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Abstract

Summary: GENIUS is a user-friendly web server that uses a novel machine learning algorithm to

infer functional gene networks focused on specific genes and experimental conditions that are rele-

vant to biological functions of interest. These functions may have different levels of complexity,

from specific biological processes to complex traits that involve several interacting processes.

GENIUS also enriches the network with new genes related to the biological function of interest,

with accuracies comparable to highly discriminative Support Vector Machine methods.

Availability and Implementation: GENIUS currently supports eight model organisms and is freely

available for public use at http://networks.bio.puc.cl/genius.

Contact: genius.psbl@gmail.com

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Biologists often pursue the difficult task of finding key genes to

modulate biological functions or complex traits of interest (e.g. dis-

ease, growth, yield, plant nitrogen-use efficiency, water-use effi-

ciency). These functions and traits are governed by networks of

functionally interacting genes and gene products. Unfortunately, the

large number of genes, and the many and intricate interactions

among them, make it difficult to discern which genes are relevant.

As a consequence, biologists use a mix of prior knowledge and intu-

ition to choose which genes to focus and which to ignore for detailed

experimental work (Moreau and Tranchevent, 2012). This has moti-

vated the development of many reverse engineering computational

methods and tools that use experimental data to infer and analyze

gene networks (Aoki et al., 2007; Franceschini et al., 2013; Hruz

et al., 2008; Jupiter et al., 2009; Obayashi and Kinoshita, 2010;

Obayashi et al., 2013; Stuart et al., 2003; Usadel et al., 2009;

Vandepoele et al., 2009; Warde-Farley et al., 2010). An inconveni-

ence of current methods is that they use a wide and often fixed set of

experimental data and genes, which limits their predictive

capabilities.

To tackle these problems, in previous work we presented DLS, a

machine learning method to infer local and discriminative gene net-

works that can pinpoint new and key genes related to specific biolo-

gical functions or even complex traits of interest (Puelma et al.,

2012). DLS accomplishes this by using supervised machine learning

to find expression signatures: expression patterns present in particu-

lar genes and experimental conditions that are distinctive and rele-

vant for the biological function defined by the user. These signatures

are used by DLS to find coexpression associations and construct a

gene network focused in specific biological contexts that are relevant
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for the biological function of interest. This ability is the key feature

that distinguishes DLS from other network inference algorithms and

popular tools like GeneMANIA (Warde-Farley et al., 2010), allow-

ing it to find relevant genes and relationships that these tools may

miss.

Here we present GENIUS (GEne Networks Inference Using

Signatures), a web server with a user-friendly interface to DLS that

allows the scientific community to fully exploit its capabilities.

GENIUS incorporates Gene Ontology annotations and thousands of

microarrays experiments from Gene Expression Omnibus (GEO) for

eight model organisms: A. thaliana, C. elegans, D. rerio, D. mela-

nogaster, E. coli, H. sapiens, M. musculus and S. cerevisiae.

Depending on existing annotations, the prediction performance

ranges from 54 to 94% (Supplementary Fig. S5). In addition,

GENIUS adds tools to visualize and analyze gene networks, includ-

ing integration with Cytoscape (Smoot et al., 2011), an advanced

network analysis software platform.

2 Results and discussion

Starting a new prediction in GENIUS is simple. The first step is to

define a query list of genes related to the biological function or trait

of interest. This can be done by directly adding a list of gene identi-

fiers and/or by selecting a list of GO biological processes. Users can

select which GO evidence codes to use when importing GO annota-

tions. They can also select the stringency of predictions, allowing

them to obtain a more exploratory or reliable network prediction

(Supplementary Fig. S1).

The predicted network contains genes from the query list, as well

as newly predicted genes functionally related to them, which can be

ranked according to various properties (Supplementary Fig. S2).

Section 1.1 of Supplementary Information presents a case study

comparing the predictions of GENIUS and GeneMANIA for nitrate

response in A. thaliana. Both tools correctly predict a total of 25

genes that have been validated by published evidence. Of these, 16

genes are common for both tools, while 9 are exclusive to GENIUS

and 9 to GeneMANIA, showing that GENIUS can provide comple-

mentary and valuable predictions.

2.1 GENIUS automatically selects relevant expression

signatures
A key aspect of GENIUS is its ability to automatically select genes

and experimental conditions containing discriminative expression

patterns or ‘expression signatures’. Examining the discovered signa-

tures can be useful to identify key genes for the biological function

of interest, as well as experimental conditions under which these

genes may be experimentally verified. Section 1.1.3 of

Supplementary Information shows that GENIUS selects relevant and

biologically sound expression signatures for the nitrate response

case study.

2.2 GENIUS can uncover key regulators for complex

traits
A key aspect of GENIUS is that it can infer local functional net-

works that expose central genes acting at the intersection of several

biological processes. GENIUS allows users to easily identify these

central genes by ranking them according to centrality indicators

used in network theory, like degree centrality (DC) and betweenness

centrality (BC) (Section 1.2.1 of Supplementary Information) (Yu

et al., 2007).

As an example, we experimentally validated a prediction per-

formed with GENIUS to find genes modulating nitrogen-use effi-

ciency in A. thaliana (Araus et al., 2016). Additionally, Section 1.2

of Supplementary Information illustrates this use of GENIUS in de-

tail, applied to the drought tolerance trait in A. thaliana. In contrast

to GeneMANIA, GENIUS predicts a network with a scale-free top-

ology, allowing it to take advantage of network theory centrality in-

dicators to pinpoint relevant genes.

Thus, we believe the use of GENIUS web server can facilitate

biologists to generate sophisticated hypothesis, make novel discov-

eries, and ultimately, improve our molecular understanding of biolo-

gical systems.
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