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Caro, Vicente, Cristóbal, Claudia and José Miguel, for their help and patience when I

needed volunteers for MRIs. And Universidad Católica radiology residents for rating the
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ABSTRACT

To define an MRI acquisition (protocol) is not trivial process due to the large number

of parameters to be set. The visualization of structures of interest strongly depends on

these parameters, which are selected manually and therefore requires vast experience from

the operator.

There are some methods for optimizing these acquisition parameters, using cost

functions derived from mathematical calculations of contrast between tissues of interest.

These cost functions do not always correlate with the visual perception of the contrast,

because they do not consider relevant features of the Human Visual System (HVS). Fur-

thermore, they are not fully automatic since they require a prior manual segmentation of

the tissues of interest.

We propose an automatic optimization method, using Visibility Maps based on HVS

models. We consider two main properties of the HVS: sensitivity to spatial frequency and

contrast.

The cost function of our optimization is an index obtained from the Visibility Maps,

which allows maximizing the relevant information to the HVS contained in a region of

interest.

We use our method to maximize the visibility of White Matter (WM) in an Inversion

Recovery sequence, and the contrast between WM and Gray Matter in a Spin Echo se-

quence. The results show that our index can measure the visibility of the structures under

study and the optimal parameter configuration found by our method outperforms existing

methods and corresponds with the optimum found by experts.

Keywords: Magnetic Resonance Imaging, Human Visual System, Acquisition pa-

rameter optimization, quality assessment.
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RESUMEN

La adquisión de imágenes de Resonancia Magnética no es un proceso trivial debido

al gran número de parámetros que hay que definir. La visualización de estructuras de

interés depende fuertemente de estos parámetros, los cuales son escogidos manualmente

por lo cual se necesita una vasta experiencia en el uso del resonador.

Existen algunos métodos que han intentado optimizar los parámetros de adquisición

utilizando funciones de costo obtenidas a partir de cálculos matemáticos de contraste entre

los tejidos de interés. Estas funciones de costo no siempre tienen correspondencia con la

percepción visual del contraste entre los tejidos, ya que no consideran aspectos relevantes

del Sistema Visual Humano (HVS). Además, la optimización no es totalmente automática

pues supone una previa segmentación manual de los tejidos de interés.

Nosotros proponemos un método de optimización automático, utilizando Mapas de

Visibilidad basados en modelos del HVS. Consideramos dos propiedades fundamentales

del HVS: la sensibilidad a frecuencias espaciales y al contraste.

La función de costo de nuestra optimización proviene de un ı́ndice que obtenemos

de los Mapas de Visibilidad, el cual permite maximizar la información relevante al HVS

contenida en una región de interés previamente definida.

Utilizamos nuestro método para maximizar la visibilidad de Materia Blanca (MB) en

una secuencia Inversion Recovery, y la diferenciación entre MB y Materia Gris en una

secuencia Spin Echo. Los resultados muestran que nuestro ı́ndice permite medir satisfac-

toriamente la visibilidad de las estructuras en estudio y que la configuración óptima de

parámetros encontrada por nuestro método tiene correspondencia con el óptimo encon-

trado por expertos.

Palabras Claves: Resonancia Magnética, Sistema Visual Humano, Optimización de

parámetros de adquisición, calidad de imágenes.
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1. INTRODUCTION

Magnetic Resonance Imaging (MRI) has multiple degrees of freedom as there are

many parameters that define the scan. The contrast or visualization of structures of inter-

est (e.g. tumors, pathologies, tissues) highly depends on these parameters. The selection

of them is always done heuristically and requires vast experience from the operator. Fur-

thermore, sometimes it is not simple to predict the effect on the visibility of the structures

of interest when a parameter is modified.

A few optimization methods have been published to automate or facilitate the pa-

rameter setting for different MRI applications such as tensor shapes and orientations in

difussion-tensor imaging (DTI) (Hasan et al., 2002; Papadakis et al., 1999; Peng & Ar-

fanakis, 2007; Lee et al., 2006; Skare et al., 2000; Jones et al., 1999), where the accuracy

of the measurements depends on the gradient encoding scheme used. Other methods are

focused on selecting optimal acquisition parameters using performance measures such as

Signal to Noise Ratio or Contrast to Noise Ratio (Kim et al., 2006; Alger et al., 2001;

Vidarsson et al., 2005; Dousset & al., 1989), where some MRI scans are obtained using

different acquisition parameters. The signal intensities of the tissue of interest is then

measured (using manual segmentation), subtracted and divided by the noise intensity to

obtain the performance metric of each scan. When there exists an image that can be

used as reference, the most common measure of quality is the Root Mean Square Error

(RMSE) with respect to that image. It is easy to compute, it has a clear physical mean-

ing, and it is convenient for optimization algorithms. Nevertheless, its disadvantages are

widely recognized. The RMSE heavily penalizes differences that are irrelevant for the

human observer.

We propose a Quality Assessment (QA) approach in which the acquisition parame-

ters are defined as in an optimization problem. Importantly, the optimized cost function

incorporates features of the Human Visual System (HVS). We evaluate this function by

acquiring directly with the scanner image samples (a fragment of the field of view), com-

puting an index of them, and fitting a parametric cost function to the samples. The goal is
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to find the MRI acquisition parameters that maximize the visibility of a desired structure,

without the need of prior segmentation of images. We propose to compute a scalar index

from Visibility Maps (VM) that measure the visibility of image features according to two

perceptual criteria: the sensitivity of the HVS to different spatial frequencies and to dif-

ferent contrasts. The first one is related to the minimum contrast needed for an object to

become visible for any given spatial frequency; and the second one is related to how the

contrast sensitivity changes depending on the background intensity.

Image Quality Assessment is a challenge, although there are some indexes that cor-

relate well with the subjective quality of the images, but they can not be used as a cost

function to optimize the visibility of resonance images because they require prior infor-

mation, such as a reference image, which is not available.

As measurement of quality we propose to use a scalar metric of the Visibility Maps

(VM). In this work we introduce these maps which assign a visibility value to each pixel

of the image. The visibility value, in turn depends on the spatial frequency and average

intensity of the background. The advantage of this metric is that it does not require a

reference image or a precise segmentation so that it is straightforward to obtain optimal

acquisition parameters.
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2. THEORY

In this section we present a brief description of the MRI acquisition process, we

review existing quality metrics and present our proposal for a metric based on some HVS

features.

2.1. Conceptualization of the MRI Acquisition

To perform an MR scan, the medical technologist acquires an image using previously

defined parameters which are calculated based on historical data from other patients. Sub-

sequently, the medical technologist observes the obtained image and decides whether a

modification of the acquisition parameters is needed or not (as shown schematically in

Figure 2.1). As a new acquisition is expensive, it is unusual to acquire more than twice,

so the image obtained from the patient does not always correspond to the optimal, espe-

cially if it has some unusual structures.

Our proposal consists on replicating the acquisition process performed by the medical

technologist but using a metric that considers some features of the HVS, so as to obtain

automatically the optimal image of the patient.

MRI
Human
Observation

MR Parameters
Adjustment

FIGURE 2.1. MRI parameters setting using human observation.

2.2. Existing Quality Metrics

Since our method can be thought as a quality assessment process, we now review the

existing methods in this area.
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The goal of quality assessment research is to design algorithms for objective eval-

uation in a way that can automatically predict perceptual image quality. Most of the

proposed metrics require a reference image with “perfect” quality, which is used as a

benchmark to assess the quality of a similar image. These methods, known as Full Ref-

erence Quality Assessment (FR QA), can be categorized into six groups according to the

type of information they use (Avcibas et al., 2002).

(i) Pixel difference-based measures: Such as Peak Signal-to-Noise Ratio (PSNR)

and Root Mean Squared Error (RMSE). These metrics are commonly used in

medical images because of their simplicity, clear physical meaning and opti-

mization convenience.

(ii) Correlation-based measures: They are calculated by the correlation of pixels.

In this category are the Czekanowski coefficient (Czekanowski, 1913), Univer-

sal Quality Index (Z. Wang & Bovik, 2002) and SSIM (Z. Wang et al., 2004).

The latter compares local patterns of pixel intensities which have been nor-

malized in luminance and contrast in order to measure structural differences

only. This index also has some adaptations, using HVS models (B. Wang et al.,

2008), wavelet domain (Yang et al., 2008), multi-scale analysis (Z. Wang et al.,

2003) and edge-based structural similarities (Chen et al., 2006).

(iii) Edge-based measures: These metrics quantify the displacement of edge po-

sitions or their consistency across resolution levels. Some examples of this

category are the Pratt measure (Pratt, 1978), based on prior knowledge of the

reference edge map, and the Edge Stability Measure (Carevic & Caelli, 1997),

based on multi-resolution consistency of edge maps.

(iv) Spectral distance-based measures: They are based on Fourier magnitude and/or

phase spectral discrepancy.

(v) Context-based measures: They penalize differences based on various function-

als of the multidimensional context probability, like the Rate distortion mea-

sure, Hellinger distance and Spearman rank correlation (Spearman, 1987).
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(vi) HVS-based measures: These metrics use HVS models to predict image quality.

Some examples are: DCTune (Watson, 1993) which propose a luminance adap-

tation and masking effect model in edge regions; Zhang et al. (2005) propose a

method based on just noticeable differences (JND) which allows the measure-

ment of visual distortion and signal compression; Wavelet visible difference

predictor (Bradley, 1999), which allows predicting visible differences between

an image without distortion and noisy or compressed version of it, using the

image wavelet domain; Chandler & Hemami (2007) propose a visual signal-to-

noise ratio (VSNR) that takes into account low-level HVS properties of contrast

sensitivity and visual masking; and finally, VIF (Sheikh & Bovik, 2006), which

presents the QA problem as an information fidelity problem (quantify the loss

of image information and explore the relationship between image information

and visual quality) and approximates the HVS as a “distortion channel”, in

which the amount of information that can flow through it is restricted.

Pixel difference-based measures are commonly used as benchmark for their simplic-

ity and low computational requirements, but often their results do not correspond to hu-

man perception of differences. Some studies (Sheikh et al., 2006; Ponomarenko et al.,

2009; Chandler & Hemami, 2007) have shown good performance of Correlation-based

measures and HVS-based measures, in particular SSIM, VIF and VSNR. However they

can not be used to optimize the visualization of structures in MRI, since they require a

reference image that is not available.

There are some metrics to measure the contrast and visualization of structures that

do not require a reference image and could be used as cost functions for an optimization

problem that seeks the maximization of this information. Some examples of these metrics

are the Contrast to Noise Ratio (CNR), Signal to Noise Ratio (SNR), and a classic con-

trast measure defined by |S1−S2

S2
|, where S1 and S2 are the mean signal intensities of two

different structures.
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These methods however require a prior segmentation of the structures being com-

pared, because they take signal intensity differences between different objects of interest.

Additionally, they do not take into account perceptual features.

2.3. HVS Sensitivities

In our optimization method we emulate some HVS sensitivities to measure the quality

and visual information of images: luminosity and spatial frequency. The variations in

sensitivity as a function of luminosity are due to the light-adaptive properties of the retina;

and spatial frequency sensitivity is due to the optics of the eye and to features of the

nervous system (Daly, 1993). Next we will explain in detail each of these effects.

2.3.1. Luminosity Sensitivity

The sensitivity of the human visual perception to the light that hits the retina is a non

linear function, and under certain light conditions it is commonly modeled as a logarith-

mic function (Daly, 1993).

The sensitivity to intensity differences depends on the local luminance of the image,

and according to the Weber-Fechner law, the magnitude of a just-noticeable luminance

change ∆L is proportional to the stimulus mean luminance L for background levels above

10 cd/m2 (Hood & Finkelstein, 1986), under this level the just-noticeable luminance

difference increases as luminance decreases.

Chou & Li (1995) stated that two contiguous pixels are visually distinguishable if the

gray level difference between them is higher than a threshold. This threshold also depends

on local intensities and can be modeled by:

f2(bg(x, y)) =


T0 · (1−

√
(bg(x, y)/127)) + 3 if bg ≤ 127

γ · (bg(x, y)− 127) + 3 if bg > 127
(2.1)

where bg is the background mean luminance, T0 and γ represent the visibility thresh-

old when the background grey level is zero, and the curve slope at higher background
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luminance. Empirically, it has been found that T0 and is γ are equal to 17 and 3
128

respec-

tively (Chou & Li, 1995).

As seen in Figure 2.2 the threshold is higher for high and low background luminance

levels, whereas its value is smaller for average background levels. This result is consistent

with subjective evaluations (Chou & Li, 1995; Hontsch & Karam, 2000; Jayant et al.,

1993; Netravali & Haskell, 1988; Safranek & Johnston, 1989).

0

5

10

15

20

25

32 64 96 128 160 196 224 255

Background Luminance

f2

FIGURE 2.2. Visibility thresholds due to background luminance.

2.3.2. Spatial Frequencies

Another interesting HVS property is its sensitivity to spatial changes in light levels.

At certain spatial frequencies the HVS is more sensitive to luminosity changes than in

others. The Contrast Sensitivity Function (CSF) is defined as the inverse of the Contrast

Threshold Function, which is normally defined as the contrast required by an observer to

detect waves of a sinusoidal signal of different frequencies. Many CSF models have been

proposed, being Mannos & Sakrison (1974) model (Figure 2.3) one of the most accepted:

H(u, v) = 2.6(0.0192 + 0.114Fr(u, v)) · exp(−(0.114Fr(u, v))1.1) (2.2)

where Fr(u, v) is the normalized image spatial frequency in cycles per degree (cpd).

The radial frequency (the rate of change in an orientation angle) is determined by hori-

zontal fr(u) and vertical fr(v) frequencies
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1

0.5

15 30 45 60

Spatial frequency (cycles/degree)

H(fr)

FIGURE 2.3. Contrast Sensitivity Function.

fr(u) =
u− 1

2N∆
fr(v) =

v − 1

2N∆
(2.3)

where N is the number of points, ∆ is the dot pitch (distance between dots of the

same color in a screen), and u, v = 1, 2, ..., N . The radial frequency is obtained by tak-

ing the euclidean distance between these two frequencies - within the frequency domain

(Ahumada & Peterson, 1992), which scaled by the viewing distance d is:

fr(u, v) =
π

180 sin−1 ( 1√
1+d2 )

√
fr(u)2 + fr(v)2 (2.4)

Daly (1993) introduced an angular dependent function S(Θ(u, v)) which compen-

sates for viewing angle Θ such that the normalized frequency response is:

Fr(u, v) =
fr(u, v)

S(Θ(u, v))
(2.5)

with

S(Θ(u, v)) =
1− w

2
cos(4Θ(u, v)) +

1 + w

2
(2.6)
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where w = 0.78 and the angle Θ is defined by:

Θ(u, v) = tan−1

(
fr(u)

fr(v)

)
(2.7)

For measuring the quality of images in our optimization method we use these two

HVS properties to define a Visibility Map (VM), which allow us to highlight perceptually

relevant structures in an image.

These HVS properties are incorporated into our proposed optimization scheme through

two different maps: a Relevant Spatial Frequencies (RSF) Map, which aims to distinguish

perceptually relevant spatial frequencies in the image; and a Contrast Map that allows

recognizing how distinguishable are the pixels in their background. The pixel-by-pixel

product between both maps conform the VM, which encodes how visible is each pixel for

the HVS.

2.3.3. Relevant Spatial Frequencies Map

To account for the HVS spatial frequency sensitivity, we first apply the two-dimensional

discrete cosine transform (DCT) to the entire image with an 8× 8 pixel sliding block. We

then filter the obtained result using the Mannos & Sakrison (1974) CSF, so that granting

a variable importance to the DCT coefficients according to their frequency content. After

filtering, we choose the coefficient with the highest absolute value, which is finally placed

in the position (4, 4) of the respective block in the image. The entire procedure is shown

in Figure 2.4.

Image 2-D
DCT

CSF
Filtering

The largest coefficient
is assigned

on RSF Map

Sliding block

FIGURE 2.4. RSF Map construction procedure.
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An example of the RSF map is shown in Figure 2.5(b), which as expected show high

values for regions with spatial frequency components around 10 cpd. Since the resulting

map is blurred because of the size of the sliding block, we repeat the procedure with a

4× 4 block in those cases where the highest coefficient of the 8× 8 process corresponded

to a frequency greater than 3.5 cpd.

Figure 2.5(c) shows the final RSF map.

2.3.4. Contrast Map

Until now, a pixel visibility due to luminance levels has been defined as a binary

variable (visible or not visible) according to a threshold (2.1). We go further and estimate

the probability of visibility of each pixel in an image. To calculate it, we propose the

function w( j+n
2

) that models the relevance of the difference between the intensity j of a

given pixel and the mean intensity n of its eight neighbors (we are using a 3 × 3 sliding

block to define neighborhood).

w(
j + n

2
) = P

| g1 − g2 |> f2

(
j + n

2

) ∣∣∣∣∣∣∣
g1 + g2

2
=
j + n

2

 (2.8)

Assuming that each intensity level is equally probable and a discrete number of in-

tensity levels gi (e.g. 0 to 255), w can be easily computed off-line for any intensity pair

(j, n) if we compute the ratio between the number of intensity pairs (g1, g2) that follows

the inequity (2.8) and the number of intensity pairs (g1, g2) that follows the restriction

imposed in the same equation.

For example, Figure 2.6(b) shows three cases, where the difference between a pixel

and its background is the same in every case, nevertheless the visual perception is dif-

ferent. In a well calibrated display, it can be noticed that the central pixel in the middle

image has better visibility than in the other cases, where the background luminance is
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(a) (b)

(c) (d)

(e)

FIGURE 2.5. (a) Original image, (b) RSF Map using 8 × 8 sliding blocks, (c)
RSF Map final, with high frequencies correction using 4 × 4 sliding blocks, (d)
Contrast Map, (e) Visibility Map.

close to the extremes1. This result is concordant with function w( j+n
2

) values, shown in

Figure 2.6(a). An example of a Contrast Map is shown in Figure 2.5(d).
1In monitors or printed versions well calibrated.
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,n
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w
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n

2
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(a)

p = 20
n = 0

p = 140
n = 120

p = 255
n = 235

w(20, 0) = 23.9%

w(140, 120) = 98.8%

w(255, 235) = 71.2%

(b)

FIGURE 2.6. (a) Perceptual contrast between a pixel and its background accord-
ing to their gray levels, (b) w( j+n

2 ) application example.

2.3.5. Visibility Maps

To account for both HVS sensitivities, the Visibility Maps are constructed by taking

the pixel-by-pixel product of the two previous maps. So that each pixel in the VM has the

contribution of HVS contrast and spatial frequencies sensitivities. In Figure 2.5(e) a VM

is presented.
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3. VISIBILITY MAPS VALIDATION

Since we are introducing a new index of quality measurement in this section we will

compare it with other indices and subjective evaluations.

3.1. Method

To validate the VM as a visual perception measurement, we created a full reference

image quality assessment index that is computed directly from a VM. The purpose of this

index is to quantify the perceptual similarity between a reference image and a distorted

version of it.

Our index is constructed by obtaining the VM for both, a reference image and a

distorted image, and then calculate the correlation coefficient between their respective

VMs. This index, called Pixel Visibility Criteria Index (PVCI), is expressed as:

PVCI =
1

n− 1

n∑
i=1

(
Ri − R̄
sR

)(
Di − D̄
sD

)
(3.1)

For validating VM and the PVCI as perceptual quality assessment metrics, we use

the LIVE database (Sheikh et al., 2005) in which 20-25 subjects were asked to evaluate

the quality of pictures according to how visible or annoying were the distortions they had.

In the database, 29 high resolution RGB 24-bits/pixel images were used, of a typical size

of 768 × 512 pixels, which were distorted using five types of distortions: JPEG2000,

JPEG, white noise in the RGB components, Gaussian blur and transmission errors in the

JPEG2000 bit stream using a fast-fading Rayleigh (FF) channel model.

Each of the 29 images were distorted with different levels of distortion of each type,

generating images that cover roughly the full range of perceptual qualities. This is a set of

982 images, of which 203 correspond to reference images (the 29 images were displayed

seven times each). Observers were asked to provide their perception of quality as “(1)

Bad,” “(2) Poor,” “(3) Fair,” “(4) Good,” and “(5) Excellent.”
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These values were subtracted for the matching pairs (reference and distorted), were

then converted to Z-scores (van Dijk et al., 1995), and finally scaled back to a 1-100 range.

This is the difference mean opinion score (DMOS) for each of the distorted images.

Six metrics that cover a wide range of QA methodologies were used as reference:

PSNR, MSSIM (Z. Wang et al., 2003), DCTune (Watson, 1993), VSNR (Chandler &

Hemami, 2007), VIF (Sheikh & Bovik, 2006) and NQM (Damera-Venkata et al., 2000).

Except from DCTune, which we evaluated using the original color images, the rest of

the metrics were applied to grayscale versions of the images using the luminance L =

0.2989R + 0.5870G+ 0.1140B, where R, G and B denote the 8-bit red, green, and blue

intensities.

Due to the non-linear relationship between the QA metrics and the visual perception

of the images, it is commonly accepted to apply a non-linear fit to the metrics for evalu-

ating their performances. In our case we applied a five parameter function (Sheikh et al.,

2006), constrained to be monotonic, so as to obtain the best fit by minimizing the mean

squared error:

Quality(x) = β1logistic(β2, (x− β3)) + β4x+ β5 (3.2)

logistic(τ, x) =
1

2
− 1

1 + exp(τx)
(3.3)

To assess the performance of PVCI, we use RMSE, Correlation Coefficient (CC) and

the Spearman Rank Order Correlation Coefficient (SROCC), which assesses how well the

relationship between two variables can be described using a monotonic function.
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3.2. Results

We evaluated our quality assessment metric PVCI, assuming a viewing distance of

19.7 inches and a dot pitch of 96 dpi. We calculated the alternative metrics using their im-

plementations available at: (VIF website, 2009; VSNR website, 2009; DCTune website,

2009; SSIM website, 2009; NQM website, 2009).

3.2.1. Performance

PVCI correlates well with observers score using the entire database, with a CC and

SROCC close to 88% (Table 3.1). Moreover, if we discard compression distortions PVCI

increases its performance more than the other metrics, reaching CC and SROCC values

above 95%. This reflects that, unlike the other indexes, PVCI treats differently distortions

that are based on local or specific information of the image, from those applied equally

across the image.

Figure 3.1 shows the the subjective rating of the perceived distortion (DMOS) against

the QA metrics corrected using the logistic function (3.2) for the non-compression-based

distortions. As seen, our metric using VM outperforms many of existing QA metrics.

TABLE 3.1. Quality Index performance for entire database and for non-
compression-based distorsions, using Correlation Coefficient (CC), Spearman
Rank Order Correlation Coefficient (SROCC) and Root Mean Square Error
(RMSE). PVCI outperforms the other methods when considering distortions that
are not related with compression.

All data Noise, blur & FF
Index CC SROCC RMSE CC SROCC RMSE
PSNR 0.826 0.819 9.097 0.852 0.858 8.410
MSSIM 0.907 0.899 6.788 0.907 0.905 6.762
DCTune 0.778 0.769 10.115 0.790 0.787 9.849
VSNR 0.882 0.889 7.602 0.916 0.926 6.451
VIF 0.948 0.953 5.112 0.968 0.968 4.038
NQM 0.876 0.877 7.756 0.892 0.880 7.269
PVCI 0.885 0.878 7.509 0.953 0.956 4.867
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FIGURE 3.1. Subjective scores of perceived distortion for the 319 images with-
out compression of LIVE Sheikh et al. (2005). In all graphs, the horizontal axes
correspond to corrected metrics using (3.2). The vertical axes denotes the per-
ceived distortion (DMOS) as reported by subjects.
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4. METHODS

4.1. Optimization for MRI

We aim to replicate the procedure done by medical technologists to find optimal

acquisition parameters (as shown in Figure 2.1), but analyzing and evaluating the images

using a metric based on our VM. This metric is able to incorporate HVS features that

make possible the evaluation.

The main idea is to obtain MRIs of the same structure varying the acquisition param-

eters, and by using an index to quantify and optimize the perceptual information provided

by each set of paremeters. Thus, to obtain the optimal parameter configuration for the

patient (as shown in Figure 4.1).

MRI

MR Parameters
Adjustment

HVS-based
Metric

FIGURE 4.1. MRI parameters setting using HVS-based metric.

4.2. Optimization Cost Function

VM allow quantifying the perceptually relevant information in any region of an im-

age. This information can be used as the objective function for an optimization problem

that maximizes the Region Visibility Information (RVI) (i.e. the visibility of a desired

region or structure) by changing the acquisition parameters.

Our method consists on using the VM of the region of interest to optimize the acqui-

sition parameters p. Our cost function will be the standard deviation of the VM for that

given region.
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max
p

RVI = σ (VM(I(m, p)|Ω)) (4.1)

where I is the MR scan obtained of a region m.

We use the standard deviation of the VM in ROI, because it captures the dispersion

of existing visibility, which is higher in areas with high structural content, such as edges

or textured areas.

4.3. Implementation

To find optimal acquisition parameters, we propose the following scheme: (1) acquire

a few scans using different values of the acquisition parameters in an expected optimal

range. (2) Define a ROI which covers roughly a portion of the object of interest and

its background. (3) Calculate the RVI index in each of the images within the ROI. (4)

Interpolate the RVI index to obtain the visibility of structures for those values in the range

that were not evaluated. We are assuming that the RVI index gives a smooth continuous

function, condition that we effectively verified (vide infra).

4.4. Subjective Experiments for Validation

We considered two frequent applications in MRI to assess our optimization method.

The first one was to find the parameters needed to enhance white matter (WM) in the brain

while suppressing Gray Matter (GM) and cerebrospinal fluid (CSF). The second one was

to find the parameters needed to differentiate WM from GM making visible both tissues.

For the first case we consider an Inversion Recovery (IR) sequence with Time of

Inversion (TI) and Time of Echo (TE) as the optimization variables, and for the second

one a Spin Echo (SE) sequence with Time of Repetition (TR) and TE as the optimization

variables.
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4.4.1. Optimal Range Selection

The optimization parameters should cover roughly the expected optimal range. To

find this range we use the signal equation for a IR sequence:

s = M0 · (1− 2e−TI/T1 + e−TR/T1)e−TE/T2 (4.2)

where T1 = 780 ms and T2 = 90 ms for WM, T1 = 920 ms and T2 = 100 ms for GM

and T1 = 3000 ms and T2 = 1420 ms for CSF for a 1.5 T magnetic field (Chary & Govil,

2008). Normalizing M0 to 100, setting a sufficiently long TR to 1200 ms and choosing

the minimum allowable TE ≈ 10 ms, one can plot the signal intensity against TI (Figure

4.2).

It can be seen that bellow TI ≈ 400 ms the contrast is reversed in the images, there-

fore it is interesting to use TI values greater than 400 ms.
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FIGURE 4.2. Plot of the theoretical WM, GM and CSF signals (in magnitude) as
a function of Time of Inversion for an IR sequence with M0 = 100, TR = 1200
ms and TE = 10 ms.

To have a margin of error and to cover a wide range of values, the chosen TI ranged

from 375 ms to 750 ms, with a higher sampling rate in values close to 400 ms. This way,

TI was set at: 375 ms, 400 ms, 450 ms, 500 ms, 600 ms and 750 ms. For choosing TE ,

we simply covered a wide range of values starting from the minimum. This way we set

TE to 10 ms, 25 ms and 40 ms, resulting eighteen MR scans (Figure 4.3).
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FIGURE 4.3. IR scans obtained within the expected optimal range for the WM
visibility optimization and GM and CSF suppression.

For the Spin Echo sequence we acquired sixteen scans shown in Fig 4.4, using TE:

4.0 ms, 4.3 ms, 4.6 ms, and 4.9 ms; and TR: 10 ms, 15 ms, 20 ms and 25 ms.

4.4.2. RVI Index Evaluation

The first step for evaluating our perceptual index is to select a ROI where the struc-

tures of interest are located, in our case a region with WM, GM and CSF. It is not impor-

tant to be precise in selecting the ROI, however it is desirable to avoid including undesired

structures which may influence the calculation of the index (e.g. bone or fat).

Our HVS-based metric RVI is then evaluated on the acquired MRI scans, in order

to quantify the perceptually relevant information in the selected ROI of each image. We

interpolate these results with a triangle-based cubic method using the griddata MATLAB
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FIGURE 4.4. SE scans obtained for the differentiation between GM and WM.

function (The MathWorks, Natick 2008), so that to estimate the RVI for those values in

the range that were not sampled.

For validation purposes, ten healthy volunteers (seven men and three women; mean

age, 24 years; range 22–27 years) were scanned with the IR sequence explained above.

For the SE sequence, we scanned six healthy volunteers (five men and one woman; mean

age, 26 years; range 24–33 years) with the described sixteen TE/TR combinations.

In order to verify whether or not our RVI is a smooth and continuous function that can

be well approximated by a cubic interpolation, we performed five additional scans to one

volunteer using additional TI /TE combinations within the range (Figure 4.5). This way

we compared the RVI index obtained directly from the scans with those obtained from the

interpolations, in order to evaluate whether the computed optimum corresponded to the

visual optimal using the optimal parameters obtained through the optimization process.

The additional scans were acquired using the following (TE, TI) = (30, 412), (18, 425),

(33, 475), (33, 550), (18, 675) ms.

The IR scans were acquired with a field of view of 220× 220 cm and an acquisition

matrix of 312×312 pixels yielded to an in-plane resolution of 7×7 mm. For the SE scans

we considered a field of view of 220 × 220 cm and an acquisition matrix of 240 × 240
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pixels, resulting in a 9×9 mm resolution. In order to shorten acquisition time, we reduced

the FOV by 50% using Regional Saturation Bands (REST Slabs) in the phase encoding

direction.
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FIGURE 4.5. Expected optimal range with original samples (◦) and samples used
to asess the performance of the interpolation needed for the RVI computation (�).

4.4.3. Subjective Experiment

In order to validate the results of our perceptual metric, nine radiology residents (four

of them in their second year and five on their third year), a radiologist and two medi-

cal technologists were asked to rate the scans according to how well did they meet the

objective in each case. We use a continuous linear scale that was divided into five levels.

The observer scores were converted to a 1 to 5 scale, where 1 corresponds to “Bad”,

2 is “Poor”, 3 is “Fair”, 4 is “Good” and 5 “Excellent”.

We compared this mean opinion score (MOS) with the values obtained by our RVI

index using three criteria: computing the correlation coefficient between RVI scores and

MOS of the images; computing the interpolation errors between interpolated and calcu-

lated RVI values; and measuring the accuracy of RVI to find the optimal parameters within

the chosen range, using as benchmark a contrast-based optimization. We calculated the

cost function of this alternative method, by computing the average intensity of each tissue
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of interest, which we previously manually segmented. And then we took the subtraction

between both tissues intensities, and divided it into the mean intensity of one of them.
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5. RESULTS

5.1. Correlation Between RVI and MOS

As shown in Tables 5.1 and 5.2, the correlation coefficient for the IR sequence is

above 0.8 in every case, while for the SE sequence, the correlation coefficient ranged

between 0.515 and 0.744.

In the SE sequence, the CC between MOS and RVI index for volunteers 5 and 6

image sets are lower than for the rest of the volunteers (Table 5.2) because their images

have some differences with the others. For instance, the average MOS in volunteer 5

image set is 2.53, while for the rest is 3.50 (standard deviation 0.03), which means the

observers could not clearly distinguish WM from GM in that set. And in volunteer 6

image set, observers found it difficult to appreciate differences between the images, which

is reflected in the lower deviation of MOS (0.258) compared with the rest of image sets

(0.405 mean deviation) (Table 5.2).

TABLE 5.1. Correlation coefficient between subjective scores and RVI index, and
optimal TE , TI parameters obtained by RVI optimization, Contrast optimization
and Observer scores for the eighteen IR scans.

CC RVI Opt. Contrast Opt. MOS Opt.
(TE ,TI) (TE ,TI) (TE ,TI)

Volunteer 1 0.9233 (27,405) (40,375) (25,413)
Volunteer 2 0.9004 (40,375) (21,375) (40,390)
Volunteer 3 0.9103 (40,398) (24,405) (35,413)
Volunteer 4 0.8431 (40,398) (22,398) (37,398)
Volunteer 5 0.8281 (27,405) (10,405) (26,412)
Volunteer 6 0.8775 (30,413) (10,398) (40,405)
Volunteer 7 0.9248 (40,398) (24,405) (40,420)
Volunteer 8 0.8060 (40,405) (12,428) (40,413)
Volunteer 9 0.8388 (40,398) (10,398) (38,405)
Volunteer 10 0.8628 (28,443) (27,405) (28,450)

As shown in Figure 5.1, for the IR sequences the cost functions obtained with the

RVI index (Figure 5.1(b)) is similar to the MOS evaluations (Figure 5.1(a)). It can be

seen that both surfaces show that the WM visibility decreases when TI increases over 450
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TABLE 5.2. Correlation coefficient between subjective scores and RVI index, and
optimal TE , TR parameters obtained by the RVI optimization, Contrast optimiza-
tion and Observer scores for the sixteen SE scans.

CC RVI Opt. Contrast Opt. MOS Opt. MOS
(TE ,TR) (TE ,TR) (TE ,TR) (µ, σ)

Volunteer 1 0.7420 (4.578,25) (4.000,10.0) (4.578,21.1) (3.50,0.34)
Volunteer 2 0.7241 (4.617,25) (4.617,10.0) (4.477,23.1) (3.49,0.42)
Volunteer 3 0.7261 (4.000,25) (4.298,10.0) (4.000,25.0) (3.52,0.36)
Volunteer 4 0.7444 (4.558,25) (4.598,13.8) (4.298,25.0) (3.47,0.49)
Volunteer 5 0.5554 (4.898,25) (4.598,15.7) (4.618,25.0) (2.53,0.41)
Volunteer 6 0.5151 (4.898,25) (4.898,14.4) (4.000,24.8) (3.55,0.26)

ms. Additionally, both metrics show that for low TE and TI values, WM visibility is very

low.
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FIGURE 5.1. Objective function from volunteer 1 for the IR sequence parameters
optimization using (a) MOS, and (b) RVI metric. And for the SE sequence using
(c) MOS, and (d) RVI.
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5.2. Interpolation Errors

As seen in Figure 5.2, the differences between interpolated and calculated RVI val-

ues were never higher than 5.76%, value reached at the (TE, TI) pair equal to (33, 550)

ms, where the interpolated value for RVI is 0.451 and the calculated one is 0.425. Nev-

ertheless, for this acquisition parameter configuration the visibility of WM is low (MOS

= 2.00) so its effect on the optimization result is negligible. The second higher difference

is at (18, 425) ms with a 5.19%, where 0.0475 and 0.0501 are the values for calculated and

interpolated RVI, respectively. For the rest of the pairs (30, 412), (33, 475) and (18, 675)

ms, the difference is 3.25%, 2.88% and 1.12%, respectively.

The correlation coefficient between MOS and RVI index did not suffer a significant

variation when we replaced the five additional measured values (CC = 0.8456) with inter-

polated values (CC = 0.8377).

(18, 675) (33, 550)(18, 425)(33, 475) (30, 412)

6%

0%

(TE , TI)

Error

2%

4%

FIGURE 5.2. Percentage error between interpolated and calculated RVI for addi-
tional scans.

5.3. Accuracy in Locating the Optimum

To assess the accuracy in locating the optimal parameters, we compare the optima

found by RVI and by the observers, using the interpolation method in both cases.

Tables 5.1 and 5.2 show the optimal parameters obtained using our perceptual metric

RVI, the classic contrast measure calculated for GM and WM signals and MOS. It can be

seen for the IR sequence that the difference between the optimal TE obtained by RVI and
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MOS is never higher than 10 ms (mean 2.3 ms, 7.7% error), and 22 ms (mean 9.7 ms,

2.6% error) in the case of TI . For the SE sequence, the highest difference between both

scores is 0.9 ms for TE (mean 0.263 ms, 26% error) and 3.86 ms (mean 0.997 ms, 6.6%

error) for TR.

We calculated and plotted the difference between the ideal optimal parameters (using

MOS) and RVI optimal parameters, and by MOS and the contrast method (Figure 5.3).

In the coordinate system, the pair (x, y) indicates that the difference of TE between the

optimization method and MOS is in the x axis, and the difference of TI (or TR in SE

sequence) is in the y axis.

In the last experiment, the best rated images (MOS rate) were the ones that we ob-

tained using the parameters defined by the RVI-based optimization.



28

−30 −25 −20 −15 −10 −5 0 5 10 15
−50

−40

−30

−20

−10

0

10

20

Time of Echo [ms]

T
im

e 
of

 In
ve

rs
io

n 
[m

s]
3

6

7

1
9

2

510

8

10

1

2 7

35

8

6 9

44

(a) IR Sequence

−0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−16

−14

−12

−10

−8

−6

−4

−2

0

2

4

Time of Echo [ms]

T
im

e 
of

 R
ep

et
iti

on
 [m

s]

1

2
3

54 6

1

3

2

4

5

6

(b) SE Sequence

FIGURE 5.3. Difference between the optimal parameters found by observers and
RVI (◦), and by observers and the contrast method (�). Attached to every point
is a number that indicates the correspondent volunteer.



29

6. DISCUSSION

6.1. Visibility Maps Validation Method

Our QA methodology, like JPEG compression, works on a block-by-block basis.

This is the reason why when assessing quality for compressed images PVCI does not

encompass all its dynamic range (between 0 and 1), as it occurs for the rest of distortions

which are applied equally throughout the images.

It is also interesting to appreciate the performance of VM applied to QA when there

is no compression on images, because VM are intended to be used in medical imaging,

in which lossy compression methods such as JPEG or JPEG 2000 are avoided. As can

be seen in Figure 3.1, our metric has a good correlation with human perception of these

distortions, outperforming many of the existing FR QA methods, which means that VM

can properly assess the visual information contained in images.

6.2. Acquisition Parameters Optimization

In our case, the expected optimal range for the IR sequence could be smaller, because

the optimum TI for every volunteer is close to 400 ms, while the sampling was done with

values up to 750 ms. So it is possible to optimize with less samples using values below 500

ms, i.e. removing the acquisitions with TI = 600 and 750 ms. This way, the optimization

can be performed with only twelve acquisitions, which implies shorter acquisition time.

In the SE sequence optimization, the accuracy locating the optimal TR is better than

locating the optimal TE , because the contrast depends more on the first parameter. As

can be seen in Table 5.2, the subjective optimal TR is above 21 ms in every case, which

implies that the optimum is always found in the top 27% of the range (i.e observers always

show preference for higher TR), while the optimal TE ranges between 4.0 ms and 4.618

ms, covering the 69% of the range.
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7. CONCLUSION

We have proposed a HVS-based method which allows to perform applications in the

field of medical imaging, such as MRI acquisition parameters optimization. The method

makes use of two HVS features: its sensitivity to luminosity and spatial frequencies,

which are reflected in perceptual maps named Visibility Maps.

For MRI acquisition parameters optimization we proposed a method to maximize

the visibility of a desired structure in a scan. We tested the method for two common

MRI applications: the white matter visibility maximization, using an IR sequence, and

the contrast enhancement between gray matter and white matter using a SE sequence.

The methods were based on searching the optimal TE and TI , and TE and TR parameters

respectively, by acquiring some scans within an expected optimal range.

The results of the optimization show that the method based on VM can successfully

find optimal parameters for these specific tasks and can also maximize the visibility of

other tissues without the need of previous segmentation of the scans.

The validation of VM as a perceptual quality metric, using it for Full Reference Image

Quality Assessment, shows that our method can properly measure the visibility of each

pixel of an image according to the HVS. Indeed, the comparison between images is not

performed between gray levels, but in terms of perceptual information.

As future work, the optimization method can be used to maximize the visibility of

other structures in MRI scans, where the acquisition parameters are difficult to set.
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