

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA

VERIFICACIÓN DEL MÓDULO ELÁSTICO DE BASES GRANULARES OBTENIDO A TRAVÉS DEL DEFLECTÓMETRO DE IMPACTO LIVIANO (LWD) EMPLEANDO CELDAS DE PRESIÓN

IGNACIO TÓMAS RODRÍGUEZ ZÚÑIGA

Tesis para optar al grado de Magister en Ciencias de la Ingeniería

Profesor Supervisor:

GUILLERMO THENOUX ZEBALLOS

SANTIAGO, ABRIL, 2018 © 2018, Ignacio Rodríguez Zúñiga

PONTIFICIA UNIVERSIDAD CATOLICA DE CHILE ESCUELA DE INGENIERIA

VERIFICACIÓN DEL MÓDULO ELÁSTICO DE BASES GRANULARES OBTENIDO A TRAVÉS DEL DEFLECTÓMETRO DE IMPACTO LIVIANO (LWD) EMPLEANDO CELDAS DE PRESIÓN

IGNACIO TOMÁS RODRÍGUEZ ZÚÑIGA

Tesis presentada a la Comisión integrada por los profesores:

GUILLERMO THENOUX ZEBALLOS

MARCELA CHAMORRO GINÉ

GABRIEL GARCÍA SAÁ

JULIO VERGARA AIMONE

Para completar las exigencias del grado de Magister en Ciencias de la Ingeniería

Santiago, abril, 2018

Dedicado a mi familia, gracias por su invaluable apoyo.

AGRADECIMIENTOS

En primer lugar, quiero agradecer a mis padres Luis y Luz y hermanos Gustavo y Javiera. Es difícil plasmar en un párrafo lo eternamente agradecido que estoy de ustedes, su cariño y entrega me permitieron ser la persona que soy hoy. Son un ejemplo de vida y no hubiera llegado a estas circunstancias sin su apoyo. Mis alegrías y logros están dedicados a ustedes.

A mi polola Paz quien estuvo presente desde el comienzo de mi etapa de posgrado. Tu amor, compañía y apoyo incondicional fueron imprescindibles para seguir día a día avanzando. Gracias por todas esas alegrías.

Quiero agradecer al Centro de Ingeniería Vial (Gonzalo y Pato) y su apoyo brindado durante el desarrollo de mi tesis tanto en la parte teórica como práctica. También agradezco haberme dado la oportunidad de ingresar a su equipo de trabajo.

También a los funcionarios ICC y mis compañeros de universidad con quienes pude compartir más de una conversación y siempre me brindaron una sonrisa o una palmada en la espalda para seguir adelante. Compartir un café con ustedes cada mañana hizo una importante diferencia y me hacía sentir a gusto en el Departamento.

Finalmente, quiero agradecer al profesor Guillermo Thenoux por haberme dado la oportunidad de ser su último alumno de posgrado. Definitivamente ha sido la etapa más dura de mi carrera, pero trajo consigo un aprendizaje invaluable. Definitivamente no hubiera sido lo mismo haber rendido el examen de grado que realizar la tesis y si tuviera que tomar la decisión de nuevo, esta sería la misma.

INDICE GENERAL

DED	ICAT	ORIAii
AGR	ADE	CIMIENTOSiii
INDI	CE E	DE TABLAS vi
INDI	CE E	DE FIGURAS viii
RESU	JME	N x
ABS	ΓRA	CT xi
1.	Intro	ducción1
	1.1.	Antecedentes Generales 1
	1.2.	Hipótesis
	1.3.	Objetivos
	1.4.	Metodología de Investigación 4
	1.5.	Organización de la Tesis 6
2.	Mete	odologías de Diseño Estructural de Pavimentos7
	2.1.	Conceptos Básicos
	2.2.	Métodos Empíricos 10
	2.3.	Métodos Mecanicistas
3.	Pará	metros y Propiedades Mecánicas de Bases Granulares
	3.1.	Coeficiente Estructural
	3.2.	Razón de Soporte California
	3.3.	Módulo Resiliente
	3.4.	Módulo de Reacción
4.	Equi	pos para determinar Capacidad de Soporte de Bases Granulares In Situ . 31
	4.1.	Equipos que determinan Capacidad de Soporte de forma indirecta 31
	4.2.	Deflectómetro de Impacto
	4.3.	Deflectómetro de impacto liviano

э.	Descripción de la Investigación	
	5.1. Diseño Experimental	
	5.2. Medición con Celdas de Presión in situ	51
	5.3. Construcción de Estructura de Prueba	56
	5.4. Medición con el LWD in situ	60
6.	Resultados	64
7.	Análisis de Resultados	73
	7.1. Coeficiente de variación del deflectómetro y de las celdas	73
	7.2. Verificación de Reproducibilidad de Celdas	76
	7.3. Retro Cálculo de Modulo Elástico	77
	7.4. Efecto Shell	81
8.	Conclusiones y Recomendaciones	
BIBI	LIOGRAFIA	89
A N	E X O S	93
A.	Análisis de Pavimentos Flexibles	
A. B.	Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos	
A. B.	Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos	
A. B.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados 	
А. В. С.	Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados Análisis Estadístico de Resultados de Celdas	
А. В. С.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados Análisis Estadístico de Resultados de Celdas C.1 Coeficiente de Variación LWD y Celda, Medición Indirecta 	
А. В. С.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados Análisis Estadístico de Resultados de Celdas C.1 Coeficiente de Variación LWD y Celda, Medición Indirecta C.2 Coeficiente de Variación LWD y Celda, Medición Directa 	
А. В. С.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados Análisis Estadístico de Resultados de Celdas C.1 Coeficiente de Variación LWD y Celda, Medición Indirecta C.2 Coeficiente de Variación LWD y Celda, Medición Directa C.3 Verificación de Celdas, Medición Directa 	
А. В. С. D.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados B.2 Análisis Estadístico de Resultados de Celdas C.1 Coeficiente de Variación LWD y Celda, Medición Indirecta C.2 Coeficiente de Variación LWD y Celda, Medición Directa C.3 Verificación de Celdas, Medición Directa Retrocálculo de f. 	
А. В. С. D.	 Análisis de Pavimentos Flexibles Ensayos de Caracterización de Suelos B.1 Descripción de Ensayos B.2 Análisis de Resultados Análisis Estadístico de Resultados de Celdas C.1 Coeficiente de Variación LWD y Celda, Medición Indirecta C.2 Coeficiente de Variación LWD y Celda, Medición Directa C.3 Verificación de Celdas, Medición Directa Retrocálculo de f D1 Valor f literatura 	

INDICE DE TABLAS

Tabla 2-1: Bandas Granulométricas para bases y subbases en Chile	8
Tabla 2-2: Límites de Consistencia o Atterberg	8
Tabla 2-3: Función de las bases y subbases	9
Tabla 3-1: Valores de CBR típicos para distintos suelos	22
Tabla 3-2: CBR mínimos para cada capa según normativa chilena	23
Tabla 3-3: Diferencia del Mr en suelos granulares y finos	25
Tabla 3-4: Correlaciones empíricas entre Mr y CBR	26
Tabla 4-1: Resumen de LWD y sus características, Money y Miller	37
Tabla 4-2: Valores de f de distribución de tensiones	40
Tabla 4-3: Propiedades de las estructuras utilizadas en la modelación	42
Tabla 5-1: Simbología de la matriz experimental	50
Tabla 5-2: Presión Aplicada para configuraciones de LWD	50
Tabla 5-3: Matriz Experimental	51
Tabla 5-4: Interpretación de cuenco de deflexión del LWD	62
Tabla 6-1: Resultados Estructura 1, medición indirecta	65
Tabla 6-2: Resultados Estructura 2, medición indirecta	66
Tabla 6-3: Resultados Estructura 3, medición indirecta	67
Tabla 6-4: Resultados Estructura 4, medición indirecta	68
Tabla 6-5: Resultados Estructura 1, medición directa	69
Tabla 6-6: Resultados Estructura 2, medición directa	70
Tabla 6-7: Resultados Estructura 3, medición directa	71
Tabla 6-8: Resultados Estructura 4, medición directa	72
Tabla 7-1: Coeficiente de Variación, LWD	74
Tabla 7-2: Coeficiente de Variación, Celdas de Presión	75
Tabla 7-3: Prueba t de medias para golpe directo	76
Tabla 7-4: Módulo Elástico subrasante 1 a partir de resultados de CDP	78
Tabla 7-5: Retro cálculo de valor f	80
Tabla 7-6: Módulo Elástico retro calculado para distintos valores de f	81
Tabla 7-7: Módulo Elástico Shell vs LWD	82
Tabla 7-8: Análisis de medias Módulo LWD y Shell	83
Tabla 7-9: Disminución de Módulo LWD, espesor base granular constante	85
Tabla 7-10: Disminución de Módulo LWD, CBR subrasante constante	85
Tabla B-1: Resultados Granulometría	100
Tabla B-2: Clasificación de Subrasante 1	100
Tabla B-3: Resultados Ensayo Módulo Resiliente	102
Tabla B-4: Factores de ajuste en fórmula de Módulo Resiliente	104
Tabla B-5: Resultados Ensayo Cono de Penetración sobre Subrasante 1, CBR>10%	104
Tabla B-6: Resultados Ensayo Cono de Penetración sobre Subrasante 2. CBR<10%	105
Tabla B-7: Resultados Ensayo de Cono de Arena en Base Granular	105
Tabla C-1: C.V. Estructura 1, medición indirecta	108

Tabla C-2: C.V. Estructura 2, medición indirecta	
Tabla C-3: C.V. Estructura 3, medición indirecta	
Tabla C-4: C.V. Estructura 4, medición indirecta	
Tabla C-5: C.V. Estructura 1, medición directa	
Tabla C-6: C.V. Estructura 2, medición directa	
Tabla C-7: Estructura 3, medición directa	
Tabla C-8: Estructura 4, medición directa	
Tabla D-1: Cálculo de Módulo, valor f literatura Estructura 1	119
Tabla D-2: Cálculo de Módulo, valor f literatura Estructura 2	
Tabla D-3: Cálculo de Módulo, valor f literatura Estructura 3	
Tabla D-4: Cálculo de Módulo, valor f literatura Estructura 4	
Tabla D-5: Valor f retro calculado, Estructura 1	
Tabla D-6: Valor f retro calculado, Estructura 2	
Tabla D-7: Valor f retro calculado, Estructura 3	
Tabla D-8: Valor f retro calculado, Estructura 4	

INDICE DE FIGURAS

	Pág.
Figura 1-1: Metodología de Investigación	4
Figura 2-1: Esquema de pavimento a) flexible y b) rígido	7
Figura 2-2: Ficha de evaluación durante la primera prueba AASHTO	10
Figura 2-3: Modelo de elementos finitos	13
Figura 2-4: Transformación de Odemark	16
Figura 2-5: Interfaz gráfica software MePads	17
Figura 3-1: Correlaciones Coeficiente Estructural Base Granular	19
Figura 3-2: Correlaciones Coeficiente Estructural Subbase Granular	20
Figura 3-3: Representación del Módulo resiliente	24
Figura 3-4: Ensayo de plato de carga in situ	28
Figura 3-5: Pavimento Rígido y Módulo de Reacción combinado k _c	30
Figura 4-1: Esquema del equipo CDP	32
Figura 4-2: Clegg Hammer	33
Figura 4-3: Ensayo de CBR in situ	34
Figura 4-4: Esquema de uso de FWD	35
Figura 4-5: Deflectómetro de Impacto Liviano LWD "Keros Prima100 Portátil"	36
Figura 4-6: Medición de deflexión (a) geófono y (b) acelerómetro	38
Figura 4-7: Pulsos de fuerza y deformación medidos por el LWD	
Figura 4-8: Distribución de esfuerzos en suelo (a) cohesivo y (b) granular	40
Figura 4-9: Sensores de deformación adicionales	41
Figura 4-10: Esquema de estructura utilizada en la modelación	42
Figura 4-11: Tensiones generadas en la base granular para diferentes estructuras	43
Figura 4-12: Efecto de la humedad del suelo en las mediciones del LWD	45
Figura 4-13: Relación entre Módulo Prima y Módulo Zorn	46
Figura 5-1: Esquema del Ensayo	48
Figura 5-2: Estructuras de Prueba	49
Figura 5-3: Celdas de presión (a) RST Instrument (b) Kyowa (c) Geokon (d) Teks	can .52
Figura 5-4: Celdas de Presión, Modelo Geokon 3500-1-250kPa	53
Figura 5-5: Celda de Presión conectado a Datalogger	53
Figura 5-6: Esquema del tramo de pruebas	54
Figura 5-7: Lectura de las celdas de presión	55
Figura 5-8: Celdas de presión vs análisis mePads	56
Figura 5-9: Ubicación del experimento	57
Figura 5-10: Dimensiones de las Cajas	57
Figura 5-11: Distribución de Celdas de Presión dentro de la Caja	58
Figura 5-12: Diagrama de verificaciones de tensiones en estructura de pavimento.	59
Figura 5-13: Colocación de Celdas en estructura de prueba	59
Figura 5-14: Compactación de la estructura de prueba	60
Figura 5-15: Ensayo con LWD y Celdas (a) medición directa y (b) medición indire	ecta.61
Figura 7-1: Módulo LWD vs Módulo Celda, f recomendados por literatura	79
Figura 7-2: Módulo LWD vs Módulo Celda, f por celda	80

Figura 7-3: Resultados Módulo Shell vs Módulo LWD	82
Figura 7-4: Correlación Módulo LWD y Módulo Elástico Combinado	
Figura A-1: Simetría Axial de esfuerzos en espacio elástico semi infinito	95
Figura B-1: Esquema de Ensayo CDP	99
Figura B-2: Ensayo Límite Líquido con Instrumento de Casagrande	100
Figura B-3: Resultado Ensayo Proctor Modificado B.G.	101
Figura B-4: Probeta ensayo Módulo Resiliente	
Figura B-5: Probeta N°1 Ensayo Módulo Resiliente	103
Figura B-6: Probeta N°2 Ensayo Módulo Resiliente	
Figura B-7: Verificación de Densidad: Cono de Arena	106
Figura C-1: Celda 1 vs Celda 2, Estructura 1, golpe directo	117
Figura C-2: Celda 1 vs Celda 2, Estructura 2, golpe directo	117
Figura C-3: Celda 1 vs Celda 2, Estructura 3, golpe directo	118
Figura C-4: Celda 1 vs Celda 2, Estructura 4, golpe directo	118

RESUMEN

En los últimos años el Deflectómetro de Impacto Liviano (LWD por su sigla en inglés) ha ganado popularidad ya que permite obtener el Módulo Elástico de bases y subbases granulares de pavimentos in situ de manera fácil y rápida. No obstante, hay autores que cuestionan el alcance de estos resultados. No existe evidencia en la literatura que valide el uso de este Módulo para la evaluación de la capacidad de soporte de las capas granulares del pavimento. Se construyeron estructuras de prueba compuestas por una base granular de material seleccionado sobre subrasantes de CBR conocidos y se instalaron celdas de presión en la interfaz de ambas capas con el fin de verificar la validez del Módulo obtenido a través de la carga aplicada por el LWD. Se demostró que se puede utilizar el Módulo Elástico del LWD para el cálculo de tensiones. Se determinaron coeficientes de ajustes (f) en función del tipo de estructura y la carga aplicada. Estos factores se recomiendan para realizar cálculos preliminares en estructuras de similares características a las del presente trabajo. Se demostró que las mediciones del LWD son influenciadas por las propiedades mecánicas de la subrasante y, del espesor de la base granular de forma similar al cálculo de Módulo Compuesto de la Formula Shell.

Palabras Claves: Deflectómetro de Impacto Liviano, Celdas de Presión, Bases Granulares, Módulo Elástico

ABSTRACT

During the last few years the Light Weight Deflectometer (LWD) has gained popularity because the equipment allows obtaining the in situ Elastic Modulus of granular bases and subbases easily and quickly. However, authors suggest that the Elastic Modulus obtained from the LWD must not be used for pavement structural analysis. There is no evidence in the literature that validate the use of the LWD Elastic Modulus for the evaluation of the bearing capacity in the pavement granular base coarse. Therefore, different bi-layers pavement structures were built. Between the granular base and the soil, pressure cells were placed in order to verify if the LWD Modulus with analytical models can predict the pressure at the subgrade soil level under the LWD loads. Calibration values were obtained (f value) in order to calculate the pressure at the subgrade soil level in similar pavement structures. The measures of the LWD are influenced by the bearing capacity of the subgrade layer and the height of the granular base coarse in a similar way than the Compound Modulus from the Shell Theory.

Key words: Light Weight Deflectometer, Pressure cells , base coarses, elastic modulus

1. INTRODUCCIÓN

1.1. Antecedentes Generales

Existen diversas técnicas que permiten determinar el Módulo Elástico in situ de las distintas capas que conforman la estructura de un pavimento. Una de las principales técnicas consiste en aplicar una carga estándar sobre la superficie del pavimento y realizar mediciones de deflexión para luego, a través de modelos analíticos, retro calcular el Módulo Elástico de las diferentes capas de la estructura de un pavimento. Entre las técnicas más reconocidas se encuentran las de carga estática tales como el Plato de Carga y la Viga Benkelman y las de impacto tales como el Deflectómetro de Impacto (FWD) por puntos discretos y el Deflectómetro de Impacto Liviano (LWD). La principal diferencia entre el FWD y el LWD tiene relación con el nivel de carga aplicada sobre la estructura a evaluar. El FWD aplica desde 12 kN hasta 120 kN y se puede utilizar para determinar el Módulo Elástico de cada una de las capas de una estructura de pavimento. El LWD aplica cargas desde 5 kN hasta 17 kN y está diseñado para evaluación directa de bases granulares o suelos de subrasante.

El LWD ha ganado popularidad en los últimos años ya que permite la obtención del Módulo Elástico in situ de manera fácil, rápida y no destructivamente con una alta repetitividad y reproducibilidad (Fleming 2006, Osorio 2008 y Nazzal. 2016). A partir de mediciones con el LWD es posible verificar la capacidad estructural de las capas a través del cálculo del Módulo Elástico. No obstante, otros autores tales como Edwards (2009) y Thenoux (2016) indican que el Módulo obtenido a partir de las mediciones

del LWD es un indicador de la homogeneidad de la construcción en lugar de un valor efectivo de Módulo Elástico.

Los métodos analíticos que se utilizan para el cálculo del estado de tensiones y deformaciones utilizan el Módulo Elástico el cual debería corresponder al Módulo Elástico efectivo in-situ. El equipo LWD sólo utiliza la medida de deflexión superficial para el cálculo del Módulo Elástico, pero no garantiza que a través de dicho Módulo se puedan obtener el estado de tensiones y deformaciones efectivas que experimentan las capas cuando están sometidas a cargas.

Osorio (2008), demostró en una investigación previa que el Módulo Elástico obtenido a través del LWD disminuye mientras menor sea el Módulo de la subrasante, concordando con la teoría de Shell (Shell, 1978) la cual indica que el Módulo Elástico de una base granular es dependiente del espesor de dicha base y del Módulo de la subrasante. Por lo anterior, se considera necesario conocer el alcance de las mediciones que se realizan utilizando el LWD y cuantificar esta disminución.

La presente investigación propone verificar la validez del Módulo del LWD a través del empleo de celdas de presión. Estos dispositivos se pueden instalar en la interfaz de la base granular y la subrasante (o en cualquier otro punto de interés) y miden la tensión vertical ante la aplicación de cargas de tránsito, LWD u otras (Halles, 2012). La medición directa de dicha tensión permitirá verificar de forma efectiva el valor del Módulo Elástico obtenido a través del LWD.

1.2. Hipótesis

En base a lo expuesto, las hipótesis planteadas para la presente investigación son las siguientes:

- El uso de celdas de presión permite verificar la validez del Módulo Elástico obtenido por el Deflectómetro de Impacto Liviano.
- La capacidad de soporte de la subrasante y el espesor de la base granular influyen en el valor efectivo de Módulo Elástico del LWD en bases granulares.

1.3. Objetivos

El objetivo general de la investigación es conocer el alcance del Módulo Elástico de bases granulares obtenido a través del LWD mediante el uso de celdas de presión. Los objetivos específicos son:

- Adoptar celdas de presión en estructuras de pavimentos de dos capas y obtener el estado tensional provocado por el LWD
- Calibración del modelo analítico lineal elástico bicapa propuesto por Odemark
- Verificar el efecto que tiene la capacidad de soporte de la subrasante y el espesor de la base granular en las mediciones del LWD (Efecto Shell)

1.4. Metodología de Investigación

La Metodología de Investigación se presenta en la Figura 1-1.

Figura 1-1: Metodología de Investigación

Estas etapas se describen brevemente a continuación:

Etapa 0 y 1: Revisión Bibliográfica y Propuesta de Investigación.

La investigación comienza con la revisión del estado de la práctica de las metodologías de control de calidad de bases granulares, en particular se estudió el LWD y cómo a partir de las mediciones de este equipo se determina el Módulo Elástico en las bases y subbases granulares in situ. También se estudió el funcionamiento de las celdas de presión y como éstas podrían ayudar a cumplir los objetivos de la investigación. La revisión bibliográfica estuvo presente durante toda la investigación.

Etapa 2: Diseño Experimental.

Corresponde a la definición de las variables experimentales. Se consideraron materiales y espesores de capas granulares que se utilizan típicamente en la construcción de caminos en Chile.

Etapa 3: Laboratorio.

Se realizaron ensayos de laboratorio para corroborar que los suelos a utilizar en la estructura de prueba cumplen las características definidas en el diseño experimental. También se realizaron ensayos de Módulo Resiliente en laboratorio. Estos valores se utilizaron como referencia para los valores de Módulos Elásticos obtenidos en terreno. Etapa 4, 5 y 6: Terreno.

Se calibraron las celdas de presión utilizando distintos pesos estáticos, se realizó el ensayo de cono de arena para verificar la correcta construcción de la estructura de prueba y se realizaron mediciones utilizando el LWD y las celdas de presión simultáneamente.

Etapa 7: Procesamiento y Análisis de Resultados.

Se estudió la variabilidad de los resultados del experimento. Se retro-calculó el Módulo Elástico a partir de las mediciones del LWD y de las celdas de presión y se propusieron valores de ajuste para las ecuaciones de retro cálculo de Módulo.

Etapa 8: Conclusiones y Recomendaciones.

En base a los resultados y análisis obtenidos de las etapas anteriores, se exponen las principales conclusiones y recomendaciones desprendidas de esta investigación relacionadas con el Módulo Elástico de bases granulares obtenido a partir de las mediciones del LWD y de las celdas de presión. Se exponen los principales factores que afectaron las mediciones del LWD y las celdas. Adicionalmente, se proponen futuras líneas de investigación.

1.5. Organización de la Tesis

La presente tesis contiene 8 capítulos, los primeros cuatro capítulos corresponden a la revisión bibliográfica de la problemática a estudiar. En el primer capítulo se encuentran los antecedentes generales, las hipótesis, objetivos, metodología de investigación y la organización de la tesis. El segundo capítulo, presenta las metodologías de diseño de pavimentos. El tercer capítulo destaca los parámetros de capacidad de soporte de las bases y subbases granulares. El cuarto capítulo expone sobre la obtención de dichos parámetros in situ mediante el uso de distintos equipos, destacando el uso del deflectómetro de impacto liviano que, a diferencia de los métodos tradicionales, entrega un parámetro analítico, el Módulo Elástico.

Los capítulos quinto y sexto presentan la descripción de la investigación, el diseño experimental, las celdas de presión a utilizar en la investigación, la construcción de las estructuras de pruebas y las mediciones con los el LWD y las Celdas de Presión. El capítulo sexto presenta los resultados obtenidos.

El capítulo séptimo presenta el análisis realizado con los resultados obtenidos en terreno con el LWD y las celdas de presión. Finalmente, el octavo capítulo presenta las principales conclusiones y recomendaciones desprendidas de la presente investigación.

2. METODOLOGÍAS DE DISEÑO ESTRUCTURAL DE PAVIMENTOS

2.1. Conceptos Básicos

De acuerdo con el Ministerio de Obras Públicas de Chile (2016), un pavimento corresponde a un sistema estructural formado por una o más capas de materiales seleccionados, estabilizados, cementadas y/o tratados, que se colocan sobre el suelo existente (o subrasante) con el propósito de resistir las cargas impuestas por el tránsito de vehículos y la acción de factores climáticos; lo anterior en condiciones de comodidad y seguridad aceptables para el usuario durante su periodo de uso. Los pavimentos más comunes son los flexibles (con capa de rodadura de asfalto) y los rígidos (con capa de rodadura de hormigón). La Figura 2-1 presenta un esquema simplificado de un pavimento flexible y de uno rígido.

Figura 2-1: Esquema de pavimento a) flexible y b) rígido

Un elemento común de las estructuras de pavimentos son las bases y las subbases granulares las cuales deben cumplir especificaciones similares en todos los países del mundo. Las Tablas 2-1 y 2-2, presentan especificaciones del Manual de Carreteras de Chile para la construcción de bases y subbases. Luego, se presentan las funciones de las bases y subbases varían según el tipo de pavimento (Tabla 2-3).

Abertura de Tamiz (mm)	TM-50a	TM-50b	TM-50c	TM-40a	TM-40b	TM-40c	TM-25
50	100	100	100				
40	-	70-100	-	100	100	100	
25	55-100	55-85	70-100	70-100	80-100	80-100	100
20	-	45-75	60-90	50-80	-	-	70-100
10	30-75	35-65	40-75	25-50	50-80	50-80	50-80
5	20-65	25-55	30-60	10-30	35-65	35-65	35-65
2,5		-	-	5-15	-	-	-
2	-	15-45	15-45	-	25-50	25-50	25-50
0,5	5-30	5-25	10-30	0-5	10-30	15-30	10-30
0,08	0-20	0-10	0-15	0-3	5-15	5-20	0-15

Tabla 2-1: Bandas Granulométricas para bases y subbases en Chile

Tabla 2-2: Límites de Consistencia o Atterberg

	Límite Líquido	Índice de Plasticidad
Subbase	Máx. 35	Máx. 8
Base Estabilizada	Máx. 25	Máx. 6
Capa de Rodadura		
- Regiones I a III	Máx. 35	5-10
- Regiones IV a VI	Máx. 35	4-9
- Regiones VII a X	Máx. 35	3-8
- Regiones XI a XII	Máx. 35	Máx. 7

Pavimento	os Flexibles	Pavimentos Rígidos		
Base	Subbase	Subbase		
 Incremento de capacidad de soporte de carga Mejora el drenaje Material nivelante Sirve como superficie de apoyo para los equipos de construcción 	 Incremento de capacidad de soporte de carga Prevención contra el congelamiento de la subrasante Homogenizar el suelo de apoyo Reducir el costo de la base 	 Homogenización del suelo de fundación Prevención del bombeo (pumping) Protección del congelamiento de subrasante Mejora el drenaje Prevención contra cambios volumétricos de la subrasante Incremento de capacidad estructural (en base cementadas) Sirve como superficie de apoyo para los equipos de construcción 		

Tabla 2-3: Función de las bases y subbases (Thenoux, 2016)

La capacidad de soporte de las capas estructurales de bases y subbases se ha expresado históricamente a través del ensayo empírico California Bearing Ratio (CBR), no obstante, en las últimas dos décadas los métodos de diseño estructural han incorporado el valor del Módulo.

Para el diseño estructural de pavimentos existen básicamente dos tipos de métodos:

- a) Métodos empíricos
- b) Métodos analíticos o mecanicistas.

2.2. Métodos Empíricos

Los primeros métodos de diseño estructural de pavimentos fueron de tipo empírico. Países como Inglaterra, Francia y Australia han desarrollado sus propios métodos, no obstante, el método empírico que ha sido utilizado por la gran mayoría de los países del mundo, incluyendo Chile, es el método AASHTO (en la actualidad el método AASHTO 93).

El método AASHTO deriva de los resultados de un estudio realizado en Illinois, Estados Unidos entre los años 1958 y 1960. Se construyeron pistas de prueba compuestas por distintas estructuras tanto de asfalto y hormigón las cuales fueron sometidas a un tránsito equivalente a 1 millón de ejes estándar. Periódicamente, un panel de expertos evaluaba los pavimentos según su nivel de serviciabilidad, asignando nota 5 a los tramos perfectamente lisos y 0 a los que eran considerados intransitables (Figura 2-2).

Figura 2-2: Ficha de evaluación durante la primera prueba AASHTO

Las fórmulas oficiales para el diseño del método AASHTO fueron publicadas en 1972. Luego, AASHTO realizaró varias revisiones hasta llegar a la fórmula publicada en 1993, la cual se utiliza en la actualidad por un gran número de países tanto para el diseño de estructuras de hormigón o asfalto. Las fórmulas para el diseño de estructuras de asfalto y hormigón se presentan a continuación:

• Formula AASHTO Asfalto

$$\log_{10}(W_{18}) = Z_r \cdot S_o + 9,36 \cdot \log_{10}(SN+1) - 0,20 + \frac{\log_{10}\left[\frac{p_i - p_f}{4,2 - 1,5}\right]}{0,40 + \frac{1094}{(SN+1)^{5,19}}}$$
$$+ 2,32 \cdot \log_{10}[M_r] - 8,07 \qquad (2.1)$$
$$SN = a_1 D_1 + a_2 D_2 m_2 + a_3 D_3 m_3 \qquad (2.2)$$

Donde:

Z_r: Nivel de confiabilidad

So: Desviación Estándar Combinada

- SN: Número Estructural (in)
- p_i: Índice de serviciabilidad inicial
- pf: Índice de serviciabilidad final
- a_i: Coeficiente estructural
- m_i: Coeficiente de drenaje
- M_r: Módulo Resiliente de la subrasante

• Formula AASHTO Hormigón

$$\log(W_{18}) = Z_{\rm r} \cdot S_{\rm o} + 7,35 \cdot \log({\rm D} + 1) - 0,06 + \frac{\log_{10} \left[\frac{p_{\rm i} - p_{\rm f}}{4,5 - 1,5} \right]}{1 + \frac{1,624 \cdot 10^7}{({\rm D} + 1)^{8,46}}} + (4,22 - 0,32 \cdot p_{\rm f}) \left[\frac{R_{mf} \cdot C_d \cdot (D^{0,75} - 1,132)}{215,63 \cdot J \cdot \left[D^{0,75} - \frac{18,42}{\left(\frac{E}{K_c}\right)^{0,25}} \right]} \right]$$
(2.3)

Donde:

W18: Ejes equivalentes de Diseño

D: Espesor capa de hormigón (in)

C_d: Coeficiente de drenaje

R_{mf}: Resistencia media a la flexotracción (psi)

E: Módulo Elástico del hormigón (psi)

kc: Módulo de reacción combinado

J: Coeficiente de transferencia de carga

Ambas fórmulas utilizan como parámetro de diseño para la capacidad de soporte de la subrasante, en donde para el diseño de asfalto se utiliza el Módulo Resiliente y para el diseño en hormigón se utiliza el Módulo de Reacción. Para la capacidad de soporte de las bases y subbases la fórmula AASHTO para asfalto utiliza el parámetro "Coeficiente Estructural" y para hormigón el parámetro de Módulo de Reacción Combinado.

2.3. Métodos Mecanicistas

Los métodos mecanicistas determinan los espesores de las capas calculando el estado de tensiones y deformaciones críticas de la estructura de pavimento. Las tensiones y deformaciones se calculan mediante métodos que utilizan la teoría lineal elástica o elementos finitos (Figura 2-3). Estos métodos de cálculo requieren como dato de entrada los Módulos de las distintas capas que conforman la estructura de pavimento.

Figura 2-3: Modelo de elementos finitos (elaboración propia)

Conociendo las tensiones y deformaciones en los puntos críticos de la estructura, se calcula la vida útil del pavimento para la fatiga producida por la repetición de cargas de tránsito. En la literatura se encuentra un gran número de funciones de fatiga tanto para pavimentos de asfalto como de hormigón, las cuales siguen el modelo de la Fórmula 2.4. La presente tesis no tiene como objetivo estudiar y analizar los diferentes modelos de fatiga propuestos para el diseño de pavimentos.

$$EE_{adm}(suelo) = \alpha \cdot \varepsilon_z^{-\beta}$$
(2.4)

Donde:

EE_{adm}(suelo): Ejes equivalentes admitidos por el suelo

 α y β : Factores de ajuste de modelo empírico

 ϵ_z : Deformación unitaria vertical en subrasante

En general los métodos mecanicistas utilizan el modelo analítico de Boussinesq (Papagiannakis, 2008) para el cálculo de tensiones y deformaciones de la estructura de pavimento. Los supuestos que considera la solución son los siguientes:

- Las capas no tienen peso propio
- Material isotrópico, homogéneo, lineal elástico
- Superficie horizontal infinita.

El material, al ser lineal elástico dentro de un rango de esfuerzos determinado, se puede modelar utilizando Módulo Elástico (E) y Razón de Poisson (v). La solución de Boussinesq permite modelar cargas de manera puntual o alternativamente como una carga distribuida en un área circular, esta segunda expresión corresponde al resultado de la integral de la carga puntual en un área de radio conocido. Las demás relaciones constitutivas se encuentran en el Anexo A:

• Modelo de Carga puntual

$$\sigma_{zz} = \frac{3Pz^3}{2\pi(z^2 + r^2)^{5/2}} \tag{2.5}$$

Donde:

 σ_{zz} : Tensión vertical (Pa)

P: Carga vertical P aislada (N)

z: Profundidad del punto a evaluar (m)

r: Desviación de la carga vertical (m)

• Modelo de Distribución Circular

$$\sigma_{zz} = q \left(1 - \frac{1}{\left(1 + \left(\frac{a}{z}\right)^2\right)^{\frac{3}{2}}} \right) = q \cdot J$$
(2.6)

Donde:

q: Carga superficial uniformemente distribuida en un círculo de radio r (Pa)

a: Radio de la superficie de carga (m)

Si la estructura está compuesta por una sola capa, las fórmulas de tensiones se pueden usar directamente. Luego, la solución de dos capas consiste en una capa de espesor finito con propiedades elásticas E_1 y v_1 ubicada sobre otra capa de espesor infinito de propiedades elásticas E_2 y v_2 . Odemark propuso el método de espesores equivalentes en función de las propiedades elásticas de ambas capas. El método consiste en transformar el espesor "h" de la capa superior en un espesor equivalente "h_e" (Figura 2-4). La expresión de la transformada está dada por:

$$h_e = f \cdot \sqrt[3]{\frac{E_1}{E_2} x \frac{1 - v_2^2}{1 - v_1^2}} \cdot h$$
(2.7)

Donde:

h_e: Espesor equivalente de la capa superior (cm)

h: Espesor real de la capa superior (cm)

E1: Módulo Elástico de la capa superior (MPa)

E2: Módulo Elástico de la capa inferior (MPa)

f: Factor de ajuste, que toma valores entre 0,8 y 1,1.

Figura 2-4: Transformación de Odemark (Ullidtz, 1999)

Para sistemas bicapa se utiliza un valor f igual 0,9 y para sistemas multicapas se utiliza el valor de 1,0 (Ullidtz, 1998). Si el espesor de la primera capa es menor o igual que el radio de la carga aplicada en la superficie, el factor f se determina de la siguiente manera

$$f = 1,1 \cdot (\frac{a}{h_1})^{0,3} \tag{2.8}$$

Existen varios softwares que permiten el análisis estructural de estructuras multicapas de pavimentos tales como mePads, Bisar, ELSYM5, WFW, entre otros. Para esta investigación se utilizó el software mePads. MePads fue desarrollado por CSIR

Transportek, Sudáfrica con el objetivo de apoyar el análisis y diseño de estructuras de pavimentos por medio de análisis empíricos y mecanicistas. El software permite el cálculo de tensiones y deformaciones en cualquier punto de la estructura utilizando la teoría de elasticidad y también puede estimar la vida útil del pavimento mediante regresiones obtenidas de experimentos de envejecimiento acelerado en estructuras de pavimentos. El software cuenta con una interfaz gráfica amigable para el usuario (Figura 2-5).

Figura 2-5: Interfaz gráfica software MePads

En resumen, los métodos de diseño utilizan parámetros de la capacidad estructural de los suelos, ya sea: CBR, Módulo Resiliente, Modulo de Reacción, Coeficiente Estructural o Módulo Elástico.

3. PARÁMETROS Y PROPIEDADES MECÁNICAS DE BASES GRANULARES

Los parámetros de capacidad de soporte de materiales para capas de pavimento se pueden obtener a través de ensayos de laboratorio, ensayos de terreno o mediante correlaciones. A continuación, se presenta una descripción de los principales parámetros que utilizan las fórmulas de diseño estructural de pavimentos, coeficiente estructural, CBR, Módulo Resiliente y Módulo de Reacción.

3.1. Coeficiente Estructural

Los coeficientes estructurales son parámetros que se asignan a cada capa de la estructura de pavimento según el diseño AASHTO 93 (Formula 2.2). Estos parámetros dependen de las propiedades mecánicas de los materiales (Módulo Resiliente). El coeficiente estructural de bases y subbases granulares, a diferencia del CBR o los valores de Módulo, no se puede obtener directamente mediante ensayos de laboratorio o terreno sino mediante correlaciones empíricas. La experiencia y conocimiento de los diseñadores es fundamental en la elección del coeficiente, ya que este depende, además del valor de Módulo Resiliente, del espesor de la capa, de la subrasante y de la posición relativa de la capa. Por ejemplo, si una capa de alta rigidez es colocada sobre una capa de rigidez muy inferior puede resultar en una descompactación de la capa superior y en consecuencia una disminución de la capacidad estructural de la capa superior (AASHTO, 1993).

AASHTO 93 recomienda utilizar un valor de 0,14 para las bases granulares, valor que corresponde a una base granular de CBR 100%. Luego, es posible obtener el

coeficiente mediante la carta de la Figura 3-1, la cual es el resultado de varios estudios de laboratorio. Alternativamente, si es posible realizar el ensayo de Módulo Resiliente, AASHTO sugiere utilizar la siguiente fórmula:

$$a_2 = 0.0249 \cdot \log(Mr_{BG}) - 0.977 \tag{3.1}$$

Donde:

a2: Coeficiente estructural de base granular

Mr_{BG}: Módulo Resiliente de la base granular (psi)

Figura 3-1: Correlaciones Coeficiente Estructural Base Granular

AASHTO 93 recomienda utilizar un valor de 0,11 para las subbases granulares, valor que corresponde a una subbase granular de CBR 30%. Luego, es posible obtener el coeficiente mediante la carta de la Figura 3-2, la cual fue integrada a partir de varios estudios laboratorio. Alternativamente, si es posible realizar el ensayo de Módulo Resiliente, AASHTO sugiere utilizar la siguiente fórmula:

$$a_3 = 0.0227 \cdot \log(Mr_{sbG}) - 0.839 \tag{3.2}$$

Donde:

a3: Coeficiente estructural de subbase granular

MrsbG: Módulo Resiliente de subbase granular (psi)

Figura 3-2: Correlaciones Coeficiente Estructural Subbase Granular

En Chile, el Ministerio de Obras Públicas de Chile (2016) recomienda utilizar los valores de 0,13 y 0,12 para para bases y subbases granulares respectivamente, los cuales se obtienen a partir de las siguientes ecuaciones:

$$a_2 = 0.032 \cdot (CBR)^{0.32} \tag{3.3}$$

$$a_3 = 0.058 \cdot (CBR)^{0.19} \tag{3.4}$$

Donde:

CBR: Valor de Soporte California, en inglés California Bearing Ratio (%)

En la Guía AASHTO 93 y en el Manual de Carreteras se pueden encontrar los coeficientes estructurales de las capas asfálticas, bases cementadas y bases estabilizadas con asfalto para el diseño de pavimentos flexibles. La aparición de nuevos materiales de construcción de caminos requiere la obtención de estos parámetros. Una metodología de obtención y recalibración de coeficiente estructural para pavimentos flexibles se presenta en el estudio realizado por Peters-Davis y Timm (2009).

En resumen, el número estructural es un parámetro que indica el aporte estructural de cada una de las capas que conforman la estructura de pavimento para la Fórmula de diseño AASHTO. Sin embargo, los estudios para la obtención de nuevos coeficientes estructurales requieren una alta inversión de tiempo y recursos y los resultados no presentan mayores diferencias con los coeficientes originales o en muchos casos son muy difíciles de interpretar.

Finalmente, el coeficiente estructural al ser un parámetro empírico no permite realizar un análisis más profundo de la estructura de pavimento como, por ejemplo, la determinación del estado de tensiones y deformaciones. Para ello, es necesario un estudio más profundo de las propiedades mecánicas de las bases y subbases granulares.

3.2. Razón de Soporte California

La Razón de Soporte California (CBR) es un método desarrollado por O. J. Portner del Departamento de Carreteras del estado de California con el objetivo de determinar el desempeño estructural de los suelos. El CBR corresponde a una medida relativa de resistencia al corte en condiciones particulares carga, por lo tanto, es considerado un ensayo empírico. El procedimiento se puede encontrar en la norma ASTM D1883-16: "Standard Test Method for California Bearing Ratio (CBR) of Laboratory-Compacted Soils" o en el Manual de Carreteras sección 8.102.11: "Suelos: Método de Ensayo CBR (Razón de Soporte California)". La fórmula del CBR se presenta a continuación:

$$CBR = \frac{Carga que produce una penetración de 0,1" (ó 0,2") en un suelo}{Carga que produce una penetración de 0,1" (ó 0,2") en un suelo patron} \cdot 100\% (3.5)$$

La Tabla 3-1 presenta valores de CBR típicos para distintos suelos según la clasificación USCS. De la tabla se desprende que los suelos que presentan mejor desempeño mecánico son los granulares gruesos, en particular las gravas.

Tabla 3-1: Valores de CBR típicos para distintos suelos (Yoder y Witczak, 1975)

División Mayor		Clasificación USCS	Nombre	CBR (%)	
ruesos		GW	Grava o grava arenosa, bien graduada	60-80	
	Grava	GP	Grava o grava arenosa, pobremente graduada	35-60	
		GU	Grava o grava arenosa, uniformemente graduada	25-50	
sə.		GM Grava limosa		40-80	
ular		GC	Grava arcillosa	20-40	
ran	Arena	SW	Arena o Arena granular, bien graduada	20-40	
5 S		SP	Arena o Arena granular, pobremente graduada	15-25	
Suelos		Arena SU		Arena o arena granular, uniformemente graduada	10-20
_		SM Arena limosa		20-40	
		SC	Arena arcillosa	10-20	
ou	Limos y	ML	Limo	5-15	
o fi	Arcillas	CL	Arcillas	5-15	
ran	LL<50	OL	Limo orgánico o arcilla orgánica	4-8	
de g	Limos v	MH	Limo de alta plasticidad, limo Elástico	4-8	
os (Arcillas LL	rcillas LL CH Arcilla de alta plasticidad		3-5	
Suel	> 50	ОН	Arcilla orgánica, Limo orgánico	3-5	

En general, las normas internacionales establecen un CBR 80 a 100% y de 20 a 60% para las bases y subbases respectivamente. En Chile, el CBR se utiliza para la

evaluación de la capacidad de soporte de suelos de subrasante y para la especificación técnica de bases y subbases (INN, 1999). Los requerimientos para Chile establecidos en el Manual de Carreteras se presentan en la Tabla 3-2.

Tabla 3-2: CBR mínimos para cada capa según normativa chilena (Ministerio de Obras Públicas de Chile, 2016)

	Pavimentos Rígidos		
Base	Subbase	Subrasante	Subbase
CBR > 80%	CBR > 40%	CBR > 10%	CBR > 50%

3.3. Módulo Resiliente

Los suelos de las bases y subbases tienen una respuesta elastoplástica ante los ciclos de carga y descarga impuestos por el tránsito. La Figura 3-3 presenta una gráfica con los resultados típicos del ensayo de Módulo Resiliente; se puede observar que a medida que aumenta el número de ciclos, la deformación permanente por ciclo disminuye hasta prácticamente desaparecer en los ciclos finales. Una vez alcanzado el rango donde no hay avance significativo en la deformación plástica, se define el Módulo Resiliente (Mr) como el cociente entre magnitud del esfuerzo desviador en comprensión triaxial y la deformación axial recuperable:

$$M_{\rm r} = \frac{\sigma_{\rm d}}{\varepsilon_{\rm 1,r}} = \frac{\sigma_{\rm 1} - \sigma_{\rm 3}}{\varepsilon_{\rm 1,r}} \tag{3.6}$$

Dónde:

Mr: Módulo resiliente

 σ_d : Esfuerzo desviador

 $\varepsilon_{1,r}$: Deformación principal mayor recuperable en eje radial

 σ_1 : Mayor tensión principal

 σ_3 : Menor tensión principal

Figura 3-3: Representación del Módulo resiliente (Garnica, Gómez & Sesma, 2002)

"Un buen pavimento no debe deformarse más de 20 a 30 mm en 20 años. Si la base y subbase toman parte de la deformación, se estima que la subrasante no debería deformarse más de 10 mm. Por lo tanto, en dicho rango de deformaciones, el suelo no estará sometido a esfuerzos de corte y más bien estará trabajando en el rango Elástico. Esto permite aplicar la teoría clásica de tensión deformación en el diseño de pavimentos y emplear el Módulo Elástico en las ecuaciones de diseño." (Thenoux, 2016).

El Módulo Resiliente en los suelos depende del nivel de carga axial, el grado de confinamiento (a mayor confinamiento mayor Módulo), el nivel de compactacióndensificación y de factores intrínsecos del suelo tales como graduación, contenido de finos y humedad al momento de compactar (Papagiannakis & Masad, 2008). Petersen
et al. (2011) indican que el Módulo Resiliente es proporcional al esfuerzo desviador en suelos granulares e indirectamente proporcional en suelos finos. En la Tabla 3-3 se presenta un resumen elaborado por Thenoux (2016) con las principales diferencias del Módulo Resiliente en suelos granulares y finos.

	Suelos Granulares: A1-b, A-2 y A-3 o	Suelos finos: A-4, A-5 y A-6 o			
	Material Tipo I	Material Tipo II			
•	Mr depende de la tensión de	•	Mr es muy dependiente de la tensión		
	confinamiento		desviadora		
•	Mr depende poco del número de ciclos	•	Mr es dependiente del contenido de		
	de carga (200)		humedad. AASHTO sugiere corregir		
•	Mr aumenta con densidad y angularidad		por efecto estacional		
	de los áridos				
•	Mr disminuye cerca del límite de				
	saturación				

Tabla 3-3: Diferencia del Mr en suelos granulares y finos (Thenoux, 2016)

Sin embargo, en la práctica las capas de una estructura de pavimento se especifican con el valor CBR debido a que su medición es más fácil y rápida comparada al método para obtener el Módulo Resiliente (Ministerio de Obras Públicas de Chile, 2016). Por lo tanto, se han propuesto varias correlaciones entre los valores de CBR y Módulo Resiliente. El Manual de Carreteras Volumen 3 – Instrucciones y Criterios de Diseño (Ministerio de Obras Públicas de Chile, 2016) recomienda utilizar la correlación determinada por el Transport and Road Research Laboratory (TRRL) en 1987. Esta fórmula es válida para suelos de subrasante.

$$Mr(MPa) = 17,6 \cdot CBR^{0,64} \text{ para } CBR \le 12$$
 (3.7)

$$Mr (MPa) = 22,1 \cdot CBR^{0,55} \text{ para } CBR > 12$$
(3.8)

La Tabla 3-4 presenta un resumen de otras correlaciones empíricas entre Módulo Resiliente y CBR. Estas correlaciones se han realizados para ciertos tipos de suelos y condiciones específicas de trabajo, por lo tanto, no es recomendable extrapolar los resultados a otros suelos y condiciones de trabajo.

Tabla 3-4: Correlaciones empíricas entre Mr y CBR (Angelone y Martínez, 2015)

Correlación (MPa)	Referencia			
Mr = 10 CBR	Heukelom and Foster, 1960			
$Mr = 38 CBR^{0,711}$	Green and Hall, 1975			
$Mr = 21 \ CBR^{0,65}$	Ayres, 1997			
$Mr = 18 \ CBR^{0,64}$	Lister, 1987			
$M_{\pi} = D C D D$	AASHTO Design Guide con 5,25 <b<21; b="10,5" para<="" td=""></b<21;>			
IVII = B CBR	CBR < 10			

El Módulo Elástico Compuesto propuesto por Shell (1978) expone que el Módulo Elástico de la base granular depende del Módulo Elástico de la subrasante y del espesor de la base granular. El Módulo Elástico compuesto se expresa mediante la siguiente formula:

$$E_n = 0.2 \cdot h^{0.45} \cdot E_{n-1} \tag{3.9}$$

Donde:

h: Espesor de la base granular en mm (167≤ h ≤778)

En: Módulo Elástico Compuesto (MPa)

E_{n-1}: Módulo Elástico subrasante (MPa)

Por lo tanto, es importante al momento de realizar el diseño de las bases y subbases de los pavimentos, considerar la fórmula de Módulo Compuesto y evaluar si el efecto del Módulo de la subrasante es significativo. Si el Módulo Compuesto no cumple las solicitaciones del proyecto, se recomienda cambiar el diseño ya sea aumentando el espesor de la base o subbase granular que irá sobre la subrasante o mejorando el CBR de la subrasante con algún reemplazo o mejoramiento de suelo.

3.4. Módulo de Reacción

El Módulo de Reacción es utilizado para caracterizar suelos que se encuentran bajo estructuras de pavimentos rígidos (pavimentos de hormigón). El Módulo de Reacción no puede ser medido en laboratorio, sólo directamente en terreno. Para obtener este valor se realiza el ensayo de Plato de Carga, el cual consiste en aplicar una carga que asciende hasta los 10 psi sobre un área circular de 76,2 cm (30") de diámetro. La deformación se mide en el perímetro del plato con 3 o más sensores de deformación, los cuales se encuentran equidistantes (Figura 3-4). La fórmula del Módulo de reacción se presenta a continuación:

$$k = \frac{p}{\Delta} \tag{3.10}$$

Donde:

k: Módulo de Reacción de subrasante (kg/cm³)

- p: Carga aplicada (kg/cm²)
- Δ : Deformación promedio de los tres puntos (cm)

Figura 3-4: Ensayo de plato de carga in situ (Gul y Ceylanoglu, 2013)

El Módulo de Reacción se puede obtener a partir de valores de CBR mediante las siguientes correlaciones:

Las estructuras de un pavimento de hormigón en general no van apoyadas directamente sobre la subrasante. Por diferentes requerimientos de diseño o constructivos, las losas de hormigón van apoyadas sobre una subbase granular o subbase cementada (Figura 3-5). Dependiendo del espesor de estas capas algunos métodos de diseño consideran el aporte estructural diferencial que otorgan estas capas por sobre el valor de soporte de la subrasante. En este caso es posible corregir el valor del Módulo de Reacción a través de las fórmulas 3.13 o 3.14 para base granular y cementada respectivamente. El módulo corregido se denomina Modulo de Reacción Combinado.

$$k_{c,sb} = k_0 \cdot \sqrt{1 + \left(\frac{h}{38}\right)^2 \cdot \left(\frac{k_1}{k_0}\right)^{2/3}}$$
(3.13)

Donde:

K_{c,sb}: Módulo de Reacción combinado de subbase granular y subrasante (kg/cm³)
K₁: Módulo de Reacción de subbase granular (kg/cm³)
K₀: Módulo de Reacción de subrasante (kg/cm³)
h: Espesor de subbase granular o cementada (cm)

$$k_{c,sc} = \frac{k_0}{F_w} = \frac{k_0}{\frac{1 - \frac{15 \cdot k_0}{E_1}}{\sqrt{1 + (\frac{h}{38})^2 \cdot (\frac{E_1}{k_0})^{2/3}}} + \frac{15 \cdot k_0}{E_1}}$$
(3.14)

Donde:

 $K_{c,sc}$: Módulo de Reacción combinado de subbase cementada y subrasante (kg/cm³) E₁: Módulo Elástico de subbase cementada (kg/cm²)

Figura 3-5: Pavimento Rígido y Módulo de Reacción combinado k_c

30

4. EQUIPOS PARA DETERMINAR LA CAPACIDAD DE SOPORTE DE BASES GRANULARES IN SITU

En el presente capítulo se resumen los principales equipos que permiten determinar la capacidad de soporte de bases o subbases granulares. El alcance de esta revisión considera equipos utilizados para estructuras de pavimentos flexibles debido a que para pavimentos de hormigón se utiliza únicamente el ensayo Placa de Carga que fue descrito en Capítulo anterior.

4.1. Equipos que determinan Capacidad de Soporte de forma indirecta

a) Ensayo de Cono Dinámico de Penetración (CDP)

Este instrumento es utilizado para evaluar la resistencia de suelos ante la penetración de un cono impulsado por una carga constante (Figura 4-1). El CDP presenta ventajas tales como su simplicidad de uso y bajo costo. El equipo además identifica las diferentes capas que conforman un suelo y la uniformidad de compactación del material (Viscarra, 2006). El Manual de Carreteras (Ministerio de Obras Públicas de Chile, 2016) propone un procedimiento para obtener el CBR en la sección 8.102.12: "Suelo: Método de Ensaye con Penetrómetro Dinámico de Cono Portátil". El Manual de Carreteras (2016) recomienda utilizar la siguiente correlación para obtener el CBR de cada una de las capas:

$$Log (CBR) = 2,60 - 1,26 \cdot Log(D)$$
 (4.1)

Donde:

D: Índice de Penetración de cada capa (mm/golpe)

Figura 4-1: Esquema del equipo CDP (ASTM D-6951, 2003)

b) Clegg Hammer

Equipo que permite controlar la compactación de los suelos (Figura 4-2). El principio consiste en dejar caer un martillo de una altura determinada y luego medir la desaceleración del rebote. Mediante correlaciones empíricas, se estima el valor de densidad o CBR (Thenoux, 1991 y Al-Amoudi et al. 2002).

Figura 4-2: Clegg Hammer

c) CBR in situ

El CBR también se puede obtener in situ mediante el método ASTM D4429 (Figura 4-3). Este método se utiliza cuando existen materiales dudosos en la subrasante y durante movimientos de tierras importantes. Los valores obtenidos por este método deben ser ajustados mediante correlaciones a los valores de CBR tradicional.

Figura 4-3: Ensayo de CBR in situ

Luego, se encuentran los equipos que permiten la obtención de Módulo mediante deflectometría de impacto.

4.2. Deflectómetro de Impacto

Es un equipo de auscultación estructural. El funcionamiento consiste en la aplicación de una carga dinámica conocida y posterior medición del cuenco de deflexiones mediante geófonos (Figura 4-4). Luego, se realiza un análisis del cuenco de deflexiones con el objetivo de obtener el Módulo de Elástico de cada capa del paquete estructural. La carga aplicada puede alcanzar hasta 120 kN.

Figura 4-4: Esquema de uso de FWD, (de Solminihac, 2008)

Sin embargo, Livneh y Goldberg (2001) indican que el uso del FWD es poco versátil cuando se trata de caminos con difícil acceso o cuando la frecuencia de mediciones es muy baja. Según Fleming et al. (2000) las cargas aplicadas por este equipo son muy altas cuando se realizan mediciones directamente sobre las bases y subbases granulares en comparación a la condición que estarán normalmente sometidas estas capas. Para los casos anteriores, es recomendable el uso del Deflectómetro de Impacto Liviano.

4.3. Deflectómetro de impacto liviano

El Deflectómetro de Impacto Liviano, también llamado LWD por sus siglas en inglés, es un deflectómetro portátil que se utiliza para obtener el Módulo Elástico in situ de bases y subbases granulares y suelos de subrasante (Figura 4-5). El principio básico del equipo consiste en dejar caer un peso conocido sobre diferentes platos de carga desde una altura determinada y luego medir la deflexión de suelo utilizando un geófono o un acelerómetro ubicado en el centro del plato. El equipo es de fácil uso y no presenta mayores riesgos para la integridad física del operador.

Figura 4-5: Deflectómetro de Impacto Liviano LWD "Keros Prima100 Portátil" La Tabla 4-1 presenta un resumen de los principales modelos disponibles en el mercado con sus principales características. Para obtener distintos niveles de carga se debe escoger correctamente los pesos y los diámetros de platos.

Característica CSM		Zorn	Prima	Loadman	TFT
Estilo del plato	Sólido	Sólido	Anillado	Sólido	Anillado
Diámetro del plato (mm)	200,3	150, 200, 300	100, 200, 300	130, 200, 300	100, 150, 200, 300
Masa del plato (kg)	6,8; 8,3	15	12	6	Variable
Masa de caída (kg)	Masa de caída (kg) 10		10, 15, 20	10	10, 15, 20
Altura de caída (m)	Variable	0,72	Variable	0,8	Variable
Amortiguador	Uretano	Acero	Goma	Goma	Goma
Medición de fuerza	Si	No	Si	Si	Si
Sensor de deformación Geófono		Acelerómetro	Geófono	Acelerómetro	Geófono
Tiempo de pulso (ms) 15–20		18 ± 2	15–20	25–30	15–25
Carga máxima (kN)	8,8*	7,07*	1-15*	20*	1-15*
Distribución de presión	Definido por usuario	Uniforme	Definido por usuario	Rígido	Definido por usuario
Módulo de Poisson	Definido por usuario	0.5	Definido por usuario	0.5	Definido por usuario

Tabla 4-1: Resumen de LWD y sus características, Money y Miller (2009)

*Dependiente de la altura de caída y del amortiguador

Otra diferencia entre los LWD tiene relación con el uso de geófono o acelerómetro para la medición de la deformación superficial (Figura 4-6). Por ejemplo, el geófono utilizado por el LWD Prima está en contacto directo con el suelo a través de un orificio de 40 mm de diámetro. Por otro lado, el LWD Zorn estima la deflexión superficial utilizando un acelerómetro montando en la superficie superior del plato sólido, por lo tanto, el plato del Zorn es más rígido que el del Prima 100 (Stamp y Mooney, 2013).

Figura 4-6: Medición de deflexión (a) geófono y (b) acelerómetro (Stamp y Mooney, 2013).

Con respecto a las mediciones del LWD, la Figura 4-7 muestra un pulso obtenido por el equipo. El deflectómetro mide la fuerza aplicada por la caída libre del peso y luego este valor se divide por el área de plato con la finalidad de conocer la presión aplicada (línea roja) y simultáneamente se mide la deformación del suelo ante esta carga (línea azul). De estas curvas se obtiene la tensión máxima y deformación máxima del suelo para luego determinar el Módulo Elástico. El método lleva por nombre "Peack Value Method" (Asli et al., 2011).

Figura 4-7: Pulsos de fuerza y deformación medidos por el LWD

Para calcular el Módulo Elástico a partir de las mediciones del LWD (también llamado en algunas referencias como Módulo Elástico superficial) se utiliza la solución propuesta por Boussinesq, la cual se encuentra desarrollada en el Anexo A de la presente investigación.

$$E_{LWD} = \frac{f \cdot \sigma \cdot a}{\delta} \cdot (1 - \nu^2)$$
(4.2)

Donde:

E_{LWD}: Módulo Elástico del LWD o Módulo Elástico Superficial (MPa)

- f: Factor de forma de distribución de tensiones
- σ: Presión aplicada en función de pesos y diámetro de plato (kPa)
- a: Radio del plato (mm)
- δ: Deflexión (µm)
- v: Módulo de Poisson del suelo

Luego, los posibles valores de f se presentan en la Tabla 4-2. Ullidtz (1987) indica que por simplificación se utiliza el valor f igual a 2, es decir, asume que el LWD aplica

una carga con distribución uniforme sobre el suelo. De los estudios de Terzaghi (1943) se desprende que la distribución de tensiones depende del plato del LWD y del tipo suelo. La distribución de tensiones es parabólica debajo de un plato rígido sobre un suelo granular y la distribución de tensiones es una parábola inversa sobre un suelo cohesivo (Figura 4-8). Si no se tiene certeza sobre el tipo de suelo que se está estudiando, pero se sabe que el plato es rígido, se utiliza un factor de $\pi/2$.

Tabla 4-2: Valores de f de distribución de tensiones (Ullidtz, 1998)

Distribución de tensiones	Factor de distribución de carga (f)
Uniforme	2
Plato rígido	$\pi/2$
Materiales granulares	8/3
Materiales cohesivos	4/3

Figura 4-8: Distribución de esfuerzos en suelo (a) cohesivo y (b) granular, (Bilodeau y Dore, 2014)

Adicionalmente, se pueden instalar sensores de deformación en la dirección radial, con el objetivo de estudiar de mejor manera el cuenco de deflexión (Figura 4-9). De este modo se puede realizar un retro cálculo similar al análisis que utiliza el FWD.

Figura 4-9: Sensores de deformación adicionales (Ahmed y Khalid, 2011)

El LWD ha sido diseñado de tal manera que la carga que aplica se asemeja a las condiciones que está sometida una base o subbase granular comúnmente y la correcta selección de configuración de platos y pesos es necesaria para simular de mejor forma estas condiciones de trabajo. Con el objetivo de conocer las tensiones a las que están sometidas estas capas, se realizó un análisis mediante el software mePads (Figura 4-10). El modelo consiste en aplicar una carga que corresponde a un eje equivalente (eje simple y rueda doble) sobre estructuras de similares características a las que se construirán en la presente investigación (Tabla 4-3).

Figura 4-10: Esquema de estructura utilizada en la modelación

		Base Gra	Subrasante		
Estructura	CBR	E Espesor (h1)		CBR	Ε
	(%)	MPa	mm	(%)	MPa
1	80	250	150	5	130
2	80	250	200	5	130
3	80	250	150	25	49
4	80	250	200	25	49

Tabla 4-3: Propiedades de las estructuras utilizadas en la modelación

Los resultados de la simulación se presentan en la Figura 4-11. Se puede apreciar que cuando no existe una capa asfáltica las tensiones son menores sobre la base granular en comparación a una estructura con una capa asfáltica de espesor de 60 mm (espesor mínimo permitido). Esto ocurre debido a la superposición de esfuerzos verticales producido por ambas ruedas. Luego, la presión vertical disminuye hasta alcanzar valores cercanos a 50 kPa. En la misma Figura 4-11 se puede apreciar las

configuraciones de carga que corresponden para cada rango de espesor de capa asfáltica, por ejemplo, para una estructura de pavimento flexible con una capa asfáltica de espesor entre 80 y 100 mm la configuración de LWD que mejor simula esa condición es el plato de 300 mm de diámetro con un peso de 15 kg. Las propiedades de la subrasante y el espesor de la base granular no influyen significativamente en la elección de la configuración de plato y pesos del LWD comparado al espesor de la capa asfáltica.

Figura 4-11: Tensiones generadas en la base granular para diferentes estructuras

Si bien el modelo indica que una carga estándar nunca aplicará el nivel de tensiones que aplica un LWD con plato de 200 mm y un peso de 10 kg, en la práctica existe la posibilidad de que los vehículos circulen con sobrecarga, por lo tanto, no se descartarán las configuraciones que aplican mayor carga para este estudio, es decir, el plato de 200 mm de diámetro con pesos de 15 y 20 kg. A continuación, se presenta un breve resumen del estado del arte del deflectómetro de impacto liviano:

- Kamiura et al. (2000) indican que la deflexión se hace constante a partir del tercer golpe del LWD. Luego, el promedio del 3° al 5° golpe es un valor representativo. Fleming (2006) recomienda realizar un mínimo de 6 golpes.
- El efecto de la altura de caída es mínimo en los valores de Módulo Elástico. La variación máxima es de un 2% (Lin et al., 2006).
- Lin et al. (2006) y Fleming et al. (2007) recomiendan utilizar platos de mayor diámetro para suelos cohesivos. Lo anterior se debe a que estos suelos tienen una tendencia de presentar deformaciones muy altas y es mejor utilizar platos de mayor diámetro con el fin de disminuir la presión aplicada.
- Osorio (2008) indica que existe una tendencia de que los valores del LWD sean los valores de Módulo compuesto para bases granulares de 25 y 30 cm de espesor sobre una subrasante de CBR 6%.
- Fleming et al. (2006), Osorio (2008) y Nazzal et al. (2016) han demostrado que el LWD tiene una alta repetitividad y reproducibilidad.
- Tehrani (2010) demostró que el contenido de humedad en una arena pobremente graduada con limos (SP-SM) es inversamente proporcional al Módulo Elástico obtenido por el LWD. Se utilizó el deflectómetro de impacto liviano Zorn con platos de 200 y 300 mm. Los resultados obtenidos se presentan en la Figura 4-12.

Figura 4-12: Efecto de la humedad del suelo en las mediciones del LWD (Tehrani, 2010)

Tirado et al. (2015) realizaron un modelo de la distribución de tensiones ante cargas del deflectómetro Prima y Zorn utilizando elementos finitos. Concluyeron que la influencia de los esfuerzos llega hasta 2,5 veces el diámetro del deflectómetro aproximadamente y este valor disminuye mientras más granular y rígido sea el suelo. Además, establecieron una relación entre el Módulo del Prima y del Zorn. Se puede observar en la Figura 4-13 que el Módulo del Prima es mayor que el Módulo del Zorn, lo cual corrobora la experiencia empírica de otros estudios y el hecho de que el plato del Zorn sea más rígido que el del Prima100.

Figura 4-13: Relación entre Módulo Prima y Módulo Zorn, Tirado et al. (2015)

Sin embargo, no existen estudios que validen el uso del Módulo Elástico del deflectómetro para el análisis estructural de un pavimento, lo que puede traer como consecuencia que se utilice incorrectamente el Módulo del LWD para esta labor.

5. DESCRIPCIÓN DE LA INVESTIGACIÓN

La metodología de investigación se basa principalmente en un trabajo de terreno con ensayos a escala real en donde se configuran diferentes estructuras de pavimento. La investigación también incluye un programa de ensayos de laboratorio para la evaluación de los suelos que se utilizarán en las diferentes configuraciones (Anexo B).

5.1. Diseño Experimental

La investigación se basa principalmente en un trabajo de terreno con ensayos a escala real en donde se configuran diferentes estructuras de pavimento, también incluye un programa de ensayos de laboratorio para la evaluación de los materiales que se utilizaron en las diferentes configuraciones de terreno. Se construyeron cuatro configuraciones de prueba, cada una compuesta por una base granular de espesor conocido y una subrasante que se asume de espesor infinito. Los ensayos se realizaron en cada una de las configuraciones empleando un LWD para la aplicación de la carga y medición de la deflexión superficial y simultáneamente se realizaron mediciones de presión en la interfaz de la base y la subrasante con dos Celdas de Presión. La Figura 5-1 presenta un esquema del ensayo.

Figura 5-1: Esquema del Ensayo

Las estructuras de prueba consisten en un sistema de dos capas. La capa superior que corresponde a una base granular de CBR superior a 80% de espesor 15 o 20 cm sobre subrasantes de distintas características. La primera subrasante tiene valor de CBR mayor o igual 10% y la segunda tiene CBR menor 10%. En la interfaz de ambas capas se colocarán las Celdas de Presión (Figura 5-2). Una vez construida la estructura, se realizarán mediciones con el LWD y de presión con las celdas simultáneamente.

Figura 5-2: Estructuras de Prueba

Para el análisis se utilizará el modelo analítico de Boussinesq y la solución para estructuras de dos capas propuesta por Odemark (Ullidtz, 1987 y Papagiannakis, 2008). Se retro-calculará el Módulo Elástico de dos maneras: 1) utilizando la medición de la deflexión superficial medida por el LWD y 2) mediante los valores de tensión vertical de las celdas de presión a una profundidad conocida.

Las variables independientes del experimento son las siguientes:

- Espesor Base Granular
- CBR o Módulo Elástico de la Subrasante
- Presión aplicada, que a su vez depende de:
 - o Diámetro del plato de LWD
 - o Pesos del LWD

Las variables dependientes son las siguientes:

- Módulo Elástico obtenido de la deflexión superficial (ELWD)
- Módulo Elástico obtenido de la presión vertical a nivel de subrasante (Ecelda)

La simbología y los valores de cada variable se presentan en la Tabla 5-1 y la presión aplicada para cada configuración de carga del LWD se presenta en la Tabla 5-2.

Ítem	Descripción	Simbología	Valor
	Diámatra da Diata	\$ 200	200 mm
	Diametro de Plato	ф300	300 mm
LWD	Dagog	\mathbf{P}_{10}	10 kg
	resus	P_{15}	15 kg
		\mathbf{P}_{20}	20 kg
	Espesores de Base	h_{15}	15 cm
Estructura de	Granular	h ₂₀	20 cm
Prueba	Canacidad da Sanarta	CBR _{B.G.}	>80%
	(CBP)	CBR _{Subrasante1}	10-30%
	(CBK)	CBR _{Subrasante2}	2-9%

Tabla 5-1: Simbología de la matriz experimental

Tabla 5-2: Presión Aplicada para configuraciones de LWD

Configuración de Carga	Presión aplicada aproximada, σ _{LWD} (kPa)
ф300Р10	150
ф300P15	200
ф300Р20	240
ф200Р10	330
ф200P15	430
ф200Р20	530

La matriz experimental con las variables independientes y dependientes se presenta en la Tabla 5-3. En cada cuadro de la tabla se obtuvo un valor promedio de Módulo Elástico del LWD (E_{lwd}) y un valor promedio del Módulo Elástico obtenido a partir de las mediciones de las celdas de presión (E_{celda}).

Tabla 5-3: Matriz Experimental

Presión Aplicada Estructura		\$ 200			ф300			
		P ₁₀	P ₁₅	P ₂₀	P ₁₀	P ₁₅	P ₂₀	
• 80%	CBR Subrasante1 = 10-20%	h1	$\mathrm{E}_{\mathrm{lwd}},$ $\mathrm{E}_{\mathrm{Celda}}$					
CBR B.G. >		h ₂						
	CBR Subrasante2	h ₁						
	= 2-9%	h ₂						

5.2. Medición con Celdas de Presión in situ

Las celdas de presión son instrumentos cuyo fin es medir esfuerzos verticales u horizontales en distintos tipos de estructuras. Las celdas de presión son capaces de transformar un estímulo físico (diferencia de presión) en uno eléctrico gracias a un transductor. Existen de varios tipos según su aplicación, rango de carga aplicada y el tipo de transductor (Hunt et al., 2013). Algunas empresas que ofrecen este tipo de instrumentos para aplicaciones de ingeniería civil son Geokon, RST Instruments, Geosense, Tekscan, Kyowa, entre otras (Figura 5-3).

Figura 5-3: Celdas de presión de (a) RST Instrument (b) Kyowa (c) Geokon (d) Tekscan Las celdas utilizadas en la presente investigación son las Geokon 3500-1-250kPa (Figura 5-4). Estas celdas están diseñadas especialmente para ser embebidas en los suelos. Las celdas tienen una vida útil de 100 millones de ciclos de tensión máxima y un error menor que 0,25 kPa aproximadamente para cargas estáticas. La celda está compuesta por dos platos circulares metálicos, soldados por el perímetro y dejando un espacio entremedio el cual está lleno de un aceite. Ante cambios de presión del suelo que está sobre la celda, el voltaje de salida cambia gracias a un transductor. Esta información eléctrica debe ser procesada por un Datalogger (Figura 5-5).

Figura 5-4: Celdas de Presión, Modelo Geokon 3500-1-250kPa

Figura 5-5: Celda de Presión conectado a Datalogger

Para el cálculo de presión se utiliza la siguiente relación

$$\Delta \sigma = (R_x - R_0) \cdot G \tag{5.1}$$

Donde

 $\Delta \sigma$: Incremento de presión (kPa)

R_x: Lectura de la celda ante una carga determinada (mV)

R₀: Lectura de la celda sin carga (mV)

G: Factor de ajuste (kPa/mV)

En Chile existe experiencia del uso de celdas de presión para evaluar estructuras de pavimentos. Investigadores del Centro de Ingeniería e Investigación Vial (Halles et al., 2011) construyeron un tramo de prueba y colocaron las celdas de presión Geokon 3500-1-250 kPa a nivel de subrasante (Figura 5-6).

Figura 5-6: Esquema del tramo de pruebas (Halles et al. 2011)

Se midió la presión que generaba el paso de un vehículo el cual aplicaba una presión cercana a 300 kPa sobre un área circular equivalente a 9,61 cm de radio. Los pulsos de presión que generaba el paso del vehículo se presentan en la Figura 5-7.

Figura 5-7: Lectura de las celdas de presión (Halles et al. 2011)

Luego, los mismos autores en un estudio posterior (Halles, 2012) compararon los resultados obtenidos de las celdas de presión con modelos teóricos utilizando el software MePads. Se concluye que se puede predecir de mejor manera las tensiones en las bases estabilizadas con asfalto y cemento que en las bases granulares. Lo anterior se debe a que estas últimas tienen un comportamiento elasto-plástico ante distintas cargas y el modelo utilizado por mePads (Solución de Boussinesq) no considera este comportamiento (Figura 5-8).

Figura 5-8: Celdas de presión vs análisis mePads (Halles y Thenoux, 2012)

5.3. Construcción de Estructura de Prueba

El ensayo se realizó en el Campus San Joaquín de la Universidad Católica, específicamente, el sector del estacionamiento de la Escuela de Ingeniería (Figura 5-9). Se construyeron dos cajas sin tapa ni fondo cuyas dimensiones se pueden observar en la Figura 5-10. Cada caja fue colocada sobre una subrasante distinta y fueron llenadas con el material granular seleccionado hasta llegar a los 15 cm. Una vez terminada las mediciones, se escarifica la superficie, se agregan 5 cm más de material granular y se vuelve a realizar mediciones.

Figura 5-9: Ubicación del experimento

Figura 5-10: Dimensiones de las Cajas

En la interfaz de la base granular y la subrasante se instalaron dos celdas de presión (Figura 5-11). La finalidad de colocar dos celdas es estudiar la variabilidad de las tensiones verticales a nivel de subrasante ante las mismas condiciones de carga y estructuración.

Figura 5-11: Distribución de Celdas de Presión dentro de la Caja

La separación entre celdas es de 350 mm. El motivo de esta separación tiene su origen en que durante el diseño estructural de pavimentos se verifican el estado de deformaciones y tensiones a nivel de subrasante directamente bajo la rueda y también a una desviación horizontal de 175 mm de la carga. Lo anterior, se debe a que en este último punto se produce la superposición de esfuerzos de las ruedas de la configuración eje simple rueda doble (Figura 5-12). Finalmente, se realizará una medición con el LWD entre ambas celdas, es decir, a una desviación horizontal de 175 mm de cada una y simultáneamente se medirá la tensión vertical en ambas celdas.

Figura 5-12: Diagrama de verificaciones de tensiones en estructura de pavimento

Durante la colocación de las celdas, se utilizaron cuerdas para asegurar que la ubicación de éstas sea la especificada. También se verificó su correcta nivelación utilizando un nivel y se empotraron a la subrasante utilizando clavos cuya finalidad es prevenir el movimiento de las celdas durante la compactación del suelo (Figura 5-13).

Figura 5-13: Colocación de Celdas en estructura de prueba

La compactación de la base granular se realizó con una placa compactadora (Figura 5-14). Se utilizó este equipo porque tiene mejor desempeño en suelos granulares a diferencia de los equipos de percusión (vibro pisones) cuyo desempeño es mejor sobre suelos finos (Weissig, 1995).

Figura 5-14: Compactación de la estructura de prueba

5.4. Medición con el LWD in situ

El experimento se divide en dos fases; la primera corresponde a la fase de medición directa; se realizarán 6 golpes sobre cada celda (12 golpes en total). La segunda fase corresponde la medición indirecta; 6 golpes entre medio de ambas celdas. Lo anteriormente descrito se ilustra en la Figura 5-15. Esto se repetirá para cada punto de la matriz experimental. Sin embargo, para el análisis de Módulo Elástico solamente se considerarán los últimos 3 golpes de cada configuración de carga.

Figura 5-15: Ensayo con LWD y Celdas (a) medición directa y (b) medición indirecta Para utilizar el LWD se debe tener en consideración lo siguiente:

- Se deben utilizar 2 amortiguadores para el peso de 10 kg, 3 amortiguadores para el peso de 15 kg y 3 o 4 amortiguadores para el peso de 20 kg (Bro, 2005).
- La superficie donde se aplicará el golpe debe ser homogénea y libre de áridos que puedan entorpecer las mediciones. Se puede utilizar arena o suelo fino para emparejar la superficie o cambiar la posición de medición.
- El geófono del LWD Keros Prima100 puede medir como máximo 2000 µm de deflexión. Para las estructuras más débiles es posible que se sobrepase este valor y será necesario disminuir el peso o aumentar el diámetro del plato de carga.
- El equipo, mediante una Tablet, permite la revisión de las mediciones en terreno, por lo tanto, se debe verificar que el coeficiente de variación de las mediciones de deflexión de cada punto sea inferior a 5% (Osorio, 2008)

Además, Edward y Fleming (2009) sugieren observar la forma del pulso de deformación. La Tabla 5-4 muestra el detalle del significado de cada tipo de pulso.

Nombre	Pulso	Descripción
Normal	Deflection Deflection	Aceptable, pero no necesariamente esperado.
Rebote	Deflection	Función de la interacción entre el LWD y la estructura. En general se recomienda cambiar la configuración si el rebote es grande en comparación al valor máximo (x > 20%).
Variable	Time (ms)	Es un indicador de compactación deficiente. Alternativamente, puede ser el resultado de un contacto pobre entre el LWD y la estructura.
Irregular	Deflection	Verificar la base del geófono y plato. Puede tratarse de la existencia de un material no representativo (ejemplo: cañería bajo la estructura).

Tabla 5-4: Interpretación de cuenco de deflexión del LWD, (Edward y Fleming, 2009)

La norma ASTM E2583 indica las tolerancias y precisión para la toma de datos con el LWD:

- La precisión del sensor de deflexión debe ser $\pm 2\mu m$ o mejor
- La precisión del sensor de fuerza debe ser \pm 0,1 kN o mejor
- Los resultados tantos de la deflexión como del sensor de fuerza deben ser menores a ±2% con respecto el promedio.
- Las variaciones entre una ubicación a otra sobre un mismo suelo, LWD y operador son las siguientes:
 - 10-20% para suelos GM, GC y GP
 - 15-35% para suelos SW, SM y SP
 - 40-60% para suelos ML y Cl

6. **RESULTADOS**

El presente capítulo entrega un resumen de los resultados de las mediciones realizadas en las estructuras de prueba en terreno utilizando el LWD y las Celdas de presión.

Las Tablas 6-1, 6-2, 6-3 y 6-4 presentan las mediciones obtenidas utilizando el LWD y las celdas de presión al golpear de manera indirecta sobre la estructura. Se puede observar que en las estructuras de subrasante débil (CBR < 10 %) no fue posible realizar mediciones con los pesos más altos debido a que la deflexión superficial ante la carga del LWD era mayor a 2000 μ m.

Luego, las Tablas 6-5, 6-6, 6-7 y 6-8 presentan las mediciones obtenidas utilizando el LWD y las celdas de presión al golpear de manera directa sobre la estructura. Al igual que el caso anterior, se puede observar que en las estructuras de subrasante débil (CBR < 10 %) no fue posible realizar mediciones con los pesos más altos.

	Deflectómetro					Celdas	
	Configuración	Fuerza (kN)	Presión aplicada, σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	σ _{Celda1} (kPa)	σ _{Celda2} (kPa)	
		10,9	154	257,2	48	57	
		10,7	151	245,7	49	51	
	ф300Р10	10,8	153	240,4	52	48	
		10,6	150	235,8	53	42	
		10,9	154	252,2	52	49	
		13,3	188	608,7	49	46	
		14,1	200	304,2	54	53	
	+200D15	13,9	197	297,2	55	49	
	φ300F15	13,6	192	274,2	55	44	
		13,4	190	266,0	54	45	
		13,7	193	275,5	57	52	
		15,9	224	394,3	67	74	
25%		17,2	244	392,4	80	71	
	ф300Р20	16,8	237	380,7	76	69	
inte		17,5	247	400,7	75	75	
asa.		17,2	243	389,3	74	78	
Idua		17,6	249	397,4	81	72	
3Rs		10,5	333	288,1	50	21	
G	4200P10	10,4	331	254,8	53	22	
cm	φ200110	10,3	328	234,8	52	23	
15		10,5	335	267,1	54	21	
11		13,7	437	615,8	94	104	
—		13,8	438	593,6	96	99	
		13,7	435	574,5	100	101	
	φ200P15	13,8	440	579,3	98	97	
		13,8	439	566,5	102	100	
		13,7	436	561,2	102	110	
		13,5	430	553,1	100	103	
		15,9	506	712,5	122	107	
		15,2	482	600,2	120	93	
	4200P20	16,2	516	624,1	126	106	
	Ψ200Γ20	16,4	523	612,1	134	103	
		17,8	568	652,1	151	115	
		17,2	547	641,2	141	104	

Tabla 6-1: Resultados Estructura 1, medición indirecta

		Celdas				
	Configuración	Fuerza (kN)	Presión aplicada, σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	σ _{Celda1} (kPa)	σ _{Celda2} (kPa)
		10,7	151	175	78	40
	ф300Р10	10,9	154	172	65	38
		11,0	156	169	63	39
		13,7	194	233	86	48
		13,8	195	233	91	46
	+200D15	14,1	199	238	94	44
	φ300P15	13,7	194	235	89	49
		13,5	191	237	85	45
		14,2	200	243	92	47
		17,9	253	384	117	95
%	ф300Р20	17,8	251	370	110	95
125		18,0	254	371	113	98
te		17,5	248	369	112	96
san		17,4	246	366	114	92
bra		11,1	355	257	56	32
Rsu		10,9	349	243	60	34
CB	φ200P10	11,1	354	242	58	36
'n,		11,1	354	236	57	37
0 CI		11,1	354	235	58	35
1		13,9	442	388	96	65
Ч		14,4	460	350	92	67
	ሐ200P15	14,5	461	348	90	68
	φ2001 15	14,7	469	362	95	67
		14,7	469	358	95	69
		14,7	469	354	93	64
		17,3	551	462	99	70
		18,0	573	440	105	80
	ሐ200P20	17,7	564	428	103	80
	Ψ2001 20	17,4	554	419	109	75
		18,1	575	431	109	82
		18,3	582	435	113	82

Tabla 6-2: Resultados Estructura 2, medición indirecta

		Celdas				
	Configuración	Fuerza (kN)	Presión aplicada, σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	σ _{Celda1} (kPa)	σ _{Celda2} (kPa)
		10,2	144	789,1	72	52
		10,2	144	799,2	74	66
	+200P10	10,2	144	793,9	75	59
	φ300F10	10,3	145	794,8	76	61
2%		10,3	146	794,9	75	65
		10,2	144	790,8	70	60
ante		13,4	190	1036,6	108	77
ras		14,3	202	1088,9	105	83
qns	+200D15	14,0	198	1091,8	104	80
BR	φ300F13	14,0	198	1114,8	104	82
C,		13,9	197	1108,9	98	79
сm		13,8	196	1092,7	104	77
15		10,1	320	899,2	87	64
h =		9,9	316	902,9	82	65
	+200P10	9,8	312	902,1	79	65
	Ψ200F10	10,1	322	915,1	82	64
		9,7	308	902,5	78	60
		9,8	311	907,5	81	62

Tabla 6-3: Resultados Estructura 3, medición indirecta

		Celdas				
	Configuración	Fuerza (kN)	Presión aplicada, σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	σ _{Celda1} (kPa)	σ _{Celda2} (kPa)
		10,2	145	798	84	71
		10,3	145	782	86	64
	4300P10	10,3	146	792	84	68
	φ300F10	10,0	142	783	83	76
		10,0	142	779	73	65
		10,1	143	788	80	73
		12,9	182	966	112	96
2%	ф300Р15	14,1	199	1025	109	90
 0)		14,1	199	1063	106	87
ante		14,0	197	1075	104	90
ras		13,9	196	1059	111	90
aub		14,2	200	1083	103	94
BR		10,3	326	861	96	70
ı, C		9,9	316	851	95	67
сш	+200P10	10,1	322	866	95	65
: 20	φ200F10	10,2	326	879	99	73
h =		10,0	318	867	100	72
		10,1	321	883	101	76
		13,2	420	1334	132	80
		13,7	437	1268	137	89
	4200P15	13,8	441	1283	138	90
	Ψ200F13	13,9	444	1310	137	89
		13,9	443	1316	145	90
		13,3	424	1300	137	86

Tabla 6-4: Resultados Estructura 4, medición indirecta

	Deflectómetro					Celda		
	Configuración	Fuerza (kN)	Presión σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	Posición Celda	Presión σ _{Celda} (kPa)		
		10,6	150	216		60		
		10,7	151	217	1	61		
	+200D10	10,8	152	216		59		
	φ300Ρ10	10,8	153	709		53		
		10,7	152	685	2	51		
		10,6	150	665		49		
		12,7	180	264		67		
		13,0	184	269	1	69		
	4300P15	13,2	187	272		74		
	φ300115	13,5	191	311		65		
		13,5	191	309	2	65		
		13,5	191	313		61		
. 0		16,9	238	360		102		
25%	ф300Р20	16,8	237	357	1	100		
		17,0	241	365		100		
unte		17,0	240	1224		78		
rase		17,0	240	1163	2	86		
subi		16,8	238	1206		78		
BR		10,9	346	278		94		
Ū,		10,8	344	284	1	92		
cm	ሐ200P10	10,6	338	280		89		
15	φ200110	10,6	336	282		62		
 		10,5	334	276	2	57		
—		10,5	333	283		62		
		13,6	432	488		175		
		13,6	433	483	1	178		
	ሐ200P15	13,6	433	494		183		
	φ200115	14,1	449	517		148		
		13,9	443	512	2	137		
		14,0	446	513		141		
		17,1	545	560		195		
		16,9	538	556	1	198		
	ሐ200 P 20	17,0	542	558		198		
	φ2001 20	17,8	566	606		182		
		17,5	557	607	2	185		
		17,7	563	611		188		

Tabla 6-5: Resultados Estructura 1, medición directa

		Deflec	tómetro	ómetro		de Presión
	Cf ;/	Fuerza	Presión	Deflexión	Posición	Presión
	Configuration	(k N)	σ_{LWD} (kPa)	$\delta_{LWD} (\mu m)$	Celda	$\sigma_{Celda}(kPa)$
		10,9	155	197		87
		10,9	155	197	1	85
	+200D10	11,0	156	200		89
	φ500P10	11,1	157	182		56
		11,0	156	179	2	59
		11,1	157	181		61
		14,7	209	182		121
		14,5	205	183	1	115
	+200D15	14,4	204	188		126
	φ300P13	14,8	210	253		94
		14,3	203	243	2	91
		14,4	203	247		85
_		17,1	242	307		142
5%		16,7	236	316	1	152
1	ф300Р20	17,0	241	294		148
nte		18,2	257	354		123
asa		18,0	254	349	2	129
ubr		17,9	253	348		121
3Rs		11,1	353	194		83
CE		11,0	350	194	1	87
cm,	+200D10	10,9	346	192		84
20 (φ200Ρ10	11,0	350	227		69
11		11,0	350	224	2	69
<u>نک</u>		11,0	351	225		63
		14,7	467	298		163
		14,5	462	296	1	159
	+200015	14,8	471	299		161
	φ200P15	14,3	456	299		105
		14,5	463	303	2	117
		14,4	459	300		110
		18,1	576	374		207
		17,9	571	360	1	193
	12000200	17,7	565	359		208
	φ200P20	18,0	572	396		144
		17,3	551	390	2	141
		17,6	561	395		153

Tabla 6-6: Resultados Estructura 2, medición directa

	Deflectómetro				Celda	Celda de Presión	
	Configuración	Fuerza (kN)	Presión σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	Posición Celda	Presión σ _{Celda} (kPa)	
		10,0	142	665		57	
		9,9	140	667	1	59	
	+200010	10,0	141	680		59	
	φ300Ρ10	10,2	144	791		99	
		10,2	145	789	2	95	
_		10,1	143	783		98	
= 2%		14,1	200	990		99	
sante	1200015	13,8	196	967	1	87	
subras		14,1	200	991		92	
CBR	φ300P13	14,2	201	1072		108	
cm,		14,3	202	1078	2	115	
1 = 15		13,8	196	1062		108	
<u>, </u>		10,0	320	1012		91	
		10,0	317	1007	1	89	
	+200D10	10,3	328	1019		92	
	φ200Ρ10	10,3	327	998		127	
		10,3	327	1006	2	128	
		10,4	330	1008		130	

Tabla 6-7: Resultados Estructura 3, medición directa

	Deflectómetro				Celda	de Presión
	Configuración	Fuerza (kN)	Presión σ _{LWD} (kPa)	Deflexión δ _{LWD} (μm)	Posición Celda	Presión σ _{Celda} (kPa)
		10,3	145	663		71
		10,3	145	662	1	69
	ሐ300P10	10,3	145	663		75
	φ500110	10,0	142	641		84
		10,1	143	645	2	82
		10,1	143	641		76
		14,0	198	894		106
		14,1	200	896	1	110
2%	4300P15	14,0	198	893		103
te II	φ300113	13,8	195	871		103
asant		13,7	194	876	2	117
subr		13,9	197	884		114
CBR		10,1	321	831		82
cm,		10,2	325	838	1	87
= 20	ф200Р10	10,2	324	838		85
h	φ200110	10,3	329	839		110
		10,4	330	843	2	112
		10,2	323	843		113
		14,1	449	1228		105
		13,8	440	1214	1	105
	ሐ200P15	13,9	443	1219		113
	Ψ2001 15	14,0	444	1124		130
		14,2	453	1130	2	129
		14,2	453	1127		132

Tabla 6-8: Resultados Estructura 4, medición directa

7. ANÁLISIS DE RESULTADOS

El Análisis de los resultados del ensayo utilizando el LWD y las Celdas de Presión se divide en las siguientes etapas:

- Comparación Medición Indirecta y Directa para determinar la variabilidad de las mediciones producto del ensayo y las variables asociados a las capas de suelo.
- Estudio de variabilidad de mediciones directas.

Luego, una vez conocida la variabilidad del ensayo e identificando las causas, se procederá a estudiar el Módulo Elástico mediante los siguientes análisis:

- Comparación de los Módulos Elásticos entregados por el LWD y las celdas de presión mediante el retro cálculo utilizando los modelos teóricos. Obtención de valores de ajuste (valor f).
- Estudio de la influencia de las propiedades mecánicas de la subrasante en los resultados del LWD (Efecto Shell).

7.1. Coeficiente de variación del deflectómetro y de las celdas

Con el objetivo de estudiar la variabilidad de las mediciones con el LWD y las celdas de presión, se calculará el coeficiente de variación de cada configuración de carga. La Tabla 7-1 presenta los coeficientes de variación de las mediciones con el LWD (deformación superficial) y la Tabla 7-2 para las celdas de presión (valor de presión) para cada configuración de carga, espesor de estructura y CBR de subrasante (el detalle del cálculo se encuentra en el Anexo C). Se puede observar que los valores de todas las mediciones son inferiores al 15%, por lo tanto, se puede afirmar que estadísticamente las mediciones no tienen grandes diferencias en un mismo punto.

			Medición Indirecta	Medición Directa	
Subrasante	Espesor	Configuración de Carga	C.V.	C.V.	C.V.
		0	δ_{LWD}	δlwd,1	δlwd,2
		ф300Р10	9%	3%	4%
	_	ф300P15	5%	5%	4%
	5 cm	ф300Р20	4%	1%	6%
\0	11 = 1	ф200Р10	4%	2%	5%
BR Subrasante = 25%	4	ф200Р15	6%	2%	4%
		ф200Р20	2%	1%	1%
	h2 = 20 cm	ф300Р10	2%	2%	4%
		ф300Р15	2%	4%	5%
C		ф300Р20	2%	4%	3%
		ф200Р10	4%	2%	6%
		ф200Р15	4%	1%	6%
		ф200Р20	3%	4%	4%
	cm	ф300Р10	1%	1%	2%
2%	= 15 .	ф300P15	0%	7%	4%
ite =	hl	ф200Р10	3%	2%	1%
orasat		ф300Р10	1%	4%	5%
R Sut	20 cm	ф300Р15	4%	3%	7%
CBJ	12 = 2	ф200P10	1%	3%	1%
		ф200Р15	2%	4%	1%
		Promedio	3,0%	3,0%	3,8%

Tabla 7-1: Coeficiente de Variación, LWD

			Medici	ón Indirecta	Medició	n Directa
Subrasante	Espesor	Configuración de Carga	C.V. σ _{Celda1}	C.V. σ_{Celda2}	C.V. σ_{Celda1}	C.V. σ_{Celda2}
		ф300Р10	4%	11%	0%	3%
	-	ф300Р15	5%	8%	1%	1%
	l5 cn	ф300Р20	6%	4%	1%	3%
%	1 = 1	ф200P10	3%	5%	1%	1%
= 25	h	ф200P15	3%	4%	1%	1%
ante		ф200Р20	9%	7%	0%	0%
lbras		ф300P10	12%	2%	1%	1%
R Su	h2 = 20 cm	ф300Р15	4%	4%	2%	2%
CB		ф300Р20	2%	2%	4%	1%
		ф200P10	2%	5%	1%	1%
		ф200Р15	3%	3%	1%	1%
		ф200Р20	5%	6%	2%	1%
	cm	ф300P10	3%	8%	1%	0%
: 2%	= 15	ф300Р15	3%	3%	1%	1%
nte =	h1 =	ф200Р10	4%	3%	1%	1%
rasa	r	ф300Р10	6%	7%	0%	0%
Sub	20 cn	ф300Р15	3%	4%	0%	1%
CBR	2 = 2	ф200Р10	3%	5%	1%	0%
	Ч	ф200P15	3%	4%	1%	0%
	-	Promedio	4%	5%	1%	1%

Tabla 7-2: Coeficiente de Variación, Celdas de Presión

Г

El coeficiente de variación del LWD no varía si la medición es Indirecto o Directa. Sin embargo, no ocurre lo mismo con las celdas de presión, las cuales presentan mayor variación en las mediciones indirectas. Por lo tanto, para los siguientes análisis se utilizará la información del golpe directo.

7.2. Verificación de Reproducibilidad de Celdas

Se compararon las medias de los golpes directos sobre la celda 1 y celda 2 ante la misma carga mediante el análisis estadístico de comparación de medias (Detalle del procedimiento y resultados se encuentran en Anexo C). La Tabla 7-3 presenta los resultados obtenidos de la prueba de comparación de medias.

Subrasante	Espesor	Configuración de Carga	Diferencia entre celdas $(\sigma_{C1} - \sigma_{C2})$ (Intervalo de 90% de confianza)	Cumple hipótesis nula α = 0,10	Valor p (Prob. Error Tipo I*)
		ф300Р10	6 a 12 kPa	No	0,3%
		ф300Р15	0 a 12 kPa	Si	12,0%
	h1 = 15	ф300Р20	14 a 26 kPa	No	1,9%
25%	cm	ф200Р10	27 a36 kPa	No	0,5%
		ф200Р15	28 a 44 kPa	No	1,0%
sante		ф200Р20	8 16 kPa	No	2,3%
ıbras	h2 = 20 cm	ф300Р10	24 a 32 kPa	No	0,0%
3 Su		ф300Р15	22 a 40 kPa	No	0,2%
CBI		ф300Р20	14 a 31 kPa	No	0,4%
		ф200Р10	12 a 23 kPa	No	0,2%
		ф200Р15	42 a 59 kPa	No	0,0%
		ф200Р20	44 70 kPa	No	0,1%
%	11 15	ф300Р10	-42 a -37 kPa	No	0,0%
= 2%	hI = 15 cm	ф300Р15	-27 a -9 kPa	No	1,5%
inte	••••	ф200Р10	-40 a -35 kPa	No	0,0%
rasa		ф300Р10	-15 a -2 kPa	No	4,2%
Sut	h2 = 20	ф300Р15	-15 a 5 kPa	Si	38,1%
BR	cm	φ200P10	-30 a -24 kPa	No	0,0%
C		φ200P15	-28 a -17 kPa	No	0,1%

Tabla 7-3: Prueba t de medias para golpe directo

*Rechazar la Hipótesis nula (σ_{Celda1} es igual a σ_{Celda2}) cuando es verdadera

Se puede observar que la reproducibilidad de mediciones se produce solamente en dos casos. Si bien se tenían ciertas variables controladas (carga aplicada, diámetro de plato, grado de compactación) la varianza de los resultados de un punto a otro se atribuye a los siguientes factores:

- a) Poca homogeneidad en el traspaso de cargas desde el suelo granular a la superficie de las celdas.
- b) Variabilidad intrínseca del proceso constructivo (proceso artesanal) en relación a la preparación de subrasante, colocación de celdas y construcción y compactación de la estructura de prueba.
- c) Excentricidad del plato del LWD con respecto a la celda, inclinación del LWD
 y altura de caída del peso (variabilidad asociada a la manipulación y aplomo
 durante medición).

7.3. Retro Cálculo de Modulo Elástico

Para el cálculo de Módulo Elástico a partir de los resultados del LWD se aplica directamente la fórmula 4.2. Para calcular el Módulo Elástico a partir de los resultados de las celdas de presión se utiliza la siguiente formula que viene del desarrollo de las fórmulas 2.6 y 2.7:

$$E_{1} = E_{Celda} = \frac{1 - \nu_{1}^{2}}{1 - \nu_{2}^{2}} \cdot \left(\frac{a}{f \cdot h} \cdot \frac{1}{\sqrt{\left(\frac{\sigma_{LWD}}{\sigma_{LWD} - \sigma_{celda}}\right)^{\frac{2}{3}} - 1}}\right)^{3} \cdot E_{2}$$
(7.1)

Para obtener el valor de E_2 , se utilizarán los resultados obtenidos del ensayo CDP mediante la Fórmula 4.1, los cuales se presentan en la Tabla 7-4. El valor de f será 0,9 (sistema bicapa). Sin embargo, cuando el radio del plato de carga es igual al espesor de la base granular, se utilizará la fórmula 2.8, la cual entrega un valor de 1,1. Finalmente, se utilizará el valor 0,35 para la Razón de Poisson para ambos casos.

Subrasante	Localización	D (mm/golpe)	CBR Manual de Carreteras	CBR Promedio	E ₀₁ promedio (MPa)
	1	10,9	20%		130
1	2	5,8	43%	25%	
	3	17,2	11%	23%	
	4	8,6	27%		
	1	61,0	2%		27
2	2	65,5	2%	204	
	3	70,0	2%	∠ %0	
	4	71,8	2%		

Tabla 7-4: Módulo Elástico subrasante 1 a partir de resultados de CDP

Los módulos se presentan en la Figura 7-1. Se descartaron los Módulos mayores a 500 (considerando los resultados de Módulo Resiliente de laboratorio disponibles en el Anexo B). Se puede observar que algunos Módulos retro calculado que están construidos sobre la subrasante de CBR = 25 % tienen incluso Módulo Elástico menor a 100 MPa. También los Módulos de base granular de espesor 15 cm sobre la subrasante de CBR = 25% posee valores de Módulo Elástico, obtenido a partir de las celdas, mayores a los obtenidos con el LWD, lo contrario ocurre con la estructura de espesor 20 cm y sobre la misma subrasante.

Figura 7-1: Módulo LWD vs Módulo Celda, f recomendados por literatura

Luego, se realizó un análisis de sensibilidad el valor f. En este caso se asumió que el Módulo del LWD es el que efectivamente representa la capacidad de soporte de la estructura y se despejó el valor f de la Fórmula 7-1 para cada medición. La siguiente Tabla 7-5 presenta los resultados para cada una de las celdas.

79

Estructura		LV	VD	Referencia	Celda 1	Celda 2
CBR Subrasante (%)	Espesor (mm)	Diámetro Plato (mm)	Pesos (kg)	Valor f _{literatura}	Valor f _{promedio}	Valor f _{promedio}
		300	10	1,1	1,28	-
	150	300	15-20	1,1	1,28	1,52
	150	200	10	0,9	1,07	1,38
25		200	15-20	0,9	0,90	1,04
23	200	300	10	0,9	0,68	0,93
			15-20	0,9	0,60	0,82
		200	10	0,9	0,75	0,91
			15-20	0,9	0,61	0,79
	150	300	10	1,1	1,10	0,71
			15	1,1	1,01	0,88
		200	10	0,9	0,96	0,75
2		200	10	0,9	0,70	0,61
	200	300	15	0,9	0,65	0,61
	200	200	10	0,9	0,71	0,59
		200	15	0,9	0,76	0,65

Tabla 7-5: Retro cálculo de valor f

Figura 7-2: Módulo LWD vs Módulo Celda, f por celda

De la Tabla 7-6 se puede observar que los módulos del plato de diámetro 200 mm son mayores que los calculados con el plato de 300 mm, lo cual corrobora la teoría y la experiencia de laboratorio.

Estructura		LWD		Valor f literatura		Valor f por celda	
CBR Subrasante (%)	Espesor (mm)	Diámetro Plato (mm)	E _{lwd} (MPa)	E _{celda} (MPa)	C.V. (%)	E _{celda} (MPa)	C.V. (%)
	150	200	237	429	65%	259	11%
25		300	233	428	22%	235	52%
25	200	200	369	219	43%	379	35%
		300	299	178	51%	297	23%
2	150	200	75	67	36%	75	3%
		300	69	45	50%	70	28%
	200	200	90	39	26%	91	15%
	200	300	78	29	21%	79	15%

Tabla 7-6: Módulo Elástico retro calculado para distintos valores de f

7.4. Efecto Shell

Con el objetivo de verificar si el Módulo del LWD es influenciado por las propiedades de la subrasante y del espesor de la base granular, se realizará una comparación de medias entre el Módulo Elástico obtenido por el LWD y el Módulo obtenido por la formula Shell (Tabla 7-7 y Figura 7-3).

Figura 7-3: Resultados Módulo Shell vs Módulo LWD

Tabla 7-7: Módulo E	ástico Shell vs LWD
---------------------	---------------------

Estr	uctura	Módulo Elástico (MPa)			
CBR _{subrasante}	Espesor (cm)	SHELL	LWD (\$300)	LWD (\$200)	
25	15	247	233	237	
25	20	303	299	369	
2	15	52	69	75	
Z	20	60	78	90	

Se realizó un análisis estadístico de comparación de medias, se concluye que los módulos no son iguales (Tabla 7-8).

82

Estructur Experim	ra del lento	Módulo	Elástico	Análisis Estadístic		со
CBR Subrasante (%)	Espesor (cm)	Promedio E _{LWD} (MPa)	E _{Shell} (MPa)	Intervalo de Confianza (90%)	Cumple hipótesis nula α=0,1	Valor p (Prob. Error Tipo I*)
25%	h1 = 15 cm	235	247	227 a 244 MPa	No	22%
	h2 = 20 cm	334	303	310 a 348 MPa	No	84%
2%	h1 = 15 cm	71	52	69 a 73 MPa	No	11%
	h2 = 20 cm	84	60	82 a 86 MPa	No	3%

Tabla 7-8: Análisis de medias Módulo LWD y Shell

* Rechazar la Hipótesis nula (E_{LWD} es igual a E_{Shell}) cuando es verdadera

Luego, se consideraron los valores promedios de Módulo para cada estructura (Figura 7-4) se puede observar que existe una alta correlación (R2=0,93). Las Tablas 7-9 y 7-10 presentan la disminución porcentual que produce el CBR de la subrasante y el espesor de la base granular respectivamente.

Figura 7-4: Correlación Promedio Módulo LWD y Promedio Módulo Elástico Combinado

Módulo Elástico LWD (MPa)		CBR = 25%	CBR = 2%	Δ (MPa)	Disminución porcentual
1200	h1=15cm	233	69	-164	-70%
φ500	h2=20cm	299	CBR = 2% Δ (MPa) 69 -164 78 -221 75 -162 90 -279 Promedio -207	-74%	
1000	h1=15cm	237	75	-162	-68%
φ200	h2=20cm	369	369 90 -279		-76%
			Promedio	-207	-72%

Tabla 7-9: Disminución de Módulo LWD, espesor base granular constante

Tabla 7-10: Disminución de Módulo LWD, CBR subrasante constante

Módulo Elástico	Módulo Elástico (MPa)		h1 = 15cm	Δ (MPa)	Disminución porcentual
1200	CBR = 25%	299	233	-66	-22%
φ300	CBR = 2%	78	cm h1 = 15cm Δ (MPa) 233 -66 69 -9 237 -132 75 -15 Promedio -56	-12%	
1000	CBR = 25%	369	237	-132	-36%
φ200	CBR = 2%	90	75	-15	-17%
			Promedio	-56	-22%

8. CONCLUSIONES Y RECOMENDACIONES

El deflectómetro de impacto liviano tiene una alta repetitividad ante la misma configuración de carga lo cual corrobora el estado de la práctica del equipo. Las Celdas de Presión también presentan alta repetitividad, sin embargo, ésta es mayor se aplica una carga directamente sobre las celdas a diferencia de una carga que se aplica a 175 cm de distancia. El estudio demostró que las tensiones verticales no se propagan horizontalmente de igual manera a una distancia equivalente.

Al colocar una segunda celda de presión ante condiciones similares de carga (aplicación de carga directamente sobre la celda), humedad y de estructuración, se rechaza la hipótesis que dice relación con que ambas celdas miden lo mismo. La diferencia de medición de cada celda varía entre los 10 y 50 kPa. Esta diferencia se atribuye a principalmente a la naturaleza heterogéneas de la base granular. Por lo tanto, las tensiones a nivel de subrasante están sujeto a variables que el modelo de Boussinesq no considera y que durante el análisis estructural pueden ser pasadas por alto.

Con respecto al Módulo del LWD y el Módulo obtenido de las celdas de presión. Los módulos del LWD son mayores cuando se utilizan cargas mayores (plato de 200 mm) en comparación a los módulos obtenidos con el plato de mayor diámetro (plato de 300 mm) la diferencia de módulo oscila entre 10 a 70 MPa. Luego, los valores f recomendados por la literatura no se ajustaban a los obtenidos por el LWD, entregando módulos muy bajos para las estructuras de espesor 20 cm y valores muy altos para las estructuras de 15 cm. No se encontró correlación evidente entre el módulo del LWD y el módulo de las celdas utilizando los valores f recomendados por la literatura. Por lo tanto, se retro calcularon nuevos parámetros f. Se determinaron valores f en función del espesor de la estructura, CBR

subrasante y radio de la carga aplicada y se calculó nuevamente los módulos y se obtuvo correlación de 0,77 con respecto al módulo obtenido por el LWD. Luego, con los nuevos valores f ajustados es posible obtener una mejor aproximación de los valores de tensiones para las estructuras utilizadas en este experimento. No se recomienda extrapolar los resultados del valor f a otras condiciones de estructuración y de carga.

En relación al módulo combinado, el Módulo Elástico del LWD logró captar el efecto de la subrasante lo cual se vio reflejado en el descenso del Módulo Elástico del LWD que estaba colocado sobre subrasante de menor Módulo, el espesor de la base granular igualmente tuvo un efecto proporcional en el Módulo del LWD. El módulo de la base granular se ve mayormente afectado al estar sobre una subrasante mala (disminución del 72% en valor de Módulo) que disminuyendo el espesor de ésta (disminución de 22%). En este caso la correlación fue alta $R^2 = 0.93$ entre módulo de LWD y módulo Shell.

Luego, las recomendaciones son las siguientes:

- Los suelos granulares presentan una gran variabilidad dada su naturaleza heterogénea y los modelos de Boussinesq son una muy buena primera aproximación, sin embargo, no es posible llegar a un valor definitivo de tensión, para ello se recomienda un análisis de mayor complejidad utilizando, por ejemplo, elementos finitos.
- El valor de tensión vertical a nivel de subrasante no es absoluto ante una misma carga y espesor de estructura definido, la variabilidad propia de las bases granulares y en especial la variabilidad de la subrasante (más aún en proyecto de gran extensión como carreteras) el cálculo de tensiones no puede ser un valor único, los factores constructivos, humedad, más la variabilidad en las cargas aplicadas, entre otros, hacen que los módulos efectivos y por ende las tensiones a nivel de subrasante tengan una

alta variabilidad a lo largo de la estructura de pavimento. Finalmente, para futuras experiencias, se sugiere que las celdas de presión no estén en contacto directo con la base granular, lo ideal sería colocar alguna capa de suelo homogéneo sobre la celdas para evitar el efecto de cargas puntuales que puede producir los granos gruesos del suelo.

- El efecto Shell se logró validar con las estructuras utilizadas dejando en evidencia que el efecto de la subrasante, por lo tanto, es de suma importancia identificar los tramos de subrasante baja, verificar con el módulo Shell y validar el diseño o cambiarlo en caso de que no se cumpla con las especificaciones necesarias.
- El LWD es un equipo útil y versátil, de gran repetitividad y reproducibilidad con un módulo que toma en cuenta el efecto Shell. Los módulos en las bases granulares dependen directamente de la presión aplicada. Su uso es totalmente recomendado para el estudio de las bases granular para determinar homogeneidad, si existe algún problema de compactación o la existencia de una subrasante de mala calidad, sin embargo, para realizar un análisis de tensiones se recomienda utilizar los valores f obtenidos de esta investigación o realizando una calibración in situ utilizando la metodología de la presente investigación, ya que los factores f que se utilizan en la literatura y en el software mePads, en la mayoría de los casos son de origen desconocido o para materiales y condiciones distintas a las de las estructuras de pavimentos utilizados en Chile. Lo anterior, sin extrapolar a otro tipo de estructuras.

BIBLIOGRAFIA

AASHTO. (2007). AASHTO 307-99 - Determining the Resilient Modulus of Soils and Aggregate Materials.

Ahmed, A. y Khalid, H. (2011). Backcalculation Models to Evaluate Light Falling Weight Deflectometer Moduli of Road Foundation Layer Made with Bottom Ash Waste Abdelkader. *Transportation Research Record: Journal of the Transportation Research Board*, 2227, 63-70

Al-amoudi, O. S. B., Asi, I. M., and Wahhab, H. I. A. (2002). Clegg Hammer - California-Bearing Ratio Correlations. *Journal of Materials in Civil Engineering*, *14* (6), 512–523.

ASTM. (2008). Standard Guide for Calculating In Situ Equivalent Elastic Moduli of Pavement Materials Using Layered Elastic Theory. (Reapproved), 1–7.

ASTM (2015). Standard Test Method for Measuring Deflections using a Portable Impulse Plate Load.

Angelone, S. y Martinez, F. (2015). Analysis of non-linear models describing the resilient behaviour for soils and unbound materials Analysis of non-linear models describing the resilient behaviour for soils and unbound materials. Road Laboratory, Institute of Applied Mechanics and Structures, University of Rosario, Argentina.

Asli, C., Feng, Z. Q., Porsher, G. y Rincent, J.-J. Back-Calculation of Elastic Modulus of Soil and Subgrade from Portable Falling Weight Deflectometer Measurement. *Engineering Structures ELSEVIER*, *34* (1), 1-7

Barrios, I. (2017). Análisis de Deformaciones Evaluadas con Sensores en Caminos de Bajo Volumen de Tránsito Sellados. Pontificia Universidad Católica de Chile.

Bilodeau, J., and Dore, G. (2014). Stress distribution experienced under a portable lightweight deflectometer loading plate. *International Journal of Pavement Engineering*, 15(6), 564–575.

Bro, C. (2005). Prima 100 Portable Falling Weight Deflectometer. 1-35

De Solminihac, H. (2001). Gestión de Infraestructura Vial. Ediciones Universidad Católica de Chile.

Edwards, P., and Fleming, P. (2009). LWD Good Practice Guide. 1–22.

Fleming, P. R., Frost, M. W. Y Rogers, C.D.F. (2000). A Comparison of Devices for Measuring Stiffness In-situ. Proceedings of the Fifth International Conference on Unbound Aggregate In Roads, Nottingham, Reino Unido.

Fleming, P. R., Lambert J.P. Y Frost, M.W. (2006). In-Situ Assessment of Stiffness Modulus for Highway Foundations during Construction. Loughborough University, Department of Civil and Building Engineering & Nottingham Trent University, Division of Civil Engineering, The School of Property and Construction, Newton Building. Loughborough & Nottingham, Inglaterra.

Fleming, P. R., Frost, M. W., & Lambert, J. P. (2007). Review of Lightweight Deflectometer for Routine in Situ Assessment of Pavement Material Stiffness. *Transportation Research Board*, 2004(09). 80–87.

Garnica, P., Gómez, J. A., & Sesma, J. A. (2002). Mecánica de Materiales para Pavimentos, Publicación Técnica N°197, 1–234.

Geokon Inc. (2013). Earth Pressure Cells.

González, A., Cubrinovski M., Alabaster A., Thenoux G. (2012). Interpretation of Laboratory and Full-Scale Testing of New Zealand Foamed Bitumen Pavements using Finite Element Modeling. *Journal of Road Materials and Pavement Design*, *13*(4). 578-598.

Gul, Y. y Ceylanoglu, A. (2013). Evaluation of Plate Loading Tests on some rocks formations for assessing the ground bearing capacity. *Bulletin of Engineering Geology and the Environment*, 131-136

Hayward, B. J. (2006). Investigation of Road Base Shear Strains Using In-Situ Instrumentation. University of Canterbury.

Halles, F., Thenoux, G. Sandoval, G., Mancila S., Apablaza C. (2011). Implementación de un programa de deterioro acelerado de pavimentos, primera parte: Instrumentalización de tramos de prueba. Pontificia Universidad Católica de Chile.

Halles F y Thenoux G., (2012). Uso de sensores para la validación del estado de tensiones en la estructura de pavimentos. *Provial 2012*.

Hunt, A., Jenkins, R., Thompson, G., Baker, M., and Hopkins, M. (2013). Guide to the Measurement of Force.

Instituto Nacional de Normalización de Chile. (1999). Mecánica de suelos - Determinación de la razón de soporte de suelos compactados en laboratorio. 1- 15.

Kamiura M., Sekine E., Abe N. y Maruyam T. (2000). Stiffness evaluation of the subgrade and granular aggregates using the portable FWD, Unbound Aggregates in Road Constrution, Dawson Balkema, Rotterdam, Netherland,

Lin, D., Liau, C., & Lin, J. (2006). Factors Affecting Portable Falling Weight Deflectometer Measurements. *Journal of Geotechnical and Geoenvironmental Engineering*, 132(6). 804–808.

Livneh, M., and Goldberg, Y. (2001). Formation and Foundation Construction Use of Falling-Weight Deflectometer and Light Drop Weight. *Transportation Research Board*, 80th Annual Meeting. 69–77.

Ministerio de Obras Públicas de Chile. (2016). Manual de Carreteras.

Ministerio de Obras Públicas de Chile (2016). Red vial nacional - Dimensionamiento y características.

Montgomery, D. C., and Runger, G. C. (2002). Applied Statistics and Probability for Engineers Third Edition.

Mooney, M. A., and Miller, P. K. (2009). Analysis of Lightweight Deflectometer Test Based on In Situ Stress and Strain Response. *Journal of Geotechnical and Geoenvironmental engineering*, *135*(2). 199–209.

Nazzal, M. D., Abu-farsakh, M. Y., and Alshibli, K. (2016). Evaluating the Light Falling Weight Deflectometer Device for In Situ Measurement of Elastic Modulus of Pavement Layers. *Transportation Research Board*, 2016. 13–22.

Osorio, A. (2008). Metodología de Evaluación In-Situ de la Capacidad de Soporte de Bases y Subbases Granulares de Pavimentos Flexibles con el Deflectómetro de Impacto Liviano. Pontificia Universidad Católica de Chile.

Papagiannakis, A. T., and Masad, E. (2008). Pavement Design and Materials. John Wiley.

Peters-Davis, K. y Timm, D. (2009). Recalibration of the Asphalt Layer Coefficient. National Center of Asphalt Technology (NCAT) at Auburn University.

Petersen, M., Wahr, C., Palma, G., Castro, L., and Albornoz, J. (2011). Relación entre Módulo Resiliente Determinado Mediante Deflectómetro De Impacto y el de Laboratorio.

Shell International Petroleum Company Ltd. (1978). Shell Pavement Design Manual. London.

Stamp, D. H., and Mooney, M. A. (2013). Influence of Lightweight Deflectometer Characteristics on Deflection Measurement. *Geotechnical Testing Journal*. 36(2). 216–226.

Tehrani, F. S. (2010). The Effect of Water Content on Light Weight Deflectometer Measurements. (GSP 199), 930–939.

TEKSCAN. (2017). Force Sensors for Design.

Terzaghi, K. (1943). Theoretical Soil Mechanics. Wiley, New York.

Thenoux, G. (1991). Aplicación de una nueva metodología para el control de compactación de suelos: Clegg Hammer. *Revista de Ingeniería de Construcción, 10*.

Thenoux G. (2016). Apuntes de Diseño Estructural de Pavimentos. Pontificia Universidad Católica de Chile

Tirado, C., Mazari, M., Carrasco, C., & Nazarian, S. (2015). Evaluating Influence Depth of Light Weight Deflectometer through Finite Element Modeling. *Airfield and Highway Pavement 2015*. 789–800.

Ullidtz, P. (1998). Modelling Flexible Pavement Response and Performance. Technical University of Denmark.

Viscarra, F. (2006). El cono dinámico de penetración y su aplicación en la evaluación de suelos.

Von Quintus, H. y Killingsworth, B. (1997). Design Pamphelt for the Determination of Design Subgrade in Support of the AASHTO Guide for the Design of Pavements Structures.

Yoder, E., J., and Witczak, M. W. (1975). Principles of Pavement Design.

Weissig, D., R. (1995). Fundamentos sobre la Compactación

ANEXOS

A. ANÁLISIS DE PAVIMENTOS FLEXIBLES

El anexo A corresponde a un extracto del capítulo 7 del libro de Papagiannakis y Masad (2008) el cual explica el modelamiento y análisis de pavimentos flexibles utilizando la solución propuesta por Boussinesq.

La condición más simple de carga corresponde a una carga puntual, P, aplicada sobre un espacio elástico semi infinito (Figura A-1). Las tensiones y deformaciones se definen a continuación

- σ_z : Esfuerzo vertical normal
- σ_r : Esfuerzo radial normal
- σ_{θ} : Esfuerzo tangencial Normal
- τ_{zr} : Esfuerzo de corte horizontal en dirección radial
- ε_z: Deformación vertical normal
- ε_r: Deformación radial normal
- ε_z: Deformación tangencial normal
- γ_{zr} : Deformación de corte horizontal en dirección radial

Considerando lo anterior, los desplazamientos pueden ser en dos direcciones, verticales y horizontales, las cuales se definen mediante las letras w y u respectivamente. (Figura A-1).

Figura A-1: Simetría Axial de esfuerzos en espacio elástico semi infinito (Papagiannakis, 2008)

$$\varepsilon_{\rm z} = \frac{{\rm d}w}{{\rm d}z} \tag{A.1a}$$

$$\varepsilon_{\rm r} = \frac{{\rm d}u}{{\rm d}r}$$
 (A. 1b)

$$\varepsilon_{\theta} = \frac{u}{r}$$
 (A.1c)

$$\gamma_{\rm zr} = \frac{{\rm d}u}{{\rm d}z} + \frac{{\rm d}w}{{\rm d}r} \tag{A.1d}$$

$$\sigma_{z} = -\frac{P}{2\pi} \cdot \frac{3z^{2}}{(r^{2} + z^{2})^{\frac{5}{2}}}$$
(A. 2a)

$$\sigma_{\rm r} = -\frac{P}{2\pi} \cdot \left[\frac{3r^2 \cdot z}{(r^2 + z^2)^{\frac{5}{2}}} - \frac{1 - 2\nu}{r^2 + z^2 + z\sqrt{r^2 + z^2}} \right] \tag{A.2b}$$

$$\sigma_{\theta} = \frac{P}{2\pi} \cdot (1 - 2\nu) \cdot \left[\frac{z}{(r^2 + z^2)^{\frac{3}{2}}} - \frac{1 - 2\nu}{r^2 + z^2 + z\sqrt{r^2 + z^2}} \right]$$
(A. 2c)

96

$$\tau_{zr} = \frac{P}{2\pi} \cdot \frac{3r \cdot z^2}{(r^2 + z^2)^{\frac{5}{2}}}$$
(A. 2d)

$$\varepsilon_{z} = \frac{1}{E} \cdot (\sigma_{z} - \nu \cdot (\sigma_{r} + \sigma_{\theta}))$$
(A. 3a)

$$\varepsilon_{\rm r} = \frac{1}{\rm E} \cdot \left(\sigma_{\rm r} - \nu \cdot (\sigma_{\rm z} + \sigma_{\theta}) \right) \tag{A.3b}$$

$$\varepsilon_{\theta} = \frac{1}{E} \cdot (\sigma_{\theta} - \nu \cdot (\sigma_{r} + \sigma_{z}))$$
 (A.3c)

$$\gamma_{zr} = \frac{2\tau_{zr}(1+\nu)}{E} = \frac{\tau_{zr}}{G}$$
(A.3d)

$$\begin{cases} \sigma_{z} \\ \sigma_{r} \\ \sigma_{\theta} \\ \tau_{zr} \end{cases} = \frac{E}{(1+\nu)\cdot(1-2\nu)} \begin{bmatrix} (1-\nu) & \nu & \nu & 0 \\ \nu & (1-\nu) & \nu & 0 \\ \nu & \nu & (1-\nu) & 0 \\ 0 & 0 & 0 & \frac{1-2\nu}{2} \end{bmatrix} \begin{cases} \varepsilon_{z} \\ \varepsilon_{r} \\ \varepsilon_{\theta} \\ \gamma_{zr} \end{cases}$$
(A.4)

Las deflexión vertical y horizontal, w y u, corresponden a la integral (asumiendo distribución uniforme) de los esfuerzos verticales y horizontales respectivamente:

$$w = \frac{P}{2\pi E} \left[(1+\nu)z^2(r^2+z^2)^{-\frac{3}{2}} + 2(1-\nu^2)(r^2+z^2)^{-\frac{1}{2}} \right]$$
(A.5a)

$$u = P \frac{(1+\nu)(1-2\nu)}{2\pi rE} \cdot \left[z(r^2+z^2)^{-1/2} - 1 + \frac{1}{1-2\nu} r^2 z(r^2+z^2)^{-3/2} \right] (A.5b)$$

Luego, en la superficie (z=0), la deflexión horizontal superficial es:

$$u = \frac{\mathrm{P}(1-\nu^2)}{\pi E r} \tag{A.6}$$

Cuando r = 0, las expresiones son:

$$\sigma_{z} = p \cdot \left[-1 \frac{z^{2}}{(a^{2} + z^{2})^{\frac{3}{2}}} \right]$$
 (A. 7a)
97

$$\sigma_{\rm r} = \sigma_{\theta} = \frac{p}{2} \cdot \left[\frac{2(1+\nu)z}{\sqrt{a^2 + z^2}} - (1+2\nu) - \frac{z^3}{(a^2 + z^2)^{\frac{3}{2}}} \right]$$
(A.7b)

$$\tau_{\rm zr} = 0 \tag{A.7c}$$

Finalmente, la deflexión debajo de una carga de radio a es:

$$w = \frac{2 \cdot (1 - \nu^2)}{E} \mathbf{p} \cdot \mathbf{a} \tag{A.8}$$

Despejando el Módulo Elástico, se obtiene la fórmula que utiliza el LWD para determinar este valor:

$$\mathbf{E} = \mathbf{E}_{\rm LWD} = \frac{2 \cdot \mathbf{p} \cdot \mathbf{a}}{w} \cdot (1 - v^2) \tag{A.9}$$

B. ENSAYOS DE CARACTERIZACIÓN DE SUELOS

B.1 Descripción de Ensayos

Los ensayos de caracterización de suelos en laboratorio son los siguientes:

- Granulometría, según el procedimiento del M.C. 8.102.1 (2016).
- Límites de Atterberg, según los procedimientos 8.102.3 y 8.102.4 del M.C. (2016).
- Ensayo de Proctor Modificado, según el procedimiento 8.102.7 del M.C. (2016).
- Ensayo de Módulo Resiliente, según el procedimiento T307-99 de AASHTO (2007).

Los suelos de subrasante serán sometidos a los siguientes ensayos:

- Granulometría, según el procedimiento del M.C. 8.102.1 (2016).
- Límites de Atterberg, según los procedimientos 8.102.3 y 8.102.4 del M.C. (2016).

Con el objetivo de obtener un valor de Módulo Elástico de referencia el cual se utilizará para los posteriores cálculos de Módulo Elástico Compuesto de la base granular. El ensayo realizado es el siguiente:

 Ensayo Cono de Penetración Dinámico (CDP), según el procedimiento 8.102.12 del M.C. (2016). Cada ensayo se realizará en los cuartos de la caja sobre ambos suelos de subrasante (Figura 5-2).

Figura B-1: Esquema de Ensayo CDP

Finalmente, las bases granulares en Chile deben cumplir el 95% de la DMSC del ensayo Proctor modificado, la estructura a escala real deberá cumplir con el mismo requerimiento. La verificación se realizará mediante el siguiente ensayo, el cual se ejecutará después de realizar las mediciones con el LWD y las Celdas de Presión:

 Ensayo de Cono de Arena para determinar Densidad", según el procedimiento 8.102.9 del Manual de Carreteras de Chile (Ministerio de Obras Públicas de Chile, 2016).

B.2 Análisis de Resultados

A continuación, se presentan los resultados de los ensayos de laboratorio. La Tabla B-1 presenta en los ensayos de granulometría y de plasticidad (Figura B-2) de la base granular, la subrasante 1 y la subrasante 2. Según los ensayos de granulometría y los ensayos índices, la base granular tiene clasificación AASHTO A-1a-0 y clasificación USCS GW. Las subrasantes 1 y 2 tienen clasificación CL-ML y ML (Tabla B-2).

Tamiz			Porcentaje que pasa					
ASTM	(mm)	Base Granular	Subrasante 1	Subrasante 2				
(2")	50	100%	100%	100%				
(1")	25	83%	98%	100%				
(3/4")	20	68%	93%	100%				
(3/8") 10		48%	82%	95%				
(N° 4)	5	37%	74%	90%				
(N°10)	2	25%	68%	87%				
(N° 40)	0,5	11%	55%	76%				
(N° 200) 0,08		2%	37%	56%				
LL		-	-	34				
IP		NP	NP	3				

Tabla B-1: Resultados Granulometría

Tabla B-2: Clasificación de Subrasante 1

Clasificación	Base Granular	Subrasante 1	Subrasante 2
AASHTO	A-1a	A-4	A-4
UCSC	GW	CL-ML	ML

Figura B-2: Ensayo Límite Líquido con Instrumento de Casagrande

La Figura B-3 presenta los resultados obtenidos del ensayo Proctor modificado de la base granular. La humedad que maximiza la densidad seca corresponde a 7,7%. Luego, se elaboraron las probetas del ensayo de Módulo Resiliente y se construyeron las estructuras de prueba utilizando este valor de humedad.

Figura B-3: Resultado Ensayo Proctor Modificado B.G.

La Tabla B-3 presenta los resultados obtenidos al someter dos probetas diferentes al mismo procedimiento.

	Probeta 1			Pro	obeta 2	
n	σd (kPa)	σ3 (kPa)	Mr (Mpa)	σd (kPa)	σ3 (kPa)	Mr (Mpa)
1	18	20	337	18	20	376
2	37	20	342	37	20	434
3	55	20	340	55	20	441
4	31	34	370	31	34	468
5	62	34	371	62	34	484
6	93	34	373	93	34	501
7	62	68	453	62	68	587
8	124	68	454	124	68	611
9	186	68	463	186	68	609
10	62	103	515	62	103	646
11	93	103	507	93	103	654
12	186	103	528	186	103	663
13	93	137	570	93	137	712
14	124	137	574	124	137	730
15	248	137	575	248	137	708

Tabla B-3: Resultados Ensayo Módulo Resiliente

La Figura B-4 muestra una probeta del ensayo de Módulo Resiliente elaborada con el material que se utilizó como base granular en la estructura de prueba.

Figura B-4: Probeta ensayo Módulo Resiliente

Se puede observar en las Figuras B-5 y B-6 que el Módulo Resiliente de la base granular depende del confinamiento.

Figura B-5: Probeta N°1 Ensayo Módulo Resiliente

Figura B-6: Probeta N°2 Ensayo Módulo Resiliente

Existen ecuaciones que permiten predecir el Módulo Resiliente en función del estado de tensión (Fórmula B.1). Luego, con los resultados obtenidos en el ensayo, se determinaron los factores de ajuste k_1 , k_2 y k_3 los cuales se presentan en la Tabla B-4

$$Mr = k1 \cdot \sigma_d^{k2} \cdot (1 + \sigma_3)^{k3} \tag{B.1}$$

Tabla B-4: Factores de ajuste en fórmula de Módulo Resiliente

	k 1	k ₂	k 3	R ²
Probeta 1	120	0,01	0,30	0,99
Probeta 2	171	0,04	0,25	0,98

Las Tablas B-5 y B-6 presentan los resultados del ensayo CDP sobre ambas subrasantes.

Localización	Estrato	Profundidad (cm)	D (mm/golpe)
1	1	0-60	10,9
1	2	61-72	7,9
2	1	0-19	5,8
2	2	20-21	1,5
3	1	0-65	17,2
4	1	0-34	8,6
4	2	35-66	11,2

Tabla B-5: Resultados Ensayo Cono de Penetración sobre Subrasante 1, CBR>10%

Localización	Fetrato	Profundidad	D
Localizacioli	Estrato	(cm)	(mm/golpe)
	1	0-37	61,0
1	2	38-52	19,3
	3	53-69	11,1
	1	0-26	65,5
2	2	27-56	20,1
	3	57-61	6,6
2	1	0-49	70,0
5	2	50-55	12,2
	1	0-29	71,8
4	2	30-54	31,6
	3	55-62	11,9

Tabla B-6: Resultados Ensayo Cono de Penetración sobre Subrasante 2. CBR<10%

Se puede observar en la Tabla B-7 que las cuatro estructuras construidas cumplen con el requisito del Manual de Carreteras (Ministerio de Obras Públicas de Chile, 2016), es decir, su porcentaje de compactación con respecto a la DMCS es igual o mayor a 95% (Figura B-7).

Espesor Base Granular (cm) 15 20 15 20 **CBR** subrasante 15% 15% 3% 3% Densidad Húmeda (g/cm³) 2,31 2,46 2,33 2,32 Densidad seca (g/cm³) 2,19 2,18 2,17 2,18 DMCS 2,27 2,27 2,27 2,27 Porcentaje de Compactación 96% 95% 96% 96%

Tabla B-7: Resultados Ensayo de Cono de Arena en Base Granular

Figura B-7: Verificación de Densidad: Cono de Arena

C. ANÁLISIS ESTADÍSTICO DE RESULTADOS DE CELDAS

El coeficiente de variación se calcula según la siguiente fórmula:

$$C.V. = \frac{Sd_i}{\overline{x_i}} \cdot 100\%$$
(C.1)

Donde:

Sd_i: Desviación estándar de la muestra i (lectura de celda o medición de deflexión del LWD)

 $\overline{x_1}$: Promedio de la muestra i (lectura de celda o medición de deflexión del LWD)

Deflectómetro Celdas Deflexión **σ**Celda1 Configuración C.V.ð C.V. Celda1 σ_{Celda2} (kPa) C.V. Celda2 $\delta_{LWD}(\mu m)$ (kPa) 257,2 48 57 245,7 49 51 φ300P10 240,4 4% 52 4% 48 11% 235,8 53 42 252,2 52 49 53 304,2 54 297,2 49 55 φ300P15 274,2 5% 2% 44 8% 55 266,0 54 45 275,5 57 52 67 74 394,3 392,4 80 71 = 15 cm, CBRsubrasante = 25%380,7 76 69 φ300P20 2% 6% 4% 400,7 75 75 389,3 74 78 397,4 81 72 21 288,1 50 22 254,8 53 φ200P10 9% 3% 5% 23 234,8 52 267,1 54 21 94 104 615,8 99 Ч 593,6 96 574,5 100 101 φ200P15 579,3 4% 98 3% 97 4% 566,5 102 100 561,2 102 110 553,1 103 100 107 712,5 122 93 600,2 120 106 624,1 126 φ200P20 9% 7% 6% 612,1 134 103 652,1 151 115 641,2 141 104

Tabla C-1: C.V. Estructura 1, medición indirecta

Coeficiente de Variación LWD y Celda, Medición Indirecta

C.1

	Deflectómetro			Celdas				
	Configuración	Deflexión δ _{LWD} (μm)	C.V.ð	σ _{Celda1} (kPa)	C.V. Celda1	σ _{Celda2} (kPa)	C.V. Celda2	
		175		78		40		
	φ300P10	172	2%	65	12%	38	2%	
		169		63		39		
		233		86		48		
		233		91		46		
	+200D15	238	20/	94	4.07	44	40/	
	φ300P15	235	2%	89	4%	49	4%	
		237		85		45		
		243		92		47		
		384		117		95		
= 25%		370		110	2%	95	2%	
	ф300Р20	371	2%	113		98		
ite =		369		112		96		
san		366		114		92		
ıbra		257		56	2%	32	5%	
Rsu		243		60		34		
CB	φ200P10	242	4%	58		36		
Ë.		236		57		37		
0 C		235		58		35		
10		388		96		65		
h		350		92		67		
	ሐ200P15	348	4%	90	3%	68	3%	
	φ2001 15	362	170	95	570	67	570	
		358		95		69		
		354		93		64		
		462		99		70		
		440		105		80	6%	
	ሐ200P20	428	3%	103	5%	80		
	Ψ2001 20	419	570	109	570	75	070	
		431		109		82		
		435		113		82		

Tabla C-2: C.V. Estructura 2, medición indirecta

	Deflect		Celdas				
	Configuración	Deflexión δ _{LWD} (μm)	C.V.ð	σ _{Celda1} (kPa)	C.V. Celda1	σ _{Celda2} (kPa)	C.V. Celda2
		789,1		72		52	
		799,2		74		66	
	+200D10	793,9	00/	75	20/	59	Q 0/
	φ300Ρ10	794,8	0%	76	3%	61	8%
s = 2%		794,9		75		65	
		790,8		70		60	
ante		1036,6		108	3%	77	3%
ras		1088,9	20/	105		83	
qns	4200P15	1091,8		104		80	
BR	ψ300F13	1114,8	3%	104		82	
ı, C		1108,9		98		79	
сш		1092,7		104		77	
: 15		899,2		87		64	
h =		902,9		82		65	
	#200P10	902,1	1.04	79	104	65	30/
	Ψ2001 10	915,1	1 70	82	470	64	3%
		902,5		78		60	
		907,5		81		62	

Tabla C-3: C.V. Estructura 3, medición indirecta

	Deflectómetro			Celdas			
	Configuración	Deflexión δ _{LWD} (μm)	C.V.ð	σ _{Celda1} (kPa)	C.V. Celda1	σ _{Celda2} (kPa)	C.V. Celda2
	φ300P10	798 782 792 783 770	1%	84 86 84 83	6%	71 64 68 76	7%
h = 20 cm, CBRsubrasante = 2%		788		73 80		63 73	
	φ300P15	966 1025 1063 1075 1059 1083	4%	112 109 106 104 111 103	3%	96 90 87 90 90 94	4%
	φ200P10	861 851 866 879 867 883	1%	96 95 95 99 100 101	3%	70 67 65 73 72 76	5%
	φ200P15	1334 1268 1283 1310 1316 1300	2%	132 137 138 137 145 137	3%	80 89 90 89 90 86	4%

Tabla C-4: C.V. Estructura 4, medición indirecta

C.2 Coeficiente de Variación LWD y Celda, Medición Directa

	Deflectómetro			Celda			
	Configuración	Deflexión δLWD (μm)	C.V.ð	Posición Celda	σ _{Celda} (kPa)	C.V. Celda	
		216			60		
		217	0%	1	61	2%	
	±200D10	216			59		
	φ300Ρ10	709			53		
		685	3%	2	51	4%	
		665			49		
		264			67		
		269	1%	1	69	5%	
	+200D15	272			74		
	φ300P13	311			65		
		309	1%	2	65	4%	
		313			61		
		360			102		
5%		357	1%	1	100	1%	
1	+ 200020	365			100		
nte	φ300P20	1224			78		
asaı		1163	3%	2	86	6%	
ubr		1206			78		
RS		278		1	94		
G		284	1%		92	2%	
сm,	+200010	280			89		
15 0	φ200Ρ10	282			62		
П		276	1%	2	57	5%	
д		283			62		
		488			175		
		483	1%	1	178	2%	
	+200D15	494			183		
	φ200P15	517			148		
		512	1%	2	137	4%	
		513			141		
		560			195		
		556	0%	1	198	1%	
	1000000	558			198		
	φ200P20	606			182		
		607	0%	2	185	1%	
		611			188		

Tabla C-5: C.V. Estructura 1, medición directa

		Deflectómetro		Celd	a de presión	
	Configuración	Deflexión δLWD (μm)	C.V.ð	Posición Celda	σ _{Celda} (kPa)	C.V. Celda
		197			87	
		197	1%	1	85	2%
	1000010	200			89	
	φ300Ρ10	182			56	
		179	1%	2	59	4%
		181			61	
		182			121	
		183	2%	1	115	4%
	+ 200D15	188			126	
	φ300P15	253			94	
		243	2%	2	91	5%
		247			85	
		307			142	
5%		316	4%	1	152	4%
10	ф300Р20	294			148	
nte		354			123	
asa		349	1%	2	129	3%
ubr		348			121	
$3R_{S}$		194		1	83	
CE		194	1%		87	2%
сШ,	+200010	192			84	
20 (φ200Ρ10	227			69	
		224	1%	2	69	6%
<u>, C</u> i		225			63	
		298			163	
		296	1%	1	159	1%
	+200D15	299			161	
	φ200P15	299			105	
		303	1%	2	117	6%
		300			110	
		374			207	
		360	2%	1	193	4%
	1000000	359			208	
	φ200P20	396			144	
		390	1%	2	141	4%
		395			153	

Tabla C-6: C.V. Estructura 2, medición directa

	Deflectómetro			Celda			
	Configuración	Deflexión δLWD (μm)	C.V.ð	Posición Celda	σ _{Celda} (kPa)	C.V. Celda	
		665			57		
		667	1%	1	59	1%	
	#300P10	680			59		
	φ300F10	791			99		
2%		789	0%	2	95	2%	
		783			98		
ante		990			99		
ras		967	1%	1	87	7%	
sub	+200D15	991			92		
BR	φ300P13	1072			108		
Ŭ,		1078	1%	2	115	4%	
cm		1062			108		
15		1012			91		
h =		1007	1%	1	89	2%	
	#200P10	1019			92		
	φ200P10	998			127		
		1006	1%	2	128	1%	
		1008			130		

Tabla C-7: Estructura 3, medición directa

		Deflectómetro			Celda	
	Configuración	Deflexión ðLWD (µm)	C.V.ð	Posición Celda	σ _{Celda} (kPa)	C.V. Celda
		663			71	
		662	0%	1	69	4%
	#300P10	663			75	
	φ300110	641			84	
		645	0%	2	82	5%
		641			76	
		894			106	
2%		896	0%	1	110	3%
	ф300P15	893			103	
ante		871			103	
ras		876	1%	2	117	7%
aub		884			114	
BR		831			82	
C,		838	1%	1	87	3%
cm	#200P10	838			85	
20	φ200F10	839			110	
н –		843	0%	2	112	1%
		843			113	
		1228			105	
		1214	1%	1	105	4%
	#200D15	1219			113	
	Ψ200F13	1124			130	
		1130	0%	2	129	1%
		1127			132	

Tabla C-8: Estructura 4, medición directa

C.3 Verificación de Celdas, Medición Directa

El análisis estadístico de comparación de medias se presenta a continuación.

Hipótesis nula: $\mu 1 - \mu 2 = 0$

Hipótesis alternativa: $\mu 1 - \mu 2 \neq 0$

$$Z_{0} = \frac{\overline{X_{1}} - \overline{X_{2}}}{\sqrt{\frac{\sigma_{1}^{2}}{n_{1}} + \frac{\sigma_{2}^{2}}{n_{2}}}}$$
(C.2)

Zona de rechazo: $Z_0 > z_{\frac{\alpha}{2}} \circ Z_0 < -z_{\frac{\alpha}{2}}$

Donde:

 \overline{X}_i : Promedio de las mediciones de la celda i, con i = 1 y 2 σ_i : Desviación estándar de las mediciones de la celda i, con i = 1 y 2

ni: Número de mediciones de la celda i, con i = 1 y 2.

Figura C-1: Celda 1 vs Celda 2, Estructura 1, golpe directo

Figura C-2: Celda 1 vs Celda 2, Estructura 2, golpe directo

117

Figura C-3: Celda 1 vs Celda 2, Estructura 3, golpe directo

Figura C-4: Celda 1 vs Celda 2, Estructura 4, golpe directo

118

D. RETROCÁLCULO DE F

D1 Valor f literatura

Tabla D-1: Cálculo de Módulo, valor f literatura Estructura 1

		Deflectó	metro		(Celda	CDP		Análisis Valar Faelda		
	Código	Presión (kPa)	δ (μm)	ELWD (MPa)	Id	σ _{Celda} (kPa)	E ₀₁ (MPa)	heq (mm)	Valor f	Ecelda (MPa)	
		150	216,2	244		60	130	235	1,1	377	
	ф300Р10	151	216,5	245	1	61	130	234	1,1	370	
		152	216,4	247		59	130	243	1,1	413	
		180	264,0	239		67	130	248	1,1	440	
		184	269,0	240	1	69	130	247	1,1	436	
te = 25%	+200D15	187	271,8	241		74	130	237	1,1	387	
	φ300P15	191	310,9	216		65	130	266	1,1	546	
		191	309,3	217	2	65	130	265	1,1	537	
		191	313,0	214		61	130	279	1,1	629	
		238	360,1	232		102	130	223	1,1	323	
	ф300Р20	237	357,2	233	1	100	130	227	1,1	338	
		241	365,1	232		100	130	229	1,1	346	
		346	278,0	291		94	130	207	0,9	467	
asar		344	283,9	284	1	92	130	209	0,9	480	
ubra	+200010	338	280,1	283		89	130	210	0,9	490	
RSI	φ200P10	336	282,3	279		62	130	263	0,9	958	
CB		334	276,1	283	2	57	130	276	0,9	1109	
сш		333	282,8	276		62	130	260	0,9	929	
15		432	488,2	207		175	130	156	0,9	200	
h =		433	483,2	210	1	178	130	154	0,9	192	
	+200D15	433	493,7	205		183	130	151	0,9	180	
	φ200P15	449	517,0	203		148	130	181	0,9	314	
		443	512,0	202	2	137	130	189	0,9	355	
		446	512,9	204		141	130	186	0,9	343	
		545	560,5	228		195	130	171	0,9	263	
		538	555,9	226	1	198	130	167	0,9	246	
	+200D20	542	557,9	227		198	130	168	0,9	251	
	φ200P20	566	605,6	219		182	130	184	0,9	328	
		557	606,6	215	2	185	130	180	0,9	309	
		563	611,2	216		188	130	180	0,9	306	

		Deflectó	metro		(Celda	CDP		Análisi	S
	Cádico	Presión	δ	ELWD	ы	σ _{Celda}	E01	heq	Valor	Ecelda
	Coulgo	(kPa)	(µm)	(MPa)	10	(kPa)	(MPa)	(mm)	f	(MPa)
		155	197,2	275		87	130	175	0,9	120
		155	196,8	276	1	85	130	179	0,9	129
	4300P10	156	200,0	274		89	130	173	0,9	115
	ψ5001 10	157	181,8	303		56	130	255	0,9	371
		156	179,4	305	2	59	130	247	0,9	334
		157	180,8	305		61	130	240	0,9	308
		209	181,8	403		121	130	169	0,9	108
		205	183,0	394	1	115	130	176	0,9	121
	4300P15	204	187,7	382		126	130	159	0,9	89
	ψ300F13	210	252,7	291		94	130	216	0,9	225
		203	242,7	293	2	91	130	214	0,9	218
		203	246,8	289		85	130	228	0,9	265
		242	306,7	276		142	130	168	0,9	105
3Rsubrasante = $25%$	ሐ300 P 20	236	315,9	262	1	152	130	151	0,9	76
		241	294,3	287		148	130	159	0,9	89
	ψ300F20	257	353,8	255		123	130	203	0,9	185
		254	349,0	256	2	129	130	193	0,9	159
		253	348,3	255		121	130	203	0,9	186
		353	194,3	426		83	130	226	0,9	258
CE		350	193,6	423	1	87	130	218	0,9	232
сm	ሐ 2 00₽10	346	192,0	422		84	130	221	0,9	240
: 20	ψ2001 10	350	227,0	361		69	130	251	0,9	354
h =		350	223,6	367	2	69	130	251	0,9	354
		351	224,8	365		63	130	267	0,9	423
		467	298,2	367		163	130	174	0,9	117
		462	296,0	366	1	159	130	176	0,9	121
	ሐ200₽15	471	299,2	368		161	130	176	0,9	122
	Ψ200F15	456	298,7	357		105	130	229	0,9	269
		463	303,0	358	2	117	130	216	0,9	223
		459	300,5	358		110	130	224	0,9	251
		576	373,6	360		207	130	170	0,9	109
		571	360,0	371	1	193	130	178	0,9	125
	+200020	565	359,2	368		208	130	167	0,9	104
	ψ200Ρ20	572	396,1	338		144	130	216	0,9	226
		551	390,2	330	2	141	130	214	0,9	218
		561	395,4	332		153	130	206	0,9	195

Tabla D-2: Cálculo de Módulo, valor f literatura Estructura 2

		Deflectó	ometro		(Celda	CDP	Análisis		
	Código	Presión (kPa)	δ (um)	ELWD (MPa)	Id	σ _{Celda} (kPa)	E01 (MPa)	heq (mm)	Valor f	Ecelda (MPa)
		1/2	(µ)	75		(M u) 57	(1 11 u) 27	235	11	78
		142	666,6	73 74	1	59	27	233	1,1	78
	ф300Р10	141	680,5	73		59	27	230	1,1	73
inte $= 2\%$		144	790,7	64		99	27	139	1,1	16
		145	789,2	64	2	95	27	147	1,1	19
		143	783,4	64		98	27	139	1,1	16
	4200D15	200	989,6	71		99	27	197	1,1	46
asa		196	966,9	71	1	87	27	217	1,1	61
nbr		200	990,6	71		92	27	211	1,1	56
BR	φ500P15	201	1072,1	66		108	27	183	1,1	37
Ū		202	1078,5	66	2	115	27	173	1,1	31
i cn		196	1062,4	65		108	27	179	1,1	34
1.5		320	1011,6	74		91	27	200	0,9	88
$\mathbf{h}_{\mathbf{h}}$		317	1007,2	74	1	89	27	202	0,9	90
	+200D10	328	1018,7	75		92	27	202	0,9	90
	ψ200F10	327	997,8	77		127	27	160	0,9	45
		327	1005,8	76	2	128	27	159	0,9	44
		330	1007,6	77		130	27	159	0,9	44

Tabla D-3: Cálculo de Módulo, valor f literatura Estructura 3

		Deflectó	metro		(Celda	CDP	Análisis		
	Código	Presión (kPa)	δ (μm)	ELWD (MPa)	Id	σ _{Celda} (kPa)	E ₀₁ (MPa)	heq (mm)	Valor f	Ecelda (MPa)
		145	662,8	77		71	27	199	0,9	37
		145	662,4	77	1	69	27	204	0,9	39
	4200D10	145	662,7	77		75	27	190	0,9	32
	ψ300F10	142	641,3	78		84	27	167	0,9	21
		143	644,6	78	2	82	27	172	0,9	24
		143	640,9	78		76	27	185	0,9	29
	ф300P15	198	894,3	78		106	27	184	0,9	29
inte $= 2\%$		200	896,0	78	1	110	27	179	0,9	26
		198	893,3	78		103	27	190	0,9	32
		195	870,8	79		103	27	187	0,9	30
rase		194	875,7	78	2	117	27	164	0,9	20
gns		197	883,7	78		114	27	171	0,9	23
BR		321	830,9	90		82	27	214	0,9	45
n C		325	838,3	91	1	87	27	208	0,9	42
) cn	ሐ200₽10	324	838,4	90		85	27	211	0,9	43
= 2(φ2001 10	329	838,9	92		110	27	179	0,9	26
h :		330	843,5	91	2	112	27	177	0,9	26
		323	842,8	90		113	27	174	0,9	24
		449	1227,6	85		105	27	227	0,9	54
		440	1213,6	85	1	105	27	224	0,9	52
	ሐ200₽15	443	1218,9	85		113	27	215	0,9	46
	ψ2001 15	444	1124,4	92		130	27	196	0,9	35
		453	1129,8	94	2	129	27	199	0,9	37
		453	1127,3	94		132	27	197	0,9	35

Tabla D-4: Cálculo de Módulo, valor f literatura Estructura 4

Valor f retro calculado y cálculo de Módulo

D2

Tabla D-5: Valor f retro c	calculado, Estructura 1
----------------------------	-------------------------

	Deflectó	metro	Celda			Análisis							
	Carga	ELWD (MPa)	Id	σCelda (kPa)	heq (mm)	Valor f retro calculado	Valor f Promedio	Ecelda (MPa)	Ecelda promedio (MPa)	C.V.			
		244		60	235	1,27		239					
	ф300Р10	245		61	234	1,26	1,28	235					
		247		59	243	1,31		262					
		239		67	248	1,35		276					
	ф300P15	240	1	69	247	1,34	1 29	274					
		241		74	237	1,29		243	224	110/			
		232		102	223	1,23	1,20	203	234	11%			
	ф300Р20	233		100	227	1,25		213					
		232		100	229	1,26		217					
		216		65	266	1,50		207					
5%	ф300P15	217	2	65	265	1,49	1,52	203					
= 2		214		61	279	1,58		239					
nte	ф200Р10	291		94	207	1,05		279					
asa		284		92	209	1,07	1,07	287					
ubr		283		89	210	1,08		292					
3Rs		207		175	156	0,89		197					
CE	ф200P15	210	1	178	154	0,87		190					
cm		205		183	151	0,86	0.00	178					
15		228		195	171	0,94	0,90	259					
h =	ф200Р20	226		198	167	0,92		242					
		227		198	168	0,93		248	227	17%			
		279		62	263	1,36		268	237	1 / 70			
	ф200Р10	283		57	276	1,42	1,38	311					
		276		62	260	1,35		260					
		203		148	181	1,04		202					
	ф200P15	202	2	137	189	1,09		228					
		204		141	186	1,07	1.04	221					
		219		182	184	1,03	1,04	211					
	ф200Р20	215		185	180	1,02		199					
		216		188	180	1,01		197					

	Deflect	ómetro	Celda		Análisis							
	Carga	ELWD (MPa)	Id	Celda (kPa)	heq (mm)	Valor f retro calculado	Valor f Promedio	Ecelda (MPa)	Ecelda promedio (MPa)	C.V.		
		275		87	175	0,68		273				
	ф300Р10	276		85	179	0,70	0,68	292				
		274		89	173	0,67		261				
		403		121	169	0,58		364	312,59			
	ф300P15	394	1	115	176	0,61		408				
		382		126	159	0,55	0.60	301				
	ф300Р20	276		142	168	0,65	0,00	355				
		262		152	151	0,60		258				
		287		148	159	0,61		301		16%		
		303		56	255	0,96		335		1070		
	ф300Р10	305		59	247	0,93	0,93	302				
		305		61	240	0,90		278				
, O		291		94	216	0,83		300				
25%	ф300P15	293	2	91	214	0,82		291	285,31			
		289		85	228	0,87	0.82	353				
nte	ф300Р20	255		123	203	0,81	0,82	248				
asa		256		129	193	0,77		212				
nbr		255		121	203	0,81		249				
3Rs		426		83	226	0,76	0,75	449				
CE	ф200Р10	423		87	218	0,74		403				
сш		422		84	221	0,75		419				
20		367		163	174	0,61		368				
	ф200P15	366	1	159	176	0,62		382	386,02			
1		368		161	176	0,62	0.61	386				
		360		207	170	0,60	0,01	345				
	ф200Р20	371		193	178	0,63		395				
		368		208	167	0,59		327		11%		
		361		69	251	0,89		343		11/0		
	ф200Р10	367		69	251	0,89	0,91	343				
		365		63	267	0,95		409				
		357		105	229	0,82		405				
	ф200P15	358	2	117	216	0,77		336	352,86			
		358		110	224	0,80	0.70	378				
		338		144	216	0,79	0,79	340				
	ф200P20	330		141	214	0,78	8	329				
		332		153	206	0,75		293				

Tabla D-6: Valor f retro calculado, Estructura 2

	Deflecté	ómetro	(Celda			Análisis				
	Carga	ELWD (MPa)	Id	Celda (kPa)	heq (mm)	Valor f retro calculado	Valor f Promedio	Ecelda (MPa)	Ecelda promedio (MPa)	C.V.	
		75		57	235	1,1		78			
	ф300Р10	74		59	227	1,1	1,10	71			
		73	1	59	230	1,1		73	73	10%	
		71	1	99	197	1,0	1,01	60	75	1070	
%	ф300P15	71		87	217	1,0		80			
		71		92	211	1,0		74			
nte	ф300P10	64		99	139	0,7	0,71	61	- 65		
rasa		64		95	147	0,7		72			
nbi		64	2	98	139	0,7		61		Q 0/	
BR		66	2	108	183	0,9		71		0 70	
D U	ф300P15	66		115	173	0,9	0,88	60			
cn		65		108	179	0,9		66			
- 1.5		74		91	200	1,0		73			
h	ф200Р10	74	1	89	202	1,0	0,96	75	74	1%	
		75		92	202	1,0		75			
		77		127	160	0,8		77			
	ф200Р10	76	2	128	159	0,8	0,75	76	77	1%	
		77		130	159	0,8		76			

Tabla D-7: Valor f retro calculado, Estructura 3

	Deflect	ómetro	Celda		Análisis						
	Carga	ELWD (MPa)	Id	Celda (kPa)	Valor f retro calculado	Valor f Promedio	Ecelda (MPa)	Ecelda promedio (MPa)	C.V.		
		77		71	0,70		79				
	ф300P10	77		69	0,72	0,70	85				
		77	1	75	0,67		68	78	0%		
		78	1	106	0,65		78	78	970		
	ф300P15	78		110	0,62	0,65	72				
		78		103	0,67		86				
		78	78	84	0,59		68				
2%	ф300P10	78		82	0,60	0,61	75	79			
		78	2	76	0,65		92		17%		
ante	ф300Р15	79	2	103	0,65		98		1770		
ras		78		117	0,57	0,61	66				
gns		78		114	0,60		75				
BR		90		82	0,72	0,71	94				
JC	ф200Р10	91		87	0,69		86				
) cn		90	1	85	0,70		90	88	6%		
= 2(85	1	105	0,77		90	00	070		
$\mathbf{h}_{\mathbf{h}}$	ф200P15	85		105	0,77	0,76	87				
		85		113	0,74		77				
		92		110	0,59		95				
	ф200Р10	91		112	0,59	0,59	93				
		90	2	113	0,58		87	92	3%		
		92	4	130	0,65	0,65	92	92	3%		
	ф200P15	94		129	0,66		96				
		94		132	0,65		92				

Tabla D-8: Valor f retro calculado, Estructura 4