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Collective surface modes in a fractal cluster of spheres
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W'e present a theory for finding the collective surface modes in the quasistatic approximation for a
fractal cluster of spheres constructed in a recursive manner. The surface-mode positions and strengths

are given in terms of the spectral representation for the polarizability of the cluster. Calculations using

the dipole approximation for a cluster constructed recursively from an octahedral arrangement of six

spheres show that the surface-mode spectrum is approximately self-similar. We calculate the distribu-

tion of scaling indices, f (ct), for this spectrum as a function of the fractal dimension of the cluster in Eu-

clidean space.

I. INTRODUCTION

It has been known for several years that random aggre-
gates of particles formed by irreversible processes have
fractal character, ' and there have been many studies of
the optical properties of such aggregates. The fractal di-
mension of these systems can be determined from the
static structure factor S(q), which can be found by light-
scattering experiments. Using computer-generated ag-
gregates of spherical particles, S(q) can be calculated.
In order to take account of the interaction between very
near or touching spheres, high multipoles must be includ-
ed; this is the most dificult part of the calculation.

There have also been many experimental and theoreti-
cal investigations of optical absorption by aggregates; a
recent review is given by Kreibig, Quinten, and
Schonauer. If the particles are metallic spheres, the sin-
gle absorption peak (Mie resonance) that occurs for iso-
lated spheres is broadened when the spheres form aggre-
gates, and often a pair of absorption peaks is seen,' also,
the far-infrared absorption is many orders of magnitude
larger than for isolated spheres.

In order to take account of the geometrical structure of
the aggregate, one must go beyond the simplest mean-
field theories (the Maxwell-Garnett theory and the
Bruggeman effective-medium theory). For aggregates
containing two to ten spheres direct calculations of ab-
sorption (in the quasistatic approximation) and both ab-
sorption and extinction (when retardation is included) are
possible. ' If the aggregates contain a large number of
particles, a variety of theoretical methods have been used,
depending on the structure of the aggregate. The fractal
character of aggregates has been considered in theories
using a differential effective-medium theory, " renor-
malization-group methods, ' ' random resistor network
models, ' an effective-medium theory with a position-
dependent filling fraction, ' and a statistical model with a
pair distribution appropriate for a fractal. ' If the aggre-
gates form continuous networks extending throughout
space, the system can pass through a percolation thresh-

old, and scaling theories can be applied. ' ' For more
dense random aggregates filling all space, models consist-
ing of disordered arrangements of particles on a lattice
have been used.

In this paper we study optical absorption by deter-
ministic, recursively constructed three-dimensional frac-
tal aggregates of spherical particles. Experimental and
theoretical studies of light scattering by one- and two-
dimensional fractal structures (Cantor bars and Vicsek
fractals) show that the structure factor S(q) has approxi-
mately self-similar properties. As one proceeds in the
recursive construction of the fractal, the peaks in S(q)
split repeatedly, and many groups of narrower peaks ap-
pear, with each group having a structure similar to that
of the original group.

In our calculations, we use a spectral representation,
which gives the depolarization factors and strengths of
surface modes, which are related directly to optical ab-
sorption peaks if the spheres are metallic. Whereas the
peaks in S(q) always have a finite width, the surface
modes are discrete at every stage of iteration. The spec-
trum of depolarization factors is approximately self-
similar; in fact, it is a multifractal, and in Sec. III we cal-
culate the distribution of scaling indices f (a). A dis-
cussion of the possible experimental relevance of our re-
sults is given in Sec. IV.

II. POLARIZABILITY OF
A FRACTAL CLUSTER OF SPHERES

In this section we describe the iterative procedure used
to determine the polarizability of a fractal collection of
spheres in terms of the polarizability of its generator. To
illustrate the geometrical construction of the fractal, con-
sider a cluster of X =4 spheres in a square, as shown in
the left-hand side of Fig. 1(a). This cluster constitutes the
generator, and is the first stage in our construction. In
the second stage, four of these generators are used as
units to construct a geometrically similar but larger
square, containing in total N =16 spheres. Each gen-
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crating unit is shown in the right-hand side of Fig. 1(a) as
a dashed sphere. The process is repeated recursively, so
that at stage j there are XJ spheres in the planar set.
Similarly, one can construct a three-dimensional fractal
starting with a three-dimensional cluster of spheres as a
generator. Figures l(b) and l(c) show examples of such
generators exhibiting octahedral symmetry, with % =6
and N=7 spheres, respectively. In this paper we treat
the X =6 case because it allows us to go to higher filling
fractions.

The dielectric response of the structure is strongly
influenced by the interaction between the spheres, and an
exact solution is di%cult to obtain. A convenient ap-
proach is to calculate the polarizability of the structure
iteratively. This is possible if we assume at each stage
that the structure used as a unit for the next stage is re-
placed by an equivalent sphere with the same polarizabil-
ity. The approximation works best if the generating clus-
ter of spheres is a highly symmetric arrangement, as is
the one we treat in this work [Fig. 1(b)]. There is still
some ambiguity in the size of the equivalent sphere. We
choose its radius so that, if neighboring spheres in the
generator touch each other (and the equivalent spheres
also touch each other), the spheres in a given generator
touch the spheres in neighboring generators as well.
Therefore the percolation threshold for spheres in the
generator corresponds to the percolation threshold
throughout the entire fractal structure. For example, in
the octahedral cluster with X =6 spheres shown in Fig.
1(b) with sphere radius a and distance R =2a/r between
nearest neighbors, the radius of the equivalent sphere
(shown by the dashed circle) is a"'=

—,'R +a =a(1+o ).
For an octahedral cluster with % =7 spheres shown in
Fig. 1(c), where there is a sphere at the center, the same
criterion gives a"'=a(1+&2o ). The validity of this
choice of radius can be tested only by more accurate cal-
culations using the actual arrangements of physical
spheres in the fractal structure.

Throughout this entire procedure, we will use the di-
pole approximation; that is, we neglect the higher mul-
tipoles, which should be used to calculate the polarizabil-
ity of a sphere cluster. From accurate calculations for
systems of spheres, it is known that the dipole approxi-
mation is reasonably accurate if a separation parameter
cr =2a /R ) 1.2, where a is the sphere radius and R is the
distance between sphere centers.

One basic equation needed is that for the polarizability
of a sphere of volume U, composed of a dielectric material
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FIG. 1. (a) A cluster of spheres (the generator) is replaced by
a single equivalent sphere, which is used to construct a larger
cluster in a self-similar manner. The procedure is repeated re-
cursively. (b) Geometry of an octahedral cluster with %=6
spheres (no sphere at the center). Each sphere has diameter 2a
and volume U, and the distance between the centers of nearest-
neighbor spheres is R. The equivalent sphere, with diameter
2a ' " and volume V" ', is shown by a dashed curve. (c)
Geometry of an octahedral cluster with X=7 (spheres at
center).

(2.3)

a"'=a = V'" [(41''") '+ —']1
sph 4

~ e 3 (2.4)

where C, and n, are, respectively, the dipole strengths
and depolarization factors for the collective surface
modes, quantities that depend only on the geometrical ar-
rangement of spheres in the generator. In writing Eq.
(2.3) we have assumed that the generator has cubic sym-
metry, so its polarizability a'" is a scalar. The total
strength of the modes is g, C, = 1, and the modes have a
centeroid of —,': Q, C, n, =

—,', and they lie in the range
O&n, &1. In the following development we shall intro-
duce new "mode positions" y, =n, —

—,', which are con-
venient because their centroid is zero: g, C,y, =O.

As shown in Fig. 1(b) we replace the X spheres in the
generator by an equivalent single sphere of volume V"',
filled with a material y,"' chosen so the single sphere has
the correct polarizability:

/zspa U(&)spa (2.1) or

(2.2)

with g=(e —1)/4n the susceptibility of the sphere ma-
terial. Equations (2.1) and (2.2) are equivalent to the
more commonly used expression a,~&=a (e—1)/(E+2).
We also use the spectral representation for the polariza-
bility of the spheres in the generator, with total volume

U

V ~ s(I) C¹,(4~y) +n,

Introducing the variables

(2.5)

(2.6a)

(2.6b)
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and letting Nv/V("=F, the filling fraction of spheres in
the equivalent sphere, Eq. (2.5) can be written

V(j) =(N/F) V(j "-= =(N/F) jv,

we have
C,y(i) —F y

s y ys
(2.7) (j)—y jy(j) (2.15)

where y, =n, —3.
This procedure is continued iteratively. For example,

the polarizability of the cluster at the jth stage, as in Eq.
(2.4), is

Combining Eqs. (2.13), (2.14), and (2.15), we get

C(J)
= [Fjy(j)] i=L—(j)(y)

y y(j)
(2.16)

~(j)= v(j) [(4~~(,j')-'+ ]
1

4m.
(2.8)

This is expressed in terms of the effective susceptibility" of the spheres, which make up the cluster, as in
Eq. (2.5):

y( j) C,(4~~(j') -'+-,' =
NV(j —)) ~ (4 (j —i))—1+

(2.9)

where we have used the fact that [Fjy(j)] ' can be ex-
pressed explicitly as a function L(j)(y) using the iterated
map y(j)=h(y(j "). The total strength is g C(j)=1,
and, since the final structure also has cubic symmetry, the
centroid sum rule g C' 'n' '= ,' or g—C''y(j'=0 must
be satisfied; also one has 0 & n ' ' & 1.

The strengths C' ' and positions y' ' can be determined
from Eq. (2.16) by adding a small imaginary quantity—iw toy: y~y —im, with w &0, and taking the imagi-
nary part. Each term on the left-hand side of Eq. (2.16) is

If we introduce the variables

y"'= —l(4 X',") '+-,'], (2.10)

and note that Nv(j "/V(j'=F, Eq. (2.9) becomes

C,
y (j)— (2. 1 1)

y(j —&)
y

Equation (2.7) defines y'') as a function of y: y'"=h (y).
Similarly, Eq. (2.11) defines y(j) as the same function of

(j —&)

C(j)
Im

y —y'J' —iu
—C(j)

(y —y(j)) +w

~~C"'6(y —y j') as w ~0 .

Hence, Eq. (2.16) gives

g C (j)5(y —y
(j) ) = lim —ImL (y i w ) . —()

m w~0 7T

(2.17)

(2.18)

(j)—I ( (j—))) (2.12)

(2.13)

The collective surface mode spectrum of the final struc-
ture is defined by the strengths C' ' and depolarization
factors n' ' that appear in the spectral representation for

(j).

(J) C(J)
&(j)—

4~ . (4~~) '+n(j)-
C(J)

47T y —y (J
(2.14)

where y' '=n ' ' —
—,'. We are using the symbol m as a gen-

eral label for the modes at any stage of iteration, whereas
the symbol s, which was used previously, is a label for the
modes of the generator. For example, in the calculations,
which will be discussed in Sec. III, the generator will
have two modes, and the structure at stage (j) will have
2j modes, so s =1,2 and m =1,2, . . . , 2j. In Eq. (2.14),
v' '=N v is the actual volume of the spheres in the final
structure. Since

Equation (2.12) is a map, which can be used iteratively to
find successive variables y ' ",y' ', . . . , y ' ' as a function of
y, beginning with y"'=h (y).

We can now find the collective surface mode spectrum
of the final fractal structure at stage (j). Using Eq. (2.10),
we can rewrite the polarizability a(j) in Eq. (2.8),

~(j)— y(j)

4~y(J)

In numerical calculations using the above procedure one
cannot take the limit u —+0 but must choose a finite value
for w, so that, from Eq. (2.17), each mode (m) is
represented by a Lorentzian peak of width m and area
C(j) centered at y =y'~). The left-hand side of Eq. (2.18)
is then replaced by a continuous spectral function,

g"'(y) =—ImL' '(y iw), —1 (2.19)

with total area f g(j()y) dy= l. The spectral function
G(j)(n), a function of the depolarization factor variable
n =

—,'+y, is G' '(n)=g(j)(n —
—,').

To illustrate the procedure discussed above„we have
calculated the surface mode spectrum for a fractal struc-
ture constructed from an octahedral generator of six
spheres as shown in Fig. 1(b). We shall consider modes in
which the total dipole moment of the octahedron of
spheres lies along a symmetry axis, which we wi11 denote
as the z axis. There are, of course, degenerate modes
with dipole moments in the x, y, and z directions. In the
dipole approximation, the generator has two modes, with
strengths C& =0.697 S4 and C2=0. 30246, which are in-
dependent of the distance between spheres, and with
positions y, = —0.052 52/o, y2 =0.121 12/o. , where
o. =R /2a. These results were found using the procedure
discussed in Ref. 25. In mode 1, the dipoles on all six
spheres are parallel, and in mode 2 the dipoles on the two
spheres along the z axis are antiparallel to the dipoles on
the four spheres lying on the plane z =0.

We find that at each stage of iteration, the number of
modes doubles. The spectral function G(j)(n) calculated
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A. Positions of surface modes

The surface-mode spectrum of the fractal structure at
any stage (j) of iteration is determined completely by the
function

100

C,
h(y)= F g— (3.1)

50—
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which depends on the surface-mode spectrum of the gen-
erator, and which is used recursively in Eq. (2.12). For
convenience, we shall introduce the notation h (y) to(j)

denote the function h (y), which has been iterated (j)
times. That is, h "'(y)—:ji (y), h ' '(y ) = h (h (y) ), etc. In
general, h(h'j "(y))=h'j "(h(y)), and

(j)—h (j)(y ) (3.2)
1250 '-
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It can be seen from Eq. (2.14) that the polarizability
a(j)~ ~ when y~y(j', and from Eq. (2.13) that y'j'~0
when o.' ' —+ ~. Hence, the mode positions y'~', where I
labels the mode number, correspond to the zeros of
j (j)(y).

500
h (j)(y (j))—() (3.3)

250

0-
o. 299 0.300 0.301 0.302 0.303

Depolarization Factor

This is also true for stage 1, when we have the generator:
From Eq. (3.1), h (y, ) =0.

In Fig. 3, the function z =h (y) has been plotted, for

FIG. 2. (a) Spectral density function 6"'(n) for j =30 itera-
tions using the N =6 octahedral generator with spacing param-
eter o.=1.2, and width parameter to =1.7X10 . (b) A small
part of the spectral density function centered at n-0. 30 is
shown on an expanded scale, with a width parameter
w =4.5X10

0.5 Stage J =1

Stage J =2

from Eq. (2.19) for j =30 iterations, with a spacing pa-
30rameter cr = 1.2, is shown in Fig. 2(a). Since there are 2

modes, they cannot be resolved; however, a width param-
eter m = 1.7 X 10 allows some of the fine structure to be
seen. The spectral function is approximately self-similar.
The structure in G(j)(n) centered at about n =0.30, in
which four peaks are visible in Fig. 2(a), is shown on a
magnified scale in Fig. 2(b). One sees a structure that
resembles the original complete structure, and, with
many repeated magnifications, a similar structure would
always reappear.

III. FRACTAI. PROPERTIES
OF THK SURFACE-MODE SPECTRUM

0.5

—0.0 5

Stage J =3

The surface-mode spectrum is a multifractal set. To
understand its properties, we first present in Sec. III A a
simple geometrical construction for locating the positions
of the modes. In Sec. III B we show how the positions of
"bars, " regions in which modes must lie, and "gaps, " re-
gions from which modes are excluded, can be located,
and give analogies with the classical Cantor set. Finally,
in Sec. III C, we calculate f (a), the distribution of scal-
ing indices, for the mode spectrum.

—0.05 0.05 0.10

FIG. 3. The functions z =h (y) for the X=6 octahedral gen-
erator with can=1. 2, and z =y, are shown by solid lines. The
dashed lines show the geometrical construction used to locate
the positions (y) of the modes for the first three stages of itera-
tion. In the upper part of the figure, the modes are shown for
the first three stages, where the height of a line at y =y gives(j)

the strength C"' of the corresponding mode.
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the same octahedral cluster, with o. = 1.2, which has been
used in the calculations leading to Fig. 2. The diagonal
line z =y, useful for constructing the mode spectrum
geometrically, is also shown. The two zeros of h (y), la-
beled 1, which occur at y = —0.0304 and +0.0701, are
the mode positions y, of the generator.

The geometrical construction used to find the mode po-
sitions for successive stages of iteration is shown by the
dashed lines in Fig. 3. From each point labeled 1, a verti-
cal line is drawn until it intersects the line z =y. From
each point of intersection, a horizontal line is drawn,
which intersects the curve h (y) at the points labeled 2.
The y values of these four points correspond to the mode
positions y' ' at the second stage of iteration. A similar
construction gives eight points labeled 3, corresponding
to the mode positions y' ' at the third stage of iteration.

In the upper part of Fig. 3, the modes are shown for
the first three stages as vertical lines, with the height of a
line at the positions y'J' giving the strengths O'J' of the
modes. The geometrical construction for locating the po-
sitions of the modes can be justified as follows. Suppose
that y' ' is the position of a mode at stage (j), so that
h' '(y' ')=0 [Eq. (3.3)j. The construction forcesy to

m
(j+&)

satisfy the equation h (y(j+ ")=y(j). It follows that

h (j +i)( (j+i))—h(j)(h (y(j +i)))
ym

—h (j)(y (j) )

and therefore, from Eq. (3.3),

h(j+1)( (j+1))—0ym (3.4)

Hence, y' +" is indeed the position of a mode at stage
(j +1).

The procedure described above shows only how the
mode positions can be found. An algebraic method for
finding both the mode positions and amplitudes is de-
scribed in the Appendix.

B. Bars and gaps in the mode spectrum

In order to analyze the fractal character of the spectral
function, it is useful to describe the gaps that appear be-
tween modes. The function h (y) has two branches, and,
as the number of iterations increases, the modes on each
branch approach the fixed points at yl and yji (marked

fr and fli in Fig. 4), where h (yf )=yf. In general, no
modes can exist in regions where h (y) )yj, and
h(y)(yL, so there is also a gap between the points la-
beled 1, at positions yi, such that h (yi ) =yf. Thus, from
the function h (y) we find two bars in which all modes
must lie, and a gap from which they are excluded.

The second iterated function h' '(y) =h(h (y)) has four
branches, so there are four bars in which all modes for
stages j ~ 2 must lie, and three gaps from which they are
excluded. One of the gaps is the original one, between
the points labeled I, and two new gaps, between the
points labeled 2, appear on each branch. These new gap
edges are defined by

h' '(y )=h(h(yi))=h(yf)=yf

0.'l0

0.05

—0.05

—0.05 0.05 0.10

FIG. 4. The same functions z =h (y) and z =y as in Fig. 3.
The fixed points fbi and fI are shown together with dashed
lines used to locate the edges of bars and gaps that appear at
successive stages of iteration.

C. Distribution of scaling indices, f (a )

The iterative system of bars discussed in Sec. IIIB is
needed for calculating the distribution of scaling indices

24using the procedure described by Halsey et aI. The first
step in the calculation is to divide the fractal set into
pieces, in which piece (i) has a measure p,. and lies within
a region of size I;, and to calculate

Applying this equation to our mode spectrum, n is the
number of bars in which the modes must lie,
I; =(by); /(yji —yi ) is the ratio of the width (by ); of the
ith bar to the overall width of the spectrum, and p; is the
total strength of a11 modes lying in the ith bar. From the
sum rule g C'~) = 1, it follows that g;p; = 1, which is a

so they can be located by the same construction used pre-
viously. (The fact that two of the points labeled 2 lie very
close to the horizontal axis is coincidental. ) Continuing
this procedure, from h' '(y) we find that four new gaps
appear, one in each of the previous bars. In general, from
h' '(y) we find 2 —1 gaps, from which the modes ob-
tained for all subsequent iterations j' ~j are excluded.

This set of bars in which new gaps appear repeatedly is
a nonuniform version of the classical Cantor set. Indeed,
the classical Cantor set, in which the center third of each
bar is removed iteratively, can be obtained using the pro-
cedure just described from the function defined by
h (y) =3y —2 and h (y) =3y +2, for the right-hand and
left-hand branches, respectively. The original Cantor bar
lies between the fixed points at y~ =+1 and yl = —1,

1and the first gap lies between y = —
—,
' and y =+

3
~t

each iteration, a new gap appears in the center third of
each bar. In fact, if one introduces "modes" at stage (j)
by defining the mode positions y'~' from the condition
h(j'( j')=0, one finds that each of the 2j bars obtainedym
from h 'j'(y) has a mode at its midpoint.
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0.00

0.30 0.40 0. 50 0.60 0.70

FIG. S. Bar positions and heights, which appear at the first
three stages of iteration. The depolarization factor n is used as
the variable on the abscissa.

FIG. 6. Distribution of scaling indices f (a), for the surface-
mode spectrum shown in Fig. 2.

necessary requirement.
Figure S shows sets of 2, 4, and 8 bars obtained from

h'"(y), h' '(y), and h' '(y), respectively. The edges of
the gaps, which appear at stages (1) and (2), are marked
by numbers 1 and 2, which correspond to the numbered
points in Fig. 4. The height of a bar is p;, the total
strength of all modes lying in the bar. To continue with
the calculation of f (a ), one sets I (q, r) = 1, defining r as
a function of q. For each value of q, one must find

a(q) =dr ldq and f (q) =qa(q) —r(q). As q varies from a
large negative value (

—100) to a large positive value
(+100) the complete functional relation f (a) is deter-
mined. Furthermore, the procedure gives generalized di-
mensions D =r(q —1) as a function of q. Dc is defined
as the HausdorfF dimension, D =n „,and D =a;„,
where e „and o. ;„are, respectively, the upper and
lower limits of a in f (a ).

Most of the calculations off (a ) were done with n = 32
bars and eight iterations, giving 2 =2S6 modes, with
eight modes lying in each bar. In principle, one should
go to a very large number of iterations, since there is
some transfer of weight from one bar to another as the
iterations proceed. However, calculations with 128 bars
and ten iterations show that the above procedure is
sufficiently accurate.

The function f (a) for the mode spectrum found with
o. =1.2 is shown in Fig. 6. This spectrum has a Haus-
dorF dimension Do=0. S322, a,„=D =0.647, and
a;„=D„=0.311. To understand the origin of f (a), we
can divide the spectrum into n bars and associate a scal-
ing index 0, =lnp, /ln/; with the ith bar. If we go to the
n —+ aa limit, and the a,. become continuous, f (a) is pro-
portional to the logarithm of the number of times that a
given value of o, occurs. For each bar, a; lies in the range
o;;„~a, ~ a „,where the value a; =a;„occurs for the
bar at the left edge of the spectrum, and the value
a;=o.'„occurs for the eleventh bar from the right.
Moreover, many more large values than small values of
a; occur; this accounts for asymmetry in f (a). In the
nonuniform Cantor sets discussed by Halsey et al. , a;„

and e „are associated with the extreme edges of the set,
and this is also true for our surface-mode spectrum for
greater distances between spheres (cT & 1.8), when a,„
occurs for the bar at the right edge of the spectrum. The
unusual location of a „for o. & 1.8 is a consequence of
the curvature of the function h (y), which becomes more
pronounced as o. decreases.

We also have found the surface-mode spectrum for
other values of the sphere separation parameter o. Since
the dipole approximation becomes inaccurate for o. & 1.2,
we consider only o ~ 1.2. The most important efFect of
increasing o. is simply that the two surface modes moves
closer together, approaching the centroid n =

—,
' (or y =0)

as o ~~. In addition, all scaling indices decrease, ap-
proaching zero as o.~~. This causes the surface-mode
spectrum to have an increasingly "thin" appearance. In
the spectrum for cr =1.2 shown in Figs. 2(a) and 2(b)

0.6

0
C3

x
cf
E

E
0. 2

FIG. 7. Maximum and minimum values of the scaling index,
and Hausdorff dimension Do for the mode spectrum (left-hand
scale) and fractal dimension D& of the recursively constructed
cluster (right-hand scale), as functions of the spacing parameter
O.
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about 32 modes associated with five stages of iteration are
visible at a given magnification. As 0. increases, fewer
and fewer peaks can be seen, until for o. ~ 10, only two
peaks are visible in any figure. This means, for example,
that if one looks at the two peaks associated with the two
modes for the generator at the first stage of iteration, a
figure at the same scale will still only show two peaks no
matter how many iterations are carried out, since the
modes contained in each peak cannot be resolved.

Figure 7 gives a plot of the limits o;;„and a,„ofthe
scaling indices, and the Hausdorff dimension Do, as a
function of the separation parameter cr. Also, the fractal
dimension D, of the iterated sphere system in Euclidean
space is shown. From the length ratio (1+a ) and the
mass ratio of six for successive iterations it follows that
D, =ln(6)/ln(l+(7). One has the result D, =4a,„ if
0. ~ 1.7; however, we do not know if this coincidence has
any significance.

IV. DISCUSSION

quency ranges where Re[@((I))](0, or, for metallic
spheres, co &co . However, because of dissipative mecha-
nisms in the material, Im[e'(co)]) 0, and the peaks will
have finite width. Also, the minimum sphere size is limit-
ed by atomic dimensions, and the maximum sphere size
should be less than —100 A, otherwise there will be large
red shifts, broadening and further structure due to the
breakdown of the quasistatic approximation. Therefore,
any fractal structure to which our dipolar results would
apply must be restricted to two or three recursive stages.
For these reasons, in the regime we have covered, it
would be difficult to observe more than four or eight
peaks in the absorption spectrum. Note also that besides
the presence of a peak structure an important effect of
building up the fractal is a widening of the absorption
range, as is apparent from the top of Fig. 3 if one attaches
a width to the spectral lines. This is a general feature
also expected for a disordered cluster" and is accom-
panied by an important low-frequency enhancement with
respect to the Mie absorption of an isolated sphere.

We have shown how a geometrical structure that has
recursive properties exhibits recursive properties in its
dielectric response. This follows from the fact that the
spectral density of an aggregate, the quantity that charac-
terizes this response, depends only on the geometry.

Our results also show that the response of the system is
strongly dependent on the filling fraction of the genera-
tor. One can imagine plotting the spectral density using
diff'erent "magnifications" as in Figs. 2(a) and 2(b), adjust-
ing the width parameter w to be a fixed fraction (say,
—10 ) of the range in depolarization factor. As the
filling fraction decreases (or o. increases), the spectrum
has an increasingly sparse appearance; that is, fewer
peaks can be seen in a given plot. For sufficiently small
filling fractions, only two peaks are seen at a given
"magnification. " In this case at the first magnification
stage only the two peaks inherent to the generator would
be visible. If the sphere separation parameter moves into
the range o. &1.2, the dipole approximation becomes
inaccurate, and higher multipoles must be used to de-
scribe the interaction between spheres. In this region, the
surface mode spectrum of the generator will extend over
a broader range and will have more than two peaks.
Moreover, there will be wider additional splitting when
the fractal structure is built up, so that the spectrum will
have a "dense" appearance, with a very large number of
peaks visible in a plot of the spectral density function. As
one approaches the percolation threshold (o —+1), one
can expect the small-depolarization-factor part of the sur-
face mode spectrum of the fractal structure to depend
strongly on its fractal character; indeed, it may have scal-
ing properties similar to that of the low-frequency vibra-
tional spectrum in fractal structures. ' The strong role
that the peak structure of the generator plays in the
overall response of the fractal has also been found in oth-
er work. '

Each collective surface mode, with depolarization fac-
tor n ' ', is associated with an absorption peak that occurs
at a frequency co such that Re[@(co)]=1—1/n(j), where
0&n' '&1. Therefore, the absorption peaks lie in fre-

APPENDIX

In order to calculate the strengths of the modes we
proceed as follows. From Eqs. (2.11) and (2.13) one ob-
tains

This expression gives the polarizability of a cluster of
spheres with the same geometry as the generator and
with total volume I'V'~', each sphere being filled with an
effective medium having response function y' ". The
corresponding spectral density, as a function of y' ", is

g(j)(y(j —I))—y C g(y(J I)
y )

To express g' ' in terms of the original response function
y, we must solve for the 2 ' roots of the equation
y'j "(y)=y, . Calling these roots y k, using the identity,
obtained from Eq. (2.11),

dy

j—1 C,Fj —I ~ (y(r))2y
r=1 (y(r —I)

where y' '—=y, and the property of 6 functions,

g( (j I)
) ~ sk

-„~dy( —
)/dy

~

The depolarization factors and associated strengths of the
modes are therefore given by

one gets

(j)
2j —I

s k=1 ~ (y(r))2 pc /(y(r —I)
y )

'
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C,
C ( )

sk Fj—$ j—]
(y'"') gc, ./(y'" "—y, ) (g)

& =&sk

where the two indices s = 1,2, and k = 1,2, . . . , 2 ' are
equivalent to a single general mode label I = 1,2, . . . , 2 .
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