Acta Crystallographica Section E **Structure Reports** Online

ISSN 1600-5368

7-(tert-Butyldiphenylsilyloxy)-2,2dimethyl-1-benzofuran-3(2H)-one

Cristian O. Salas,^a* Ricardo A. Tapia^a and Alejandro Macías^b

^aDepartamento de Química Orgánica, Facultad de Química, Pontificia Universidad Católica de Chile, 702843 Santiago de Chile, Chile, and ^bDepartamento de Ouímica Inorgánica, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain

Correspondence e-mail: cosalas@puc.cl

Received 15 December 2010; accepted 27 December 2010

Key indicators: single-crystal X-ray study; T = 100 K; mean σ (C–C) = 0.003 Å; R factor = 0.044; wR factor = 0.111; data-to-parameter ratio = 15.2.

The title compound, C26H28O3Si, is an allylic oxidation product of the tert-butyl(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane with N-bromosuccinimide and 2,2'-azobis-isobutyronitrile. The nine-atom bicyclic system is almost planar, with an r.m.s deviation of 0.0123 (2) Å and a maximum deviation of 0.031 (2) Å for the O atom. In the crystal, the molecules pile up along the b axis but the strongest intermolecular contacts are the π - π stacking interactions between the benzene rings along the c axis [centroid-centroid distance = 3.655(3) Å].

Related literature

Benzofuranones are precursors of a wide range of natural and synthetic products. For a related transformation of benzofuranones in aurones, see: Schoepfer et al. (2002); Löser et al. (2004); in spiroannulated and aromatic spiroketal compounds, see: Braun et al. (2008); Zhou et al. (2008); in benzofurane derivatives, see: Venkatesan et al.(2010); and in pyranobenzofuranes, see: Foroumadi et al. (2009).

Experimental

 $T_{\min} = 0.941, T_{\max} = 0.988$

S = 1.05

Crystal data

$\begin{aligned} &C_{26}H_{28}O_3Si\\ &M_r = 416.57\\ &\text{Friclinic, }P\overline{1}\\ &a = 9.8210\ (18)\ \text{\AA}\\ &p = 11.081\ (2)\ \text{\AA}\\ &z = 12.025\ (2)\ \text{\AA}\\ &\alpha = 98.803\ (2)^{\circ}\\ &B = 112.151\ (2)^{\circ} \end{aligned}$	$\gamma = 101.791 (2)^{\circ}$ $V = 1147.7 (4) \text{ Å}^3$ Z = 2 Mo $K\alpha$ radiation $\mu = 0.13 \text{ mm}^{-1}$ T = 100 K $0.49 \times 0.43 \times 0.10 \text{ mm}$
Data collection	
Bruker SMART 1000 CCD diffractometer Absorption correction: multi-scan (SADABS; Bruker, 2001)	14369 measured reflections 4197 independent reflections 3325 reflections with $I > 2\sigma(I)$ $R_{\text{int}} = 0.032$

Refinement $R[F^2 > 2\sigma(F^2)] = 0.044$ 276 parameters $wR(F^2) = 0.111$ H-atom parameters constrained $\Delta \rho_{\rm max} = 0.83 \ {\rm e} \ {\rm \AA}^ \Delta \rho_{\rm min} = -0.29 \text{ e } \text{\AA}^{-3}$ 4197 reflections

Data collection: SMART (Bruker, 2007); cell refinement: SAINT (Bruker, 2007); data reduction: SAINT; program(s) used to solve structure: SIR97 (Altomare et al., 1999); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

We gratefully acknowledge the Unidade de Raios X, RIAIDT, University of Santiago de Compostela, Spain.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: SI2320).

References

- Altomare, A., Burla, M. C., Camalli, M., Cascarano, G. L., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Polidori, G. & Spagna, R. (1999). J. Appl. Cryst. 32, 115-119.
- Braun, M., Hessamian-Alinejad, A., de Lacroix, B. F., Álvarez, B. H. & Fischer, G. (2008). Molecules, 13, 995-1003.
- Bruker (2001). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2007). SMART and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Foroumadi, A., Zamanian, S., Samzadeh-Kermani, A. & Shafiee, A. (2009). Synth. Commun. 39, 1722-1728.
- Löser, R., Chlupacova, M., Marecek, A., Opletanova, V. & Gütschow, M. (2004). Helv. Chim. Acta, 87, 2597-2601.
- Schoepfer, J., Fretz, H., Chaudhuri, B., Muller, L., Seeber, E., Meijer, L., Lozach, O., Vangrevelinghe, E. & Furet, P. (2002). J. Med. Chem. 45, 1741-1747.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Venkatesan, A. M., Dos Santos, O., Ellingboe, J., Edvard, D. A., Harrison, B. L., Smith, D. L., Scerni, R., Hornby, G. A., Schechter, L. E. & Andree, T. H. (2010). Bioorg. Med. Chem. 20, 824-827.
- Zhou, G., Zhu, J., Xie, Z. & Li, Y. (2008). Org. Lett. 10, 721-724.

Acta Cryst. (2011). E67, o375 [doi:10.1107/S1600536810054462]

7-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-1-benzofuran-3(2H)-one

C. O. Salas, R. A. Tapia and A. Macías

Comment

Benzofuranones are very important compounds because of their use in a wide range of natural and synthetic products with relevant properties such as spiroannulated benzofuranones (Braun *et al.*, 2008), aromatics spiroketals compounds (Zhou *et al.*, 2008), aurones (Schoepfer *et al.*, 2002; Löser *et al.*, 2004), pyranobenzofuranes (Foroumadi *et al.*, 2009) and some benzofuranes derivatives (Venkatesan *et al.*, 2010). The benzofuranone **3** is the product of the allylic oxidation of the *tert*-butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane with *N*-bromosuccinimide (NBS) and 2,2'-azobis-isobutyronitrile (AIBN) (Fig. 2). The molecular structure of the title compound is represented in Fig. 1. Bond lengths and angles are within the expected values and confirm the bond orders giving in the Scheme. The 9-atom bicyclic system is, as expected, planar, with r.m.s deviation = 0.0123 (2) Å and a maximum deviation of 0.031 (2) Å. The molecules pile up along the *b* axis but the strongest intermolecular contacts are the π - π stacking interactions between the benzo rings along the *c* axis [centroid–centroid distances = 3.655 (5) Å].

Experimental

tert-Butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2)

tert-Butyldiphenylsilyl chloride (1.0 g, 3.64 mmol) and imidazole (1.52 g, 22.35 mmol) were added to a solution of 2,2-dimethyl-2,3-dihydrobenzofuran-7-ol (1) (0.59 g, 3.62 mmol) in dry THF (50 ml) and the mixture was stirred at room temperature for 12 h. under an nitrogen atmosphere. Petroleum ether (100 ml) was added and the solid was filtered off and the solvents were removed *in vacuo* to give an oil residue, which was purified by flash column chromatography (CH₂Cl₂/ petroleum ether, 9:1) to give *tert*-butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2) (1.43 g, 98%) as a colorless oil.

7-(tert-Butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2H)-one (3).

NBS (1.54 g, 8.70 mmol) and AIBN (25 mg) were added to a solution of *tert*-butyl(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2) (1.0 g, 2.39 mmol) in dry CCl_4 (150 ml) and the resulting suspension was stirred at reflux for 2 h. The mixture was cooled and filtered. The filtrate was evaporated to dryness *in vacuo* to give a residue, which was purified by flash column chromatography (CH₂Cl₂) to give 7-(*tert*-butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2*H*)-one (3) (0.75 g, 75%) as a white solid. mp: 354.5–355.5 K. Crystals were grown by slow evaporation from CH₂Cl₂.

Refinement

H atoms were placed in idealized positions with C—H distances 0.95 - 0.98 Å and thereafter treated as riding. A torsional parameter was refined for each methyl group. *U*iso for H were assigned as 1.2 times *U*eq of the attached C atom (1.5 for the methyl groups).

Figures

Fig. 1. The structure of the title compound, with displacement ellipsoids drawn at the 50% probability level and H atoms with arbitrary radius.

Fig. 2. Chemical reactions scheme for obtain molecule **3**.

7-(tert-Butyldiphenylsilyloxy)-2,2-dimethyl-1-benzofuran-3(2H)-one

Crystal data

C ₂₆ H ₂₈ O ₃ Si	Z = 2
$M_r = 416.57$	F(000) = 444
Triclinic, <i>P</i> T	$D_{\rm x} = 1.205 {\rm Mg m}^{-3}$
a = 9.8210 (18) Å	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
b = 11.081 (2) Å	Cell parameters from 3414 reflections
c = 12.025 (2) Å	$\theta = 2.3 - 27.3^{\circ}$
$\alpha = 98.803 \ (2)^{\circ}$	$\mu = 0.13 \text{ mm}^{-1}$
$\beta = 112.151 \ (2)^{\circ}$	T = 100 K
$\gamma = 101.791 \ (2)^{\circ}$	Prism, colourless
$V = 1147.7 (4) \text{ Å}^3$	$0.49 \times 0.43 \times 0.10 \text{ mm}$

Data collection

Bruker SMART 1000 CCD diffractometer	4197 independent reflections
Radiation source: fine-focus sealed tube	3325 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.032$
ω scans	$\theta_{\text{max}} = 25.4^{\circ}, \ \theta_{\text{min}} = 1.9^{\circ}$
Absorption correction: multi-scan (<i>SADABS</i> ; Bruker, 2001)	$h = -11 \rightarrow 10$
$T_{\min} = 0.941, T_{\max} = 0.988$	$k = -13 \rightarrow 13$
14369 measured reflections	$l = 0 \rightarrow 14$

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.044$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.111$	H-atom parameters constrained

<i>S</i> = 1.05	$w = 1/[\sigma^2(F_o^2) + (0.0422P)^2 + 0.8404P]$ where $P = (F_o^2 + 2F_c^2)/3$
4197 reflections	$(\Delta/\sigma)_{max} < 0.001$
276 parameters	$\Delta \rho_{max} = 0.83 \text{ e } \text{\AA}^{-3}$
0 restraints	$\Delta \rho_{min} = -0.29 \text{ e } \text{\AA}^{-3}$

Special details

Experimental. tert-Butyl-(2,2-dimethyl-2,3-dihydrobenzofuran-7-yloxy)diphenylsilane (2)

¹H RMN (CDCl₃, 200 MHz) d 1.18 (s, 9H, 3xCH₃); 1.34 (s, 6H, 2xCH₃), 2.96 (s, 2H, H3); 6.53–6.56 (m, 2H, H5, H4); 6.70 (m, 1H, H6); 7.35–7.44 (m, 6H, H—Ar); 7.38–7.83 (m, 4H, H—Ar). ¹³C RMN (CDCl₃, 50 MHz) d 19.7 (C(CH₃)₃); 26.8 (3xCH₃); 28.1 (2xCH₃); 43.4 (C3); 86.4 (C2); 117.9 (C6); 119.6 (C5); 119.8 (C4); 127.5 (Ar); 127.8 (C3a); 129.6 (Ar); 133.9 (Ar); 135.7 (Ar); 139.9 (C7); 149.4 (C7a).

7-(tert-Butyldiphenylsilyloxy)-2,2-dimethylbenzofuran-3(2H)-one (3).

IR (NaCl, cm⁻¹): 1714 (CO). ¹H-RMN (CDCl₃, 200 MHz) d 1.18 (s, 9H, 3xCH₃); 1.30 (s, 6H, 2xCH₃); 6.74 (t, 1H, J=7.7 Hz, H5,); 6.97 (dd, 1H, J=1.1, J=7.8 Hz, H6); 7.21 (dd, 1H, J=1,1, J=7,6 Hz, H4); 7.32–7.48 (m, 6H, H—Ar); 7.72–7.77 (m, 4H, H—Ar). ¹³C-RMN (CDCl₃, 50 MHz) d 19.7 (C(CH₃)₃); 22.8 (3xCH₃); 26.6 (2xCH₃); 87.9 (C2); 117.0 (C5); 121.0 (C7); 121.8 (C4); 127.7 (Ar); 130.0 (Ar); 133.0 (C6); 135.5 (Ar); 142.4 (C3a); 162.4 (C7a); 204.8 (C3). MS (CI) *m/z* 417 [(M^+ , 74]; 359 (66); 339 (100). **Geometry**. All s.u.'s (except the s.u. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell s.u.'s are taken into account individually in the estimation of s.u.'s in distances, angles and torsion angles; correlations between s.u.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell s.u.'s is used for estimating s.u.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > 2\sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*- factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Si1	0.05281 (6)	0.33072 (5)	0.76624 (5)	0.01833 (15)
O1	0.32466 (15)	0.13402 (12)	0.72764 (12)	0.0227 (3)
C2	0.4315 (2)	0.05650 (19)	0.75715 (18)	0.0223 (4)
C3	0.3300 (2)	-0.07888 (19)	0.73025 (18)	0.0227 (4)
C4	0.1727 (2)	-0.07133 (18)	0.68675 (17)	0.0202 (4)
C5	0.0325 (2)	-0.16301 (19)	0.64733 (18)	0.0232 (4)
Н5	0.0270	-0.2501	0.6447	0.028*
C6	-0.0980 (2)	-0.1229 (2)	0.61233 (18)	0.0252 (5)
Н6	-0.1955	-0.1833	0.5839	0.030*
C7	-0.0885 (2)	0.0057 (2)	0.61825 (18)	0.0236 (4)
H7	-0.1800	0.0311	0.5953	0.028*
C8	0.0501 (2)	0.09704 (18)	0.65653 (17)	0.0193 (4)
C9	0.1812 (2)	0.05545 (18)	0.68970 (16)	0.0188 (4)

C10	0.5136 (2)	0.0626 (2)	0.6729 (2)	0.0296 (5)
H10A	0.4379	0.0327	0.5860	0.044*
H10B	0.5824	0.0083	0.6894	0.044*
H10C	0.5734	0.1508	0.6886	0.044*
C11	0.5402 (2)	0.1070 (2)	0.8933 (2)	0.0316 (5)
H11A	0.5988	0.1955	0.9086	0.047*
H11B	0.6109	0.0548	0.9159	0.047*
H11C	0.4813	0.1033	0.9434	0.047*
O12	0.37919 (16)	-0.17058 (14)	0.74359 (14)	0.0320 (4)
O13	0.06209 (15)	0.22261 (12)	0.65909 (12)	0.0217 (3)
C14	0.0978 (2)	0.27196 (18)	0.90971 (18)	0.0212 (4)
C15	0.2433 (2)	0.2591 (2)	0.97519 (19)	0.0270 (5)
H15	0.3220	0.2867	0.9493	0.032*
C16	0.2760 (3)	0.2073 (2)	1.0766 (2)	0.0323 (5)
H16	0.3764	0.2007	1.1200	0.039*
C17	0.1623 (3)	0.1654 (2)	1.1145 (2)	0.0358 (6)
H17	0.1840	0.1291	1.1837	0.043*
C18	0.0170 (3)	0.1763 (2)	1.0515 (2)	0.0371 (6)
H18	-0.0613	0.1476	1.0776	0.045*
C19	-0.0147 (2)	0.2288 (2)	0.9508 (2)	0.0285 (5)
H19	-0.1151	0.2358	0.9084	0.034*
C20	-0.1450 (2)	0.34886 (18)	0.70512 (18)	0.0215 (4)
C21	-0.2426 (2)	0.3037 (2)	0.57890 (19)	0.0253 (5)
H21	-0.2115	0.2558	0.5252	0.030*
C22	-0.3847 (2)	0.3276 (2)	0.5300 (2)	0.0337 (5)
H22	-0.4498	0.2958	0.4438	0.040*
C23	-0.4303 (3)	0.3977 (2)	0.6075 (2)	0.0379 (6)
H23	-0.5273	0.4139	0.5748	0.045*
C24	-0.3351 (3)	0.4442 (2)	0.7324 (2)	0.0365 (6)
H24	-0.3665	0.4928	0.7854	0.044*
C25	-0.1943 (2)	0.4205 (2)	0.7807 (2)	0.0281 (5)
H25	-0.1298	0.4534	0.8668	0.034*
C26	0.1895 (2)	0.48211 (19)	0.77629 (18)	0.0220 (4)
C27	0.3543 (3)	0.4743 (2)	0.8183 (3)	0.0462 (7)
H27A	0.3558	0.3973	0.7669	0.069*
H27B	0.3951	0.4711	0.9054	0.069*
H27C	0.4179	0.5495	0.8094	0.069*
C28	0.1375 (3)	0.5049 (2)	0.6466 (2)	0.0318 (5)
H28A	0.2037	0.5858	0.6497	0.048*
H28B	0.0312	0.5086	0.6170	0.048*
H28C	0.1442	0.4351	0.5899	0.048*
C29	0.1862 (3)	0.5957 (2)	0.8649 (2)	0.0428 (6)
H29A	0.2554	0.6739	0.8663	0.064*
H29B	0.2195	0.5823	0.9486	0.064*
H29C	0.0816	0.6034	0.8363	0.064*

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Si1	0.0189 (3)	0.0199 (3)	0.0175 (3)	0.0066 (2)	0.0087 (2)	0.0046 (2)
01	0.0195 (7)	0.0194 (7)	0.0283 (8)	0.0056 (6)	0.0088 (6)	0.0070 (6)
C2	0.0201 (10)	0.0210 (10)	0.0256 (11)	0.0085 (8)	0.0076 (8)	0.0069 (8)
C3	0.0243 (10)	0.0234 (11)	0.0208 (10)	0.0083 (9)	0.0085 (8)	0.0074 (8)
C4	0.0240 (10)	0.0208 (10)	0.0156 (9)	0.0069 (8)	0.0079 (8)	0.0050 (8)
C5	0.0268 (11)	0.0190 (10)	0.0223 (10)	0.0033 (8)	0.0104 (9)	0.0050 (8)
C6	0.0222 (10)	0.0266 (11)	0.0236 (11)	0.0009 (9)	0.0100 (9)	0.0052 (9)
C7	0.0205 (10)	0.0326 (12)	0.0201 (10)	0.0096 (9)	0.0101 (8)	0.0069 (9)
C8	0.0259 (10)	0.0199 (10)	0.0158 (9)	0.0094 (8)	0.0112 (8)	0.0047 (8)
C9	0.0204 (10)	0.0206 (10)	0.0143 (9)	0.0031 (8)	0.0080 (8)	0.0034 (8)
C10	0.0266 (11)	0.0322 (12)	0.0336 (12)	0.0105 (9)	0.0142 (10)	0.0112 (10)
C11	0.0284 (12)	0.0297 (12)	0.0289 (12)	0.0059 (9)	0.0057 (10)	0.0058 (9)
012	0.0287 (8)	0.0236 (8)	0.0416 (9)	0.0108 (7)	0.0098 (7)	0.0110 (7)
013	0.0280 (8)	0.0216 (7)	0.0207 (7)	0.0119 (6)	0.0128 (6)	0.0069 (6)
C14	0.0268 (11)	0.0175 (10)	0.0200 (10)	0.0074 (8)	0.0104 (8)	0.0037 (8)
C15	0.0280 (11)	0.0293 (12)	0.0264 (11)	0.0100 (9)	0.0122 (9)	0.0095 (9)
C16	0.0369 (13)	0.0359 (13)	0.0252 (11)	0.0173 (10)	0.0097 (10)	0.0105 (10)
C17	0.0558 (16)	0.0353 (13)	0.0273 (12)	0.0228 (12)	0.0210 (11)	0.0163 (10)
C18	0.0502 (15)	0.0418 (14)	0.0389 (13)	0.0194 (12)	0.0320 (12)	0.0210 (11)
C19	0.0288 (12)	0.0326 (12)	0.0320 (12)	0.0124 (10)	0.0176 (10)	0.0124 (10)
C20	0.0228 (10)	0.0199 (10)	0.0260 (11)	0.0077 (8)	0.0126 (9)	0.0096 (8)
C21	0.0257 (11)	0.0277 (11)	0.0259 (11)	0.0085 (9)	0.0122 (9)	0.0117 (9)
C22	0.0250 (11)	0.0424 (14)	0.0337 (13)	0.0103 (10)	0.0083 (10)	0.0196 (11)
C23	0.0256 (12)	0.0436 (14)	0.0563 (16)	0.0199 (11)	0.0193 (11)	0.0265 (12)
C24	0.0360 (13)	0.0348 (13)	0.0538 (16)	0.0188 (11)	0.0286 (12)	0.0160 (12)
C25	0.0295 (12)	0.0258 (11)	0.0336 (12)	0.0089 (9)	0.0175 (10)	0.0079 (9)
C26	0.0208 (10)	0.0221 (10)	0.0208 (10)	0.0026 (8)	0.0087 (8)	0.0043 (8)
C27	0.0239 (12)	0.0448 (15)	0.0687 (18)	0.0044 (11)	0.0147 (12)	0.0314 (14)
C28	0.0398 (13)	0.0257 (12)	0.0271 (11)	0.0042 (10)	0.0131 (10)	0.0091 (9)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

0.0602 (17)

0.0235 (12)

C29

Si1—C141.866 (2)C16—H160.9500Si1—C201.866 (2)C17—C181.381 (3)Si1—C261.878 (2)C17—H170.9500O1—C91.358 (2)C18—C191.382 (3)	i1—013	1.6627 (14)	C16—C17	1.381 (3)
Si1—C201.866 (2)C17—C181.381 (3)Si1—C261.878 (2)C17—H170.9500O1—C91.358 (2)C18—C191.382 (3)	i1—C14	1.866 (2)	C16—H16	0.9500
Si1—C261.878 (2)C17—H170.9500O1—C91.358 (2)C18—C191.382 (3)	i1—C20	1.866 (2)	C17—C18	1.381 (3)
01-C9 1.358 (2) C18-C19 1.382 (3)	i1—C26	1.878 (2)	С17—Н17	0.9500
	1—С9	1.358 (2)	C18—C19	1.382 (3)
O1—C2 1.465 (2) C18—H18 0.9500	1—C2	1.465 (2)	C18—H18	0.9500
C2—C11 1.513 (3) C19—H19 0.9500	2—C11	1.513 (3)	С19—Н19	0.9500
C2—C10 1.515 (3) C20—C21 1.396 (3)	2—C10	1.515 (3)	C20—C21	1.396 (3)
C2—C3 1.532 (3) C20—C25 1.400 (3)	2—С3	1.532 (3)	C20—C25	1.400 (3)
C3—O12 1.218 (2) C21—C22 1.394 (3)	3—012	1.218 (2)	C21—C22	1.394 (3)
C3—C4 1.457 (3) C21—H21 0.9500	3—C4	1.457 (3)	C21—H21	0.9500
C4—C9 1.384 (3) C22—C23 1.382 (3)	4—C9	1.384 (3)	C22—C23	1.382 (3)

0.0409 (14)

-0.0067 (11)

0.0316 (13)

-0.0038 (10)

C4—C5	1.394 (3)	C22—H22	0.9500
C5—C6	1.379 (3)	C23—C24	1.379 (3)
С5—Н5	0.9500	С23—Н23	0.9500
C6—C7	1.398 (3)	C24—C25	1.381 (3)
С6—Н6	0.9500	C24—H24	0.9500
С7—С8	1.383 (3)	C25—H25	0.9500
С7—Н7	0.9500	C26—C28	1.526 (3)
C8—O13	1.367 (2)	C26—C27	1.529 (3)
C8—C9	1.393 (3)	C26—C29	1.534 (3)
C10—H10A	0.9800	C27—H27A	0.9800
C10—H10B	0.9800	С27—Н27В	0.9800
C10—H10C	0.9800	С27—Н27С	0.9800
C11—H11A	0.9800	C28—H28A	0.9800
C11—H11B	0.9800	C28—H28B	0.9800
C11—H11C	0.9800	C28—H28C	0.9800
C14—C15	1.397 (3)	С29—Н29А	0.9800
C14—C19	1.400 (3)	С29—Н29В	0.9800
C15—C16	1.383 (3)	С29—Н29С	0.9800
C15—H15	0.9500		
O13—Si1—C14	107.62 (8)	C17—C16—H16	120.1
O13—Si1—C20	108.10 (8)	C15—C16—H16	120.1
C14—Si1—C20	111.46 (9)	C18—C17—C16	119.8 (2)
O13—Si1—C26	103.79 (8)	С18—С17—Н17	120.1
C14—Si1—C26	116.95 (9)	C16—C17—H17	120.1
C20—Si1—C26	108.36 (9)	C17—C18—C19	120.2 (2)
C9—O1—C2	107.46 (14)	C17—C18—H18	119.9
O1—C2—C11	107.94 (16)	C19—C18—H18	119.9
O1—C2—C10	108.69 (16)	C18—C19—C14	121.5 (2)
C11—C2—C10	112.76 (17)	С18—С19—Н19	119.3
O1—C2—C3	104.86 (15)	С14—С19—Н19	119.3
C11—C2—C3	111.31 (17)	C21—C20—C25	117.43 (18)
C10—C2—C3	110.89 (17)	C21—C20—Si1	120.75 (15)
O12—C3—C4	129.89 (19)	C25—C20—Si1	121.41 (16)
O12—C3—C2	123.83 (18)	C22—C21—C20	121.4 (2)
C4—C3—C2	106.28 (16)	C22—C21—H21	119.3
C9—C4—C5	121.40 (18)	C20—C21—H21	119.3
C9—C4—C3	106.16 (17)	C23—C22—C21	119.6 (2)
C5—C4—C3	132.44 (18)	С23—С22—Н22	120.2
C6—C5—C4	117.65 (19)	C21—C22—H22	120.2
С6—С5—Н5	121.2	C24—C23—C22	120.0 (2)
С4—С5—Н5	121.2	С24—С23—Н23	120.0
C5—C6—C7	120.71 (19)	С22—С23—Н23	120.0
С5—С6—Н6	119.6	C23—C24—C25	120.3 (2)
С7—С6—Н6	119.6	C23—C24—H24	119.8
C8—C7—C6	121.96 (18)	С25—С24—Н24	119.8
С8—С7—Н7	119.0	C24—C25—C20	121.3 (2)
С6—С7—Н7	119.0	C24—C25—H25	119.4
O13—C8—C7	123.14 (17)	C20—C25—H25	119.4
O13—C8—C9	119.85 (17)	C28—C26—C27	107.98 (18)

116.99 (18)	C28—C26—C29	108.62 (18)
115.22 (17)	C27—C26—C29	109.12 (19)
123.50 (17)	C28—C26—Si1	107.54 (14)
121.27 (17)	C27—C26—Si1	112.54 (15)
109.5	C29—C26—Si1	110.90 (14)
109.5	С26—С27—Н27А	109.5
109.5	С26—С27—Н27В	109.5
109.5	H27A—C27—H27B	109.5
109.5	С26—С27—Н27С	109.5
109.5	H27A—C27—H27C	109.5
109.5	H27B—C27—H27C	109.5
109.5	C26—C28—H28A	109.5
109.5	C26—C28—H28B	109.5
109.5	H28A—C28—H28B	109.5
109.5	C26—C28—H28C	109.5
109.5	H28A—C28—H28C	109.5
126.65 (12)	H28B—C28—H28C	109.5
116.86 (18)	C26—C29—H29A	109.5
120.96 (15)	C26—C29—H29B	109.5
121.97 (15)	H29A—C29—H29B	109.5
121.9 (2)	C26—C29—H29C	109.5
119.0	H29A—C29—H29C	109.5
119.0	H29B—C29—H29C	109.5
119.7 (2)		
-118 39 (17)	C26—Si1—C14—C15	-50.63(19)
119 01 (17)	013 - Si1 - C14 - C19	-10891(17)
0.37 (19)	C_{20} —Si1—C14—C19	9.4 (2)
179 64 (18)	C_{26} S_{11} C_{14} C_{10}	,(=)
1/2.01110/	120-311-14-19	134.85 (17)
-63.9(3)	$C_{20} = S_{11} = C_{14} = C_{19}$ $C_{19} = C_{14} = C_{15} = C_{16}$	134.85 (17) -0.6 (3)
-63.9 (3) 62.5 (3)	C19—C14—C15—C16 Si1—C14—C15—C16	134.85 (17) -0.6 (3) -175.34 (17)
-63.9 (3) 62.5 (3) 0.30 (19)	C19—C14—C15—C16 Si1—C14—C15—C16 C14—C15—C16 C14—C15—C16	134.85 (17) -0.6 (3) -175.34 (17) 0.8 (3)
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18)	C19—C14—C15—C16 Si1—C14—C15—C16 C14—C15—C16—C17 C15—C16—C17 C15—C16—C17—C18	134.85 (17) -0.6 (3) -175.34 (17) 0.8 (3) -0.5 (3)
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18) -116.84 (18)	C19—C14—C15—C16 Si1—C14—C15—C16 C14—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—C19	134.85 (17) -0.6 (3) -175.34 (17) 0.8 (3) -0.5 (3) 0.1 (4)
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18) -116.84 (18) 179.9 (2)	C19—C14—C15—C16 Si1—C14—C15—C16 C14—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C14	134.85 (17) -0.6 (3) -175.34 (17) 0.8 (3) -0.5 (3) 0.1 (4) 0.1 (4)
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18) -116.84 (18) 179.9 (2) -0.8 (2)	$\begin{array}{c} C_{26} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} = C_{19} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ \end{array}$	134.85 (17) -0.6 (3) -175.34 (17) 0.8 (3) -0.5 (3) 0.1 (4) 0.1 (4) 0.1 (3)
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18) -116.84 (18) 179.9 (2) -0.8 (2) -0.2 (4)	C19—C14—C15—C16 Si1—C14—C15—C16 C14—C15—C16—C17 C15—C16—C17—C18 C16—C17—C18—C19 C17—C18—C19—C14 C15—C14—C19—C18 Si1—C14—C19—C18	$134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) $
-63.9 (3) 62.5 (3) 0.30 (19) 116.76 (18) -116.84 (18) 179.9 (2) -0.8 (2) -0.2 (4) 179.0 (2)	$\begin{array}{c} C16 & C14 & C19 \\ C19 & C14 & C15 & C16 \\ Si1 & C14 & C15 & C16 \\ C14 & C15 & C16 & C17 \\ C15 & C16 & C17 & C18 \\ C16 & C17 & C18 & C19 \\ C17 & C18 & C19 & C14 \\ C15 & C14 & C19 & C18 \\ Si1 & C14 & C19 & C18 \\ O13 & Si1 & C20 & C21 \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \end{array}$	$\begin{array}{c} C_{20} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ O_{13} = S_{11} = C_{20} = C_{21} \\ C_{14} = S_{11} = C_{20} = C_{21} \\ \end{array}$	$134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \end{array}$	$\begin{array}{c} C_{20} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} = C_{19} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ S_{13} = S_{11} = C_{20} = C_{21} \\ C_{14} = S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{21} \\ \end{array}$	$134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \end{array}$	$\begin{array}{c} C_{20} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} = C_{19} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ S_{13} = S_{11} = C_{20} = C_{21} \\ C_{14} = S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{21} \\ C_{13} = S_{11} = C_{20} = C_{21} \\ C_{13} = S_{11} = C_{20} = C_{25} \\ \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \end{array}$	$\begin{array}{c} C_{26} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} = C_{19} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{14} = C_{19} = C_{18} \\ S_{13} = S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{25} \\ C_{14} = S_{11} = C_{20} = C_{25} \\ \end{array}$	$134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \\ 177.67 (17) \end{array}$	$\begin{array}{c} C_{26} = S_{11} = C_{14} + C_{19} \\ C_{19} = C_{14} + C_{15} - C_{16} \\ S_{11} = C_{14} + C_{15} - C_{16} - C_{17} \\ C_{15} = C_{16} - C_{17} - C_{18} \\ C_{16} - C_{17} - C_{18} - C_{19} \\ C_{17} - C_{18} - C_{19} - C_{14} \\ C_{15} - C_{14} - C_{19} - C_{18} \\ S_{11} - C_{14} - C_{19} - C_{18} \\ S_{11} - C_{14} - C_{19} - C_{18} \\ S_{13} - S_{11} - C_{20} - C_{21} \\ C_{14} - S_{11} - C_{20} - C_{21} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{14} - S_{11} - C_{20} - C_{25} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \\ 177.67 (17) \\ -0.2 (3) \end{array}$	$\begin{array}{c} C_{20} = S_{11} = C_{14} + C_{19} \\ C_{19} = C_{14} + C_{15} - C_{16} \\ S_{11} = C_{14} + C_{15} - C_{16} - C_{17} \\ C_{15} = C_{16} - C_{17} - C_{18} \\ C_{16} - C_{17} - C_{18} - C_{19} \\ C_{17} - C_{18} - C_{19} - C_{14} \\ C_{15} - C_{14} - C_{19} - C_{18} \\ S_{11} - C_{14} - C_{19} - C_{18} \\ S_{13} - S_{11} - C_{20} - C_{21} \\ C_{14} - S_{11} - C_{20} - C_{21} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{14} - S_{11} - C_{20} - C_{25} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{25} - C_{20} - C_{21} - C_{22} \\ \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \\ 177.67 (17) \\ -0.2 (3) \\ -1.0 (2) \end{array}$	$\begin{array}{c} C_{26} = S_{11} = C_{14} = C_{19} \\ C_{19} = C_{14} = C_{15} = C_{16} \\ S_{11} = C_{14} = C_{15} = C_{16} \\ C_{14} = C_{15} = C_{16} = C_{17} \\ C_{15} = C_{16} = C_{17} = C_{18} \\ C_{16} = C_{17} = C_{18} = C_{19} \\ C_{17} = C_{18} = C_{19} = C_{14} \\ C_{15} = C_{14} = C_{19} = C_{18} \\ S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{21} \\ C_{26} = S_{11} = C_{20} = C_{25} \\ C_{26} = S_{11} = C_{20} = C_{25} \\ C_{25} = C_{20} = C_{21} = C_{22} \\ S_{11} = C_{20} = C_{21} = C_{22} \\ \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \\ -173.60 (16) \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \\ 177.67 (17) \\ -0.2 (3) \\ -1.0 (2) \\ 178.51 (17) \end{array}$	$\begin{array}{c} C_{26} = S_{11} = C_{14} + C_{19} \\ C_{19} = C_{14} + C_{15} - C_{16} \\ S_{11} = C_{14} + C_{15} - C_{16} \\ C_{14} = C_{15} - C_{16} - C_{17} \\ C_{15} = C_{16} - C_{17} - C_{18} \\ C_{16} - C_{17} - C_{18} - C_{19} \\ C_{17} - C_{18} - C_{19} - C_{14} \\ C_{15} - C_{14} - C_{19} - C_{18} \\ S_{11} - C_{20} - C_{21} \\ C_{26} - S_{11} - C_{20} - C_{21} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{26} - S_{11} - C_{20} - C_{25} \\ C_{25} - C_{20} - C_{21} - C_{22} \\ S_{11} - C_{20} - C_{21} - C_{22} \\ C_{20} - C_{21} - C_{22} - C_{23} \\ \end{array}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \\ -173.60 (16) \\ 0.3 (3) \end{array}$
$\begin{array}{c} -63.9 \ (3) \\ 62.5 \ (3) \\ 0.30 \ (19) \\ 116.76 \ (18) \\ -116.84 \ (18) \\ 179.9 \ (2) \\ -0.8 \ (2) \\ -0.2 \ (4) \\ 179.0 \ (2) \\ -0.6 \ (3) \\ 179.51 \ (19) \\ -0.9 \ (3) \\ 1.3 \ (3) \\ 177.67 \ (17) \\ -0.2 \ (3) \\ -1.0 \ (2) \\ 178.51 \ (17) \\ -178.72 \ (16) \end{array}$	$C_{20} = S_{11} = C_{14} = C_{19}$ $C_{19} = C_{14} = C_{15} = C_{16}$ $S_{11} = C_{14} = C_{15} = C_{16}$ $C_{14} = C_{15} = C_{16} = C_{17}$ $C_{15} = C_{16} = C_{17} = C_{18}$ $C_{16} = C_{17} = C_{18} = C_{19} = C_{14}$ $C_{15} = C_{14} = C_{19} = C_{14}$ $C_{15} = C_{14} = C_{19} = C_{18}$ $S_{11} = C_{14} = C_{19} = C_{18}$ $S_{11} = C_{14} = C_{19} = C_{18}$ $S_{13} = S_{11} = C_{20} = C_{21}$ $C_{26} = S_{11} = C_{20} = C_{25}$ $C_{25} = C_{20} = C_{21} = C_{22}$ $S_{11} = C_{20} = C_{21} = C_{22}$ $S_{11} = C_{20} = C_{21} = C_{22}$ $C_{20} = C_{21} = C_{22} = C_{23}$ $C_{21} = C_{22} = C_{23} = C_{24}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \\ -173.60 (16) \\ 0.3 (3) \\ 0.3 (3) \\ \end{array}$
$\begin{array}{c} -63.9 (3) \\ 62.5 (3) \\ 0.30 (19) \\ 116.76 (18) \\ -116.84 (18) \\ 179.9 (2) \\ -0.8 (2) \\ -0.2 (4) \\ 179.0 (2) \\ -0.6 (3) \\ 179.51 (19) \\ -0.9 (3) \\ 1.3 (3) \\ 177.67 (17) \\ -0.2 (3) \\ -1.0 (2) \\ 178.51 (17) \\ -178.72 (16) \\ 1.2 (2) \end{array}$	$C_{20} = S_{11} = C_{14} = C_{19}$ $C_{19} = C_{14} = C_{15} = C_{16}$ $S_{11} = C_{15} = C_{16} = C_{17}$ $C_{15} = C_{16} = C_{17} = C_{18}$ $C_{16} = C_{17} = C_{18} = C_{19}$ $C_{17} = C_{18} = C_{19} = C_{14}$ $C_{15} = C_{14} = C_{19} = C_{18}$ $C_{13} = S_{11} = C_{20} = C_{21}$ $C_{14} = S_{11} = C_{20} = C_{21}$ $C_{26} = S_{11} = C_{20} = C_{25}$ $C_{26} = C_{21} = C_{22}$ $S_{11} = C_{20} = C_{21} = C_{22}$ $S_{11} = C_{20} = C_{21} = C_{22}$ $C_{20} = C_{21} = C_{22} = C_{23}$ $C_{21} = C_{22} = C_{23} = C_{24}$ $C_{22} = C_{23} = C_{24} = C_{25}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \\ -173.60 (16) \\ 0.3 (3) \\ 0.3 (3) \\ -0.3 (3) \end{array}$
$\begin{array}{c} -63.9 \ (3) \\ 62.5 \ (3) \\ 0.30 \ (19) \\ 116.76 \ (18) \\ -116.84 \ (18) \\ 179.9 \ (2) \\ -0.8 \ (2) \\ -0.2 \ (4) \\ 179.0 \ (2) \\ -0.6 \ (3) \\ 179.51 \ (19) \\ -0.9 \ (3) \\ 1.3 \ (3) \\ 177.67 \ (17) \\ -0.2 \ (3) \\ -1.0 \ (2) \\ 178.51 \ (17) \\ -178.72 \ (16) \\ 1.2 \ (2) \\ 1.8 \ (3) \end{array}$	$C_{20} = S_{11} = C_{14} = C_{19}$ $C_{19} = C_{14} = C_{15} = C_{16}$ $S_{11} = C_{15} = C_{16} = C_{17}$ $C_{15} = C_{16} = C_{17} = C_{18}$ $C_{16} = C_{17} = C_{18} = C_{19}$ $C_{17} = C_{18} = C_{19} = C_{14}$ $C_{15} = C_{14} = C_{19} = C_{18}$ $O_{13} = S_{11} = C_{20} = C_{21}$ $C_{26} = S_{11} = C_{20} = C_{25}$ $C_{26} = S_{11} = C_{20} = C_{22}$ $S_{11} = C_{20} = C_{22}$ $S_{11} = C_{20} = C_{21} = C_{22}$ $C_{20} = C_{21} = C_{22}$ $C_{23} = C_{24} = C_{25}$ $C_{23} = C_{24} = C_{25} = C_{20}$	$\begin{array}{c} 134.85 (17) \\ -0.6 (3) \\ -175.34 (17) \\ 0.8 (3) \\ -0.5 (3) \\ 0.1 (4) \\ 0.1 (4) \\ 0.1 (3) \\ 174.87 (17) \\ -16.23 (18) \\ -134.30 (16) \\ 95.65 (17) \\ 171.27 (15) \\ 53.20 (19) \\ -76.85 (18) \\ -0.8 (3) \\ -173.60 (16) \\ 0.3 (3) \\ 0.3 (3) \\ -0.2 (3) \end{array}$
	123.50 (17) $123.50 (17)$ $121.27 (17)$ 109.5 $126.65 (12)$ $116.86 (18)$ $120.96 (15)$ $121.9 (2)$ 119.0 119.0 $119.7 (2)$ $-118.39 (17)$ $119.01 (17)$ $0.37 (19)$ $170.64 (18)$	113.22 (17) $C24^{-1}$ $C25^{-1}$ $C25^{-1}$ 123.50 (17) $C28^{-1}$ $C26^{-1}$ $C11^{-1}$ 123.50 (17) $C27^{-1}$ $C26^{-1}$ $C26^{-1}$ 121.27 (17) $C27^{-1}$ $C26^{-1}$ $C26^{-1}$ 109.5 $C26^{-1}$ $C27^{-1}$ $H27A^{-1}$ 109.5 $C26^{-1}$ $C27^{-1}$ $H27B^{-1}$ 109.5 $H27A^{-1}$ $C27^{-1}$ $H27B^{-1}$ 109.5 $H27A^{-1}$ $C27^{-1}$ $H27C^{-1}$ 109.5 $H27B^{-1}$ $C27^{-1}$ $H27C^{-1}$ 109.5 $H27B^{-1}$ $C27^{-1}$ $H27C^{-1}$ 109.5 $H27B^{-1}$ $C27^{-1}$ $H28A^{-1}$ 109.5 $C26^{-1}$ $C28^{-1}$ $H28B^{-1}$ 109.5 $C26^{-1}$ $C28^{-1}$ $H28B^{-1}$ 109.5 $H28A^{-1}$ $C28^{-1}$ $H28C^{-1}$ 109.5 $H28A^{-1}$ $C28^{-1}$ $H28C^{-1}$ 109.5 $H28A^{-1}$ $C29^{-1}$ $H29A^{-1}$ 109.5 $C26^{-1}$ $C29^{-1}$ $H29B^{-1}$ 120.96 (15) $C26^{-1}$ $C29^{-1}$ $H29B^{-1}$ 121.9 (2) $C26^{-1}$ $C29^{-1}$ $H29C^{-1}$ 119.0 $H29A^{-1}$ $C29^{-1}$ $H29C^{-1}$ 119.0 $H29B^{-1}$ $C14^{-1}$ $C15^{-1}$ 119.01 (17) $O13^{-1}$ $S1^{-1}$ $C14^{-1}$ $O37 (19)$ $C20^{-1}$ $S1^{-1}$ $C14^{-1}$

O13—C8—C9—O1	1.3 (3)	Si1-C20-C25-C24	173.55 (16)
C7—C8—C9—O1	179.22 (17)	O13—Si1—C26—C28	56.95 (15)
O13—C8—C9—C4	-179.26 (16)	C14—Si1—C26—C28	175.28 (13)
C7—C8—C9—C4	-1.3 (3)	C20—Si1—C26—C28	-57.78 (16)
C7—C8—O13—Si1	78.3 (2)	O13—Si1—C26—C27	-61.85 (17)
C9—C8—O13—Si1	-103.83 (18)	C14—Si1—C26—C27	56.47 (19)
C14—Si1—O13—C8	21.23 (17)	C20—Si1—C26—C27	-176.58 (16)
C20—Si1—O13—C8	-99.27 (16)	O13—Si1—C26—C29	175.59 (15)
C26—Si1—O13—C8	145.81 (15)	C14—Si1—C26—C29	-66.09 (18)
O13—Si1—C14—C15	65.61 (18)	C20—Si1—C26—C29	60.85 (17)
C20—Si1—C14—C15	-176.04 (16)		

Fig. 2

