extended

Kalman Filter (EKF) on a sample of daily WTI oil futures and options from January 2006

until December 2014. Our results reveal that the model achieves an accurate fit of the

term-structure of futures prices, the implied volatility surface, and the implied volatility

skewness. We test the robustness of the model by comparing in- and out-of-sample cali-

brations.

Our results suggest that the multifactor structure of the model is crucial in pricing

accurately futures and options contracts alike. Empirically, we confirm that only the cost-

of-carry factors and the spot price are used to fit futures prices, while the volatility factors

only affect the pricing of options contracts, consistent with the USV nature of our model.

Finally, our analysis reveals that at least two cost-of-carry and three volatility factors are

required to obtain accurate futures and options valuations. Adding a fourth volatility factor

improves the pricing of options in periods of market stress.

1The phenomenon of USV was initially studied in fixed-income markets (Collin-Dufresne & Goldstein,
2002; Li & Zhao, 2006), where it refers to the fact that bonds alone are unable to hedge interest-rate volatility
risk, making interest-rate options non-redundant assets.For commodities, USV implies that futures and
other commodity linear contracts are unable to hedge spot price volatility risk, making options on futures
non-redundant assets.
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There is recent literature on stochastic volatility modelsfor commodity prices that

we survey in Section 2.2. Within this literature, the papersclosest to ours are Chiang et

al. (2015) and Trolle and Schwartz (2009b). We believe that we add to their work. For

example, we show in Section 2.3.3 that the model studied in Chiang et al. (2015) is a

restricted version of a specification of ours in which we use three factors to model futures

contracts and one factor to explain option prices. Trolle and Schwartz (2009b) propose

an USV multifactor model of commodity prices within the Heath et al. (1992) (HJM)

framework. We show that we can obtain tractable and general results within the widely

used affine-diffusion class of models of the spot price, allowing us to generalize a large

body of existing literature by embedding an arbitrary multifactor structure in the stochastic

behavior of the variance. Furthermore, we provide simple sufficient conditions that deliver

USV in multifactor models of the spot price.

The remainder of the article is organized as follows. Section 2.2 describes our model

in its most general form, studies broad sufficient conditions that deliver USV, and reviews

the literature. Section 2.3 explains the affine diffusion implementation of our model, and

derives formulas for pricing commodity contingent claims.Section 2.4 presents the em-

pirical methodology, while results are reported and discussed in Section 2.5. Section 2.6

finally concludes. All proofs and details on the numerical estimation are presented in the

Appendix.

2.2. General USV Model Formulation

We present our model of commodity prices in its most general form, and identify

simple, although broad, sufficient conditions that deliverUSV. For commodities, such

models yield simple valuation formulas for futures prices,while at the same time allowing

for arbitrarily complex dynamics in the volatility, which is relevant when pricing options

and other derivatives with convex payoffs. On the other hand, there is a large body of

literature that has studied general multifactor models of commodity prices while either

leaving the volatility constant, or allowing the variance to be driven by a simple univariate
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process. We show how to naturally embed these well-known models of commodity prices

within the more general USV class.

Throughout this paper we consider a complete probability space(Ω,F ,P) and a fil-

trationF = (Ft)t≥0 generated by standardP-Wiener processes(Wt)t≥0 in RN+2M and

satisfying the usual conditions (see e.g. Protter, 2005). The spot priceS is described by

the process:
dSt

St

= (yt + πt)dt+ σSdBt +
√
vtdZt, (2.1)

where(Bt)t≥0 and(Zt)t≥0 are standardP-Wiener processes inR spanned by(Wt)t≥0, y

represents the cost-of-carry,π designates the commodity risk-premium, andσS denotes

the constant component of the variance whilev denotes its stochastic component. Under

the pricing measureQ, equivalent to the physical measureP, the spot priceS is described

by the process:
dSt

St

= ytdt+ σSdB
Q
t +

√
vtdZ

Q
t , (2.2)

whereBQ andZQ are standardF-adaptedQ-Wiener processes inR.

Equations (2.1) and (2.2) capture the essence of our modeling approach. In the next

section we show how to operationalize the model and write theF-adapted processes

(yt)t≥0, (πt)t≥0 and(vt)t≥0 as multifactor affine diffusions, but for the moment we leave

them unspecified. Nevertheless, it will prove useful in our analysis to put some restrictions

on the statistical relation betweeny, v,BQ andZQ in order to (i) obtain simple futures and

option valuation formulas, and (ii) separate the problem offitting futures and option prices.

Since these two objectives are achieved when the model exhibits USV, we introduce the

following sufficient (although not necessary) assumption that yields the result.

ASSUMPTION1. TheF-adapted processes
{

(yt)t≥0 ,
(
BQ

t

)

t≥0

}

areQ-independent of
{

(vt)t≥0 ,
(
ZQ

t

)

t≥0

}

.

Notwithstanding its generality and simplicity, we must note that Assumption 1 is not

necessary to obtain USV. In Appendix A we present an example of a model that exhibits
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USV but in which Assumption 1 is violated since the convenience yield is correlated with

the stochastic component of the variance. However, as will be shown later in our empirical

analysis, the model written using Assumtion 1 is already flexible enough to fit futures and

option prices well. Hence, we do not find necessary to complicate the analysis further.

Consider now a futures contractFt,τ at instantt with delivery at timeT = t + τ . It

is well known thatFt,τ = E
Q
t [ST ] (Duffie, 2001; Pozdnyakov & Steele, 2004). A direct

application of It ō’s Lemma allows us to write:

ST = St exp

{∫ T

t

(

yu −
1

2
σ2
S

)

du+

∫ T

t

σSdB
Q
u

}

exp

{∫ T

t

(

−1

2
vu

)

du+

∫ T

t

√
vudZ

Q
u

}

,

(2.3)

which implies that

Ft,τ = StE
Q
t

[

exp

{∫ T

t

(

yu −
1

2
σ2
S

)

du+

∫ T

t

σSdB
Q
u

}]

(2.4)

since both exponentials in (2.3) areQ-independent under Assumption 1, and the second

exponential is aQ-martingale.

Equation (2.4) shows that futures prices in this model are unable to hedge the volatility

risk, i.e. the stochastic component of the variance remainsunspecified. Moreover, futures

prices can be computed “as if” the spot price follows the simpler homoskedastic process

underQ:

dSt

St

= ytdt+ σSdB
Q
t . (2.5)

Notice that in Equation (2.5) the cost-of-carryy can be correlated with the spot priceS,

a stylized feature of many constant-variance multifactor models of commodity prices (see

e.g. E. S. Schwartz, 1997). Some recent USV models such as Chiang et al. (2015) do not

allow for such dependence. Our modeling approach is able to combine both views.

Models in which futures prices are characterized as in (2.4)have been widely studied in

the literature. For example, Gibson and Schwartz (1990), E.S. Schwartz (1997), Hilliard

and Reis (1998), E. Schwartz and Smith (2000), Casassus and Collin-Dufresne (2005),
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and Cortazar and Naranjo (2006) model the cost-of-carryy as a linear combination of cor-

related Gaussian processes that are also correlated withS. Using a Gaussian process for

the cost-of-carry has the advantage of delivering simple closed-form expressions for fu-

tures prices that are suitable for empirical implementations, even with an arbitrary number

of risk factors and large data sets (Cortazar & Naranjo, 2006). In all the aforementioned

studies the volatility of spot returns remains constant.

The assumption of constant volatility, though, contrasts with the evidence that the

variance of many commodities is stochastic and clusters in times of economic stress (see

e.g. Du, Yu, & Hayes, 2011; Larsson & Nossman, 2011; Nazlioglu, Erdem, & Soytas,

2013). Also, stochastic volatility models perform better than constant volatility ones when

pricing commodity options (Cortazar et al., 2015).

The most common way to introduce stochastic volatility in (2.1) is to assume that

vt follows a square-root process as in Heston (1993). Within the USV class, Larsson

and Nossman (2011) explore the time-series properties of a model in which the cost-of-

carry is constant and the variance follows a square-root process. Yan (2002) introduces

a model in which the cost-of-carry at instantt is represented asyt = rt − δt, where in

interest rater and the variancev follow square-root processes, and the convenience yield

δ follows a Ornstein-Uhlenbeck process. Chiang et al. (2015)explore the macro-economic

implications of a model in which the cost-of-carryy is driven by two correlated Gaussian

processes, and the variancev follows an square-root process.

Even though USV provides simple futures valuation formulas, some authors have ex-

plored models that allow for at least some dependence of futures prices on stochastic

volatility. Nielsen and Schwartz (2004) propose a model in which the cost-of-carry at in-

stantt is yt = r − δt, where the convenience yieldδ follows a square-root process that

also drives the variancev. Liu and Tang (2011) generalize the previous specification by

modeling the cost-of-carry asyt = rt− δt, where bothr andδ follow independent square-

root processes, and the variancev depends onr andδ. Richter and Sørensen (2002) and
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Hughen (2010) explore more general three-factor models in which the variancev is al-

lowed to follow an independent square-root process. The model of Hughen (2010) is

maximal within the affineA1 (3) class of Dai and Singleton (2000) and allows for USV

under suitable parameter restrictions. Notwithstanding the greater generality of these mod-

els, USV allows for simpler futures and options valuation formulas as we show in later in

the paper, which is useful when estimating the model using a large panel of futures and

option prices. Moreover, we show that a multifactor USV structure is rich enough to fit

the cross-section of futures and options prices accurately.

A somewhat different strand of literature explores the pricing of commodity derivatives

within the HJM framework (Amin, Ng, & Pirrong, 1999; Cortazar & Schwartz, 1994; Mil-

tersen, 2003; Miltersen & Schwartz, 1998; Trolle & Schwartz, 2009b). With the exception

of Trolle and Schwartz (2009b), these papers do not allow forstochastic volatility. By

mimicking the reasoning in the fixed-income literature, Trolle and Schwartz (2009b) con-

clude that USV arises naturally under the HJM framework, whereas in multifactor models

of the spot price like (2.2) the volatility is almost invariably completely spanned by the

futures contracts. We show that Assumption 1 provides a natural and simple sufficient

condition to obtain USV in multifactor models of commodity spot prices. This allows

us to generalize a large body of existing literature by embedding an arbitrary multifactor

structure in the stochastic behavior of the variance.

We finalize this section by noting that some of the previous models also allow for

jumps in the spot price (Casassus & Collin-Dufresne, 2005; Hilliard & Reis, 1998; Lars-

son & Nossman, 2011; Yan, 2002). Existing studies in equity markets show that jumps

are important in explaining the time-series of equity returns (Eraker, Johannes, & Polson,

2003; Johannes, Polson, & Stroud, 2009). Larsson and Nossman (2011) find similar ev-

idence for oil prices. Moreover, several studies have shownthat jumps are also relevant

in explaining short-term maturity options (Bates, 2000; Eraker, 2004; Pan, 2002). Our

results suggest, however, that our model is able to explain futures and option prices well

without resorting to jumps since we allow for many factors inthe variance. Moreover, in
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unreported results, we find that including jumps in our modelleaves the pricing ability of

the model almost unchanged, specially for specifications with three or four factors in the

variance.

2.3. USV Affine Diffusion Model Formulation

In this section we show how to model the cost-of-carryy, the risk-premiumπ, and the

stochastic variancev presented in (2.1) and (2.2) using the affine diffusion (AD) frame-

work introduced by Dai and Singleton (2000). Specifically, in our model futures prices

are driven byN factors (one factor corresponding to the logarithm of the spot price and

the remainingN − 1 factors modeling its cost-of-carry) while options prices are driven by

M additional volatility factors.

Our specification, however, satisfies Assumption 1 and henceexhibits USV. Further-

more, we use the drift normalized specification for the volatility proposed by Joslin (2014)

which allows for richer formulations in the instantaneous variance of the spot price.2 The

proposed model yields simple futures and option pricing formulas, and nests many factor

models commonly found in the commodities literature (e.g. Casassus & Collin-Dufresne,

2005; Cortazar & Naranjo, 2006; E. Schwartz & Smith, 2000; E.S. Schwartz, 1997).

Hence, our USV-AD formulation is a particular case of the general AD classAM (N +M)

introduced by Dai and Singleton (2000) where we restrict thevolatility of the cost-of-carry

factors to be constant in order to ensure USV. In the rest of the article we refer to our re-

stricted USD-AD specification byAU
M (N +M).

2Cheridito, Filipović, and Kimmel (2010) provide examplesof affine diffusion processes with state space in
R2 ×R2

+ that are not contained in the Dai and Singleton (2000) representation. Joslin (2014) shows that the
Dai and Singleton (2000) representation for affine processes in the state space inRN × RM

+ is exhaustive
only whenN ≤ 1 orM ≤ 1.
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2.3.1. State Vector Dynamics

We consider a state vector at instantt, Xt, which belongs to the state spaceRN × RM
+

and is denoted as

Xt =








Yt

logSt

Vt








(2.6)

whereYt = (x1,t, x2,t, . . . , xN−1,t)
′ is a state vector inRN−1 driving the cost-of-carry,St

denotes the commodity spot price wherelog St = xN,t, andVt = (xN+1,t, xN+2,t, . . . , xN+M,t)
′

is a state vector inRM
+ characterizing the stochastic nature of the spot price volatility.

The dynamics of the state vectorX under the physical measureP are characterized by

the following AD specification:

dXt = (Θ−KXt) dt+ΣtdWt, (2.7)

whereΘ ∈ RN+M , K ∈ R(N+M)×(N+M), Σt ∈ R(N+M)×(N+2M), andWt ∈ RN+2M are

such that

Θ =






















0
...

0

θN

1

1
...

1






















, K =






















κ1 · · · 0 0 0 0 · · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · κN−1 0 0 0 · · · 0

1 · · · 1 0 ϑ1 ϑ2 · · · ϑM

0 · · · 0 0 κN+1 κN+1,N+2 · · · κN+1,N+M

0 · · · 0 0 κN+2,N+1 κN+2 · · · κN+2,N+M

...
. . .

...
...

...
...

. . .
...

0 · · · 0 0 κN+M,N+1 κN+M,N+2 · · · κN+M






















,
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with κ1, . . . , κN+M > 0, andκN+i,N+j < 0 for i, j ∈ {1, . . . ,M} , i 6= j.3 The matrixΣt

is chosen such that the instantaneous covariance matrixHt = ΣtΣ
′
t satisfies

Ht = H0 +H1xN+1,t + . . .+HMxN+M,t, (2.8)

whereH0,H1 . . . ,HM ∈ R(N+M)×(N+M) are given by

H0 =




Γ0 0N×M

0M×N 0M×M



 , Hi =




0(N−1)×(N−1) 0(N−1)×(M+1)

0(M+1)×(N−1) Γi



 for i ∈ {1, . . . ,M},

andWt is a vector of standardP-Wiener processes. The matrixΓ0 ∈ RN×N is positive

definite and specified as

Γ0 =











σ2
1 σ1σ2ρ12 · · · σ1σNρ1N

σ1σ2ρ12 σ2
2 · · · σ2σNρ2N

...
...

.. .
...

σ1σNρ1N σ2σNρ2N · · · σ2
N











with σ1, . . . , σN > 0 and |ρij| ≤ 1 for i, j ∈ {1, . . . , N} , i 6= j, whereas matrices

Γ1, . . . ,ΓM ∈ R(M+1)×(M+1) are also positive-definite and given by

Γ1 =











γ2
1 γ1ς1̺1 · · · 0

γ1ς1̺1 ς21 · · · 0
...

...
. . .

...

0 0 · · · 0











, . . . , ΓM =











γ2
M 0 · · · γM ςM̺M

0 0 · · · 0
...

...
. . .

...

γMςM̺M 0 · · · ς2M











3These technical conditions are necessary for the existenceof such process (Dai & Singleton, 2000) since
they ensure that the drifts of the volatility factors are positive as they approach zero.
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whereγ1, . . . , γM , ς1, . . . , ςM > 0 and |̺1| , . . . , |̺M | ≤ 1. Hence, we can express the

instantaneous volatility matrixΣt as

Σt =


















Υ0

0(N−1)×2M

γ̃1,t γ̃2,t . . . γ̃M,t 0 0 . . . 0

ς̃1,t̺1 0 · · · 0 ς̃1,t
√

1− ̺21 0 · · · 0

0M×N

0 ς̃2,t̺2 · · · 0 0 ς̃2,t
√

1− ̺22 · · · 0
...

...
. . .

...
...

...
. . .

...

0 0 · · · ς̃M,t̺M 0 0 · · · ς̃M,t

√

1− ̺2M


















,

(2.9)

whereΥ0 denotes the Cholesky decomposition ofΓ0, i.e. Υ0Υ
′
0 = Γ0, and γ̃m,t =

γm
√
xN+m,t, ς̃m,t = ςm

√
xN+m,t for m ∈ {1, . . . ,M}.

We adopt the completely-affine risk-premia specification ofDai and Singleton (2000)

and define the market price of risk vectorΛt ∈ RN+2M as

Λt =

























λ1

...

λN

λN+1
√
xN+1,t

...

λN+M
√
xN+M,t

λN+M+1
√
xN+1,t

...

λN+2M
√
xN+M,t

























, (2.10)

which implies that dynamics of the state vector under the risk-neutral measureQ are

dXt =
(
Θ

Q −K
Q
Xt

)
dt+ΣtdW

Q
t , (2.11)
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whereΘQ ∈ RN+M ,KQ ∈ R(N+M)×(N+M) are such that

Θ
Q =






















θQ1
...

θQN−1

θQN

1

1
...

1






















, K
Q =






















κ1 · · · 0 0 0 0 · · · 0
...

. . .
...

...
...

...
. . .

...

0 · · · κN−1 0 0 0 · · · 0

1 · · · 1 0 1
2
γ2
1

1
2
γ2
2 · · · 1

2
γ2
M

0 · · · 0 0 κQ
N+1 κN+1,N+2 · · · κN+1,N+M

0 · · · 0 0 κN+2,N+1 κQ
N+2 · · · κN+2,N+M

...
. . .

...
...

...
...

. . .
...

0 · · · 0 0 κN+M,N+1 κN+M,N+2 · · · κQ
N+M






















,

with

θQn = −
(

λ1(Υ0)n,1 + . . .+ λi(Υ0)n,n

)

for n ∈ {1, . . . , N − 1} ,

θQN = θN −
(

λ1(Υ0)N,1 + λ2(Υ0)N,2 + . . .+ λN(Υ0)N,N

)

,

κQ
N+m = κN+m + ςi

(

λN+m̺m + λN+M+m

√

1− ̺2m

)

> 0 for m ∈ {1, . . . ,M} .

There are several comments to make on our AD specification. First, it is apparent from

(2.11) that the cost-of-carry

yt = θQN − x1,t − x2,t − . . .− xN−1,t

follows a Gaussian process, as in the models of E. S. Schwartz(1997), E. Schwartz and

Smith (2000), Casassus and Collin-Dufresne (2005), and Cortazar and Naranjo (2006),

among others.

Second, the econometric identification of the model in (2.7)is guaranteed by the fact

that we imposeθN+m = 1 for all m ∈ {1, . . . ,M}. Even though we could have set

γm = 1 to achieve the same objective, we prefer the former alternative since it normalizes

the volatility dynamics while keeping their values and related parameters of the same order

of magnitude.
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Third, the model presented in (2.7) is nested by the general specification (2.1) since

we have the following natural correspondances:

πt = λ1(Υ0)N,1 + λ2(Υ0)N,2 + . . .+ λN(Υ0)N,N

+ λN+1γ1xN+1,t + λN+2γ2xN+2,t + . . .+ λN+MγMxN+M,t,

σS = σN ,

√
vt =

√

γ2
1xN+1,t + γ2

2xN+2,t + . . .+ γ2
MxN+M,t,

Bt =
(Υ0)N,1W1,t + (Υ0)N,2W2,t + . . .+ (Υ0)N,NWN,t

σN

,

Zt =
γ1
√
xN+1,tWN+1 + γ2

√
xN+2,tWN+2,t + . . .+ γM

√
xN+M,tWN+M,t

√

γ2
1xN+1,t + γ2

2xN+2,t + . . .+ γ2
MxN+M,t

.

Hence, innovations to the log-spot price are driven by constant and stochastic volatility

shocks, and the log-spot price exhibits correlation with both the cost-of-carry and the

stochastic component of the variance.

Fourth, our model allows for a rich correlation structure among the cost-of-carry fac-

tors, among the stochastic variance factors, and between the cost-of-carry and stochastic

variance factors with the spot price. First, if we denote by

(Ξt)i,j =
Covt [dxi,t, dxj,t]

√
Vt [dxi,t]

√
Vt [dxj,t]

=
(Ht)i,j

√
(Ht)i,i

√
(Ht)j,j

the instantaneous correlation betweenxi,t andxj,t,
4 a direct computation reveals that

(Ξt)i,j = ρij for i, j = 1, . . . , N.

Hence, the instantaneous correlation among the factors driving the cost-of-carry, and be-

tween those factors and the spot price, is constant and determined by the parametersρij in

the full matrixΓ0. Furthermore, form ∈ {1, . . . ,M} we have that

(Ξt)N,N+m =
̺mγm

√
xN+m,t

√

σ2
N + γ2

1xN+1,t + γ2
2xN+2,t + . . .+ γ2

MxN+M,t

,

4Here(Ξt)i,j denotes the element(i, j) of matrixΞt.
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revealing that the instantaneous correlation between the factors driving the stochastic vari-

ance and the spot price is itself time-varying, and bounded in absolute value by|̺m|. In

contrast, the instantaneous correlation among the factorsdriving the stochastic variance is

zero, but these factors are indirectly correlated through the parametersκN+i,N+j in the full

block insideK.

Fifth, the risk-neutral specification presented in (2.11) is nested by (2.2) since we also

have

BQ
t =

(Υ0)N,1W
Q
1,t + (Υ0)N,2W

Q
2,t + . . .+ (Υ0)N,NW

Q
N,t

σN

,

ZQ
t =

γ1
√
xN+1,tW

Q
N+1 + γ2

√
xN+2,tW

Q
N+2,t + . . .+ γM

√
xN+M,tW

Q
N+M,t

√

γ2
1xN+1,t + γ2

2xN+2,t + . . .+ γ2
MxN+M,t

.

Assumption 1 is then trivially satisfied because the structure of KQ implies that under

the risk-neutral measureQ the processesY andV do not have common terms in their

drifts, and as may be seen from the expression forΣt in (2.9), their diffusive noises are

uncorrelated. Hence, we can conclude that the AD model presented in (2.11) exhibits USV.

This characterization will be explicitly verified when we compute closed-form expressions

for futures prices.

2.3.2. Pricing of Commodity Derivatives

Our USV-AD model yields closed-form expressions for futures prices and simple

quasi-analytical formulas for the European option prices.We follow Duffie et al. (2000)

and use the joint moment generating function of the state vector X. Givenφ ∈ CN+M ,

consider the transform

Ψt,τ (φ) = E
Q
t

[

eφ
′
XT

]

(2.12)

whereT = t + τ andEQ
t [·] denotes the time-t conditional expectation under the risk-

neutral measureQ. This transform has an exponentially affine solution as shown by

proposition 1.
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PROPOSITION1. The transformΨ defined in(2.12)is given by

log Ψt,τ (φ) = α(τ ;φ) + β(τ ;φ)′Xt (2.13)

whereα andβ satisfy the complex-valued ODEs

α̇ = Θ
Q′
β +

1

2
β′
H0β (2.14)

β̇ = −K
Q′
β +

M∑

m=1

1

2
β′
HmβeN+m (2.15)

with initial conditionsα(0;φ) = 0 andβ(0;φ) = φ, anden denotes a basis vector in

RN+M whosen-th element is equal to one, and zero otherwise.

PROOF. See Appendix B.1. �

Furthermore, due to the structure of the matrixK
Q, it is possible to compute closed-

form expressions forβ1, . . . , βN in (2.14):

βn =







e−κ
Q
nτφn +

e−κ
Q
nτ − 1

κQ
n

φN if n < N,

φN if n = N,

(2.16)

which yields closed-form expressions for futures prices asshown by Proposition 2.

2.3.2.1. Futures Prices

Let Ft,τ denote the futures price at instantt with delivery at timeT = t + τ . It is

a well known fact (e.g. Duffie, 2001; Pozdnyakov & Steele, 2004) that the futures price

corresponds to the risk-neutral expectation of the future spot price

Ft,τ = E
Q
t [ST ] = Ψt,τ (eN).

Hence, futures price can be obtained directly from the transform Ψ introduced in (2.12).
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PROPOSITION2. The futures price at instantt with delivery at timeT = t+ τ is given

by

logFt,τ = αF (τ) + βF (τ)′Xt

whereαF andβF are given by

αF (τ) = θQNτ +

N−1∑

n=1

θQn
κQ
n

(

1− e−κ
Q
nτ

κQ
n

− τ

)

+
1

2

N∑

i=1

N∑

j=1

σiσjρijζij(τ)

βF
n (τ) =







1

κQ
n

(

e−κ
Q
nτ − 1

)

if n < N,

1 if n = N,

0 if n > N,

andζij(τ) = ζji(τ) where

ζij(τ) =







1

κQ
i κ

Q
j

(

τ − 1− e−κ
Q
i
τ

κQ
i

− 1− e−κ
Q
j
τ

κQ
j

+
1− e−(κQ

i
+κ

Q
j
)τ

κQ
i + κQ

j

)

if i, j < N,

1

κQ
i

(

1− e−κ
Q
i
τ

κQ
i

− τ

)

if i < j = N,

τ if i = j = N.

PROOF. See Appendix B.2. �

We note that in Proposition 2 the functionsβF
N+1, . . . , β

F
N+M are equal to zero, which

verifies that the model presented in (2.11) indeed exhibits USV.

2.3.2.2. European Options Prices

Let Pt,τ0,τ1(K) denote the price at timet of an European put option expiring at time

T0 = t+ τ0 with strikeK written on a futures contract expiring at timeT1 = T0 + τ1. The

option price is then given by

Pt,τ0,τ1(K) = E
Q
t

[

e−
∫ T0
t rsds (K − FT0,τ1) 1{FT0,τ1

<K}
]

,
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where1A denotes the indicator function of the setA andr denotes the instantaneous risk-

free rate. For the purpose of simplifying valuation formulas, we assume that(rt)t≥0 is

independent of(Xt)t≥0, which gives a very accurate approximation of the true priceof

short-term or medium-term options (Trolle & Schwartz, 2009b).

We first define the auxiliary transform

ΨF
t,τ0,τ1

(u) = E
Q
t

[
eu logFT0,τ1

]
, (2.17)

for someu ∈ C. In our USV-AD setting,ΨF can be computed in closed-form as shown

in the following proposition.

PROPOSITION3. The transformΨF defined in(2.17)is given by

log ΨF
t,τ0,τ1

(u) = u
(
αF (τ1)− αF (τ0 + τ1)

)
+ α

(
τ0; uβ

F (τ1)
)

+ u logFt,τ0+τ1 +

M∑

m=1

βN+m

(
τ0; uβ

F (τ1)
)
vm,t.

(2.18)

PROOF. See Appendix B.3. �

We can then apply this result to obtain a quasi-analytic formula forPt,τ0,τ1 .

PROPOSITION 4. The price at instantt of a European put option expiring at time

T0 = t + τ0 with strikeK written on a futures contract expiring at timeT1 = T0 + τ1 is

given by

Pt,τ0,τ1(K) =Bt,τ0 (KG0,1 (τ0, τ1; logK)−G1,1 (τ0, τ1; logK))

whereBt,τ0 denotes the price at instantt of a zero-coupon bond maturing inτ0, and

Ga,b(τ0, τ1; k) =
ΨF

t,τ0,τ1
(a)

2
− 1

π

∫ ∞

0

Im
[
ΨF

t,τ0,τ1
(a+ iub)e−iuk

]

u
du,

with Im[c] denoting the imaginary part ofc ∈ C and i =
√
−1 corresponding to the

imaginary unit.
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PROOF. See Appendix B.4. �

Following an analogous procedure, we can also price a European call option with the

same characteristics as shown in the following proposition.

PROPOSITION 5. The price at instantt of a European call option expiring at time

T0 = t + τ0 with strikeK written on a futures contract expiring at timeT1 = T0 + τ1 is

given by

Ct,τ0,τ1(K) =Bt,τ0 (G1,−1 (τ0, τ1;− logK)−KG0,−1 (τ0, τ1;− logK))

whereBt,τ0 andGa,b(τ0, τ1; k) are defined in Proposition 4.

PROOF. See Appendix B.5. �

2.3.3. Nested Models

Due to its general structure, our model nests several modelscommonly found in the

commodities literature. Some of these models, however, arewritten in a different although

equivalent form. We denote byξ the state vector of a different model, and say that this

model is equivalent to ours if there exists an affine transformation

Xt = Lξt +ϕ (2.19)

such that the matrixL is invertible and the state vector spaces are preserved (Dai& Sin-

gleton, 2000). The last condition is trivially satisfied ifL has the form

L =




LDD 0

0 LDV





whereLDV ∈ RM×M is a diagonal matrix with positive entries, andϕN+m = 0 for each

m ∈ {1, . . . ,M}. In that case,ξ also follows an AD processes as in (2.11) with parameters
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Θ̄
Q

, K̄Q, Σ̄t, andH̄i for eachi ∈ {0, 1, . . . ,M}, that relate to the original model by

Θ
Q = LΘ̄

Q
+ LK̄

Q
L

−1ϕ,

K
Q = LK̄

Q
L

−1,

Σt = LΣ̄t,

H0 = LH̄0L
′,

Hm =
1

(L)N+m,N+m

LH̄mL
′, m ∈ {1, . . . ,M} .

Note that market prices of risk are invariant to affine transformations.

For example, the model studied in Cortazar and Naranjo (2006) introduces a state

vectorξt at instantt which belongs to the state spaceRN , where the spot priceS at instant

t is defined as

logSt = ξ1,t + . . .+ ξN−1,t + ξN,t.

In their model, the state vector dynamics underQ are determined by

Θ̄
Q
=











θ̄1
...

θ̄N−1

θ̄N











, K̄
Q =











κ̄1 . . . 0 0
...

. . .
...

...

0 . . . κ̄N−1 0

0 . . . 0 0











,

where the covariance matrix is constant and given by

Σ̄tΣ̄
′
t =











σ̄2
1 ρ̄12σ̄1σ̄2 . . . ρ̄1N σ̄1σ̄N

ρ̄12σ̄1σ̄2 σ̄2
2 . . . ρ̄2N σ̄2σ̄N

...
...

. . .
...

ρ̄1N σ̄1σ̄N ρ̄2N σ̄2σ̄N . . . σ̄2
N











.
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Consider the affine transformation (2.19) parameterized by

L =











κ̄1 . . . 0 0
...

. . .
...

...

0 . . . κ̄N−1 0

1 . . . 1 1











, and ϕ =











0
...

0

0











.

Observe that, under this transformation, the spot price is given by logSt = xN,t. The

resulting state vectorXt satisfies (2.11) where

Θ
Q =











κ̄1θ̄1
...

κ̄N−1θ̄N−1

θ̄1 + . . .+ θ̄N−1 + θ̄N











, K
Q =











κ̄1 . . . 0 0
...

. . .
...

...

0 . . . κ̄N−1 0

0 . . . 0 0











,

ΣtΣ
′
t =











κ̄2
1σ̄

2
1 ρ̄12κ̄1σ̄1κ̄2σ̄2 . . . ρ1N κ̄1σ̄1σN

ρ̄12κ̄1σ̄1κ̄2σ̄2 κ̄2
2σ̄

2
2 . . . ρ2N κ̄2σ̄2σN

...
...

. . .
...

ρ1N κ̄1σ̄1σN ρ2N κ̄2σ̄2σN . . . σ2
N











,

σN =

√
√
√
√

N∑

i=1

σ̄2
i + 2

N∑

i=1

N∑

j=i+1

ρ̄ij σ̄iσ̄j and ρiN =
σ̄1ρ̄1i + σ̄2ρ̄2i . . .+ σ̄N ρ̄iN

σN

.

SinceL is invertible, we conclude that the model presented by Cortazar and Naranjo

(2006), which in turn nests the models of Cortazar and Schwartz (2003); Gibson and

Schwartz (1990); E. Schwartz and Smith (2000); E. S. Schwartz (1997), is equivalent to

our AU
0 (N) specification. Also, note that by using a more general marketprice of risk

specification ourAU
0 (3) model is also equivalent to the one presented in Casassus and

Collin-Dufresne (2005).
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The model introduced by Hughen (2010) with USV restrictionsis equivalent to our

AU
1 (3) specification. Hughen (2010) includes a parameterν to denote the minimum level

of the instantaneous spot variance, a role performed byσ2
N in our model.

The model presented in Chiang et al. (2015) is nested by ourAU
1 (4) specification. In

their model, the log-spot price corresponds to the sum of a mean-reverting and a persistent

factor, where only the later exhibits stochastic volatility. The authors introduce a state

vectorξt at instantt which belongs to the state spaceR3 × R+, and define the spot price

S at instantt as

logSt = ξ1,t + ξ3,t.

The state vector dynamics underQ are determined by

Θ̄
Q
=










0

θ̄1

0

θ̄2










, K̄
Q =










κ̄1 0 0 0

0 κ̄2 0 0

0 −1 0 1
2

0 0 0 κ̄3










,

while the covariance matrix is given by

Σ̄tΣ̄
′
t =










σ̄2
1 ρ̄1σ̄1σ̄2 −σ̄2

1 0

ρ̄1σ̄1σ̄2 σ̄2
2 −ρ̄1σ̄1σ̄2 0

−σ̄2
1 −ρ̄1σ̄1σ̄2 σ̄2

1 0

0 0 0 0










+










0 0 0 0

0 0 0 0

0 0 1 ρ̄2σ̄3

0 0 ρ̄2σ̄3 σ̄2
3










ξ4,t.

Consider the affine transformation (2.19) parameterized by

L =










κ̄1 0 0 0

0 −1 0 0

1 0 1 0

0 0 0 1










and ϕ =










0

θ̄1
κ̄2

0

0










.

Observe that, under this transformation, the spot price is given by log St = x3,t while its

instantaneous volatility is given byx4,t. The resulting state vectorXt satisfies the affine
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diffusion (2.11) where

Θ
Q =










0

0

θ̄1
κ̄2

θ̄2










, K
Q =










κ̄1 0 0 0

0 κ̄2 0 0

1 1 0 1
2

0 0 0 κ̄3










,

while the covariance matrix is given by

ΣtΣ
′
t =










κ̄2
1σ̄

2
1 −ρ̄1κ̄1σ̄1σ̄2 0 0

−ρ̄1κ̄1σ̄1σ̄2 σ̄2
2 0 0

0 0 0 0

0 0 0 0










+










0 0 0 0

0 0 0 0

0 0 1 ρ̄2σ̄3

0 0 ρ̄2σ̄3 σ̄2
3










x4,t.

SinceL is invertible, we conclude that the model presented by Chiang et al. (2015)

is nested by ourAU
1 (4) specification. The two models, though, are not equivalent since

the authors set the constant volatility parameter to zero which forces the spot price to be

uncorrelated with the cost-of-carry factors. As a consequence, all the coefficients inside

the box in the previous expression are equal to zero.

2.4. Data and Estimation Procedure

2.4.1. Data

Our dataset includes daily WTI futures and option prices from January, 3rd 2006 until

December, 31st 2014 traded at NYMEX, which corresponds to 9 years of data. In what

follows, we apply the same filters and data definitions as Trolle and Schwartz (2009b).

For futures, we select twelve generic contracts: the first 6-month futures (M1–M6),

the following two contracts with expiration either in March, June, September and De-

cember (Q1–Q2), and the next four contracts with expirationin December (Y1–Y4). We

discard all futures with fourteen or fewer days to expiration since they report a significant

reduction in their open interest.
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Figure D.1 presents the evolution of the term-structure of futures prices for the sample

period. If we use the closest-to-maturity contract as a proxy for the spot price, the figure

displays strong variability of oil prices reaching almost USD 150 per barrel at the end

of 2008, and dropping below USD 40 per barrel short after. Thefigure also shows that

the term-structure changes its shape continuously during the sample period, going from

contango to backwardation, and vice-versa. Finally, the figure displays a sustained drop

in prices at the end of 2014.

For options, moneyness is defined as the strike price dividedby the price of the un-

derlying futures contract. For each maturity we split the range of moneyness into eleven

intervals: 0.78–0.82, 0.82–0.86, 0.86–0.90, 0.90–0.94, 0.94–0.98, 0.98–1.02, 1.02–1.06,

1.06–1.10, 1.10–1.14, 1.14–1.18, and 1.18–1.22. For a given maturity and moneyness, we

select the contract that is closest to the medium-point of the interval.

Since options on oil futures are American, we use equivalentEuropean option prices

obtained by first computing implied volatilities using the approximation detailed in Barone-

Adesi and Whaley (1987), and then computing the corresponding European price using the

method of Black (1976).

We only include out-of-the-money (OTM) and at-the-money (ATM) options, which

has the advantage of minimizing the errors of our early-exercise approximation. Moreover,

OTM options tend to be more liquid than in-the-money (ITM) options.5 Furthermore,

we only include contracts with open interest greater than 100, price over 10 cents, and

written over the first eight futures (M1–Q2) to minimize the impact of the early-exercise

approximation for longer dated contracts.

5Given a certain maturity, it may occur that there is a put and acall with moneyness exactly to one, or two
options with the same moneyness distance to the medium-point of their interval. In such cases we keep both
contracts.
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Figure D.2 displays the implied volatility for ATM options,that moves significantly

during the sample period. Similar to futures prices, the term-structure of implied volatil-

ities also changes its shape through time. We can observe a large increase in implied

volatilities at the end of 2008 and more recently at the end of2014.

After applying the filters to the data, we are left with 27 156 futures and 175 938 op-

tions over a period of 2 263 trading days.

2.4.2. Estimation Procedure

We estimate the unobserved state-vectorX using the Extended Kalman filter (EKF),

and model parameters through quasi maximum-likelihood.6 The Euler-discretized transi-

tion equation is given by

Xt = AXt−1 + b+wt,

whereA andb may be computed directly from (2.7), and(wt)t≥0 are random independent

Gaussian variables such thatEt−1 [wt] = 0 andVt−1 [wt] = ΣtΣ
′
t∆t.7

Measurement equations are given by:

ηt = ct(Xt) + ǫt,

whereηt denotes the vector of observations,ct is a differentiable function, and(ǫt)t≥0

(iid)∼
N(0,Rt) denotes measurement errors which are cross-sectionally uncorrelated with con-

stant variance that is different for futures and options. Inorder to update the prediction of

the state vectorX, the EKF uses the first order approximation aroundX̂t|t−1:

ηt = ∂xct

(

X̂t|t−1

)

︸ ︷︷ ︸

Ct

Xt + ct

(

X̂t|t−1

)

− ∂xct

(

X̂t|t−1

)

X̂t|t−1

︸ ︷︷ ︸

dt

+ǫt,

6Trolle and Schwartz (2009a) study the small-sample properties of estimated parameters using this approach
in a multi-factor term-structure model of interest rates under stochastic volatility, and find negligible biases
in the estimates.
7Since our database consist of daily observations, we approximate the time discretized interval as∆t =
1/252.
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where∂xct (x0) denotes the jacobian matrix ofct evaluated atx0.

For futures, Proposition 2 shows that log-prices are linearin the state-vector, implying

that:

logFt,τ = αF (τ) + βF (τ)′Xt + ǫF,t,

whereǫF,t denotes the measurement error with varianceσ2
F . In this case no-linearization

is required.

For options, we scale prices byV, their Black (1976) vegas,

Ot,τ0,τ1

Vt,τ0

=
Ôt,τ0,τ1

Vt,τ0

+ ǫO,t,

whereǫO,t denotes the measurement error with varianceσ2
O. Note thatǫO,t approximately

represents the measurement error in implied volatilities since the vega corresponds to the

derivative of the option premium with respect to its impliedvolatility, yielding

ǫO,t =
Ot,τ0,τ1 − Ôt,τ0,τ1

Vt,τ0

≈ σt,τ0 − σ̂t,τ0 .

The discount factorBt,τ0 in Propositions 4 and 5 was obtained by fitting the Nelson

and Siegel (1987) curve each trading day to 1W, 1M, 3M, 6M, 9M,and 12M LIBOR

rates, and the 2Y LIBOR SWAP rate. We avoid using overnight (O/N) LIBOR rates since

they display strong credit-risk effects in the later part of2008. Hence, our anchor for the

interpolation is the 1W LIBOR rate.

The formulas presented in Propositions 4 and 5 allow us to usefutures prices directly,

generating measurement equations that are driven exclusively by the volatility factors.

Therefore, the measurement matrixCt is block-diagonal.
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2.5. Results

We estimate the model presented in Section 2.3 using the dataand estimation proce-

dure of Section 2.4. We analyze several models in which we vary the number of volatil-

ity factors while keeping the number of factors driving the cost-of-carry constant. We

do this since it is well known in the commodities literature (Cortazar & Naranjo, 2006;

E. S. Schwartz, 1997) that models with two factors driving the cost-of-carry usually per-

form well in pricing the term-structure of futures prices. Hence, it is more interesting

to know how many factors are needed to accurately price observed options for different

strikes and maturities, knowing that futures are already accurately priced. Therefore, we

focus our study in analyzing the modelsAU
M (3 +M) asM varies over{0, 1, 2, 3, 4}.

2.5.1. Parameter Estimates and Interpretation of Volatility Factors

Tables E.1 and E.2 report parameter estimates using the entire sample period from

2006 to 2014. Standard errors computed using the outer-product of the log-likelihood

gradient are reported in parenthesis.

The standard deviation of the measurement error for futuresprices (σF ) is practically

the same across all models (39 bp), confirming that adding volatility factors does not im-

prove the pricing of futures contracts. This behavior is expected since our model exhibits

USV, making the pricing of futures and options independent from each other. On the other

hand, adding extra volatility factors does improve significantly the pricing of options as

can be seen by looking atσO. This parameter reveals that the model of Cortazar and

Naranjo (2006), which corresponds to ourAU
0 (3) specification, produces pricing errors in

implied volatility (IV) of 1 117 bp. Adding one stochastic volatility factor reduces this

number to 235 bp, while introducing a second factor yields anerror of 136 bp. Using four

factors in the variance reduces this number by two, which is highly economically signifi-

cant since reducing the error in IVs by 50 bp reduces the percentage option pricing error
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by 500 bp if the Vega is 10.8 These estimates are consistent with the analysis of the pricing

performance of the model that we perform in Section 2.5.3.

The parameters that describe the dynamics ofY, i.e. the mean-reverting parametersκ1

andκ2, the volatility parametersσ1 andσ2, the instantaneous correlation between the two

processesρ12, and the risk-neutral drift parametersθQ1 andθQ2 , present similar estimates

across models. This is expected since we keep the number of factors inY fixed across

models, and they do not affect the measurement equations of option contracts. Since

κ1 > κ2 andσ1 > σ2, we interpretx1 as the factor capturing short-term shocks in the

cost-of-carry, whilex2 captures more persistent ones. Finally, the correlation among these

two factors is negative and ranges between−0.50 and−0.30.

The addition of the first volatility factor decreases sharply the value ofσ3. Indeed,

whereas in the model of Cortazar and Naranjo (2006) this parameter measures the average

spot price volatility, in our model it represents a lower bound for the stochastic spot price

volatility. As a consequence, the correlation parametersρ12, ρ13 andρ23 also change when

adding stochastic volatility factors.

The estimates of the parameters that describe the dynamics of V suggest the following

interpretation for the volatility factors underQ. Given its high mean-reversion coefficient

(κQ
4 ) and its high volatility (ς1), we interpret the first volatility factorx4 as the one cap-

turing short-term shocks to spot volatility. With the exception of theAU
2 (5) model, this

factor displays negative correlation (̺1) with the spot price, allowing spot returns to exhibit

negative skewness.

The second volatility factorx5 presents the lowest mean-reversion (κQ
5 ) and volatility

(ς2), leading us to interpret it as the one capturing long-term shocks. Moreover, sinceκ54

is statistically non-significant andκ45 has a similar order of magnitude thanκQ
4 (except

for theAU
4 (7) model, see below), we may interpretx5 as a long-term mean forx4 which

8In our sample, Vega varies from 0.7 to 52.6 with an average value of 16.2.
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is consistent with the volatility process suggested by Duffie et al. (2000), and the findings

presented in Trolle and Schwartz (2009b).

The third volatility factorx6 displays intermediate values of mean-reversion (κQ
6 ) and

volatility (ς3) compared with those presented before. It is important to observe that it adds

flexibility to the model since it presents positive correlation with the spot (̺3). In the

AU
2 (5) model, due to the absence of additional volatility factors,this task is performed by

the first factor. Adding a third volatility factor allowsx1 to maintain its negative correlation

with the spot price. This feature is important in order to achieve a good fit to option prices

in periods where the overall skewness is positive.9

Lastly, the fourth volatility factorx7 captures medium-term perturbations since it

presents a mean-reversion (κQ
7 ) and volatility (ς4) coefficients in between the ones ob-

tained for second and first factors, i.e.κQ
5 < κQ

7 < κQ
4 and ς2 < ς4 < ς1. Also, by

analyzing the values forκ47 andκ57, we conclude that the addition of the fourth factor

modifies the behavior ofx5 as it becomes the long-term mean forx7, abandoning its role

as long-term mean forx4 which is now performed by the extra factor.

The risk-premia parameters are in general difficult to estimate. The drift parameters

for the cost-of-carry under the risk-neutral measure (θQ1 andθQ2 ) and the mean reverting

parameters of the volatility factors under the physical measure (κ4, . . . , κ7), present com-

paratively higher estimation errors than other parameters. Nevertheless, the completely

affine risk-premia specification yields statistically significant estimates, which is consis-

tent with Pan (2002) and Broadie, Chernov, and Johannes (2007).

2.5.2. Volatility Comparison

We would like to highlight that the instantaneous spot volatility filtered by the EKF

agrees with other standard methods used in practice to estimate stochastic volatility.

9See section 2.5.4 for more details.

36



Figure D.3 plots the volatility of oil spot returns filtered using the EKF methodology,

and compares it with the volatility estimated using a GARCH(1,1) model with Gaussian

errors using the simple residues of the spot price extractedfrom theAU
4 (7) model. The

figure shows that our estimate of the spot returns volatilityfollows closely the volatility

estimate obtained from the GARCH model. The correlation between the two time-series

is 0.9458, which confirms the results observed from the graph. Moreover, the correlations

for theAU
1 (4) ,A

U
2 (5) andAU

3 (6) models are also high and equal to 0.9090, 0.9533 and

0.9584, respectively.

2.5.3. Pricing Performance

We compute theoretical futures and option prices from the filtered state variables of

theAU
M (3 +M) model for eachM ∈ {0, 1, 2, 3, 4}, and compare them with observed

transactions.

Table E.3 reports the percentage root mean square errors (RMSEs) for futures contracts

computed as the differences in logarithms of the fitted and actual futures prices. Consistent

with previous studies (e.g. Casassus & Collin-Dufresne, 2005; Cortazar & Naranjo, 2006;

E. S. Schwartz, 1997), the term-structure of futures pricesis well explained by the first

three factors of our model: the first two driving the dynamicsof the cost-of-carry and the

third representing the spot price. The average pricing errors for different futures contracts

are relatively low, ranging from 19 to 66 bp, yielding an overall average error of 35 bp.

Consistent with the USV nature of our model, the number of factors driving the variance

has negligible influence in the pricing of futures contracts.

The top panel in Figure D.4 plots the time series of daily percentage RMSEs for futures

prices and for all models. As can be observed from the figure, the pricing performance

of all models is stable through our sample period except between the end of 2008 and

the beginning of 2009, just after the collapse of Lehman Brothers. As can be observed

from Figure D.1, during the crisis period of 2008-2009 oil prices drop significantly, and
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the term-structure of futures contracts displays a pronounced contango shape. A similar

phenomenon seems to be occurring at the end of 2014.

Table E.4 reports the RMSEs for options computed as the differences between fitted

and actual Black (1976) IVs (in percentages). In this table,options are grouped by matu-

rity. As expected (see e.g. Cortazar et al., 2015), theAU
0 (3) model performs very poorly

due to its constant volatility specification. Also, it is apparent that introducing additional

volatility factors reduces monotonically the RMSE for all maturities. The table reveals

that at least three volatility factors are needed to achievean overall RMSE below 100

bp. Also, the table shows thatAU
4 (7) model achieves a pricing performance that is quite

homogeneous across the term, except for the shortest maturity contracts.

The bottom panel in Figure D.4 plots the time-series of the overall option RMSE for

all models. We omit in the graph the RMSE plot for theAU
0 (3) model since it is an

order of magnitude larger than for the other models. As for futures contracts, theAU
1 (4)

model produces larger errors during the 2008–2009 crisis period. Introducing additional

volatility factors substantially reduces the pricing error during this period. For theAU
2 (5),

AU
3 (6), andAU

4 (7), however, the larger pricing errors are observed during theyear 2011.

Tables E.5 and E.6 report RMSEs for options by maturity and moneyness for all mod-

els. Remember that we only use OTM options, implying that contracts with moneyness

below one represent puts, and options with moneyness greater than one describe calls.

For short-term options, theAU
0 (3) model produces higher errors when pricing OTM put

options, whereas theAU
4 (7) struggles more with OTM call options. For all models, ATM

contracts are priced more accurately than OTM options. For long-term options, all models

perform similarly across different maturities.

Figure D.5 plots average IVs by moneyness, for different maturities and for all models,

and compares them with the average observed IV. First, it is interesting to note that in our

sample, short-term options display a characteristic smile, whereas medium- and long-term

contracts exhibit a pronounced skew. Note however that the graphs have different scales,
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so the magnitude of the smile for short-term options is more significant than the skew

for medium- and long-term contracts. Second, it is also apparent than adding stochastic

volatility factors significantly improves the fit of all models compared to the constant

volatility one. Finally, the figure also confirms than using three or four volatility factors

significantly improves the pricing of short-term options.

2.5.4. Risk-Neutral Skewness

A different approach to analyze the pricing performance of the model is to look at how

well it can replicate the skew of the risk-neutral distribution. In the literature, this quantity

is usually proxied by the implicit volatility skewness (IVSkew), which is a measure of the

difference between the tails of the implied volatility smile. Bakshi, Kapadia, and Madan

(2003) conclude that IVSkew measures are good proxies of therisk-neutral skewness.

The literature proposes several measures of IVSkew. Mixon (2011) surveys many of

them, and concludes that the normalized25∆ risk-reversal on 3-month options is a good

proxy for the risk-neutral skewness:

IVSkew =
25∆ call IV − 25∆ put IV

50∆ IV
. (2.20)

Due to our particular sorting of data, we implement (2.20) using the IV on M3 contracts

as

IVSkew =
1.2 moneyness call IV− 0.8 moneyness put IV

ATM IV
.10 (2.21)

Note that the sign of our measure yields an intuitively positive correlation with the skew-

ness of returns, as mentioned in Bali, Hu, and Murray (2014).A negative IVSkew means

that the probability density is skewed to the left, whereas apositive value represents skew-

ness to the right.

Figure D.6 displays the IVSkew of traded contracts, and compares it with the IVSkew

generated by theAU
4 (7) model. First, the figure documents that the IVSkew of oil returns

10When a moneyness interval contains two observations, we compute the representative implicit volatility
as the average of both.
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is in general negative, although it becomes positive in 2006and 2011. Second, the IVSkew

measure varies significantly during our sample period, going from -0.5 to 0.2. Third, the

figure confirms theAU
4 (7) model is able to accurately replicate the dynamics of the risk-

neutral skew during our sample period.

2.5.5. Robustness

We check the robustness of our model by checking whether parameters estimated in

different samples can price futures and option contracts in- and out-of-sample. For this

exercise, we define three panels: Panel A corresponds to the entire sample period from

January 3rd, 2006 to December 31st, 2014; Panel B goes from January 3rd, 2006 to De-

cember 31st, 2010; Panel C comprises the period from January3rd, 2011 to December

31st, 2014.

Table E.7 reports RMSEs for futures contracts computed on each panel and for all

models, using parameters that were calibrated using each ofthe different panels. For

example, Calibration B - Panel C displays the errors generated by each model calibrated

using the data on Panel B, when pricing all contracts included in Panel C. In this example,

Panel B contains the in-sample data while Panel C representsout-of-sample data. As

expected, RMSEs in the example are larger than the ones obtained in Calibration C -

Panel C (in-sample), but are nevertheless small. Similar patterns are observed for other

cases, showing that all models are reasonably stable when pricing futures contracts.

Table E.8 is similar to Table E.7 but reports RMSEs for optioncontracts. The table

shows that all models are also robust when pricing options. In particular, theAU
4 (7) model

achieves in- and out-of-sample RMSEs ranging from 60 to 111 bp.

2.6. Conclusions

This article proposes a general affine diffusion model for commodity prices in the

spirit of Dai and Singleton (2000). Our model develops a multifactor specification for the
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cost-of-carry and the instantaneous volatility of the spotprice, and nests many existing

models commonly found in literature. The model also exhibits USV, yielding closed-form

formulas for futures prices, and quasi-analytical expressions for option prices.

We implement our model using WTI futures and options contracts from January 3rd,

2006 to December 31st, 2014. The model is estimated using quasi-maximum likelihood

and the Extended Kalman Filter.

Our results suggest that the multifactor structure of the model is crucial in pricing

accurately futures and options contracts alike. Its USV nature and the way we derive our

option pricing formulas guarantee that only the cost-of-carry factors and the spot price

are used to fit futures prices, while the volatility factors only affect the pricing of options

contracts. We conclude from our analysis that at least two cost-of-carry (N ≥ 3) and three

volatility factors (M ≥ 3) are required to obtain accurate futures and options valuations.

Adding a fourth volatility factor improves the pricing of options in periods of market

stress.
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A. A MORE GENERAL CASE OF USV

Under the risk-neutral measureQ, consider the affine diffusion model given by

dXt =
(
Θ

Q −K
Q
Xt

)
dt+ΣtdW

Q
t (A.1)

where the state vectorXt belongs toR3 × R1
+ and

Θ̄
Q
=










θQ1

θQ2

θQ3

1










, K̄
Q =










κQ
1 0 0 κQ

14

0 κQ
2 0 κQ

24

1 1 0 1
2
γ2
1

0 0 0 κQ
4










,

while the covariance matrix is given by

Σ̄tΣ̄
′
t =










σ2
1 ρ12σ1σ2 ρ13σ1σ3 0

ρ12σ1σ2 σ2
2 ρ23σ2σ3 0

ρ13σ1σ3 ρ23σ2σ3 σ2
3 0

0 0 0 0










+










∗1 0 0 ∗14
0 0 0 0

0 0 γ2
1 ̺1γ1ς1

∗14 0 ̺1γ1ς1 ς21










x4,t.

In this case, the components ofβF satisfies the ODEs

˙βF
1 = −κQ

1 β
F
1 − βF

3

˙βF
2 = −κQ

2 β
F
2 − βF

3

˙βF
3 = 0

˙βF
4 = −κQ

14β
F
1 − κQ

24β
F
2 − 1

2
γ2
1β

F
3 − κQ

4 β
F
4

+
1

2

(

∗1βF
1

2
+ 2 ∗14 βF

1 β
F
4 + γ2

1β
F
3

2
+ 2̺1γ1ς1β3β4 + ς21β

F
4

2
)

with the initial conditionβF (0) = e3. The solution for the first three coordinates is given

by

βF
1 =

1

κQ
1

(

e−κ
Q
1
τ − 1

)
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βF
2 =

1

κQ
2

(

e−κ
Q
2
τ − 1

)

βF
3 = 1

We replace the solutions on the fourth ODE and observe that, due to the uniqueness

and existence theorem for ODEs, the model (A.1) exhibits USVif and only if

0 = −κQ
14

κQ
1

(

e−κ
Q
1
τ − 1

)

− κQ
24

κQ
2

(

e−κ
Q
2
τ − 1

)

+
∗1

2κQ
1

2

(

e−2κQ
1
τ − 2e−κ

Q
1
τ + 1

)

. (A.2)

If we assume

κQ
2 = 2κQ

1

then (A.2) may be written as

0 =

(

∗1
2κQ

1

2 − κQ
24

2κQ
1

)

e−2κQ
1
τ −

(

∗1
κQ
1

2 +
κQ
14

κQ
1

)

+

(

∗1
2κQ

1

2 +
κQ
14

κQ
1

+
κQ
24

2κQ
1

)

So (A.2) is equivalent to impose the following restrictions

∗1
κQ
1

− κQ
24 = 0

∗1
κQ
1

+ κQ
14 = 0

∗1
2κQ

1

+ κQ
14 +

κQ
24

2
= 0

which results in

κQ
14 = −κQ

24 = − ∗1
κQ
1

making the last restriction redundant.

We note that in this specification, the first of the two cost-of-carry factors can exhibit

stochastic volatility by simply restricting the parameters κQ
24 andκQ

14 as we just showed

(supposing that we letκQ
1 and∗1 free). Hence, by allowing similar restrictions on the

mean-reverting coefficients, each new volatility factor that we add to this model allows us
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to add a new pair of cost-of-carry factors where one of them exhibits stochastic volatility

and such that the model admits USV.

B. PROOFS

B.1. Proof of Proposition 1

In this proof we follow the Proposition 1 in Duffie et al. (2000). Assume thatΨ is of

the form (2.13). By the law of iterated expectation,Ψ is aQ-martingale and, from a direct

application of the It ō’s Lemma, we conclude thatα andβ must satisfy the complex-valued

ODEs

α̇ = Θ
Q′
β +

1

2
β′
H0β

β̇ = −K
Q′
β +

M∑

m=1

1

2
β′
HmβeN+m

with initial conditionsα(0;φ) = 0 andβ(0;φ) = φ and whereeN+m denotes a basis

vector inRN+M .

B.2. Proof of Proposition 2

SinceFt,τ = E
Q
t [ST ] = Ψt,τ (eN), the result follows from Proposition 1 if we show

thatαF (τ) = α(τ ; eN) andβF (τ) = β(τ ; eN ). Forn ∈ {1, . . . , N}, the last statement is

a consequence of the closed-form solution given in (2.16). Also, from the ODEs in (2.14),

it is easy to see thatβN+m(τ) = 0 for eachm ∈ {1, . . . ,M} is a unique solution to the

system. Replacing these results in the ODE forα and integrating finishes the proof.

B.3. Proof of Proposition 3

From Proposition 2, notice that

E
Q
t

[
eu logFT0,τ1

]
= E

Q
t

[

eu(α
F (τ1)+βF (τ1)′XT0)

]

50



= euα
F (τ1)E

Q
t

[

euβ
F (τ1)′XT0

]

= euα
F (τ1)+α(τ0;uβF (τ1))+β(τ0;uβF (τ1))

′

Xt ,

where Proposition 1 has been used in the last step.

Using the closed-form expression in (2.16) and Proposition2, forn < N we have that

βn

(
τ0; uβ

F (τ1)
)
= e−κ

Q
nτ0uβF

n (τ1) +

(

e−κ
Q
nτ0 − 1

κQ
n

)

uβF
N(τ1)

= u

[

e−κ
Q
nτ0

(

e−κ
Q
nτ1 − 1

κQ
n

)

+

(

e−κ
Q
nτ0 − 1

κQ
n

)]

= u

(

e−κ
Q
n(τ0+τ1) − 1

κQ
n

)

= uβF
n (τ0 + τ1) .

The result is finally obtained by replacing the expression for logFt,τ0+τ1 obtained in

Proposition 2.

B.4. Proof of Proposition 4

We follow Duffie et al. (2000). Assuming that the risk-free interest rate and the futures

prices are uncorrelated under theQ measure, the price at timet of an European put option

expiring at timeT0 = t+τ0 with strikeK on a futures contract expiring at timeT1 = T0+τ1

is given by

Pt,τ0,τ1(K) = E
Q
t

[

e−
∫ T0
t rsds (K − FT0,τ1) 1{FT0,τ1

<K}
]

= Bt,τ0

(

KE
Q
t

[

1{logFT0,τ1
<logK}

]

− E
Q
t

[

elogFT0,τ11{logFT0,τ1
<logK}

])

= Bt,τ0 (KG0,1 (τ0, τ1; logK)−G1,1 (τ0, τ1; logK))
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where, as shown in Proposition 2 of Duffie et al. (2000),

Ga,b(τ0, τ1; k) = E
Q
t

[

ea logFT0,τ11{b logFT0,τ1
<y}
]

=
ΨF

t,τ0,τ1
(a)

2
− 1

π

∫ ∞

0

Im
[
ΨF

t,τ0,τ1
(a+ iub)e−iuk

]

u
du,

with Im[c] denoting the imaginary part ofc ∈ C andi =
√
−1 corresponding to the

imaginary unit.

B.5. Proof of Proposition 5

In an analogous way to Appendix B.4, the price at timet of an European call option

expiring at timeT0 = t+τ0 with strikeK on a futures contract expiring at timeT1 = T0+τ1

is given by

Ct,τ0,τ1(K) =E
Q
t

[

e−
∫ T0
t rsds (FT0,τ1 −K) 1{FT0,τ1

>K}
]

=Bt,τ0

(

E
Q
t

[

elogFT0,τ11{logFT0,τ1
>logK}

]

−KE
Q
t

[

1{logFT0,τ1
>logK}

])

=Bt,τ0 (G1,−1 (τ0, τ1;− logK)−KG0,−1 (τ0, τ1;− logK))

whereGa,b(τ0, τ1; y) is defined as in Appendix B.4.

C. NUMERICAL ISSUES

The system of ODEs presented in Proposition 1 is solved usingthe classical Runge-

Kutta fourth order method11and, following Trolle and Schwartz (2009b), the Fourier inver-

sion integrals in Proposition 4 and Proposition 5 are evaluated using the Gauss-Legendre

quadrature formula with 30 points: 15 for the [0,50] interval and 15 for the [50,400] inter-

val.

11Specifically, we used the MATLABode45 routine.
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In order to speed our algorithm, we first solve numericallyα andβ for different initial

conditions, and only then compute the EKF iteration. Using an Intel Core I5-2500 proces-

sor with 8 Gb of RAM, a log-likelihood evaluation for the complete sample takes between

3.5 and6.5 seconds, depending on the number of volatility factors.

The maximization of the log-likelihood function is performed by switching between

Nelder-Mead and semi-quadratic programming algorithms.12

The gradients involved in the computation of the estimationerrors were calculated us-

ing an adaptive Jacobian routine based on finite-differences and Romberg extrapolation.13

12These algorithms are implemented in MATLAB’s OptimizationToolbox inside thefminsearch and
fmincon routines, respectively.
13Specifically, we used thejacobianest routine which was published in MATLAB Central under Adap-
tive Robust Numerical Differentiation by John D’Errico (woodchips@rochester.rr.com).
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D. FIGURES
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Figure D.1. WTI futures term-structures spanned by the M1, M2, M3, M4,
M5, M6, Q1, Q2, Y1, Y2, Y3, and Y4 contracts from January 3rd, 2006 to
December 31st, 2014. To avoid cluttering the figure, we display only the
data on Wednesdays.
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Figure D.2. WTI implied volatility term-structures of at-the-money op-
tions written on the M1, M2, M3, M4, M5, M6, Q1, and Q2 futures con-
tracts from January 3rd, 2006 to December 31st, 2014. To avoid cluttering
the figure, we display only the data on Wednesdays.
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Figure D.3. Time-series of the daily instantaneous WTI spotvolatility fil-
tered from January 3rd, 2006 to December 31st, 2014 using theAU

4 (7)
model. The GARCH(1,1) model is estimated using the daily residuals of
the filtered spot price.
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Figure D.4. Time-series of daily root mean squared errors (RMSEs) ob-
tained by different models on WTI futures and options from January 3rd,
2006 to December 31st, 2014. The top panel presents the RMSE on futures
defined as the difference between the logarithms of fitted andobserved
futures prices. The bottom panel shows the RMSE on implied option’s
volatility defined as the difference between fitted and observed implied
volatilities. We avoid reporting the RMSE of theAU

0 (3) model since it
is an order of magnitude larger than the other stochastic volatility models.
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Figure D.5. Average fit to WTI implied volatility smiles across different
moneyness for options written on M1, M2, M3, M4, M5, M6, Q1 andQ2
contracts from January 3rd, 2006 to December 31st, 2014. Moneyness is
defined as the option strike divided by the price of the underlying futures
contract.
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Figure D.6. Implicit volatility skewness (IVSkew) for WTI options
from January 3rd, 2006 to December 31st, 2014, where IVSkew=
(1.2 moneyness call IV−0.8 moneyness put IV)/ATM IV is computed us-
ing options written on the M3 contract.
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E. TABLES

Table E.1. Maximum-likelihood estimates forAU
M (3 +M) models for differentM . Outer-product standard

errors are reported in parentheses.

AU
0 (3) AU

1 (4) AU
2 (5) AU

3 (6) AU
4 (7)

θ3 0.0311 (0.0691) 0.1097 (0.0660) -0.0961 (0.0821) -0.1665 (0.0823) -0.0347 (0.1063)
ϑ1 0.1067 (0.2110) -0.0638 (0.0484) -0.0117 (0.0356) -0.0309(0.0227)
ϑ2 0.0081 (0.0390) 0.0469 (0.0574) 0.0591 (0.0168)
ϑ3 -0.0140 (0.0080) -0.0010 (0.0061)
ϑ4 0.0233 (0.0133)
κ1 1.7297 (0.0047) 1.7343 (0.0051) 1.7809 (0.0051) 1.7148 (0.0053) 1.7620 (0.0051)
κ2 0.3753 (0.0011) 0.3783 (0.0012) 0.3792 (0.0012) 0.3802 (0.0013) 0.3698 (0.0013)
κ4 0.7810 (0.4695) 1.0817 (0.5411) 8.6556 (0.1720) 8.5772 (0.6156)
κ5 1.3722 (0.5826) 0.8388 (0.1787) 0.7774 (0.2913)
κ6 2.6045 (0.3333) 0.2658 (0.1292)
κ7 3.0888 (0.2755)
κ45 -8.4807 (0.4290) -13.9706 (0.8442) -0.0002 (0.0765)
κ46 -0.0004 (0.0024) -0.0003 (0.0037) -0.0002 (0.0242)
κ56 -0.0075 (0.0011) 0.0000 (0.0001)
κ47 0.0000 (0.0034) -15.3240 (11.5165)
κ57 -0.0060 (0.0896) -0.0051 (0.0165)
κ67 -0.1147 (0.1756) -0.0059 (0.0832)
κ54 -0.0021 (0.0149)
κ64 0.0000 (0.1154)
κ74 -1.2676 (0.9543)
κ65 -3.9571 (1.1150)
κ75 -2.6596 (1.0285)
κ76 -0.0033 (0.0053)
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Table E.2. This table is the continuation of Table E.1.

AU
0 (3) AU

1 (4) AU
2 (5) AU

3 (6) AU
4 (7)

σ1 0.2477 (0.0041) 0.1806 (0.0030) 0.2304 (0.0042) 0.2040 (0.0038) 0.1681 (0.0027)
σ2 0.0873 (0.0012) 0.0894 (0.0014) 0.0916 (0.0015) 0.0908 (0.0015) 0.0878 (0.0013)
σ3 0.3117 (0.0004) 0.0892 (0.0007) 0.1054 (0.0006) 0.1313 (0.0003) 0.1194 (0.0005)
ρ12 -0.3010 (0.0188) -0.4090 (0.0195) -0.5065 (0.0177) -0.4807 (0.0179) -0.3817 (0.0196)
ρ13 0.1237 (0.0148) 0.2042 (0.0318) -0.2003 (0.0269) 0.1189 (0.0188) -0.0217 (0.0222)
ρ23 0.7007 (0.0107) 0.7737 (0.0217) 0.9406 (0.0108) 0.8135 (0.0203) 0.8650 (0.0247)
γ1 0.3628 (0.0008) 0.1654 (0.0042) 0.1449 (0.0036) 0.1086 (0.0305)
γ2 0.1414 (0.0009) 0.0262 (0.0010) 0.0408 (0.0027)
γ3 0.0553 (0.0037) 0.0616 (0.0056)
γ4 0.0200 (0.0027)
ς1 1.8995 (0.0083) 6.0216 (0.1607) 9.8926 (0.2479) 18.1935 (5.1151)
ς2 3.6217 (0.0227) 1.1061 (0.0098) 2.4223 (0.1705)
ς3 14.3025 (0.9328) 15.1783 (1.3829)
ς4 3.3056 (0.4422)
̺1 -0.3751 (0.0018) 0.0740 (0.0006) -0.6981 (0.0014) -0.9557(0.0033)
̺2 -0.9743 (0.0036) -0.8136 (0.0508) -0.9843 (0.0177)
̺3 0.6089 (0.0045) 0.5391 (0.0034)
̺4 -0.9474 (0.0442)
θQ1 0.2151 (0.0916) 0.2124 (0.0644) 0.2203 (0.0967) 0.2186 (0.0845) 0.2206 (0.0650)
θQ2 -0.0249 (0.0294) -0.0095 (0.0384) -0.0172 (0.0364) -0.0188 (0.0357) -0.0139 (0.0343)
θQ3 0.0500 (0.0733) 0.1000 (0.0839) 0.0833 (0.0729) 0.0867 (0.0674) 0.0925 (0.0766)
κQ4 1.6640 (0.0016) 4.5265 (0.0079) 5.2207 (0.0101) 13.2371 (0.0430)
κQ5 1.5201 (0.0078) 1.5973 (0.0067) 1.3458 (0.0129)
κQ6 2.3160 (0.0210) 3.8454 (0.0157)
κQ7 4.7629 (0.0407)
σF 0.0039 (0.0000) 0.0039 (0.0000) 0.0039 (0.0000) 0.0039 (0.0000) 0.0039 (0.0000)
σO 0.1117 (0.0000) 0.0235 (0.0000) 0.0136 (0.0000) 0.0083 (0.0000) 0.0068 (0.0000)

logL 425 059 695 930 788 718 872 380 903 740
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Table E.3. Root-mean-square pricing errors (RMSEs) for futures contracts obtained by theAU
M (3 +M) models

for differentM . RMSE is defined as the difference between the logarithms of the fitted and observed futures
prices, and is reported in percentage points.

Contract

Model M1 M2 M3 M4 M5 M6 Q1 Q2 Y1 Y2 Y3 Y4 Overall

AU
0 (3) 0.65 0.19 0.32 0.32 0.27 0.23 0.22 0.30 0.41 0.40 0.19 0.43 0.35

AU
1 (4) 0.66 0.21 0.32 0.32 0.28 0.23 0.22 0.31 0.41 0.41 0.19 0.42 0.35

AU
2 (5) 0.65 0.20 0.32 0.32 0.27 0.22 0.22 0.30 0.41 0.41 0.19 0.43 0.35

AU
3 (6) 0.66 0.20 0.32 0.32 0.28 0.23 0.22 0.30 0.41 0.40 0.19 0.42 0.35

AU
4 (7) 0.66 0.21 0.32 0.32 0.27 0.23 0.23 0.31 0.42 0.41 0.19 0.43 0.36

Table E.4. Root-mean-square pricing errors (RMSEs) for options contracts obtained by theAU
M (3 +M) models

for differentM . RMSE is defined as the difference between the fitted and observed implied volatility, and is
reported in percentage points.

Contract

Model M1 M2 M3 M4 M5 M6 Q1 Q2 Overall

AU
0 (3) 15.98 13.27 12.27 11.33 10.57 9.62 9.20 8.18 11.54

AU
1 (4) 4.30 2.46 1.66 1.42 1.57 1.79 2.17 2.85 2.38

AU
2 (5) 2.68 1.59 1.24 1.05 0.94 0.89 1.00 1.23 1.41

AU
3 (6) 1.63 0.82 0.72 0.66 0.59 0.53 0.58 0.84 0.84

AU
4 (7) 1.32 0.76 0.59 0.52 0.51 0.50 0.50 0.58 0.70
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Table E.5. Root-mean-square pricing errors (RMSEs) for options contracts
obtained by theAU

M (3 +M) models for differentM per contract and ma-
turity. RMSE is defined as the difference between the fitted and observed
implied volatility, and is reported in percentage points.

Contract

Moneyness Model M1 M2 M3 M4 M5 M6 Q1 Q2

0.78–0.82 AU
0 (3) 26.57 15.82 13.50 12.12 11.27 10.06 9.65 8.71

AU
1 (4) 5.95 2.83 2.24 2.17 2.31 2.43 2.63 3.13

AU
2 (5) 6.10 2.83 2.02 1.65 1.39 1.08 0.84 0.86

AU
3 (6) 2.58 1.12 1.16 1.20 1.06 0.82 0.65 0.78

AU
4 (7) 1.62 1.00 0.86 0.85 0.84 0.79 0.76 0.74

0.82–0.86 AU
0 (3) 20.08 13.92 12.93 11.87 10.95 9.70 9.26 8.38

AU
1 (4) 4.35 2.36 1.84 1.81 2.03 2.19 2.44 3.00

AU
2 (5) 4.29 2.28 1.66 1.31 1.05 0.78 0.65 0.84

AU
3 (6) 1.78 0.84 0.81 0.81 0.70 0.56 0.52 0.72

AU
4 (7) 1.07 0.74 0.54 0.50 0.54 0.56 0.59 0.62

0.86–0.90 AU
0 (3) 16.12 13.59 12.60 11.61 10.42 9.43 9.20 8.18

AU
1 (4) 3.53 2.00 1.47 1.51 1.76 1.96 2.36 2.86

AU
2 (5) 2.96 1.81 1.34 1.02 0.76 0.58 0.60 0.87

AU
3 (6) 1.31 0.70 0.65 0.62 0.53 0.46 0.50 0.69

AU
4 (7) 0.72 0.66 0.47 0.36 0.41 0.44 0.50 0.54

0.90–0.94 AU
0 (3) 14.44 13.29 12.29 11.28 10.49 9.73 9.07 7.87

AU
1 (4) 3.42 1.77 1.13 1.21 1.52 1.80 2.20 2.77

AU
2 (5) 2.22 1.41 1.04 0.78 0.59 0.54 0.65 0.94

AU
3 (6) 1.07 0.66 0.61 0.56 0.49 0.49 0.50 0.70

AU
4 (7) 0.65 0.69 0.51 0.39 0.39 0.43 0.44 0.49

0.94–0.98 AU
0 (3) 14.33 13.14 12.18 11.23 10.25 9.44 9.07 8.07

AU
1 (4) 3.72 1.72 0.85 0.90 1.27 1.62 2.13 2.81

AU
2 (5) 1.94 1.08 0.80 0.61 0.50 0.55 0.71 1.01

AU
3 (6) 1.09 0.63 0.61 0.53 0.46 0.46 0.48 0.72

AU
4 (7) 0.88 0.69 0.53 0.41 0.38 0.38 0.37 0.47

63



Table E.6. This table is the continuation of Table E.5.

Contract

Moneyness Model M1 M2 M3 M4 M5 M6 Q1 Q2

0.98–1.02 AU
0 (3) 14.25 12.88 12.02 10.94 10.47 9.46 8.98 7.89

AU
1 (4) 4.00 1.83 0.77 0.65 1.09 1.46 1.98 2.70

AU
2 (5) 1.79 0.81 0.62 0.51 0.52 0.62 0.81 1.09

AU
3 (6) 1.28 0.61 0.57 0.47 0.41 0.42 0.48 0.76

AU
4 (7) 1.12 0.67 0.53 0.40 0.35 0.34 0.32 0.46

1.02–1.06 AU
0 (3) 14.17 12.87 12.02 10.98 10.44 9.73 9.19 7.89

AU
1 (4) 4.16 2.05 0.94 0.64 1.04 1.43 1.96 2.69

AU
2 (5) 1.55 0.70 0.61 0.58 0.65 0.77 0.96 1.22

AU
3 (6) 1.35 0.64 0.57 0.47 0.42 0.44 0.51 0.81

AU
4 (7) 1.17 0.65 0.53 0.43 0.37 0.36 0.31 0.46

1.06–1.10 AU
0 (3) 13.87 12.89 12.10 11.22 10.63 9.77 9.37 8.38

AU
1 (4) 4.21 2.37 1.33 0.92 1.15 1.46 1.98 2.82

AU
2 (5) 1.31 0.79 0.79 0.79 0.84 0.94 1.12 1.41

AU
3 (6) 1.27 0.66 0.59 0.50 0.47 0.48 0.58 0.91

AU
4 (7) 1.05 0.59 0.53 0.47 0.45 0.43 0.39 0.53

1.10–1.14 AU
0 (3) 14.24 12.54 11.91 11.18 10.53 9.42 9.28 8.38

AU
1 (4) 4.51 2.75 1.77 1.29 1.32 1.52 2.00 2.85

AU
2 (5) 1.83 1.08 1.05 1.02 1.03 1.09 1.29 1.60

AU
3 (6) 1.56 0.74 0.61 0.51 0.49 0.50 0.65 1.00

AU
4 (7) 1.30 0.61 0.52 0.51 0.50 0.48 0.50 0.64

1.14–1.18 AU
0 (3) 16.03 12.42 11.77 11.11 10.42 9.49 9.15 8.27

AU
1 (4) 5.12 3.20 2.23 1.66 1.55 1.64 2.02 2.85

AU
2 (5) 2.76 1.53 1.33 1.25 1.21 1.22 1.41 1.66

AU
3 (6) 2.26 0.96 0.70 0.57 0.56 0.53 0.69 1.01

AU
4 (7) 2.02 0.80 0.59 0.57 0.57 0.53 0.56 0.66

1.18–1.22 AU
0 (3) 19.13 12.61 11.49 11.06 10.31 9.51 8.98 8.00

AU
1 (4) 6.06 3.72 2.63 1.99 1.82 1.88 2.08 2.85

AU
2 (5) 3.88 2.08 1.59 1.44 1.40 1.41 1.53 1.80

AU
3 (6) 3.29 1.32 0.88 0.72 0.67 0.62 0.75 1.10

AU
4 (7) 3.06 1.16 0.75 0.69 0.67 0.63 0.65 0.75
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Table E.7. Root-mean-square pricing errors (RMSEs) for futures contracts obtained by theAU
M (3 +M) models

for differentM and panels. In Calibrationi - Panelj each model is estimated using the data included in Panel
i, while the RMSE is computed using the data in Panelj, wherei, j ∈ {A,B,C}. Panel A corresponds to the
entire sample period from January 3rd, 2006 to December 31st, 2014; Panel B goes from January 3rd, 2006 to
December 31st, 2010; Panel C comprises the period from January 3rd, 2011 to December 31st, 2014. RMSE
is defined as the difference between the logarithms of the fitted and observed futures prices, and is reported in
percentage points.

Calibration A Calibration B Calibration C

Model Panel A Panel B Panel C Panel A Panel B Panel C Panel A Panel B Panel C

AU
0 (3) 0.35 0.40 0.28 0.36 0.39 0.32 0.37 0.43 0.26

AU
1 (4) 0.35 0.40 0.28 0.36 0.40 0.32 0.37 0.43 0.27

AU
2 (5) 0.35 0.40 0.28 0.36 0.40 0.31 0.36 0.42 0.27

AU
3 (6) 0.35 0.40 0.28 0.36 0.40 0.30 0.36 0.43 0.27

AU
4 (7) 0.36 0.40 0.28 0.36 0.40 0.31 0.37 0.44 0.27
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Table E.8. Root-mean-square pricing errors (RMSEs) for options contracts obtained by theAU
M (3 +M) models

for differentM and panels. In Calibrationi - Panelj each model is estimated using the data included in Panel
i, while the RMSE is computed using the data in Panelj, wherei, j ∈ {A,B,C}. Panel A corresponds to the
entire sample period from January 3rd, 2006 to December 31st, 2014; Panel B goes from January 3rd, 2006 to
December 31st, 2010; Panel C comprises the period from January 3rd, 2011 to December 31st, 2014. RMSE is
defined as the difference between the fitted and observed implied volatility, and is reported in percentage points.

Calibration A Calibration B Calibration C

Model Panel A Panel B Panel C Panel A Panel B Panel C Panel A Panel B Panel C

AU
0 (3) 11.54 13.51 8.41 11.39 11.84 10.79 13.45 16.33 8.49

AU
1 (4) 2.38 2.53 2.18 3.58 2.34 4.70 2.88 3.48 1.85

AU
2 (5) 1.41 1.30 1.54 1.83 1.18 2.43 1.43 1.40 1.47

AU
3 (6) 0.84 0.79 0.91 1.09 0.74 1.41 0.89 0.94 0.82

AU
4 (7) 0.70 0.64 0.77 0.86 0.60 1.11 0.76 0.82 0.686
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