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ABSTRACT

Auscultation is a simple, inexpensive, and non-invasive process for diagnosing respi-
ratory diseases. However, its main di�culties are that these sounds are concentrated
in a very low frequency band, they overlap with heart sounds and their interpretation
is subject to the experience of the physician. With the advancement of technology,
digital stethoscopes have been created that allow these sounds to be recorded for
analysis.

In this work, the design of a system based on two stages is proposed. In the first
stage, the detection of the fundamental heart sounds is performed using a CNN with
encoder-decoder architecture using a database of 792 phonocardiograms from 135
di↵erent patients (from which 54 of these patients present some heart pathology).
At this stage, a high performance is reported (close to 93±1.1% for di↵erent metrics
such as accuracy, recall, precision and F1 score) from a k-fold cross-validation with
k = 10. In addition, it is shown to be a robust system that presents high performance
regardless of the input features of the network.

In the second stage, di↵erent methods of source separation are proposed through a
Non-negative Matrix Factorization (NMF) decomposition process. Among these, the
NMF method on the entire signal and replacing segments in the heart sound positions
with the estimated lung sound, in conjunction with a assignment criterion based on
heart sound position correlation, give the best results in terms of reconstruction of
the lung sound (� 0.96 ± 0.01 in temporal and spectral correlation, 0.001 ± 0.0006
in Mean Square Error and 11.86± 1.59 dB in Signal to Distortion Ratio). From this
process, a clean lung sound will be obtained that could be used in a classification
system for respiratory diseases.

Keywords: Heart sound detection, heart sound segmentation, Convolutional Neural
Networks (CNN), lung and heart sounds separation, source separation, Non-negative
Matrix Factorization (NMF)
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RESUMEN

La auscultación es un proceso simple, de bajo costo y no invasivo para realizar
diagnósticos de enfermedades respiratorias. Sin embargo, sus principales dificultades
es que estos sonidos se concentran en una banda de frecuencia muy baja, se traslapan
con los sonidos cardiacos y su interpretación está sujeta a la experiencia del médico.
Con el avance de la tecnoloǵıa se han creado estetoscopios digitales que permiten
registrar estos sonidos para analizarlos.

En este trabajo se propone el diseño de un sistema de dos etapas. En la primera
etapa se realiza la detección de los sonidos cardiacos fundamentales usando una CNN
con arquitectura encoder-decoder sobre una base de datos de 792 fonocardiogramas
de 135 pacientes distintos (54 de estos pacientes presenta alguna patoloǵıa cardiaca).
En esta etapa se reporta un alto desempeño (cercano a 93±1.1% para distintas
métricas como exactitud, sensibilidad, precisión y valor F1) a partir de una validación
cruzada de k = 10 iteraciones. Además, se muestra que es un sistema robusto que
presenta un alto desempeño independiente de las caracteŕısticas de entrada de la red.

En la segunda etapa se proponen distintos métodos de separación de fuentes
mediante un proceso de descomposición con Factorización No Negativa de Matrices
(NMF). Entre los métodos propuestos, los que aplican NMF sobre la señal completa
y reemplazan los segmentos en la posición del sonido cardiaco con el sonido respi-
ratorio estimado, en conjunto con el criterio de asignación de componentes basado
en la correlación temporal con las posiciones del sonido cardiaco obtienen mejores
resultados en cuanto a la reconstrucción del sonido respiratorio (� 0.96±0.01 en cor-
relación temporal y espectral, 0.001±0.0006 en error cuadrático medio y 11.86±1.59
dB en razón señal a distorsión). A partir de este proceso, se tendrá un sonido respi-
ratorio limpio que podŕıa ser utilizado en un sistema de clasificación de enfermedades
respiratorias.

Palabras Claves: Detección de sonidos cardiacos, segmentación de sonidos cardia-
cos, redes convolucionales, separación de sonidos respiratorios y cardiacos, separación
de fuentes, factorización no negativa de matrices
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útiles, y de gúıa en aspectos administrativos. Quiero agradecer también a los distin-
tos proyectos que marcaron mi paso por la Universidad como el Cuerpo de Tutores,
Proyecta UC y la rama estudiantil IEEE, que pese a tener distintos enfoques, per-
miten generar un ambiente de comunidad muy deseable dentro de la Escuela. Aśı
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Chapter 1

Introduction and context of the
thesis

1.1 Auscultation as a diagnostic method

Auscultation is the process of listening and interpreting sounds generated by the
internal organs of the body. In 1816, Rene Laennec invented the stethoscope, an
instrument that to this day has been used to diagnose di↵erent types of diseases
(Welsby et al., 2003). Among the main fields in which this method has been used is
in the diagnosis of heart and lung diseases (Mondal, Saxena, et al., 2018). Physicians
use auscultation as a simple, non-invasive and low-cost method to obtain relevant
information about the state of internal organs (Fernando et al., 2020; Gavrovska
et al., 2014; Gupta et al., 2007; Oliveira et al., 2019; Saha and P. Kumar, 2004;
Shah, Koch, et al., 2015; Shah and C. Papadias, 2013; S. Sun, Jiang, et al., 2014;
Tang et al., 2012; Vepa et al., 2008; Yuenyong et al., 2011), being one of the most
reliable, e↵ective and easily repeatable method to make an early diagnosis without
generating risks in the patient (Bahoura, 2009; Bardou et al., 2018; Demir et al.,
2020; Dokur, 2009; Gill et al., 2005; Kandaswamy et al., 2004; D. Kumar, Carvalho,
Antunes, Gil, et al., 2006; Palaniappan et al., 2013; Sankur et al., 1994; Sengupta
et al., 2016; Xie et al., 2012).

However, one of the main di�culties of diagnosis by auscultation is that the
interference generated between heart and lung sounds can hide/mask characteristics
of each one, which can lead to erroneous diagnoses (Mondal, P. S. Bhattacharya, et
al., 2011). In addition, many of these sounds are in a low frequency band, in which
the human ear is not very sensitive (Ari et al., 2008; Bahoura, 2009; S. Banerjee et al.,
2016; Bardou et al., 2018; Kandaswamy et al., 2004; Mondal, P. S. Bhattacharya, et
al., 2011; Omari and Bereksi-Reguig, 2015; Palaniappan et al., 2013; S. E. Schmidt
et al., 2010; Sengupta et al., 2016). Finally, the interpretation of these sounds is
subject to the experience, skills and auditory training of the physician who performs
the auscultation (Ali et al., 2017; S. Banerjee et al., 2016; Chen et al., 2017; Gill
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et al., 2005; Huiying et al., 1997; Liang et al., 1997; Moukadem, S. Schmidt, et al.,
2015; Mubarak et al., 2018; Nazeran, 2007; Oliveira et al., 2019; Papadaniil and
Hadjileontiadis, 2014; Pedrosa et al., 2014; Sedighian et al., 2014; Shanthakumari
and Priya, 2019; Tang et al., 2012; Yuenyong et al., 2011).

In addition, in (Hafke-Dys et al., 2019) it is mentioned that “the medical commu-
nity recognizes the problem of the ambiguous nomenclature used in the classification
of respiratory sounds”, which is an additional di�culty when communicating a pa-
tient’s diagnosis. Along the same lines, the study of (Hafke-Dys et al., 2019) reports
that medical students achieve an average of 24.1% correct diagnoses in the ausculta-
tion of respiratory sounds using the appropriate nomenclature, while pulmonologists
only 36.5%.

With the development of the digital stethoscope, considerable progress has been
made in the analysis, study and processing of sounds, allowing easier diagnoses of
certain diseases (Várady, 2001). Indeed, with these types of tools it is possible
the study of the occurrence times and the relative intensities of each sound in a
visual representation, allowing to reveal information that even the human ear cannot
process (Messer et al., 2001; Omari and Bereksi-Reguig, 2015).

1.2 Lung sounds

Lung sounds are produced by a turbulent flow of air within the respiratory tract
during inhalation and exhalation processes (T. E. A. Khan and Vijayakumar, 2010;
Mondal, P. Bhattacharya, et al., 2013; Potdar et al., 2012), mainly in the bronchi and
trachea (Welsby et al., 2003). Product of the vibrations generated by turbulence,
this flow propagates in form of sound through the lung tissue which can be heard
on the chest wall (Nersisson and Noel, 2017). In the process, the tissue involved
acts as a low-pass filter (Welsby et al., 2003) that varies depending on possible
changes in the structure, generated by pathologies that a↵ect the lung physiology
and/or respiratory airways (Pourazad, Z. Moussavi, and Thomas, 2006; Tsalaile et
al., 2008). Therefore, lung sounds auscultation provide signs of excessive secretions
or evidence of inflammation of the lungs (Jones et al., 1999), which can be related
to diseases such as asthma, tuberculosis, chronic obstructive pulmonary diseases
(COPD), pneumonia and bronchiectasis (Ahlstrom et al., 2005; T. E. A. Khan and
Vijayakumar, 2010).

The lung sounds of a normal patient generally occurs in the frequency band
between 20-2000 Hz (Canadas-Quesada et al., 2017; Dokur, 2009; N. Gavriely et al.,
1981; Kandaswamy et al., 2004; Sankur et al., 1994), whose energy peak is located
between 20-100 Hz. From 200 Hz the signal presents an abrupt drop in energy
(Ghaderi et al., 2011; Nersisson and Noel, 2017; Pasterkamp et al., 1997; Yadollahi
and Z. M. Moussavi, 2006).

In general, lung sounds can be classified into two classes, as presented in the
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Figure 1.1: Lung sound taxonomy.

figure 1.1 (Bardou et al., 2018; Kandaswamy et al., 2004; Sankur et al., 1994; Xie
et al., 2012): normal lung sounds and adventitious lung sounds (abnormal).

Normal lung sounds have the characteristics just mentioned. On the other hand,
adventitious lung sounds are sounds superimposed on normal lung sounds, and can
occur on both inhalation and exhalation (Dokur, 2009). In general, they are symp-
toms of some pulmonary disorder, and can be divided into two main classes: con-
tinuous and discontinuous (Bahoura, 2009; Bardou et al., 2018; Sankur et al., 1994;
Sengupta et al., 2016; Xie et al., 2012).

Continuous adventitious lung sounds may be caused by inflammation or obstruc-
tion of the respiratory lumen (Dokur, 2009; Sengupta et al., 2016; Xie et al., 2012).
Within this category, wheezing are tonal sounds whose duration is greater than 100
ms, and whose predominant frequency range is greater than 100 Hz (Sankur et al.,
1994; Sengupta et al., 2016). They can be monophonic if it contains only one fre-
quency, or even polyphonic if it contains more than one frequency (Bardou et al.,
2018). They are known for the vibration of the bronchi (Bahoura, 2009), and for this
reason, they are usually associated with obstruction of the bronchial passages due to
bronchospasm, mucosal edema or external compression by a tumor mass (Bahoura,
2009; Sengupta et al., 2016). These types of symptoms are associated with diseases
such as asthma and COPDs such as pulmonary emphysema, chronic bronchitis and
cystic fibrosis (Sengupta et al., 2016).

Discontinuous adventitious sounds are caused by explosive openings of small air-
ways that are abnormally closed by fluid (bubbling of air through mucus), inflam-
mation, or infections of small bronchi, bronchioles, and alveoli (Dokur, 2009; Sankur
et al., 1994; Sengupta et al., 2016; Xie et al., 2012). Crackles are discontinuous
adventitious sounds that are characterized by being short, explosive and non-tonal
whose duration is typically less than 20 ms (Kandaswamy et al., 2004; Xie et al.,
2012). They tend to appear on inhalation and to a lesser proportion on exhalation
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(Bardou et al., 2018; Sengupta et al., 2016). Its frequency spectrum is located be-
tween 60-2000 Hz, predominating below 1200 Hz (Sarkar et al., 2015). This type
of sounds is related to restrictive lung diseases such as pneumonia, bronchiectasis,
pulmonary fibrosis and fibrosing alveolitis (Sankur et al., 1994).

1.3 Heart sounds

The cardiovascular system is made up mainly of the heart and blood vessels, and
is responsible for transporting blood throughout the body in 2 main circuits: the
pulmonary (to the lungs) and the systemic (to the rest of the body). The heart is a
four-chamber pump: two atria that receive blood from the veins, and two ventricles
that pump blood into the arteries (Gill et al., 2005). The mechanical activities of
the heart are always caused by its electrical activity (Sepehri et al., 2010).

Heart sounds are quasi-periodic signals originated by the flow of blood that cir-
culates through the heart in conjunction with the movement of its own structure
(T. E. A. Khan and Vijayakumar, 2010; Mondal, P. Banerjee, et al., 2017; Ner-
sisson and Noel, 2017). The heart sounds recordings are called phonocardiograms
(PCG). They contain the acoustic waves produced by the opening and closing of
the heart valves, and even sounds produced by the turbulence generated by the
blood flow (Gamero and Watrous, 2003; Haghighi-Mood and Torry, 1995; T. E. A.
Khan and Vijayakumar, 2010; Mondal, P. Banerjee, et al., 2017; Nersisson and Noel,
2017; Varghees and Ramachandran, 2014). The PCG is a non-stationary signal that
contains valuable information for the diagnosis of certain diseases, showing heart
murmurs, arrhythmias and other types of aberrations originated from its structure
or heart activity (ARI and SAHA, 2007; Chen et al., 2017; Fernando et al., 2020;
Gupta et al., 2007; Haghighi-Mood and Torry, 1995; Huiying et al., 1997; A. Iwata et
al., 1980; Lima and Barbosa, 2008; Nazeran, 2007; Nivitha Varghees and Ramachan-
dran, 2017; Noman et al., 2020; Sedighian et al., 2014; Várady, 2001; Varghees and
Ramachandran, 2014; P. Wang et al., 2005).

The main components of the PCG are the first heart sound (S1) and the second
heart sound (S2). S1 is generated during ventricular systole (closure of the atrioven-
tricular valves: mitral/bicuspid and tricuspid), in which the ventricles contract and
allow blood to be pumped from the heart to the rest of the body through the aorta
and pulmonary arteries (Hamza Cherif et al., 2008; Mondal, P. Bhattacharya, et al.,
2013; Papadaniil and Hadjileontiadis, 2014; Sepehri et al., 2010). Each of the phases
of the heart sound is closely related to events generated by the electrical activity of
the heart, which can be presented in the electrocardiogram (ECG). The example of a
cardiac cycle seen on an ECG is presented in figure 1.2. When studying the cardiac
activity using an ECG, it is possible to notice that S1 in general coincides with the
beginning of the R wave of the QRS complex (Haghighi-Mood and Torry, 1995; Lima
and Barbosa, 2008; Moukadem, S. Schmidt, et al., 2015; Sepehri et al., 2010). On
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Figure 1.2: Electrocardiogram (ECG) illustrative signal. Extracted from SMART.

the other hand, S2 occurs during ventricular diastole (closure of the sigmoid/semilu-
nar valves: aortic and pulmonary) in which the ventricles relax and allow the entry
of blood from the atria (Hamza Cherif et al., 2008; Mondal, P. Bhattacharya, et al.,
2013; Papadaniil and Hadjileontiadis, 2014; Sepehri et al., 2010), and it happens
right after the T wave on the ECG (Haghighi-Mood and Torry, 1995; Moukadem,
S. Schmidt, et al., 2015; Sepehri et al., 2010). Sounds like the third (S3) and fourth
(S4) heart sounds appear to a lesser extent (Ali et al., 2017; Choi and Jiang, 2008;
Omari and Bereksi-Reguig, 2015). S3 occurs shortly after S2 and is associated with
premature diastolic filling of the ventricle. While S4 occurs just before S1 and is
associated with late filling of the ventricle, being common in children and adults
over 50 years old (Iaizzo, 2005; Malarvili et al., 2003; Messner et al., 2018; Mondal,
P. Bhattacharya, et al., 2013; Reed et al., 2004).

Their frequency spectra typically lies between 10-200 Hz (Choi and Jiang, 2008;
Lehner and Rangayyan, 1987; Naseri and Homaeinezhad, 2013). In comparison, S1

is a lower-pitched sound with a longer duration, while S2 is a higher-pitched sound
with a shorter duration (Chen et al., 2017; Iaizzo, 2005). In (C. Liu et al., 2016) it is
indicated that S1 predominates in the 10-140 Hz frequency band and S2 in the 10-200
Hz band. In turn, the S3 and S4 sounds in general have very low amplitude and low
frequency (between 20-70 Hz) (C. Liu et al., 2016). When the cardiac system presents
some dysfunction such as murmurs or mitral valve stenosis, the spectral content could
even expand to 600-700 Hz (Gharehbaghi et al., 2011; Lehner and Rangayyan, 1987;
Mondal, P. Banerjee, et al., 2017; Naseri and Homaeinezhad, 2013; Nazeran, 2007).
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The typical duration of fundamental sounds is between 80-170 ms (Luisada et al.,
1949). In relation to the length of the intervals, the diastolic interval is typically
longer than the systolic interval. Furthermore, the length of the systolic period is
relatively constant compared to the diastolic. Indeed, with increasing heart rate, the
duration of systole tends to decrease while diastole decreases significantly (Ari et al.,
2008; Castro et al., 2013; Chen et al., 2017; Huiying et al., 1997; Nivitha Varghees
and Ramachandran, 2017; Rajan et al., 2006; Saha and P. Kumar, 2004; P. Wang
et al., 2005; Yuenyong et al., 2011).

Abnormalities such as heart murmurs are generated by turbulent blood flow in
blood vessels (Dinesh Kumar et al., 2006). They can be due to thin pulmonary valves
with stenosis, whose structure can generate regurgitation causing the blood flow to
take a direction opposite to normal. In the case of mitral regurgitation, the valve
does not close properly causing regurgitation in the left atrium when the left ventricle
contracts, resulting in a characteristic murmur (Boutana et al., 2011; Yuenyong et
al., 2011). The presence of murmurs is a good indicator of valve disorders (Yuenyong
et al., 2011).

1.4 Research scope

With the growing boom of machine learning methods in areas such as image process-
ing, speech recognition, natural language processing, economics and finance among
others. It has been shown that these types of algorithms can be extremely robust to
solve various problems.

Several authors have raised the challenge of designing an algorithm that allows
objective and quantitative diagnoses from auscultated sounds using methods based
on machine learning (Bardou et al., 2018; Demir et al., 2020; Palaniappan et al.,
2013; Sengupta et al., 2016). However, mutual interference between heart and lung
sounds could be detrimental to the performance of the lung sound classification
system.

The objective of this work is to design a preprocessing system that allows to
obtain a clean lung sound. The resulted sound can be used as an input signal in
a lung sound classification system. In particular, it will be sought to separate the
heart sound from the lung sound, trying to preserve the properties of each sound.
The design of the proposed system is presented in the figure 1.3.

Because the heart is very close to the lungs in the chest, there may be the presence
of heart sounds in the auscultated lung signal. This is not desirable since it can
mask properties of interest of the lung sound or generate false correlations between
the signals

Therefore, and in order to reduce the presence of heart sound in the auscultated
signal, a prior process of source separation will be performed. In the following
chapters, the implementation of the heart sound detection algorithm (chapter 2),
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Figure 1.3: General diagram of the system implemented in this work.

and source separation between heart and lung sounds (chapter 3) will be presented in
detail. Both chapters correspond to independent articles that were sent to specialized
journals in their areas.
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Chapter 2

Heart sound detection

Knowing the heart sound positions could be useful when implementing source sepa-
ration methods on chest auscultated signals. Indeed, this would allow to separate the
lung sound from the heart sound applying algorithms that act only on the segments
where the fundamental heart sounds are located. In addition, a correct detection
and identification of these sounds could allow the development of an automatic sys-
tem that detects cardiac diseases or dysfunctions through auscultation (Sepehri et
al., 2010), since it becomes relatively easy to predict any pathology by studying
the presence and severity of murmurs or sounds such as S3 and S4 in each seg-
ment, which provide valuable information about the patient’s diagnosis (Ari et al.,
2008; Gavrovska et al., 2014; Gupta et al., 2007; Moukadem, Dieterlen, et al., 2013;
Mubarak et al., 2018; Nivitha Varghees and Ramachandran, 2017; Renna et al.,
2019; Springer et al., 2016; Varghees and Ramachandran, 2014; Vepa et al., 2008).
The results of the Physionet challenge on 2016 revealed that algorithms that used
a previous segmentation stage generally performed better in classifying pathologies
from a PCG (Fernando et al., 2020).

However, the automatic cardiac cycle segmentation without the use of guide
signals such as the ECG or the carotid pulse is a complicated task (Gill et al., 2005;
Sepehri et al., 2010). Also, there are some factors that make it di�cult to segment
heart sounds. Indeed, the captured recordings of the chest wall are a mixture of
respiratory sounds, sounds produced by intestinal activity, external noises, artifacts
produced by movements or frictions (such as clicks), variations of the heart rate,
scenarios of low SNR and even the presence of other heart sounds such as murmurs,
S3 and S4 (Chen et al., 2017; Gamero and Watrous, 2003; Ghaderi et al., 2011;
Golpaygani et al., 2015; Hassani et al., 2014; Mubarak et al., 2018; Nivitha Varghees
and Ramachandran, 2017; Rajan et al., 2006; S. E. Schmidt et al., 2010; Sedighian
et al., 2014; Sepehri et al., 2010; P. Wang et al., 2005). All these events can vary in
duration, amplitude and spectral characteristics from one cycle to another, between
recordings, and even between di↵erent patients (Huiying et al., 1997). Due to this,
the detection of fundamental sounds using only the PCG is a complex problem
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(Huiying et al., 1997; Rajan et al., 2006).
Due to the growing rise of Convolutional Neural Networks (CNN) and their good

results in object detection in images, the study of these networks in the detection
and identification of fundamental heart sounds in a PCG is proposed. One of the
advantages of CNNs is that they allow independence of the temporal relationships
of the signal, since each convolutional layer can be understood as a filter that is
adjusted to detect the segments of interest within the heart sound. The detection
will depend on the intrinsic characteristics of each segment, which will be exploited
by the neural network.

In this chapter we propose the study of a CNN based on an encoder-decoder
architecture that allows segmenting and detecting heart sounds in a PCG. The main
contributions of this work are:

A study and proposal of other features used to characterize heart sounds. In
works such as (Renna et al., 2019; S. E. Schmidt et al., 2010; Springer et al.,
2016) the typical features used are the outputs of homomorphic filters, Hilbert
envelopes, Discrete Wavelet Transforms and PSD on certain bands. In this
proposal we will analyze the combination of features that o↵ers the best results
among several proposed descriptors such as the Variance Fractal Dimension,
Multi-scale Wavelet Product and Spectral Tracking, which until now have been
used in envelopes and peaks detection based methods.

A systematic study of the di↵erent parameters that define the network, such
as the number and length of the filters in each layer, the depth of the network,
and the size of the window used in the process of windowing the input signals
for network training.

An analysis of the number of classes to define for the design of the network.
Indeed, typically in the literature 4 classes are used: S1, systole, S2 and dias-
tole. However, we will study whether it is convenient to use 2, 3 or 4 classes
depending on the performance of the network.

Next, one of the articles prepared in this research and sent for publication enti-
tled “Heart sound segmentation using Convolutional Neural Networks based encoder-
decoder” will be presented. It should be noted that for this chapter the introduction
of the article will be omitted, since it overlays the information in chapter 1.

The CNN study was also carried out using classical architectures (AlexNet,
LeNet) and techniques such as class balance and skipping connections which was
not included in the article. However, the detail of the analysis are available in the
chapter A of appendix. Furthermore, the detail on the features used in this section,
is available in chapter C in the appendix.

The rest of this chapter is organized as follows: section 2.1 explains di↵erent
methods implemented in the literature. In section 2.2 the general theory of the CNN
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to be used is presented. In section 2.3 the database and its division for training and
testing the network is detailed. In the section 2.4 the parameters to be used in the
preprocessing, the initialization of the network and the descriptors parameters are
detailed. In the section 2.5 the experiments to be performed are presented, analyzing
on the results of each one. And finally, in the section 2.6 the main conclusions of
this chapter are presented.

2.1 Related works

To solve the problem of heart sound segmentation using a PCG, various methods
have been proposed. They can be classified into 5 categories (C. Liu et al., 2016;
Renna et al., 2019): envelope and peak detection; synchronized external signal;
feature extraction and classification; sequential models; and neural networks.

The envelope based methods are the most used in the di↵erent researches of the
last decades. In these methods, it is sought to obtain a characteristic representation
that allows to emphasize the heart sounds (Moukadem, Dieterlen, et al., 2013; Renna
et al., 2019). Once the characteristic are obtained, algorithms for peaks detection
or use of thresholds, algorithms for edge detection and criteria for eliminating false
detection are applied. To identify and classify the heart sounds segments, typically
they make use of the fundamental sounds durations, and the systolic/diastolic inter-
vals durations. Generally, these decisions are based on the fact that the duration of
diastole is longer than that of systole (Ari et al., 2008). Sometimes it is necessary
to remove extra peaks and retain those that correspond to the fundamental sounds
through a process called peak conditioning. To obtain this representation, authors
such as (Ari et al., 2008; ARI and SAHA, 2007; Hamza Cherif et al., 2008; Liang
et al., 1997; Yamaçh et al., 2008) use Shannon energy to obtain a characteristic
envelope, while in (Martinez-Alajarin and Ruiz-Merino, 2005; Saha and P. Kumar,
2004; Vepa et al., 2008) the energy over the time is used. Some more sophisticated
methods such as (Carvalho et al., 2005; J. Gnitecki and Z. Moussavi, 2003) make use
of the Variance Fractal Dimension (VFD), which provides a measure of the inherent
complexity of a signal in terms of its morphology. In (Nigam and Priemer, 2005;
Vepa et al., 2008) a method to obtain the envelope using the inherent complexity
of the PCG based on the theory of system dynamics is proposed. Hilbert trans-
form is another widely used method to address this problem, where the magnitude
envelopes (Mondal, P. Bhattacharya, et al., 2013) and the instantaneous frequency
(Martinez-Alajarin and Ruiz-Merino, 2005; S. Sun, Jiang, et al., 2014; Varghees and
Ramachandran, 2014) defined from the analytic signal are used. In (S. Sun, Haibin
Wang, et al., 2014; Yan et al., 2010) the use of a method based on obtaining the
variance of the signal in a time window is presented, and that provides reference
points that allow characterizing each cycle. Based on spectral features (A. Iwata
et al., 1980) uses spectral tracking on a specific frequency, while in (Haghighi-Mood
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and Torry, 1995) energy is tracked in certain frequency bands of the signal. Au-
thors such as (Boutana et al., 2011; Liang et al., 1998) use spectrograms to make
a time-frequency representation of heart sound. The Discrete Wavelet Transform
(DWT) is a technique widely used in the literature to preprocess PCGs (Vepa et al.,
2008; Yamaçh et al., 2008) and to obtain envelopes from their decomposition levels
(Castro et al., 2013; Golpaygani et al., 2015; Huiying et al., 1997). In works such as
(Meziani et al., 2012; H. Sun et al., 2013; P. Wang et al., 2005) the DWT is used
to suppress PCG noise by applying thresholds on certain detail levels. In (Yadollahi
and Z. M. Moussavi, 2006) the Multi-scale Wavelets Product is presented, o↵ering
good noise suppression properties. Another less common variant of Wavelets is pro-
posed in (Nivitha Varghees and Ramachandran, 2017) using an Empirical Wavelet
Transform approach for noise suppression and discrimination of cardiac murmurs.
Although these methods are relatively simple to implement, the main di�culty they
present is that in the presence of noise, false detections can occur due to unwanted
peaks or undetected heart sounds, which depend on the position and how much the
stethoscope is pressed on chest (Yuenyong et al., 2011). Furthermore, most of these
methods use the systole and diastole durations to classify S1 and S2, which may be
useless in cases of clinical symptoms such as tachycardia, arrhythmia, patients under
cardiac stress activity or erroneous segmentations in which this criterion is invali-
dated (Moukadem, Dieterlen, et al., 2013; Moukadem, S. Schmidt, et al., 2015).

Methods based on the use of external signals require the use of additional syn-
chronized instruments to determine the times of key events in the cardiac cycle.
Authors such as (El-Segaier et al., 2005; Gharehbaghi et al., 2011; Malarvili et al.,
2003) use the ECG as an additional signal, while (Lehner and Rangayyan, 1987) uses
ECG and the carotid pulse to recognize fundamental heart sounds. However, one of
the main problems with this type of technique is that the instruments necessary to
complement the PCG information cannot always be available. Also, in the case of
the ECG, the time between electrical and mechanical activities may vary between
patients due to the existence of possible pathologies, which would make its use as
a guide for segmentation less reliable (Haghighi-Mood and Torry, 1995; Malarvili
et al., 2003; Nigam and Priemer, 2005; Varghees and Ramachandran, 2014; Vepa
et al., 2008).

The features extraction and classifications based methods seek to find features
that allow to characterize the PCG, which will be used in classification systems to
determine what state of the cardiac cycle each one corresponds to. In works such as
(D. Kumar, Carvalho, Antunes, Henriques, et al., 2006; Dinesh Kumar et al., 2006)
a spectral energy distribution criterion is used to classify S1 and S2. In (Tang et al.,
2012) a decomposition method is applied using a Gaussian modulation, perform-
ing a dynamic grouping in the time-frequency plane and using a weighted density
function as a threshold for detecting fundamental sounds. In (Papadaniil and Had-
jileontiadis, 2014) a kurtosis based criterion for the detection of heart sounds is used.
In (Ghaderi et al., 2011) a Singular Spectral Analysis (SSA) is performed to classify
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based on the eigenvalues of the decomposition. Di↵erent types of classifiers such as
fuzzy c-means (Carvalho et al., 2005), bagging classifiers (Yuenyong et al., 2011),
k-means (Gavrovska et al., 2014; Pedrosa et al., 2014; Tseng et al., 2012), Support
Vector Machine (SVM) (Mubarak et al., 2018; S. Sun, Haibin Wang, et al., 2014)
and k-Nearest-Neighbors (kNN) (Moukadem, Dieterlen, et al., 2013; Moukadem, S.
Schmidt, et al., 2015) have been used in the literature o↵ering competent results.
However, this kind of heart sound classification methods su↵er similar problems to
peak detection methods since they are dependent on the correct segmentation of the
heart sound. If the segmentation is not performed correctly, the classifiers do not
have correction algorithms to amend the problem.

The use of sequential models such as Hidden Markov Models (HMM) have gener-
ated a great advance in solving this problem. Works such as (Gamero and Watrous,
2003; Gill et al., 2005; Lima and Barbosa, 2008) use first-order HMMs to model each
segment of interest in the PCG. A limitation of the HMM is that in these models
the transition probability to a new state is independent of the time the model has
remained in the same state. As a result of this, (S. E. Schmidt et al., 2010) proposes
the use of a Hidden Semi-Markov Model (HSMM), which allows modeling the ex-
pected duration of the heart sound in each of the states, consolidating itself as the
state of the art at that moment. In (Springer et al., 2016) a logistic function is also
incorporated to estimate the probability of emission between states, and the classic
Viterbi algorithm is adapted by correcting problems at the edges that the original
algorithm could not solve, consolidating itself as the state of the art of heart sound
segmentation (Renna et al., 2019). In (Oliveira et al., 2019) a method similar to
(Springer et al., 2016) is proposed, but with the ability to adjust the sojourn time of
the states considering the characteristics of the input PCG. In recent works such as
(Noman et al., 2020), HMM is used with Switching Linear Dynamics System (SLDS)
which allows each state to be modeled as a linear dynamic process.

Finally, the methods based on neural networks use features or signal envelopes as
input to a neural network, which classifies the PCG segments into the di↵erent inter-
est labels. In (Oskiper and Watrous, 2002) a Time Delay Neural Network (TDNN)
is implemented to detect S1 with a single hidden layer. In work such as (Chen et
al., 2017; Tsao et al., 2019) Deep Neural Networks (DNN) are used, incorporating
in (Tsao et al., 2019) a spectral restoration algorithm that allows to reduce noise
in the frequency domain. In works such as (Fernando et al., 2020; Messner et al.,
2018) the implementation of Recurrent Neural Networks (RNN) is studied, testing
with di↵erent architectures such as Vanilla RNN, Long Short Term Memory Net-
works (LSTM), Gated RNN (GRNN), Bidirectional RNN (BiRNN), and even the
new attention blocks in (Fernando et al., 2020). The RNNs allow processing sequen-
tial inputs of variable length, and automatically learn the temporal relationships
between them. In (Renna et al., 2019) Convolutional Neural Networks (CNN) are
used, whose architecture is inspired by the U-Net network originally used in image
segmentation. In general, neural network-based methods allow to avoid the typical
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problems of envelope analysis and peaks detection. However, one of the di�culties
they present is that it is necessary to develop a training set large enough for the
development of these models (Yuenyong et al., 2011).

2.2 Theoretical background

2.2.1 CNN based Encoder-Decoder

One of the main characteristics of CNNs is their ability to exploit the temporal or
spatial correlation of data due to its convolutional nature (A. Khan et al., 2020).
The convolution relations in a CNN are given by:

x̃[l]
k
(n) = b[l]

k
+

n
[l�1]
cX

j=1

n
[l�1]
NX

m=1

h[l]
j
(n�m+ 1) · x[l�1]

j
(m)

x[l]
k
(n) = g[l]

⇣
x̃[l]
k
(n)

⌘
(2.1)

Where h[l]
k
(n) corresponds to the k-th filter of the l-th convolutional layer, b[l]

k
to

its bias parameter, n[l]
c is the number of filters defined in the l-th layer, n[l]

N
is the

length of the output of the l-th convolutional layer, g[l](·) is the activation function

and x̃[l]
k
(n) is the output of the k-th filter in the l-th convolution layer.

CNNs based on classical architectures such as the LeNet-5 (Yann LeCun et al.,
1998) or the AlexNet (Krizhevsky et al., 2012) are typically composed of a series of
convolutional layers, a flattening layer, and finally a perceptron network from which
a single output class is obtained. In the case of the heart sounds segmentation, this
could generate resolution problems since when entering a segment of the PCG, the
network will reduce that entire segment to a single label, which is not desirable.

For this reason, this work proposes the use of a CNN based on the SegNet net-
work (Badrinarayanan et al., 2017), an encoder-decoder architecture with CNN that
presents good results in image segmentation applications, which can be divided into
3 main sections as shown in figure 2.1. This network will be adapted to operate with
PCG audio signals (1D).

The first section is the encoder network, and it is composed of a series of encoders
that make it possible to generate a low-resolution representation of the input signal
(Badrinarayanan et al., 2017). Each encoder consists of a series of convolutional
layers, followed by batch normalization, activation function (typically with ReLU
function) and a pooling function (typically maxpooling), which allows to downsample
the signal throughout the network (Renna et al., 2019). Although maxpooling allows
for better results and translation invariance on small shifts in the input signal, the
use of many layers of pooling causes a loss of resolution.
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Figure 2.1: Diagram of a CNN-based encoder-decoder architecture.
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Figure 2.2: Diagram of the use of information from the encoder pooling layers in the
inverse pooling implemented in the decoder of SegNet network. This is applied on a
4⇥ 4 dimension image.

The second section is the decoder network, and it is composed of a series of
decoders that allow generating multi-dimensional characteristics from the low res-
olution representations obtained from the encoder (Badrinarayanan et al., 2017).
Each layer provides a higher resolution representation that will serve as input to the
next decoder, and consists of a series of convolutional layers with batch normaliza-
tion and ReLU, just like the encoders. However, instead of using a pooling function,
an inverse function is implemented that increases the number of samples. In this
network, each encoder has a corresponding decoder that allows the reverse process
to be performed up to the classification layer (Ye and Sung, 2019). In the SegNet
network, for each corresponding encoder-decoder pair, it is proposed to use the po-
sition of the maximum value obtained in the maxpooling layers in the encoders to
implement the inverse process, as can be seen in the figure 2.2.

Finally, at the output of the last decoder, a classifier based on the softmax func-
tion is used that classifies each sample of the input signal independently, indicating
the probability that each sample belongs to any of the K classes through the expres-
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sion:

ŷi(n) = �i

�
X[L](n)

�
=

exp
⇣
x[L]
i
(n)

⌘

P
K

k=1 exp
⇣
x[L]
k
(n)

⌘ , (2.2)

Where the sum of the outputs of this layer is 1, 8n = {1, ..., K}. Therefore,
this type of network allows classifying while maintaining the length Nx of the input
signal. To infer the class of each point, the class that has the maximum estimated
probability among all the classes is chosen.

Finally, to train this network a cross entropy cost function is used, which is
defined as (Aggarwal, 2018b):

L⇥ (y(n), ŷ(n)) = �
KX

i=1

yi(n) log (ŷi(n)) (2.3)

Where ⇥ represents the set of parameters that defines the network, yi(n) 2
{0, 1}, 8i = {1, ..., K} corresponds to the observed value or label, and ŷi(n) 2
{0, 1}, 8i = {1, ..., K} is the probability obtained from of the softmax layer for
the i-th class.

The base design of the proposed network is presented in figure 2.1. As can be
seen, and unlike the original SegNet network, the encoder consists of 10 convolutional
layers with batch normalization and ReLU activation, using 4 maxpooling layers after
the second, fourth, seventh and tenth convolutional layers. In convolutional layers,
zero padding will be used to ensure that the same number of points is maintained at
the output as at the input. In addition, maxpooling will be used with length and step
2, which will allow the number of points to be cut in half each time it is implemented.
For the upsampling process in the decoder, the values from the previous layer will
simply be duplicated. This choice is due to the fact that performing the proposed
operation in the SegNet network (see figure 2.2) on a one-dimensional signal does
not generate a great di↵erence with replicating the value, compared to signals in two
dimensions. Therefore, in order to keep the network simple, the value will simply be
repeated. The output of this network is a classification sample by sample, obtaining
the same dimension Nx of the input signal to the network.

2.3 Database

To perform this study, we use a database of heart sounds available in the Springer
implementation (Springer et al., 2016), presented for the heart sound segmentation
stage in the context of the 2016 PhysioNet/CinC challenge (Goldberger et al., 2000).
This dataset contains 792 audio records obtained from 135 di↵erent patients, which
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Table 2.1: Time duration for every set and label in the database.

Label
Duration (minutes)

Train Validation Test Total label

S1 22.642 2.037 2.603 27.283
Systole 30.244 2.931 3.760 36.936

S2 16.069 1.444 1.843 19.356
Diastole 68.186 6.229 8.252 82.667

Total set 137.142 12.642 16.458 166.242

are auscultated in di↵erent positions, resulting in a total of 166.24 minutes of record-
ing. Each of these audio files is sampled at 1000 Hz, and has labels sampled at 50 Hz
indicating 4 possible states: S1, systole, S2 and diastole (table 2.1 shows the detail
of the duration of each set and label in this database). These labels are defined with
the R peak and the end of the T wave of an ECG synchronized with the stethoscope
used for recording the heart sounds. However, none of the labels have human correc-
tion. In addition, each file contains the ID number and the diagnosis of the patient,
indicating whether or not they have the presence of a pathology (the most common
are mitral valve prolapse).

To coordinate the sample rate of the PCGs with the sample rate of the labels,
each point on the labels is simply repeated 20 times. With this, it is possible to
obtain a representation of the auscultated signal synchronized with its respective
labels, as can be seen in the figure 2.3.

For this work, the dataset will be divided into 90% (712 PCG recordings of 120
patients) for training and validation of the system, while the remaining 10% will be
used for testing (80 PCG recordings of 15 patients). It should be noticed that in this
division the patients belonging to the training and validation set are di↵erent from
the patients in the testing set. This helps to ensure that the results obtained really
indicate how the system is performing in segmenting the heart sounds in a general
situation, and not the heart sounds of a particular person.

In turn, the set designated for training and validation is divided into 90% for
training (640 files) and 10% for validation (72 files) without considering the division
of patients. That is, it is possible for patients to be repeated in the training and
validation sets. The reason for this decision is based on contrasting the results
of the validation and testing set against the adjustment of the network, since the
performance and behavior of the network on PCGs of patients who are in the training
set could be studied, in comparison to PCGs of patients that the network does not
have integrated. These divisions are illustrated in the diagram of figure 2.4.

Finally, for each of the audio files in this dataset, windows of length Nx with step
⌧x will be used. In the extreme case of the edge of the signal, if the number of points

16



Figure 2.3: PCG and its labels. In this example, the labels are corrected to fs = 1000
Hz.

Database

90%

10%
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Train / Validation

Train
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90% 10%

Figure 2.4: Database file division for network training and testing.
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Input
signal

Figure 2.5: Windowing process of the network input signal. This figure shows two
consecutive windows of length Nx, step size ⌧x and m descriptors.

remaining is less than Nx, it will be zero padded to the desired length. Each of these
windows will be grouped into a matrix that will constitute the input matrix of the
network. The diagram of this process is illustrated in figure 2.5.

2.4 Implementation

For the network implementation, the system is divided into 3 main blocks connected
consecutively: preprocessing, feature extraction and classification through the neu-
ral network in which the number of classes used will be varied, as can be seen in
the diagram of figure 2.6. The implementation of each block and the alternatives
proposed for each of them will be explained in detail below.
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Figure 2.6: General scheme of the design of the heart sound detection system.

2.4.1 Preprocessing

Sometimes PCGs are contaminated by low-frequency sounds such as those caused
by handling the stethoscope and muscle or pectoral vibrations, or high-frequency
sounds such as murmurs. Also, the sound heard can vary by factors such as the
stethoscope’s capture position, instrument gain, age, gender, and physiology of the
patient.

For this reason, in this stage, a bandpass FIR filter between 20-180 Hz will be
used. Then, the filtered signal will be normalized to reduce the e↵ect of the factors
mentioned above, using the expression:

snorm(n) =
s(n)

max|s(n)| , 8n (2.4)

2.4.2 Feature settings

Several features are extracted and analyzed as possible candidates for the network,
and there are di↵erent parameters that define its shape. Due to this, a preliminary
study is performed that allows to find the parameters that achieve the best correlation
between the envelope/feature and the heart sounds positions. Pearson correlation
coe�cient is calculated between the labels provided and the descriptor obtained,
which is defined as:

⇢ =
E [(y(n)� µy)(d(n)� µd)]

�y�d
(2.5)

Where y(n) is the binary sequence that indicates the position of S1 and S2 based
on the labels provided; d(n) corresponds to the envelope of interest to compare; and
(µx, �x) corresponds to the mean and standard deviation of a signal x(n) respectively.
The Pearson coe�cient satisfy that ⇢ 2 [�1, 1], where ⇢ = 1 indicates total positive
correlation, while ⇢ = �1 indicates total negative correlation. This indicator will
allow quantifying the similarity between the descriptor and the heart sounds positions
given by y(n), which is presented in figure 2.7.
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Figure 2.7: Graph of the binary sequence y(n) for the heart sound positions.

Each of the calculated descriptors will be processed in such a way that all the
information is contained in the range 0  d(n)  1. Calling d̃(n) to the raw descriptor
obtained, the normalized descriptor d(n) between 0 and 1 is defined as:

d(n) =
d̃(n)�minn d̃(n)

maxn |d̃(n)�minn d̃(n)|
(2.6)

Finally, in figure 2.8 an extract of a PCG together with each of the features
chosen, whose description is shown below.

2.4.2.1 Homomorphic filters

To obtain the homomorphic filter envelope, the parameters of the low-pass filter
applied to the logarithm of the signal must be defined. In this work, a FIR low-
pass filter is used applying a Kaiser window with a cuto↵ frequency of 10 Hz, and a
transition band of 5 Hz. This can be seen in plot a) of figure 2.8.

2.4.2.2 Hilbert envelopes

As input feature, the magnitude of the analytic signal derived from Hilbert transform
will be used, which is presented in plot b) of the figure 2.8. Furthermore, a modified
Hilbert envelope inspired by the work of (Varghees and Ramachandran, 2014) is
proposed, which is summarized in the diagram of figure 2.9. First, the absolute
value of the signal is obtained. Then a hard threshold stage using the 10% of the
maximum value is applied. From this, the Shannon energy is calculated, which is
defined as:

se(n) = �s(n)2 · log(s(n)2) (2.7)
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Figure 2.8: Features used in this work for a PCG extract. For each plot, the original
signal and the corresponding feature indicated in the legend are attached.
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Figure 2.9: Step diagram to obtain the modified Hilbert envelope.
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This allows to emphasize the medium intensity values of the signal and attenuate
the e↵ect of the low and high intensity values, which are associated with silences and
clicks within the signal (ARI and SAHA, 2007; Liang et al., 1997). A homomorphic
filter is applied to this result using the same parameters presented in section 2.4.2.1.
Finally, the normalization between 0 and 1 presented in (2.6) and the Hilbert mag-
nitude envelope is applied to obtain the result. The result of this process can be seen
in plot c) of figure 2.8.

2.4.2.3 Wavelets envelopes

Considering the results presented in the literature (Castro et al., 2013; Huiying et al.,
1997), in this work a db6 will be used as the mother wavelet to obtain the magnitude
of the 4th level detail coe�cients (see details of the analysis in table C.1 available
in the appendix) using the Stationary Wavelet Transform (SWT), as can be seen in
plot d) of figure 2.8. This allows the length of the selected detail coe�cient to be
the same as the original signal.

Furthermore, the magnitude of a multi-scale Wavelet product is defined between
the 4th and 5th detail level coe�cients (see analysis detail in table C.2 available in
the appendix), obtaining the envelope presented in plot e) of figure 2.8.

2.4.2.4 Frequency bands energy

For this feature the energy comprised in the 30-120 Hz band is calculated, using the
magnitude of a spectrogram obtained with a Hann window with length Nwind = 128
points and overlap of Nstep = 16 points (see details of the analysis in the table C.3
available in the appendix). The result can be seen in plot f) of figure 2.8.

2.4.2.5 Variance fractal dimension

To obtain this envelope, the algorithm proposed in works such as (Carvalho et al.,
2005; J. Gnitecki and Z. Moussavi, 2003) is implemented. In the calculation, only a
step size k = 4 was used, and the signal was divided into small windows of length
Nwind = 128 points and step Nstep = 16 points (see detail of the analysis in table
C.4 available in the appendix). Once the VFD has been obtained, and normalizing
it between 0 and 1 with (2.6), an additional step is added in which this envelope is
inverted through the expression:

d(n) = 1� FD�norm(n) (2.8)

Where FD�norm corresponds to the VFD normalized between 0 and 1. This is
done because heart sound has a slightly more regular structure than white noise, and
therefore its fractal dimension is smaller. Therefore, with the aim of highlighting the
position of the heart sounds, this modification is performed, which result can be seen
in plot g) of figure 2.8.
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2.4.2.6 Spectral tracking

To obtain the spectral tracking envelope, the magnitude of a spectrogram obtained
with a Hann window of length Nwind = 128 points and overlap of Nstep = 16 points
is used (see detail of the analysis in the table C.5 available in the appendix). The
frequencies of interest to be tracked will be f = 40 Hz and f = 60 Hz. The result of
the spectral tracking for both frequencies can be seen in plot h) of figure 2.8.

2.4.3 Envelopes resampling

Features such as VFD, spectral tracking, and frequency band energy have fewer
points than the original signal. This is because they use techniques based on the
windowing of the original signal, obtaining a single value from a window of Nwind

points.
To recover the number of points from the original signal, a resampling process is

proposed based on the diagram in the figure 2.10. As can be seen, for each windowed
segment of a signal s(n), n 2 {0, ..., N} a feature d(l) is obtained that returns a single
point from a window of length Nwind points, where l 2 {0, ..., L} and L < N . For
each point d(l), it is repeated in such a way as to obtain a segment of length Nwind

at the position of the original segment from which this value is obtained.
Once all the repeated segments have been obtained, a vertical sum of each seg-

ment is made in its corresponding position, obtaining a signal x(n) with length
(N + 1) points. However, due to the fact that two or more segments are added in
the overlap area (only two in the case of figure 2.10), it is necessary to correct them
since the energy of the segments that provide information to that set of points is ac-
cumulating, which could generate a distortion of the feature. For this, it is necessary
to know how many segments are overlapping for some point n 2 {0, ..., N} of the
signal x(n). With this information, a sequence v(n) is made by making a vertical
sum of the rectangular windows that describe each segment, which allows to show
how much is the overlap for each point.

Finally, the resampled signal r(n) is defined as:

r(n) =
x(n)

v(n)
(2.9)

Where a element-wise division is made between both sequences, 8n = 0, ..., N . It
should be noticed that this resampling method generates a staircased signal whose
segments have the length of the number of overlapping points, except for the final
segment whose length is the window length minus the overlap points. This can be
seen in figure 2.11.
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Figure 2.10: Diagram of the resampling process for features that apply windowing
processes. In the case of the sum of the windows presented in the diagram, it should
be noted that it is only an illustrative example, and it may change depending on the
length of the window and the overlap. In this work, a rectangular window is used to
re-scale the sum of the segments.
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Figure 2.11: Frequency band energy envelope resampled. This example uses Nwind =
128 points and Nstep = 16 points.

2.4.4 Initial network design

In this section, a base design and initial parameters will be proposed from which the
variations of interest in the study will be made. Each of these networks was built
using the Keras API built into Python’s Tensorflow library (Abadi et al., 2016).

All the parameters of convolutional layers (defined by the Conv1D function of the
tensorflow.keras environment) and perceptrons layers (defined by the Dense func-
tion of the tensorflow.keras environment) presented in this work will be initialized
using the ‘he normal’ method described in (He et al., 2015).

To train the networks, the Adam optimization algorithm (Kingma and Ba, 2015)
is used on a cross-entropy cost function. For all implementations of this work, �1 =
0.9 (associated to momentum), �2 = 0.999 (associated to RMSprop) and a learning
rate of ↵ = 0.001 are used. Also, each network will be trained for 20 epochs using
batches of 70 PCG segments with dimension (Nx, m), where Nx corresponds to the
length of each segment and m to the number of features to be used.

Initially, in each convolutional layer, filters of length Hl = 200 will be defined.
This definition is based on the fact that the duration of the heart sounds is between
100 and 150 ms. Therefore, to highlight the presence of a heart sound, it is necessary
to use a filter that at least include its entire content. However, in section 2.5.4 results
for other values of Hl will be studied.
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The detail of the network based on the encoder-decoder architecture is shown in
the figure 2.12. In the encoding stage 4 main blocks are used. The first 2 blocks
consist in 2 consecutive convolution layers with a bank of n[l]

c = 13 filters with length
Hl = 200, batch normalization and ReLU activation; which are connected with
a maxpooling layer that halves the number of points. The next 2 blocks use the
same parameters as the first 2 blocks, but are constituted of 3 consecutive layers of
convolution before maxpooling layer.

In the decoding stage they use 4 blocks that, correspondingly with each of the
encoder blocks, carry out the reverse process up to the classification layer. The
first 2 blocks are made up of an upsampling layer that replicates each sample twice
at the entrance of this layer, generating a signal twice as long; which is connected
with 3 consecutive layers of convolution with a bank of n[l]

c = 13 filters with length
Hl = 200, batch normalization and ReLU activation. The next 2 blocks use the
same parameters, but are defined with 2 consecutive convolution layers after the
upsampling layer instead of 3. In general, and for all variations of this type of
network, it will be ensured that the decoder is symmetric with the encoder.

Finally, a softmax layer with K = 3 classes (S1, S2 and non-heart sound S0) is
used at the output. It should be noticed that all the convolutional filters implemented
in this network also pad the signal so that the output maintains the length of the
input, in such a way that the only stages that reduces/increases the dimension of
the signal would be the maxpooling/upsampling layers.

2.4.5 Output modeling algorithm

Because in the initial design of the network presented in section 2.4.4 3 classes are
used for the output of the network (S0, S1 and S2), it is necessary to develop an
algorithm that allows classifying the systolic and diastolic intervals from the samples
identified as S0.

In the first plot of the figure 2.13 an extract of the PCG is presented together
with each of the 3 outputs of the network, indicating the probability of occurrence
of each class. As mentioned in the section 2.2, for each point obtained, the class
with the highest probability of occurrence is chosen, obtaining the output signal
y(n) presented in the second plot of the figure 2.13.

From this, an algorithm that uses the limits of the S0 segments with S1 and
S2 segments is proposed. Let us consider a non-heart sound segment S0 whose left
limit is at point nL, while the right limit is at point nR. From these points, the
classification criterion of the non-heart sound segment is defined as:

y0(n) =

8
<

:

Sys if y(nL � 1) = S1 ^ y(nR + 1) = S2

Dia if y(nL � 1) = S2 ^ y(nR + 1) = S1

Undef. Otherwise
(2.10)

Where n = {nL, nL + 1, ..., nR � 1, nR} and ^ corresponds to the logical AND
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Figure 2.12: Proposed CNN based on encoder-decoder architectures. In this network,
a encoder stage with successive convolutional and maxpooling layers is considered;
and a decoder stage with successive upsampling and convolutional layers. The output
of the last decoding layer is connected to a softmax layer.
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Figure 2.13: Output of networks defined with 3 classes and their equivalent repre-
sentation of 4 classes.
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operator. The result of this implementation can be seen in the third plot of the
figure 2.13, where the segments identified as S0 are classified as systole or diastole,
while the heart sound segments S1 or S2 are kept with the same values.

2.4.6 Data augmentation

The noise injection is one of the typical methods used for data augmentation to
the input features, which improves the robustness to random noise and reduces
overfitting (Aggarwal, 2018a; Goodfellow et al., 2016).

In this work, Additive White Gaussian Noise (AWGN) will be added to the
original PCG based on a Signal to Noise Ratio (SNR) defined in decibels. For this,
the modified signal s̃in(n) is defined as:

s̃in(n) = sin(n) + w̃(n) (2.11)

Where sin(n) corresponds to the original signal and w̃(n) to the AWGN modified
to meet the desired SNR specification (in decibels). Given a specification SNRdb for
the ratio between the original signal and the noise in decibels, the desired energy of
the noise signal is defined as:

Enoise =
Esignal

10(SNRdb/10)
(2.12)

Where Esignal =
P

n
sin(n)2. Therefore, defining Ew =

P
n
w(n)2 where w(n) is

AWGN, the expression that obtains the AWGN w̃(n) with the desired SNRdb is:

w̃(n) =

r
Enoise

Ew

· w(n) (2.13)

2.5 Experiments and results analysis

As presented in the implementation section 2.4, there are a large number of pa-
rameters to vary for the system design. For this reason, an analysis based on a
ceteris paribus of these parameters and elements that constitute the network will be
performed in order to define parameter by parameter the options that improves its
performance.

We will study in section 2.5.2 which features should be used in the input to
obtain a better performance. In section 2.5.3 we will analyze the e↵ect of increasing
the number of filters as the network moves forward, while in section 2.5.4 a study
of di↵erent filter length values is performed. Parameters such as network depth
(section 2.5.5), length and step of the windows used on the input PCG segments of
the network (section 2.5.6) will be analyzed. Finally, the performance of the network
will be studied using di↵erent types of classes for the output of the network (section
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2.5.7), culminating with a stability analysis through k-fold cross-validation (section
2.5.8). Additionally, the appendix presents an analysis of the implementation of
class balancing based on the median and of two types of skipping connections that
do not provide an improvement to the model, therefore they will be omitted in the
experiments. In the section 2.5.1, the metrics used for each analysis to be performed
will be described.

2.5.1 Performance metrics

In this work, the classical metrics will be used to evaluate the classification in a
pattern recognition system (Powers, 2020): accuracy, precision, recall and F -score.

However, in this context of classification in multiple classes, a weighted macro
average will be used to obtain a summary metric in the case of precision and recall
(Pedregosa et al., 2011). From this, the performance metrics are defined as follow:

Accuracy =

P
i
Tpi

Nsamples

(2.14)

Precision =
1P
i
ki

X

i

ki
Tpi

Tpi + Fpi

(2.15)

Recall =
1P
i
ki

X

i

ki
Tpi

Tpi + Fni

(2.16)

F1 = 2 · Precision ·Recall

Precision+Recall
(2.17)

Where Tpi correspond to the correct predictions for the class i, Fpi and Fni to the
false positives and negatives of the class i respectively, and ki to the number of points
labeled with the class i.

2.5.2 Features analysis

In this section, we will review di↵erent combinations of features in the input of the
network defined in the previous section. To obtain these results, a windowing process
of length Nx = 1024 and step ⌧x = 64 was used on the input signal. Moreover, the
same parameters defined in section 2.4.4 are used for the encoder-decoder network.
The results of this analysis are presented in table 2.2, and the details of the acronyms
for each feature are presented in the table 2.3.

As can be seen, in general the results are quite homogeneous for di↵erent com-
binations of features. Regarding the validation and testing sets, the use of all the
features detailed in section 2.4.2 returns a slightly better performance. In relation
to the training set, the best performance is obtained using as input only the original
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Table 2.2: Results of di↵erent combinations of features on the input of a CNN-
based encoder-decoder architecture. For each of the metrics used, the combination
of input features that obtains the best performance is highlighted in green. The first
row corresponds to the base features combination, used in works such as (Renna
et al., 2019; Springer et al., 2016).

CNN Encoder-Decoder (Nx = 1024, ⌧x = 64)

Features Train Validation Test

RS HF HT HT’ DW FE
ST
40

ST
60

MW VF Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

x x x x 95.855 95.835 95.877 95.856 92.620 92.563 92.689 92.626 93.194 93.152 93.247 93.200

x 96.421 96.411 96.433 96.422 92.767 92.729 92.817 92.773 93.676 93.652 93.703 93.678
x 95.134 95.100 95.171 95.136 92.004 91.915 92.103 92.009 92.687 92.622 92.766 92.694

x x 95.361 95.329 95.397 95.363 92.676 92.615 92.750 92.682 92.774 92.721 92.840 92.780
x x x 95.272 95.240 95.304 95.272 92.809 92.749 92.878 92.813 92.695 92.643 92.755 92.699
x x x x 95.491 95.466 95.519 95.493 92.568 92.513 92.633 92.573 92.974 92.922 93.038 92.980

x x x x x 95.761 95.739 95.783 95.761 92.898 92.852 92.954 92.903 93.182 93.131 93.245 93.188
x x x x x x 95.688 95.662 95.716 95.689 92.934 92.888 92.993 92.940 92.973 92.933 93.020 92.976
x x x x x x x 95.786 95.766 95.808 95.787 92.484 92.425 92.555 92.490 93.141 93.100 93.193 93.147
x x x x x x x x 95.913 95.895 95.933 95.914 92.882 92.835 92.935 92.885 93.066 93.032 93.118 93.075
x x x x x x x x x 95.953 95.935 95.973 95.954 92.845 92.781 92.915 92.848 93.288 93.246 93.339 93.292

x x x x x 95.935 95.919 95.952 95.936 92.993 92.948 93.051 92.999 93.200 93.156 93.254 93.205
x x x x x x x 96.172 96.153 96.191 96.172 92.989 92.921 93.066 92.994 93.506 93.475 93.547 93.511
x x x x x x x x 95.902 95.886 95.919 95.903 92.867 92.824 92.922 92.873 93.411 93.379 93.451 93.415
x x x x x x x x x 95.858 95.842 95.875 95.858 92.884 92.833 92.953 92.893 93.490 93.460 93.523 93.491
x x x x x x x x x x 96.072 96.056 96.088 96.072 93.070 93.041 93.105 93.073 93.745 93.720 93.778 93.749
x x x x x x x x x 95.705 95.683 95.728 95.705 92.953 92.905 93.009 92.957 93.333 93.303 93.372 93.337

x x x x x x x x 95.758 95.737 95.780 95.759 92.945 92.893 93.010 92.952 93.040 92.996 93.101 93.049
x x x x x x 95.960 95.942 95.979 95.960 92.950 92.896 93.012 92.954 93.504 93.470 93.551 93.511
x x x x x 95.943 95.925 95.962 95.944 92.498 92.432 92.579 92.505 93.495 93.452 93.549 93.501
x x x x 95.949 95.932 95.967 95.949 92.678 92.619 92.745 92.682 93.460 93.419 93.511 93.465

x x x x 95.621 95.596 95.647 95.622 92.611 92.540 92.686 92.613 93.198 93.158 93.247 93.202
x x x x x 95.853 95.830 95.877 95.854 92.503 92.432 92.596 92.514 92.820 92.772 92.878 92.825

Table 2.3: Detail of the abbreviations of the features presented in the table 2.2.

Feature Abbreviation

Raw signal RS
Homomorphic filters HF
Classic Hilbert Transform HT
Modified Hilbert Transform HT’
Discrete Wavelet Transform WT
Frequency band energy FE
Spectral tracking ST
Multi-scale Wavelet Product MW
Variance Fractal Dimension VF
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signal. This result is remarkable since it reveals that the encoder-decoder archi-
tecture is robust against di↵erent combinations of descriptors at the input of the
network, and that even just entering the raw signal would be enough to obtain a
considerable performance in heart sounds detection. Due to the latter, it is possible
to interpret that the network is capable of extracting, by itself and e�ciently, the
relevant properties of the PCG that allow characterizing each segment of interest.

However, the results of using all the features on the training set are quite close to
the best performance obtained in this set when using only the raw signal at input.
In view of the results, and from this point on, we will work with all the features
presented in section 2.4.2 for the input of this network. With this, it is expected
that the network will assign the importance that each feature should have in the
final decision through the back-propagation process.

2.5.3 Number of filters analysis

So far we have used a fixed number of filters n[l]
c for each convolutional layer. For

this reason, in this section we will study the increase in the number of filters as we
go deeper into the network. This idea is based on the behavior of classical CNN
architectures, where as one advances over the layers of the network, the dimension
of the signal is decreased, but the number of filters is increased (Krizhevsky et al.,
2012; Yann LeCun et al., 1998). To perform this experiment, 3 network designs were
considered, varying the number of filters for a given constant Nc.

The first uses a constant number of filters Nc for the entire network, varying
between Nc = {5, 10, 15, 20, 30, 50}. The second consists of a linear increase in the
number of filters as each convolutional layer l is deepen into the network (l·Nc), using
the same values of Nc as the first network. The third applies an exponential increase
in the number of filters as the network deeps ((Nc)l), varying between Nc = {3, 4}.
The results of this experiment are presented in table 2.4.

As can be seen in all types of variations, as the number of filters increases, the
metrics over the training set go up. This could indicate that the more filters this
network has, the more capacity it will have to fit the training data. However, this
causes an undesirable overfitting. Respecting to validation and testing sets, it is
possible to notice that the results in general are stable for any type of network,
independently of the number of filters to be used in each layer. Even so, networks
with more filters tend to fail more in validation set.

According to the results, it is possible to conclude that the increase of the filters
as one deeps over the network layers does not o↵er significant improvements, either
in the linear or exponential configuration. Therefore, and in order to work with
a more compact network that adequately adjusts to the problem, it is decided to
work with the constant filter network with Nc = 15 (Id 3). From this point on, this
constant number of filters will be used for the rest of the experiments.
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Table 2.4: Results of the increase in the number of filters as one deeps over a CNNs-
based encoder-decoder architecture. For each of the metrics used, the combination
of input features that obtains the best performance is highlighted in green.

CNN Encoder-Decoder (Nx = 1024, ⌧x = 64)

Train Validation Test
n[l]
c Nc

Trainable
parameters Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

5 105318 94.635 94.574 94.698 94.636 93.081 92.967 93.209 93.088 93.360 93.278 93.451 93.364
10 400633 95.598 95.577 95.620 95.599 92.365 92.295 92.451 92.373 93.268 93.228 93.324 93.276
15 885948 96.197 96.182 96.214 96.198 93.208 93.175 93.250 93.212 93.433 93.410 93.465 93.437
20 1561263 96.597 96.588 96.606 96.597 93.001 92.976 93.037 93.007 93.569 93.552 93.590 93.571
30 3481893 97.188 97.183 97.193 97.188 92.933 92.898 92.977 92.937 93.402 93.378 93.431 93.405

Nc

50 9603153 97.794 97.791 97.796 97.794 92.749 92.727 92.778 92.752 93.531 93.519 93.548 93.534

5 840828 95.776 95.753 95.799 95.776 93.122 93.050 93.203 93.127 93.604 93.562 93.653 93.608
10 3341653 96.632 96.624 96.640 96.632 93.097 93.066 93.140 93.103 93.536 93.507 93.573 93.540
15 7502478 97.123 97.119 97.127 97.123 93.076 93.052 93.107 93.080 93.275 93.259 93.299 93.279
20 13323303 97.441 97.438 97.445 97.441 92.866 92.844 92.896 92.870 93.179 93.166 93.200 93.183
30 29944953 98.141 98.139 98.143 98.141 92.912 92.896 92.936 92.916 93.519 93.508 93.532 93.520

l ·Nc

50 83038253 98.478 98.477 98.479 98.478 92.819 92.807 92.836 92.822 93.303 93.297 93.312 93.305

3 8171100 96.193 96.179 96.207 96.193 92.694 92.645 92.750 92.698 93.190 93.159 93.230 93.195
(Nc)l 4 75918815 97.000 96.993 97.007 97.000 92.454 92.420 92.495 92.458 93.282 93.261 93.310 93.285

Table 2.5: Results of the analysis of the length of the filters as one deeps over a CNNs-
based encoder-decoder architecture. For each of the metrics used, the combination
of input features that obtains the best performance is highlighted in green.

CNN Encoder-Decoder (Nx = 1024, ⌧x = 64, n[l]
c = 15)

Train Validation Test
H [l] Hi

Trainable
parameters Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

400 713448 96.109 96.095 96.125 96.110 93.032 92.993 93.082 93.038 93.130 93.098 93.172 93.135
200 357198 96.252 96.237 96.268 96.252 92.840 92.797 92.895 92.846 93.447 93.413 93.492 93.453
150 266448 96.190 96.170 96.211 96.191 91.701 91.627 91.794 91.711 92.904 92.856 92.969 92.912
100 178398 96.201 96.174 96.229 96.202 92.226 92.164 92.303 92.233 92.753 92.703 92.822 92.763

Hi
2l

50 88998 96.612 96.569 96.660 96.614 91.488 91.357 91.649 91.502 91.886 91.781 92.017 91.899

400 1770948 96.000 95.985 96.018 96.001 92.703 92.661 92.757 92.709 93.094 93.060 93.138 93.099
200 885948 96.221 96.206 96.236 96.221 93.132 93.084 93.188 93.136 93.558 93.532 93.593 93.563
150 664698 96.262 96.248 96.277 96.263 93.252 93.217 93.296 93.256 93.534 93.500 93.578 93.539
100 443448 96.475 96.466 96.484 96.475 93.028 92.995 93.073 93.034 93.622 93.598 93.659 93.628

Hi

50 222198 96.583 96.573 96.593 96.583 93.159 93.130 93.198 93.164 93.372 93.345 93.407 93.376

2.5.4 Filter length analysis

In this section the filter length for each of the convolutional layers will be analyzed.
For this experiment, two options for the behavior of the filters will be considered as
one deeps over the layers of the network using a constant Hi presented in table 2.5.

The first option maintains the filter lengths Hi in every layer (H [l] = Hi), varying
for Hi = {50, 100, 150, 200, 400}. The second option decreases the length of the
filters in half (H [l] = Hi/(2l)) each time a maxpooling layer is used (and not after
each convolutional layer as experienced in the 2.5.3 section). This option also varies
between the same values of Hi mentioned. The results of this experiment are shown
in table 2.5.

As presented in the table 2.5, the option that best fits the training set are those
that use filters with constant Hi = 50 and that decreases after each maxpooling
layer. However, it is also this option that presents the worst results in the validation
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Table 2.6: Results of the analysis of the number of convolutional layers (depth)
used in CNNs-based encoder-decoder architecture. For each of the metrics used, the
combination of input features that obtains the best performance is highlighted in
green. The first row corresponds to the base architecture obtained from the previous
analyses.

CNN Encoder-Decoder (Nx = 1024, ⌧x = 64, n[l]
c = 15, H [l] = 150)

Train Validation TestEncoder
layers

Trainable
parameters Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

[2,2,3,3] 664698 96.262 96.248 96.277 96.263 93.252 93.217 93.296 93.256 93.534 93.500 93.578 93.539

[2,3] 326748 96.569 96.557 96.582 96.569 92.813 92.770 92.868 92.819 93.211 93.179 93.250 93.214
[2,2,3] 461928 96.517 96.508 96.528 96.518 93.184 93.155 93.224 93.190 93.614 93.591 93.648 93.619
[2,3,3] 529518 96.536 96.529 96.544 96.537 93.013 92.973 93.062 93.017 93.363 93.340 93.391 93.365
[2,2,2,3] 597108 96.475 96.466 96.485 96.475 92.908 92.870 92.960 92.915 93.620 93.595 93.648 93.621
[2,3,3,3] 732288 96.321 96.308 96.334 96.321 92.886 92.843 92.939 92.891 93.578 93.552 93.613 93.582
[2,2,2,3,3] 799878 96.154 96.140 96.168 96.154 92.735 92.669 92.809 92.739 93.257 93.221 93.305 93.263
[2,2,3,3,3] 867468 95.699 95.677 95.722 95.700 93.063 93.028 93.101 93.064 93.318 93.287 93.355 93.321
[2,2,2,3,3,3] 1002648 95.728 95.706 95.751 95.729 93.524 93.473 93.583 93.528 93.677 93.643 93.718 93.681
[2,2,2,2,3,3] 968853 94.411 94.357 94.463 94.410 92.574 92.456 92.696 92.576 93.281 93.203 93.368 93.286
[2,2,3,3,3,3] 1070238 95.668 95.644 95.692 95.668 92.549 92.443 92.673 92.557 93.298 93.235 93.370 93.302

and testing sets, so it is concluded that this alternative overfit the network with the
training data.

In general, for all the scenarios, it is also possible to notice that the network fits
the training data quite well, with performances very close to the maximum in this
set. However, for most cases, the option that o↵ers the best results considering the
validation and testing sets is the one that uses a constant length of the filters.

From this results, it is chosen to use the option with constant Hi = 150 since it
o↵ers the best results in the validation set. Furthermore, in relation to the test set,
this option has a performance quite close to the option that reaches the maximum.

2.5.5 Network depth analysis

In this section we will analyze what is the number of layers that the network should
contain. To do this, consider the diagram of figure 2.1. As can be seen in the encoder
network, in the first 2 blocks and before each maxpooling layer, 2 convolutional layers
are used with batch normalization and ReLU activation. In the same way, in the
next 2 blocks and before the maxpooling layers, 3 of these composite layers are used.
For the decoder network the same specifications of the layers are used but in reverse.
In this analysis we will use the notation [2,2,3,3] to describe the encoder network just
mentioned, where each of the numbers indicates the number of convolutional layers
before each maxpooling layer. It should be noticed that the length of this sequence
is directly related to the number of maxpoolings layers present in the network. The
table 2.6 presents the di↵erent experiments performed together with their results.

As can be seen, in relation to the training set the results are quite homogeneous.
Nevertheless, it is possible to notice that as the depth in the network increases, the
fitting that the network makes on the data decreases. In contrast, when the network
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Table 2.7: Results of the analysis of the training windows length Nx and the step
⌧x for the inputs of the CNN-based encoder-decoder architecture. For each of the
metrics used, the combination of input features that obtains the best performance
is highlighted in green. The first row corresponds to the base architecture obtained
from the previous analyses.

CNN Encoder-Decoder (n[l]
c = 15, H [l] = 150, c[l] = [2, 2, 3, 3])

Train Validation Test
⌧x Nx Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

1024 96.262 96.248 96.277 96.263 93.252 93.217 93.296 93.256 93.534 93.500 93.578 93.539

256 91.273 90.641 91.911 91.272 89.445 88.530 90.426 89.468 90.109 89.343 90.936 90.132
512 94.313 94.182 94.455 94.318 90.533 90.290 90.825 90.557 91.816 91.644 92.024 91.834
2048 97.289 97.283 97.296 97.289 94.090 94.069 94.115 94.092 93.953 93.933 93.979 93.956
4096 98.656 98.655 98.657 98.656 94.396 94.392 94.402 94.397 94.263 94.259 94.268 94.264
8192 98.805 98.804 98.806 98.805 94.766 94.763 94.769 94.766 93.870 93.866 93.878 93.872

64

16384 98.048 98.045 98.052 98.048 95.254 95.243 95.269 95.256 93.771 93.762 93.783 93.773

256 90.596 89.849 91.359 90.598 88.550 87.421 89.710 88.551 89.730 88.744 90.677 89.700
512 93.521 93.319 93.734 93.526 91.620 91.410 91.867 91.638 92.063 91.904 92.267 92.085
1024 95.673 95.648 95.698 95.673 92.668 92.607 92.749 92.678 93.166 93.128 93.212 93.170
2048 96.957 96.953 96.961 96.957 93.900 93.886 93.918 93.902 93.860 93.842 93.883 93.862
4096 97.798 97.795 97.801 97.798 94.558 94.550 94.569 94.559 94.493 94.485 94.503 94.494
8192 98.623 98.621 98.624 98.623 95.029 95.026 95.034 95.030 93.917 93.909 93.930 93.919

128

16384 98.885 98.884 98.886 98.885 95.567 95.563 95.570 95.566 94.050 94.046 94.058 94.052

is shallower, it better fits the training data, obtaining the best performance in the
shorter network (Id 1).

On the other hand, in relation to the validation and testing sets, it is possible
to see that the results are even more homogeneous than in the training set. The
network that presents the best performance in these sets is the network with Id
8. However, one of the risks of using networks with so many maxpooling layers is
the loss of signal resolution at the encoder output due to the reduction of points.
Since the depth of the network does not give significantly better results compared
to the base case (Id 0), the number of convolutional layers initially presented will be
preserved.

2.5.6 Analysis of the length and step of the training windows

In this section we will study the e↵ect of defining the length Nx and the step ⌧x on
the windowing process over the PCG to train the network. For this, networks will
be trained for each combination of parameters Nx = {256, 512, 1024, 2048, 4096,
8192, 16384} and ⌧x = {64, 128}. The results of the experiments are presented in
table 2.7.

As can be seen from the results, as the size Nx of the window increases, the
performance for all sets improves. This may be due to the fact that the system
is trained with segments that have a broader context than with the length of the
window used so far (Nx = 1024), allowing the system to characterize each PCG event
in a better way.
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Table 2.8: Results of the analysis of the number of labels to be used in the CNN-
based encoder-decoder architecture. For each of the metrics used, the combination
of input features that obtains the best performance is highlighted in green. The first
row corresponds to the base architecture obtained from the previous analyses.

CNN Encoder-Decoder (Nx = 16384, ⌧x = 128, n[l]
c = 15, H [l] = 150, c[l] = [2, 2, 3, 3])

Train Validation TestLabels
number Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

3 98.885 98.884 98.886 98.885 95.567 95.563 95.570 95.566 94.050 94.046 94.058 94.052

2 97.256 97.275 95.966 96.616 94.988 94.948 92.229 93.569 93.747 93.694 91.965 92.822
4 97.010 98.317 97.145 97.727 91.970 94.660 92.031 93.327 92.253 93.944 92.331 93.131

In relation to the step size ⌧x of the windows, it is possible to notice that in
general for lower values of this parameter, the performance is better in the training
and validation sets. Meanwhile, in the test set there is no clear trend. However,
the best performances for all sets are found at ⌧x = 128. This is an expected result
since at a lower value of ⌧x it is possible to have a greater number of windows to
train the network, which is a form of data augmentation. Due to this, there is
a regularizing e↵ect on the network that causes performance to decrease for the
network generalization that this implies.

In view of these results, and considering the computational cost of increasing the
size of the training window at the network input, it was decided to use a length
Nx = 16384 for the training window and a step of ⌧x = 128 points.

2.5.7 Number of labels analysis

So far it has been experimented using 3 classes to train the networks: S1, S2 and
non-heart sound (S0). However, in most works such as (Messner et al., 2018; Oliveira
et al., 2019; Renna et al., 2019; S. E. Schmidt et al., 2010; Springer et al., 2016) 4
classes are used to train the network: S1, systole, S2 and diastole. Another variant
less studied in the literature is the use of only 2 classes that indicate the detection
of cardiac activity in the PCG: heart sound (S1 or S2) and non-heart sound (S0).
An example of these class definitions is presented in figure 2.14. In this section
we will study which of these options allows better performance of the CNN with
encoder-decoder architecture. The results are presented in table 2.8.

As can be seen, by train the network using 3 classes (S1, S2 and S0) it is pos-
sible to obtain a better performance for the network. This result can have several
interpretations. First of all, it is possible to notice that when using only 2 classes
there is no improvement of the results in any of the sets, which suggests that the
definition of the sounds S1 and S2 under a single label does not work correctly. This
may be because the characteristics of the sounds S1 and S2 are di↵erent enough not
to be generalized under the same label. Despite this, it is desirable that training
with 3 classes present better results than with 2 classes, since with this latter system
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Figure 2.14: Variations in the number of classes used for the design of the encoder-
decoder network.

it would not be possible to identify the systolic and diastolic intervals. This is not
convenient in applications that require the study of each phase of the cardiac cycle to
make a diagnosis because it will must be designed an additional system that classify
each segment of the cardiac cycle.

Respect to the use of the 4 classes, there is no improvement in network perfor-
mance either. This may be due to the fact that the systolic and diastolic intervals do
not di↵er significantly in terms of their frequency characteristics, rather they resem-
ble each other in the absence of heart sounds. Although by defining the 4 classes it
is possible to easily obtain the detail of each phase of the PCG, by using 3 classes it
is possible to do the same without loss of information. Indeed, the intervals defined
between S1 and S2 would correspond to systole, while the intervals between S2 and
S1 to diastole. Therefore, there is no need to define them explicitly to recognize all
phases of a cardiac cycle.

Considering the points exposed in this analysis, it is decided to use 3 classes for
the design of the system.

2.5.8 Network stability analysis

Finally, and in order to study how robust the implemented system is, k-fold cross-
validation will be used dividing the database into k = 10 groups, where the records of
each patient are only located in a single group. This makes it possible to ensure that
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Table 2.9: Results of k-fold cross-validation with k = 10 for the CNN-based encoder-
decoder architecture configured from the previous steps.

CNN Encoder-Decoder (Nx = 16384, ⌧x = 128, n[l]
c = 15, H [l] = 150, c[l] = [2, 2, 3, 3])

k
Train Test

Accuracy Recall Precision F1 Accuracy Recall Precision F1

1 98.632 98.631 98.634 98.632 93.546 93.535 93.557 93.546
2 98.645 98.643 98.647 98.645 94.630 94.625 94.635 94.630
3 98.252 98.248 98.255 98.252 91.468 91.433 91.508 91.471
4 98.704 98.703 98.706 98.704 91.643 91.607 91.679 91.643
5 98.536 98.534 98.539 98.536 92.547 92.492 92.623 92.558
6 98.724 98.722 98.726 98.724 92.016 91.946 92.101 92.023
7 98.869 98.867 98.871 98.869 91.981 91.901 92.044 91.972
8 98.708 98.707 98.711 98.709 94.490 94.485 94.497 94.491
9 98.733 98.731 98.735 98.733 91.814 91.782 91.855 91.818
10 98.632 98.631 98.634 98.632 93.546 93.535 93.557 93.546

µ 98.644 98.642 98.646 98.644 92.768 92.734 92.806 92.770
� 0.163 0.163 0.162 0.163 1.190 1.209 1.169 1.189

the PCGs of any patient are not found simultaneously in the training and testing
set. In addition, Gaussian white noise injection with SNR = {5 dB, 1 dB, 0 dB,
�1 dB} will be used for data augmentation and network regularization. Unlike the
analyzes performed thus far, a validation set will not be used in this experiment.
The table 2.9 presents the result of the k-fold cross-validation with k = 10 for the
definitive encoder-decoder network.

From the presented results, it is possible to notice that for the di↵erent scenarios
the final setting of the network on the training sets is quite stable. In summary,
the accuracy is 98.644 ± 0.163%, the recall is 98.642 ± 0.163%, the precision is
98.646 ± 0.162% and the F -score is 98.644 ± 0.163%. Regarding the di↵erent test
sets, it is possible to appreciate a little more variability in the results, obtaining an
accuracy of 92.768 ± 1.190%, a recall of 92.734 ± 1.209%, a precision of 92.806 ±
1.1690% and a F -score of 92.770 ± 1.189%. The increase in variability in the test sets
may be due to the fact that, in general, the training set does not vary considerably
between the di↵erent iterations. Indeed, for each iteration only one tenth of this
set is modified, so the network has the possibility of adjusting to a dataset that
does not vary radically. On the other hand, it is to be expected that the test sets
have a greater variability since they do not correspond to records or patients that
the system knows in advance. However, although these results present less stability,
they still o↵er a fairly high performance and a robustness of approximately ±1% for
the di↵erent metrics.

This result is consistent with the results obtained in the previous sections, where
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it has been seen that for di↵erent parameter variations, the performance of the
network in general remains stable above 90% for the metrics of interest. A notable
result is that the di↵erence in network performance over the validation and testing
sets remains relatively constant, varying on average by values of less than 1% for
the di↵erent scenarios proposed. This could indicate that the network adequately
generalize the characteristics of the heart sound, or that the heart sounds are signals
that are su�ciently generalizable to be independent of the patient to be studied. In
any case, it is recommended to divide the patients in di↵erent sets to have a clear
notion of the behavior of the network in an applied context.

From this, it is possible to conclude that the CNN-based encoder-decoder ar-
chitecture achieves to fit robustly on the auscultated signals, and to adequately
generalize the relevant characteristics that allow determining the fundamental heart
sounds.

2.6 Conclusions

One of the main problems in the analysis of respiratory and heart sounds is the mu-
tual interference that they generate, which tend to mask and alter certain character-
istics of interest and that could generate errors when making a diagnosis (Mondal,
P. Bhattacharya, et al., 2013; Mubarak et al., 2018).

In this work, a study of a CNN based on an encoder-decoder architecture to
solve the problem of heart sound segmentation was presented. The results allow us
to conclude that it has a good performance, in addition to being considerably robust.
Furthermore, qualitatively, it presents desirable properties since it allows the input
signal to be classified point-wise, without having to reduce a segment to a single
label (as networks with classical architectures do).

From the features analysis used in the network input, it is possible to appreciate
that for di↵erent scenarios the results do not vary significantly. The use of features
implemented in other types of heart sound segmentation methods such as variance
fractal dimension, spectral tracking and the multi-scale product of Wavelets is pro-
posed, making no significant improvement in its performance either. Even when
using only the raw signal at the input of the network, the results do not vary con-
siderably. This indicates that the network is powerful enough to extract the key
features of the signal to classify each segment in the best possible way.

With respect to the parameters of the filters in CNNs, the best combination of
number and length of the filters in each layer are Nc = 15 and H [l] = 150 respec-
tively. Meanwhile, the most balanced option for network depth is to use 2 blocks
of 2 convolutional filters terminated with maxpooling followed by 2 blocks with 3
convolutional filters, also terminated in a maxpooling layer. The choice of this depth
is based on the fact that the increase in the number of maxpooling layers does not
o↵er improvements in the performance of the network, in contrast to the increase in
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trainable parameters and the possible resolution problems that successive layers of
maxpooling generates. Regarding the length Nx and step ⌧x, the results indicated
that the higher the Nx, the better the results are systematically obtained. Regarding
step ⌧x a conclusive pattern is not found. Therefore, a window length Nx = 16384 is
chosen and step ⌧x = 128 is chosen for the training of the networks. Other techniques
used in neural network training and design such as class balancing and skipping con-
nections (which is a comparison with the work of (Renna et al., 2019)) did not o↵er
a significant improvement to justify their use, therefore were discarded.

A parameter of interest in this work was the definition of the number of classes
that the network is recognizing. In literature, typically 4 classes are used: S1, systole,
S2 and diastole. However, in this work the network behavior was studied using 3
classes (S1, S2 and non-heart sound S0) and 2 classes (heart sound or non-heart
sound). The results indicated that using 3 classes the best performance is obtained,
which is convenient since it is still possible to recognize the systolic and diastolic
intervals knowing the positions of S1 and S2.

Finally, a stability analysis was performed from a k-fold cross-validation with
k = 10 folds over the database used, ensuring that each patient is only in one fold.
Because in general the results do not vary much, it is concluded that the network
based on encoder-decoder is robust on the variation of parameters. An important
result of this work is that, despite the fact that the validation set has patients from
the training set, the performance of the network does not di↵er much compared to
the test set whose patients are not in the training set. With this, it is concluded that
this type of CNN is well suited for solving the heart sound segmentation problem.

Among the future works that could be evaluated is the use of a larger heart
sound database such as that of (C. Liu et al., 2016), whose labels on the heart sound
segments have been manually corrected by health professionals.

This kind of systems could be useful for the diagnosis of heart diseases since it
would allow knowing the positions of the heart sounds and, therefore, the position
and duration of the systolic and diastolic intervals. With this information, the pres-
ence of abnormal sounds such as heart murmurs in any of these intervals could be
studied, or the duration of each interval could be studied, which could reveal the
presence of some heart disease. Furthermore, they could provide relevant informa-
tion for the detection of respiratory diseases, since it would allow the use of source
separation techniques focused on the heart sound segments, keeping the respiratory
sound of the auscultated signal intact. These contributions could be useful in manual
diagnoses, and based on the results obtained from the Physionet challenge on 2016,
in a performance improvement in design of automatic systems for the detection of
cardiac pathologies.
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Chapter 3

Source separation

Since the heart and lung are in very close areas of the body, it is inevitable that the
recorded heart and lung sounds will interfere with each other in time and frequency
(Noman Q. Al-Naggar and Al-Udyni, 2018; Canadas-Quesada et al., 2017; Kattepur
et al., 2010; Lin and Hasting, 2013). For the heart sounds analysis, the aim is to
reduce respiratory sound as much as possible, considering it as signal noise. In this
case, the lung sounds can be attenuated by changing the position of the stethoscope
(Ahlstrom et al., 2005), and even asking the patient to hold their breath so that the
recorded sound would be purely cardiac. But in the case of the analysis of respiratory
sounds, the heart sound introduces pseudo periodicities persistently and impossible
to stop (Hossain and Zahra Moussavi, 2003; J. Hadjileontiadis and M. Panas, 1998;
Lin and Hasting, 2013; Pourazad, Z. Moussavi, and Thomas, 2006).

For this reason, the separation between heart and lung sounds is of great interest
to specialists in both areas (cardiologists and pulmonologists) since it will allow
more precise diagnoses (Kattepur et al., 2010; A. K. Khan et al., 2010; Mondal, P.
Banerjee, et al., 2017; Mondal, P. S. Bhattacharya, et al., 2011; Z. Wang et al., 2015).
However, one of the main di�culties presented by this problem is that heart and lung
sounds are not only overlapped in time, but also in frequency (Canadas-Quesada
et al., 2017; J. Hadjileontiadis and M. Panas, 1998). Therefore, it is necessary
to develop an algorithm that allows to recover each signal while maintaining its
characteristic properties, avoiding the loss of information in the process. This chapter
will focus on the recovery of respiratory sound from signals auscultated in the thorax
with a strong cardiac component. This will allow computer science researchers to
design better classifiers that automatically diagnose some type of respiratory disease
(Kandaswamy et al., 2004; Reichert et al., 2008).

Non-Negative Matrix Factorization (NMF) is an analysis technique that, due to
its desirable properties (see chapter D.3 available in appendix for more details), has
taken strength in areas of source separation applied in text mining, chemical spec-
troscopy, image processing, bioinformatics, finance, and of course in audio signals
(Févotte, Vincent, et al., 2018; Z. Y. Zhang, 2012). In this chapter, three decompo-

41



sition methods using NMF are proposed to recover the lung sound that, unlike the
typical methods with NMF presented in the literature, use the heart sounds position
in the auscultated signal. The first method performs the decomposition on each of
the heart sound positions. The second method uses a masking step over all the heart
sounds positions in the signal, which is the input to the decomposition process. The
third method uses the information of the components obtained to reconstruct the
lung sound based on the segments free of heart sound from the original signal. The
main objective of these proposals is to not distort the segments in which the heart
sounds are not found with the NMF decomposition.

In order to classify the components obtained, this work proposes 3 assignment
criteria inspired by the work of (Canadas-Quesada et al., 2017). The first criterion
is based on the spectral distribution of each component. The second is based on
the spectral correlation between the components and the segments free from heart
sound (which provide information on the lung sound). In relation to this criterion, in
(Canadas-Quesada et al., 2017) the author uses an external database to characterize
the heart sound. Our proposal has the advantage that information contained in the
same signal is used, so it is not necessary to use an additional database. The third
criterion is based on the correlation between the detected cardiac activity and the
temporal characteristics of each component.

Furthermore, unlike (Canadas-Quesada et al., 2017), adaptive thresholds are pro-
posed that take into account the nature of the data, using statistical descriptors like
the mean for their calculation. Components assignment performance will be studied
using each criterion individually.

In this chapter, one of the articles prepared in this research and sent for publica-
tion entitled “Source separation for single channel thoracic cardio-respiratory sounds
applying Non-negative Matrix Factorization (NMF) using the heart sound positions”
will be presented. In the same way as in the previous chapter, the introduction
of this article will be omitted since it corresponds to information mentioned in the
chapter 1.

The rest of this chapter is organized as follows. In the section 3.1 a review of the
works implemented in the literature to separate these sounds is presented. Section
3.2 presents the mathematical foundation of NMF, used for source separation. In
section 3.3 the database used in the experiments is detailed. In section 3.4 the base
method and the three proposed ones methods are explained, and the assignment
criteria of the components obtained is also explained. In section 3.5 the results are
reported. Finally, section 3.6 presents the conclusion of this chapter.

It should be noted that in the chapter B in appendix it is possible to find some
additional results. And in the chapter D it is possible to find more information about
the NMF interpretation, properties and solution algorithms.
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3.1 Related works

To date, di↵erent approaches have been made to address this problem. The first
methods involved high-pass or band-pass filters, using cut-o↵ frequencies close to 70-
100 Hz to attenuate the heart sound and recover the respiratory sound (Vannuccini
et al., 2000). Nevertheless, the elimination of certain low-frequency bands, espe-
cially below 200 Hz, causes the loss of relevant information of the respiratory sound
that is spectrally overlapped with the heart sound, so it is not a desirable solution
(Ahlstrom et al., 2005; Noam Gavriely et al., 1995; Hossain and Zahra Moussavi,
2003; J. Hadjileontiadis and M. Panas, 1998; Tsalaile et al., 2008).

A widely used method is the linear adaptive filters to reduce the presence of heart
sounds. They are generally modeled as a problem of least mean squares (LMS) (No-
man Qaid Al-Naggar, 2013; Iyer et al., 1986), normalized least mean squares (NLMS)
(Noman Q. Al-Naggar and Al-Udyni, 2018) or recursive least squares (RLS) (Potdar
et al., 2012) using an adaptive noise cancellation scheme (ANC). In (Yip and Y. T.
Zhang, 2001) the preprocessing with Automatic Gain Control (AGC) of a Lapla-
cian electrocardiogram (LECG) as a reference signal is proposed. In (Nersisson and
Noel, 2017) an adaptive filter step estimation algorithm based on a Nelder-Mead op-
timization model is developed. In (Noman Qaid Al-Naggar, 2013) the input signal
is used by applying a band-pass filter and adding Gaussian white noise to simulate
the reference signal. However, adaptive filters do not completely remove heart sound
due to their non-stationary nature which makes time alignment between the pri-
mary and reference signals di�cult to apply (January Gnitecki and Z. M. Moussavi,
2007; Shah, Koch, et al., 2015; Shah and C. B. Papadias, 2013). Furthermore, it
is not always possible to obtain an adequate reference signal that allows achieving
separation (Mondal, P. Banerjee, et al., 2017; Z. Wang et al., 2015). In some cases,
an electrocardiogram (ECG) (Hadjileontiadis, 1997; Yip and Y. T. Zhang, 2001) is
used as the reference signal, which may not always be available. Also, if the reference
signal is not well defined, it may decrease the separation performance.

In (Charleston and Azimi-Sadjadi, 1996) it is proposed to use a Reduced Order
Kalman Filter (ROKF) to reduce the presence of heart sound. However, to develop
this method 3 assumptions are used that are not necessarily correct (Pourazad, Z.
Moussavi, and Thomas, 2006). Indeed, it assumes that the interaction between lung
and heart sounds is additive, which is not necessarily correct since sounds can be
mixed in even more complex ways due to the medium they are transmitted. It also
assumes that the signals are mutually uncorrelated processes. But the increase of
physical activity can cause both to increase proportionally, and by being transmitted
through the same medium, the mutual interaction of both sounds can be a↵ected.
Although they are quite reasonable assumptions, they can make the method not
adequate enough when separating sources (Pourazad, Z. Moussavi, and Thomas,
2006).

Wavelets denoising is also a widely used method of eliminating lung sounds from
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heart sounds (Ali et al., 2017; Hossain and Zahra Moussavi, 2003; J. Hadjileontiadis
and M. Panas, 1998; Messer et al., 2001). In (Messer et al., 2001) a study of
the parameters in the denoising process is carried out, applying an averaging step
that improves the Gaussian noise reduction. In (Várady, 2001) the authors try to
remove ambient noise incorporating a microphone that records these sounds. In
(Hadjileontiadis, 2005) an approximation with fractal dimension is used that allows
conditioning even speech signals. In (Omari and Bereksi-Reguig, 2015) a criterion
that allows selecting the best mother Wavelet is proposed. In (Mondal, Saxena, et al.,
2018) an approach with Wavelet Packet Transform and denoising using info of the
eigenvalues obtained by SVD is presented. Nevertheless, these methods do not work
well in situations where the patient has murmurs (Omari and Bereksi-Reguig, 2015)
or there is a large presence of unwanted noise (Mondal, Saxena, et al., 2018). Also,
depending on the database there are mother Wavelets, thresholds and decomposition
levels that are better adapted, generating an additional challenge in real scenarios
(Shah, Koch, et al., 2015; Shah and C. B. Papadias, 2013).

Methods have also been implemented using time-frequency representations in
order to recognize the segments where the heart sound is found to eliminate that
segment completely and to reconstruct it based on the adjacent information, which
should correspond to a pure lung sound. In (Ahlstrom et al., 2005) the Poincaré
recurrence, Takens’ theorem and a trajectory algorithm are used to achieve this. In
(Pourazad, Z. Moussavi, and Thomas, 2006) a heart sound detection scheme is used
based on the Continuous Wavelet Transform (CWT) with an adaptive threshold,
band-pass filters to eliminate the segments of the spectrogram where it is detected
the heart, and 2D interpolation algorithms to reconstruct the attenuated band. In
(Flores-Tapia et al., 2007) a Multiscale Wavelet Product based on the Stationary
Wavelet Transform (SWT) is used to find the heart sound, and a reconstruction
using linear auto-regressive (AR) or moving average (MA) prediction models.

Another approach that was not so successful was the modeling of systems repre-
senting heart and lung sound. In (Hong Wang and L. Y. Wang, 2003) and later in
(Hong Wang, L. Y. Wang, et al., 2004) it is intended to remove ambient noise. In the
work of (Zheng et al., 2007) the heart and lung sound separation is also added, using
3 stethoscopes to measure these sounds. However, this kind of approach presents
several di�culties. One of them is the identification of each system. An excitation
is needed for each system in order to correctly model each block, which cannot al-
ways be done (Hong Wang and L. Y. Wang, 2003). Furthermore, if the systems
have significant cardio-respiratory rhythm or ambient sound variations, a real-time
estimation of the systems would be required, adding further di�culty to the method.

Empirical Mode Decomposition (EMD) is a fairly revised approach in which the
signal is typically decomposed into oscillatory basis called Intrinsic Mode Functions
(IMFs) that are derived from the signal itself. In (Mondal, P. S. Bhattacharya, et
al., 2011) decomposition in IMFs is used to recognize heart and respiratory sounds,
which are processed until the presence of heart sounds is eliminated. In (Mondal,
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P. Banerjee, et al., 2017) a similar algorithm is proposed, but in the sum of IMFs
that represents the lung sound, an FFT-based prediction algorithm is applied to
reconstruct these gaps. In (Z. Wang et al., 2015) a separation method using Adaptive
Fourier Decomposition (AFD), a di↵erent type of EMD, is presented. Nevertheless,
the signal decomposition in IMFs does not have a mathematical foundation, which
makes di�cult to describe its physical meaning (Z. Wang et al., 2015).

Independent Component Analysis (ICA) is one of the Blind Source Separation
(BSS) methods used to address this problem, and is a typical solution to the cocktail
party problem. In (Pourazad, Z. Moussavi, Farahmand, et al., 2005) ICA is imple-
mented using as input the spectrogram of the signal. In (Chien et al., 2006) and
(Ayari et al., 2012) the signal in time domain is used as input. In (A. K. Khan et al.,
2010), the frequency domain is used as input, together with other techniques such
as Direction of Arrival (DOA) and Beamforming. In general, ICA does not provide
satisfactory results. In (Pourazad, Z. Moussavi, Farahmand, et al., 2005) it is men-
tioned that spectrogram-based ICA can decrease heart sound, but not completely
remove it. Furthermore, this method assumes that the heart and lung sounds are
independent. This is not necessarily true since due to the medium through which it
propagates (where reflections and delays are generated), the recorded sound is cor-
related and the mix can even have a convolutional nature (Pourazad, Z. Moussavi,
Farahmand, et al., 2005). Finally, one of the technical limitations of this method is
that it is necessary to have more than one observation simultaneously to implement
it. However, most modern digital stethoscopes allow you to record an observation
on a single channel (Shah and C. B. Papadias, 2013).

NMF is another type of BSS approach that uses a time-frequency representation
of the cardio-respiratory signal. In(Lin and Hasting, 2013) the use of NMF is pro-
posed using information from the Constant-Q Transform (CQT) of the signal for the
construction of a binary mask. In (Shah and C. B. Papadias, 2013) a staged semi-
supervised NMF problem is proposed, in which initially an estimated heart sound
decomposition is obtained, then the cardio-respiratory sound and finally the cardio-
respiratory sound with noise. In works such as (Canadas-Quesada et al., 2017; Shah
and C. B. Papadias, 2013) clustering criteria is proposed to classify each obtained
component. One of the main di�culties with NMF is that there is no a systematic
method to determine the quantity of components that optimizes the separation pro-
cess. However, one of its main advantages is that the components obtained by this
method are not only suitable for solving the temporal and spectral overlap problem,
but also that its results are physically interpretable as additive components of the
original signal (Févotte, Vincent, et al., 2018; Z. Y. Zhang, 2012).

3.2 Theoretical background
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3.2.1 Non-negative Matrix Factorization

NMF decomposes a non negative matrix X 2 RN⇥M into two non-negative matrices,
W 2 RN⇥K and H 2 RK⇥M , where K is the number of components in which the
original signal will be separated and is called rank of the factorization (Févotte,
Vincent, et al., 2018). Typically this range K is chosen such that (N +M)K  NM
(Canadas-Quesada et al., 2017; Févotte and Idier, 2011; Ganesh R. Naik, 2016; Lin
and Hasting, 2013). This decomposition can be stated as (Lin and Hasting, 2013):

X = WH+ E (3.1)

Where E is the error term between X and the estimated product WH. In practice,
to obtain the matricesW, H the following optimization problem is defined: (Févotte,
Vincent, et al., 2018):

W,H = min
W,H

D(X | WH),

s.t.W,H � 0
(3.2)

Where the objective function D(X|WH) is called divergence, which is a measure of
dissimilarity between X and WH (Z. Y. Zhang, 2012).1 This is a separable function
such that:

D(X|WH) =
NX

n=1

MX

m=1

d([Xnm] | [WHnm]) (3.3)

Where d(x|y) is a continuous scalar function over x and y, where d(x|y) � 0 , 8x, y �
0 and d(x|y) = 0 if and only if x = y (Essid and Ozerov, 2014; Févotte, Vincent,
et al., 2018). One of the most used divergence functions is the �-divergence, which
is defined as (Essid and Ozerov, 2014; Févotte and Idier, 2011; Févotte, Vincent,
et al., 2018):
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(3.4)

In general, for audio NMF applications is common to use a spectrogram magni-
tude (X = |S(t, f)|) from a signal sin(n), which by definition is non-negative (Bryan
and D. Sun, 2013; Essid and Ozerov, 2014; Févotte, Vincent, et al., 2018). A typ-
ical solving algorithm for the NMF problem is the multiplicative update given by
(Févotte, Bertin, et al., 2009; Févotte and Idier, 2011; Févotte, Vincent, et al., 2018):

H H�
WT

�
(WH)�[��2] �X

�

WT (WH)�[��1]
(3.5)

1
The notation A � 0 indicates that each entry of the matrix aij � 0, 8i, j
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Figure 3.1: NMF decomposition example. In this case, a 6-seconds segment of the
song Feeling Good (version by British band Muse) played on piano with K = 3 was
decomposed. As can be seen, in each column of W we have the spectral pattern of
each component, while in each row of H we have the activation patterns in time.
Each component has a di↵erent color. Inspired by the graphics of (Févotte, Vincent,
et al., 2018).

W W �
�
(WH)�[��2] �X

�
HT

(WH)�[��1]HT
(3.6)

Where � denotes element-wise multiplication and A

B
element-wise division. On

the one hand, the matrix W = [w1, w2, . . . , wK ] can be interpreted as a dic-
tionary of recurring patterns, represented by each column. On the other hand,
H = [h1, h2, . . . , hK ]T can be understood as a matrix containing the activation or
coding coe�cients of the bases of W through the time, represented by each row
(Févotte, Vincent, et al., 2018; Ganesh R. Naik, 2016).

When matrixX is an spectrogram magnitude, each column ofW is the magnitude
of the characteristic frequency spectrum of each component, while each row of H will
indicate the weight of each spectrum recognized in the matrix W through time. An
example of this can be seen in the figure 3.1 where an audio record is decomposed
into K = 3 components.

From this, the definition of a component Xi 2 RN⇥M from the NMF decomposi-
tion of a spectrogram magnitude X is given by:

Xi = wih
T

i
(3.7)

And:

WH =
KX

i=1

Xi (3.8)
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However, in general this optimization problem does not reach the global mini-
mum, so E 6= 0 and X ⇡ WH. Therefore, the sum of the components does not
return the original matrix. To correct this problem, a useful solution is the construc-
tion of masks that allow filtering the original matrix from the information present in
each component.

The Wiener filter is a filter that allows to create a mask Mi from the relative
information provided by the component Xi over the total of components, and is
definied as (Bryan and D. Sun, 2013; Canadas-Quesada et al., 2017; Essid and
Ozerov, 2014; Févotte, Vincent, et al., 2018):

Mi =
Xi

WH
=

wihT

iP
K

i=1 wihT

i

(3.9)

Where the division between matrices is element-wise. As can be seen in (3.9) this
mask behaves like a template that indicates the weight in each entry (n,m) of the
matrix to be masked. Indeed, the Wiener filter distributes the energy proportionally
over each component, where each proportion indicates the association between the
amplitude of the componentXi given by (3.7) and the amplitude of the multiplication
WH.

Note that
P

k
Mi = 1 2 RN⇥M , where each mask Mi contains weighted infor-

mation of the i-th component. Therefore, the masks could be used directly on the
matrix X ensuring that the sum of the components is also X. Once the mask Mi

is obtained, it is possible to define the i-th masked component of X as (Bryan and
D. Sun, 2013; Canadas-Quesada et al., 2017; Essid and Ozerov, 2014; Shah, Koch,
et al., 2015; Shah and C. B. Papadias, 2013):

Si = Mi �X (3.10)

Finally, through the process it is possible to ensure that the sum of masked
components Si gives the original matrix, that is:

X =
KX

i=1

Si (3.11)

An example of this masks can be appreciated in the figure 3.2, where a decom-
position with K = 3 components using Wiener filter is done.

Once applied the masks over the matrix X, and considering that it represents
the spectrogram magnitude of a signal, it is possible to perform the inverse trans-
formation of the spectrograms of each component Si(t, f) to obtain the temporal
representation si(n). Using the phase of the original spectrogram, it is possible to
obtain the STFT for each component as (Bryan and D. Sun, 2013; Essid and Ozerov,
2014):

STFTi = Si � ej\S (3.12)
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Figure 3.2: Results of the NMF decomposition (in dB) using Wiener filter for K = 3
components. As can be seen, each component has a proportion of the original signal.
The sum of the 3 components results in the original spectrogram.
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Figure 3.3: General diagram of the NMF decomposition process for source separa-
tion. This figure summarizes each step of the process, from the input of the interest
signal sin(n) in time domain to the recovery of each component si(n) in the same
domain.

Where \S is the phase of the original spectrogram and j corresponds to the
imaginary unit. Finally, calculating the inverse STFT (ISTFT) and taking the real
values of this transform to recover the K components si(n) that reconstruct the
original signal:

si(n) = <(ISTFT (STFTi)) (3.13)

Satisfying that:

sin(n) =
KX

i=1

si(n) (3.14)

In which the <(·) operator gets the real part of its argument. Figure 3.3 shows
a diagram that summarizes the NMF decomposition process.

One of the main di�culties that NMF presents is that the solution is not unique.
Indeed, if we can express a matrix X as the multiplication of two matrices W⇤ and
H⇤, if there is an invertible matrix Q, it is also possible to express:

X = W⇤H⇤ = W⇤Q�1QH⇤ (3.15)

Which are still valid solutions (Essid and Ozerov, 2014; Ganesh R. Naik, 2016).
Nevertheless, among the main advantages that NMF have over other similar methods
(like PCA (Ganesh R. Naik, 2016; Z. Y. Zhang, 2012)) is the ease of interpreting
its results. Because subtractive combinations are prohibited, each component is a
constitutive part of the original result (Févotte, Vincent, et al., 2018). This is due
to the fact that, geometrically, the base vectors generate a cone that contains the
original data in the positive ortant, so the solutions of the decomposition are bounded
(Ganesh R. Naik, 2016). Therefore, each component can be interpreted as a portion
or proportion of the original matrix. These properties will be useful in the heart and
lung separation methods.
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3.3 Databases

In this work, two databases were used. The first is a respiratory sounds database
presented at International Conference on Biomedical Health Informatics (ICBHI) at
2017 (Rocha et al., 2019). This dataset was created by two research teams in Greece
and Portugal using di↵erent electronic stethoscopes (3M Littmann Classic II SE
Stethoscope, 3M Litmmann 3200 Electronic Stethoscope and WelchAllyn Meditron
Master Elite Electronic Stethoscope) and microphones (AKG C417L Microphone).
It contains 920 recordings of a total of 126 patients, varying between 10-90 seconds
and sampled at di↵erent rates (44100, 10000 and 4000 Hz). Each of these sounds
labels the patient ID number, the recording index for each patient, the location of
the instrument capture (variable between trachea and anterior/posterior left/right
area of the chest and left/right lateral side of the chest) and the sound acquisition
mode (single channel or multiple channels). Furthermore, for each patients in this
database its diagnosis is indicated.

The second is a heart sounds database presented in the challenge posed by (Bent-
ley et al., n.d.) during 2011, whose objective was the segmentation and classification
of these sounds based on diseases. This database contains two datasets (A and
B) which contain normal heart sounds, with murmurs, with artifacts, and with the
presence of extra heart sounds (such as S3 or S4). In dataset A, 176 heart sounds
sampled at 44100 Hz are presented, of which 21 have labels for the position where
the fundamental heart sounds are located and all correspond to normal patients
recordings. Meanwhile, dataset B contains 676 heart sounds sampled at 4000 Hz, of
which none are labeled.

From each databases, a set of 12 cardio-respiratory sounds is generated from the
sum of heart and lung sounds, making sure that both signals have the same energy.
For the selection of the lung signals of the base (Rocha et al., 2019), respiratory
sounds were auscultated from the thorax, and they have a very weakened inherent
heart sound component, both auditory and graphically (based on their temporal and
spectral information). For heart sounds, PCGs that have a low baseline noise level
are used. The position of each fundamental sound can be obtained through heart
sound detection algorithms such as (Renna et al., 2019; Springer et al., 2016), or by
manual recognition and labeling of the signal. In this work, a convolutional neural
network based on an encoder-decoder architecture is used, which indicates the silence
(S0) and heart sound segments (S1 and S2).

Since the heart and lung sounds in the di↵erent databases do not have the same
sampling rate in most cases, all signals will be resampled at fs = 11025 Hz. Addi-
tionally, and in order to reduce the presence of noise in segments free of heart sound,
sound attenuation is performed by a factor  = 0.05 on the S0 segments. For this,
the binary signal that indicates the heart sounds position is used, which is convolved
with a 100-point Hamming window to smooth the transition between states. This
smoothed signal is multiplied element-wise on the recording of the heart sound, ob-
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Figure 3.4: Noise reduction process in segments free of heart sound.

taining a signal whose segments S0 are attenuated which will be added to the lung
sound. The illustration of this process is presented in figure 3.4.

With this synthetic database of 12 cardio-respiratory sounds, the performance
of source separation will be evaluated, since both the lung and the heart signal are
previously known. Therefore, direct comparisons can be made between the obtained
signals and the original signals.

3.4 Implementation

In this paper, the heart and lung sound separation problem is divided into two main
modules: preprocessing and source separation strategy. In relation to the latter,
di↵erent combinations will be made between the decomposition methodology with
NMF and the assignment of the components in the heart cluster Kheart or the lung
cluster Klung for NMF components (see figure 3.5). From this, the output lung sound
slung(n) and heart sound sheart(n) will be defined following synthesis process:

slung(n) =
X

k2Klung

sk(n) (3.16)

sheart(n) =
X

k2Kheart

sk(n) (3.17)
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Figure 3.5: General diagram of the source separation.

In the next sections the detail of each module will be explained.

3.4.1 Preprocessing

Di↵erent factors such as the capture position and gain of the stethoscope, together
with the age, sex and physiology of the patients, generate variability between the
samples that compose the database. To reduce these e↵ects the input signal will be
normalized using:

snorm(n) =
s(n)

max|s(n)| , 8n (3.18)

3.4.2 Decomposition methods using NMF

In this section, four source separation methods that incorporate the NMF decompo-
sition process are presented.

3.4.2.1 NMF on entire signal

In this method, an NMF decomposition is used on the complete signal, assigning the
components to Kresp or Kheart, and finally synthesizing the sound using (3.16) and
(3.17) as illustrated in figure 3.6. This method will be the base scenario from which
the comparisons will be made to evaluate if the methods proposed in the sections
3.4.2.2, 3.4.2.3 and 3.4.2.4 improve the results.

Given that the method just presented performs NMF decomposition on the entire
signal, it is possible that it generates distortions in segments in which the heart sound
is not present, disturbing the segments of pure lung sound. To avoid this situation,
and taking advantage that the heart sound is limited to specific areas of the signal,
strategies will be used to preserve the properties of the segments that contain only
lung sound.

In the next methods, it will be necessary to know previously the heart sound
position. An example of the labeled signal can be seen at the upper right plot on
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Figure 3.6: Diagram of the base method of NMF decomposition. In this implemen-
tation, the whole signal is decomposed into K components, which are grouped into
clusters of heart and lung sounds.
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Figure 3.7: Heart sound segmentation graphs for NMF on heart sound segments
method (fs = 11025 Hz). Once the segments have been recognized (upper right
graph), for each of these (lower left graph) the NMF decomposition is performed,
obtaining the components that represent the heart and the lung sound (lower right
graph).
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figure 3.7, which highlights the areas where the heart sound is present. It will be
assumed that the rest of the signal contains only lung sound.

3.4.2.2 NMF on heart sound segments

In this method, NMF decomposition is performed on each of the heart sound seg-
ments independently, as shown in figure 3.8. To decompose, it is necessary to extract
the segment of interest from the rest of the signal, also obtaining a signal without this
segment. Once the NMF decomposition has been carried out and the K components
have been obtained, slung(n) and sheart(n) will be classified and synthesized in the
same way as in the equations (3.16) and (3.17). Then, slung(n) will be inserted into
the signal that was left without the segment, while sheart(n) will be inserted into an
array of zeros at the corresponding time positions.

Inserting these segments can generate clicks caused by the discontinuities between
the inserted segment and the original signal, a phenomenon displayed at the first row
of figure 3.9. To correct this problem, a fade between the two segments is used to
achieve a smooth transition. We will implement a fading with Nfade points at the
edges of each segment, using a tail of a raised cosine with �rc = 1 and T = 1 as
a fading function, as can be seen in the plots of the second row in figure 3.9. The
modified raised cosine with T = 1 used in this work (Couch, 1983; Proakis, 2001) is
given by:

h(n) =

8
><

>:

1, |n|  1��rc
2

1
2

h
1 + cos

⇣
⇡

�rc

⇥
|n|� 1��rc

2

⇤⌘i
, 1��rc

2 < |n|  1+�rc
2

0, otherwise

(3.19)

It is possible to see the result of the connection between the two segments in the
graphs of the third row in figure 3.9, where a continuous transition between both
signals is achieved.

3.4.2.3 NMF masking heart sound positions

In this method, the heart sounds positions are used to mask the input signal sin(n),
as shown in figure 3.10. On the one hand, the masked respiratory sound is obtained,
which corresponds to a vector containing all the sound segments where no heart sound
is detected. This vector has zeros in the segments where heart sound is detected. On
the other hand, the masked cardio-respiratory sound is obtained, which corresponds
to a vector containing all the segments in which the heart sound is overlapped with
the lung sound. This vector has zeros in the segments where no heart sound is
detected. This process can be seen in detail in figure 3.11.

Then, the masked signal with the heart sound segments is used as input to the
NMF decomposition process, from which K components will be obtained, classified
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Figure 3.8: Diagram of the NMF decomposition method on heart sound segments.
Once the lung sounds of a segment are obtained, they are mixed with the adjacent
pure lung sounds defined in the heart sound detection process. Meanwhile, the heart
sound is concatenated to a zero vector at its corresponding time position.
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Figure 3.9: Transition zones between di↵erent signal segments at fs = 11025 Hz
(highlighted in orange). It is important that the transition would be smooth (as
continuous as possible) in order to avoid artifacts within the estimated signal such
as clicks (first row). To avoid this problem, the tails of a raised cosine window are
used, whose sum is constant throughout n (second row). By applying this window
it is possible to achieve a transition that does not introduce clicks (third row).
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Figure 3.10: Diagram of the NMF masking heart sound positions method. In this
case, it is proposed to mask the segments where the temporal overlap between heart
and lung sounds occurs, performing the NMF decomposition to this signal. The
masked lung sound will be concatenated with the components that are recognized
as lung sound in the NMF decomposition. Meanwhile the heart sound will be the
result of the components recognized as such in the NMF decomposition.
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Figure 3.11: Heart sound segmentation plots for the NMF masking heart sound
positions method. Once the heart sound positions are recognized (upper right graph),
2 signals are generated: one signal in which the heart sounds have been extracted,
which will represent the pure lung sound segments (lower left graph); and one signal
that will consist solely of these segments, connected with an array of zeros and that
will represent the cardio-respiratory sound to be separated (lower right graph).
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and synthesized using the equations (3.16) and (3.17) to get the sounds slung(n) and
sheart(n). Finally, slung(n) is summed with the masked lung signal, making sure that
the edges of each segment are faded following a process similar to the mentioned in
section 3.4.2.2. The same process will be performed for sheart(n), but adding it to
an array of zeros.

3.4.2.4 NMF on entire signal & replacing in heart sound positions

In this method, like the base method, a NMF decomposition is performed on the
entire signal as presented in figure 3.12. However, it is proposed to use the pure
lung sound segments of the input signal sin(n), in conjunction with the slung(n)
segments where the heart sounds were originally located (both highlighted in red
in the figure 3.12). To obtain the output lung sound, these segments of interest
are added making sure that the edges of each segment are faded. On the other
hand, heart sound is simply defined as the output of the component assignment and
synthesis process performed after decomposition. This method can be understood
as a direct extension of the NMF on entire signal method.

3.4.3 Components assignment

Once the K has been obtained from the NMF decomposition, the main challenge is
its classification in heart or lung sound. For this, it is necessary to define criteria
that allow to assign each component based on its intrinsic characteristics. Next, we
propose 3 assignment criteria inspired by (Canadas-Quesada et al., 2017).

3.4.3.1 Spectral distribution

This criterion exploits the frequency bands where both sounds predominate. Heart
sounds predominate in the frequency bands between 30-120 Hz (S1) and 70-150
Hz (S2) (Rudnitskii, 2014), while lung sounds are concentrated in the 20-100 Hz
frequency band (Pasterkamp et al., 1997). Therefore, heart sounds tend to be con-
centrated in a slightly higher frequency band than lung sounds.

To design an indicator of this notion, we propose a metric that we will call p%
frequency energy, defined as:

C1(i) =

8
>>>><

>>>>:

min f

s.t.
fX

n=0

|wi(n)|2 � p% ·
NX

n=0

|wi(n)|2

0  f  N , f 2 Z

(3.20)

Where wi is the i-th spectral pattern obtained from the matrixW, N corresponds
to the row dimension of the matrix W (associated with the Nyquist frequency) and
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Figure 3.12: Diagram of the NMF on entire signal & replacing in heart sound posi-
tions method replacing segments. In this case, it is proposed to mask the segments
free of heart sound, and to use the heart sound positions in the lung sound obtained
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p% corresponds to the energy percentage of interest to be compared. Intuitively,
in (3.20) we seek to find the frequency bin f such that the accumulated energy up
to this frequency is p% of the total energy. Unlike (Canadas-Quesada et al., 2017),
where the author uses a fixed threshold to classify, in this work an adaptive threshold
is proposed based on the shape of the data. This threshold is defined as the mean
of the C1(i):

Ue =
1

K

KX

i=1

C1(i) (3.21)

Finally, if the value of the descriptor C1(i) is greater than the threshold Ue, then
the i-th component will correspond to heart sound. Otherwise it will correspond to
lung sound. This is summarized in the following expression:

⇢
If C1(i) � Ue, wi 2 Heart sound

Else, wi 2 Lung sound
(3.22)

3.4.3.2 Pure lung sound spectral correlation

This criterion focuses on the study of the spectral patterns obtained in the matrix
W using the segments with only lung sound (signal segments in blue in figure 3.11).
One of the main advantages of performing this method is that information from
the same signal is used, unlike (Canadas-Quesada et al., 2017) where an external
database of pure heart sounds is used as a reference to cluster the components with
similar characteristics.

From this, it is possible to construct a dictionary Wdic 2 RN⇥Kdic whose columns
will correspond to the PSD of the segments with pure lung sound, where N corre-
sponds to the row dimension of the matrix W and Kdic corresponds to the number
of segments free of heart sound in the input signal. Because the segments generally
have di↵erent lengths, it is necessary to define a uniform fixed length in order to
be able to compare them with the spectral patterns of the W matrix. To achieve
this, the signal’s periodogram is calculated using Welch’s method with a window of
length 2N and 75% overlap.2 Then, the spectral correlation for the i-th NMF basis
wi and the j-th dictionary basis wdicj is defined as the Pearson correlation coe�cient
between both signals:

C(i, j) =
1

N � 1

NX

n=1

 
(wi(n)� µwi)(wdicj (n)� µwdicj

)

�wi�wdicj

!
(3.23)

Where µs is the mean of the signal s(n) and �s its standard deviation. Once the
correlations between the i-th basis wi and all the bases of Wdec have been calculated,

2
A window length 2N is chosen since only half the spectrum is desired (between 0 and the

Nyquist frequency).
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the one with the highest correlation of all is chosen. Therefore, the representation
parameter of the wi component is defined as:

C2(i) = max
j

C(i, j) (3.24)

Finally, the following criteria are applied to perform the clustering.
⇢

If C2(i) < Uf , wi 2 Heart sound

Else, wi 2 Lung sound
(3.25)

Where the threshold is defined as the mean of the coe�cients C2(i) obtained:

Uf =
1

K

KX

i=1

C2(i) (3.26)

3.4.3.3 Heart sound position correlation

Given that the heart sound has a characteristic temporal pattern, this information is
used as a criterion that allows classifying a component by comparing it with the i-th
temporal pattern hT

i
from matrix H. To achieve this, P (n) is defined as a sequence

of binary pulses, being 0 in the segments where no heart sound is detected and 1
in which it is detected. This result can be seen in the left frames in figure 3.13.
Note that the i-th temporal pattern hT

i
2 RM⇥1 and that P (n) 2 RNsin⇥1, where

Nsin corresponds to the length of the original signal sin(n) and M corresponds to
the column dimension of the spectrogram. In general it is true that M < Nsin .
Therefore, in order for it to be compared with the time factor hT

i
it is necessary to

make sure that both signals have the same lengths. To do this, hT

i
is interpolated,

obtaining the signal hT

iext
2 RNsin⇥1 with the desired length.

Then, an estimate of the cardiac activations of the component hT

iext
is calculated.

For this, in (Canadas-Quesada et al., 2017) it is proposed to use the mean of the
vector hT

iext
as threshold, defining as 0 the elements below this threshold and 1 for

the elements above this value. Then, the cardiac activations of the i-th component
are defined as:

Pi(n) =

8
<

:
1, si hT

iext
(n) �

PNsin
t=1

h
T
iext

(t)

Nsin

0, si hT

iext
(n) <

PNsin
t=1

h
T
iext

(t)

Nsin

(3.27)

From the cardiac activation signals P (n) and Pi(n), and unlike (Canadas-Quesada
et al., 2017), the following classification metric is defined as the percentage of coin-
ciding points between the two signals:

C3(i) =
#{P (n) = Pi(n)}

Nsin

(3.28)
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Figure 3.13: Graphs of cardiac activations. Once the heart sound positions are
recognized (upper left graph), the binary signal of cardiac activations P (n) (lower
left graph) is constructed. In the same way, using the information from the i-th row
of the H matrix, hT

i
, an estimated binary sequence of cardiac activations Pi(n) is

constructed comparing each point with the mean of the signal (upper and lower right
graph respectively).
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Finally, and as in the previous cases, the clustering criterion is based on the
comparison with a threshold value Ut, defined by:

⇢
If C3(i) � Ut, hT

i
2 Heart sound

Else, hT
i
2 Lung sound

(3.29)

Where again the threshold is defined based on the mean of the results:

Ut =
1

K

KX

i=1

C3(i) (3.30)

An exceptional case of this criterion arises for the method presented in the section
3.4.2.2 where the decomposition is performed only in the heart sound segments. For
this reason, it is not possible to define P (n) in the same way as in the other cases.

As a result of this, the temporal pattern P (n) is defined as a binary sequence
adjusted to the boundaries of the segment to be decomposed, as shown in figure
3.14. In this case, the binary sequence is composed by a vector which has Nfade

points with zero values at both edges of the heart sound segment, while the segment
corresponding to heart sound is defined with ones (lower left plot). These slack
points allow the segment to be subsequently mixed with the rest of the signal. It
should be noted that what is decomposed by NMF corresponds to this entire signal,
including the slack points (upper left graph in figure 3.14). As in the other cases,
(3.27) is used to define the cardiac activation of the i-th component.

3.4.4 System parameters

To obtain results, the spectrogram of the input signal will be calculated using a Hann
window of length Nwind = 2048 and 90% overlap, based on a analysis available in
the appendix.

In relation to NMF decomposition, the variation of the objective function based
on the �-divergence, using values of � = 1 (Kullback-Leibler divergence) and � = 2
(quadratic function). The number of K components in which the signal will be
decomposed will vary between K ={2, 3, 4, 5, 7, 10, 15, 20, 30, 50}. In addition, a
Wiener filter will be used to build the mask.

For the strategies presented in sections 3.4.2.2, 3.4.2.3 and 3.4.2.4, a number of
Nfade = 100 fading points will be used for the mixing between segments (see figure
3.9).

Regarding the clustering criteria, as shown in figure 3.5, the impact of each
clustering criterion will be studied.

Finally, to perform the NMF decomposition of the signal sin(n), the Python
scikit-learn library (Pedregosa et al., 2011) is used with a multiplicative update
solving method of a maximum of 500 iterations and a tolerance range of 10�4.
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Figure 3.14: Cardiac activation in specific heart sound segment.

3.5 Results analysis

Due to the diversity of parameters and options that exist for each one, the analysis is
divided into the study of assignment criteria (section 3.5.1) and NMF decomposition
parameters (section 3.5.2).

Since the interest of this work is to recover the lung sound from the input signal,
di↵erent metrics will be used to evaluate the performance of the decomposition,
comparing the original lung sound with the sound obtained by the proposed methods.
As a performance metric, the temporal correlation (Mondal, P. Banerjee, et al., 2017;
Mondal, Saxena, et al., 2018) and the correlation between the Power Spectral Density
(PSD) of the original signal with its respective recovered signal will be calculated.
For this, the Pearson correlation coe�cient will be used, defined as:

⇢ =
E [(s(n)� µs)(ŝ(n)� µŝ)]

�s�ŝ
(3.31)

Where s(n) corresponds to the original lung sound and ŝ(n) the obtained lung
sound by NMF, either in time or their PSDs. This metric will allow quantifying the
similarity between the original signal and the obtained one independent of the scale
of both signals. The higher this indicator, the signals will have a more similar shape,
and therefore the separation will perform better.

Furthermore, the Mean Square Error (MSE) will be calculated, defined as (Mon-
dal, Saxena, et al., 2018) (Noman Q. Al-Naggar and Al-Udyni, 2018; Shah and C.
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Figure 3.15: Histogram of results for assignment criteria using the temporal correla-
tion, PSD correlation, MSE and SDR metrics for each type of NMF decomposition.
The vertical lines indicates the mean of each histogram. It should be noted that this
histogram incorporates only the simulations that use Nwind = 2048 and 90% overlap.

Papadias, 2013):

MSE =
ks(n)� ŝ(n)k2

Nsignal

(3.32)

Where Nsignal is the number of points that the signal has, s(n) and ŝ(n) are
the original and obtained lung signal respectively in time domain. The MSE allows
quantifying the raw error obtained by reconstruction. The lower the MSE, the better
the separation performance.

Finally, the Signal to Distortion Ratio (SDR) will be used, and it is defined as
(Canadas-Quesada et al., 2017; Mondal, P. Banerjee, et al., 2017; Vincent et al.,
2006):

SDR = 10 · log10
✓

ks(n)k2

ks(n)� ŝ(n)k2

◆
(3.33)

Using the same nomenclature as previously. This value is expressed in decibels
(dB) and the higher the SDR value, the better the reconstruction.

3.5.1 Selection of assignment criteria

This section will analyze the impact that each of the assignment criteria presented
in section 3.4.3 have on the results. In figure 3.15 a histogram of the results obtained
using each assignment criteria is presented for every NMF decomposition method un-
der the di↵erent performance metrics. Each histogram is obtained from the variation
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of the parameters K and � of the NMF decomposition, presented in the section 3.4.4.
It should be noticed that in each histogram the assignment criteria are presented in
di↵erent colors.

As can be seen, and independent of the decomposition method and the metric, the
option that o↵ers the worst performance is the pure lung sound spectral correlation.
Indeed, this assignment method concentrates a large number of results in low ranges
of temporal correlation and SDR, and high MSE error values. It even has a lower
PSD correlation compared to the other criteria, especially in methodologies that use
NMF on the entire signal (3.4.2.1 and 3.4.2.4).

Similarly, the spectral distribution criterion tends to give lower temporal corre-
lations in all decomposition methods, except for the NMF on heart sound segments
where this e↵ect is not so significant. In relation to its SDR, in general it tends to
spread over the entire range of dB, so it is not a reliable classification criterion. A
similar e↵ect occurs regarding the MSE of this criterion.

However, the heart sound position correlation criterion is systematically and ro-
bustly better for all the scenarios presented since it concentrates its temporal and
PSD correlation close to one, its SDR in high values, while it concentrates its MSE
in values close to zero. This can be confirmed by comparing the means of the his-
tograms (represented by the vertical lines in each plot), where for each decomposition
method and for each metric this criterion is the best. It should be noted that even
performing this analysis on di↵erent window sizes and overlaps to obtain the spec-
trogram, the aforementioned properties of this criterion are maintained (see figure
B.3 available in the appendix).

Therefore, the heart sound position correlation criterion for the assignment of
the components will be preferred over the rest.

3.5.2 NMF parameters

In this section, we will analyze the impact that the � used in the divergence function
and the number of components K have on the results, using the options presented
in section 3.4.4.

3.5.2.1 �-divergence

When reviewing the histogram of the results obtained for � = {1, 2}, using a window
of size Nwind = 2048 and 90% overlap for the calculation of the spectrogram (see
figure 3.16), it is possible to notice that in general the results improve when � = 2,
with the exception of the NMF on heart sound segments method. This feature is
maintained even using di↵erent Nwind sizes and overlap (detail available in figure B.6
in the appendix). However, a curious result occurs when the heart sound positions
correlation is used as the assignment criterion, since the decision of � becomes irrel-
evant in this case, presenting quite similar results (detail available in figure B.6 in
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Figure 3.16: Histogram of results for � using the temporal correlation, PSD corre-
lation, MSE and SDR metrics for each type of NMF decomposition. The vertical
lines indicates the mean of each histogram. It should be noted that this histogram
incorporates only the simulations that use Nwind = 2048 and 90%.

the appendix).
Therefore, the use of � = 2 will be preferred for this implementation.

3.5.2.2 Number of components K

Regarding this parameter, it is possible to note that the smaller the number of K
components, the better results are obtained (see figure 3.17). Indeed, it is possible
to note that for the di↵erent methodologies and for each of the metrics the option
K = 2 presents a significant improvement compared to the other options. This result
is also maintained when using di↵erent Nwind sizes and overlaps (detail available in
figure B.5 in the appendix). However, and like the parameter �, if the heart sound
position correlation criterion is used to assign the di↵erent components, there is no
clear di↵erence between the di↵erent values of K (detail available in figure B.7 in
the appendix).

For this reason, it is preferable to use K = 2 at the time of decomposition since
it systematically generates better results under di↵erent parameter variations.

3.5.3 Methodology with NMF analysis

By defining the �-divergence function to � = 2 and K = 2 as the number of compo-
nents, the results presented in table 3.1 are obtained. As can be seen, the alternative
that gives the best results is the NMF on entire signal & replacing in heart sound
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Figure 3.17: Histogram of results for the number of components K using the tem-
poral correlation, PSD correlation, MSE and SDR metrics for each type of NMF
decomposition. The vertical lines indicates the mean of each histogram. It should
be noted that this histogram incorporates only the simulations that use Nwind = 2048
and 90% overlap.

Table 3.1: Results of the NMF methods comparing the original lung signal and the
lung signal obtained for using Nwind = 2048, 90% overlap, � = 2, K = 2, and heart
sound position correlation criterion. The best method for each metric is highlighted
in yellow.

Metric\Method
NMF on

entire signal

NMF on
heart sound
segments

NMF masking
heart sound
positions

NMF on entire
signal & replacing
in heart sound

positions

Temporal correlation 0.9481 ± 0.024 0.8834 ± 0.0313 0.8648 ± 0.1396 0.965 ± 0.0143
PSD correlation 0.9777 ± 0.0173 0.9777 ± 0.0163 0.9759 ± 0.0205 0.9828 ± 0.0161

MSE 0.0016 ± 0.0008 0.0035 ± 0.0019 0.0042 ± 0.0053 0.0011 ± 0.0006
SDR (dB) 10.1806 ± 1.9769 6.6107 ± 1.3386 7.4382 ± 4.1117 11.8606 ± 1.5946
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Figure 3.18: Example of a spectrogram of a heart sound segment with Nwind = 2048
and 90% overlap.

positions, since for all the metrics it has a better performance than the rest of the
methods. This result is expected since, unlike the base method, it does not modify
the pure lung sound segments, which is a desirable behavior in terms of lung sound
reconstruction.

In addition, by decomposing on the entire signal (3.4.2.1 and 3.4.2.4), a better
characterization of the lung sound is performed than in NMF methods that decom-
pose only the heart sound segments (3.4.2.2 and 3.4.2.3). As presented in the table
3.1, these last two methods show the worst results under all the metrics, even worse
than the baseline method. This may be due because these decompositions consider
information only from the segments where the heart sound is present. In addition,
nothing ensures that in the segments where the heart sounds occur there is the pres-
ence of respiratory sounds, since several beats can occur when the patient is neither
inhaling nor exhaling. Therefore, in this type of segment, components that do not
present the characteristic properties of respiration could be classified as lung sounds.
As a result of this, the characterization of the lung sound in the NMF decomposition
would be poorer.

In particular, in the case of the NMF on heart sound segments method, there may
be an additional conflict due to the restriction of K required for NMF factorization,
as mentioned in section 3.2.1. Indeed, by performing the decomposition only on the
segments where the heart sound is located, the temporal dimension of the spectro-
gram contains fewer points than in the case of the complete signal. Because of this,
there are not enough points in the components of the H matrix to adequately repre-
sent the temporal pattern of the components. The figure 3.18 shows a heart sound
segment containing approximately 1500 points at a sampling rate of fs = 11025 Hz,
considering Nfade = 100 fade points. Therefore, when calculating the spectrogram
using a window length of Nwind = 2048 with 90% overlap, the time dimension in the
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Figure 3.19: NMF decomposition example on a heart sound segment with K = 2.
For this decomposition a spectrogram with Nwind = 2048 and 90% overlap was used.
In the left plot the original signal and the reconstruction of both components is
presented, where the component #1 correspond to heart sound and the component
#2 to lung sound. The intermediate plot shows the spectral patterns wi for each
component. And in the right plot the temporal patterns hT

i
are shown.

spectrogram is described by only 10 bins, thus the constraint (N +M)K  NM is
not satisfied in some cases.

Another apparent cause is that this decomposition considers only the informa-
tion contained in each segment individually without considering the other segments,
including even less information than the NMF masking heart sound positions. This
causes that there is no clear definition of the lung sound properties, and therefore,
the definition of its spectral pattern in the W matrix. In practice, this means that
the spectral pattern recognized in that segment tends to characterize the lung sound
as basal noise, assigning to what is classified as heart sound almost all of the in-
formation and energy of the segment. The two facts mentioned can be seen in the
result of figure 3.19, where the reconstructed components are presented together with
their spectral and temporal patterns. Notice from the results of the H matrix (right
plot) the low resolution of the temporal patterns. Furthermore, it is possible to see
in the temporal representation of the components (left plot) that the component
corresponding to the heart sound (component #1) has almost all the energy of the
segment. While the component corresponding to the lung sound (component #2)
oscillates much closer to zero.

Although the NMF method on the entire signal & replacing in heart sound po-
sitions achieves better results than the base method, it is dependent on the correct
detection of the heart sounds in the auscultated signal. Indeed, if they are not de-
tected correctly, the heart sounds would remain in the output lung sound, which is
not desirable. Therefore, for the correct performance of this method, it is necessary
that the heart sound detection step would be robust.
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3.5.4 Best results

From the analysis of the experiments performed, it is possible to conclude that the
combination of parameters that generates an optimal separation is the NMF on
entire signal & replacing heart sound position method with � = 2 and K = 2. The
graphical results of this separation are presented in the figures 3.20, 3.21, 3.22 y 3.23.
One of the audio files from the created database was used to illustrate the properties
of the decomposition.

The figure 3.20 shows the original cardiorespiratory signal to be decomposed,
and the components obtained from the decomposition. The estimated lung sound
in the segments where the heart sound occurs (highlighted in purple) has a similar
shape to the areas of pure lung sound (not highlighted). In turn, the estimated heart
sound presents characteristics of its impulsive nature, which is why it is possible to
appreciate the good performance of the separation. This can also be seen in the
spectrogram in figure 3.23, where the low-frequency peaks present in the original
cardiorespiratory sound spectrogram are eliminated through this method.

Figures 3.21 and 3.22 show the comparisons between the original respiratory
sound and the obtained respiratory sound. It is possible to appreciate that in the
segments of pure lung sound the error between both signals is zero since they are
not modified. However, in the segments where the decomposition is performed it is
possible to appreciate low approximation errors. In general terms, the decomposition
achieves to maintain the properties of the lung sound. Furthermore, spectrally this
can be seen in the PSDs presented in figure 3.22, which are quite similar.

3.6 Conclusions and future work

In this work, three new methods are proposed for source separation of this signals.
The first method consists in the decomposition only on the segments where heart
sound is detected. The second method consists of masking the signal, leaving only
the segments where the heart sound is found and zeroing the rest. The third method
uses the components classified as lung sound with an NMF on entire signal method,
to obtain the segments where the heart sound was originally located to mix it with
the original signal. These methods were compared to a method which performs NMF
decomposition on the entire raw signal.

In addition, three strategies to assign components to the sources are proposed,
which use information from the same input signal to make the decision. The first
uses the spectrum energy distribution, the second the PSD of the pure lung sound
segments and the last uses heart sound positions detected in the signal.

Based on the results, it is possible to conclude that the NMF on entire signal
& replacing the heart sound positions o↵ers better results for almost all scenarios.
Indeed, because there are areas that remain unaltered, it is possible to better recover
the properties of lung sound. However, it is dependent on the correct detection
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Figure 3.20: Separation of the original cardio-respiratory signal into its lung and
heart sound components using NMF replacing segments with � = 2, K = 2, Nwind =
2048, 90% overlap and heart sound position criterion. The first graph shows the
original cardio-respiratory signal, in which the heart sound segment is highlighted
by the purple band. The second and third graphs show the lung and heart sounds
respectively. This signal represents a portion of the 12th audio file in the database.

Figure 3.21: Comparison between original lung sound and obtained by NMF re-
placing segments with � = 2, K = 2, Nwind = 2048, 90% overlap and heart sound
position criterion. The upper graph shows the original lung signal (blue line) and
the obtained by decomposition (orange dotted line), highlighting in violet the heart
sound segments. The lower graph shows the error between both signals. This signal
represents a portion of the 12th audio file in the database.
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Figure 3.22: Comparison between the PSDs of the original lung sound and the
obtained by NMF replacing segments with � = 2, K = 2, Nwind = 2048, 90% overlap
and heart sound position criterion. The blue signal corresponds to original signal
PSD, while the orange corresponds to PSD of the signal obtained by decomposition.
For the PSD calculation, the Welch method was used with the same parameters
used for decomposition. This signal represents a portion of the 12th audio file in the
database.

Figure 3.23: Comparison of the spectrograms between the original cardio-respiratory
sound and the lung signal obtained by NMF replacing segments with � = 2, K = 2,
Nwind = 2048, 90% overlap and heart sound position criterion. The spectrograms
were obtained using the same parameters as for the decomposition. This signal
represents a portion of the 12th audio file in the database.
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of heart sounds in the input signal, which could be an additional di�culty. In
contrast, the NMF separation on heart sound segments has a lower performance
than even the base case. This may be due that when performing the decomposition
of a spectrogram obtained from such a short segment, errors may exist due to the fact
that the restrictions of the range of the NMF decomposition are not accomplished
and the low temporal extension of the spectrogram. Additionally, it could be because
the decomposition only considers the information from that segment, so it could not
have correctly detected the patterns with the properties of each interest signal. In
the case of NMF masking heart sound positions, something similar happens, but
using a greater number of segments simultaneously.

By analyzing the results, it is concluded that the criterion that considerably im-
proves the performance of the separation is the heart sound position correlation.
Using this criterion with Nwind = 2048 and 90% overlap to obtain the spectrogram,
there is no clear trend for the number of components K and the �-divergence pa-
rameters in the objective function. However, when performing the analysis on all the
simulations without restricting the assignment criteria or spectrogram parameters,
it is possible to notice that � = 2 gives better results, while K = 2 is systematically
better in terms of number of components.

One of the main di�culties of NMF decomposition is the wide variety of parame-
ters that can be used. This in turn raises the idea of moving towards the realization
of a system that allows automating the process of selecting parameters for the NMF
decomposition. Either, the design of a robust source separation system that allows
recovering heart and respiratory sound with a similar or better performance, but
with the advantage of handling a smaller set of parameters.

This type of preprocessing could facilitate the extraction of relevant features
used in medical diagnostics, and even improve the performance of machine (or deep)
learning-based classifiers. The latter could generate great advances in the field of
telemedicine, opening the opportunity to develop technology that considers topics
such as the automatic diagnosis of respiratory and heart diseases.

77



Chapter 4

General conclusions and future
work

4.1 Conclusions

This work aimed to design a preprocessing system for the signal auscultated in the
patient’s chest to be used in the diagnosis of respiratory diseases. For this, the use of
two consecutive blocks is proposed: a heart sound detection block based on a CNN,
and a source separation algorithm that returns lung and heart sounds.

In the heart sound detection stage, a CNN based on an encoder-decoder archi-
tecture is implemented for the detection of fundamental heart sounds, using various
features at the input. A detailed analysis of the parameters that defines each feature
and those that define the network architecture is performed. When simulating di↵er-
ent combinations of parameters, the results of the network remain in a similar range
for di↵erent metrics. A relevant result is that regardless of the input features used,
this system output remains su�ciently robust. Even using the raw signal as input to
the network, it is possible to obtain high performance. To demonstrate this fact, a
k-fold cross-validation was performed with k = 10 folds, with which the robustness
of the results was verified. At this same stage, a CNN based on classical architec-
tures was also tested, obtaining slightly lower results (see chapter A in appendix).
One of the main advantages of the encoder-decoder architecture is that it allows a
point-wise classification of the signals, so that the output of the network will have
the same number of points as the input signal. It is possible to conclude from this
that CNNs based on encoder-decoder architecture is a powerful tool to tackle this
type of problem.

In addition to being useful in source separation strategies focused on the heart
sound segments (as presented in this work), this detection system could be useful
for the diagnosis of heart diseases since it allow knowing the heart sounds positions,
and hence the position and duration of the systolic and diastolic intervals. With this
information, the presence of abnormal heart sounds such as heart murmurs, S3 and
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S4 could be studied in any of these intervals, or even the durations of each interval,
which could provide valuable information for an eventual diagnosis of the state of
the heart. Therefore, this system alone could be a good starting point for a project
based on automatic heart disease detection.

For the source separation stage, three decomposition methods that use NMF and
the heart sound positions as reference information were proposed. These methods
were compared with a baseline scenario in which an NMF decomposition on the entire
signal was performed. In addition, three assignment criteria for the K components
obtained from the decomposition are proposed. The method that obtained the best
results was the one that performed an NMF decomposition on the entire signal and
replaced the segments of the heart sound positions with the lung signal obtained.
This method mixes the good properties of applying NMF over the entire signal
when recognizing spectral patterns in the W matrix, while achieving the aim of not
modifying the pure lung sound segments. However, it is dependent on the correct
detection of heart sounds to operate properly. From these results, it is also possible
to conclude that NMF is an adequate method to solve this type of source separation
problems.

Another conclusion that can be obtained from this algorithm is that, in the case
of using methods that consider only the information of the heart sounds (such as the
NMF method on heart sound position and the NMF masking heart sound position),
the results decrease considerably. This is because the information of the pure lung
sound segments is not incorporated into the NMF algorithm, therefore, it is not
possible to sketch a clearly recognizable pattern for the lung sound in the W and H
matrices. This explains why even the base method shows better results than these
methods in all metrics.

It is expected that this preprocessing system will provide better results in the
diagnosis of respiratory diseases since the characteristics of the lung signal can be
extracted without the interference of heart sounds. This is desirable, for example, in
cases when use spectral features to classify a complete segment of the signal. In the
ICBHI 2017 database presented for the source separation system, labels indicating
the presence of wheezes and crackles on each respiratory cycle (both, inhalation
and exhalation) are presented. Therefore, the presence of a sound such as cardiac
that spectrally overlaps with the lung sound can introduce false correlations when
performing the classification using features related to the signal spectrum, which is
not desirable.

4.2 Future work

From this research, some lines of work emerge that could be carried out to improve
the performance of this system.

With regard to the heart sound detection, the training of a CNN with an encoder-
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decoder architecture on a database whose labels are manually corrected by health
professionals could be implemented, such as the (C. Liu et al., 2016) database. This
will ensure that the system is even more accurate when it comes to recognizing heart
sounds and defining time boundaries. Also, it is always recommended to have a larger
number of samples when using neural networks to ensure robust system performance
against new samples.

It would be interesting to study and develop a method for diagnosing heart
diseases or abnormalities based on the information provided by this system. The
presence of abnormal sounds such as murmurs or non-fundamental heart sounds
(such as S3 and S4) could be studied, and even related to a diagnosis of the heart.
The timing of each phase of the cardiac cycle could also be studied to report problems
related to heart rhythm. This implementation could even be expanded to develop
applications that deliver this information in real time (or with a reasonable delay).

In relation to the source separation, it is expected that new strategies for assigning
components will be designed to improve the results presented. In particular, could be
considered the use of segment reconstruction techniques is proposed as an alternative
method to the source separation to obtain lung sounds. One idea that might be
interesting is to use the heart sounds positions in the input signal, remove those
segments, and use compressed sensing to reconstruct them based on the remaining
information. The authors recommend using random sensing matrices in this kind of
applications (Kutyniok, 2013). However, because the nature of this problem is the
reconstruction of a segment, there may be di�culties with this technique.

Finally, the design of a classification system for lung diseases for clinical applica-
tions is proposed as future work, or a system that detects symptoms or abnormalities
in lung sounds. For this, an approach based on the detection of events within the sig-
nal is recommended (similar to that performed in the heart sound detection block)
since it would allow to inform the precise location of sounds such as crackles or
wheezes. To implement this, the CNN method based on encoder-decoder architec-
ture can be useful, or even a combination with Recurrent Neural Networks (RNN).

The robust design of a system like this could have a positive impact in the field of
telemedicine. Indeed, electronic stethoscopes could be designed with an embedded
system, or connected to applications or platforms to perform analyzes that allow
automatic symptoms detection and diagnosis of patients from the auscultation of
respiratory sounds. This could generate great advantages in terms of the operation
logistics of the health centers, since not only would it give patients the opportunity
to make part of their diagnosis remotely, but it would also allow reduce the levels of
occupational load of medical centers, especially in winter periods. This could mark
a great improve in the development of modern medicine.
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Appendix A

Heart sound detection: More
analysis results

In recent decades, neural networks have become a powerful tool to carry out various
applications. One of the types of neural networks most used in signal and image
processing are convolutional neural networks (CNN), first proposed in 1989 with the
work of LeCun (Y. LeCun et al., 1989).

CNNs are a type of multilayer feedback network, where each layer uses filter banks
of a certain size. These filters are adjusted via backpropagation as the network is
trained. One of its characteristics is its ability to exploit the temporal or spatial
correlation of the data due to its convolutional nature, from which the network learn
the inherent characteristics of the input data (A. Khan et al., 2020).

Although CNN have been developed mainly for applications related to image
processing (2D), in this chapter they will be modified to operate with audio signals
(1D). This chapter will detail the implementation of a CNN network based on a
classical architecture, its parameters and its results compared to a CNN based on
an encoder-decoder architecture.

A.1 CNN based on classical architectures

In this proposal, classic CNN network architectures such as the LeNet-5 (Yann LeCun
et al., 1998) or the AlexNet (Krizhevsky et al., 2012) are used as inspiration.

This type of architecture can be divided into three main sections (see figure A.1):

1. A series of convolutional layers with their respective activation functions, al-
ternated with pooling layers.

2. A flattening layer that connects the output of the last convolutional layer to
the next series of layers.
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Figure A.1: General operation scheme of a CNN based on classical architectures.

3. A MLP with their respective activation functions. For the case of MLPs, the
relationships between layers are defined by (Goodfellow et al., 2016):

a[l] = g[l]
⇣
W [l]Ta[l�1] + b[l]

⌘

= g[l]
�
z[l]
�

= 8l = {1, ..., L}

(A.1)

Where a[l], b[l] 2 Rn
[l]
h correspond to the output vectors and their bias parameter

for the n[l]
h

perceptrons of the l-th layer, g[l] to their activation function and

W [l] 2 R(n
[l�1]
h ⇥n

[l]
h ) corresponds to the weight matrix used by the perceptrons

in the l-th layer.

As can be seen, in this type of implementation n[0]
c = m features envelopes are

used, obtained through di↵erent methods detailed in section C.1. For each audio
sample in the database, the m signal features are windowed in segments of length
Nx with step ⌧x, obtaining the input X[0] 2 RNx⇥m to the network. The first part
of the network is made up of Lcnn convolutional layers alternated with pooling lay-
ers. Note from figure A.1 that, in the implementation used for this chapter, each
convolutional layer will be immediately followed by a batch normalization and then
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a ReLU activation function. However, in the case of pooling layers, it will be de-
cided if it is included for each output of the convolutional layers mentioned above.
Once the Lcnn convolutional layers are finished, a flattening layer is applied that al-

lows transforming an array X[Lcnn] 2 Rn
0[Lcnn]
N ⇥n

[Lcnn]
c to a one-dimensional array with

(n0[Lcnn]
N

· n[Lcnn]
c ) inputs, which allows to connect the convolutional stage with the

MLP stage. Then Lp perceptron layers are applied followed by batch normalization
and ReLU activation. Finally, a layer of K perceptrons is used (for the K classes of
interest) with softmax function, which will indicate the probability of membership
that the segment of length Nx has for those K classes. The output ŷ 2 {1, ..., K}
will indicate the class with the highest probability predicted on the input segment.
Therefore, this type of network reduces a segment of length Nx to a label of length
1.

A.2 Initial network design

This network is presented in the figure A.2. As indicated, this network begins with
4 consecutive layers consisting of a convolutional filter bank, followed by batch nor-
malization and ReLU activation for each one. For convolutional filters, a bank of
n[l]
c = 20 filters of length Hl = 200 is used for each of these layers. Furthermore, these

convolutional layers are padded in such a way that the output maintain the length of
the input. This is achieved by setting the padding = valid option in Keras Conv1D
layer. In one of the variations of this network, a maxpooling layer is included after
ReLU activation, reducing the length of the input segments sin in half each time
these blocks are presented.

Then, a flattening layer is used to adjust the output of the CNN stage for use
as input in the MLP stage. This consists of 3 layers of perceptrons with batch
normalization and ReLU activation, where each layer has n[l]

h
= 50 perceptrons.

Finally, unlike the works presented in the literature where 4 classes are used (S1,
systole, S2, diastole), the output will consist of a softmax layer with K = 3 classes:
S1, S2 and non-heart sound (S0).

A proposed variant is the use of a di↵erent channel for each of the m descriptors
used. A diagram of this type of network is shown in figure A.3. As can be seen, each
feature is entered independently to each channel network represented by the red box
in figure A.2.

At the output of each of the channels of this network, a concatenation layer is
used to join the output of each channel in a one-dimensional arrangement. Finally,
the output of this layer is connected to a softmax layer with the K = 3 classes
defined above.

This network was built using the Keras API built into Python’s Tensorflow library
(Abadi et al., 2016). All parameters of convolutional layers (defined by the Conv1D
function of the tensorflow.keras environment) and of perceptrons (defined by the
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Figure A.2: Proposed CNN based on classical architectures. In this network we
consider a convolutional stage with optional maxpooling (available for one of the
variants to be tested), then a flattening layer and finally a MLP stage. The output
of this last layer is connected to a softmax layer. The red box synthesizes this network
into a single block, which will be used in the multichannel network diagram.
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CNN & FC CNN & FC 

Figure A.3: Diagram of the network using multiple channels. In this type of net-
work, a subnet for each feature in the input is used. The output of each network is
concatenated to be the input of a softmax layer.
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Table A.1: Results of CNN based on classical architectures. For each of the metrics
used, the architecture that achieves the best performance is highlighted in green.

CNN & MLP, Nx = 128, ⌧x = 16

Train Validation TestInput
channels

Maxpool
Trainable
parameters Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

1 No 389843 89.502 88.462 90.490 89.464 87.963 86.877 89.046 87.948 88.376 87.362 89.403 88.371
4 No 1511363 90.269 89.347 91.221 90.274 87.408 86.584 88.374 87.470 87.872 87.124 88.708 87.909
1 Yes 293843 89.347 88.306 90.419 89.350 86.998 85.718 88.241 86.961 88.052 86.847 89.253 88.034
4 Yes 1127363 90.673 89.828 91.549 90.681 86.683 85.732 87.602 86.657 87.922 87.124 88.846 87.977

Dense function of the tensorflow.keras environment) presented will be initialized
using the ‘he normal’ method described in (He et al., 2015).

To train the networks, the Adam optimization algorithm (from Adaptive Moment
Estimation) (Kingma and Ba, 2015) is used on a cross-entropy cost function. �1 = 0.9
(associated with momentum), �2 = 0.999 (associated with RMSprop) and a learning
rate of ↵ = 0.001 are used. The network will be trained for 20 epochs using batches
of 70 segments of dimension (Nx, m), where Nx corresponds to the length of each
segment and m to the number of features to use.

A.3 Architecture analysis

In this section, CNN based on classical architectures and CNN with encoder-decoder
architecture will be compared, using the same parameters described in this chapter
and incorporating the multi-channel option for each architecture.

For each of the experiments performed in this section, the same features defined
in works such as (Renna et al., 2019; Springer et al., 2016) will be used at the network
input, which are: homomorphic filter envelope, Hilbert magnitude envelope, spectral
energy and DWT on one level.

In the case of networks based on classical architectures, the parameters to vary
are: the option of implementing a shared channel or a channel for each feature; and
the option to incorporate maxpooling layers at the output of the activation functions
for each layer in the convolutional stage. For each mix of parameters, windows of
length Nx = 128 points with step ⌧x = 16 on the input signal will be used to define
segments. The results of this network are presented in table A.1.

As can be seen, the architecture that best fits the data in the training is the one
that uses one channel for each feature and implements maxpooling. However, this
network does not obtain the best results on the validation and testing set. Indeed,
the network that uses a shared channel for all features and does not incorporate
maxpooling layers obtains better performance in validation and testing. This could
indicate that the latter network allows for a better generalization of the heart sound
characteristics. The multi-channel network with maxpooling is slightly more over-
fitting in comparison. However, and in general, the results are quite homogeneous.

In the case of CNN with encoder-decoder architecture, the parameters to vary
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Table A.2: Results of CNN using encoder-decoder architectures. For each of the
metrics used, the architecture that achieves the best performance is highlighted in
green.

CNN Encoder decoder

Train Validation TestInput
channels

(Nx, ⌧x)
Trainable
parameters Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

1 (128, 16) 653422 87.911 86.394 89.398 87.870 87.257 85.519 88.908 87.181 87.944 86.345 89.553 87.920
4 (128, 16) 2582479 89.074 87.834 90.316 89.058 86.483 85.002 87.927 86.440 87.589 86.349 88.892 87.602
1 (1024, 64) 653422 95.161 95.123 95.200 95.162 92.909 92.839 92.990 92.915 93.463 93.421 93.512 93.467
4 (1024, 64) 2582479 96.698 96.684 96.712 96.698 92.874 92.825 92.931 92.878 93.657 93.623 93.699 93.661

are: the option of implementing a shared channel or a channel for each envelope; and
the length Nx and step ⌧x for the definition of the windows of the input signal in the
network. The results of this network are presented in table A.2. From these results,
it can be seen that for the case in which larger input windows are considered, the
performance of the network improves considerably. It should be noted that although
there is an improvement in using a channel for each descriptor, it does not constitute
a significant improvement to the performance of the network. Furthermore, the
number of trainable parameters increases approximately m = 4 times due to each
channel, where m corresponds to the number of features used in the input.

Comparing both types of networks, it is possible to notice that for Nx = 128
and ⌧x = 16, the networks in general present similar results. However, when trying
with Nx = 1024 and ⌧x = 64 the CNN based on the encoder-decoder architecture
gives much better results. One of the qualitative advantages of this type of network
is that it does not present resolution problems when classifying. Indeed, since each
point in this network is classified independently, the Nx points at the input are
classified resulting in Nx points at the output. In comparison, the CNN based on
classical architectures reduces the Nx points at input to a single point, which could
lead to resolution problems. It is for this reason that it is tested with Nx = 1024 in
encoder-decoder networks and not in classical ones.

Because of this, the encoder-decoder architecture is selected. Furthermore, the
use of a single channel architecture is preferred as it achieves quite similar results us-
ing considerably fewer trainable parameters, compared to the multi-channel network.
From this point, it will continue to experimenting only with this network.

A.4 Class balance analysis

In (Badrinarayanan et al., 2017) one of the techniques used when training the SegNet
network is class balancing when the labels in the datasets are imbalanced. Here we
will try weighting each of the classes in the objective function considering their
frequency of appearance in the database. As in (Badrinarayanan et al., 2017), in
this work the median frequency balance will be used, which defines each class weight
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Table A.3: Results of class balancing analysis for the weights in the objective function
of the CNN-based encoder-decoder architecture. For each of the metrics used, the
combination of input features that obtains the best performance is highlighted in
green. The first row corresponds to the base architecture obtained from the previous
analyses.

CNN Encoder-Decoder (Nx = 16384, ⌧x = 128, n[l]
c = 15, H [l] = 150, c[l] = [2, 2, 3, 3])

Train Validation TestClass
balancing Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

Natural 98.885 98.884 98.886 98.885 95.567 95.563 95.570 95.566 94.050 94.046 94.058 94.052
Median 97.791 97.787 97.796 97.791 94.397 94.385 94.409 94.397 93.685 93.667 93.701 93.684

as:

↵k =
median(#k)

#k
, 8k = {1, ..., K} (A.2)

Where #k corresponds to how many elements the class k are in the dataset.
This expression allows assigning a greater weight ↵k to the classes that have fewer
instances, while the most frequent classes of the base will have a lower weight in
the objective function. It should be noticed that only the training set was used to
calculate #k. The result of this implementation is presented in table A.3.

As can be seen, for all the metrics used the implementation of the natural fre-
quency balance (without weighting) exceeds the median frequency balance imple-
mentation. Considering this results, it was decided not to use a class balance for this
problem since it does not provide a significant improvement.

A.5 Skipping connections analysis

The study of (Ye and Sung, 2019) on encoder-decoder architectures points out that
the use of information coming from the encoder in the decoding stage can increase the
expressive power of networks. In this section, two skipping methods will be tested.
One of them will realize the concatenation between the output of the upsampling
layer of the decoder and the input of the maxpooling layer of its corresponding
encoder (as proposed in the work of (Renna et al., 2019) that uses encoder-decoder
architecture based on the U-net); while the second option will communicate the
encoder with the decoder through the sum (as proposed in (Ye and Sung, 2019)).

The implementation of this idea can be seen in the skipped connections in figure
2.1, whose details are presented in figure A.4. The results of these experiments are
presented in table A.4.

From these results it is possible to notice that skipping operations do not present
a great improvement in network performance. Indeed, for each of the proposed vari-
ations, the results do not vary significantly. For this reason, it is decided to continue
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Table A.4: Results of the analysis of the skipping connections between the encoder
and decoder layers of the CNN based encoder-decoder architecture. For each of the
metrics used, the combination of input features that obtains the best performance
is highlighted in green. The first row corresponds to the base architecture obtained
from the previous analyses.

CNN Encoder-Decoder (Nx = 16384, ⌧x = 128, n[l]
c = 15, H [l] = 150, c[l] = [2, 2, 3, 3])

Train Validation TestSkipping
type Accuracy Recall Precision F1 Accuracy Recall Precision F1 Accuracy Recall Precision F1

No 98.885 98.884 98.886 98.885 95.567 95.563 95.570 95.566 94.050 94.046 94.058 94.052

Sum (Badrinarayanan et al., 2017) 98.652 98.650 98.655 98.652 94.607 94.602 94.612 94.607 94.296 94.285 94.307 94.296
Concatenate (Renna et al., 2019) 98.779 98.777 98.780 98.779 95.100 95.096 95.107 95.101 94.250 94.243 94.258 94.251

Concatenate Sum

Figure A.4: Connections between the corresponding encoder and decoder lay-
ers. Two possibilities are presented: concatenate and sum of the corresponding
maxpooling-upsampling layer pairs.
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using the encoder-decoder network without the inclusion of operations between the
maxpooling layers at encoder and the upsampling layers at decoder.
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Appendix B

Source separation: More analysis
results

B.1 Spectrogram parameters

The window size Nwind and overlap used to obtain the spectrogram will be studied,
in order to reduce the dimensionality of the analysis.

Reviewing the results presented in the histograms in the figure B.1 for di↵erent
window sizes it is possible to notice that when Nwind = 1024 and Nwind = 2048,
better results are obtained independently of the decomposition method used. Indeed,
they concentrate a large part of their results in high values for the case of temporal
correlation and SDR, while for the MSE they tend to concentrate on values close to
zero. In relation to the spectral correlation, there is not a great variation between
the di↵erent options, so it will not be considered in this analysis. Since for Nwind =
2048 the results tend to be slightly more concentrated in high values of temporal
correlation and SDR (low for MSE), it will be defined as the size of the window to
be used to obtain the spectrogram.

Regarding the overlap used, in the histograms of figure B.2 it is possible to see
that for the base NMF and segment-replacing NMF methods, the decision of the
amount of overlap presents relatively similar results. However, for the NMF on
heart sound segments method, the results decrease considerably if an overlap of 50%
is used (especially in terms of temporal correlation and SDR), and they improve
slightly when the overlap is 90% compared to the 75% overlap. In the case of NMF
method on masked signal, there is not a clear enough pattern to indicate whether
the option of 75% or 90% overlap is better, but it is possible to appreciate that for
the temporal correlation, MSE and SDR, the option 50% overlap produces slightly
worse results. For these reasons, it was decided to use a 90% overlap to obtain the
spectrogram of the signals.

Therefore, and from this point on, a window size of Nwind = 2048 points and an
90% overlap will be used to obtain the spectrograms.
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Figure B.1: Histogram of results for N = {512, 1024, 2048, 4096} using the temporal
correlation, PSD correlation, MSE and SDR metrics for each type of NMF decom-
position. The vertical lines indicates the mean of each histogram.

Figure B.2: Histogram of results for overlap of {50%, 75%, 90%} using the temporal
correlation, PSD correlation, MSE and SDR metrics for each type of NMF decom-
position. The vertical lines indicates the mean of each histogram.
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Figure B.3: Histogram of results for assignment criteria using the temporal correla-
tion, PSD correlation, MSE and SDR metrics for each type of NMF decomposition.
The vertical lines indicates the mean of each histogram.

B.2 Simulation results over all parameters

This section presents the simulations performed considering all the combinations of
the parameters presented in this study: Nwind, overlap, number of components K,
cost function �-divergence, decomposition method of using NMF and component
assignment criteria.

Below are the histograms of the results, di↵erentiating each of the metrics used
on the horizontal axis, each decomposition method on the vertical axis, and using a
di↵erent color for each of interest parameter in histogram.

B.3 Simulation results restricted to heart sound
position correlation criterion

This section presents the results of the simulations performed, restricting the use of
windows of size Nwind = 2048, with 90% overlap and heart sound position correlation
as assignment criterion. The objective of these results is to know what is the behavior
of the system against certain previous decisions for the spectrogram parameters and
the assignment criteria. Each one is presented below.
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Figure B.4: Histogram of results for � = {1, 2} using the temporal correlation,
PSD correlation, MSE and SDR metrics for each type of NMF decomposition. The
vertical lines indicates the mean of each histogram.

Figure B.5: Histogram of results for the number of components K = {2, 3, 5, 7, 10,
15, 20, 30} using the temporal correlation, PSD correlation, MSE and SDR metrics
for each type of NMF decomposition. The vertical lines indicates the mean of each
histogram.
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Figure B.6: Histogram of results for � = {1, 2} using the temporal correlation,
PSD correlation, MSE and SDR metrics for each type of NMF decomposition. The
vertical lines indicates the mean of each histogram. It should be noted that this
histogram incorporates only the simulations that use Nwind = 2048, 90% overlap
and heart sound position correlation as assignment criterion.

Figure B.7: Histogram of results for the number of components K = {2, 3, 5, 7,
10, 15, 20, 30} using the temporal correlation, PSD correlation, MSE and SDR
metrics for each type of NMF decomposition. The vertical lines indicates the mean
of each histogram. It should be noted that this histogram incorporates only the
simulations that use Nwind = 2048, 90% overlap and heart sound position correlation
as assignment criterion.
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Appendix C

Theory and analysis of input
features at CNN

C.1 Features implemented

For the training of neural networks it is necessary to obtain features that will be
used as input. The theoretical foundations that will explain the features used in the
chapter 2 are presented below.

C.1.1 Homomorphic filters

In this type of filter, the signal s(n) is modeled as the multiplication of a low-
frequency signal a(n) (associated with the envelope) and a high-frequency signal
f(n), just like in an AM modulation:

s(n) = a(n)f(n) (C.1)

From which it is defined:

z(n) = log(|s(n)|) = log(|a(n)|) + log(|f(n)|) (C.2)

Applying a linear low pass filter L it is then possible to define:

zlow(n) = L{z(n)} = L{log(|a(n)|) + log(|f(n)|)}
= L{log(|a(n)|)}+ L{log(|f(n)|)}
= L{log(|a(n)|)}

(C.3)

Finally, by applying the exponential function it is possible to obtain the low
frequency component a(n) that can be used as an envelope:

|a(n)| = ezlow(n) (C.4)
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Figure C.1: Phase frequency response of the Hilbert transform.

C.1.2 Hilbert transform

The Hilbert transform of a real continuous-time signal s(t) is defined as (Choi and
Jiang, 2008; Feldman, 2008; Varghees and Ramachandran, 2014):

H{s(t)} =
1

⇡

Z 1

�1

s(⌧)

t� ⌧ d⌧ = s(t) ⇤ 1

⇡t
(C.5)

Where the operator “⇤” corresponds to the convolution. Analyzing the frequency
response of the expression 1

⇡t
we have:

F

⇢
1

⇡t

�
= �j · sgn(f) =

8
<

:

j if f < 0
0 if f = 0
�j if f > 0

(C.6)

Where j is the imaginary unit, that is, j =
p
�1. From this it is possible to

notice that the Hilbert transform modifies the phase of the signal without modifying
its amplitude. Indeed, for f < 0 it shifts the phase of the signal by ⇡/2, while for
f > 0 it generates a phase shift of �⇡/2, which can be illustrated in figure C.1.

For the case of discrete signals, it is possible to express the Hilbert transform of
the signal s(n) as (Nivitha Varghees and Ramachandran, 2017):

H{s(n)} = IDFT{SH(k)} (C.7)

Y:

SH(k) =

⇢
�jS(k) k = 0, 1, . . . , N2 � 1
jS(k) k = N

2 ,
N

2 + 1, . . . , (N � 1)
(C.8)

Where IDFT(·) corresponds to the Inverse Discrete Fourier Transform, and S(k)
corresponds to the DFT (Discrete Fourier Transform) of the signal s(n).
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An analytical signal sa(n) is a type of signal whose frequency spectrum is only
defined in non-negative frequencies (Smith, 2007). Using the Hilbert transform, it
is possible to define an analytical signal from a real signal s(n) by (Choi and Jiang,
2008; Feldman, 2008; Smith, 2007; Varghees and Ramachandran, 2014):

sa(n) = s(n) + j ·H{s(n)} (C.9)

Since the analytical signal is a complex signal, it is possible to express it in its
polar form:

sa(n) = A(n)ej�(n) (C.10)

Where A(n) is the amplitude of the analytical signal sa(n), and is defined as:

A(n) = |sa(n)| =
p
s(n)2 +H{s(n)}2 (C.11)

While �(n)corresponds to its instantaneous phase, and is defined as:

�(n) = \sa(n) = arctan

✓
H{s(n)}
s(n)

◆
(C.12)

To understand the properties of the amplitude envelope presented by A(n), con-
sider a discrete amplitude-modulated (AM) sinusoidal signal s(n) = A(n) cos(2⇡fn),
where A(n) corresponds to the signal modulated at a carrier frequency f , whose
rate of variation of A(n) is much less than f (Smith, 2007). Applying the Hilbert
transform, it is possible to obtain that H{s(n)} = A(n) sin(2⇡fn). Therefore, the
analytical signal would be given by:

sa(n) = A(n)
⇥
cos(2⇡fn) + sin(2⇡fn)

⇤
= A(n)ej2⇡fn

Then:
|sa(n)| = A(n)

Therefore, and understanding the signal s(n) as a sum of sinusoids, through the
amplitude A(n) of the analytical signal sa(n) presented in (C.11) it is possible obtain
an envelope from the original signal.

C.1.3 Wavelet transform

The discrete Wavelet transform (DWT) of a signal s(n) is defined from a scaling
function �j,k(t) and a Wavelet function  j,k(t) as (C.-L. Liu, 2010):

W�(j, k) =
1p
M

X

n

s(n)�j,k(n)

W (j, k) =
1p
M

X

n

s(n) j,k(n)
(C.13)
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Figure C.2: Esquema de descomposición DWT en múltiples niveles.

Where j corresponds to the scale parameter of the transform, k to the translation
parameter, W�(j, k) corresponds to the approximation coe�cients and W (j, k) to
the detail coe�cients of the transform. It is possible to express the relationship be-
tween di↵erent scales of the form (for more details on the basis of these relationships,
it is recommended to review (C.-L. Liu, 2010)):

W�(j, k) = g�(n) ⇤W�(j + 1, 2k)

W (j, k) = g (n) ⇤W�(j + 1, 2k)
(C.14)

Where g�(n) and g (n) can be modeled as the filters in figure C.2. As can be
seen, for each level the number of points is reduced by half. A variant of the DWT
is the Stationary Wavelets Transform (SWT) which performs the same process, but
without the downsampling step. This makes it possible to conserve the number
of points in the di↵erent levels of decomposition, being able to make point-to-point
comparisons between the di↵erent levels of decomposition, and implement techniques
such as the Multi-scale Wavelets product.

C.1.4 Multi-scale Wavelet product

A useful property of the multiplication of adjacent levels in a SWT is that it allows
to attenuate the presence of white noise, and to enhance the maximum values that
propagate through the scales, which could allow the identification of signals like the
heart sounds in PCG (Bao and L. Zhang, 2003; Yadollahi and Z. M. Moussavi, 2006).
This property is used in applications such as highlighting edges of an image (Bao and
L. Zhang, 2003) and denoising (Flores-Tapia et al., 2007). In works such as (Flores-
Tapia et al., 2007; Yadollahi and Z. M. Moussavi, 2006) this type of technique is
used to detect the singularities that represent the heart sounds in a PCG.
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The Multi-scale Wavelets product between the levels j and (j + k) is defined as
(Flores-Tapia et al., 2007):

Pj,k(s(n)) =
k+jY

i=k

Wi(s(n)) (C.15)

C.1.5 Variance fractal dimension

The fractal dimension is a type of metric that allows to quantify or characterize the
complexity of some pattern in terms of morphology, entropy, spectrum or variance
(Carvalho et al., 2005; Phinyomark et al., 2014). In relation to the analysis of signals,
this feature allows to emphasize the underlying complexity in the structure of a signal
(Phinyomark et al., 2014).

The Variance fractal dimension (VFD) is a type of fractal dimension that has been
used in previous studies such as (Carvalho et al., 2005; J. Gnitecki and Z. Mous-
savi, 2003) for heart sound detection. This expression is determined by the Hurst
exponent, which is obtained from the power law relationship that exists between the
variance of the signal amplitude increments s(t) (denoted as (�s)�t = s(ti+1)�s(ti))
over the increments in time (�t = ti+1 � ti). Mathematically this can be expressed
as:

Var((�s)�t ⇠ �t2H (C.16)

Where H corresponds to the Hurst exponent. From the relation (C.16), and
considering a window w(n) with length N as the input signal, the Hurst exponent is
defined as (Phinyomark et al., 2014):

H = lim
�t!0

1

2
· log(Var[(�w)�t)])

log(�t)
(C.17)

And:

Var[(�w)�t] =
1

Nk � 1

2

4
NkX

j=1

(�w)2
jk
� 1

Nk

 
NkX

j=1

(�w)jk

!2
3

5 (C.18)

With:
(�w)jk = w(jnk)� w((j � 1)nk), 8j = 1, ..., Nk (C.19)

Where nk corresponds to the size of the step between two instants, Nk = bN/nkc
corresponds to the number of sub-windows generated by the step nk from the window
of length N , and b·c corresponds to the floor operator. The VFD is defined from the
Hurst exponent as (Carvalho et al., 2005; J. Gnitecki and Z. Moussavi, 2003):

FD� = E + 1�H (C.20)
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Where E corresponds to the inherent Euclidean dimension, which in the case of
audio signals corresponds to E = 1. The VFD is calculated over a window of the
signal using the following series of steps (Carvalho et al., 2005; J. Gnitecki and Z.
Moussavi, 2003; Phinyomark et al., 2014):

1. First, the minimum (kmin) and maximum (kmax) step sizes are selected. Be-
tween those the time increment nk will be defined. In addition, the scale in
which each increment will be made is defined, which can be based on a unit
scale (nk = k), or on a dyadic scale (nk = 2k).

2. For each k = {kmin, ..., kmax}:

i. The number bNk = N/nkc of sub-windows generated by the temporary
increments nk is defined.

ii. Using the expressions in (C.18) and (C.19) we obtain Var[(�w)�t].

iii. From the results obtained, we define Xk = log(nk) and Yk =
log(Var[(�w)�t]).

3. From the Xk and Yk obtained for each k = {kmin, ..., kmax}, a linear regression
based on least squares is calculated that allows adjusting a slope � for the
log-log plot obtained for this set of points. From these, � is defined from the
solution of the least squares slope as:

� =
K
P

K

i=1 XiYi �
P

K

i=1 Xi

P
K

i=1 Yi

K
P

K

i=1 X
2
i
�
⇣
K
P

K

i=1 Xi

⌘2 (C.21)

4. Then, the Hurst exponent is defined as:

H =
1

2
� (C.22)

5. Finally, the fractal dimension of the window w(n) is defined as:

FD�(w(n)) = 2�H (C.23)

In order to obtain the time evolution of the VFD on a real discrete signal s(n),
the signal must be windowed using windows of length N with a step of Nstep points.
For each window defined from the signal, the procedure mentioned between points
2 and 5 must be repeated.
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C.1.6 Frequency bands energy

The calculation of the frequency bands energy makes it possible to know how much
energy exists in a specific frequency interval, for a given time interval. To perform
this calculation, the spectrogram S(m, k) is defined from the short-time Fourier
transform (STFT) of a discrete signal s(n), using an analysis window w(t) of length
N . The spectrogram S(m, k) is defined as:

S(m, k) =
1X

n=�1
s(n)w(n�m)e�j2⇡k n

N (C.24)

From this, it is possible to calculate the energy of certain specific frequency bands.
Defining a band of interest for the frequency bins between k 2 [klow, khigh], the energy
envelope by bands p(m) is defined as:

p(m) =

khighX

k=klow

|S(m, k)|2 (C.25)

In the case of defining a frequency interval f 2 [flow, fhigh] in Hz for this calcula-
tion, you will have to choose the frequency bins closest to each one. This is because
the representation of each frequency bin is given in discrete steps, and generally does
not coincide with the limits of the specified frequency interval.

C.1.7 Spectral tracking

This type of technique consists of tracking the amplitude at a specific frequency over
time. In (A. Iwata et al., 1980) a model based on spectral linear predictions is used
that defines a discrete transfer function using only poles, which is defined in the form
(Makhoul, 1975):

Ŝ(z) =
G

1 +
P

p

k=1 akz
�k

(C.26)

From which it is possible to characterize the power spectrum defined as:

P̂ (f) = |Ŝ(z = ej2⇡f )|2 = G2

|1 +
P

p

k=1 ake
�j2⇡fk|2 (C.27)

In (A. Iwata et al., 1980) this model is used with a number of p = 8 poles to track
frequencies that characterize S1 and S2 from their dominant frequencies. To obtain
the values of ak an iterative algorithm is used which is detailed in (Akira Iwata et al.,
1977), whose demonstration is available in (Makhoul, 1975).

However, it is also possible to implement this idea using the spectrogram of
a signal. Indeed, let S(m, k) the STFT of a signal s(n) as defined in (C.24). It is
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Table C.1: Study of the correlations between the binary signal of heart sound posi-
tions and the di↵erent levels of detail of a DWT with mother Wavelet db6. The best
option is highlighted in green.

Discrete Wavelet Transform

Parameters Mother Wavelet db6

Level 1 detail 0.2899 ± 0.1083
Level 2 detail 0.3305 ± 0.0968
Level 3 detail 0.4093 ± 0.0853
Level 4 detail 0.4671 ± 0.1034
Level 5 detail 0.4001 ± 0.1365
Level 6 detail 0.1331 ± 0.1178

Table C.2: Study of the correlations between the binary signal of heart sound posi-
tions and the product between di↵erent levels of detail of a discrete Wavelet transform
with mother Wavelet db6. The best option is highlighted in green.

Parameters Multi-scale Wavelet Product

Levels {1, 2, 3, 4} 0.1199 ± 0.0585
Levels {2, 3, 4} 0.1941 ± 0.0695
Levels {3, 4} 0.3226 ± 0.0796
Levels {2, 3} 0.2351 ± 0.0771
Levels {1, 2, 3} 0.1319 ± 0.0653
Levels {3, 4, 5} 0.2579 ± 0.0763
Levels {4, 5} 0.3635 ± 0.0965

possible to obtain the spectral tracking P̃ (f) of a specific frequency f0 by evaluating:

P̃ (f0) = |S(m, kf0)| (C.28)

Where kf0 corresponds to the frequency bin closest to f0, as mentioned in section
C.1.6.

C.2 Pearson correlation coe�cient analysis

This section presents the results of a previous analysis for the selection of parameters
that define each feature. To do this, Pearson’s correlation coe�cient is used to
compare each feature with the binary signal that describes the heart sound position.

Below are the tables that indicate each of the alternatives studied for each feature.
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Table C.3: Study of the correlations between the binary signal of heart sound po-
sitions and the energy for di↵erent frequency bands with di↵erent window length
and step parameters. The best options for each set of parameters are highlighted in
yellow, and the best option is highlighted in green.

Frequency bands energy

Parameters f = [30, 180] f = [30, 100] f = [30, 60]

N = 32, step = 4 0.6118 ± 0.108 0.6152 ± 0.11 0.6131 ± 0.1236
N = 32, step = 8 0.6099 ± 0.1077 0.6133 ± 0.1097 0.6114 ± 0.1233
N = 32, step = 16 0.6002 ± 0.1067 0.6034 ± 0.1085 0.6033 ± 0.1222
N = 64, step = 8 0.6772 ± 0.1181 0.6847 ± 0.1194 0.673 ± 0.1325
N = 64, step = 16 0.6737 ± 0.1175 0.6812 ± 0.1188 0.6696 ± 0.1318
N = 64, step = 32 0.6568 ± 0.1151 0.6641 ± 0.1164 0.653 ± 0.1294
N = 128, step = 16 0.6815 ± 0.1295 0.6928 ± 0.1291 0.6832 ± 0.1377
N = 128, step = 32 0.6761 ± 0.1281 0.6873 ± 0.1278 0.6779 ± 0.1363
N = 128, step = 64 0.6535 ± 0.1232 0.664 ± 0.1229 0.6541 ± 0.1317
N = 256, step = 32 0.4495 ± 0.1244 0.4623 ± 0.1226 0.4585 ± 0.1245
N = 256, step = 64 0.4474 ± 0.1228 0.4602 ± 0.1206 0.4565 ± 0.1221
N = 256, step = 128 0.4221 ± 0.1178 0.4349 ± 0.1144 0.4322 ± 0.1139
N = 512, step = 64 0.1032 ± 0.1421 0.106 ± 0.1374 0.1022 ± 0.1309
N = 512, step = 128 0.0949 ± 0.1421 0.0975 ± 0.1373 0.0935 ± 0.1314
N = 512, step = 256 0.0768 ± 0.1426 0.0814 ± 0.1377 0.0802 ± 0.1328
N = 1024, step = 128 0.0295 ± 0.1056 0.0303 ± 0.1052 0.0303 ± 0.1015
N = 1024, step = 256 0.0389 ± 0.1077 0.0404 ± 0.1072 0.0404 ± 0.1034
N = 1024, step = 512 0.0304 ± 0.0922 0.0306 ± 0.0922 0.0295 ± 0.0899
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Table C.4: Study of the correlations between the binary signal of heart sound po-
sitions and the VFD for di↵erent parameters of window length and step. The best
option is highlighted in green.

Parameters Variance Fractal Dimension

N = 32, step = 4 0.6703 ± 0.1085
N = 32, step = 8 0.6679 ± 0.1085
N = 32, step = 16 0.6591 ± 0.1083
N = 64, step = 8 0.7213 ± 0.1101
N = 64, step = 16 0.718 ± 0.1096
N = 64, step = 32 0.7056 ± 0.1084
N = 128, step = 16 0.6628 ± 0.1065
N = 128, step = 32 0.659 ± 0.106
N = 128, step = 64 0.6408 ± 0.1029
N = 256, step = 32 0.4087 ± 0.1078
N = 256, step = 64 0.4047 ± 0.1061
N = 256, step = 128 0.3883 ± 0.1065
N = 512, step = 64 0.245 ± 0.1188
N = 512, step = 128 0.2411 ± 0.1183
N = 512, step = 256 0.2016 ± 0.1191
N = 1024, step = 128 0.0905 ± 0.1218
N = 1024, step = 256 0.0748 ± 0.1189
N = 1024, step = 512 0.0561 ± 0.102

Table C.5: Study of the correlations between the binary signal of heart sound posi-
tions and the spectral tracking for di↵erent frequencies with di↵erent window length
and step parameters. The best options for each set of parameters are highlighted in
yellow, and the best option is highlighted in green.

Spectral tracking

Parameters f = 30 f = 40 f = 50 f = 60 f = 70 f = 90 f = 100 f = 120

N = 32, step = 4 0.6131 ± 0.1236 0.6131 ± 0.1236 0.5959 ± 0.1098 0.5959 ± 0.1098 0.5443 ± 0.1085 0.5443 ± 0.1085 0.5443 ± 0.1085 0.4788 ± 0.1302
N = 32, step = 8 0.6114 ± 0.1233 0.6114 ± 0.1233 0.5937 ± 0.1095 0.5937 ± 0.1095 0.5419 ± 0.1082 0.5419 ± 0.1082 0.5419 ± 0.1082 0.4765 ± 0.1297
N = 32, step = 16 0.6033 ± 0.1222 0.6033 ± 0.1222 0.5811 ± 0.1083 0.5811 ± 0.1083 0.5274 ± 0.1061 0.5274 ± 0.1061 0.5274 ± 0.1061 0.4611 ± 0.1273
N = 64, step = 8 0.6541 ± 0.143 0.6634 ± 0.1299 0.6634 ± 0.1299 0.6392 ± 0.1244 0.6124 ± 0.1281 0.578 ± 0.1373 0.578 ± 0.1373 0.5021 ± 0.1619
N = 64, step = 16 0.6511 ± 0.1421 0.6596 ± 0.1291 0.6596 ± 0.1291 0.6352 ± 0.1237 0.6084 ± 0.1274 0.5741 ± 0.1366 0.5741 ± 0.1366 0.4985 ± 0.1608
N = 64, step = 32 0.6372 ± 0.1401 0.6373 ± 0.126 0.6373 ± 0.126 0.6107 ± 0.1222 0.5861 ± 0.1244 0.5522 ± 0.1319 0.5522 ± 0.1319 0.4792 ± 0.1562
N = 128, step = 16 0.6211 ± 0.1644 0.6466 ± 0.1477 0.6396 ± 0.1445 0.6247 ± 0.1429 0.596 ± 0.1505 0.5567 ± 0.16 0.5403 ± 0.1653 0.5001 ± 0.1779
N = 128, step = 32 0.6164 ± 0.163 0.6412 ± 0.1463 0.6342 ± 0.1431 0.6193 ± 0.1415 0.5909 ± 0.1488 0.552 ± 0.1584 0.5358 ± 0.1635 0.4957 ± 0.1761
N = 128, step = 64 0.5957 ± 0.1588 0.6135 ± 0.1435 0.6025 ± 0.1419 0.5918 ± 0.137 0.5641 ± 0.1434 0.5288 ± 0.1549 0.512 ± 0.1593 0.4754 ± 0.1724
N = 256, step = 32 0.3941 ± 0.1418 0.4008 ± 0.1289 0.3815 ± 0.1341 0.3858 ± 0.1351 0.3598 ± 0.1346 0.3349 ± 0.1393 0.3191 ± 0.1429 0.2812 ± 0.1503
N = 256, step = 64 0.3929 ± 0.1398 0.3992 ± 0.1272 0.3797 ± 0.1322 0.3846 ± 0.134 0.3584 ± 0.1334 0.334 ± 0.1382 0.3182 ± 0.1424 0.2803 ± 0.15
N = 256, step = 128 0.3714 ± 0.1335 0.3757 ± 0.1198 0.3557 ± 0.125 0.3622 ± 0.128 0.336 ± 0.1296 0.3126 ± 0.1352 0.299 ± 0.1388 0.2635 ± 0.1436
N = 512, step = 64 0.0817 ± 0.1113 0.0811 ± 0.1126 0.0785 ± 0.1134 0.0838 ± 0.1162 0.0784 ± 0.1205 0.0742 ± 0.123 0.0719 ± 0.1225 0.0651 ± 0.1189
N = 512, step = 128 0.0746 ± 0.1106 0.0746 ± 0.1129 0.0723 ± 0.1122 0.0779 ± 0.1152 0.0732 ± 0.1201 0.0701 ± 0.1211 0.068 ± 0.121 0.0607 ± 0.1174
N = 512, step = 256 0.0658 ± 0.114 0.0647 ± 0.118 0.0607 ± 0.1181 0.0655 ± 0.1216 0.0602 ± 0.1253 0.0555 ± 0.1315 0.0549 ± 0.1293 0.0437 ± 0.1261
N = 1024, step = 128 0.0258 ± 0.0844 0.0212 ± 0.0853 0.0252 ± 0.0819 0.0243 ± 0.0813 0.0203 ± 0.0801 0.021 ± 0.0796 0.0225 ± 0.0783 0.0176 ± 0.073
N = 1024, step = 256 0.0312 ± 0.0906 0.0281 ± 0.0876 0.0311 ± 0.0866 0.0274 ± 0.0888 0.0249 ± 0.0871 0.0266 ± 0.0858 0.0252 ± 0.0861 0.0192 ± 0.0825
N = 1024, step = 512 0.0219 ± 0.0813 0.0214 ± 0.0802 0.0254 ± 0.0776 0.0229 ± 0.0802 0.019 ± 0.0811 0.0208 ± 0.0808 0.019 ± 0.0764 0.0158 ± 0.0771
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Table C.6: Table of descriptors ordered by correlation (Pearson’s coe�cient) with
the heart sound positions.

Pearson correlation

Feature µ �

Variance Fractal Dimension 0.7213 0.1101
Modified Hilbert Envelope 0.7034 0.1324
Frequency band energy 0.6909 0.1274
Spectral tracking f = 40 Hz 0.6634 0.1299
Homomorphic filter 0.6550 0.1114
Spectral tracking f = 60 Hz 0.6392 0.1244
Classic Hilbert Envelope 0.5168 0.1024
DWT level 4 detail con db6 0.4720 0.1068
Multi-scale Wavelet Product 0.3635 0.0965
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Appendix D

NMF theory: more about

D.1 Results interpretation

Once the NMF decomposition process is finished, the matrices W and H are ob-
tained. On the one hand, W = [w1, w2, . . . , wK ] can be understood as a dictionary
of recurrent patterns or bases, where each column W = [w1, w2, . . . , wK ] represents
a pattern or base. On the other hand, H = [h1, h2, . . . , hK ]T can be understood as
a matrix containing the activation or encoding coe�cients of the bases W, where
each row hi 2 R1⇥M represents the weight that the base wi has for each instant. If a
coe�cient hij is small then the base wi will have little presence at moment j. On the
contrary, if hij is large then the base wi will have a great presence at that moment
(Févotte, Vincent, et al., 2018; Ganesh R. Naik, 2016).

This can be graphically represented in the figure D.1 (obtained from (Févotte,
Vincent, et al., 2018)). On the left is the original matrix and on the right the matrices
W and H. Note that in the original matrix there are 3 components: red, green and
yellow, where yellow corresponds to the addition between red and green. Based on
this idea, it is possible to apply NMF considering k = 2 base components (those
representing red and green). As can be seen, the first column of W corresponds to
the pattern of the red color, while the second column corresponds to the pattern
of the green color. Meanwhile, the first row of H indicates the activation moments
(1 in black; 0 in white) of the red pattern, while the second row to the activation
moments of the green pattern. A simple inspection will show that WH returns the
original matrix.

In case the matrix X 2 RN⇥M is the magnitude of a spectrogram, each column of
W 2 RN⇥K will correspond to the magnitude of the characteristic frequency spec-
trum of each component, while each row of H 2 RK⇥M will indicate the weighting
at the time of each spectrum defined in the matrix W. Mathematically, each matrix
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Figure D.1: Illustrative NMF decomposition example. In this image it is possible to
see 2 components: red and green. Yellow corresponds to the sum of red and green.
In each column of W there is a characteristic pattern, while in each row of H there
is the activation of the patterns in time. Extracted from (Févotte, Vincent, et al.,
2018).

can be expressed as:

W =

2

6664

w11 w12 · · · w1K

w21 w22 · · · w2K
...

...
. . .

...
wN1 wN2 · · · wNK

3

7775
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| | |
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| | |

3

5

(D.1)

H =

2

6664

h11 h12 · · · h1M

h21 h22 · · · h2M
...

...
. . .

...
hK1 hK2 · · · hKM

3

7775

=

2

6664

� hT

1 �
� hT

2 �
...

� hT

K
�

3

7775

(D.2)

From this representation, it is a bit easier to visualize that the column wi will
always be multiplied by the row hT

i
. Indeed, we can express the multiplication WH
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as:
X ⇡WH = w1h

T

1 + w2h
T

2 + · · ·+ wKh
T

K
(D.3)

Then, the definition of a component Xi 2 RN⇥M from the NMF decomposition
of a spectrogram X 2 RN⇥M is given by:

Xi = wih
T

i
(D.4)

Where:

WH =
KX

i=1

Xi (D.5)

D.2 Binary Mask

Another used mask in source separation with NMF is the binary mask (Lin and
Hasting, 2013; Shah, Koch, et al., 2015; Shah and C. B. Papadias, 2013). Unlike the
Wiener filter, the binary mask does not perform a partial weighting on each entry in
the matrix, but instead assigns each entry to a single component. The binary mask
is defined as:

Mi =

⇢
1 8Xi > Xj, j 2 {1, 2, . . . , k}, j 6= i
0 otherwise

(D.6)

From (D.6) it can be deduced that, for an input (n,m) of the components, the
mask of the component i will have a 1 if and only if the entry (n,m) of Xi is greater
than all the (n,m) entries of the rest of the components. That is, if Xi(n,m) is the
maximum of the set {Xk(n,m), 8k = 1, 2, . . . , K}. Otherwise, Xi(n,m) will be 0.
As a result of this, it is possible to conclude that the entry (n,m) of the original X
matrix will be assigned to a single component.

An example of the binary mask can be seen in figure D.2, where a decomposition
is done for K = 3 components. In the case of the binary mask, the input (n,m)
is non-zero in only one component, while in the rest it is equal to zero. Therefore,
the components obtained by binary mask present more discontinuities than in the
Wiener filter presented.

D.3 NMF properties

Source separation by NMF has characteristics that make it a preferable alternative to
other types of Blind Source Separation techniques. However, it also presents certain
di�culties that pose challenges to consider. Next, properties that are considered
relevant in the development of this approach are mentioned.
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Figure D.2: Results of the NMF decomposition (in dB) with binary mask for K = 3
components. As can be seen, a single component has the entry (n,m) of the original
signal, while the rest of the components have a 0 at that entry. The sum of the 3
components results in the original spectrogram.
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D.3.1 Intuitively interpretable results

One of the main advantages that NMF has over other similar methods (such as PCA
(Ganesh R. Naik, 2016; Z. Y. Zhang, 2012)) is the ease of interpreting its results.
In section D.1 the logic that allows us to understand the results as the temporal
weighting of di↵erent recognized bases in matrix W is developed. However, this
advantage goes even further. The results can be understood as components that are
additively combined whose sum approximates the matrix to be decomposed, which
allows us to think of the result as a part based representation (Févotte, Vincent, et al.,
2018; Ganesh R. Naik, 2016). Therefore, because subtractive combinations are not
allowed, each component is a constituent part of the original result (Févotte, Vincent,
et al., 2018). This property is desirable because there are certain applications where
the intrinsic nature of the data is non-negative (for example, images).

D.3.2 Bounded solution

Among the characteristics that NMF presents is that the decomposition solutions are
bounded. Geometrically, the base vectors generate a cone that contains the original
data in the positive orthant (Ganesh R. Naik, 2016). In (Z. Zhang et al., 2007) this
property is demonstrated which indicates that for some diagonal matrix D � 0 such
that if W⇤ and H⇤ are solutions of the problem posed in (3.2) then the solutions
W⇤D and H⇤D�1 also will be bounded (Z. Y. Zhang, 2012). Intuitively this makes
sense since if we consider what is mentioned in the D.3.1 section, each component
can be understood as a constitutive part of a whole, which in this case would be
the matrix X. Therefore, it is expected that if the matrix X is bounded by some
constant L, that is, 0  X  L, then any pair of matrices W and H are too.

D.3.3 Number of components to decompose K

To define the number K of components to decompose, certain considerations must
be taken. According to authors such as (Z. Y. Zhang, 2012) and (Shah, Koch,
et al., 2015), K ⌧ min{N,M} should be used, where N corresponds to the row
dimension and M to the column dimension from X. However, other authors such as
(Canadas-Quesada et al., 2017), (Lin and Hasting, 2013), (Févotte and Idier, 2011)
and (Ganesh R. Naik, 2016) specify this relationship a little more, indicating that
must satisfy (N+M)K  NM . However, as a basic idea, it is important to consider
that the number of components to choose from is not close to the dimensions of the
matrix X.

On the other hand, it is important to consider that the larger K, the multipli-
cation WH will be more similar to X, therefore the error E will be less (Essid and
Ozerov, 2014). This can be seen in the result of figure D.3, where the decomposition
for di↵erent values of K is shown. Note that as K is larger, the multiplication WH
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naturally (without applying masks) becomes similar to X.

D.3.4 Non-unique solution

One di�culty with NMF is that the solution to the problem presented in (3.2) is not
unique. Indeed, considering an ideal case, let the matrices W⇤ and H⇤ be solutions
of the problem (3.2) such that X = W⇤H⇤, and let Q be an invertible matrix. Then:

X = W⇤H⇤ = W⇤Q�1QH⇤ (D.7)

From this it is possible to define a solution of the form X = W̃⇤H̃⇤ where
W̃⇤ = W⇤Q�1 and H̃⇤ = QH⇤, which are still valid solutions to the problem (Essid
and Ozerov, 2014; Ganesh R. Naik, 2016). Also, di↵erent initial values of the
algorithm (for W and H) generally result in di↵erent local minima (M. N. Schmidt,
2008). Some authors such as (M. N. Schmidt, 2008) and (Ganesh R. Naik, 2016)
recommend perform more executions with di↵erent starting points. In (Canadas-
Quesada et al., 2017) multiple runs of the algorithm are used to average the solutions
in order to obtain a representative sample.

D.3.5 Cost function selection

The selection of the cost function is influential when obtaining the solutions of the
problem (3.2). There is a great variety of families of divergence functions defined in
the literature which can be used as a cost function in NMF problem (Z. Y. Zhang,
2012). One of them is the �-divergence family, which presents three notable cases:
the Itakura-Saito divergence (� = 0), the Kullback-Leibler divergence (� = 1) and
the quadratic divergence or Euclidean distance (� = 2) (Févotte, Vincent, et al.,
2018). However, depending on the type of application to perform, there will be more
appropriate divergences than others. An interesting property of the �-divergence
mentioned above is that it maintains the following relationship with respect to scale
(Févotte, Vincent, et al., 2018):

d�(�x | �y) = ��d�(x | y) (D.8)

From this expression it can be inferred that for decompositions with � > 0, large
values will be considered more and a low precision will be expected in the estimation
of small values. Small � values are useful in factorizations that have exponential
decay across their frequency spectrum and that also exhibit low-energy transients.
While for � < 0 small values will be considered more, having a low precision in
estimating high values. Finally, for the case in which � = 0 it is said that the
divergence is invariant to the scale since it is true that d�(�x | �y) = d�(x | y)
(Févotte, Vincent, et al., 2018).

Another property to consider is the convergence. The Euclidean distance dQ(x |
y) is one of the most used cost functions due to its simplicity and that satisfy with
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Figure D.3: E↵ect of K on NMF. The spectrogram of the original signal and NMF
decomposition for K = {5, 25, 50} components are presented. Notice that as the
value of K increases the multiplication WH becomes more and more similar to the
original spectrogram.
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Figure D.4: �-divergence plots for di↵erent values of �, setting x = 1.

being a convex and di↵erentiable function. In (Lee and Seung, 2001) it is also
shown that through the multiplicative update method (MU) the Kullback-Leibler
divergence reduces the value of its objective function at each step. However, this
does not ensure that it converges to a local minimum or a stationary point (M. N.
Schmidt, 2008). Finally, in the case of the Itakura-Saito divergence, problems may
arise because it is not convex in both variables, as can be seen in figure D.4 (Essid
and Ozerov, 2014).

D.3.6 �-divergence and from statistics

Depending on the chosen function �-divergence, it is possible to show that the res-
olution of the NMF factorization corresponds to the calculation of the maximum
likelihood estimators under certain assumptions of the data (Févotte, Bertin, et al.,
2009; Févotte, Vincent, et al., 2018; M. N. Schmidt, 2008).

For the case of the Euclidean distance, the factorization problem posed in (3.2)
corresponds to the maximum likelihood estimator of W and H assuming a Gaussian
additive noise model and that it is independently and identically distributed (i.i.d.).
For the Kullback-Leibler divergence, it corresponds to the calculation of the max-
imum likelihood estimator assuming that the estimation noise distributes Poisson
and i.i.d. Finally, for the case of the Itakura-Saito divergence, it corresponds to the
calculation of the maximum likelihood estimate assuming that the noise of the esti-
mate distributes exponential i.i.d. (Févotte, Bertin, et al., 2009; Févotte, Vincent,
et al., 2018; M. N. Schmidt, 2008).
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D.4 Solution algorithms

To solve this problem there are di↵erent algorithms, which adjust to the requirements
of the problem and the chosen divergence function (Z. Y. Zhang, 2012). Some typical
solving algorithms for this optimization problem are presented below.

D.4.1 Multiplicative update (MU) algorithm

Initially presented in (Lee and Seung, 2001), it is an algorithm based on gradient
descent that has become quite popular due to its e↵ectiveness and ease of implemen-
tation (Z. Y. Zhang, 2012). Because the overall optimization problem is not jointly
convex at W y H, updating stationary points together might not be minima (global
or local). Based on this, it was decided to restrict the study to only one variable. For
example, we will seek to update the value of H given W resulting in the following
optimization problem (Févotte and Idier, 2011; Févotte, Vincent, et al., 2018):

H = min
H

C(H)

s.t. H � 0
(D.9)

Where C(H) , D(X | WH) and W is fixed. From this expression an auxiliary
function is defined that acts as the upper bound of C(H), and that passes through the
current point Ĥ. This upper bound is constructed from the decomposition of C(H)
into the sum of its convex and concave part (and some constant). Then, it is possible
to construct an upper bound using the Jensen inequality (convexity definition) for
the case of the convex part (Févotte and Idier, 2011; Févotte, Vincent, et al., 2018).
While for the concave part it is used that the tangent at any point of the curve
constitutes an upper bound (Févotte and Idier, 2011). From these two ideas the
upper bound is built, in which its minimum point is sought. Finally this minimum
point is projected onto the matrix H, constituting the next point in the algorithm. It
should be noted that this same procedure can be performed for W leaving H fixed.

In short, for the particular case of �-divergences the algorithm in each itera-
tion must be updated using (Févotte, Bertin, et al., 2009; Févotte and Idier, 2011;
Févotte, Vincent, et al., 2018):

H H�
WT

�
(WH)�[��2] �X

�

WT (WH)�[��1]
(D.10)

W W �
�
(WH)�[��2] �X

�
HT

(WH)�[��1]HT
(D.11)

Where the operator � corresponds to the element-wise product (Hadamard Prod-
uct) or exponential-wise (in case of superscript) of the arrays, and the division is also
element-wise (Févotte, Vincent, et al., 2018).
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Given the way this method is developed, it is possible to ensure the non-negativity
of W and H (Essid and Ozerov, 2014). This is achieved since the factor by which
each matrix must be multiplied is always non-negative. Furthermore, in the case of
the �-divergences, their monotonicity is demonstrated. However, compared to other
algorithms, their convergence may not be the fastest (Essid and Ozerov, 2014).

D.4.2 Gradient descent algorithm

It corresponds to a simple optimization strategy that advances by iteratively search-
ing for the local minimum based on the information provided by the gradient of the
function at the point where it is located. In general, this method is designed for
optimization problems with limited constraints and with a least squares cost func-
tion (Z. Y. Zhang, 2012). A point x of the cost function f(x) is updated through:
(M. N. Schmidt, 2008):

x x� �rf(x) (D.12)

Where � corresponds to the step size and rf(x) to the gradient of the function.
In the context of the NMF problem, this algorithm can be used for a quadratic cost
function, from which the updates for W and H are defined as (Z. Y. Zhang, 2012):

Wn  F
�
Wn�1 � �rWD(X | Wn�1Hn�1)

�
(D.13)

Hn  F
�
Hn�1 � �rHD(X | WnHn�1)

�
(D.14)

Where the subscript n corresponds to the n-th iteration of the algorithm and F
is a function defined as (M. N. Schmidt, 2008; Z. Y. Zhang, 2012):

F (x) =

8
<

:

L, x � L
x, x > 0
0, otherwise

(D.15)

One of the advantages of this approach compared to multiplicative update algo-
rithm is that it can converge faster (Essid and Ozerov, 2014). However, this method
can have problems with divergences that are not well defined throughout its domain
(for example, the Kullback-Leibler that has a logarithm and therefore is undefined
at 0) (Z. Y. Zhang, 2012).

D.4.3 Newton descent algorithm

It is a method similar to the gradient algorithm, but use second-order information
from the cost function. Indeed, updating a point x of a cost function f(x) is done
through Schmidt2008Single-channelFactorization, Nocedal2006NumericalEdition:

x x�
⇥
r2f(x)

⇤�1rf(x) (D.16)
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Where r2f(x) corresponds to the Hessian of the cost function, which is defined
as a matrix of the form:

r2f(x) =


@2f

@xi@xj

�
(D.17)

In terms of convergence it is faster than the gradient method, since it converges
quadratically towards the optimum. Instead the gradient method converges linearly
(Nocedal and Wright, 2006). However, Newton algorithm can be computationally
expensive because it is necessary to find the inverse of the Hessian at each iteration.
Therefore, in situations where the geometry of the problem does not fit properly, it
may even take longer to reach the optimum.

An alternative to solve this problem is the quasi-Newton method, where a esti-
mate Bk of the Hessian matrix is made from the Broyden-Fletcher-Goldfarb-Shanno
(BFGS) algorithm (Nocedal and Wright, 2006; M. N. Schmidt, 2008). This reduces
the computational complexity of the problem, going from an order of O(n3) opera-
tions to an order of O(n2) operations.
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