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ESCUELA DE INGENIERÍA
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ment of Computer Science at Pontificia Universidad Católica de Chile. Both consistently
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ABSTRACT

An important application of artificial intelligence is recommender systems, models

that try to predict people’s preferences, usually in a personalized manner. In this con-

text, explanations are very valuable due to the known benefits in satisfaction, trustworthi-

ness, and scrutability. Nowadays, visually-aware recommendation systems are commonly

trained using visual latent features extracted from pre-trained deep neural networks. This

approach has shown to be performant but lacks interpretability due to the inability to de-

liver explanations, from both user and model. In this work, we propose a framework

to develop explainable recommendation systems by creating a concept-based item repre-

sentation, transforming existing model architectures into explainable models. This rep-

resentation is interpretable and can be read as tabular data. We propose an algorithm to

create a concept-based item representation, and then create a concept embedding to train

DNN models. Then, using feature attribution methods we can deliver explanations for

any outcome, transforming a “black box” system into an explainable system. Our results

show that visually-aware recommendation systems trained using our concept embedding

perform as well as a system trained on latent features. Also, we were able to deliver expla-

nations in terms of such visual concepts due to the interpretable nature of the input. Our

research informs the development of a new explainable recommendation approach, based

on an interpretable concept-based representation, that does not require the development of

new model architectures.

Keywords: recommendation systems, explainable AI.
xiii



RESUMEN

Una aplicación importante de inteligencia artificial son los sistemas recomendadores,

modelos que intentan predecir las preferencias de las personas, usualmente de manera per-

sonalizada. En este contexto, las explicaciones son muy valiosas debido a los conocidos

beneficios en satisfacción, integridad, y escrutabilidad. Hoy en dı́a, los sistemas de re-

comendación visuales son entrenados usando descriptores latentes extraı́dos con una red

de aprendizaje profundo pre-entrenada. Esta solución ha mostrado tener gran desempeño,

pero no es interpretable debido a que no pueden generarse explicaciones, tanto para el

usuario como para el modelo. En este trabajo, proponemos un framework para desarrol-

lar sistemas de recomendación explicables creando una representación de ı́tems basada

en conceptos, transformando modelos de arquitecturas existentes en modelos explicables.

Esta representación es interpretable y puede ser leı́da como información tabular. Pro-

ponemos un algoritmo para crear una representación de ı́tems basada en conceptos, y

luego crear un embedding de conceptos para entrenar modelos de redes de aprendizaje

profundo. Luego, usando métodos de atribución de caracterı́sticas podemos entregar ex-

plicaciones para cualquier salida de un modelo, transformando un sistema de “caja negra”

en un sistema explicable. Nuestros resultados muestran que los sistemas de recomen-

dación visuales entrenados usando nuestro embedding de conceptos tienen un desempeño

similar al de un sistema entrenado con descriptores latentes. También, pudimos entregar

explicaciones en términos de estos conceptos visuales debido a la naturaleza interpretable

del input. Nuestra investigación informa el desarrollo de una nueva aproximación a la re-

comendación explicable, basada en una representación interpretable basada en conceptos,

que no requiere el desarrollo de nuevas arquitecturas de modelos.

Palabras Claves: sistemas recomendadores, inteligencia artificial explicable.
xiv
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1. INTRODUCTION

1.1. Motivation

In recent years, Deep Neural Networks (DNNs) have become the state-of-the-art model

in several tasks, such as natural language processing (Socher et al., 2013), speech recog-

nition (Dahl, Yu, Deng, & Acero, 2011), and image processing (Krizhevsky, Sutskever, &

Hinton, 2012). The successful development and performance improvement in this kind of

model has motivated both private and public sectors to build their own implementations

according to their needs. This has resulted in an enormous variety of applications, ranging

from self-driving vehicles1 to medical diagnosis support, and recommendation systems

(S. Zhang, Yao, Sun, & Tay, 2019). However, in the pursuit of better performance, im-

plementations of DNNs have been built as opaque “black boxes”, which has caused a

loss of interpretability: a model’s ability to explain in understandable terms to a human

(Doshi-Velez & Kim, 2017).

There are multiple domains where a performant “black box” is not enough to justify

preferring this approach over a “transparent” alternative. For example, in a medical en-

vironment, a deep learning model could classify and identify a particular disease, but a

medic still has to understand what the reasoning for a diagnosis is to provide appropriate

treatment. Another important consideration is legal requirements, such as the European

Union General Data Protection Regulation (GDPR)2, a regulation on data protection that,

among other articles, includes the right to obtain an explanation in an automated decision-

making environment. All of these factors pull the available machine learning approaches

to be explainable on top of being performant.

1https://www.tesla.com/autopilotAI
2https://ec.europa.eu/info/law/law-topic/data-protection/eu-data
-protection-rules en

https://www.tesla.com/autopilotAI
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
https://ec.europa.eu/info/law/law-topic/data-protection/eu-data-protection-rules_en
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According to recent research (Guidotti et al., 2018), this loss of interpretability can

lead to trust issues, a critical property for interaction (Ribeiro, Singh, & Guestrin, 2016),

while interaction itself is a key aspect for users in a recommendation environment. The

push for XAI has assisted the development of explainable recommendation systems, sys-

tems that explain or justify their recommendations to end-users during their interaction.

In this work, we outline a framework to build explainable recommendation systems on

top of state-of-the-art recommendation systems, by using concept embeddings, a human-

understandable item representation.

1.2. Explainable Artificial Intelligence (XAI)

Given its complexity and its large number of parameters, for a DNN “black box” sys-

tem is hard to provide an explanation about how it came up with a specific outcome.

Explainable AI (XAI) is an active research field that aims to make AI systems more un-

derstandable to humans. The concept also involves all the efforts made towards AI trans-

parency and trust concerns (Adadi & Berrada, 2018). XAI pushes to move from opaque

“black boxes” to interpretable systems, where a user cannot only receive outputs but also

study and understand explanations on how inputs are mathematically mapped to outputs

(Doran, Schulz, & Besold, 2017).

Due to the public and private interest in the development of XAI, multiple initiatives

have been raised to push the development of the area. For example, the Defense Advanced

Research Projects Agency (DARPA), a Department of Defense agency of the U.S. govern-

ment, raised an XAI program3 in 2018 to fund and support XAI research. Also, in 2021,

the European Union published a proposal4 to lay down the basis to create the first-ever

legal framework on AI. Both the public sector interest and the private sector development

3https://www.darpa.mil/program/explainable-artificial-intelligence
4https://digital-strategy.ec.europa.eu/en/library/proposal-regulation
-laying-down-harmonised-rules-artificial-intelligence-artificial
-intelligence

https://www.darpa.mil/program/explainable-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence
https://digital-strategy.ec.europa.eu/en/library/proposal-regulation-laying-down-harmonised-rules-artificial-intelligence-artificial-intelligence
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have pushed a growing interest in XAI research, reflected in funding, events and experts

demand.

1.3. Recommendation Systems

An important application of machine learning models is recommendation systems,

models that try to predict people’s preferences (usually in a personalized manner) to al-

leviate information overload. Recommendation algorithms analyze transaction data and

consumption trends to recommend a platform’s consumers other items that could attract

the interest of the users. This application can be found in e-commerce (recommend items

to buy), social networks (recommend people to people), and social media (music, films,

images, etc.).

This kind of algorithm can be found in well-known businesses such as Netflix, Ama-

zon, Spotify, Instagram, and others. For some of these companies, using a recommenda-

tion system not only can improve the user experience but also the number of interactions.

In the case of Amazon, 35% of what consumers purchase comes from product recommen-

dations, and the number rises to 75% in the case of Netflix, where users receive recom-

mendations on what to watch next5.

1.4. Outline

This thesis is divided into 8 chapters, including this one. In Chapter 2 we survey

relevant research from the recommendation systems and XAI domains, and Chapter 3

details the objective and contribution in our work. Then, Chapter 4 describes the datasets

and DNN models used to develop our experiments. Chapter 5 introduces the framework

proposed in this work. In Chapter 6 we present the results obtained using our framework,

5https://www.mckinsey.com/industries/retail/our-insights/how-retailers
-can-keep-up-with-consumers

https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
https://www.mckinsey.com/industries/retail/our-insights/how-retailers-can-keep-up-with-consumers
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and compare them with their non-explainable counterpart. Finally, Chapter 7 describes

some identified future work opportunities, and Chapter 8 concludes our work.
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2. RELATED WORK

In this chapter, we provide an overview of relevant related work. First, we review

research on visually-aware recommendation systems. Then we introduce works on ex-

plainable recommendation systems and how explanations impact users. A third section

introduces state-of-the-art research on XAI techniques for the interpretability of DNNs.

The final section highlights the novelty and contribution of this work in contrast to previ-

ous work and research in the area.

2.1. Visually-aware Recommendation Systems

Early research in the area relied heavily on collaborative filtering (CF) approaches,

user ratings, and items metadata to represent items and user-items interactions. More re-

cent approaches additionally consider the context of the recommendation and the content

of the items, but only the latter is relevant in our work. In general, content-based recom-

mendation uses descriptors or representations of items (such as text, images, or video) to

feed a recommendation system. The intention is to recommend an item to a user based on

its description and a profile of the user’s interests (Pazzani & Billsus, 2007).

Initial work in the visual domain relied on manually-crafted visual features, such as

color, texture, and local geometry, using techniques developed for content-based image

retrieval (Rui, Huang, Ortega, & Mehrotra, 1998; La Cascia, Sethi, & Sclaroff, 1998;

Smeulders, Worring, Santini, Gupta, & Jain, 2000). In recent years, works in computer

vision tasks, such as object detection, image classification, and semantic segmentation,

have benefited from visual features obtained using pre-trained DNN models. Recent stud-

ies have demonstrated that model architectures specialized in image classification, such

as AlexNet (Krizhevsky et al., 2012), VGG (Simonyan & Zisserman, 2014), and ResNet
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(K. He, Zhang, Ren, & Sun, 2016), trained for a specific task (in this case, image classifi-

cation), also perform well on other tasks and even outperform previous approaches (Khan,

Sohail, Zahoora, & Qureshi, 2020).

A visually aware recommendation system, or visual recommendation system, recom-

mends based on visual features of the items. Some examples of relevant image recom-

mendation domains include artworks, fashion, and photography, where users’ interests

align with parts or certain aspects of the available images. Recent works in visual recom-

mendation systems have extracted visual features from pre-trained DNNs to train recom-

mendation models, and results have shown that this approach performs extremely well in

image-driven domains, and in some cases even better if used in hybrid settings (Messina,

Dominguez, Parra, Trattner, & Soto, 2019).

Inspired by the performance improvement found, He and McAuley (R. He & McAuley,

2016) investigated the usefulness of using visual features from a pre-trained Deep CNN,

for personalized ranking on implicit feedback datasets on top of a traditional matrix fac-

torization (MF) approach. This work showed a performance improvement on multiple

datasets and even in cold start settings. An extension of this work was able to also gen-

erate new items based on the items representations and also improve the performance by

training the pre-trained network and the model jointly (Kang, Fang, Wang, & McAuley,

2017). Some of the latest approaches model users’ profiles by aggregating the represen-

tation from a pre-trained network to improve performance when interactions are sparse

(Messina, Cartagena, Cerda, del Rio, & Parra, 2020), and other works have explored the

idea of attention mechanisms to assign weights on both item- and component-levels as

an explanation (J. Chen et al., 2017). All these models presented in these works were

trained using Bayesian Personalized Ranking (BPR) (Rendle, Freudenthaler, Gantner, &

Schmidt-Thieme, 2012), a framework for training models on implicit feedback problems.
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Implicit feedback is interactions that indirectly reflect opinion through observed user be-

havior, a type of interaction that can be treated to develop recommendation systems (Hu,

Koren, & Volinsky, 2008).

2.2. Explainability in a Recommendation Context

Explainable recommendation refers to personalized recommendation algorithms that

not only provide users or system designers with recommendation results but also expla-

nations to clarify why such items are recommended (Y. Zhang & Chen, 2018). Research

in this area not only covers the implementation and design of such systems but also how

users perception changes with the presence of explanations.

The idea of explaining recommendations dates back to early work in the recommen-

dation domain, with works that use now familiar approaches like explaining using simi-

lar items (Schafer, Konstan, & Riedl, 1999) or similar users (Resnick, Iacovou, Suchak,

Bergstrom, & Riedl, 1994). As content-based approaches gained popularity and works

shifted to align user profile with content features, feature-based explanations proved to

improve effectiveness (Vig, Sen, & Riedl, 2009), and users’ trust and satisfaction in the

recommendations (Ferwerda, Swelsen, & Yang, 2018). Particularly, in the visual recom-

mendation domain, only recently works have provided explanations using item images.

For example, (Lin et al., 2018) generate comments based on the image items as explana-

tions, while (X. Chen et al., 2019) highlight image regions of interest. Also, (J. Chen et al.,

2017) uses attentive weights to attribute importance at both item- and component-level.

In a recommendation context, explanations are valuable since they increase the user’s

satisfaction with the system (Tintarev & Masthoff, 2015), improve trustworthiness (Cramer

et al., 2008) and scrutability (Balog, Radlinski, & Arakelyan, 2019). Explanations can be

evaluated using both offline and online approaches. User studies are encouraged but not
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always required for explainable recommendation research, depending on the task at hand

(Y. Zhang & Chen, 2018).

2.3. Interpretability of Deep Learning Models

In recent years, XAI community efforts have resulted in the development of several

approaches, techniques, methods, and models. These have been classified in multiple re-

view works according to multiple criteria. The scope of the explanation can be classified

between local interpretability (explanation for a single data point outcome) and global in-

terpretability (explanation for the model as a whole) (Guidotti et al., 2018; Das & Rad,

2020; Adadi & Berrada, 2018). Another criterion distinguishes between model-specific in-

terpretability (solutions that are limited to a family or class of models) and model-agnostic

interpretability (usually post-hoc methods that generate explanations in a different stage

to prediction) (Adadi & Berrada, 2018; Das & Rad, 2020; Arrieta et al., 2020). Also,

other surveys consider the algorithmic approach (such as changes according to perturba-

tion of the inputs versus gradient-based to analyze model internals) (Das & Rad, 2020) or

distinguish between perceptive interpretability versus mathematical structures (the former

providing explanations that can be humanly perceived while the latter has a mathematical

foundation to provide interpretations) (Tjoa & Guan, 2020).

In this work, techniques to extract visual concepts are highly relevant. This kind of

technique exploits the emergence of concept detectors in visual DNNs while training;

units specialized as object, color, or part detectors (Zhou, Khosla, Lapedriza, Oliva, &

Torralba, 2014). This property of DNNs has allowed research to propose frameworks to

quantify the presence of visual concepts. For example, (Bau, Zhou, Khosla, Oliva, &

Torralba, 2017) proposes a framework to quantify interpretability and identify and report

detectors, by measuring the alignment of each unit in a CNN layer to visual concepts.

Further work has expanded the framework to identify compositional logic and approxi-

mate neuron behavior (Mu & Andreas, 2020). Another proposed framework measures the
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alignment of activations of a layer with a vectorial representation of the activations for a

visual concept (Kim et al., 2017).

2.4. Differences to Previous Research

To the best of our knowledge, this is the first work that proposes a framework to de-

velop explainable recommendation systems based on visual concepts. In the visual rec-

ommendation domain, research on explainable recommendation systems is still in devel-

opment (Y. Zhang & Chen, 2018). Approaches used on the surveyed recent articles on

visually-aware recommendation systems use item representations from pre-trained DNNs

as embedding. This kind of feature cannot be used with feature-based approaches for

explanation, due to the latent nature of their representation. We propose to create a new

representation using some of the latest works on XAI for the extraction of visual concepts.

In particular, we expand NetDissect (Bau et al., 2017) to create a local explanator on top

of their global explanator.
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3. OBJECTIVES

In this area, explainable recommendations are of increasing value since users benefit

in multiple aspects from their existence. Previous work has proposed novel model archi-

tectures to deliver explanations, and even though they’re performant and explainable, their

complexity is increasing to achieve this goal.

The general objective of this work is to propose a framework to develop explainable

visually-aware recommendation systems without the need of developing new models and

without losing performance.

3.1. Research Questions

(i) Is it possible to build an interpretable item representation?

There is recent work in XAI that explains in terms of visual concepts. We want to

test if a custom implementation can deliver local explanations that can be considered

explicit item representations.

(ii) Can we deliver accurate recommendation using concept-based presentations?

We want to test whether using our proposed explainable approach can achieve a

similar or better offline performance that recent works have shown.

(iii) Can we provide explanations of recommendations in terms of visual concepts?

We want to provide explanations in terms of visual concepts from the item represen-

tation. This problem has already been addressed by research, and XAI has developed

solutions like feature attribution methods.

3.2. Contribution

In this work, we propose the first framework to develop explainable recommendation

systems by using existing model architectures. Then, we contribute to: (a) the area of
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XAI by developing a local explanator as an extension of (Bau et al., 2017) to identify

visual concepts in images, and (b) the area of visually-aware recommendation systems

by designing and implementing the framework and delivering explanations in terms of

visual concepts. Both contributions help to develop the visual explainability domain, by

delivering explanations in terms of visual concepts, with a novel approach to this task.

The proposed framework is tested using state-of-the-art DNN models in a recommen-

dation task to show that the approach can be generalized to a family of models and to

compare the performance of the proposal to state-of-the-art implementations. To the best

of our knowledge, there’s no similar research to our proposed framework, that identifies

and explains in terms of visual concepts, to develop explainable recommendation systems.
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4. MATERIALS AND METHODS

In this chapter, we describe the materials used in our work. First, we introduce the

datasets used in the recommendation task. Then, we introduce the deep learning recom-

mendation models (from the literature) whose performance will be analyzed and com-

pared.

4.1. Datasets

In this study, our research questions are related to the performance of a recommenda-

tion system using the proposed framework compared to its non-explainable counterpart.

To make this comparison possible, we must first choose a recommendation task and then

train and evaluate the models in a similar manner. We’ll focus on visual recommendation

systems, meaning recommendation tasks where the items are images on some domain. In

our study we rely on two datasets from different domains:

4.1.1. UGallery

UGallery1 is an online art gallery implemented as an e-commerce platform, where

artists can showcase and sell their art pieces to the platform users. The dataset provided

by UGallery consists of 2919 users, 13297 items, and 4897 individual purchases or trans-

actions of different art pieces.

A particular property of the UGallery dataset is its one-of-a-kind nature. In its majority,

artworks correspond to physical pieces, meaning that they can only be sold once by the

platform. This also causes the number of interactions to be significantly lower compared

to other datasets (2.2 interactions per user and 0.49 interactions per item, on average).

1https://www.ugallery.com/

https://www.ugallery.com/
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These properties of the dataset motivated the authors of CuratorNet (Messina et al., 2020)

to design and develop said model to perform well even considering these restrictions.

4.1.2. Wikimedia

Wikimedia Commons2 is an online repository of free-use media resources and is a

project of the Wikimedia Foundation. For the development of this project, a set of Wiki-

media Commons images will be used: Featured picture candidates3. This dataset contains

images nominated by Wikimedia Commons contributors to Featured picture. In this plat-

form, users can comment and vote for or against a nomination, where images that meet

certain criteria are selected as highlighted. This dataset contains approximately 33000

images and 190000 interactions between the items and 7500 users.

This dataset is also particular in its nature. In Wikimedia, users can interact with an

item in multiple ways and their positive interactions do not mean necessarily “consump-

tion” but “support”, which means that users have interactions with a high number of items

(32 interactions per user, on average). Also, users consider not only the content of the im-

age, but also its quality (for example, its resolution). We think that these properties could

harm results in traditional metrics, but the dataset is still relevant due to the value of the

image content.

4.2. Recommendation Models

We use some of the current state-of-the-art image recommendation models in our rec-

ommendation tasks. After the training phase, we will perform an offline evaluation to

compare the performance of the proposed framework against its non-explainable counter-

part. All models, except the first one, are DNNs. A brief description of each is available

below:

2https://commons.wikimedia.org/wiki/Main Page
3https://commons.wikimedia.org/wiki/Commons:Featured picture candidates

https://commons.wikimedia.org/wiki/Main_Page
https://commons.wikimedia.org/wiki/Commons:Featured_picture_candidates
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• VisRank (Kang et al., 2017) is a simple model that recommends to users through

a simple ‘nearest-neighbor’ style strategy. This means that a similarity score is

calculated between each potential recommendation and an aggregation of the

items already consumed by the user. This is not a DNN model and does not

require any training, but a common implementation involves calculating all the

possible pairing of items.

• VBPR: Visual Bayesian Personalized Ranking (R. He & McAuley, 2016) is

a personalized ranking model that simultaneously uses visual and latent signals:

image content and known interactions. Its architecture uses a pre-trained net-

work to extract visual features, which are combined with latent item and user

factors to predict a score.

• CuratorNet (Messina et al., 2020) is a visually-aware DNN recommendation

model, meaning that it considers the content of the images to calculate a similar-

ity score between user-item pairs. This model architecture generates its internal

representation of a user using the content of the already consumed items. Items

features are obtained using a pre-trained network, as a latent representation.

Both VBPR and CuratorNet are trained using a Bayesian Personalized Ranking (BPR)

framework (Rendle et al., 2012). Using BPR, a model learns a ranking function in a

personalized manner from implicit feedback, by learning the correct ordering between

pairs of interactions.

The code implementation of the listed models and their training pipeline is publicly

available in a GitHub repository4.

4https://github.com/aaossa/Model-experiments/

https://github.com/aaossa/Model-experiments/
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4.3. Offline evaluation metrics

To perform offline evaluation and compare the results of our experiments, we use

ranking metrics commonly used in similar studies. All of the following metrics have in

common that the values belong to the range [0, 1], where 1 means perfect performance as

defined by the metric:

• AUC: Short for ROC Area Under Curve (area under the receiver operating char-

acteristic curve), uses the position of the ground truth items in the ranking of all

the available items to approximate an “exact” value of the metric, as opposed to

calculating the value using a sample of the inventory.

• MRR: Mean Reciprocal Rank assigns a score according to the position of the

first relevant item in the recommendation list. The metric is defined as follows:

MRR =
1

r

, where r is the position in the recommendation ranking of the first relevant item.

• R@k: Recall at k measures the proportion of relevant items captured by a rec-

ommendation list of length k. The metric is defined as follows:

Recall =
|Recommended ∩Relevant|

|Relevant|
• P@k: Precision at k measures the proportion of items in a recommendation list

of length k that are relevant. The metric is defined as follows:

Precision =
|Recommended ∩Relevant|

|Recommended|
• N@k: Short for nDCG at k (normalized discounted cumulative gain), is a mea-

sure of ranking that values putting the relevant items higher in the recommenda-

tion ranking. The metric is calculated as a proportion of the discounted cumula-

tive gain in the recommendation ranking over the same measurement on an ideal
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ranking, and is defined as follows:

nDCG =
DCG

iDCG

, where iDCG is theDCG of the ideal ranking. The value ofDCG is calculated

as follows:

DCG =
Recommended∑

i

2reli − 1

log2(1 + i)

, where reli is a piecewise function valued 1 if the item i is relevant and 0 in

other case.
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5. PROPOSED SOLUTION

In this chapter, we describe our proposed framework to develop explainable visual rec-

ommendation systems. To achieve this goal, we extend recent work to develop both perfor-

mant and explainable visually-aware recommendation systems. A diagram that compares

the traditional approach and our work is shown in figure 5.1.

We present our framework in three parts: (i) Building a representation of visual con-

cepts, which describes our extension of NetDissect (Bau et al., 2017) to develop a local

perceptive interpretability method that represents images in terms of their visual concepts,

(ii) Computing recommendations, that describes both our proposal and the differences

with the state-of-the-art approach, and (iii) Explaining recommendations using visual con-

cepts, that describes our approach to deliver explanations.

5.1. Building a Representation of Visual Concepts

In the first stage, we aim to construct an item representation based on visual concepts.

This means that we need to develop a mechanism that, given an image y returns a vector

V (y) of weighted visual concepts that are present in image y. We need a vectorial repre-

sentation with similar properties to the ones of a latent embedding of visual features, like

the embeddings generated using pre-trained DNNs. Inspired by recent works that develop

methods to explain DNNs using visual concepts we develop our own local and perceptive

explainer capable of generating the desired vector V (y).

To build our local explainer, we require a mechanism to align internal representations

of a DNN with human-understandable visual concepts. Some recent works address this

problem through different techniques. For example, TCAV (Kim et al., 2017) quantifies
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(a) Traditional pipeline

(b) Proposed framework pipeline

Figure 5.1. Comparison of traditional and proposed pipeline. In a tradi-
tional setting, latent features are used to train a recommendation system,
while our approach proposes using a concept extractor instead, which al-
lows us to explain recommendations in terms of visual concepts.

the sensitivity of a layer for a visual concept as the alignment between activations of im-

ages that contain the concept compared to a set of activations from random images (a lin-

ear classifier is trained to distinguish both sets of activations). In Summit (Hohman, Park,

Robinson, & Chau, 2019), authors aggregate and summarize activations and influences in

a DNN to identify relevant concepts and their relations in convolutional layer units. Their

work aims to develop an interactive tool to explore the internal representations of a DNN

and approximate a graph-like structure to explain a class.
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In this study, to achieve our goal we extend NetDissect (Bau et al., 2017), or network

Dissection, a framework to quantify interpretability in individual units of a CNN. Net-

Dissect is a global and perceptive explainer, which means that explanations (1) explain

model-level logic and are not instance dependent, and (2) can be perceived by humans, in

this case, as visual concepts identifiable in an image. NetDissect is described as a general

framework to measure the alignment between the activations of hidden units in a convo-

lutional layer and a set of visual concepts. The framework evaluates each unit in a CNN

layer against each concept present in Broden, a segmentation dataset presented in the same

work.

Both TCAV and Summit share some similarities with NetDissect in their objectives.

An advantage of TCAV is the capability of generalization to new concepts, but the tech-

nique measures the alignment between activations and concepts in a layer-wise manner

instead of at the unit level. Summit shares similarities with NetDissect in the unit acti-

vation analysis, but the study differentiates in the aggregation of results and its purpose.

Also, Summit does not aim to develop a measurement of alignment between unit activa-

tions and concepts, as NetDissect does. We decided to use NetDissect due to its success

in different explainability tasks and studies. It is relevant to mention that both TCAV and

Summit could be adapted in one way or another to build a different concept extractor, but

that is out of the scope of this thesis.

NetDissect is formalized by the following definitions, which we’ll reference later.

Given an input image x, NetDissect collects the activation map of hidden unit k: Ak(x).

Then, collects the distribution of activations ak for each individual unit, and determines

a threshold Tk such that the probability of ak > Tk is equal to 0.005 over all the loca-

tions of the activation maps in the dataset. In the process, Ak(x) has to be scaled-up to be

compared against the segmentation masks in the Broden dataset, resulting in Sk(x). Then,

Sk(x) is compared against the threshold Tk, creating a binary mask Mk(x) ≡ Sk(x) ≥ Tk.
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To score each unit k alignment with a visual concept c (with a ground-truth segmenta-

tion mask Lc), the intersection over union is calculated over the whole dataset and then

summed, resulting in IoUk,c, a scalar that represents the alignment of unit k activations

with the visual concept c. More details are described in the original work of Bau. et al.

(Bau et al., 2017).

In our work, we extend the previous method to approximate a local explanation for a

single image. First, we apply the NetDissect framework, which means that for each unit

k we already know the visual concept c that aligns the most with its activations and the

corresponding pair IoUk,c value, and the threshold Tk to determine a significant activation

at unit k. Then, given an unseen input image y and a unit k, we make a forward pass to

compute the activations in the network, which allows us to compute the activation map

Ak(y) and the binary mask Mk(y) using the known threshold value Tk. An overview of

the relevant symbols is also contained in Table 5.1. In the next step, we must aggregate

this unit-level information to construct our vector V (y). We define 4 criteria to aggregate

this information:

Table 5.1. Symbols used in the formalization of NetDissect and our pro-
posed algorithm.

Symbol Description
L set of convolutional layers in a DNN
C set of visual concepts
k a specific unit in a layer
Ak(x) activation map of unit k, given an input image x
Tk threshold of activation for unit k
IoUk,c accuracy of unit k in detecting concept c
S score (IoU ) threshold to determine if a unit is a unique detector
sk,c score of unit k for concept c
wl weight of layer l
f(x, k) boolean function, determines if unit k was “activated” by image x
V (x) vector of visual concepts in image x
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5.1.1. Criteria 1: Unit score computation

We define the unit score sk,c as the score of unit k for concept c. NetDissect calculates

this score as IoUk,c, but its computation requires a known Lc mask, a ground truth anno-

tation of concept c in the relevant image. In our algorithm, we don’t have such annotation,

but we determined 3 possible options. In each option, we only consider activated units

(those with a individual unit activation that surpass the unit threshold) and the concept

label c assigned by NetDissect, unless said otherwise:

• Absolute: This option scores a unit according to the number of individual unit

activations ak, elements in the activation map Ak(x), that are greater or equal to

the threshold Tk. To formalize this option, we first define a set of individual unit

activations that met the described condition: G = {ak ∈ Ak(x) : ak ≥ Tk}, and

then calculate its cardinality: sk,c = |G|, where c is the concept label assigned

by NetDissect.

• Discrete: This option only outputs 1 or 0 to represent unit activation. Under

this criteria, a unit is considered activated if there exists an individual unit ac-

tivation ak in the activation map Ak(x) such that the threshold Tk of the unit is

surpassed. For this purpose, we use the set G of individual unit activations that

met the described condition and define sk,c as a piecewise function that outputs

1 if |G| > 0 and 0 in other cases, which can be considered a boolean function in

our implementation.

• Categorical: This option only considers units that are considered activated ac-

cording to the definition of the “discrete” option. This option assigns a categor-

ical score to a unit, meaning that a unit will have multiple scores for concepts

c1, c2, and so on, all from different categories. For a particular category j, the

score of unit k is calculated as a proportion of the reported score by NetDissect

for a concept cj of said category, IoUk,cj , and the highest score reported for any

concept in that unit, IoUk,c. For example, if unit k was assigned label “red”, a
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concept in the “color” category, its score for the “color” category will be 1, but

for another category, say “scene” the value of scscene,k will be IoUk,cscene

IoUk,ccolor

.

5.1.2. Criteria 2: Consider unique detectors only

In NetDissect, authors quantify the interpretability of a convolutional layer by counting

“the number of unique concepts aligned with units, i.e. unique detectors”. They define

a detector for concept c if the reported IoUk,c surpasses certain threshold, defined by the

authors. In our algorithm, we consider two possible options: consider only the score sk,c

when unit k is a unique detector for concept c, or consider all the units.

5.1.3. Criteria 3: Layer weight computation

After we determine the score sk,c (defined by Criteria 1) of the relevant units (defined

by Criteria 2) in a convolutional layer, and before aggregating units from different layers

(to be defined in Criteria 4), we must compensate the units score according to the layer

results. For example, if layers l1 and l2 have 3 activated units each, but l1 has substantially

more units than l2, they may have different importance on the final outcome.

In NetDissect, the authors quantify the interpretability of a layer, because in their

framework the analysis of each layer is independent of the others. In our algorithm, as

we aim to construct a representation that considers information from multiple layers, we

consider the existence of a layer weight wl. For its computation, we determined 5 possible

options:

• Equal: The simplest approach considers the contribution of units in different

layers as equal. This can be formalized as wl = 1,∀l ∈ L.

• Proportional to unique detectors: This option assigns the weight of a layer as

a proportion of the number of unique detectors (obtained from NetDissect) and
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the number of units in layer l. To formalize this option, we can define such a

proportion as wl =
card(uk∈l:IoUk≥S)

card(uk∈l)
.

• Proportional to activated units: Similarly to the previous option, it assigns the

weight of a layer as a proportion of the number of activated units and the number

of units in layer l. To formalize this option, we can define such a proportion as

wl =
card(uk∈l:f(x,k)=1)

card(uk∈l)
, where f has the same definition given in the “discrete”

option of Criteria 1.

• Inverse to proportion of unique detectors: This option assigns the weight of

a layer as the inverse of the proportion of unique detectors. To formalize this

option, we can define such a proportion as wl =
card(uk∈l)

card(uk∈l:IoUk≥S)
.

• Inverse to proportion of activated units: This option assigns the weight of a

layer as the inverse of the proportion of activated units. To formalize this option,

we can define such a proportion aswl =
card(uk∈l)

card(uk∈l:f(x,k)=1)
, where f has the same

definition given in the “discrete” option of Criteria 1.

5.1.4. Criteria 4: Aggregation of units with the same concept

Now, we have determined a way to compute the score sk,c of relevant units, after

weighting said score according to the layer where they’re from. In this criteria, we present

2 options to aggregate units’ scores from different layers.

• Addition: This option adds the score sk,c (multiplied by their corresponding

layer weight wl) of units labeled with the same concept c. This results in the

final score assigned for a concept defined as Vc =
∑

uk∈R sk,c × wl, where R is

the set of relevant units of any layer after applying Criteria 2.

• Average: This option averages the score sk,c (weighted by the corresponding

layer weight wl) of units labeled with the same concept c. This results in the

final score assigned for a concept defined as Vc =
∑

uk∈R sk,c×wl

card(R)
, where R is the

set of relevant units of any layer after applying Criteria 2.
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5.1.5. Algorithmic definition

Each of the described criteria corresponds to a decision in our algorithm to build a rep-

resentation V (·) of an image through visual concepts (Algorithm 1). This means that each

combination of criteria results in a slightly different algorithm to transform both the acti-

vations of image y and the global information provided by NetDissect into a representation

of visual concepts V (y).

Algorithm 1: Build representation V (y) of visual concepts for image y
Input : An image y, and a set L of convolutional layers in a DNN
Output: A vectorial representation V (y) of visual concepts in image y

Initialize V as an empty array;
foreach visual concept c do

Initialize Vc as an empty array;
foreach convolutional layer l do

wl ← Criteria3(l);
foreach unit uk ∈ Criteria2(l) do

sk,c ← Criteria1(x,k,c);
Vc[k]← sk,c · wl;

Vc ← Criteria4(Vc);
V [c]← Vc;

return V ;

The output of Algorithm 1 is a vector V (y) containing the score for each tested con-

cept. In its i-th index, the mentioned score is a value directly proportional to the presence

of visual concept ci in the input image y.

The code implementation of the proposed algorithm is publicly available in a GitHub

repository1.

1https://github.com/aaossa/NetDissect-experiments/

https://github.com/aaossa/NetDissect-experiments/
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5.2. Computing Recommendations

In the second stage, we aim to compute personalized recommendations. For this pur-

pose, we use our proposed algorithm (Algorithm 1) to generate a vectorial representation

V (y) of the weighted visual concepts present each item image y from a given dataset.

Then, we create our embedding based on the generated explicit representations to train

state-of-the-art recommendation models and evaluate their offline performance.

Recent visually-aware recommendation systems works (R. He & McAuley, 2016;

Kang et al., 2017; Messina et al., 2020) use a pre-trained DNN as a feature extractor,

as shown in Figure 5.1a. These features are then used to create an embedding in which

each item is represented by a row in a matrix of latent features. An important disadvan-

tage of these embeddings for explainability is that they are latent in nature, meaning that

they’re a low-dimensional representation, a compression of relevant information (accord-

ing to the pre-trained DNN). Said representation is useful for a DNN but is hard to grasp

for a human and hard to align to visual concepts.

In our proposal, we use Algorithm 1, detailed in the previous section, to create a vecto-

rial representation V (y) based on the visual concepts present in an image y. We construct

the embedding by stacking the obtained representation of every item, like the traditional

approach, but instead of using a DNN as a feature extractor, we consider our algorithm as

a concept extractor, as shown in Figure 5.1b. Due to the nature of the proposed embedding

being similar to the generated by a feature extractor, we can use the embedding to train a

visually-aware recommendation system without changing its architecture, except for the

number of units in the input layer to match the size of our embedding. Also, because of our

guided construction, we know exactly what each column and value represent in our em-

bedding: a concept c and its presence in an image. This means that our data is inherently

interpretable, and can be represented as tabular data, where each column c correspond to

a visual concept c, each row y represents a particular item in a dataset, and position c, y in
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the table is the score V (y)[c] directly proportional to the presence of visual concept c in

image y.

To evaluate the performance of our proposed embedding, we first define a baseline

model. Due to the number of possible configurations of Algorithm 1 the baseline will be

used to compare and discard configurations. In (Kang et al., 2017) and (Messina et al.,

2020), authors choose Visrank as a baseline model. Visrank is a simple model, based on

the distance between a pair of items, for visual recommendation. The model was presented

and formalized in Chapter 4.

Then, we compare the traditional feature extractor and our proposed concept extractor

by measuring their offline performance on two visual recommendation datasets: UGallery

and Wikimedia. To generate recommendations, we use VBPR (R. He & McAuley, 2016)

and CuratorNet (Messina et al., 2020), two state-of-the-art visually-aware recommenda-

tion systems trained using the traditional pipeline. Both the datasets and DNN models

were presented and formalized in Chapter 4.

The code implementation of the mentioned models and their corresponding training

process is publicly available in a GitHub repository2.

5.3. Explaining Recommendations Using Visual Concepts

In the third and last stage, we aim to deliver explanations by exploiting the properties of

our embedding of visual concepts. Due to the interpretable nature of our proposed concept

embedding, we need to define a mechanism to deliver explanations in terms of human-

understandable visual concepts that consider the explicit representation of the relevant

items.

2https://github.com/aaossa/Model-experiments

https://github.com/aaossa/Model-experiments
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For this purpose, we choose a feature attribution approach to deliver explanations.

Feature attribution methods allow us to identify how much each input feature contributed

to the model output. In particular, we are interested in local explainers in this family of

methods. The problem we are addressing is how to assign an importance value to the com-

ponents of our item representation (each visual concept) that reflects the recommendation

system logic to deliver a specific recommendation.

Feature attribution methods are particularly useful when working on tabular data be-

cause each component (or column) is a known identifiable property of the instances in

a dataset. Under a traditional visual recommendation approach, this kind of methods is

hard to apply due to the large number of dimensions in an image (number of pixels) or

the latent nature of a feature extractor embedding (highly compress data that’s not aligned

with human concepts), depending on if a model receives the raw image or the output of a

feature extractor, respectively.

In our case, feature attribution methods are a good fit because our data can be repre-

sented as tabular data. Our explicit embedding aligns our visual concept representations,

in a way that each column is a concept c and the values in it represent the presence of

said concept in an image. If a feature attribution method is applied and assigns certain

importance to a specific column in an input row, we know which concept c is involved and

what the specific score represents.

In this work, we use SHAP (Lundberg & Lee, 2017), for Shapley Additive Expla-

nations, a game-theoretic approach to explain the output of any machine learning model.

SHAP can be categorized as a local and model-agnostic explainer, which means that expla-

nations (1) explain a single instance at a time, and (2) work on any kind of model. SHAP

is described as a framework to assign each feature an importance value for a particular
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prediction. The framework proposes using SHAP values as a measure of feature impor-

tance. SHAP values attribute to each feature the change in the expected model prediction

when conditioning on that feature (Lundberg & Lee, 2017).

SHAP is defined as an additive feature attribution method, meaning that the method

attributes an effect to each feature and, by summing the effects of all feature attributions,

approximates the output of the model. In particular, due to the recommendation sys-

tems tested being DNNs, we focus on using Deep SHAP, a combination of DeepLIFT

(Shrikumar, Greenside, & Kundaje, 2017) and Shapley values, which is one of the model-

type specific approximation methods defined by the cited work.

This method is part of the state-of-the-art techniques on feature attribution and has

been used in different contexts. The additive nature of its attributions could be helpful

for users to understand explanations in a recommendation context. A limitation in SHAP

is that attribution maps are sometimes noisy, resulting in explanations that include small

attributions values that are not useful to understand the model outcome. Additionally,

SHAP is not specialized in recommendation models and has not been used widely in this

context, but can be used in the studied models because of its model-agnostic properties.

The code implementation of the described method to deliver explanations is publicly

available in a GitHub repository3.

3https://github.com/aaossa/Concept-experiments/

https://github.com/aaossa/Concept-experiments/
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6. RESULTS

In this chapter, we report and analyze the results to present valuable information to

discuss our research questions. In the first section, we explore and characterize the results

of our algorithm for building a representation of visual concepts. In the second section, we

compare the performance of the chosen baseline model and state-of-the-art visually-aware

recommendation systems, using both the traditional approach (using a feature extractor)

and our proposal (using a concept extractor). Then, in the next section, we explore the

explanations obtained with our proposed solution in a given recommendation problem.

Finally, we discuss our research questions with our analysis in hand.

6.1. An Interpretable Item Representation

6.1.1. Preprocessing of Concept Embeddings

Due to the tabular nature of our concept embeddings, we can apply common prepro-

cessing methods to our data. We performed offline evaluation on all 60 possible con-

figurations of our algorithm, with no preprocessing, applying standardization, applying

normalization, and applying a scaler robust to outliers. For each method, we also dropped

the columns (concepts) with zero-variance, due to a limitation in the NetDissect report:

some concepts do not align significantly with any unit in a DNN.

Table 6.1 shows a summary of its results in UGallery, and Table 6.2 the same results

in Wikimedia. The detailed results for this section can be downloaded from https://

bit.ly/3f3ERTh. Here we report each preprocessing technique and its performance

compared to the others.

Raw data. We tested the performance of the concept embedding without preprocess-

ing or filtering of any kind in VisRank, our baseline model, in both datasets (UGallery and

https://bit.ly/3f3ERTh
https://bit.ly/3f3ERTh
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Wikimedia). We expected the raw data to outperform a random baseline but to be outper-

formed by some of the preprocessing methods, and our results confirmed this hypothesis.

Normalization. In this approach, we scale the data to a fixed range: 0 to 1. This

approach causes the data to reduce the size of its standard deviations, but column values

will be very sensitive to outliers. Normalization should outperform both a random baseline

and the raw data, and our results confirm this hypothesis.

Robust scaling. We also applied a transformation to scale by subtracting the median

and dividing by the interquartile range (difference between 75th quartile and 25th quartile).

We expected robust scaling to at least outperform the raw data, but our results show that

this preprocessing method performed worse than our no-preprocessing baseline in all the

metrics in both datasets.

Standardization. In this approach, we apply Z-score normalization by rescaling the

data to have the properties of a standard normal distribution (µ = 0 and σ = 1). We ex-

pected standardization to outperform our baselines and be competitive with other prepro-

cessing methods, but we found that it outperforms all the tested preprocessing approaches

by a margin in all metrics and both datasets. Based on these results, from this point for-

ward, we will apply standardization on all our representations, and we won’t consider any

other preprocessing.

It is important to notice that even if the results of standardization show better perfor-

mance than any other preprocessing and our random baseline, it is not better than using

a feature extractor. This is not a surprise considering the good results that the latent em-

beddings from a pre-trained DNN perform so well in so many tasks thanks to transfer

learning, and even better when finetunning.
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Table 6.1. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in the UGallery dataset. Shown results are an average for each metric
of the prepropressing method in the first column. The best absolute average of each metric is highlighted,
without considering the first row, latent features.

Preprocessing AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
Latent features .66714 .03424 .07326 .00440 .04312 .12722 .00155 .05420 .16431 .00101 .05961
Raw data .61340 .01549 .03067 .00176 .01828 .06496 .00077 .02513 .08895 .00053 .02897
Normalization .61805 .01584 .03093 .00179 .01855 .06530 .00076 .02530 .09072 .00054 .02936
Robust scaling .61157 .01191 .02149 .00122 .01352 .04588 .00054 .01856 .06754 .00040 .02201
Standardization .64287 .01751 .03188 .00183 .02002 .07090 .00083 .02778 .10021 .00059 .03243
Random .49868 .00066 .00137 .00007 .00032 .00904 .00011 .00200 .01087 .00007 .00239

Table 6.2. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in the Wikimedia dataset. Shown results are an average for each metric
of the prepropressing method in the first column. The best absolute average of each metric is highlighted,
without considering the first row, latent features.

Preprocessing AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
Latent features .59449 .01135 .02006 .00116 .01290 .03390 .00040 .01557 .04735 .00027 .01755
Raw data .56678 .00812 .01412 .00083 .00921 .02379 .00028 .01106 .03101 .00018 .01215
Normalization .56741 .00855 .01467 .00084 .00968 .02437 .00029 .01153 .03197 .00019 .01266
Robust scaling .56105 .00672 .01117 .00065 .00750 .01963 .00023 .00909 .02603 .00015 .01005
Standardization .57730 .00879 .01489 .00085 .00987 .02570 .00030 .01190 .03442 .00020 .01322
Random .50436 .00023 .00000 .00000 .00000 .00263 .00003 .00044 .00585 .00003 .00092
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6.1.2. Exploration of embeddings configurations

Due to the large number of possible criteria and their combinations in our algorithm,

we try to determine the configurations that yield better performance based on the results

on our baseline model VisRank. Table 6.3 and Table 6.4 contain a summary of the average

performance on the baseline task for each criteria option, in UGallery and Wikimedia

respectively.

In our analysis, some criteria options performed significantly better than others, which

will be useful to reduce the size of the performed tests. For example, in Criteria 1 (Unit

score), “Categorical” outperformed both “Discrete” and “Absolute” in several metrics.

Due to this performance, in the following sections, we will only consider embeddings

created with this unit scoring criteria.

Then, we focused on Criteria 3 (Layer weight). In this case, we notice that “Inverse

to proportion of unique detectors” performed significantly worse than the other options.

Results yield a similar observation with “Inverse to activated units”, but not as apparent

as in the previous layer weight criteria. Due to these observations, we will only consider

embeddings created with the rest of the possible values in Criteria 3.

Finally, we grouped our results according to two criteria. the first group was composed

of configurations where Criteria 2 was “Unique detectors only” and Criteria 4 was “Aver-

age”, or Criteria 2 was “Every unit” and Criteria 4 was “Addition”, and the second group

contained the opposite cases. Through inspection, we can confirm that the first group per-

forms better than the second. This will also reduce the number of criteria options to be

tested in the following sections.

Considering our results and analysis in this subsection, 6 configurations were cho-

sen to be compared with the latent feature embeddings in the following subsection, to

train visually-aware recommendation systems. The chosen configurations correspond to
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Criteria 1 equal to “Categorical” (1 possible value); Criteria 3 equal to “Equal weight”,

“Proportional to unique detectors”, or “Inverse to proportion of unique detectors” (3 pos-

sible values); and two pairings of Criteria 2 and Criteria 4: “Unique detectors only” and

“Average”, and “Every unit” and “Addition”, respectively (2 possible values). All 6 config-

urations will be evaluated in the following sections by their performance training visually-

aware recommendation systems.
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Table 6.3. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in the UGallery dataset. Shown results are an average for each metric
of the embeddings with a given criteria value, from the first column. Consider that “UD” means “unique
detectors”, and “AU” means “activated units”. In each criteria, the highest value for each metric is high-
lighted.

Criteria Value AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
- Latent features .66714 .03424 .07326 .00440 .04312 .12722 .00155 .05420 .16431 .00101 .05961

Unit score
Discrete .64773 .01622 .02664 .00152 .01785 .06714 .00079 .02597 .09479 .00056 .03025
Absolute .62345 .01630 .02901 .00167 .01850 .06304 .00074 .02536 .09456 .00056 .03028
Categorical .65743 .02001 .03998 .00230 .02370 .08253 .00096 .03202 .11129 .00066 .03677

Unique detectors UD only .64745 .01823 .03399 .00196 .02113 .07396 .00087 .02906 .10188 .00061 .03345
Every unit .63829 .01679 .02976 .00171 .01891 .06784 .00079 .02651 .09855 .00058 .03142

Layer weight

Equal weight .64954 .01827 .03356 .00191 .02084 .07764 .00090 .02951 .10851 .00064 .03449
Prop. to UD .64746 .01871 .03484 .00196 .02149 .07743 .00089 .02981 .10834 .00063 .03473
Prop. to AU .61916 .01443 .02532 .00145 .01636 .05428 .00063 .02225 .07572 .00044 .02557
Inv. to UD .65359 .01874 .03411 .00196 .02139 .07610 .00090 .02987 .10856 .00064 .03498
Inv. to AU .64460 .01740 .03156 .00188 .02000 .06907 .00084 .02747 .09993 .00060 .03241

Aggregate units Addition .64644 .01771 .03403 .00193 .02062 .07341 .00085 .02848 .10321 .00061 .03326
Average .63930 .01731 .02973 .00173 .01941 .06840 .00081 .02708 .09721 .00058 .03161

- Random .49868 .00066 .00137 .00007 .00032 .00904 .00011 .00200 .01087 .00007 .00239
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Table 6.4. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in the Wikimedia dataset. Shown results are an average for each
metric of the embeddings with a given criteria value, from the first column. Consider that “UD” means
“unique detectors”, and “AU” means “activated units”. In each criteria, the highest value for each metric is
highlighted.

Criteria Value AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
- Latent features .59449 .01135 .02006 .00116 .01290 .03390 .00040 .01557 .04735 .00027 .01755

Unit score
Discrete .57662 .00848 .01467 .00085 .00953 .02617 .00031 .01167 .03483 .00020 .01299
Absolute .57729 .00836 .01450 .00081 .00949 .02417 .00028 .01126 .03219 .00019 .01248
Categorical .57798 .00953 .01551 .00088 .01060 .02675 .00032 .01278 .03625 .00021 .01419

Unique detectors UD only .57743 .00904 .01529 .00087 .01016 .02580 .00030 .01211 .03489 .00020 .01350
Every unit .57717 .00854 .01449 .00083 .00958 .02559 .00030 .01169 .03395 .00020 .01294

Layer weight

Equal weight .58370 .00913 .01536 .00087 .01023 .02687 .00032 .01241 .03643 .00021 .01384
Prop. to UD .58398 .00927 .01569 .00089 .01039 .02763 .00033 .01266 .03704 .00022 .01410
Prop. to AU .55258 .00821 .01348 .00078 .00919 .02113 .00025 .01061 .02721 .00016 .01149
Inv. to UD .58412 .00909 .01539 .00088 .01021 .02751 .00032 .01248 .03647 .00021 .01384
Inv. to AU .58210 .00824 .01453 .00083 .00936 .02534 .00030 .01135 .03498 .00021 .01283

Aggregate units Addition .58083 .00902 .01529 .00087 .01014 .02624 .00031 .01223 .03515 .00021 .01357
Average .57376 .00855 .01449 .00083 .00961 .02515 .00030 .01157 .03370 .00020 .01287

- Random .50436 .00023 .00000 .00000 .00000 .00263 .00003 .00044 .00585 .00003 .00092
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6.2. Offline Evaluation of Concept Embedding

In this section, we first analyze the performance of the embedding in the baseline

model against our simple recommendation task. Then we will compare the best embed-

dings in the DNN models.

6.2.1. Performance of embeddings in VisRank

Table 6.6 and Table 6.7 show the results of our baseline model using the concept

embeddings (chosen in the previous section) to recommend on UGallery and Wikimedia.

Embeddings configurations are codified according to Table 6.5. Both in the UGallery

and Wikimedia datasets, the concept embeddings present competitive results in terms of

AUC, Recall@200, Precision@200, and nDCG@200. In the case of UGallery, all of our

embeddings beat the latent baseline in AUC. However, using latent embeddings is still

better in every other case. This is evidence that the concept embedding does not carry as

much visual information as the embedding generated using a pre-trained DNN.
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Table 6.5. Codes used to represent embedding configurations in this chap-
ter. Models are coded as a number of 4 digits, each corresponding to one
of the 4 criteria. For instance, model coded as 2010 means that Criteria 1
was chosen to be “Categorical”, Criteria 2 “Unique detectors only”, and so
on.

Criteria Code Value

Unit score
0 Discrete
1 Absolute
2 Categorical

Unique detectors 0 UD only
1 Every unit

Layer weight

0 Equal weight
1 Prop. to UD
2 Prop. to AU
3 Inv. to UD
4 Inv. to AU

Aggregate units 0 Addition
1 Average
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Table 6.6. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in UGallery using VisRank. First row contains the results of a latent
feature embedding. Last row contains the results of a random recommender. Embedding versions are cod-
ified using the notation of Table 6.5. Our concept embeddings outperformed the latent version only in the
AUC metric.

Configuration AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
Latent 0,66714 0,03424 0,07326 0,00440 0,04312 0,12722 0,00155 0,05420 0,16431 0,00101 0,05961
v.2001 0,67723 0,02312 0,04888 0,00282 0,02808 0,10359 0,00122 0,03824 0,13958 0,00084 0,04426
v.2100 0,67710 0,02477 0,04510 0,00254 0,02867 0,08956 0,00102 0,03670 0,12459 0,00074 0,04290
v.2011 0,67036 0,02294 0,05048 0,00288 0,02830 0,10703 0,00124 0,03877 0,13130 0,00078 0,04310
v.2110 0,66933 0,02425 0,04144 0,00227 0,02725 0,09364 0,00103 0,03647 0,12768 0,00074 0,04239
v.2031 0,67801 0,02453 0,04922 0,00282 0,02929 0,09558 0,00111 0,03862 0,13725 0,00081 0,04530
v.2130 0,68153 0,02343 0,05082 0,00282 0,02850 0,09494 0,00110 0,03685 0,12402 0,00073 0,04165
Random 0,49868 0,00066 0,00137 0,00007 0,00032 0,00904 0,00011 0,00200 0,01087 0,00007 0,00239
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Table 6.7. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in Wikimedia using VisRank. First row contains the results of a latent
feature embedding. Last row contains the results of a random recommender. Embedding versions are cod-
ified using the notation of Table 6.5. Our concept embeddings did not outperform the latent version in any
metric.

Configuration AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
Latent 0,59449 0,01135 0,02006 0,00116 0,01290 0,03390 0,00040 0,01557 0,04735 0,00027 0,01755
v.2001 0,58772 0,01069 0,01628 0,00094 0,01160 0,02946 0,00035 0,01414 0,04656 0,00027 0,01662
v.2100 0,59210 0,01063 0,01724 0,00096 0,01182 0,03200 0,00038 0,01469 0,04260 0,00025 0,01624
v.2011 0,58539 0,01083 0,01885 0,00105 0,01226 0,03062 0,00036 0,01439 0,04106 0,00024 0,01616
v.2110 0,58932 0,00951 0,01584 0,00090 0,01052 0,03164 0,00038 0,01380 0,04333 0,00026 0,01550
v.2031 0,58892 0,00951 0,01512 0,00085 0,01039 0,03363 0,00039 0,01380 0,04316 0,00025 0,01528
v.2130 0,59315 0,01009 0,01783 0,00101 0,01157 0,03069 0,00036 0,01409 0,03858 0,00023 0,01523
Random 0,49868 0,00066 0,00137 0,00007 0,00032 0,00904 0,00011 0,00200 0,01087 0,00007 0,00239
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6.2.2. Performance of embeddings in DNNs

Table 6.8 and Table 6.9 show the results of both VBPR and CuratorNet models using

the concept embeddings (chosen in the previous section) to recommend on UGallery and

Wikimedia. In both recommendation tasks our embeddings performed quite well and in

some cases even outperformed the results achieved by a latent embedding. These results

are expected to be better than in Table 6.6 and Table 6.7 because the model displayed in

the latter (VisRank) only recommends based on visual features and is not personalized,

while the models used in the former (VBPR and CuratorNet) learn from interactions, a

Collaborative Filtering (CF) approach, and perform personalized recommendation.

UGallery. Results of VBPR and CuratorNet are shown in Table 6.8. Both models

performed similarly in all the metrics, but VBPR performed slightly better than Curator-

Net for the most part. In VBPR, all the tested concept embeddings outperformed their

latent counterpart in all metrics, except Recall and Precision at 200. We think that this is

explained in part due to VBPR exploiting non-visual patterns, being able to rely on visual

features and interactions in a more equitable manner.

Wikimedia. Results of VBPR and CuratorNet are shown in Table 6.9. Unlike UGallery,

our concept embeddings were not able to outperform significantly the latent baselines. In

VBPR, some of the concept embeddings outperformed their latent counterpart in some

of the metrics, but for the most part, the best model was VBPR trained with a latent

embedding. In CuratorNet, none of the tested concept embeddings was able to beat the

latent embedding version in any of the metrics.
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Table 6.8. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in UGallery using DNN models. First row in each section contains the
results of a latent feature embedding. Last row of the table contains the results of a random recommender.
Embedding versions are codified using the notation of Table 6.5. Our concept embeddings outperformed
their latent counterparts in multiple metrics.

Model Configuration AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
VBPR Latent .71603 .05241 .12211 .00728 .06874 .17988 .00214 .07924 .21850 .00135 .08574
VBPR v.2001 .72111 .06052 .12867 .00762 .07614 .18610 .00228 .08775 .21538 .00133 .09243
VBPR v.2100 .71781 .06302 .13004 .00783 .07858 .19228 .00231 .09099 .21587 .00131 .09458
VBPR v.2011 .72242 .05768 .13188 .00783 .07449 .18908 .00228 .08604 .21500 .00133 .09030
VBPR v.2110 .71606 .06111 .13451 .00810 .07839 .19228 .00234 .08985 .22193 .00135 .09434
VBPR v.2031 .71902 .05923 .12803 .00769 .07499 .18473 .00225 .08655 .20962 .00129 .09044
VBPR v.2130 .71964 .06505 .13600 .00817 .08180 .19297 .00232 .09320 .21724 .00133 .09669
CuratorNet Latent .72226 .03681 .09499 .00563 .04998 .16004 .00192 .06325 .19625 .00122 .06848
CuratorNet v.2001 .71652 .03313 .09333 .00536 .04541 .16340 .00196 .06007 .18989 .00117 .06440
CuratorNet v.2100 .71619 .03738 .09772 .00570 .05095 .16805 .00199 .06458 .20724 .00125 .07000
CuratorNet v.2011 .71476 .03315 .09802 .00563 .04705 .14973 .00177 .05790 .18938 .00117 .06433
CuratorNet v.2110 .71786 .03672 .09757 .00584 .05173 .16345 .00201 .06431 .19950 .00121 .06952
CuratorNet v.2031 .71071 .03449 .09413 .00536 .04753 .16073 .00194 .06128 .20694 .00128 .06822
CuratorNet v.2130 .71138 .03881 .10212 .00604 .05228 .17421 .00210 .06632 .20904 .00126 .07127
Random Random .49868 .00066 .00137 .00007 .00032 .00904 .00011 .00200 .01087 .00007 .00239
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Table 6.9. AUC, Mean Reciprocal Rank (MRR), Recall (R), Precision (P), nDCG (N) at different recom-
mendation list lengths (20, 100, 200), in Wikimedia using DNN models. First row in each section contains
the results of a latent feature embedding. Last row of the table contains the results of a random recommender.
Embedding versions are codified using the notation of Table 6.5. Our concept embeddings performance is
close to the performance of the VBPR latent version, but could not outperform CuratorNet in any metric.

Model Configuration AUC MRR R@20 P@20 N@20 R@100 P@100 N@100 R@200 P@200 N@200
VBPR Latent .65272 .00664 .01631 .00092 .00813 .04299 .00049 .01315 .05929 .00034 .01563
VBPR v.2001 .65285 .00593 .01406 .00079 .00717 .04000 .00046 .01192 .05863 .00034 .01462
VBPR v.2100 .65662 .00599 .01567 .00092 .00760 .03715 .00045 .01184 .05746 .00034 .01478
VBPR v.2011 .64688 .00507 .01229 .00072 .00599 .03662 .00042 .01058 .05366 .00031 .01310
VBPR v.2110 .65671 .00556 .01391 .00083 .00689 .03737 .00044 .01143 .05731 .00033 .01440
VBPR v.2031 .65449 .00603 .01262 .00072 .00669 .04372 .00050 .01240 .05901 .00034 .01473
VBPR v.2130 .65348 .00675 .01437 .00088 .00793 .03788 .00046 .01258 .05688 .00033 .01529
CuratorNet Latent .62556 .00745 .01759 .00101 .00919 .03631 .00042 .01271 .05539 .00032 .01555
CuratorNet v.2001 .62197 .00422 .00833 .00050 .00462 .02535 .00030 .00776 .04179 .00023 .01007
CuratorNet v.2100 .62433 .00607 .01297 .00079 .00716 .03230 .00037 .01064 .04559 .00026 .01257
CuratorNet v.2011 .61500 .00488 .01249 .00070 .00607 .02514 .00030 .00858 .03719 .00022 .01044
CuratorNet v.2110 .62287 .00577 .01116 .00068 .00649 .03127 .00037 .01026 .04545 .00026 .01220
CuratorNet v.2031 .62081 .00486 .00930 .00057 .00555 .02872 .00035 .00925 .03982 .00024 .01075
CuratorNet v.2130 .61636 .00642 .01187 .00072 .00705 .02879 .00033 .01019 .04351 .00025 .01248
Random Random .49868 .00066 .00137 .00007 .00032 .00904 .00011 .00200 .01087 .00007 .00239
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6.3. Explanations In Terms of Visual Concepts

In this section, we will explore the explanations provided by the recommendation sys-

tem trained using one of the concept embeddings. All the examples will be explanations

of recommendations retrieved from a CuratorNet model trained on UGallery, with config-

uration coded as 2110 (Table 6.5 provides a description of each of the codes).

For each displayed recommendation, the items already consumed by the user are dis-

played on top, the middle image is the recommended item, and the explanation using the

SHAP library is at the bottom of each figure. The SHAP plot that explains the recommen-

dation, attributes each input concept an importance value by analyzing the model internals

and modeling how the presence (or absence) of a feature changes the output of the model.

In the plot, features in red color influence positively, i.e. drag the prediction value to a

higher score, while features in blue color do the opposite. In general, explanations proved

to be related to expected concepts, but sometimes unexpected concepts may appear.

Figures 6.1 and 6.2 show examples of recommendation and explanation for two pro-

files. The first example, figure 6.1, corresponds to the profile of a user that has selected

items that contain “Bird” in them. SHAP correctly identifies this concept, but other un-

related concepts also receive a positive attribution without being visibly connected in the

image under our perception. The second example, figure 6.2, corresponds to another user

profile, where the user has selected images with “Sea” in them.
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(a) The SHAP visual explanation correctly assigns a positive importance to “Bird”, but also
identifies “Pleated” with a high attribution value.

(b) The SHAP visual explanation correctly assigns a positive importance to “Bird”, but other
irrelevant concepts appear, such as “Body”.

Figure 6.1. Recommendation and explanation for a user that consumed
images containing birds. From top to bottom, each image displays: (1) the
consumed images, (2) the recommended item, and (3) a visual explanation
provided by SHAP.
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(a) The SHAP visual explanation correctly assigns a positive importance to “Water”, “Beach”
(scene), and “White”, but some of the other concepts do not seem to be related to the image.

(b) The SHAP visual explanation correctly assigns a positive importance to “White”, “Clouds”,
and “Sea”, but some of the other concepts do not seem to be related to the image.

Figure 6.2. Recommendation and explanation for a user that consumed
images containing water and coastlines. From top to bottom, each image
displays: (1) the consumed images, (2) the recommended item, and (3) a
visual explanation provided by SHAP.
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6.4. Discussion

In this section, we will explore the research questions established in section 3.1.

6.4.1. RQ1. Is it possible to build a concept-based item representation?

Our results and analysis indicate that it is possible to build an interpretable item repre-

sentation based on visual concepts. We were able to treat the data as tabular data and apply

traditional preprocessing methods that helped to improve the performance on a baseline

model. Even if our performance in the baseline model did not match the results of a latent

feature embedding, we were still able to confirm that building a recommendation system

using our proposed representation was possible.

6.4.2. RQ2. Can we deliver accurate recommendation using concept-based repre-

sentations?

The models trained using our proposed concept embeddings performed similarly to

models trained using the traditional approach (feature embeddings from pre-trained neu-

ral networks) when used to train DNNs. Results are better than expected considering the

initial results in our baseline task (mentioned in RQ1). The comparison must be inter-

preted carefully because of the unusual nature of the datasets (UGallery dataset contains

many one-of-a-kind items while Wikimedia dataset has not been studied in a recommen-

dation task), but results are still comparable. In the context of this work, we empirically

demonstrated that it is possible to develop explainable visually-aware recommender sys-

tems with a performance similar to the non-explainable traditional model.
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6.4.3. RQ3. Can we provide explanations of recommendations in terms of visual

concepts?

Our interpretable representation allows the models developed using our framework

to be compatible with feature attribution techniques. This approach is not possible (or at

least, useful) in DNN models trained with a pre-trained neural network. In our framework,

we propose using a feature attribution technique (such as SHAP) to deliver explanations

of a visually-aware recommendation system using visual concepts.
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7. FUTURE WORK

In this study, we evaluated our concept-based item representations using offline evalu-

ation metrics. Compared to traditional non-explainable visual recommender systems, our

proposal showed competitive results in every metric used. An interesting aspect to con-

sider is how our concept-based item representations align with human perception. In this

aspect, users’ perception is important because users must make sense of the explanations

in terms of visual concepts. Even if a feature attribution method can explain a particular

outcome, users might need to understand the meaning of the visual concepts and how the

generation of explanations works. It is necessary to evaluate the item representations and

the explanations delivered by the system in a user study.

Another aspect that would be interesting to study is how recommendations change

when using a concept embedding. Diversity, coverage, novelty, serendipity are some

properties that a user-centric or recommendation-centric evaluation could measure. Is

diversity affected positively, negatively, or is it not affected? Does the coverage change

significantly? What happens in terms of serendipity and novelty of the recommendations?

These relevant properties might be different when our framework is applied.

The last idea for future work is to study if it is possible to develop a performant

concept-based model. Visual concepts are not always independent factors, sometimes

they’re related, and their relations can also provide valuable information. With an ap-

propriate item representation and model architecture, it might be possible to exploit the

relations between concepts to achieve better performance without losing interpretability.
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8. CONCLUSIONS

In this work, we have studied the possibility of generating an interpretable embedding,

based on visual concepts, and training visually-aware recommendation systems to propose

a framework to develop explainable visually-aware recommendation systems.

Our first result, aligned with our first research question, shows that an interpretable

concept-based item representation is achievable by our extension of NetDissect. Because

NetDissect aligns units in a convolutional layer to visual concepts, our representation will

often miss several concepts that do not align with any unit. In these cases, the concept

information will be discarded in our preprocessing due to having zero variance. This

phenomenon should be further considered and studied to develop more robust and repre-

sentations, that cover more visual concepts.

Regarding RQ2, we see that our concept embeddings show competitive results in state-

of-the-art models using an interpretable representation instead of the latent representation

used in a traditional pipeline. In the future we will expand this analysis to other datasets

and models, to generalize our results and confirm the performant results obtained in this

study. Also, we could develop a novel model designed to exploit the visual concepts

information specifically.

Finally, concerning RQ3, our resulting proposed models can deliver explanations through

known feature attribution methods, particularly we used SHAP. In future work, we would

like to study if the explanations based on visual concepts actually make a difference in

users’ perception and also evaluate how accurate are our item representations compared to

human perception.
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