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A DIRECT COUPLING OF LOCAL DISCONTINUOUS

GALERKIN AND BOUNDARY ELEMENT METHODS

GABRIEL N. GATICA, NORBERT HEUER, AND FRANCISCO–JAVIER SAYAS

Abstract. The coupling of local discontinuous Galerkin (LDG) and bound-
ary element methods (BEM), which has been developed recently to solve linear
and nonlinear exterior transmission problems, employs a mortar-type auxiliary
unknown to deal with the weak continuity of the traces at the interface bound-
ary. As a consequence, the main features of LDG and BEM are maintained
and hence the coupled approach benefits from the advantages of both methods.
In this paper we propose and analyze a simplified procedure that avoids the
mortar variable by employing LDG subspaces whose functions are continuous
on the coupling boundary. The continuity can be implemented either directly
or indirectly via the use of Lagrangian multipliers. In this way, the normal
derivative becomes the only boundary unknown, and hence the total number
of unknown functions is reduced by two. We prove the stability of the new
discrete scheme and derive an a priori error estimate in the energy norm. A
numerical example confirming the theoretical result is provided. The analysis

is also extended to the case of nonlinear problems and to the coupling with
other discontinuous Galerkin methods.

1. Introduction

The coupling of local discontinuous Galerkin and boundary element methods,
as applied to linear exterior boundary value problems in the plane, has been in-
troduced and analyzed for the first time in [18]. The model problem there is the
Poisson equation in an annular domain coupled with the Laplace equation in the
surrounding unbounded exterior region. The corresponding extension to a class of
nonlinear-linear exterior transmission problems, which is also motivated by previous
applications of the LDG method to some nonlinear problems in heat conduction
and fluid mechanics (see, e.g. [7], [8], and [23]), was developed recently in [9],
[10], and [11]. In these works, the authors consider a nonlinear elliptic equation
in divergence form in an annular region coupled with discontinuous transmission
conditions on the interface boundary and the Poisson equation in the exterior un-
bounded domain. In both the linear and nonlinear cases the technique employed
resembles the usual coupling of finite element and boundary element methods, but
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1370 GABRIEL N. GATICA, NORBERT HEUER, AND FRANCISCO–JAVIER SAYAS

the corresponding analysis becomes quite different. In particular, in order to deal
with the weak continuity of the traces at the coupling boundary, a mortar-type
auxiliary unknown representing an interior approximation of the normal derivative
needs to be defined. Hence, different mesh sizes on that boundary and special re-
lationships between them are required. In addition, the continuity and ellipticity
estimates of the bilinear form involved hold with different mesh-dependent norms,
and Strang-type a priori error estimates instead of the usual Céa ones are obtained.

In the present paper we simplify the approach from [18] and develop a direct
procedure for the coupling of LDG and BEM which does not make use of any
mortar unknown. Instead, it employs a finite element subspace of functions that
are required to be continuous only on the coupling boundary Γ. Consequently,
in this paper, the normal derivative becomes the only boundary unknown and
then the total number of unknown functions is reduced by two. The continuity of
LDG functions on Γ can be implemented directly by considering appropriate LDG
subspaces. However, one can maintain the full flexibility of the LDG method by
implementing the continuity condition via a Lagrangian multiplier. In this way
standard LDG and BEM implementations are sufficient for the coupling procedure.

In order to introduce the model problem let Ω0 be a simply connected and
bounded domain in R

2 with polygonal boundary Γ0. Then, given f ∈ L2(R2 \ Ω̄0)
with compact support, we consider the exterior Dirichlet problem:

(1.1)
−Δu = f in R

2 \ Ω̄0, u = 0 on Γ0 ,

u(x) = O(1) as |x| → ∞ .

Next, let Γ be a closed polygonal curve such that the support of f is inside the
annular domain Ω enclosed by Γ0 and Γ. We assume that this support does not
intersect Γ. Then (1.1) can be written as the Poisson equation in Ω:

(1.2) −Δu = f in Ω, u = 0 on Γ0 ,

and the Laplace equation in the exterior domain Ωe := R
2 \ (Ω̄0 ∪ Ω̄):

(1.3) −Δue = 0 in Ωe, ue(x) = O(1) as |x| → ∞ ,

coupled by the transmission conditions:

(1.4) u = ue on Γ and ∂νu = ∂νue on Γ .

Here, ∂νu denotes the normal derivative of u with normal vector pointing outside
Ω. The purpose of this work is to solve numerically (1.1) by means of a new LDG-
BEM coupling which, similarly to [18], consists of applying the LDG method to
(1.2) and the BEM to (1.3).

The remainder of this work is organized as follows. In Section 2 we introduce
the boundary integral equation formulation in Ωe, define the LDG method in Ω,
and establish the resulting coupled LDG-BEM approach. Next, in Section 3 we
prove the unique solvability and stability of our discrete scheme. The associated
a priori error analysis is provided in Section 4. Then, in Section 5 we describe a
Lagrange multiplier based implementation of the coupled scheme which maintains
the discontinuous character of the LDG method. The good performance of this
scheme is illustrated with a simple numerical example, which also confirms the
theoretical rate of convergence of the method for the regular case u ∈ H2(Ω). In
Section 6 we extend our analysis to the class of nonlinear problems studied in [9],
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A DIRECT COUPLING OF LDG AND BEM 1371

[10], and [11]. Finally, in Section 7 we discuss some aspects of the coupling of BEM
with other discontinuous Galerkin methods.

Throughout this paper, c and C denote positive constants, independent of the
parameters and functions involved, which may take different values at different
occurrences. Given any linear space V , the corresponding vector-valued space V ×V
endowed with the product norm will be denoted by V. If O is an open set, its
closure, or a polygonal curve, and s ∈ R, then | · |s,O and ‖ · ‖s,O denote the
seminorm and norm in the Sobolev space Hs(O). In particular, the norms of
Hs(Γ) are denoted by ‖ · ‖s,Γ. Also, 〈·, ·〉 denotes both the L2(Γ) inner product and
its extension to the duality pairing of H−s(Γ)×Hs(Γ).

2. The coupled LDG-BEM approach

2.1. The boundary integral formulation in the exterior domain. We use
Green’s representation formula for ue in Ωe,

(2.1) ue(x) =

∫
Γ

∂ν(y) E(x,y) u(y) dsy −
∫
Γ

E(x,y)λ(y) dsy + c ∀x ∈ Ωe ,

where E(x,y) := − 1

2π
log |x − y| is the fundamental solution of the Laplacian in

R
2, λ = ∂νu, and c is a constant. Note that we made use of the transmission

conditions (1.4). It is well known that (2.1) gives rise to the following system of
boundary integral equations (see, e.g. [24]):

Wu− ( 12I − K′)λ = −λ on Γ ,

( 12I − K)u+ Vλ + c = 0 on Γ ,
(2.2)

where V , K, K′, and W are the boundary integral operators associated with the
single, double, adjoint of the double, and hypersingular layer potentials, respec-
tively. We recall from [14] that V : H−1/2(Γ) → H1/2(Γ), K : H1/2(Γ) → H1/2(Γ),
K′ : H−1/2(Γ) → H−1/2(Γ), and W : H1/2(Γ) → H−1/2(Γ) are bounded linear
operators, and that they are defined as follows:

Vμ(x) :=
∫
Γ

E(x,y)μ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ μ ∈ H−1/2(Γ) ,

Kψ(x) :=

∫
Γ

∂ν(y) E(x,y)ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) ,

K′μ(x) :=

∫
Γ

∂ν(x)E(x,y)μ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ μ ∈ H−1/2(Γ) ,

Wψ(x) := −∂ν(x)

∫
Γ

∂ν(y)E(x,y)ψ(y) dsy ∀ (a.e.)x ∈ Γ , ∀ ψ ∈ H1/2(Γ) .

Here, ∂ν(x) stands for the normal derivative operator at x ∈ Γ.
Next, according to the behavior of u at infinity (cf. (1.1)), we observe that λ

belongs to H
−1/2
0 (Γ) where

H
−1/2
0 (Γ) := {μ ∈ H−1/2(Γ) : 〈μ, 1〉 = 0} .

According to the decomposition H1/2(Γ) = H
1/2
0 (Γ) ⊕ R, with

H
1/2
0 (Γ) := {ψ ∈ H1/2(Γ) : 〈1, ψ〉 = 0} ,
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1372 GABRIEL N. GATICA, NORBERT HEUER, AND FRANCISCO–JAVIER SAYAS

we define

(2.3) ‖ψ‖1/2,Γ,0 :=
∥∥ψ − length(Γ)−1

∫
Γ
ψ
∥∥
1/2,Γ

.

Equivalently, ‖ · ‖1/2,Γ,0 denotes the quotient space norm

‖ψ‖1/2,Γ,0 := inf
c∈R

‖ψ + c‖1/2,Γ ∀ψ ∈ H1/2(Γ) .

The analysis of (2.2) and its discrete counterpart below will depend on the symmetry
of W and the ellipticity of V and W :

(2.4)

〈Wϕ, ψ〉 = 〈Wψ, ϕ〉 ∀ϕ, ψ ∈ H1/2(Γ) ,

〈μ,Vμ〉 ≥ C ‖μ‖2−1/2,Γ ∀μ ∈ H
−1/2
0 (Γ) ,

〈Wψ, ψ〉 ≥ C ‖ψ‖21/2,Γ,0 ∀ψ ∈ H1/2(Γ) ,

2.2. The LDG formulation in the interior domain. The setting and analysis
of the LDG formulation in Ω require several notations, definitions, and assumptions
that we recall from [18]. Let Th be a shape regular triangulation of Ω̄ (with possible
hanging nodes) made up of straight triangles K with diameter hK and unit outward
normal to ∂K given by νK . As usual, the index h denotes h := max

K∈Th

hK . Then,

the edges of Th are defined as follows. An interior edge of Th is the (nonempty)
interior of ∂K ∩ ∂K ′ where K and K ′ are two adjacent elements of Th. Similarly,
a boundary edge of Th is the (nonempty) interior of ∂K ∩ Γ0 or ∂K ∩ Γ where K
is an element of Th which has an edge on Γ0 or Γ. For each edge e, he represents
its length. In addition, we define E(K):={edges of K}, E int

h : set of interior edges

(counted only once), EΓ
h : set of edges on Γ, EΓ0

h : set of edges on Γ0, and Ih: interior
grid generated by the triangulation, that is Ih :=

⋃
{e : e ∈ E int

h }. Also, we let Γh

and Γ0
h be the induced meshes on the boundaries Γ and Γ0, whose lists of edges are

EΓ
h and EΓ0

h , respectively.
In what follows we assume that Th is a locally quasi-uniform mesh, i.e., there

exists l > 1, independent of the meshsize h, such that l−1 ≤ hK

hK′
≤ l for each

pair K, K ′ ∈ Th sharing an interior edge. We notice that the hypotheses on the
triangulation imply that the cardinality of E(K) is uniformly bounded, and that

(2.5) he ≤ hK ≤ C l he, ∀e ∈ E(K).

Now we consider integers m ≥ 1 and r ≥ m−1 ≥ 0, and define the finite element
spaces

(2.6) Vh :=
∏

K∈Th

Pm(K) and Σh :=
∏

K∈Th

Pr(K) .

Hereafter, given an integer k ≥ 0 and a domain S ⊆ R
2, Pk(S) denotes the space

of polynomials of degree at most k on S. For each v := {vK}K∈Th
∈ Vh and τ :=

{τK}K∈Th
∈ Σh, the components vK and τK coincide with the restrictions v|K

and τ |K , when v and τ are identified as elements in L2(Ω) and L2(Ω), respectively.
Further, when no confusion arises, we omit the subscript K and just write v and
τ .

Next, consider the broken Sobolev spaces

Hs(Th) :=
∏

K∈Th

Hs(K), (s > 1/2)
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A DIRECT COUPLING OF LDG AND BEM 1373

as well as the spaces on the skeleton of the triangulation

L2(Ih) :=
∏

e∈E int
h

L2(e) , P0(Ih) :=
∏

e∈E int
h

P0(e)

and

P0(Ih ∪ Γ0
h) :=

∏
e∈E int

h ∪EΓ0
h

P0(e) .

An analogue remark to the one given before, concerning components and restric-
tions of the elements in Vh and Σh, is valid here for each of the product spaces
above. Also, we will not use any symbol for the trace on edges, provided it is
clear from which side of an interior edge we are taking the trace. Hence, given
v ∈ H1(Th), we define the averages {v} ∈ L2(Ih) and jumps [[v]] ∈ L2(Ih) on the
interior grid Ih by

{v}e := 1
2 (vK + vK′) and [[v]]e := vKνK + vK′νK′ ∀ e ∈ E(K) ∩ E(K ′) .

Similarly, for vector-valued functions τ ∈ H1(Th), we define {τ} ∈ L2(Ih) and
[[τ ]] ∈ L2(Ih) by

{τ}e := 1
2 (τK + τK′) and [[τ ]]e := τK · νK + τK′ · νK′ ∀ e ∈ E(K) ∩ E(K ′) .

In addition, let α ∈ P0(Ih ∪ Γ0
h) and β ∈ P0(Ih) be given functions and assume

that there exist C, c0, c1 > 0, independent of the grid, such that

(2.7) max
e∈E int

h

|βe| ≤ C and 0 < c0 ≤ hE α ≤ c1 ,

where hE ∈ P0(Ih ∪ Γ0
h) is defined by hE |e := he ∀ e ∈ E int

h ∪ EΓ0

h .
We are now in a position to introduce the LDG scheme for the interior problem

(1.2). As usual, we first define the gradient σ := ∇u in Ω as an additional unknown
where u is the exact solution of (1.2)–(1.3). Then, let λh ∈ L2(Γ) be a discrete
approximation (to be defined below) of the normal derivative λ, and proceeding as in
[12, 18] we arrive at the following global LDG formulation: Find (σh, uh) ∈ Σh×Vh

such that∫
Ω

σh · τ −
{∫

Ω

∇huh · τ − S(uh, τ )

}
= 0 ∀ τ ∈ Σh ,(2.8) {∫

Ω

∇hv · σh − S(v,σh)

}
+ α(uh, v) =

∫
Ω

f v +

∫
Γ

λh v ∀ v ∈ Vh ,

where ∇h stands for the piecewise defined gradient, and S : H1(Th)×H1(Th) → R

and α : H1(Th)×H1(Th) → R are the bilinear forms defined by
(2.9)

S(w, τ ) :=

∫
Ih

[[w]] · ({τ}− [[τ ]]β) +

∫
Γ0

w (τ · ν) ∀ (w, τ ) ∈ H1(Th)×H1(Th) ,

and

(2.10) α(w, v) :=

∫
Ih

α [[w]] · [[v]] +
∫
Γ0

αw v ∀ (w, v) ∈ H1(Th)×H1(Th) ,

with the traces of w, v, and τ on Γ0 being defined elementwise.
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1374 GABRIEL N. GATICA, NORBERT HEUER, AND FRANCISCO–JAVIER SAYAS

2.3. The coupled LDG-BEM scheme. We now establish the coupled LDG-
BEM scheme by combining a discrete form of (2.2) with the LDG formulation (2.8).
This requires a subspace for λh and an approximant uh of u which is continuous
on Γ. For the discrete space approximating λ we take, for simplicity, the partition
of Γ induced by Th and introduce
(2.11)

Xh :=
∏
e∈EΓ

h

Pm−1(e) and X0
h := {μh ∈ Xh :

∫
Γ

μh = 0} = Xh ∩H
−1/2
0 (Γ).

Then, we consider the subspace Ṽh of Vh defined by

Ṽh := {vh ∈ Vh : vh|Γ ∈ C(Γ)} .

Here, the trace vh|Γ for vh ∈ Vh is defined in a piecewise manner on the edges of Γh

and the condition vh|Γ ∈ C(Γ) means that the function composed by the piecewise
traces is continuous on Γ. Hence, substituting λh in (2.8) by a discrete version of
the first equation in (2.2), in which u is replaced by its approximant uh, and adding
also a discrete formulation of the second equation in (2.2), we obtain the following

coupled LDG-BEM scheme: Find (σh, uh, λh) ∈ Σh × Ṽh ×X0
h such that

∫
Ω

σh · τ − ρ(uh, τ ) = 0 ,

ρ(v,σh) +α (uh, v)+ 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 =

∫
Ω

f v ,

〈μ, (1
2
I − K)uh〉+ 〈μ,Vλh〉 = 0

(2.12)

for all (τ , v, μ) ∈ Σh × Ṽh ×X0
h, where ρ : H1(Th) ×H1(Th) → R is the bilinear

form defined by

(2.13) ρ(v, τ ) :=

∫
Ω

∇hv · τ − S(v, τ ) ∀ (v, τ ) ∈ H1(Th)×H1(Th) .

This coupled LDG-BEM scheme has the usual form of the traditional coupling of
finite and boundary elements (see [13, 20]): diagonal operators are symmetric and
off-diagonal operators form a skew symmetric matrix. The complete system can be
made symmetric (although indefinite) by changing the sign of the second equation.

Also, notice that occurrences of uh as well as v ∈ Ṽh inside the duality bracket and
under the action of integral operators include the use of the piecewise trace which
belongs to H1/2(Γ).

In order to compare the formulation (2.12) with the one from [18] we recall that
the latter is given as follows: Find (σh, uh, λh̃, ϕĥ, γĥ) ∈ Σh × Vh ×X0

h̃
× Y 0

ĥ
×Z0

ĥ
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A DIRECT COUPLING OF LDG AND BEM 1375

such that ∫
Ω

σh · τ − ρ(uh, τ ) = 0 ,

ρ(v,σh) +α (uh, v)− 〈λh̃, v〉 =
∫
Ω

f v ,

〈ξ, uh〉 − 〈ξ, ϕĥ〉 = 0 ,

〈λh̃, ψ〉+ 〈Wϕĥ, ψ〉 − 〈(1
2
I − K′)γĥ, ψ〉 = 0 ,

〈μ, (1
2
I − K)ϕĥ〉+ 〈μ,Vγĥ〉 = 0

(2.14)

for all (τ , v, ξ, ψ, μ) ∈ Σh×Vh×X0
h̃
×Y 0

ĥ
×Z0

ĥ
, whereX0

h̃
⊆ L2(Γ)∩H−1/2

0 (Γ), Y 0
ĥ

⊆
C(Γ)∩H1/2

0 (Γ), and Z0
ĥ
⊆ L2(Γ)∩H−1/2

0 (Γ) are boundary element subspaces, with

independent meshsizes h̃ and ĥ, for the mortar-type auxiliary unknown λh̃ gluing
the LDG and BEM modules, and for the Cauchy data ϕĥ and γĥ, respectively. We
observe that the computational implementation of (2.14) can be easily obtained
by incorporating individual codes for each module, which constitutes the main
advantage of this formulation, whereas the lower number of unknowns involved is
the main strength of the present approach (2.12).

Now, for the solvability and stability of (2.12) we need an equivalent reduced
formulation which is taken from [18]. To this end let Sh : H1(Th) → Σh be the
linear operator associated with the bilinear form S restricted to H1(Th)×Σh. That
is, given w ∈ H1(Th), Sh(w) is the unique element in Σh satisfying

(2.15)

∫
Ω

Sh(w) · τ = S(w, τ ) ∀ τ ∈ Σh .

Next, let Bh : H1(Th)×H1(Th) → R be the bilinear form defined by
(2.16)

Bh(w, v) := α(w, v) +

∫
Ω

(∇hw − Sh(w)) · (∇hv − Sh(v)) ∀w, v ∈ H1(Th).

The equivalence between (2.12) and a reduced problem involving Bh is established
by the following lemma.

Lemma 2.1. Let (σh, uh, λh) ∈ Σh × Ṽh × X0
h be a solution of (2.12). Then it

holds that

Bh(uh, v)+ 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 =

∫
Ω

f v ,

〈μ, (1
2
I − K)uh〉+ 〈μ,Vλh〉 = 0

(2.17)

for any (v, μ) ∈ Ṽh ×X0
h. Conversely, if (uh, λh) ∈ Ṽh × X0

h satisfies (2.17) and
σh := ∇huh − Sh(uh), then (σh, uh, λh) is a solution of (2.12). If (uh, λh) ∈
Ṽh×X0

h is the only solution of (2.17), then (σh, uh, λh), with σh defined as before,
is the only solution of (2.12).

Proof. This result is analogous to Lemma 2.2 in [18] and is based on the fact that
the first equation in (2.12) can be written as∫

Ω

σh · τ −
∫
Ω

(∇huh − Sh(uh) ) · τ = 0 ∀ τ ∈ Σh.
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The fact that r ≥ m − 1 guarantees that ∇huh ∈ Σh, which yields σh = ∇huh −
Sh(uh) and leads to the result. �

3. Unique solvability and stability

In this section we prove the unique solvability and stability of (2.12) through
the corresponding analysis of the equivalent reduced formulation (2.17). We first
introduce seminorms

|v|21,h := ‖∇hv‖20,Ω , |v|2∗ := ‖h−1/2
E [[v]]‖20,Ih + ‖h−1/2

E v‖20,Γ0
∀ v ∈ H1(Th) ,

and the norm

|||v|||2h := |v|21,h + |v|2∗ ∀ v ∈ H1(Th) .
Next, we let Bh denote the bilinear form defined by the left-hand side of (2.17), i.e.

Bh(w, η; v, μ) := Bh(w, v) + 〈Ww, v〉

− 〈(1
2
I − K′)η, v〉+ 〈μ, (1

2
I − K)w〉+ 〈μ,Vη〉

(3.1)

for

w, v ∈ H1
1/2(Th) := {w ∈ H1(Th) : w|Γ ∈ H1/2(Γ)}

and η, μ ∈ H
−1/2
0 (Γ). Analogously as before, the trace w|Γ ∈ L2(Γ) for w ∈ H1(Th)

is defined first on each edge of Γh and the condition w|Γ ∈ H1/2(Γ) means that the
function composed by the piecewise traces is in H1/2(Γ).

The full discrete norm, defined for elements (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ) will

be given by the expression

‖(v, μ)‖2h,Γ := |||v|||2h + ‖v‖21/2,Γ,0 + ‖μ‖2−1/2,Γ.

Essential ingredients of our analysis are the properties of the bilinear form Bh with
respect to this norm.

Lemma 3.1. There exist positive constants c, C, independent of h, such that
(3.2)

|Bh(w, η; v, μ)| ≤ c‖(w, η)‖h,Γ‖(v, μ)‖h,Γ ∀ (w, η), (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ)

and

(3.3) Bh(v, μ; v, μ) ≥ C ‖(v, μ)‖2h,Γ ∀ (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ).

Proof. Recall first that by [18, Lemma 3.2], there exist positive constants c, C,
independent of h, such that

(3.4) |Bh(w, v)| ≤ c |||w|||h |||v|||h ∀w, v ∈ H1(Th)
and

(3.5) Bh(v, v) ≥ C |||v|||2h ∀ v ∈ H1(Th) .
According to the properties of the operators V , W and K (cf. Section 2.1), noting
that W 1 = 0 and K 1 = − 1

2 on Γ, and using the decomposition H1/2(Γ) =

H
1/2
0 (Γ) ⊕ R and the definition of the seminorm ‖ · ‖1/2,Γ,0 (cf. (2.3)), we find that

| 〈μ,Vη〉 | ≤ C ‖μ‖−1/2,Γ ‖η‖−1/2,Γ ∀μ, η ∈ H
−1/2
0 (Γ) ,

| 〈Ww, v〉 | ≤ C ‖w‖1/2,Γ,0 ‖v‖1/2,Γ,0 ∀w, v ∈ H1
1/2(Th) ,
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and

| 〈μ, (1
2
I − K)w〉 | ≤ C ‖w‖1/2,Γ,0 ‖μ‖−1/2,Γ ∀ (w, μ) ∈ H1

1/2(Th)×H
−1/2
0 (Γ) .

The inequalities above and (3.4) yield the continuity estimate (3.2) for Bh. Next,
we observe from the definition of Bh that

Bh(v, μ; v, μ) = Bh(v, v) + 〈Wv, v〉+ 〈μ,Vμ〉 ∀ (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ) ,

and hence, (2.4) and (3.5) imply the ellipticity estimate (3.3) for Bh. �

We are now in a position to prove the unique solvability and stability of (2.12).

Theorem 3.1. The coupled LDG-BEM scheme (2.12) is uniquely solvable and the
stability estimate below holds:

‖σh‖0,Ω + ‖(uh, λh)‖h,Γ ≤ C ‖f‖0,Ω .

Proof. By Lemma 2.1 it suffices to study the system (2.17) instead of (2.12). Indeed,
the ellipticity of Bh (cf. Lemma 3.1) implies the unique solvability of (2.17), and
using additionally that ‖v‖0,Ω ≤ C |||v|||h ∀ v ∈ Vh (see [1]), we deduce the stability
estimate

‖(uh, λh)‖h,Γ ≤ C ‖f‖0,Ω .

By Lemma 2.1 we then conclude the unique solvability of (2.12). By equation (3.11)
in [18] it holds that

(3.6) ‖Sh(w)‖0,Ω ≤ C|w|∗ ∀w ∈ H1(Th).

Therefore, making use of the relation σh = ∇huh − Sh(uh), we find that

‖σh‖0,Ω ≤ C |||uh|||h ≤ C ‖f‖0,Ω ,

which finishes the proof of the theorem. �

4. A priori error analysis

In order to derive the a priori error estimate of the coupled scheme some technical
results are needed. Because of (2.5) it is easy to see that

(4.1) |||u|||2h ≤ C
∑

K∈Th

(
‖∇u‖20,K + ‖h−1/2

K u‖20,∂K
)

∀u ∈ H1(Th).

In what follows let K̂ denote the reference triangle

K̂ := { (x1, x2) : 0 < x1 < 1, 0 < x2 < 1− x1 } .

For any K ∈ Th we choose an invertible affine map MK : K̂ → K. As usual in the
finite element literature, given u : K → R we will denote û := u ◦MK : K̂ → R.

We begin by recalling some local approximation properties. The following result
rephrases [6, Lemma 4.1], which itself collects several results from [3, 4].
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Lemma 4.1. Given an integer m ≥ 1, there exists an operator π̂ : L2(K̂) →
Pm(K̂) such that for all u ∈ Hk(K),

‖û− π̂ û‖q,K̂ ≤ C

mk−q
hμ ‖u‖k,K , 0 ≤ q ≤ k ,(4.2)

sup
x̂∈K̂

|(û− π̂ û)(x̂)| ≤ C

mk−1
hμ ‖u‖k,K , k > 1,(4.3)

‖û− π̂ û‖s,∂K̂ ≤ C

mk−s−1/2
hμ ‖u‖k,K , k > 3/2, s ∈ {0, 1} ,(4.4)

where μ = min {k − 1,m}. The constant C depends only on k.

The following lemma, whose proof below makes extensive use of the estimates
(4.2)–(4.4), provides a global approximation property of the subspace Ṽh.

Lemma 4.2. Assume that u ∈ H1+δ(Ω) for some δ > 1/2. Then there exists

vh ∈ Ṽh such that

(4.5) |||u− vh|||h + ‖u− vh‖1/2,Γ,0 ≤ C hmin{δ,m} ‖u‖1+δ,Ω .

Here, C > 0 is a constant independent of h.

Proof. Let v̄h ∈ Vh be constructed using locally the operator of Lemma 4.1. Namely,
let uK := u|K for each K ∈ Th and, as usual, ûK := uK ◦ MK . Then we define
v̄h|K := (π̂ûK)◦M−1

K . Taking into account the scaling properties of the norms and
applying (4.2) and (4.4) we obtain

|u− v̄h|21,K + ‖h−1/2
K (u− v̄h)‖20,∂K ≤ C

(
|ûK − π̂ûK |21,K + ‖ûK − π̂ûK‖2

0,∂K̂

)
≤ C ′h2min{δ,m}‖u‖21+δ,K ,

since δ > 1/2. Adding the contributions of the different triangles and using (4.1)
we have proved that

(4.6) |||u− v̄h|||h ≤ C hmin{δ,m} ‖u‖1+δ,Ω.

We now correct the value of v̄h only on triangles with an edge on Γ, in such a way
that we construct vh ∈ Ṽh with the same order of approximation as v̄h.

The technique is standard in finite element analysis. Let P̂1 := (0, 0), P̂2 :=

(1, 0) and P̂3 := (0, 1) be the three vertices of K̂. Consider also the functions

N̂1(x1, x2) := 1−x1−x2 and N̂2(x1, x2) := x2. Consider the map Ĉ : C(K̂) → P1(K̂)
given by

Ĉû := û(P̂1)N̂1 + û(P̂2)N̂2

which yields a linear interpolant of û on the edge connecting P̂1 and P̂2 (ê in Figure

1) and makes (Ĉû)(P̂3) = 0. We then correct π̂ in the following form:

Π̂û := π̂û+ Ĉ(û− π̂û) = π̂û− Ĉ(π̂û) + Ĉû, û ∈ C(K̂).

Notice that (Π̂û)(P̂j) = û(P̂j) for j = 1 and 2, whereas (Π̂û)(P̂3) = (π̂û)(P̂3).
Using (4.2), (4.3) and (4.4) we can easily prove that if u ∈ H1+δ(K), with δ > 1/2,
then

|û− Π̂û|1,K̂ + ‖û− Π̂u‖0,∂K̂ ≤ |û− π̂u|1,K̂ + ‖û− π̂û‖0,∂K̂
+ C max

j=1,2
|û(P̂j)− (π̂û)(P̂j)|

≤ Chmin{δ,m}‖u‖1+δ,K .

(4.7)
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Figure 1. Adjusting to continuity at the boundary. The value on
z of the approximation is changed for K but not for K ′.

We then construct vh as follows. If K does not have an edge on Γ, we take vh|K :=

v̄h|K . If the edge e ∈ E(K) is contained in Γ, we take the map MK : K̂ → K

so that the side ê := [0, 1] × {0} is mapped onto e. Then vh|K := (Π̂ûK) ◦ M−1
K .

Notice that if z is one vertex of e, then vh(z) = u(z). Therefore the restriction of
vh to the boundary is continuous (see Figure 1). The same arguments as we used
for v̄h together with (4.7) prove that

(4.8) |||u− vh|||h ≤ C hmin{δ,m} ‖u‖1+δ,Ω .

In order to conclude (4.5) it just remains to show that

(4.9) ‖u− vh‖1/2,Γ,0 ≤ C hmin{δ,m} ‖u‖1+δ,Ω .

Notice that by interpolation of norms

‖u− vh‖1/2,Γ,0 ≤ ‖u− vh‖1/2,Γ

≤

⎛
⎝∑

e∈EΓ
h

‖u− vh‖20,e

⎞
⎠

1/2 ⎛
⎝∑

e∈EΓ
h

‖u− vh‖21,e

⎞
⎠

1/2

.
(4.10)

Moving to the boundary of the reference domain and again using (4.3) and (4.4)
we easily prove that for s ∈ {0, 1},

‖u− vh‖s,∂K ≤ Ch
1/2−s
K ‖ûK − Π̂ûK‖s,∂K̂ ≤ Chmin{δ,m}+1/2−s‖u‖1+δ,K .

Since all the terms in the right–hand side of (4.10) can be bounded by the estimate
above (take the triangle K such that e ∈ E(K)), then (4.9) follows readily. �

We note that defining v̄h as the L2(Ω)-orthogonal projection of u onto Vh would
also yield the estimate (4.6) (see Lemmas 4.2 and 4.4 in [18] for details). However,

this choice of v̄h does not allow the further construction of vh ∈ Ṽh satisfying the
approximation property (4.5). This is the reason why we proceed differently and
employ the local approximant provided by Lemma 4.1.

Next, we derive an approximation property for the subspace X0
h. First let us

clarify some notation. For |t| ≤ 1 the spaces Ht(Γ) are well defined in a classical
way. Let {Γ1, . . . ,ΓN} denote the edges of the polygon Γ. For t ≥ 0, we define
Ht(Γj) as the space of functions that can be extended to a function in Ht(R), after
identification of Γj with an interval on the real line. This space is endowed with
the image topology of the restriction operator. Finally, we denote Ht

prod(Γ) :=∏
j H

t(Γj) and denote its norm by ‖ · ‖t,prod,Γ. Since the normal vector field is
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constant on each edge, it is easy to see that if u ∈ H1+δ(Ω), with δ > 1/2, then

λ := ∂νu ∈ H
δ−1/2
prod (Γ) and

(4.11) ‖λ‖δ−1/2,prod,Γ ≤ C ‖u‖1+δ,Ω .

For the particular form of the precise image space of the trace and normal derivative
operators on polygons see [19]. Note that for 0 < t ≤ 1, Ht(Γ) is a closed subspace
of Ht

prod(Γ) and the injection is continuous.

Lemma 4.3. Assume that λ ∈ H
−1/2
0 (Γ) ∩ Ht

prod(Γ) for some t > 0. Then there

exists μh ∈ X0
h such that

(4.12) ‖λ− μh‖−1/2,Γ ≤ C hmin{t,m}+1/2 ‖λ‖t,prod,Γ .

Here, C > 0 is a constant independent of h.

Proof. Let μh be the best L2(Γ) approximation of λ onXh. Since constant functions

belong to Xh, it follows that if λ ∈ H
−1/2
0 (Γ) ∩ L2(Γ), then μh ∈ X0

h. Notice also
that, being Xh a product of local spaces, μh is defined element by element. Using
well-known arguments we can easily prove that

‖λ− μh‖0,Γ ≤ Chmin{t,m}‖λ‖t,prod,Γ.
Also, if ξ ∈ H1(Γ) and ξh is its best L2(Γ) approximation on Xh we have

|〈λ− μh, ξ〉| = |〈λ− μh, ξ − ξh〉| ≤ Chmin{t,m}+1‖λ‖t,prod,Γ‖ξ‖1,Γ
and therefore

‖λ− μh‖−1,Γ ≤ Chmin{t,m}+1‖λ‖t,prod,Γ.
The result then follows by interpolation. �

The a priori error estimate for the coupled LDG-BEM scheme (2.12) can be
established now.

Theorem 4.1. Assume that u ∈ H1+δ(Ω) with δ > 1/2. Then there exists C > 0,
independent of h, such that

(4.13) ‖σ − σh‖0,Ω + ‖(u, λ)− (uh, λh)‖h,Γ ≤ C hmin{δ,m} ‖u‖1+δ,Ω .

Proof. It is not difficult to see that u and λ satisfy

Bh(u, v) + 〈Wu, v〉 − 〈(1
2
I − K′)λ, v〉 =

∫
Ω

f v ,

〈μ, (1
2
I − K)u〉+ 〈μ,Vλ〉 = 0

(4.14)

for any (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ). Using the bilinear form Bh (cf. (3.1)), the

above means that

Bh(u, λ; v, μ) =

∫
Ω

f v ∀ (v, μ) ∈ H1
1/2(Th)×H−1/2(Γ) .

On the other hand, the discrete system (2.17) can be rewritten as

Bh(uh, λh; v, μ) =

∫
Ω

f v ∀ (v, μ) ∈ Ṽh ×X0
h .

Hence, the ellipticity and continuity of the bilinear form Bh (cf. Lemma 3.1) imply
the quasi-optimality

(4.15) ‖(u, λ)− (uh, λh)‖h,Γ ≤ C ‖(u, λ)− (vh, μh)‖h,Γ ∀ (vh, μh) ∈ Ṽh×X0
h .
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Also, since σ = ∇u = ∇u − Sh(u) and σh = ∇huh − Sh(uh) (cf. Lemma 2.1), we
obtain with (3.6) the upper bound

(4.16) ‖σ − σh‖0,Ω ≤ C |||u− uh|||h ,
which, together with (4.15), gives

‖σ − σh‖0,Ω + ‖(u, λ)− (uh, λh)‖h,Γ ≤ C ‖(u, λ)− (vh, μh)‖h,Γ
∀ (vh, μh) ∈ Ṽh ×X0

h .
(4.17)

Finally, applying the approximation properties from Lemmas 4.2 and 4.3 (with
t = δ − 1/2), using (4.11) in the latter one, and combining the resulting estimates
with (4.17) we arrive at (4.13). This finishes the proof. �

We remark that the a priori error estimate (4.13) is independent of the polyno-
mial degree r that defines the subspace Σh (cf. (2.6)). Hence, since the restriction
r ≥ m − 1 is required only to deduce that σh = ∇huh − Sh(uh) (cf. Lemma 2.1),
for practical computations it suffices to take r = m− 1.

5. The coupled LDG-BEM scheme with Lagrangian multiplier

To implement the discrete scheme (2.12) one has to deal with the continuity con-

dition of the space Ṽh. A direct implementation is possible without any difficulty.
However, in order to maintain the full flexibility of the discontinuous method one
can use a Lagrangian multiplier instead and work with Vh rather than Ṽh. The
needed multiplier is simply a vector of constants. In addition, the zero mean value
condition of the unknown λh ∈ X0

h can be dealt with similarly, whence the result-
ing formulation employs the subspace Xh instead of X0

h. The description of this
strategy and a simple numerical example illustrating its performance are provided
in this section.

5.1. The Lagrangian multiplier approach. We first notice that the bilinear
form of the coupled system (2.12), which is given by

Ah(ζ, w, ξ; τ , v, μ) :=

∫
Ω

ζ · τ − ρ(w, τ ) + ρ(v, ζ) + α (w, v) + 〈Ww, v〉

− 〈(1
2
I − K′)ξ, v〉 + 〈μ, (1

2
I − K)w〉 + 〈μ,Vξ〉 ,

is not well defined on Σh × Vh × Xh. For instance, the correct definition of the
bilinear form 〈Ww, v〉 requires that w|Γ, v|Γ ∈ H1/2(Γ). This is in general not true
for w, v ∈ Vh. Therefore, we consider instead the bilinear form

Ãh(ζ, w, ξ; τ , v, μ) :=

∫
Ω

ζ · τ − ρ(w, τ ) + ρ(v, ζ) + α (w, v) + 〈∂hw,V∂hv〉

− 〈(1
2
I − K′)ξ, v〉 + 〈μ, (1

2
I − K)w〉 + 〈μ,Vξ〉 .

Here, ∂hw is defined piecewise by ∂hw|e = (w|e)′ for any edge e ∈ Γh, and (w|e)′
denotes the derivative of w on e with respect to the arc length. Note that ∂hw ∈
L2(Γ) for any w ∈ Vh. Then the updated bilinear form 〈∂hw,V∂hv〉 is well defined
for w, v ∈ Vh and it holds that

〈Ww, v〉 = 〈∂hw,V∂hv〉 ∀w, v ∈ Ṽh
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(see [25]). Notice that the angled bracket in 〈μ, ( 12I − K)w〉 is simply the L2(Γ)

product and the term ( 12I−K)w fails to be inH1/2(Γ) (it remains in L2(Γ) however),

which is compensated, at this discrete level, by the fact that μ ∈ L2(Γ). Therefore,

Ah(ζ, w, ξ; τ , v, μ) = Ãh(ζ, w, ξ; τ , v, μ) ∀ (ζ, w, ξ), (τ , v, μ) ∈ Σh × Ṽh ×Xh .

Now, let {z1, . . . , zn} denote the nodes of Th on Γ which belong to at least two
triangles, and let e−i and e+i denote the two elements of Γh which have zi as a
common node. The continuity of uh on Γ is enforced through the equation

n∑
i=1

(
uh|e+i (zi)− uh|e−i (zi)

)
yi = 0 ∀ (y1, . . . , yn) ∈ R

n .

Similarly, the zero mean value condition of λh is imposed as

yn+1

∫
Γ

λh = 0 ∀ yn+1 ∈ R .

The above then suggests to define the bilinear form

(5.1) bh((v, μ), �y) :=

n∑
i=1

(
v|e+i (zi)− v|e−i (zi)

)
yi + yn+1

∫
Γ

μ

for (v, μ) ∈ Vh × Xh , �y = (y1, . . . , yn+1) ∈ R
n+1, and to consider the following

LDG-BEM scheme with Lagrangian multiplier �x: Find (σh, uh, λh, �x) ∈ Σh×Vh×
Xh × R

n+1 such that

Ãh(σh, uh, λh; τ , v, μ) + bh((v, μ), �x) =

∫
Ω

f v ,

bh((uh, λh), �y) = 0

(5.2)

for any (τ , v, μ, �y) ∈ Σh × Vh ×Xh × R
n+1. Then, we have the following result.

Theorem 5.1. There exists a unique solution (σh, uh, λh, �x) ∈ Σh × Vh ×Xh ×
R

n+1 of (5.2) and (σh, uh, λh) solves (2.12). In particular, the error estimate from
Theorem 4.1 holds.

Proof. It is immediate that there holds a (nonuniform) inf-sup condition for bh:

sup
(v,μ)∈Vh×Xh

bh((v, μ), �y) > 0 ∀�y ∈ R
n+1 , �y �= 0 .

We also have that the discrete null space of bh is given by

Ṽh ×X0
h = {(v, μ) ∈ Vh ×Xh : bh((v, μ), �y) = 0 ∀�y ∈ R

n+1} .
Therefore, Theorem 3.1 and the Babuška-Brezzi theory for discrete problems ensure
the unique solvability of (5.2) and then (σh, uh, λh) ∈ Σh × Ṽh ×X0

h becomes the
unique solution of (2.12), whence the error estimate of Theorem 4.1 holds. �

5.2. A numerical example. In this section we present a simple numerical exam-
ple illustrating the performance of (5.2) with m = 1 and r = m − 1 = 0. This
means, according to (2.6) and (2.11), that

Σh :=
∏

K∈Th

P0(K) , Vh :=
∏

K∈Th

P1(K) , and Xh :=
∏
e∈EΓ

h

P0(e) .

In this case, as established by Theorem 4.1 with δ = 1, for a continuous solution
u ∈ H2(Ω) there holds a rate of convergence of O(h).
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Table 1. Degrees of freedom, meshsizes, errors, and rates of convergence

N h e(σ) r(σ) e(u) r(u) e(λ) r(λ)
54 0.50000 0.4053E+00 – 0.1714E+01 – 0.3269E+01 –
112 0.33333 0.2596E+00 1.098 0.1246E+01 0.786 0.2345E+01 0.819
190 0.25000 0.1871E+00 1.139 0.9307E+00 1.014 0.1794E+01 0.931
288 0.20000 0.1464E+00 1.099 0.7667E+00 0.869 0.1419E+01 1.051
406 0.16667 0.1203E+00 1.077 0.6530E+00 0.881 0.1171E+01 1.054
544 0.14286 0.1023E+00 1.051 0.5678E+00 0.907 0.9979E+00 1.038
702 0.12500 0.8898E-01 1.045 0.5021E+00 0.921 0.8699E+00 1.028
880 0.11111 0.7870E-01 1.042 0.4500E+00 0.930 0.7713E+00 1.021
1078 0.10000 0.7054E-01 1.039 0.4077E+00 0.937 0.6928E+00 1.019
1296 0.09091 0.6391E-01 1.036 0.3727E+00 0.942 0.6290E+00 1.014
1534 0.08333 0.5842E-01 1.032 0.3431E+00 0.951 0.5760E+00 1.011
1792 0.07692 0.5379E-01 1.032 0.3179E+00 0.953 0.5313E+00 1.009
2070 0.07143 0.4984E-01 1.030 0.2962E+00 0.955 0.4932E+00 1.005

We now describe the example. We consider a slightly simplified model with no
interior region Ω0, take Ω = ]0, 1[2, and choose the data so that the exact solution
is given by

u(x) = x2
1 + x2

2 ∀x := (x1, x2)
t ∈ Ω

and

ue(x) =
x1 + x2 − 1

(x1 − 0.5)2 + (x2 − 0.5)2
∀x := (x1, x2)

t ∈ Ωe .

Since u and ue do not coincide on Γ := ∂Ω, we need to allow for nonhomogeneous
transmission conditions, which means replacing (1.4) by

(5.3) u − ue = g0 ∈ H1/2(Γ) on Γ and ∂νu − ∂νue = g1 ∈ L2(Γ) on Γ .

Note here that the smoother assumption on g1 is required to be able to introduce
the function λh + g1 in the LDG module (2.8) as the suitable L2(Γ) approximation
of the normal derivative ∂νu on Γ. In this case without interior Dirichlet boundary
Γ0 one finds that

∫
Γ
λh = 0 is automatically satisfied (choose (τ , v, μ) = (0, 1, 0) in

(5.2) and make use of the relation K1 = −1/2). We therefore use, instead of the
bilinear form bh defined by (5.1), the reduced form

b̃h((v, μ), �y) :=

n∑
i=1

(
v|e+i (zi)− v|e−i (zi)

)
yi

for (v, μ) ∈ Vh ×Xh , �y = (y1, . . . , yn) ∈ R
n. As a consequence, the scheme (5.2)

becomes: Find (σh, uh, λh, �x) ∈ Σh × Vh ×Xh × R
n such that

Ãh(σh, uh, λh; τ , v, μ) + b̃h((v, μ), �x) = F (v, μ) ,

b̃h((uh, λh), �y) = 0
(5.4)

for any (τ , v, μ, �y) ∈ Σh × Vh ×Xh × R
n, where

F (v, μ) :=

∫
Ω

f v +

∫
Γ

g1 v + 〈∂hg0,V∂hv〉 + 〈μ, (1
2
−K)g0〉 .
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Figure 2. meshsize h and errors vs. degrees of freedom N

The numerical results shown below were obtained using a Fortran implementa-
tion. In what follows the variable N stands for the number of degrees of freedom
defining Σh, Vh, Xh, and R

n, and the individual errors are denoted by

e(σ) := ‖σ − σh‖0,Ω,

e(u) :=
{
|||u− uh|||2h + ‖u− uh‖0,Γ|u− uh|1,Γ

}1/2

,

e(λ) = ‖λ− λh‖0,Γ.

By interpolation, ‖u− uh‖0,Γ|u− uh|1,Γ is an upper bound for ‖u− uh‖21/2,Γ,0, and
e(λ) is an upper bound for ‖λ − λh‖−1/2,Γ. Presenting the errors e(σ), e(u) and
e(λ) is therefore sufficient to verify the a priori error estimate given by Theorem 4.1.

Also, we let r(σ), r(u), and r(λ) be the experimental rates of convergence given
by

r(σ) :=
log(e(σ)/e′(σ))

log(h/h′)
,

r(u) :=
log(e(u)/e′(u))

log(h/h′)
,

r(λ) :=
log(e(λ)/e′(λ))

log(h/h′)
,

where h and h′ denote two consecutive meshsizes with errors e and e′.
In Table 1 we present the convergence history of the example for a set of uniform

triangulations of the computational domain Ω ∪ Γ. A rate of convergence O(h) is
attained by all the unknowns and this confirms the error estimate by Theorem 4.1.
The dominant error is given by e(λ) which, being measured in the L2(Γ)-norm,
overestimates the error ‖λ − λh‖−1/2,Γ but confirms the convergence like O(h).
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The experimental rates of convergence and the dominant component of the error
can also be checked from Figure 2 where we display the meshsize h and the errors
e(σ), e(u), and e(λ) vs. the degrees of freedom N .

We end this section by remarking that the same results are obtained by imple-
menting the continuity on Γ for the functions in Ṽh and then solving the original
coupled LDG-BEM scheme (2.12) instead of (5.2) ((5.4) in this case). In addi-
tion, similar results and the same rate of convergence O(h) are obtained with the
mortar-based coupling scheme from [18]. In this respect we emphasize again that
the present approach is computationally appealing since the number of unknown
functions is reduced by two while only standard LDG (and BEM) discretizations
are needed when using the Lagrangian multiplier.

6. Extension to nonlinear problems

In this section we extend the present LDG-BEM approach to the class of non-
linear exterior transmission problems studied in [9], [10], and [11]. In order to
describe the model problem let Ω0 be a simply connected and bounded domain in
R

2 with polygonal boundary Γ0. Then, let Ω1 be an annular and simply connected
domain surrounded by Γ0 and another polygonal boundary Γ1. In addition, let
a : Ω1 × R

2 → R
2 be a nonlinear function satisfying the conditions specified in

[7] (see also [9]) which, in particular, imply that the associated operator becomes
Lipschitz continuous and strongly monotone. Thus, given f ∈ L2(R2 \ Ω̄0) with
compact support, g0 ∈ H1/2(Γ0), g1 ∈ H1/2(Γ1), and g2 ∈ L2(Γ1), we consider the
nonlinear exterior transmission problem:
(6.1)

−div a(·,∇u1) = f in Ω1, u1 = g0 on Γ0,

−Δu2 = f in R
2 \ (Ω̄0 ∪ Ω̄1), u1 − u2 = g1 on Γ1,

a(·,∇u1) · ν1 −∇u2 · ν1 = g2 on Γ1, and u2(x) = O(1) as |x| → ∞ .

Here, ν1 stands for the unit outward normal to Γ1. This kind of problems appears
in the computation of magnetic fields of electromagnetic devices (see, e.g. [21],
[22]), in some subsonic flow and fluid mechanics problems (see, e.g. [16], [17]),
and also in steady state heat conduction. For instance, in the latter case, one has
a(x,∇u(x)) = k(x,∇u(x))∇u, where u is the temperature and k : Ω1 × R

2 → R

is the heat conductivity.
Next, we introduce a closed polygonal curve Γ such that its interior contains

the support of f . Then, let Ω2 be the annular domain bounded by Γ1 and Γ and
set Ωe := R

2 \ (Ω̄0 ∪ Ω̄1 ∪ Ω̄2) (see Figure 3 below). It follows that (6.1) can be
equivalently rewritten as the nonlinear boundary value problem in Ω1:

(6.2) −div a(·,∇u1) = f in Ω1, u1 = g0 on Γ0 ,

the Poisson equation in Ω2:

(6.3) −Δu2 = f in Ω2 ,

and the Laplace equation in the exterior unbounded region Ωe:

(6.4) −Δu2 = 0 in Ωe, u2(x) = O(1) as |x| → ∞ ,
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Ω
Ω

Γ

2

Ω 0

Ω

1

e

Γ1

Γ0

Figure 3. Geometry of the transmission problem.

coupled with the transmission conditions on Γ1 and Γ, respectively,

(6.5) u1 − u2 = g1 and a(·,∇u1) · ν1 − ∇u2 · ν1 = g2 on Γ1 ,

and
(6.6)
lim

x→x0
x∈Ω2

u2(x) = lim
x→x0
x∈Ωe

u2(x) and lim
x→x0
x∈Ω2

∇u2(x) · ν(x0) = lim
x→x0
x∈Ωe

∇u2(x) · ν(x0)

for almost all x0 ∈ Γ, where ν(x0) denotes the unit outward normal to x0.
We now follow [18] and [9] and introduce the gradients θ1 := ∇u1 in Ω1 and

θ2 := ∇u2 in Ω2, and the fluxes σ1 := a(·, θ1) in Ω1 and σ2 := θ2 in Ω2, as addi-
tional unknowns. Also, as in Section 2, let λh ∈ X0

h be a discrete approximation of
the normal derivative λ := ∂ν u2 on Γ, and proceeding in the usual way (see [9] for
details). We arrive at the following global LDG formulation in Ω := Ω1 ∪ Γ1 ∪ Ω2:

Find (θh,σh, uh) ∈ Σh ×Σh × Ṽh such that

∫
Ω

ā(·, θh) · ζ −
∫
Ω

σh · ζ = 0 ∀ ζ ∈ Σh ,∫
Ω

θh · τ −
{∫

Ω

∇huh · τ − S(uh, τ )

}
= Gh(τ ) ∀ τ ∈ Σh ,(6.7) {∫

Ω

∇hv · σh − S(v,σh)

}
+ α(uh, v) = Fh(v) +

∫
Γ

λh v ∀ v ∈ Ṽh ,

where

ā(·, ζ) :=

{
a(·, ζ) in Ω1

ζ in Ω2
∀ ζ ∈ [L2(Ω)]2 ,
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and the bilinear forms S : H1(Th)×L2(Ω) → R and α : H1(Th)×H1(Th) → R as
well as the linear operators Gh : L2(Ω) → R and Fh : H1(Th) → R are defined by

S(w, τ ) :=

∫
Ih

[[w]] · ({τ} − [[τ ]]β) +

∫
Γ0

w (τ 1 · ν) +

∫
Γ1

(w1 − w2) τ 1 · ν1 ,

α(w, v) :=

∫
Ih

α [[w]] · [[v]] +
∫
Γ0

αw v +

∫
Γ1

α (w1 − w2) (v1 − v2) ,

Gh(τ ) :=

∫
Γ0

g0 τ 1 · ν +

∫
Γ1

g1 τ 1 · ν1 ,

and

Fh(v) :=

∫
Ω

f v +

∫
Γ0

α g0 v1 +

∫
Γ1

α g1 (v1 − v2) +

∫
Γ1

g2 v2

for all w , v ∈ H1(Th), τ ∈ L2(Ω), with wi := w|Ωi
, vi := v|Ωi

, and τ i := τ |Ωi
, for

each i ∈ {1, 2}. Hereafter, Th = Th,1 ∪ Th,2, where Th,1 and Th,2 are shape regular
triangulations of Ω̄1 and Ω̄2, respectively, which satisfy the same properties and
assumptions as indicated in Section 2.2.

Next, introducing the boundary integral formulation in Ωe, exactly as in Section
2.1, substituting λh in (6.7) by a discrete version of the first equation in (2.2), in
which u is replaced by its approximant uh, and adding a discrete formulation of
the second equation in (2.2), we obtain the following coupled LDG-BEM scheme:

Find (θh,σh, uh, λh) ∈ Σh ×Σh × Ṽh ×X0
h such that∫

Ω

ā(·, θh) · ζ −
∫
Ω

σh · ζ = 0 ,∫
Ω

θh · τ − ρ(uh, τ ) = Gh(τ ) ,

ρ(v,σh) + α(uh, v) + 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 = Fh(v) ,

〈μ, (1
2
I − K)uh〉 + 〈μ,Vλh〉 = 0

(6.8)

for all (ζ, τ , v, μ) ∈ Σh ×Σh × Ṽh ×X0
h, where ρ : H1(Th) ×H1(Th) → R is the

analogue of the bilinear form defined by (2.13); that is,

ρ(v, τ ) :=

∫
Ω

∇hv · τ − S(v, τ ) ∀ (v, τ ) ∈ H1(Th)×H1(Th) .

In what follows we proceed as in Section 2.3 (see also Section 2.4 of [18]) and
derive an equivalent formulation to (6.8). We begin by defining a linear operator
Sh : H1(Th) → Σh as in (2.15), where, given v ∈ H1(Th), Sh(v) is the unique
element in Σh such that

(6.9)

∫
Ω

Sh(v) · τ = S(v, τ ) ∀ τ ∈ Σh .

Next, let Gh be the unique element in Σh such that

(6.10)

∫
Ω

Gh · τ = Gh(τ ) :=

∫
Γ0

g0 τ 1 · ν +

∫
Γ1

g1 τ 1 · ν1 ∀ τ ∈ Σh .
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It is easy to see that Gh

∣∣
Ω2

= 0. From now on we set

u :=

{
u1 in Ω1,
u2 in Ω2.

Then, if the solution of problem (6.1) satisfies u1 ∈ Ht(Ω1) and u2 ∈ Hs(Ω2),
with t , s > 1, we find that Sh(u) = Gh. In addition, it follows from the first two
equations in (6.8) that, whenever this system is solvable, it holds that

(6.11) θh = ∇huh − Sh(uh) + Gh and σh = ΠΣh
ā(·, θh) ,

where ΠΣh
denotes the L2(Ω)-orthogonal projection onto Σh. We observe here, as

in the proof of Lemma 2.1, that the fact that r ≥ m−1 guarantees that ∇huh ∈ Σh,
which yields the above expression for θh. Then, replacing the unknown σh by

ΠΣh
ā(·,∇huh − Sh(uh) + Gh)

in the third equation of (6.8), we are led to the semilinear form Ah : H1(Th) ×
H1(Th) → R defined by

Ah(w, v) := α(w, v) +

∫
Ω

ā(·,∇hw−Sh(w)+Gh)·(∇hv−Sh(v)) ∀w, v ∈ H1(Th) .

Moreover, we can establish the following equivalence result which constitutes the
nonlinear analogue of Lemma 2.1.

Lemma 6.1. Let (θh,σh, uh, λh) ∈ Σh × Σh × Ṽh × X0
h be a solution of (6.8).

Then it holds that

Ah(uh, v) + 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 = Fh(v) ,

〈μ, (1
2
I − K)uh〉 + 〈μ,Vλh〉 = 0

(6.12)

for any (v, μ) ∈ Ṽh ×X0
h. Conversely, if (uh, λh) ∈ Ṽh × X0

h satisfies (6.12) and
θh and σh are defined by (6.11), then (θh,σh, uh, λh) is a solution of (6.8). If

(uh, λh) ∈ Ṽh × X0
h is the only solution of (6.12), then (θh,σh, uh, λh), with θh

and σh defined as indicated above, is the only solution of (6.8).

Proof. It is similar to the proof of Lemma 2.1 (see also Lemma 2.2 in [18]) and is
based on the identities (6.11). �

We now introduce seminorms

|v|21,h := ‖∇hv‖20,Ω , |v|2∗ := ‖h−1/2
E [[v]]‖20,Ih+‖h−1/2

E v‖20,Γ0
+ ‖h−1/2

E (v1−v2)‖20,Γ1

∀ v ∈ H1(Th),
and the norms

|||v|||2h := |v|21,h + |v|2∗ ∀ v ∈ H1(Th) ,
‖(v, μ)‖2h,Γ := |||v|||2h + ‖v‖21/2,Γ,0 + ‖μ‖2−1/2,Γ

∀ (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ) .

Next, let Ah be the semilinear form defined by the left-hand side of (6.12), i.e.,

Ah(w, η; v, μ) := Ah(w, v) + 〈Ww, v〉−〈(1
2
I−K′)η, v〉 + 〈μ, (1

2
I−K)w〉 + 〈μ,Vη〉
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for any (w, η), (v, μ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ). The following result shows that Ah

is Lipschitz continuous and strongly monotone with respect to ‖ · ‖h,Γ. This is
crucial for the analysis of (6.12) (and hence of (6.8)).

Lemma 6.2. There exist positive constants CLM and CSM , independent of h, such
that

(6.13) |Ah(w, η; z, ξ) − Ah(v, μ; z, ξ)| ≤ CLM ‖(w, η)− (v, μ)‖h,Γ ‖(z, ξ)‖h,Γ
and
(6.14)
Ah(w, η; (w, η)− (v, μ)) − Ah(v, μ; (w, η)− (v, μ)) ≥ CSM ‖(w, η)− (v, μ)‖2h,Γ

for any (w, η), (v, μ), (z, ξ) ∈ H1
1/2(Th)×H

−1/2
0 (Γ).

Proof. The Lipschitz continuity and strong monotonicity of the semilinear form Ah

with respect to the norm ||| · |||h are provided by Lemmas 4.1 and 4.2 in [7]. The
estimates required for the remaining boundary integral terms of Ah follow exactly
as in the proof of Lemma 3.1. We omit further details. �

The unique solvability of (6.8) is now established.

Theorem 6.1. There exists a unique (θh,σh, uh, λh) ∈ Σh × Σh × Ṽh × X0
h

solution to the coupled LDG-BEM scheme (6.8). In addition, there exists C > 0,
independent of h, such that

(6.15) ‖θh‖0,Ω + ‖σh‖0,Ω + ‖(uh, λh)‖h,Γ ≤ C
{
N (f, g0, g1, g2) + ‖ā(·, 0)‖0,Ω

}
where

N (f, g0, g1, g2) :=
{
||f ||20,Ω + ||α1/2 g0||20,Γ0

+ ||α1/2 g1||20,Γ1
+ ||α1/2 g2||20,Γ1

}1/2

.

Proof. By Lemma 6.1 it suffices to analyze the reduced system (6.12) instead of
(6.8). It is clear that (6.12) can be equivalently formulated as: Find (uh, λh) ∈
Ṽh ×X0

h such that

Ah(uh, λh; v, μ) := Fh(v) ∀ (v, μ) ∈ Ṽh ×X0
h .

Now, proceeding as in the proof of Lemma 4.4 in [7], we find C > 0, independent
of h, such that

(6.16) |Fh(v)| ≤ C N (f, g0, g1, g2) |||v|||h, ∀ v ∈ Ṽh .

Hence, Lemma 6.2 and a classical result of nonlinear functional analysis imply the
unique solvability of (6.12). The rest of the proof follows very closely the proof of
Theorem 3.2 in [9]. In fact, using again the strong monotonicity of Ah, estimate
(6.16), the fact that

Ah((0, 0), (v, μ)) = Ah(0, v) =

∫
Ω

ā(·,Gh) · (∇hv − Shv) ∀ (v, μ) ∈ Ṽh ×X0
h ,

the boundedness of Sh (cf. (3.6)), and the Lipschitz continuity of the nonlinear
operator induced by ā, one deduces that

(6.17) ‖(uh, λh)‖h,Γ ≤ C
{
N (f, g0, g1, g2) + ‖ā(·, 0)‖0,Ω + ‖Gh‖0,Ω

}
.
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Also, using the expressions for θh and σh given by (6.11), and applying again the
boundedness of Sh and the Lipschitz continuity of ā, we obtain
(6.18)

‖θh‖0,Ω ≤ C
{
|||uh|||h + ‖Gh‖0,Ω

}
and ‖σh‖0,Ω ≤ C

{
‖θh‖0,Ω + ‖ā(·, 0)‖0,Ω

}
.

Then, it is easy to show, as in the proof of Lemma 3.4 in [7], that (cf. (6.10))

(6.19) ‖Gh‖0,Ω ≤ C
{
||α1/2 g0||0,Γ0

+ ||α1/2 g1||0,Γ1

}
.

In this way, (6.15) follows directly from (6.17), (6.18), and (6.19), which ends the
proof. �

Finally, we prove the a priori error estimate for the coupled LDG-BEM scheme
(6.8).

Theorem 6.2. Define the additional continuous unknowns

θ=

{
θ1 :=∇u1 in Ω1,

θ2 :=∇u2 in Ω2,
σ=

{
σ1 :=a(·, θ1) in Ω1,

σ2 :=θ2 in Ω2,
and λ = ∂ν u2 on Γ .

Assume that there exist δ1, δ2 > 1/2 such that u1 ∈ H1+δ1(Ω1), u2 ∈ H1+δ2(Ω2),
and σ1 ∈ [Hδ1(Ω1)]

2. Then there exists C > 0, independent of h, such that

(6.20)

‖θ − θh‖0,Ω + ‖σ − σh‖0,Ω + ‖(u, λ)− (uh, λh)‖h,Γ

≤ C
{
hmin{δ1,m} ‖u1‖1+δ1,Ω1

+ hmin{δ1,m} ‖σ1‖δ1,Ω1

+hmin{δ2,m} ‖u2‖1+δ2,Ω2

}
.

Proof. We observe, similarly as in the linear case (cf. Theorem 4.1), that λ ∈
Hδ2−1/2(Γ) and ‖λ‖δ2−1/2,Γ ≤ C ‖u2‖1+δ2,Ω2

. Also, according to the definitions of
the semilinear form Ah and the linear operator Fh, and taking into account the
equations, the boundary conditions, and the transmission conditions satisfied by u,
one can prove that u and λ satisfy

Ah(u, λ; v, μ) = Fh(v) ∀ (v, μ) ∈ H1
1/2(Th)×H−1/2(Γ) .

In addition, it is clear that the discrete system (6.12) renders

Ah(uh, λh; v, μ) = Fh(v) ∀ (v, μ) ∈ Ṽh ×X0
h .

Then, the Lipschitz continuity and strong monotonicity of Ah also yield the quasi-
optimal estimate (4.15); that is,

(6.21) ‖(u, λ)− (uh, λh)‖h,Γ ≤ C ‖(u, λ)− (vh, μh)‖h,Γ ∀ (vh, μh) ∈ Ṽh×X0
h .

Now, using that θh = ∇huh−Sh(uh)+Gh (cf. (6.11)), θ = ∇u in Ω, Sh(u) = Gh,
and applying the boundedness of Sh, we obtain

(6.22) ‖θ − θh‖0,Ω ≤ C |||u− uh|||h .
It remains to estimate ‖σ−σh‖0,Ω. Using that σh = ΠΣh

ā(·, θh) (cf. (6.11)) and
σ = ā(·, θ), and applying the triangle inequality and the Lipschitz continuity of
the nonlinear operator induced by ā, we deduce that

‖σ − σh‖0,Ω ≤ ‖σ − ΠΣh
σ‖0,Ω + ‖ΠΣh

{
ā(·, θ) − ā(·, θh)

}
‖0,Ω

≤ ‖σ − ΠΣh
σ‖0,Ω + C ‖θ − θh‖0,Ω .

(6.23)
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Then, applying local approximation properties of piecewise polynomials (see, e.g.
Lemma 4.2 in [18]), recalling from (2.6) that on K ∈ Th, ΠΣh

reduces to the
L2(K)-orthogonal projection onto Pr(K), which is denoted by Πr

K , and noting
that r + 1 ≥ m, we find that

‖σ − ΠΣh
σ‖0,Ω1

=
∑

K∈Th,1

‖σ1 − Πr
K σ1‖20,K

≤ C
∑

K∈Th,1

h
2 min{δ1,r+1}
K ||σ1||2δ1,K

≤ C h2 min{δ1,r+1} ‖σ1‖2δ1,Ω1
≤ C h2 min{δ1,m} ‖σ1‖2δ1,Ω1

(6.24)

and
(6.25)

‖σ − ΠΣh
σ‖20,Ω2

=
∑

K∈Th,2

‖θ2 − Πr
K θ2‖20,K

=
∑

K∈Th,2

‖∇u2 − Πr
K ∇u2‖20,K ≤ C

∑
K∈Th,2

h
2 min{δ2,r+1}
K ||∇u2||2δ2,K

≤ C h2 min{δ2,r+1} ‖u2‖21+δ2,Ω2
≤ C h2 min{δ2,m} ‖u2‖21+δ2,Ω2

.

In this way, the approximation properties from Lemmas 4.2 and 4.3 (with t =
δ2 − 1/2), together with the bound ‖λ‖δ2−1/2,Γ ≤ C ‖u2‖1+δ2,Ω2

, and inequalities
(6.21), (6.22), (6.23), (6.24), and (6.25), imply the required a priori error estimate
and finish the proof. �

We end this section by remarking, as we did for the linear case at the end
of Section 4, that the a priori error estimate (6.20) is also independent of the
polynomial degree r that defines the subspace Σh (cf. (2.6)). Therefore, since the
restriction r ≥ m − 1 is required only to deduce that θh = ∇huh − Sh(uh) + Gh

(cf. (6.11)), it suffices also to take r = m− 1 in the present nonlinear case.

7. Coupling with other DG methods

As exposed, the theory on coupling the LDG method with a symmetric bound-
ary element formulation demanding continuity on the trace for the discontinuous
function can be extended to several other DG methods. We give here some very
fast brushstrokes for three methods, all of which can be introduced more naturally
in the primal form, i.e., expressed directly on the variable uh, which is precisely
the way we have approached the analysis. We remark, however, that for the exten-
sion to nonlinear problems given in the previous section, the formulation with two
variables in the domain (the one with mixed flavor) has to be used.

The simplest adaptation is given by the method with discontinuous polynomials
and jump penalization on the element interfaces, that can be traced back to Babuška
and Zlámal (see [5]). In our notation it consists simply of erasing completely the
bilinear form S or equivalently the gradient correction term Sh in all occurrences.
In this case σh is simply ∇huh. The expression of the bilinear form Bh (see (2.16))
is greatly simplified and everything that has been said for this bilinear form (i.e.,
(3.4), (3.5) and (4.14)) still applies, so we can carry out our analysis to the very
end.
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The Interior Penalty method [15], [1] consists of taking the bilinear form

Bh(u, v) := α(u, v) +

∫
Ω

∇hu · ∇hv −
∫
Ih

(
[[u]] · {∇hv}+ [[v]] · {∇hu}

)
−
∫
Γ0

(
u ∂νv + v ∂νu

)
and go on as usual. This is equivalent to taking β = 0 in the LDG method and
subtracting a term ∫

Ω

Sh(u) · Sh(v)

from the bilinear form Bh. The corresponding flux is σh = ∇huh − Sh(uh). It is
possible to unfold the system to write it in the expanded form reminiscent of (2.12).
The difference is the fact that the second equation∫

Ω

∇hv · σh − S(v,σh) +α (uh, v) + 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 =

∫
Ω

f v

is substituted by∫
Ω

∇hv · σh − S(v,∇huh) +α (uh, v) + 〈Wuh, v〉 − 〈(1
2
I − K′)λh, v〉 =

∫
Ω

f v .

The global system loses in this way its symmetry (the symmetry of (2.12) is only
apparent after changing the sign of the second equation) in this unfolded form,
a symmetry that is recovered once the variable σh has been eliminated from the
system. The only intricate part of the analysis refers to recovering the discrete
ellipticity (3.5), which imposes some restrictions on the function that defines the
bilinear form α; see [2] for the details. Apart from this, the remaining part of our
analysis can be carried out without much difficulty.

Last but not least, NIPG also fits easily in this framework. The bilinear form in
the primal formulation is

Bh(u, v) := α(u, v) +

∫
Ω

∇hu · ∇hv −
∫
Ih

(
[[u]] · {∇hv} − [[v]] · {∇hu}

)
−
∫
Γ0

(
u ∂νv − v ∂νu

)
,

(i.e., desymmetrizes the interface terms of IP) and makes the ellipticity estimate
(3.5) a simple consequence, since the corresponding quadratic form is the same as
in the first method we have just exposed. As in the previous case, it is possible to
add σh as an unknown and unfold the system (cf. [2]).
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