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RESUMEN 
 

El comportamiento de las personas al momento de viajar es usualmente modelado a partir 

de los tiempos promedios de viaje y espera (si corresponde) y el costo monetario de viajar. 

La confiabilidad del nivel de servicio de cada modo o ruta de transporte es entendida como 

la certeza que experimenta un viajero sobre su espera, su tiempo de viaje, la hora de llegada 

a su destino o la comodidad con la que viajará. Esta confiabilidad, aun cuando es considerada 

por los usuarios, no es incorporada comúnmente en los modelos de comportamiento, 

especialmente en regiones en desarrollo (como Latinoamérica) donde existe una falta de 

estudios respecto a la confiabilidad de transporte público. 

 

Esto supone que dos alternativas con igual desempeño promedio pero diferente grado de 

variabilidad en algún atributo serían percibidas de manera equivalente. Sin embargo, esto no 

es consistente con la realidad, donde los viajeros desean llegar a un determinado lugar a 

cierta hora límite para realizar una determinada actividad. No basta que en promedio el 

usuario experimente un tiempo de viaje que le permita llegar a destino a tiempo; necesita 

una certeza mayor. Esta situación es aún más relevante para el caso específico del transporte 

público cuando opera basado en frecuencia. A la variabilidad existente en las condiciones 

de ruta (producto de congestión o cambios en la demanda) y a la irregularidad en la operación 

producto del apelotonamiento de buses se suma una baja confiabilidad que es inherente a 

este tipo de transporte pues no existe una disponibilidad inmediata del vehículo. En otras 

palabras, el tiempo de viaje total será siempre variable pues al menos el tiempo de espera lo 

es. 

 

No conocer las causas que generan una baja de confiabilidad, así como los impactos que esta 

genera en los usuarios tanto en su satisfacción como en su comportamiento nos impide poder 

generar modelos predictivos que repliquen de mejor forma el uso actual de la red, así como 

también impide evaluar correctamente proyectos que mejoran la confiabilidad del nivel de 

servicio sin disminuir necesariamente los valores promedios de sus atributos. De esta forma, 

el propósito de esta tesis es (i) caracterizar la confiabilidad del transporte público, (ii) 

comprender cuáles son los elementos que la afectan, (iii) cuantificar los impactos que la falta 

de confiabilidad genera en la satisfacción y en el comportamiento que tienen los usuarios del 
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sistema de transporte público, e (iv) identificar qué tipo de beneficios y costos genera un 

proyecto que mejora la confiabilidad en transporte público. 

 

Para poder llevar a cabo estos cuatro propósitos se propone la siguiente metodología. En 

primer lugar, para comparar la confiabilidad que actualmente otorgan los servicios de 

transporte público se realizó un análisis estadístico de los tiempos de viaje efectivamente 

experimentados por los usuarios en la ciudad. Para ello se contó tanto con información de 

tipo AVL (Localización Vehicular Automatizada en inglés) como con información de 

demanda por dichos servicios obtenida a través del sistema de pago electrónico del sistema 

de transporte público. En segundo lugar, para entender los factores que afectan la regularidad 

de los intervalos y la variabilidad de tiempo de viaje entre estaciones, se calibró un modelo 

econométrico que incluya tanto variables temporales como características propias del 

servicio (demanda, operador, tipo de operación) y de la infraestructura (densidad de 

semáforos, tramos con vías exclusivas). En tercer lugar, para medir los efectos que genera 

la falta de confiabilidad se identificó como afecta a la satisfacción y evaluación que hacen 

los usuarios y a la toma de decisiones respecto a su modo y ruta. Para lograr este propósito 

realizaron encuestas a usuarios sobre su último viaje realizado y   un experimento de 

preferencias declaradas, el cual incorporó servicios con diferente nivel de confiabilidad en 

tiempo de espera y hacinamiento. En cuarto lugar, se midieron los beneficios y costos que 

genera una intervención en un servicio de buses que tenía por objetivo mejorar la regularidad 

de intervalos. 

 

Esta tesis contribuye en mejorar la comprensión global respecto a la importancia que tiene 

la confiabilidad del nivel de servicio en un sistema de transporte público. A partir del análisis 

de los diferentes resultados obtenidos, se observa que la variabilidad de intervalos es un 

atributo diferenciador entre vehículos de superficie y sistemas de tren subterráneo. Esto se 

debe principalmente a las diferencias existentes en términos de infraestructura. Estas 

diferencias generan además cambios en la satisfacción y en el comportamiento de los 

usuarios. Así, será posible mejorar la manera en la que evaluamos socialmente aquellos 

proyectos que mejoran la regularidad del sistema, incluyendo los impactos que genera y 

comprendiendo el comportamiento de los usuarios que es influido por dichos cambios. 
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ABSTRACT 
 

Traveller’s behaviour is usually modelled through traditional variables such as monetary 

cost, expected travel time and planned wait time. Service reliability is understood as the 

certainty travellers have regarding their travel time, their arrival time, or the comfort level 

they will experience inside the vehicle. Reliability, although considered by the travellers, is 

usually neglected from behavioural models, especially in emerging regions (such as Latin 

America) where there is a lack of studies regarding public transport reliability. 

 

This means that two alternatives with the same average performance but different degrees 

of variability in some attribute would be perceived equivalently. However, this is not 

consistent with reality, where travellers want to reach a particular place at a specific time to 

perform a particular activity. It is not enough that users experience a travel time that allows 

them to reach their destination on time on average; greater certainty is needed. This situation 

is even more relevant for the specific case of public transport when it operates based on 

frequency. To the existing variability in road conditions (product of congestion or changes 

in demand) and the irregularity in the operation due to bus bunching, there is an inherent 

unreliability source in this type of transportation, as vehicles are not immediately available. 

In other words, total travel time will always be variable as at least waiting time is. 

 

Ignoring the causes of unreliability, as well as the impacts it has on travellers, both in their 

satisfaction and in their behaviour, prevents generating predictive models that better 

replicate the current use of the network. Besides, it prevents correctly evaluating projects 

that improve service level reliability without necessarily diminishing the average values of 

the attributes. Thus, the purpose of this thesis is to (i) characterize public transport reliability, 

(ii) understand which elements affect it, (iii) quantify the impacts that the lack of reliability 

generates on public transport users’ satisfaction and behaviour, and (iv) identify which type 

of benefits and costs a public transport reliability improvement project generates. 

 

In order to carry out these four purposes, the following methodology is proposed. Firstly, to 

compare public transport services reliability currently provided, a statistical analysis of 

actual travel times experienced by users in the city was conducted. To do so, both AVL 

(Automated Vehicle Location) information and demand information for these services, 

obtained through the public transport electronic payment system, were available. Secondly, 
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to understand the factors that affect headway regularity and travel time variability between 

stations, an econometric model was calibrated that includes both temporary variables and 

characteristics of the service (demand, operator, type of operation), and infrastructure 

attributes (traffic light density, sections with segregated roads). Thirdly, in order to measure 

the effects generated by unreliability, users' satisfaction perception and evaluation, as well 

as the decision-making process regarding their mode and route, were analysed. To achieve 

this, passenger surveys about their last trip and a stated preference experiment were 

conducted, which incorporated services with different reliability levels in waiting time and 

crowding. Fourthly, the benefits and costs generated by a bus service intervention that aimed 

to improve headway regularity were measured. 

 

This dissertation contributes to improving the overall understanding regarding the 

importance of public transport level of service reliability. Based on the analysis of the 

different results obtained, we conclude that headway variability is a differentiating attribute 

between surface vehicles and underground train systems. This is mainly due to the 

differences in terms of infrastructure. These differences also generate changes in users' 

satisfaction and behaviour. Thus, it will be possible to improve the way how we socially 

evaluate those projects that improve system regularity, including the impacts generated and 

understanding better the users' behaviour influenced by these changes. 
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1. INTRODUCTION 

 

Reliability, understood as the degree of certainty that travellers have regarding critical 

elements of their level of service, such as their travel time, their arrival time at the destination 

or the degree of comfort with which they will experience while travelling inside within the 

vehicle (van Oort, 2011), is recognized as an important attribute of the  level of service. The 

first empirical evidence was obtained by Prashker (1979), by identifying the impact that 

different levels of characteristics’ variation, such as vehicle travel times or waiting times, 

have. 

 

Reliability levels are referred to the variability that exists in any level of service attribute 

across different trips of the same type and characteristics. In this dissertation, reliability will 

be understood as a mathematical measure of dispersion of any attribute (e.g. standard 

deviation, coefficient of variation or differences between percentiles) in several repetitions 

in different days of the same trip. In addition, the variability that exists between the arrival 

times of consecutive buses of the same service will be called regularity, where a service with 

identical headways will be called regular and one with random will be called irregular. 

 

Public transport is affected by different types of randomness which impact the reliability 

they offer. The source of this randomness may come, for example, from disruptions, changes 

in demand pattern, or changes in operating conditions. However, it is important to 

distinguish between casual uncertainty sources (such as accidents or protests) from 

systematic uncertainty, related to service supply (such as dwelling time or travel time 
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between consecutive stops). Unlike specific incidents, the latter type of variability is 

characteristic of the normal operation of a transport system. Thus, this occasional uncertainty 

is described by its day-to-day variation (Bates, 2009), and is the object of study in this 

dissertation. 

 

In addition to these sources of variability, an extra source of uncertainty experienced by users 

arises due to the public transport vehicle not being immediately available to avoid a wait of 

uncertain length. In a frequency-based system (without schedules), even under perfect 

regularity, users are not sure about the next vehicle's time of arrival. By not being able to 

plan their boarding time, there is a possibility of arriving at the stop at the exact moment that 

the vehicle does, yielding a null wait, as well as a possibility of arriving exactly when a 

vehicle leaves the stop, forcing the wait to be maximal. A passenger requiring transfers to 

reach the destination faces this uncertainty as many times as trip legs in the trip. This 

uncertainty associated to waiting become more relevant because in public transport system 

headways are far from regular, and because passengers assign to the waiting stage of their 

trip a higher value of time. 

 

From a behavioural economic point of view, in the last decades, the level of service 

reliability has been incorporated into departure time choice models of different transport 

(Borjesson, 2009; Börjesson, Eliasson, & Franklin, 2012; Engelson & Fosgerau, 2011; 

Fosgerau, 2009; Fosgerau & Hjorth, 2008; Fosgerau, Hjorth, & Lyk-Jensen, 2010; Hjorth, 

2011; Hjorth, Borjesson, Engelson, & Fosgerau, 2015; Lam & Small, 2001; Noland & Small, 

1995; Small, 1982; Small, Winston, & Yan, 2005). In general terms, there are three types of 
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these models: central dispersion models, scheduling models and those that represent a 

combination of both.  In the context of urban public transport, these models have been 

scarcely raised (Benezech & Coulombel, 2013; Engelson & Fosgerau, 2011; Fosgerau & 

Engelson, 2011; Hjorth et al., 2015). Since public transport vehicles are not immediately 

available and, in many systems, services' schedules are not offered, travellers must 

necessarily adapt their departure time to this uncertainty. Thus, the experience of a public 

transport traveller must recognize not only the in-vehicle travel time, it is necessary to add 

an access time (which is generally considered fixed) and variable waiting time. 

 

Then, it is necessary to identify and characterize level of service reliability differences 

between the different modes and routes of public transport in the city, in order to improve 

our understanding of how travellers take their decisions. Then, it is important to understand 

how reliability affects their perception of the service received (which we will understand as 

their level of satisfaction) as well as to understand how this attribute impacts their mode-

route choice behaviour. 

 

To make cities more sustainable, public transport needs to become a preferred transport 

mode. Thus, transport planners should be very sensitive to public transport traveller’s 

experience. In a headway-based operational context, reliability is strongly explained by 

headway regularity. Regular headways not only enhance wait time but also comfort, travel 

time and operational costs. Thus, a better understanding of its causes and effects could push 

agencies’ focus towards improving reliability. This is essential to make public transport a 
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more attractive travel alternative, and therefore a critical step in the path towards urban 

sustainability. 

 

1.1 General Objective and Hypothesis  

 

Public transport's reliability has a high impact on travel decisions by users. In 

particular, headway regularity can be explained by different infrastructure and 

operational attributes and produces significant differences in the level of service 

perceived by users. 

 

To demonstrate this, the purpose of this dissertation is to perform a statistical analysis 

of the appropriate sources of information and thus be able to generate both explanatory 

models, regarding the causes that cause different public transport reliability levels in 

transport routes, as well as behavioural and satisfaction models to understand the 

effects over users. 

 

1.2 Specific Objectives 

 

In order to understand the characteristics, causes, and implications of service 

reliability, the research proposed answers four research questions, which correspond 

to the four specific objectives of this thesis project: 

 

i) What level of reliability do different transport modes offer in our city? 
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ii) What factors determine the variability of the level of service being offered? 

 

iii) What effects does reliability have on public transport user’s satisfaction? 

 

iv) How does the level of service reliability affect user’s mode/route choice? 

 

v) Are the benefits from the improvement of service reliability significant? 

 

1.3 Specific Hypotheses 

 

The set of hypotheses raised to answer the specific objectives questions are: 

 

 

i) Different public transportation modes present different reliability levels. 

These disparities are perceivable by users and vary across the city. Specifically, buses’ 

level of service variability is higher than subways’, mostly by its lack of dedicated 

infrastructure.  

 

ii) For the case of public transport services which headways aren’t controlled, 

both infrastructure and operational characteristics influences headway variability. In 

particular, off-board payment stops, segregated corridors and passengers demand have 

a strong effect. Besides, headway variability naturally increases downstream and it is 

possible to econometrically model the impact of infrastructure, operational and service 

characteristics on headway regularity.  
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iii) Headway regularity has indirect effects over passengers’ satisfaction. This 

means excess waiting time and the increase in average crowding deteriorate 

passengers’ evaluation of the service. Besides, there is a fixed and measurable modal 

effect, which accounts for rail modes preference. 

 

iv) Headway variability affect passengers’ choices through varying day-to-day 

experiences, specifically over waiting time and passenger density average values and 

their variability. Besides, there are latent attitudes which explain differences in the 

perception of public transport attributes.  

 

v) The benefits from improving service reliability benefits are significant, and 

they might yield to significant annual savings in a Cost Benefit Analysis. Besides, 

these benefits come not only from the reduction in excess waiting time but also from 

the improvement of travel comfort.  

 

1.4 Methodology 

 

This dissertation uses both available data from third parties and collects data for 

addressing its research questions. The description of each of this data sources is 

presented below. Most data sources involve the fare-integrated public transportation 

system of Santiago, Transantiago, considering all buses and metro in the city.  

 

1.4.1 Existing data 
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i) Smartcard information: each smartcard validation in a public transport service is 

recorded involving the moment and place in which the traveller boards the 

vehicle for the case of buses or enters the station for the case of metro. Alighting 

point and moment of each trip leg is inferred based on the next transactions of 

the same smartcard.  

 

ii) Buses’ arrival at bus stops: based on GPS information delivered by the vehicles 

every 30 seconds, the arrival at each bus stop by each bus in the system is 

estimated. This information was provided by the metropolitan transit agency in 

Santiago, Dirección de Transporte Público Metropolitano, DTPM. For the case 

of Washington D.C., the information was provided by the Washington 

Metropolitan Area Transportation Authority, which also comprises automatic 

passenger count information. 

 

iii) Metro trains schedules: arrival and departure times for every train at every 

station. This information was provided by Metro de Santiago. 

 

iv) Geographical information: geo-referenced route for every bus service, geo-

referenced route for every metro line and the geographical position of every bus 

stop and metro station in the city. Besides, the location of off-board payment 

stops, segregated corridors and traffic lights was also available. 
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1.4.2 Collected data 

 

i) Satisfaction Survey:  the survey asked public transport users regarding their 

satisfaction with the wait time and travel comfort experienced during their last 

trip leg. This survey was conducted during four days in the third week of July 

2017 during the extended morning peak hour, from 07:00 am until 12:00 pm. 

The goal was to characterize the effect that comfort and wait have on travellers’ 

satisfaction. A total of 1,161 responses were obtained. 

 

ii) Stated preferences survey involving level of service reliability: to measure the 

impact of service reliability has into travellers’ behaviour and choices, a stated 

preference experiment was conducted. Each alternative has three main attributes: 

waiting time, travel time and crowding inside the vehicle. However, the main 

particularity of the survey is that each of these attributes are characterised by 

five random extractions from a probability distribution, which represent an 

average week experience. This way, variability is presented indirectly, based on 

the observed daily difference for each alternative. The survey was applied during 

the first week of October 2019 in 10 different Public Notary Offices. A total of 

1,314 people completed the survey, which corresponds to 10,512 choice 

scenarios. 

 

This dissertation is based on quantitative methods. Several graphical analyses were 

performed to visualize the differences between modes, alternatives or even between 
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scenarios with different reliability levels. In terms of modelling the causes of headway 

variability, Multiple Linear Regression as well as Dynamic Panel models were 

estimated. When modelling the effects of public transport reliability, different Logit 

models were formulated. Firstly, for the aggregate effects, a Cross-Nested Logit was 

estimated. Secondly, for satisfaction modelling a Latent Class Ordered Logit model 

was estimated. Thirdly, a Hybrid Latent Variable Multinomial Logit which considers 

attributes’ variability was estimated. Finally, policy implications are discussed for 

every modelling formulation.  

 

 

1.5 Contents and Contribution 

 

This dissertation describes the most important results and conclusions obtained. These 

results are comprised in six different articles, presented from Chapter 2 to Chapter 7. 

Chapter 8 finalizes with overall conclusions and learnings. Each article chapter is 

briefly described below, in terms of their contents and contributions. 

 

1.5.1 Chapter 2 – Full Cost of Headway Regularity 

 

In this article, we provide a review of a full range of impacts of an unreliable public 

transport service. We show how regularising headway could improve level of service 

beyond the gains of simply increasing the operational speed. Regular headways 

positively affect comfort, reliability, travel and wait time, operational costs, and even 

some urban impacts of bus services. Thus, the focus for public transport agencies and 

operators should bend into reliability’s direction. This is fundamental for making 
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public transport an attractive travel alternative, and therefore must become a core goal 

for urban sustainability. 

 

This chapter sustain objectives i), ii), and iii) in a general way. Thus, an introductory 

framework is presented, which will enhance the deeper contributions of the 

forthcoming chapters. 

 

 

1.5.2 Chapter 3 – Public Transport Reliability Causes 

 

This article explores on new methods for regression models to explain the evolution 

of headway irregularity among service lines. Coefficient of variation of headways was 

selected as the independent variable to study because its direct relationship with extra 

waiting time. In Santiago, Chile, lack of travel time reliability (mostly on waiting time) 

is one of the main complaints about the public transport system (called Transantiago). 

Despite some direct incentives, limited noticeable improvements are observed.  

 

The independent variables considered in the model are grouped in three categories: 

street, route and bus characteristics. Results show that, as expected, upstream 

disturbances have a significant effect on the service regularity at downstream bus 

stops. The results should be useful to orient the interventions in the system’s 

operations, infrastructure and contracts that will improve reliability the most. This 

chapter deals objective ii) completely. 
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1.5.3 Chapter 4 – Aggregate Public Transport Reliability Effects 

 

This article presents the estimation of an aggregate demand model based only on real 

public transportation data, which may be one of the first of its kind. This model showed 

a negative and significant impact for the coefficient of variation of waiting times over 

the total demand per origin-destination pair. This fact bears out that reliability, 

understood through headway variability, is an important attribute and shouldn’t be 

neglected.  

 

This chapter attends to both objectives i) and iv). For the former, the graphical analysis 

of big data sources presents visually a good representation of public transport 

reliability in the city of analysis. For the latter, the aggregate choice model estimated 

presents insightful ideas regarding how different public transport attributes may affect 

alternative choices at an individual level.   

 

1.5.4 Chapter 5 – Public Transport Users’ Satisfaction 

 

In this article, we investigate the existence of non-linearity in users’ satisfaction caused 

by both the crowding level and the number of denied boardings through a post-service 

satisfaction survey of bus and metro users. An Ordered Logit Model was estimated, 

accounting for sample heteroscedasticity and preference heterogeneity. Overall, there 

is a significant and negative perception of the bus mode, keeping all other attributes 

equal.  

The relationship between crowding and satisfaction might bias service planning and 

delivery if performance indicators associated to service are not properly weighted by 
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the number of passengers served. Improving level of service indicators in this direction 

might provide public transport agencies a clearer and more accurate perception of the 

actual users’ experience. This chapter deals exclusively with objective iii), providing 

a complete analysis of passengers’ satisfaction perception. 

 

1.5.5 Chapter 6 – Public Transport Choice Modelling  

 

This article describes the survey and modelling considerations to find the impact that 

reliability has on travellers’ public transport choices. An experiment of stated 

preferences was carried out, where the design characteristics were four operational 

attributes: speed, frequency, headway regularity and average demand. Every scenario 

was constructed randomly, based on the operational characteristics of the specific 

scenario. This way, reliability is not presented as an attribute by itself but as a result 

of several repetitions of the same trip.  

 

The results prove the importance of headway regularity in terms of passenger choices. 

Not only the indirect effects were found highly significant, as excess waiting time and 

over-crowding, but also unreliability per se. As noticed, this chapter bears out 

exclusively objective iv). 

 

 

1.5.6 Chapter 7 – Cost Benefit Analysis 

 

In this article, a headway control experiment was conducted and evaluated for 

Washington Metropolitan Area Transit Authority (WMATA) routes 70 and 79 in 

Washington D.C. This was conducted as it is understood that headway management 
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can potentially reduce passenger waiting time and on-board crowding on high-

frequency services. The field experiment is evaluated by performing a before-after 

empirical evaluation. The organizational process and challenges involved with the 

implementation are discussed as well.  

 

Overall, a reduction of 26% in passenger excess waiting time was attained which 

implies annual time savings that translate into $1 million USD. Even though the field 

experiment implementation was far from ideal, the benefits obtained so far might pave 

the road to a long-term commitment to shift into a fully controlled headway-based 

management. Thus, this final chapter is directly related with the fifth specific 

objectives, providing a proper study case with enough evidence to demonstrate the 

importance in benefits evaluation of headway regularity analysis. 
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2.1 Introduction 

High levels in under-priced private car use has brought increasing negative externalities and 

resource consumption. This has prompted cities around the world to seek ways of 

encouraging more sustainable mobility alternatives. The New Urban Agenda adopted by the 

United Nations at the Habitat III conference in 2016 explicitly promotes the significant 

expansion of “accessible, safe, efficient, affordable and sustainable” public transport 

systems, which are recognized as essential to the sustainability of large cities (United 

Nations, 2017; paragraph 114). In urban contexts a combination of buses, minibuses, trams 

and metros is the main alternative to private cars, particularly for longer trips. 

Among the various existing modes of high-frequency mass transit, metro systems play a 

structuring role (Glaeser, Kahn, & Rappaport, 2008). Transport authorities and users alike 

tend to favour investment in this mode over surface alternatives such as buses or trams. Thus, 

when demand is sufficient and the resources are available, many cities opt for building 
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metro. This way, we will focus on the main attributes that travellers value of a metro 

experience as those that any public transport service should aim for. Four fundamental 

characteristics of metro systems make them particularly attractive to riders: i) fast, ii) short 

waits, iii) comfortable (high passenger capacity), and iv) reliable.  

Nevertheless, in recent years many cities have implemented systems known as Bus Rapid 

Transit (BRT) with a view to offering service levels similar to a metro using buses running 

over the surface road network. To achieve metro-type service levels in this or any other type 

of surface system, actions would have to be taken in relation to each of the four above-

mentioned metro characteristics that would: i) increase speed, ii) increase frequency, iii) 

increase capacity, and iv) regularize headways (see Figure 2.1). 

 

Figure 2.1 Key metro attributes and their drivers. 

 

Increasing speed alone, however, has a series of desirable effects. Not only are trips 

completed in less time, but the operating cycle time of the vehicles in the system is also 

reduced. This in turn enables the provision of higher service frequencies and greater 

delivered passenger capacity for a given vehicle fleet size. In other words, higher speeds 
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mean shorter wait and travel times as well as greater passenger comfort, assuming that this 

capacity increment exceeds the extra demand that the more attractive service should capture. 

Furthermore, shorter cycle times reduce operating costs per kilometre and raise each 

vehicle’s productivity in systems operating below their optimal speed. All of which suggests 

that efforts to improve surface systems should focus on speed as the central driver in 

improving service levels. 

But this concern for speed ignores reliability, the fourth key metro attribute named above. 

By reliability is meant a level of service experienced by users regularly travelling on a public 

transport line that does not significantly vary under similar conditions (van Oort, 2011). Both 

for rail-based and bus systems, wait time is one of the aspects of a trip most subject to service 

variability (van Oort, Brands, De Romph, & Aceves Flores, 2015). And since waiting is 

inevitable in every stage of a trip on public transport, variability is inherent in wait time, 

especially for services with no set timetable designed rather to meet frequency targets. The 

latter is usual in regions such as Latin America, Africa and Asia, precisely those where public 

transport is the dominant mode of motorized travel (Muñoz and Paget-Seekins, 2015).  

The intrinsic variability of wait times is exacerbated when headways are highly irregular. 

This is particularly negative for users given that waiting is one of the factors that most effects 

their trip experience (Ortúzar and Willumsen, 2011; Raveau et al., 2014). Offering a more 

reliable service for riders thus requires that headways be as regular as possible. 

But headway irregularity strongly impacts public transport in multiple ways, and the purpose 

of this article is precisely to identify those other effects as they impinge on operating costs 

as well as service levels. By reviewing the literature, we gather different impacts from 

headway irregularity, providing a novel comprehensive picture and improving our 
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understanding of the consequences of this phenomenon. Our intention is to support the 

consensus among transport system authorities and operators of the importance of addressing 

this key attribute of public transport systems, which heretofore has not been given the 

consideration it deserves and only recently has received significant attention in the academic 

literature. In what follows, Section 2 discusses the source of headway irregularity, Section 3 

describes the impacts it has on service levels and Section 4 outlines its effects on system 

operating characteristics. Section 5 then examines other consequences of irregular headways 

and Section 6 concludes with a look at available mechanisms for meeting the challenge of 

regularity in public transport service. 

  

2.2 The source of headway irregularity 

If headway irregularity has such a negative effect on bus systems, why does it occur? Can it 

not be eliminated simply by ensuring vehicles are dispatched from route terminals at regular 

intervals? Unfortunately, not. Various disturbances inevitably arise that upset buses’ 

regularity as they proceed along their routes. And once the irregularity sets in it tends to get 

progressively worse, ending up with buses travelling in platoons from stop to stop. This 

phenomenon, known as bunching, is the natural evolution of uncontrolled and unscheduled 

public transport services. 

To understand the root causes of this phenomenon, imagine an unscheduled service that is 

running stably with perfectly regular headways. Furthermore, for the sake of simplicity, we 

will assume that it offers constant travel times between bus stops and that passengers arrive 

at a constant rate at every bus stop. So, what happens if one of the vehicles on the line is then 

held up briefly? The headway to the vehicle immediately preceding will now be slightly 
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longer than normal, while the headway to the vehicle immediately following will be a little 

shorter than normal. When the vehicle that was held up arrives at the next stop, there will be 

more than the usual number of passengers waiting, which in turn means its departure from 

that stop will be somewhat delayed. Furthermore, its passenger load will now be greater than 

usual so that dwell times at later stops while passengers alight will be longer. Thus, the 

vehicle will get increasingly slower as it advances along its route.  

While all of this is happening, the effect on the vehicle behind is just the opposite. Since its 

headway to the vehicle in front (the one that was originally held up) is shorter than normal, 

fewer passengers are waiting at the upcoming stops so boarding times there are also shorter, 

its passenger load is smaller and the following stop requests are therefore fewer. This vehicle 

will thus get increasingly faster until it catches up with the ever-slower vehicle just ahead of 

it. In this sense, regular headways between consecutive vehicles in such a system may be 

considered as a textbook example of an inherently unstable equilibrium (Daganzo, 2009). 

Note that the possibility of buses to overtake each other, which depends on traffic regulations 

and infrastructure, would still not solve the bunching problem. This is so because once the 

faster bus passes the slower one it will encounter higher than normal numbers of waiting 

passengers, which will immediately reduce its speed. 

The frequent disturbances that affect public transport vehicles’ relative positions along a 

route can be attributed to two sources. The first one is the variations in the number of 

passengers to be picked up at stops. The arrival of passengers at a given stop is determined 

by exogenous phenomena relating to their activities immediately previous plus users 

transferring at the stop from arriving vehicles serving intersecting routes. The second source 

of disturbances is the variations in vehicle trip times between successive stops. These may 
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be caused by a number of factors such as traffic signals, congestion or simply differences in 

drivers’ driving styles. Such variations are, of course, much less pronounced in the case of 

rail-based services that run on dedicated lines and are often driverless. With buses, there is 

evidence that segregated infrastructure not only boosts speeds but also reduces variability 

(Durán-Hormazábal and Tirachini, 2016). 

Although we have argued here that regular dispatching from route terminals does not prevent 

vehicle bunching, it does help delay its occurrence. What the evidence suggests is that 

headway variability tends to increase as vehicles advance along their routes (Newell and 

Potts, 1964; Johnson et al., 2015). This is illustrated by Figure 2.2, a typical space-time plot 

of the evolution of bus positions on an unscheduled public transport route. The trajectories 

of the vehicles show dramatic bunching up happening gradually along the route. This process 

seems fed by a careless dispatching operation at the terminal (0 km position in Figure 2.2). 

 

 

Figure 2.2 Evolution of bus service trajectories in space-time. 
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The importance of dispatch regularity becomes clear when a headway regularity indicator is 

calculated for a public transportation agency, as in Figure 2.3. Figure 2.3 displays the 

evolution of the average headway variability indicator used by Transantiago, the public 

transport agency in Santiago, Chile, for the seven bus companies operating in the city. The 

scale is normalized to the lowest (i.e. best) dispatch value for any company. Each service is 

checked at three points along the route, and Figure 2.3 displays the average indicator of the 

three points across the routes of each company versus the average distance from the dispatch 

point across all routes of the company. Figure 2.3 shows that in absence of headway control 

strategies, headway variability increases quite similarly along the routes across companies, 

leaving the dispatch regularity as the key performance difference between them. The 

multiple negative impacts of this phenomenon on both user service levels and system 

operating variables are taken up in what follows. 

 

Figure 2.3 Headway regularity indicators for Transantiago bus companies. 
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2.3 Impacts on user service levels 

The immediate impact on users of irregular headways is the lack of system reliability as it 

becomes more difficult to predict, upon starting a trip, when they will arrive at their 

destinations (van Oort et al., 2015). But there are other impacts as well. The one most 

extensively studied is the increase in average wait time. Consider a service that visits a given 

stop at intervals (i.e. headways) averaging μh with a standard deviation of σh. Following 

Osuna and Newell (1972), the average wait before the first vehicle appears for a user arriving 

at the stop at a given moment (assuming no published timetable or transfer point 

coordination) is given by the following formula. 

     (1) 

 

The first term on the right-hand-side is one-half of the average interval and would equal the 

average wait time if headways were perfectly regular. But wait times increase as headways 

grow even if average service frequency remains constant. Besides, this extra time cost 

increases if transfer synchronization at common stops is considered (Gavriilidou & Cats, 

2018; Ibarra-Rojas & Muñoz, 2016).  

Headway irregularity also generates variability in the number of users boarding each vehicle 

given that the longer are the intervals, the more passengers will be waiting at the stops. Thus, 

there is an evident positive correlation between wait times and vehicle passenger loads 

experienced by riders. By causing passenger load variability, headway irregularity also 

produces uncertainty in users regarding the level of service they will experience. It also 

impacts seat availability, making it less likely to travel seated (Babaei, Schmöcker, & 
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Shariat-Mohaymany, 2014). This situation deteriorates further when passenger loads 

approach vehicle capacity as some users may not be able to board the first arriving vehicle 

and thus their wait times will be further prolonged. This issue affects the more vulnerable 

public transport users, as elders, pregnant women or people with constant or momentary 

physical disabilities the most.  

It follows from the foregoing that only knowing service frequency and average vehicle load 

masks the fact that for some users, wait times will be considerably longer than the norm and 

the vehicle that finally arrives will be running very full. Magnifying the gravity of the 

problem is that the marginal disutility attributed by users to wait times and on-board comfort 

increases nonlinearly with their magnitudes. In other words, the marginal impact of wait 

time tends to increase as waiting increases while the marginal impact of on-board trip time 

tends to grow as passenger density in the vehicle grows (Fan, Guthrie, & Levinson, 2016). 

Numerous declared preferences and revealed preference studies of public transport users 

have determined the existence of a “crowding multiplier” equal to the marginal rate of 

substitution between in-vehicle trip time under crowded conditions and the same variable 

under non-crowded conditions, that is, with low passenger loads. This concept has been 

applied to improve understanding of user behaviour and set criteria for evaluating projects 

aimed at adjusting vehicle passenger densities (Batarce, Muñoz, & Ortúzar, 2016; Björklund 

& Swärdh, 2015; Wardman, 2014). Values of the multiplier for a density of 6 passengers per 

square metre, where travelling seated is the baseline, are found to vary between 1.3 and 2.4 

for standing passengers depending closely on the city and transport mode studied (London: 

Wardman, 2014; Chile: Batarce et al., 2015; Chile: Tirachini et al., 2017, Australia: Wallis 
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et al., 2013; Paris: Haywood and Koning, 2013; Japan: Kato, 2014; Guangzhou: Liu, et 

al.,2016; Hong Kong: Hörcher, et al. 2017), as shown in Figure 2.4.  

 

Figure 2.4 Crowding multipliers for various cities and countries. 

  

The relationship between passenger load and rider satisfaction has been measured in various 

user surveys. As expected, users’ satisfaction impacts their behaviour, which is of vital 

importance for public transport agencies (de Oña, de Oña, Eboli, Forciniti, & Mazzulla, 

2016; del Castillo & Benitez, 2013). Intuitively, we would expect that satisfaction would not 

fall linearly as load increased given that up to some saturation point the marginal impact of 

an additional passenger is increasing. 

To illustrate the enormous damage done by headway irregularity to user perceptions of 

service quality, consider the following example (Soza-Parra et al., 2019b), which is not based 

on any specific data, but is consistent with our current knowledge regarding attributes 

perception.  A bus line has a scheduled frequency such that service intervals average 6.5 
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minutes, with the result that in conditions of perfect headway regularity, passenger density 

in each vehicle is 65% of its capacity. According to the satisfaction curve (Figure 2.5), if 

those intervals are maintained and the load for each vehicle remains identical, the user 

satisfaction level will be 79.6% (green dot in figure). 

Suppose now that due to poor operational control, the intervals between successive buses 

alternate between 4 minutes and 9 minutes (the average remaining at 6.5 minutes as 

originally assumed). The expected loads for the buses at the two different headways will 

then be 40% and 90% of vehicle capacity, respectively, and users will evaluate their 

satisfaction very differently depending on the load level the buses they are on is carrying. 

Those in vehicles at 40% of capacity will report a satisfaction level of 94% while those in 

vehicles at 90% of capacity will indicate a satisfaction level of 0%. The average figure, 

combining the satisfaction results for the two vehicle load levels, falls to 47.0% as shown by 

the yellow dot in Figure 2.5.   

What is obscured by this average calculation, however, is that since the passenger loads 

differ greatly depending on the buses’ headway, then so necessarily do the numbers of 

passengers they carry. Since the indicator of interest is normally the average satisfaction per 

passenger rather than per vehicle, recalculating on this basis yields an average load of 75% 

and an average satisfaction of just 47.0% (the red dot in Figure 2.4). In other words, due to 

headway irregularity the average satisfaction level has fallen from 79.6% to 28.9%, or more 

than half. This is a direct consequence of Jensen's inequality given the assumed concavity of 

the satisfaction-occupancy curve. 
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 Average 

load 

Average 

satisfaction 

Optimal 65% 79.6% 

Per vehicle 65% 47.0% 

Per user 75% 28.9% 

 

Figure 2.5 Impact of variability on passenger satisfaction. 

 

This situation, already very undesirable, is even more serious considering that users tend to 

remember bad experiences better than good ones (Kahneman & Tversky, 1979). Service 

level variability thus biases the public’s rating of the system towards a more negative image 

of long waits and uncomfortable rides. For a case such as the example in Figure 2.5, it would 

not be surprising if surveyed users reported lower levels of satisfaction than those predicted 

by the model.  

The arrival pattern of vehicles in this example may seem extreme, but it is not. High headway 

variability is quite common in many public transport services worldwide. In the example, 

the coefficient of variation of the headways is approximately 0.38. This means that the 

average waiting time of a passenger is around 14% higher than in a perfectly regular 

scenario. For example in Boston (Paget-seekins & Tribone, 2016) this additional waiting 

time is around 11% for rail-based services and around 43% for bus services. Similar values 

were observed in 2012 in different Latin American cities (BRT, 2012). We have shown that 

its effect can be devastating for user satisfaction. It is quite impressive that most public 
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transport agencies annual reports and performance indicators neglect this as if it did not 

happen. Many agencies do not even report any kind of headway variability based indicator. 

A partial exception is the broadly used Transit Capacity and Quality of Service Manual 

(KFH Group, 2013) which addresses reliability, in a high frequency context, with two 

performance metrics: the coefficient of variation of headways to measure headway 

adherence, and the excess wait time to measure the extra waiting time for users due to an 

irregular operation. Even though, these indicators address the impact of headway variability 

in waiting times, the impact in comfort is neglected. Indeed, the Manual provides as comfort-

related performance metrics the load factor (average amount of passengers per seat) for 

vehicles designed specifically for a mostly seated operation and the average standing 

passenger space (average free space in square feet or metres per passenger) for vehicles 

designed specifically for a mostly standing operation. However, as explained before, average 

measures of comfort across vehicles overestimate the actual level of service experienced by 

users. 

 

2.4 Impacts on operations 

Headway irregularity also negatively affects the operating characteristics of a public 

transport system (Ceder, 2007; Vuchic, 2017). Generally speaking, public transport services 

are designed to offer a certain level of capacity in passengers per hour (K, in pax/h), given 

by the product of the maximum reasonable number of passengers that can be carried by a 

vehicle (k, in pax/veh) and the frequency of the service (f, in veh/h). Thus, K=k·f. The 

maximum frequency that can be provided with a given fleet is the ratio of the fleet size (n, 

in veh) to the vehicle time cycle (tc, in h), that is, f =n/tc. It then follows that the longer time 
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cycle, the greater the fleet size required to maintain the desired level of capacity. We have 

already seen that vehicle bunching caused by headway irregularity reduces average speed 

below that achieved with regular headways. This in turn will lengthen the vehicle time cycle 

and therefore require a larger fleet size to maintain the desired capacity, with a consequential 

rise in costs per kilometre for the additional vehicles and drivers to operate them.  

A reserve of vehicles and drivers will also be required to maintain regular dispatches from 

route terminals. This is due to the negative effect of the greater time cycle variability caused 

by bunching on the arrival times at the terminals of returning vehicles completing a cycle.  

Another effect of bunching is the simultaneous arrival of more than one vehicle at a stop. In 

the case of buses, this delays the beginning of the boarding-alighting process at stops, which 

also affects buses on other lines using the corridor where the bunching occurs (Gibson, et. 

al., 1989). These delays are further extended for the buses at the head of the bunch, for two 

reasons. First, they face a higher-than-normal demand due to the long headways ahead of 

them and therefore longer dwell times; and second, boarding and alighting times are longer 

due to the greater friction between the abnormally large numbers of passengers getting on 

and getting off. Both for buses (Milkovits, 2008) and metro trains (Suazo-Vecino et al., 

2017), dwell times have been observed to increase non-linearly with vehicle passenger load 

for a given vehicle size. The line of buses waiting to use the stop also lengthens trip time 

between stops for all the other lines on the corridor. This necessarily implies that the speed 

of all these other vehicles will be reduced as well. 

Note that a similar phenomenon occurs with high-frequency trains. Although the control 

systems maintain a minimum spacing to prevent actual bunching, headways frequently do 

shorten so that the progress of a given train is conditioned by that of the one ahead. And 
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when a train headway becomes longer than the average, it tends to grow along the route for 

the same reasons explained before. 

 

2.5 Other impacts 

So far, we have analysed in depth the effects of headway irregularity in public transport on 

user satisfaction and service levels and certain operating characteristics. There are, however, 

other impacts experienced by the community that also deserve mention. 

One of these is the simple indignity of having to wait amid crowds of frustrated users at bus 

stops, a situation people have come to associate with bus services (Tirachini, Hensher, & 

Rose, 2013). Also, the sight of long lines of buses creates an image of inefficiency even 

though it is the natural result of this type of system and tends to damage the general 

perception of buses as a mode. 

Another negative impact stems from the systems existing in many cities of the world where 

drivers are paid as a function of the number of passengers they capture (Johnson, Reiley, & 

Muñoz, 2015). This arrangement creates a highly destructive rivalry between the drivers, 

who naturally see the buses in front of them as competitors for users at stops up ahead and 

therefore a threat to their pocketbook. The result is serious frictions between vehicles that 

inevitably lead to accidents as well as poor service levels for users. The problem is 

accentuated by irregular headways, but it could be eliminated if the route operator worked 

to maintain regular intervals between their buses. 

Finally, it has already been noted that variable headways mean passenger loads will be 

irregularly distributed between buses on the same line. In an empirical study performed in 

November 29, 2012 in bus line 210 in Santiago, where significant crowding and fare evasion 
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is observed, it was shown that headway regularity can help reduce fare evasion. The 

experiment consisted in applying a holding strategy in all buses of the line at a subset of bus 

stops (based on the methodology proposed by Delgado et al; 2012). Figure 2.6 shows the 

number of card validations in each working day during November 2012 in bus line 210 and 

in every other line operated by the same company. The straight line represents the regression 

between card validations in line 210 and card validations in the rest of the services operated 

by the firm. As expected, a positive correlation is observed. The red triangle represents 

validations on November 29, a clear outlier of the trend observed the rest of the month. 

According to the company this behaviour was due to a more even distribution of passengers 

across buses, so less users entered through the rear doors not paying the fare just because the 

front door was blocked with passengers. 

 

Figure 2.6 Bus line 210 vs total validations during November 2012. 
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2.6 Achieving regular headways 

We have shown that public transport operators should also aim at offering headways as 

regular as possible at stops along the route. Several actions can be taken to improve this 

performance: (1) dispatch vehicles under even headways from the route terminals, (2) reduce 

travel time variability between consecutive stops, and (3) take some control actions along 

the route. 

Dispatching even headways is not always easy since the urban context at the extreme stops 

of the route may impede to store vehicles. Despite this, very often operators do not pay 

enough attention to this task and buses are sometimes dispatch in batches. Still, the impact 

of a smooth dispatch rate is very relevant in the performance of the whole route (Berrebi, 

Watkins, & Laval, 2015; Ning, Xun, Gao, & Zhang, 2015).  

Travel time variability between consecutive stops can be reduced if buses operate segregated 

from general traffic and if dwell times are speed-up through off-board payment infrastructure 

(Durán-Hormazábal & Tirachini, 2016; Schmidt, Muñoz, Bucknell, Navarro, & Simonetti, 

2016). Also, traffic signals can play an active role extending green phase to delayed buses 

(Anderson & Daganzo, 2019).  

Regarding control actions along the route several studies have proposed different 

mechanisms based on real-time information about vehicle location and passengers inside 

vehicles and at stops. The easiest and more frequently studied strategy is vehicle holding 

(Cats, Larijani, Koutsopoulos, & Burghout, 2012; Muñoz et al., 2013; Xuan, Argote, & 

Daganzo, 2011), but stop skipping, boarding limits and express operation have also been 

considered (see Ibarra-Rojas et al., 2015). Bueno-Cadena and Muñoz (2017) present a 
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holding and speed control methodology for a Metro line in which energy consumption is 

also minimized. More recently, a bus substitution strategy for a scheduled service was 

proposed by Petit et al. (2018) in which a delayed vehicle turns to not-in-service visiting bus 

stops to drop passengers only. Morales et al. (2019) propose a bus injection mechanism in 

which some buses are left at an intermediate stop ready to be injected in service when a long 

enough headway occurs. 

These papers argue that the potential impact of these tools in terms of user time only is highly 

significant. For example, Delgado et. al. (2012) show that in high passenger demand 

scenarios holding and boarding limits’ savings can reach up to 77% of the excess waiting 

time, and Cats et.al (2012) show a reduction of 43% in the coefficient of variation of 

headways and a 73% reduction of bus bunching occurrence with similar holding strategies. 

A concern with vehicle holding is that deciding how much to hold a bus based on local 

conditions only has shown to over hold vehicles (a bus is held only because the previous one 

was held) delivering a costlier operation for the user than no holding at all (Delgado, Munoz, 

& Giesen, 2012; Muñoz et al., 2013). Also, holding decisions must be taken when buses start 

to get closer, since separating already bunched buses would take holding the trailing bus for 

an unbearable amount of time for the users on board. Commercial software to assist each 

driver on how much to hold a bus at each stop based on real time information is starting to 

be implemented (Lizana et al, 2014; Berrebi et al, 2018). This should become more common 

when operators receive a stronger incentive to keep headways as regular as possible. 

Headway control strategies have shown to provide substantial benefits not only for users but 

also for providers (Fadaei & Cats, 2016; Soza-Parra et al., 2019a).  
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Finally, where frequencies are relatively low (5 or fewer buses per hour), timetables are 

typically defined for each stop. While this helps in solving the reliability problem, it requires 

extending the cycle time by incorporating large enough buffer travel times in the timetable 

to guarantee its adherence.  But extending the cycle time harms in-vehicle user travel times, 

the frequency to be offered, and transport capacity.  Xuan et al (2011) propose a dynamic 

holding strategy using bus arrival deviations from a virtual schedule at control points to 

improve timetable adherence. However, as stated previously, this is not the case for most 

regions where public transport is the dominant mode of motorized travel. In these regions, 

high-frequency public transport is the common practice and this trade-off does not exist 

(Delgado et al., 2012).  

The use of mobile apps that provide information in real time on bus positions and stop arrival 

time estimates reduces passenger anxiety, but of course does nothing for the load levels 

experienced on vehicles. Another relevant technological advance is the development of 

autonomous buses. This promises to improve service reliability, first because they will be 

equipped with automatic control mechanisms, and second because their ability to detect and 

record the presence of other vehicles will discourage private vehicle drivers from illegally 

entering bus lanes. The implementation of such buses will also bring benefits such as better 

driving and pulling in at stops, and fewer accidents. 

In conclusion, this article has attempted to show that improving the regularity of public 

transport vehicle headways will increase service reliability, reduce wait times, enhance user 

comfort and even cut trip times. Thus, all four attributes associated with good service levels 

(see Figure 2.7) would be changed for the better. The significant positive impact greater 

headway regularity would have on both service levels and system operating costs should 
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give cause for reflection on where best to direct the focus of public transport analysis. 

Typically, the emphasis is placed almost exclusively on maintaining attractive service 

speeds, and all the more so in the case of Bus Rapid Transit. However, in this paper 

strengthen through multiple arguments the intuition proposed by Delgado et al (2016), that 

Bus Rapid and Reliable Transit (BRRT) would perhaps be a better name for the kind of 

service we should be aspiring to. In this scenario, the focus must be placed in reliability, as 

much as it has been placed in speed in the previous decades. Faster vehicles bring travellers 

closer to their desired destination, but these benefits may vanish if unreliability causes people 

to experience long waits and crowded buses, making their traveling experience miserable. 

The time has come, to redirect service design and implementation towards reliability. 

 

 

Figure 2.7 Impact of headway regularity on key attributes of public transport. 
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3.1 Introduction 

Understanding how public transport travellers make their decisions (in terms of mode, 

departure time and route choices) is essential in transport planning. Demand models have 

been traditionally based on a few relevant variables such as fare and travel time. Although 

usually omitted from planning models, service reliability has been increasingly identified as 

a key element of travel behaviour (Engelson & Fosgerau, 2016; Fosgerau, 2016). For 

example, in The Netherlands, measures of service reliability have been incorporated in 

public transport planning models, based on the premise that reliability explains the 

difference between travellers’ expectations and experiences (Kouwenhoven et al., 2014).  

When analysing travellers’ behaviour, the value of waiting time is known to be perceived 

higher than the value of time spent inside the vehicle (Raveau, Guo, Muñoz, & Wilson, 
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2014). Headway variability affects not only waiting time variability, but also its expected 

value. Indeed, given a sequence of bus intervals visiting a bus stop where passengers arrive 

randomly, the average waiting time can be expressed as: 

( )
( )

( )( )2
  1

2

E h
E W CV h= +      (1) 

, where E(W) is the expected passenger waiting time, E(h) is the mean bus headway, and 

CV(h) is the coefficient of variation of headways (Osuna & Newell, 1972). If buses visit the 

stop at perfectly regular intervals, this last term would be zero and the expected waiting time 

would take its minimum value, i.e. half of the average headway. The difference between 

E(W) and this minimum waiting time is denoted as the excess waiting time and it results 

from the unreliability of a service. 

To incorporate reliability in a demand model at least three elements are needed: a monetary 

value for reliability (VOR), a model that can predict the reliability level of a service based 

on the context in which it will operate, and a model predicting the marginal impact of 

reliability indicators on users’ decisions (Kouwenhoven, 2015). For the second element, this 

is, to predict the reliability level offered by a service based on its operational context, it is 

necessary to understand which are the circumstances and variables that affect the level of 

variability of a public transport service and how they affect it. Thus, the main objective of 

this article is to expand our current knowledge regarding this set of conditions.  

This article takes as a study case Transantiago, the public transport system of Santiago, 

Chile. Transantiago offers around 400 bus services who attract around 3 million trips in this 

mode (or trip legs since the system is fare integrated) every day. The bus system is comprised 

of seven different Business Units that operate the fleet and services. Lack of travel time 

reliability (mostly on waiting time) is one of the main complaints about the public transport 
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system. To address it, several reliability performance indicators have been included in the 

private bus company contracts (Beltrán, Gschwender, & Palma, 2013); if a Business Unit 

fails to meet the required indicator levels, it receives penalties that reduce their revenues. 

Despite these direct incentives, limited noticeable improvements have been observed. This 

can be seen in Figure 3.1, where most of the coefficient of variation of consecutive headways 

observations are above 0.5. Besides, this variability propagates downstream for every 

Business Unit except for Unit 5. 

 
Figure 3.1 Coefficient of variation of headways by distance from the terminal for different 

business units 

 

Headway variability may be affected by many elements of the context in which a bus service 

operates. Danés (2016) aimed to explain the propagation of this headway variability between 

consecutive bus stops in the bus system. This work will expand our current knowledge by 

identifying several determinants of unreliability for the case of Transantiago. The proposed 

methodology will allow us to understand some of the main causes of headway variability, 

both at the dispatching stop, and as it evolves along the route. Given the severe impact of 

headway variability in the level of service to users, the results of this process are relevant for 
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many reasons. They could orient interventions in the operation, infrastructure and contracts 

to improve the system’s reliability. They can also be used to provide a more fair comparison 

of the performance of different routes, by distinguishing those elements affecting headway 

variability that that the operator cannot affect. The article is structured as follows. Section 2 

briefly describes the different data sources comprised in this research and describes the 

methodology used to process the data and the modelling framework. Section 3 shows the 

main results both for the dispatching and propagation model. Finally, Section 4 presents our 

main conclusions, their potential implications and provides some guidelines for further 

research. 

 

3.2 Data and Methodology 

Every Transantiago bus is equipped with a GPS system, which sends its position every 30 

seconds. During 2012, a project held by Pontificia Universidad Católica de Chile collected, 

analysed, and processed the GPS information of all Transantiago service. The dataset we 

will use in this paper consists of the GPS signals for all Transantiago buses for seven days 

of October during the morning peak hour only. No major disruptions happened to the public 

transport system during the days of analysis. As these GPS observations are collected every 

30 seconds, the exact arrival and departure time at every bus stop is absent. 

Each bus route was divided into consecutive inter-stop links. The evolution of headway 

variability along the route was analysed base on this structure since urban conditions tend to 

be quite homogeneous within each link. The speed of each bus was then estimated based on 

the time it takes to reach two consecutive bus-stops. Additional route and stop based 

information, such as the type of service, the presence of segregated lanes, and the presence 

of off-board payment stops were obtained from the local public transport metropolitan 
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agency (DTPM). Finally, the location of traffic lights was collected from the local 

metropolitan traffic control centre (UOCT).  

The analysis presented in this article proposes modelling frameworks to explain headway 

variability for two different contexts: the headway variability at the dispatching stop and its 

propagation downstream along a route. The dependent variable selected to be explained is 

the coefficient of variation of headways (CV(h)) since it is a dimensionless variable 

involving not just headway variability but its relation with the average frequency being 

offered. It is also directly related with the excess waiting time, which has a strong impact in 

passengers’ level of service. For each bus service operating in Santiago and every stop each 

of them visits, the CV of the headways observed at the stop over 30-minute periods was 

computed. Although the specification has considered the CV as the main reliability indicator, 

it is of course possible to calibrate alternative models for other dependent variables, such as 

the headway variance, standard deviation, and the difference between a percentile headway 

value and its mean. 

For the case of the dispatching model, a linear regression model is proposed. The coefficient 

of variation of headways at the first milestone of every bus service run was considered. The 

independent variables considered in this model are grouped in two categories: attributes at 

the terminal and along the route. For the former category, the nominal frequency of each 

specific bus service, the cumulative frequency at the terminal and the direction of the service 

run were considered.  It is expected that the higher the agreed frequency and the cumulative 

frequency at the terminal, the higher would be the headway variability. Similarly, it is 

expected that services joining a periphery area with a more central area of the city should 
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present a more irregular dispatch in its outbound run as they usually lack dedicated 

infrastructure to regulate the incoming sequence of buses into even headways.  

To explain the evolution of CV along the route, the cumulative boarding rate, the total 

distance of the bus service, and traffic light density and segregated corridor proportion along 

the route were considered. Finally, dummy variables associated to each of the seven 

companies operating in Santiago were added to identify how their management strategies 

may affect headway variability. 

For the case of the propagation model, there is a strong autocorrelation between independent 

observations, as the CV at a specific bus stop is strongly correlated with the CV at nearby 

upstream stops (Abkowitz & Engelstein, 1981; Loo, 1981; Abkowitz & Engelstein, 1983). 

To solve this issue, the headway variability index measured at an upstream stop was also 

included as an independent variable. This was expected to allow the model to explain only 

the headway variability induced between both stops, since the CV at the upstream stop would 

capture the variability occurring elsewhere upstream in the route. However, when 

performing a linear regression to obtain the parameters, a unit root was found on the 

upstream coefficient of variation of headways. Situations like the one described here occurs 

frequently in transportation modelling. An example is the work performed by Lin & Bertini 

(2002), where they aim to predict bus arrival time by formulating a Markov chain model.  

In this work, however, a different approach is proposed to explain headway variability in 

terms of a set of attributes of the service. The headway variability propagation specification 

has the following form: 

( )1ik ik k iki k
CV CV x   

−
=  +  + +      (2) 
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Here, CVik is the coefficient of variation of headways in bus service i at bus stop k, xik contains 

a set of explanatory variables occurring between stops k and k-1, and 𝛽̅, 𝜂𝑘 and 𝜀𝑖𝑘 are the 

set of parameters, the set of fixed but unobservable service specific effects, and the error 

term respectively.  

Panel data econometrics has demonstrated to be a practical tool to solve typical problems 

associated with data quality and characteristics, such as unobserved heterogeneity by 

exploiting the multi-dimensionality of the information (Croissant & Millo, 2008). In order 

to obtain unbiased parameters, we follow the Arellano-Bond method (Arellano & Bond, 

1991). This method is a generalized method of moments which solves endogeneity in the 

dependent variables without trading off the sample size.  

The independent variables considered in the propagation model are grouped in three 

categories: street, route and service characteristics. Regarding street characteristics along the 

route, the impact of segregated lanes, as well as the number of traffic lights between two 

consecutive bus stops, were considered. Dedicated infrastructure is expected to decrease CV 

while the number of traffic lights to increase it. For the case of segregated corridors, for 

example, a variable was created which takes the value from 0 to 1, which represent the 

percentage of segregated corridor between the two bus stops considered.  

Route characteristics are those related to the service design, considering traveller’s trip 

length, frequency, distance and number of stops from the head of the service to the stop, bus 

operator, type of service (express or all-stop), time period, passenger demand, off-board 

payment stop and route congestion.  

As in a high-frequency uncontrolled bus system, disturbances spread downstream, it is 

expected that the distance from the terminal should have a significant impact on headway 
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regularity propagation. However, when buses bunch, in theory irregularity should not 

worsen at the same rate. This means that it might be important to test whether the marginal 

effect of distance is constant.  

Off-board payment stops accelerate boarding time (Milkovits, 2008). As buses’ detention is 

one of the key factors which promotes the bunching phenomenon, it is expected that the 

presence of this type of bus-stops improves regularity (or at least slows down its 

deterioration rate). However, including this variable might cause a modelling issue, as it 

might be a source of endogeneity. Off-board payment zones are not placed at random stops, 

instead they are placed at stops where the demand and traffic conditions impact bus 

performance the most. To avoid this issue, the probability of the presence of an off-board 

payment stop was previously calculated and used instead of the actual presence of this type 

of stop. A Multinomial Logit model is considered, with the boarding rate at the stop, the 

added frequency at the stop, and a dummy variable if the bus stop is located in a segregated 

corridor as explanatory variables.  

Finally, speed variability should have a significant and negative impact on headway 

regularity since the source of bus bunching is precisely the variability in travel time between 

consecutive buses. Thus, the average speed and its standard deviation were considered in the 

model.   

 

3.3 Results 

On one side, for the dispatching model, a Linear Regression Model was estimated by the 

Ordinary Least Squares method. The linear function proposed is as follows: 
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 (3

) 

 

The notation of the variables and the estimated parameters for this model are presented in 

Table 3.1.  

Table 3.3.1 Dispatch model estimated parameters 

Attribute Parameter Estimated  t-test 

Intercept   2.48 · 10-1 13.44 

Contracted frequency contFq  1.78 · 10-2 12.51 

Cumulative frequency cumFq  9.24 · 10-4 6.95 

Returning service return  3.21 · 10-2 4.31 

Cumulative boarding rate bRate  -1.52 · 10-4 -3.15 

Service’s total length dist  -9.16 · 10-6 -6.25 

Interaction between boarding rate 

and total length ,bRate dist  
1.15 · 10-8 3.04 

Traffic lights density tlight  -9.06 · 100 -2.85 

Segregated corridor proportion seg  6.54 · 10-2 2.38 

Business Unit 1 effect 1  1.17 · 10-1 6.30 

Business Unit 2 effect 2  1.95 · 10-1 12.61 

Business Unit 3 effect 3  1.19 · 10-2 0.88 

Business Unit 4 effect 4  2.24 · 10-1 15.12 

Business Unit 5 effect 5  0 fixed 

Business Unit 6 effect 6  7.87 · 10-2 5.45 

Business Unit 7 effect 7  5.43 · 10-2 3.40 

Multiple R-squared 18.75% 

 

In terms of the effect of the attributes at the terminal, we observe a significant and increasing 

effect in dispatch headway variability for the contracted frequency, the cumulative 
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frequency, and returning services. Both contracted and cumulative frequency were expected 

to have an increasing effect, as it is expected that headway variability will be higher for those 

services with high frequency as well as for those terminals with a big number of vehicles to 

dispatch. In addition, the initial headway variability in returning bus services was found to 

be higher in average. This is explained by the lack of infrastructure and operational features 

at the return. 

The attributes along the route reflect operational characteristics. Firstly, longer and more 

demanded bus services show smaller average dispatch variability, which might indicate there 

is an effort to provide better regularity for those type of services. Traffic light density has 

also a negative effect in dispatch variability, which might be a proxy of services running 

through central areas. Finally, the proportion of segregated corridors along bus routes has an 

increasing effect in dispatch variability.  

In order to understand the degree of importance of each of these effects, we measure the 

average impact for each of them, by multiplying the estimated parameter by the average 

value of each attribute in the sample. This is presented in Figure 3.2. 
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Figure 3.2 Attributes’ average impact for the dispatch model 

 

 

As can be seen, more than 50% of the variation in dispatch variability is explained by the 

business units’ constant effects. The only two significant remaining attributes are the 

contracted frequency and the service’s total length, which account for both terminal and 

route characteristics.  

Finally, we observe a low explanatory power based on the R squared value and the observed 

v/s fitted scatter plot presented in Figure 3.3. This was expected as most of the average effect 

is explained by business units’ constants. 

 
Figure 3.3 Observed vs fitted values for the dispatch model 
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In terms of the effect of business units, we observe in Table 3.1 that every unit has a 

significantly higher dispatch variability than Unit 5 except for Unit 3. Based on this fact, we 

calculated coefficient of variation of headways’ distributions for Units 3 and 5 as well as the 

remaining units. This is presented in Figure 3.4 as follows: 

 

 
Figure 3.4 Coefficient of variation of headways’ distribution for different business units 

 

 

We observe than even for Units 3 and 5, which have the best performance in the sample, 

there is a big variability for the dependent variable. All the aforementioned facts prove the 

strong source of headway variability at the beginning of each bus service. This variability is 

mostly explained by the lack of headway control management at the time the data was 

collected. 

The propagation model was calibrated using the xtabond2 Stata module (Roodman, 2006). 

The best model obtained in terms of parameters significance and strict exogeneity of the 

instrumental variables for the Arellano Bond estimation is the following: 
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Where bRate is the boarding rate (in pax per hour), Pops is the probability of the presence 

of an off-board payment stop in the previous segment, seg is the percentage of segregated 

corridor since the last bus-stop, dist is the distance from the terminal in metres, speed  and 

SD(speed) are the average  and standard deviation of speed in the last segment and tlight is 

the density of transit lights in the last segment.  

There are 85,816 observations, with 3282 groups (services-period), with an average of 26.15 

observations per group. The instruments were the first two lags of CVi,j-1, this is CVi,j-2 

and CVi,j-3. The total number of instruments is 573, which is significantly less than the 

number of groups. This ensures the absence of instrumental over fitting.  

The parameters obtained are presented in Table 3.2, as follows: 

 

Table 3.2 Propagation model estimated parameters 

Attribute Parameter Estimated  z-value 

CV(h) last stop   9,72 · 10 -1 5,236.11 

Constant effect   2,54 · 10 -2 119.76 

Distance from terminal current stop dist  7,41 · 10 -7 122.56 

Prob. Off-board payment stop probps  -3,27 · 10 -2 -3.50 

Boarding rate last stop brate  2,79 · 10 -1 9.83 

Average speed last segment speed  -2,14 · 10 -3 -258.42 

SD (speed) last segment ( )SD speed
  3,62 · 10 -3 112.16 

Traffic light density last segment tlight  -1,73 · 10 -4 -19.50 
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Proportion of segregated corridor   seg  3,41 · 10 -3 2.71 

Interaction between distance and 

segregated corridor 
,seg dist  -2,80 · 10 -7 -3.24 

Number of observations 85,816 

Number of groups 3,282 

Average number of obs. per group 26,15 

Arellano-Bond test for AR(1) in first differences:  z =  -8.52  Pr > z =  0.000 

Arellano-Bond test for AR(2) in first differences:  z =   0.33   Pr > z = 0.744 

 

 

First of all, based on the results of the Arellano-Bond test for AR(1) and AR(2) in first 

differences, the Dynamic Panel Model hypothesis is satisfied. This means that the fixed and 

unobservable effect shouldn’t be correlated with the second (and more) lags. 

Results show that, as expected, upstream disturbances have a significant effect on the service 

regularity at downstream bus stops. This can be seen both in the significance and sign of the 

constant parameter, the distance from the terminal parameter, and the lagged observation 

parameter. Even though f  is close to 1, this parameter was unbiasedly estimated by including 

the instrumental variables in the model. Besides, the proposed formulation enables us to 

unbiasedly estimate the rest of the parameters, in contrast with simplified formulations as 

multiple linear regressions by ordinary least squares which are not able to estimate those 

parameters properly. 

The segregated corridor impact is noteworthy of being analysed. By looking to the 

parameters, it might seem that segregated corridors increase the propagation rate but reduces 

the impact of the distance in the propagation rate by a 37.79%. However, this type of 

infrastructure allows buses to significantly increase their speed. Thus, this strong correlation 
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should be considered to address the full impact of segregated corridors in headway 

variability. Considering typical operational speeds in segregated corridors and in mixed 

traffic, we observe that the model predicts that this infrastructure tends to reduce the 

propagation rate of headway variability.  

Finally, there is a negative impact of traffic lights in the operation. This was not expected as 

the number of stops increases the chance of bunching. However, this attribute is also highly 

correlated with the standard deviation of speed, which has an increasing effect on the 

propagation of headway variability. 

In order to analyse the relative importance of each attribute in the variation of consecutive 

bus stops headway variability, we measured the average effect similarly as for the dispatch 

model. This is presented in Figure 3.5 as follows: 

 

 
Figure 3.5 Attributes’ average impact for the propagation model 

 

 

We observe that, on one hand, in terms of increasing headway variability, the most important 

attribute is by far the constant effect, followed by the standard deviation of speeds and the 
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cumulative distance from the origin. On the other hand, in terms of decreasing headway 

variability, the most important attribute is the presence of off-board payment stops and the 

average speed in the last segment. These results reinforce the importance of specialized 

infrastructure to improve bus services’ operation and the critical value of the operation at the 

dispatch. 

Finally, the observed and fitted values of the propagation model are plotted in Figure 3.6. 

We observe that, in opposition to the dispatch model, this one has a significantly better 

explanatory power. This underpins that the propagation of headway variability, in absence 

of headway control strategies, is highly more predictable than dispatching.  

 
Figure 3.6 Observed vs fitted values for the propagation model 
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3.4 Conclusions  

Overall, it was proven that upstream disturbances have a significant effect on the service 

regularity at a bus stop. Congestion, given by the mean and standard deviation of velocity 

and traffic lights density, showed to be significant too. Besides, dedicated infrastructure, 

such as segregated lanes and off-board payment stops showed a significant impact reducing 

headway variability. These results indicate that this type of interventions improve the level 

of service to users and therefore should be encouraged.  

In terms of dispatch, we conclude there exists a highly randomized operation. In the absence 

of headway control strategies at this level, dispatch is operated by rule of thumb principles, 

as might be dispatching in a First-In-First-Out manner, giving priority to high-demand 

services, ensuring contracted frequencies, among others. Based on the results of the 

propagation model, where the most important attribute was related with upstream 

disturbances, we conclude that the most valuable way to improve headway variability is to 

improve dispatch regularity, followed by the implementation of specialized infrastructure 

for bus services, as segregated lanes, and off-board payment zones. It will be interesting to 

measure in further research to which extent headway control strategies along the route 

improve headway regularity further. 

The contribution of this work is the calibration of a predictive and explanatory model, able 

to estimate changes in the headway CV of a public transport service, under certain 

interventions. For example, it will be possible to predict the impact of segregating a bus lane 

or equipping a set of bus stops with off-board payment systems. This way, projects offering 

a limited impact in improving the average travel time, but reducing headway variability 

significantly, may justify their implementation. Currently, there is no methodology available 
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for cost-benefit analysis that incorporate the impacts of a transport project in headway 

variability.  

Furthermore, in comparison to the capabilities of Machine Learning models which have 

strong forecasting capabilities, the proposed methodology not only calibrates a predictive 

model but also informs regarding the relative importance of different infrastructure attributes 

as well as the effect of upstream disturbances. Thus, the proposed model is not only novel, 

but also useful. 
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4.1 Introduction 

Travel time reliability plays an important role in public transport travellers’ satisfaction and 

their perception regarding the level of service, as well as in operational costs (de Jong and 

Bliemer, 2015). Nevertheless, when planning public transport systems, travellers’ behaviour 

has been usually modelled through traditional variables such as monetary cost, expected 

travel time and planned waiting time. Other elements such as crowdedness, excess wait time, 

and mode/service reliability (understood as the certainty travellers have regarding their 

travel time, their arrival time or the comfort level they will experience inside the vehicle) 

(van Oort, 2011) are usually neglected from these behavioural models (Petersen and Vovsha, 

2006; Raveau et al. 2014). This could lead to erroneous predictions of the demand for public 

transport alternatives. 
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In public transport systems, unreliability’s main impact is generally the potential delay on 

the arrival to the destination. Travellers can handle this situation by adjusting their departure 

time, changing routes or changing modes (Benezech and Coulombel, 2013). In general, 

users’ preferred option is to add a safety margin to the ideal departure time (Bates et al., 

2001). Travellers’ reaction to unreliability has been widely studied in developed cities 

among the world, mainly in Europe and North America. However, in developing regions 

such as Latin America there is a lack of studies regarding public transport reliability. 

Besides, developing regions are characterized by an accelerated urbanization process and a 

significant percentage of urban population (Jirón, 2013). This, along with poor urban 

planning policies, leads to a significant proportion of long trips, from the periphery of the 

cities to highly concentrated activity centres (García Palomares, 2008; Rodríguez Vignoli, 

2008, 2012). These circumstances hinder the operation of public transport services based 

only on schedules, mainly because of the high frequency needed and the stochastic nature of 

public transport (Muñoz and Gschwender, 2008). In this context, therefore, public transport 

reliability needs to be understood and addressed in a different way to what has been done in 

developed cities.  

In terms of planning information, the availability of large volumes of automated data 

regarding the operation of public transport systems has increased over the recent years. This 

valuable source of detailed information, properly processed, allows analysing and 

understanding the system’s operation (Birr et al., 2014; Bucknell et al., 2017; Cham, 2006; 

Fadaei and Cats, 2016; Furth and Muller, 2006; Gschwender et al., 2016) and modelling it 

in a better way (Cats and Gkioulou, 2017; van Oort et al., 2015; Raveau, 2017). This type of 

information usually comes from sensors strategically placed within vehicles (such as GPS 
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systems) and smartcard data from passengers boarding and/or alighting the vehicles and 

allows understanding travel times in a better way. 

An application of automated data to characterize public transport level of service is the study 

by the BRT Center of Excellence (BRT, 2012), which compares the level of service of six 

Latin American cities: Santiago, Chile; Porto Alegre, Brazil; Guadalajara, Mexico; Mexico 

City, Mexico; Bogota, Colombia; Lima, Peru. For each city, a socio-economic description 

of the population was made, as well as a description of the characteristics of the existing 

public transport system (such as the number of operators, metro lines, operation, fares, 

payment schemes, infrastructure, vehicles, information systems, quality perception, among 

others). Level of service indicators of the respective public transport systems were calculated 

by estimating travel, wait and walk times for 400 representative trips in each city. A relevant 

indicator within the study relates to travel time variability in the systems. To compute this 

indicator, the study defined two distinct types of variability: (i) an interpersonal variability, 

which accounts for the heterogeneity of the existing levels of service within the city, and (ii) 

an intrapersonal variability, related to how variable the same trip performed repetitively by 

an individual is (i.e. how reliable is the level of service). This second kind of variability is 

called day-to-day variability (Hollander, 2006; Jenelius, 2012). However, the travel demand 

is not adequately considered when measuring the average variability, as the indicators are 

not weighted by the number of travellers performing each trip. Nor is there an in-depth 

analysis of the differences between modes and/or operating conditions. 

The purpose of this study is to use automated data to perform an in-depth analysis of travel 

time reliability in a public transport system. That is to say, to characterize this attribute for 
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different modes and infrastructure and to measure the effects of travel time reliability on 

travellers’ mode choice decisions. For this, the case of Santiago, Chile, is considered.  

Santiago’s public transport system is called Transantiago, where bus and metro services are 

integrated in fare (Muñoz et al., 2014). There are mainly two types of bus services: regular 

services, which stop in every bus stop of the route, and express services, which stop only in 

some of them. There are also five metro lines, where Line 1 is the most crowded one during 

peak periods, as it runs though the city centre. Line 1 is also the oldest one and has an average 

distance of 660 metres between stations, the lowest average distance of the network. 

Furthermore, it is the only line that goes from the west to the east of the city, passing through 

the most important activity centres. These characteristics make Line 1’s performance 

significantly different and thus it might be needed to study it separately.  

In Transantiago, the smartcards only record boardings. Munizaga and Palma (2012) 

proposed a methodology to estimate a public transport trip matrix (inferring the alightings) 

using the sequence of validations made with the smartcard and the geographical position of 

the buses. This trip matrix is used in this study to characterize travel time reliability for 

public transport routes of similar length in the city during the morning peak period. 

Additionally, the progressive change of travel time variability as travel length increases is 

analysed.  

So far, the available automated data has not been used in Santiago to understand how travel 

time variability has an impact (if any) on user’s decisions. Furthermore, to the best of the 

authors knowledge, revealed preferences have not been used to analyse the impact of 

reliability on public transport travellers’ preferences. Based on the available information, 

this study develops an aggregate mode choice model, in which the explanatory variables are 
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both average level-of-service indicators and indicators of their variability. This analysis 

further emphasizes the importance of travel time reliability. The analysis and 

characterization of the travel time reliability and its effects were carried out using only 

passive data, without the need of any survey. This represents a novel and quite promising 

approach for choice modelling. 

This document is structured in three sections. Section 1 describes the statistical analysis 

conducted to obtain travel time distributions for bus, express bus, and metro services, as well 

as the impact of segregated corridors in travel time variability. The results are supported by 

both statistical and graphical analysis. Section 2 presents the methodology for estimating an 

aggregate behavioural model as well as its results, which allows to understand the effect 

reliability has on passenger choices. Finally, Section 3 presents the main conclusions of this 

study and elaborates on how these results should steer following studies and models for 

public transport planning. 

 

4.2 Section 1: Characterizing travel time reliability 

In this section, the methodology applied for the travel time characterization as well as its 

graphical analysis are presented. To characterize travel times across the city, a statistical 

analysis of actual travel times of all travellers on a given week is performed. This analysis 

is conducted at a trip-leg level. 

 

4.2.1 Travel time distributions and headway regularity 

For bus trips, the data comes from smartcard transactions and GPS information. This 

information was extracted from a trip-leg table constructed with the methodology proposed 
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by Munizaga and Palma (2012). For each smartcard validation, public transport service is 

recorded as well as the moment and place in which the traveller boards and alights the bus. 

This information is estimated from the GPS information delivered by the vehicles every 30 

seconds, the geo-referenced bus route and the geographical position of the stops along the 

route. 

The resulting database has the boarding and alighting time for every bus trip-leg made by at 

least one individual. With this information, it is possible to construct travel time distributions 

for any service between any pair of stops where there are trips within the network. Origin-

destinations pairs without any trips are excluded for the analysis. The travel time 

distributions can be discretised by the in-route distance that separates the pair of stops, in 

order to obtain travel time histograms for trips of a given length range. 

For the case of metro trips, the database of arrival and departure times for every train at every 

station was provided by Metro de Santiago. Just like in the case of the buses, it is possible 

to obtain travel time distributions by distance range for every pair of stations that belong to 

the same line. 

In order to analyse headway distributions, a new database was considered for the case of bus 

trips. This database consists in the estimated arrival time of every bus at every bus stop for 

the week of analysis. This extensive database was filtered in order to consider the same 

origin-destination services described above. With this information, for both metro and buses 

it is possible to calculate consecutive headways for every stop/station in the network. Then, 

for the time-period of analysis, it is possible to compute any reliability measure. In this case, 

the coefficient of variation of headways was considered because of its direct relationship 

with the expected waiting time.     
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The previously described methodology treats each vehicle alike, regardless of the number of 

passengers travelling in them. To obtain travel time distributions from a point of view of the 

user’s experience, it is necessary to weight the travel time distributions associated to each 

origin-destination pair by the travel demand of that pair. To do this, information from 

smartcard transactions is used. In addition to boarding and alighting stops, and the service 

boarded, the trip matrix contains expansion factors for each observation. Adding all the 

expansion factors of those trips that had the same vehicle, boarding and alighting stops, it is 

possible to obtain the demand for all trips within each service. 

However, the smartcard demand database used for the metro services contains information 

of trips between any two stations within the entire metro network (as no transfers are 

recorded), while the metro travel times are within lines. For this reason, the available data 

must be transformed so all information corresponds to metro trip-legs within lines. One way 

to solve this is to divide each metro trip between any pair of stations (which could use 

different lines) into its trip-legs. This is not straightforward, as for some pair of stations there 

is more than one reasonable route. To solve this issue, a choice probability to each of these 

routes was considered. These probabilities correspond to the travellers’ choice proportions, 

obtained from an appropriate route choice model (Raveau et al., 2011). This model is 

estimated based on an origin-destination survey conducted within the metro network. As any 

specific trip-leg that involves a transfer station will be part of multiple origin-destination 

pairs within the network, the sum of the demand of all those multiple pairs must be computed 

to have the actual demand of every trip-leg in the metro system. 
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4.2.2 Graphical analysis 

Firstly, we performed a graphical analysis to compare how does the coefficient of 

variation of headways evolves with the distance from the terminal between buses and metro. 

This analysis is presented in Figure 4.1. Overall, the average coefficient of headways growth 

with distance for both modes, as expected. This value remains almost constant for metro, 

which is mostly explained by its dedicated infrastructure. However, the average coefficient 

of variation of headways for metro is around 0.5, which is far from a perfectly regular 

operation. This means on average people wait 25% more even in this ideal scenario in terms 

of infrastructure and operation. 

  

 

Figure 4.1 Coefficient of variation of headways by distance to the terminal for buses and 

metro services 
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We also compared travel times according to distance ranges for the different public transport 

services of Transantiago. Figure 4.2 shows how travel time increases with travel distance, 

as expected. However, travel time increases more rapidly for bus-based services than for 

metro. Within bus-based services, there is a significant difference in the average travel time 

between bus and express bus services, but there is not enough evidence to suggest a 

significant difference between their variability, which will be analysed in more detail. 

Regarding metro services, there is a significant difference in the speed of metro Line 1 

compared to the other lines, and therefore Line 1 is shown separately from the others. There 

is also a broader dispersion for Line 1 in comparison to the rest of the lines, but, as mentioned 

in the case of buses, this will be of further analysed. Although the dispersion of the 

performance of express bus services shows that many of them have a level of service similar 

to that of regular bus services, there is a portion that resembles both the best lines of metro 

and Line 1. As future research, it will be important to understand what conditions make these 

services show such a level of service.  
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a 

 

b 

 
 
 

c 

 

 
 

d 

 

Figure 4.2 Travel time distributions by mode and distance range. 

(a) between 2.5 and 3.5 km; (b) between 7.5 and 8.5 km; 

(c) between 12.5 and 13.5 km; (d) between 17.5 and 18.5 km. 

 

The relationship between travel time dispersion measures of the histograms and distance can 

be seen in Figure 4.3. Two dispersion measures are considered for the analysis: the standard 

deviation of travel time and the difference between the 95th percentile and the average travel 

time, which in the literature has been called Reliability Buffer Time (Engelson and Fosgerau, 

2016). While the standard deviation takes into account travel times shorter and longer than 

average, the reliability buffer time only measures the difference between the longer travel 

times and the average. 
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Figure 4.3 Relationship between dispersion measures and travel length. 

(a) Standard deviation; (b) Difference between 95th percentile and average travel time. 

 

Overall, both dispersion measures increase with travel length for every mode except for the 

last segment of Line 1. This happens as the number of origin-destination pairs for every 

travel distance range decreases as the distance gets longer. For the longest distance range, 

there is only one origin-destination pair analysed, which is from one end to the other. Thus, 

the variability is expected to be smaller as there is no variability due to differences in demand 

on different pairs. 

The dispersion is always smaller than 2.5 minutes for metro (except for Line 1, whose 

maximum is 4 minutes) when the standard deviation is considered as the measure of 

dispersion, which could hardly be perceived by travellers. Considering the reliability buffer 

time, the dispersion is almost eight minutes for Line 1 and always smaller than five minutes 

for the rest of the lines. 

  

a 
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4.2.3. The impact of segregated bus corridors on travel time reliability 

Over the last decade, to palliate the effect of traffic congestion (mainly due to the increase 

of private car use) on the performance of public transport systems, there has been a 

substantial increase in the length of specialized infrastructure for bus services. According to 

the BRT Centre of Excellence, there are 4.900 kilometres of segregated bus corridors moving 

32 million passengers daily in 166 cities worldwide (BRT+ Centre of Excellence & 

EMBARQ, 2018). 

Buses operating in segregated corridors increase their speed in comparison to those operating 

in mixed traffic. It has also been observed that segregated corridors have a positive impact 

in avoiding bus bunching by reducing headway variability growth along the route (Danés et 

al., 2015). However, their impact regarding travel time reliability is less clear. 

In this section we provide a graphical comparison between services running on specific 

segregated corridors and on parallel comparable mixed-traffic lanes based exclusively on 

passive data. Figure 4.4 shows the considered corridors. The segregated corridors analysed 

(dashed lines) are Las Industrias and Av. Grecia and their comparable mixed traffic corridors 

(solid lines) are Vicuña Mackenna and Eduardo Castillo Velazco–Los Orientales–Las 

Parcelas (ECV-LO-LP), respectively. To isolate the effect of the segregated corridors, only 

trips that started and finished at bus stops inside the analysed corridors (both segregated and 

mixed-traffic) were considered.   
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Figure 4.4 Segregated corridors analysed and their comparable mixed traffic corridors. 

 

The evolution of the coefficient of variation of headways from the terminal, as shown in 

Figure 4.1 is presented in Figure 4.5. It can be seen how, for both comparisons, bus corridors 

present a lower headway variability value. Remarkably, situations (a) and (b) offer two 

different situations. On one side, in (a), the value of the coefficient of variation for the 

comparable services close to the terminal, running in mixed-traffic conditions, is still not 

close to 1. This means that there is space for this value to grow accordingly with distance. 

As can be seen, headway variability increases with a higher rate in this mixed-traffic scenario 

compared with the segregated corridor. On the other side, in (b), the mixed-traffic 

comparable services have an average coefficient of variation of headways around 1 even 

close to the terminal. This means that the operation of the services running in these streets is 
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already highly irregular, and therefore is hardly possible to operate even more irregularly. 

That said, it is expected that headway variability rate of evolution will be lower than in the 

previous scenario, as can be confirmed in Figure 4.5. 

Figure 4.5 Coefficient of variation of headways by distance from terminal. 

(a) Las Industrias & Vicuña Mackenna; (b) Av. Grecia & ECV – LO – LP  

 

The speed distribution for both corridor comparisons is presented in Figure 4.6. For both 

cases the average speed observed in the segregated corridor is higher than in the mixed traffic 

corridor. This is represented by the difference on the modes of the distributions. However, 

the difference between speed variability is not clear since the spread of both distributions 

seems (at least at first sight) rather similar. 

As the analysis presented in Section 4.2.1, travel data was grouped in different distance 

ranges within each corridor. Within each distance range, average travel times and variability 

measures were computed. The positive impact of segregated corridors on the average speed 

can be seen in Figure 4.7, which confirms that trips on segregated corridors are, on average, 

faster (as expected) (Durán-Hormazábal and Tirachini, 2016). Figure 4.7 also shows that the 

reduction on travel times increases as the trips get longer. 

a   

 

b
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Figure 4.6 Bus services’ speed distribution. 

(a) Las Industrias & Vicuña Mackenna; (b) Av. Grecia & ECV – LO – LP 

 

Figure 4.7 Average in-vehicle travel time by travel distance.  

(a) Las Industrias & Vicuña Mackenna; (b) Av. Grecia & ECV – LO – LP  

 

However, as it has been argued in this study, characterizing the impact of segregated 

corridors should include in-vehicle travel time variability. For that purpose, three indicators 

of travel time variability are computed for every travel distance range: the standard 

deviation, the coefficient of variation and the reliability buffer time. This analysis is 

presented in Figure 4.8. Overall, segregated corridors present a better performance in terms 

of in-vehicle travel time variability. The only exception would be the case of the coefficient 

of variation in Av. Grecia which is equal to the one of the comparable ways for trips longer 

a 

}  

b 
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than 1.5 kilometres. These figures indicate that there is evidence of a positive impact of 

dedicated infrastructure, as segregated corridors, not only on the average travel times but for 

their variability as well. 

Figure 4.8 Variability measures for in-vehicle travel time by travel distance.  

(a) Las Industrias & Vicuña Mackenna; (b) Av. Grecia & ECV – LO – LP  
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4.3 Section 2 The effect of travel time reliability on mode choice 

In this section, the methodology for the aggregate demand model is presented and the results 

obtained are discussed. This model allows understanding the effect that travel time reliability 

has on travellers’ preferences and on the observed travel structure. To estimate the aggregate 

public transport mode choice model, it is necessary to build a database for that purpose. The 

model only considers origin-destination pairs where metro is an alternative to the buses, to 

analyse individuals’ choices between both modes and its combination. 

4.3.1 Origin-Destination Pairs 

To identify the bus services that are an alternative to metro, buffers (or influence zones) of 

750 meters radius were defined around each metro station. All bus stops within the buffer 

define the origin-destination pairs for bus trips or combined bus-metro trips that could have 

been done only by metro. For those bus stops with more than one metro station within the 

range, the closest station was assigned. The 750 meters radius was selected based on the 

results of Tamblay et al. (2015), which considers the 95% percentile walking distance from 

people origins to metro stations. The procedure is shown in Figure 4.9, where the left panel 

shows a general view of the city with while the panel on the right shows, in a more detailed 

way, the circular buffers created surrounding the metro stations. With this information it is 

possible to create an aggregate database of public transport trips in bus, metro and bus-metro 

between selected origin-destination pairs, in order to study travellers’ mode choices. 



87 

  

  

Figure 4.9 Buffers of 750 meters around metro stations. 

4.3.2 Database creation  

Once the metro stations are matched to their corresponding surrounding bus stops, it is 

possible to group all trips in the database based on the origin and destination metro station 

to understand how travel attributes impact the total demand for each mode. The analysis 

must be conducted at the level of full travel and not at the trip-leg level (as was the case of 

the analysis presented in Section 1), since only this way it is possible to properly understand 

and explain travellers’ behaviour. 

The three considered alternatives are bus, metro, and combined bus-metro. For bus services, 

the average travel time and its variance were obtained directly from the database used in 

Section 1, grouping trip-legs into trips. For metro, the information was obtained based on 

the arrival and departure times provided by Metro de Santiago. As for some origin-

destination pairs there is more than one reasonable route, the level of service was computed 

as a weighted average based on route probabilities calibrated in a previous study for the same 

network (Raveau et al., 2011). Finally, for the trips made by a combination of metro and bus 

services, the level of service was obtained as a combination of both procedures. To get a 
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total variance for each trip, it was assumed that every trip-leg was independent and their 

travel time variances to be additive. 

 

Table 4.1 Number of Origin-Destination Pairs Selected. 

Criterion Number of origin 

- destination 

pairs 

Morning peak 

travel demand 

Percentage of the total 

(OD pairs/demand) 

At least 1 observation 

in metro 
9,082 1,330,896 100% / 100% 

At least 1 observation 

in bus or bus-metro 
7,328 1,289,621 80.69% / 96.90% 

At least 6 observations 

in every alternative 
2,315 669,232 25.49% / 50.28% 

Presence of headway 

observations  
2,264 662,063 24.93% / 49.75% 

 

The behavioural analysis presented in this study focuses only on the morning peak period.  

As more than one observation is needed to obtain reliability indicators, origin-destination 

pairs with five or less trips for any mode were not considered in the analysis. As the estimated 

bus arrival time database is not exhaustive, it is necessary to filter also those observations 

without headway information for this mode. This way it is possible to guarantee that every 

origin-destination pair considered contains enough information to measure variability 

indicator for both travel and waiting times. The number of origin-destination pairs for every 

criterion is displayed in Table 4.1.  

The number of origin-destination pairs is reduced significantly when the criteria are applied. 

However, the remaining origin-destination pairs present, as expected, higher demand than 

the deleted pairs, which represent almost one half of the total demand. Finally, bus 

observations were corrected by fare evasion (Cantillo, Raveau, Iglesias, Tamblay, & Muñoz, 
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2018), which is on average 26% for the selected bus stops during the period of analysis. The 

final number of observations considered is 695,113. 

 

4.3.3 Results 

Based on a Random Utility Maximization approach (McFadden, 1974; Ortúzar and 

Willumsen, 2012) for modelling aggregate mode choice, different specifications were tested 

to obtain a good fit for the data set. As for the variability of travel and waiting time, the 

standard deviation, the variance, the coefficient of variation and the reliability buffer time 

were tested.  

As the bus-metro alternative is a combination of the other alternatives, correlation is 

expected. To address this issue a Cross Nested Logit model (Vovsha, 1997) was calibrated. 

Two nests are defined, one for the metro alternatives and the other for the bus alternatives. 

On one side, the pure modal alternatives belong entirely to their respective nest, with each 

inclusion coefficient (denoted by α) equal to 1.  On the other side, the combined metro-bus 

alternative belongs to both nests, with inclusion coefficients to be estimated. For 

identifiability purposes the scale parameter at the root was set equal to 1, as well as one of 

the nests’ scale parameters (denoted by λ). The scale parameter estimated was the associated 

with the metro alternative. The model structure, scale parameters and inclusion parameters 

can be seen in Figure 4.10. 
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Figure 4.10 Cross Nested Logit model structure. 

 

The best specification was found by the Likelihood-ratio test. Regarding travel attributes’ 

variability, only the variability of headways had a significant effect. From all the different 

variability measures, the coefficient of variation performed the best. Non-linearity was tested 

for both travel and waiting time. However, no significant improvement was found in this 

sense. The selected utility specification Vi considered is: 

 

( ) ( ) ( ) ( )( ) ( ) # A
1 ( ) ( ) #Tri TT CV h i i WT CV h i TrT i Tr Bi i

V ASC CV h TT E W CV h TrT A B     
→

= +  +   +  +  +  +  →  

Where: 

iTT  Average travel time for alternative i 

( )
i

E W  Expected waiting time for alternative i 

( )
i

CV h  Coefficient of variation of headways for alternative i  

iTrT  Average transfer time for alternative i 

( )#Tr →
i

A B  Average number of transfers from mode A to mode B for alternative i 
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Before the results analysis, there are three important modelling considerations to highlight. 

Firstly, the combined alternative has both specific and common parameters. For example, 

the average in-vehicle travel time is split by mode and share the parameters for both metro 

and bus. The same happens with the number of transfers, sharing bus-to-bus and metro-to-

metro parameters. The coefficient of variation and the average waiting time is the same 

parameter than for buses.  

Secondly, there is a strong correlation between ASCComb and 

#Tr
→ 

 
→ 

M B

B M
 as the combined 

alternative is the only one with transfers between metro and bus (and vice-versa) and the 

average value is close to 1. Therefore, both parameters associated cannot be estimated at the 

same time. As our major objective is to understand travellers’ behaviour, we decided to 

define the combined alternative specific constant conveniently, in order to estimate the 

parameter associated with the number of transfers. The specific constant is defined as 

follows, proportionally to the amount of in vehicle time spent in bus for the combined 

alternative: 

= 
+

Comb
Comb Bus

Comb Comb

TTbus
ASC ASC

TTbus TTmetro
 

Finally, the database consists in 5,429 observations which represent 695,113 revealed 

choices. As these choices are grouped by origin-destination pairs, every observation has a 

weight parameter associated, equivalent to the total value of choices for each pair. However, 

the common practice is to multiply this value so that the total sum of them is equal to the 

total number of observations. This is done to correctly estimate the standard deviation of the 

estimated parameters.  
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The results of the model are shown in Table 4.2. The parameters part of the different 

alternative utility functions are denoted with B, M, and C for bus, metro and combined 

respectively. This parameters were obtained using PythonBiogeme (Bierlaire, 2016). All 

parameters associated with travel attributes have the expected sign and are statistically 

significant at a 91% confidence level. Also, the combined inclusion parameters 

( ), , and c m c m   and the scale parameter for metro ( )m  were found to be significantly 

different from 1, which confirms the Cross-Nested Logit structure. Besides, the higher value 

of ,c m means the combined alternative relates more with metro. This is mostly explained as 

in bus-metro trips, bus is mostly used as an access/egress mode, meaning that the bigger 

portion of the trip is done in metro. 

 

Table 4.2 Calibrated Parameters Values 

Attribute Alternative Parameter Estimate p-value 

Average travel time B, M, C TT  -0.087 0.00 

Marginal effect of 

Coefficient of variation 

of headways in the 

perception of Travel time 

B, M, C ( )CV h
  -0.269 0.00 

Average waiting time 
B, C WT  -0.086 0.00 

M WT  -0.203 0.00 

Coefficient of variation 

headways 
B, C ( )


CV h

 -0.424 0.09 

Average transfer time 
B, M TrT  -0.078 0.00 

C TrT  -0.026 0.00 

Number of transfers 
B, C ( )#


→Tr B B

 -1.050 0.00 

M, C ( )#


→Tr M M  -0.455 0.00 
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C ( )#


→
→

M B
Tr

B M

 
-1.140 0.00 

Alternative specific 

constant 

B, C BusASC  -0.159 0.45 

M, C MetroASC  0 fixed 

Combined inclusion coefficient – metro ,c m  0.854 0.00 

Combined inclusion coefficient – bus ,bc  0.146 0.00 

Scale parameter – metro m  1.780 0.00 

Scale parameter – bus b  1.000 fixed 

Number of observations 5,429 

Log-likelihood -2,763.56 

 

In order to understand better the impact of each attribute, we calculated the marginal rate of 

substitution of them with in-vehicle travel time. As in-vehicle travel time perception depends 

on headway regularity, we define two scenarios to analyse: perfect headway regularity, 

where CV(h) equals 0 and an irregular scenario, such as arrivals follow a Poisson process, 

where CV(h) equals 1. 

In terms of average waiting time, in a regular scenario we see it is considered higher than in-

vehicle travel time only for the cases of metro trips. For this case, the MRS between this 

attribute and in-vehicle travel time is 2.33. In an irregular scenario, the MRS rises to 1.35 

for buses. If we consider the average values of CV(h) for both modes, MRS equals 1.26 for 

buses and 2.39 for metro. This might be explained as during morning peak hours, waiting 

for metro might be considered worse as in some stations the amount of people waiting reach 

an uncomfortable level. 

In relation to transfers, we observe that transfer times are lower than in-vehicle travel time 

under regular headways. Considering the average coefficient of variation on headways, the 

MRS is 1.15 for buses, 0.92 for metro and 0.38 for the combined alternative. One possible 
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explanation considers that transfer time for the combined alternative are related with access 

or egress to the metro network, which might be perceived better than travelling itself.  

On the other side, the worst perceived transfer is Bus-to-Metro/Metro-to-Bus, followed by 

Bus-to-Bus, and lastly Metro-to-Metro. This is also in line with our current knowledge, 

where Metro transfers are not perceived as bad as bus transfers. Based on the MRS, people 

would travel on average around 17, 15, and 5 minutes extra to avoid a Bus-to-Metro/Metro-

to-Bus, Bus-to-Bus, and Metro-to-Metro transfer respectively. 

Regarding the coefficient of variation of headways, there are four different aspects to recall. 

Firstly, this attribute has three different effects in the utility function. It increases the 

expected waiting time (Osuna & Newell, 1972), it has a direct impact in the utility function, 

and it has a marginal impact in the perception of travel time. This allow the model to 

differentiate between two services with different frequency and headway regularity but with 

the same expected waiting time. 

( )
( )

( )( )2
1

2
=  +i

i i

E h
E W CV h

 

Secondly, the coefficient of variation of headways by itself only has a significant impact for 

bus and combined alternatives. The non-significative impact for metro can be explained as 

the combination of its regularity and frequency level might not be high enough to have a 

perceivable effect in passengers’ experience.  

Thirdly, the marginal effect of the coefficient of variation of headways in the perception of 

in-vehicle travel time, ( )CV h
 , was found to be significant and negative. This means than 

passengers are willing to travel longer in order to travel in a reliable bus service. In an 
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irregular scenario, the perception of in-vehicle travel time is ~27% lower than in a perfectly 

regular scenario. 

Fourthly, the MRS between CV(h) and TTBus is calculated as follows: 

( )( )
( ) ( ) ( ) ( ) ( ) ( )

( )
( ) ( ) ( )

( )
( ) ( )

 

( )

( )

( )

( )

( )
,

1 ( )

1 ( )

0.27 0.98 4.89
min

1 0.27 ( )

TT CV h WT CV h

Bus

TT CV h Bus Bus

TT CV h WT CV h

TT CV h

CV h CV h E W CV h CV h CV h
MRS CV h TT

CV h TT TT

E h CV h

CV h

E h CV h

CV h

   

 

   

 

   +   +  
=

 +   

 +   +
=

 + 

− +   +
=

−   

This means the rate of substitution grows with both the coefficient of variation of headways 

and the expected value (the inverse of the frequency). If we consider the average value of 

E(h) and CV(h), 6.85 minutes and 0.81 respectively, we obtain a MRS equals to 12.88 

minutes, which is comprised by -0.35 minutes in terms of travel time, 6.97 minutes in terms 

of excess waiting time and 6.26 minutes in terms of regularity. This means passengers, on 

average, are willing to increase their in-vehicle travel time in 12.88 minutes to have a service 

with perfectly regular headways. By multiplying this amount by the Chilean social value of 

time (MDS, 2016) we obtain a monetary value of ~$344 CLP, which is equivalent to a 

53.75% of the fare at that time.  

Finally, every time the coefficient of variation of headways was included in the specification 

function, the alternative specific constant of buses decreased its significance. As this 

attribute was not found to be significant for metro trips, we consider that headway variability 

as a key attribute in order to explain modal choices. All these results confirm the idea that 

public transport reliability has a significant impact on passenger’s mode decisions. 
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4.4 Section 3 Conclusions 

This study provides evidence of significant differences among headway regularity and travel 

time dispersion (measured as the standard deviation or the difference between the 95th 

percentile and the average travel time) for trips of similar length on different public transport 

modes. The study also shows that these dispersions also increase with travel length for every 

mode. However, the dispersion is always smaller than 4 minutes for metro (when the 

standard deviation is considered), which could hardly be perceived by travellers, particularly 

on long trips. 

The results were displayed allowing a clear visualization of the reliability differences 

between different modal alternatives. The graphs provide an intuition about why certain 

services could be used to a lesser extent than what is predicted by conventional models 

(which ignore the uncertainty in the level of service). The figures presented in this paper 

considered every service within certain distance range, but the methodology is of course 

applicable for any subset of services satisfying specific conditions (as with the case of 

particular corridors presented in this study). This visualization allows identifying 

opportunities for improvement in the system by recognising similarities in the level of 

service between some bus-based services and metro. For example, clustering those services 

whose characteristics mimic in some sense their operation with metro (such as the express 

services in Transantiago or those operating over a segregated corridor). 

The aggregate demand analysis proved the significant impact of public transport reliability 

(measured as the coefficient of variation of headways) in travellers’ choice between buses 

and metro for origin-destination pairs where both modes are available. However, 

unreliability is not limited to travel or waiting times, also affecting average crowding and its 
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variability. The effect of variability on these attributes should be also analysed and included 

in demand models, further increasing the impact of unreliability on passenger’s behaviour. 

It is important to emphasize that all the analysis in this study was conducted by only using 

passive-data, without the need of any kind of survey or external information. The data used 

comprises smartcard validation, buses’ GPS position and trains’ time schedules. Although 

the demand model is quite general (as no individual information, such as gender or income, 

is recorded in the smartcards) to the best of the authors knowledge, revealed preferences 

have not been used to analyse the impact of reliability on the preferences of public transport 

travellers. In a world were passive-data collection technologies rapidly gain importance over 

former techniques, studies similar to the one presented here will help to better understand 

passive-data capabilities and limitations. 

The aggregate demand model suggests that, in a more detailed disaggregated model (at an 

individual level), variability should also have a significant impact in the travellers’ decisions. 

Such disaggregated model would require a travel survey to gather socio-demographic 

information, and more detailed travel information to compute reliability indicators for each 

individual based on their past travel experiences. Such disaggregated revealed preference 

model could provide further insights regarding the effect of reliability in travel demand and 

have higher repercussions in public policy. 

As public transport time reliability has a relevant impact on travellers’ decisions, it is 

necessary to improve it, enhancing the level of service. This paper shows that this is 

particularly important for bus services, which lag behind Metro in this dimension. An 

effective way to improve bus reliability is with segregated corridors. This study shows that 

segregated corridors not only reduce average travel times, but also reduce travel time 
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variability. The methodology presented in this study could be used to assess the impact that 

other policies and strategies (such as public transport signal priority or bus holdings at stops) 

have on reducing travel time variability. 

Transport planners and modellers should consider these results to improve project evaluation 

and decision-making processes by better understanding the effects of travel time reliability 

on public transport travellers. Extending the behavioural models to include additional level-

of-service components (such as wait times and crowding levels) would be an interesting 

research subject. Further understanding the causes and effects of public transport variability 

has a significant impact on public policy. 

 

Acknowledgements 

This research was supported by the Centro de Desarrollo Urbano Sustantable, 

CEDEUS (Conicyt/Fondap 15110020), the Bus Rapid Transit Centre of Excellence funded 

by the Volvo Research and Educational Foundations (VREF), the FONDECYT project 

number 11170127: Behavioural Modelling of Public Transport Systems,  and the scholarship 

funded by CONICYT for Ph.D. studies (CONICYT-PCHA/Doctorado Nacional/2016). 

 



99 

  

5. THE UNDERLYING EFFECT OF PUBLIC TRANSPORT 

RELIABILITY ON USERS’ SATISFACTION 

 

Jaime Soza-Parra 

Department of Transport Engineering and Logistics 

Pontificia Universidad Católica de Chile  

 

Sebastián Raveau 

Department of Transport Engineering and Logistics 

Pontificia Universidad Católica de Chile 

 

Juan Carlos Muñoz 

Department of Transport Engineering and Logistics 

Pontificia Universidad Católica de Chile  

 

Oded Cats 

Transportation & Planning Department 

Delft University of Technology 

 

 

5.1 Introduction 

To achieve sustainable development, cities need its citizens to use public transport. This is 

easier when citizens have a positive feeling about their public transport system, which is 

understood as satisfaction. Within high-frequency public transport, travellers seek and 

highly value a trip with four fundamental operational attributes: speed, short waits, high 

transport capacity and reliability (Delgado, Muñoz, & Giesen, 2016; Redman, Friman, 

Gärling, & Hartig, 2013). This reliability is related to the variability of the level of service 

experienced by a user making the same trip in different days. The relation between 

satisfaction and the first three trip attributes has been widely studied, but the relation with 

reliability has not. Thus, the objective of this article is to estimate the effect of metro and 
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bus service reliability on passengers’ evaluation of the quality of service experienced 

irrespective of mode. 

An element that strongly influences the reliability of a public transport service is its headway 

variance. This variability has a strong impact on users’ satisfaction. For example, some 

studies have shown in Granada (Spain; de Oña et al., 2016), Calgary (Canada; Habib et al., 

2011) and Santiago (Chile; DTPM, 2016) that headway regularity along with sufficient 

frequency was part of the core of public transport quality attributes. Unfortunately, the 

inherent variability in demand patterns and travel times causes headway instability leading 

to the well-known phenomenon of vehicle bunching. Headway variability has several 

harmful effects on travellers when compared with the same frequency being offered under 

regular headways. Among the most direct effects are an increase in average waiting time and 

in its variability, and comfort deterioration, since the demand is not homogeneously 

distributed among vehicles, causing more travellers to experience crowded vehicles than 

empty ones (Delgado et al., 2016). 

To understand how these effects alter travellers behaviour, several stated and revealed 

preference studies reported in the literature have provided a direct monetary value for travel 

and waiting time induced by service unreliability (Ortúzar & Willumsen, 2011). However, 

it is unclear what is the best methodology for valuing experienced comfort in public 

transport. Recently, different studies have been conducted in order to understand how 

overcrowding  levels affect travellers’ behaviour (Batarce et al., 2015; Cats, West, & 

Eliasson, 2016; Kim, Hong, Ko, & Kim, 2015; Li & Hensher, 2011; Tirachini et al., 2013; 

Tirachini, Sun, Erath, & Chakirov, 2016). For instance, Batarce et al. (2016) found that the 

value of time of a user experiencing an overcrowded situation (i.e. six standing passengers 
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per square metre) is 2.5 times larger than the value of time of empty seats available. The 

authors identify a non-linear relation between the value of travel time and the level of 

crowdedness the travellers suffered. 

Still, it is unclear how different crowding levels, caused by headway irregularity in a high 

frequency context, and the uncertainty due to unknown waiting times affect travellers’ 

service satisfaction. In this study, we analyse the relationship between users’ satisfaction and 

both the crowding level experienced and the number of denied boardings, exploring whether 

these relations exhibit non-linear patterns. 

Public transport satisfaction has been studied extensively in the literature, focusing in its 

definition, , its evolution over time, and its explanatory variables (Abenoza et al., 2017, 

2018; Allen et al., 2018; Cats et al., 2015; De Oña & De Oña, 2014; Hensher et al., 2003; 

Tyrinopoulos & Antoniou, 2008). There is evidence to suggest that users value public 

transport service reliability the most over any other variable (Allen et al., 2018). Thus, it is 

especially important to unravel how service attributes caused by poor reliability (e.g. 

variations in on-board crowding) impact the overall satisfaction. 

Instead of explaining the average satisfaction evaluation value by different attributes, we 

aim in this study to estimate the impact associated with each of the values within the range 

of satisfaction scores. To this end, we estimate an Ordinal Logit model (McCullagh, 1980). 

One important characteristic of this model is the possibility to estimate the threshold 

associated with moving between consecutive scale levels rather than implying that they are 

all equal. 

This study is structured as follows. Section 2 explains the motivation behind the idea of non-

linear interaction between travel attributes and passengers’ satisfaction. Section 3 describes 
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the survey carried out and the methodology used to process the data. Section 4 shows the 

main results for the Ordered Logit model while Section 5 shows the satisfaction evaluation 

analysis. Finally, Section 6 presents our main conclusions, their potential implications and 

provides some guidelines for further research on public transport satisfaction matters. 

5.2 Motivation 

Let us assume there is a non-linear relationship between the vehicle load during a trip and 

the satisfaction of a user experiencing it. It is reasonable to assume that it is expected that 

the impact of an extra passenger onboard on the rest of the passengers inside the vehicle is 

not constant as it should depend on the current load level. One well-founded hypothesis is 

that this curve is concave, as the marginal rate of substitution between crowding and in-

vehicle travel time (i.e. crowding multiplier) obtained in different discrete choice 

experiments (Batarce et al., 2015; Liu & Wen, 2016; Tirachini, Hurtubia, Dekker, & 

Daziano, 2017; Wardman & Whelan, 2011; Yap, Cats, & van Arem, 2018) increases. It is 

important to emphasize that this concavity might not hold when analysing the effect of 

crowding and satisfaction, as there is no evidence suggesting a direct relationship between 

the value of time and satisfaction.  Figure 5.1 illustrates this relation in which service 

satisfaction drops non-linearly with increasing vehicle occupancy. 
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Average 

crowding 

Average 

satisfaction 

Perfectly 

regular 

4.5 pax/m2 79.6% 

Irregular 4.5 pax/m2 51.8% 

Perceived 

comfort 

5.2 pax/m2 35.7% 

 

Figure 5.1 Satisfaction decline due to headway irregularity. 

 

 

The impact of this non-linear relation on the level of service perceived by users is not 

understood completely if the service satisfaction is not analysed. We use Figure 1 to illustrate 

the underlying damage to public transport service quality perception caused by headway 

irregularity. Let us consider a bus service that is planned to operate with an average headway 

of 6.5 minutes and that this implies an average passenger density of 4.5 passengers per square 

metre over the course of the entire route. The curve of Figure 1 tells us that the expected 

satisfaction of users of this service should be 79.6% as long as the buses keep regular 

headways, and therefore, identical loads (letter A in Figure 5.1). However, let´s assume that 

the headways between buses are 4 and 9 minutes alternately, keeping an average headway 

of 6.5 minutes. According to this sequence, the expected bus load, considering seated 

passengers, will be 2.8 and 6.3 passengers per square metre respectively. The satisfaction of 

users of both types of buses will be quite different; while users of the first type will present 

a 94% satisfaction, in the second type it will be of only 10%. By averaging both evaluations 

over vehicles, the average satisfaction evaluation between all buses drops to 51.8%, as 

illustrated by the letter B in Figure 5.1.  
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However, this average between average satisfaction of both vehicle types ignores that there 

are fewer travellers inside the first type of buses than in the second type, and our interest is 

to obtain the average evaluation perceived across users, not buses. Considering the number 

of travellers that each type of bus carry, the average crowding perceived by them rises to 5.2 

passengers per square metre and the average evaluation drops to 35.7% (letter C in Figure 

5.1). Thus, the system was planned for an average evaluation of 79.6%, while it dropped to 

35.7% due to the headways’ irregularity. In reality, quite often buses actually bunch. 

This very worrying impact is aggravated as people tend to assign disproportional weights to 

their bad experiences over their good ones. Thus, level of service variability affects their 

appreciation by unbalancing it towards those experiences with long delays and big 

discomfort. It would not be surprising then that, in the experiment proposed, bad experiences 

loom over respondents recollection when they are evaluating the system. This fact will be 

important not only in the methodology design but also in the analysis of the results. 

 

5.3 Methodology 

In order to develop a methodology able to identify and model this non-linear effect, a survey 

was conducted among public transport users in Santiago de Chile who travel with services 

that are characterized by high headway variability and/or passenger density within the 

vehicle. The survey collected the perception or satisfaction perceived by users about the 

waiting time and travel comfort of the trip they just finished. The fact that they are evaluating 

their just ended experience (i.e. revealed preferences) make this study different and novel in 

comparison to the literature regarding comfort valuing (mostly based in stated preferences). 

This survey was conducted between the 17th and 20th of July 2018, during the extended 

morning peak hour, from 07:00 am until 12:00 pm, to obtain observations in periods when 
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capacity binds and when it does not. Users were asked to report their experience regarding 

their last trip-leg by metro or bus only (i.e. their most recent experience). 

The goal was to characterise the effect that comfort and waiting have on travellers’ 

satisfaction. The survey was carried right outside of four selected metro stations (from west 

to east: República, Universidad de Chile, Pedro de Valdivia, and Manquehue) and at their 

surrounding bus stops, approaching alighting travellers to guarantee the randomness of the 

sample (Figure 5.2). These stations were selected for two different reasons. Firstly, they 

concentrate a high level of alighting passenger for both metro and bus. Secondly, these 

passengers represent different origin-destination paths through the city, which means they 

experience different crowding levels along their trip. This is confirmed in Figure 5.3, which 

shows the reported crowding distribution for both metro and bus at the four different study 

zones. Only Manquehue station had a significantly lower crowding for bus and overall 

reported bus crowding was lower than in metro. 
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Figure 5.2 Survey area of analysis. 

 
 

Figure 5.3 Reported crowding distribution for different modes and surveyed areas 
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Regarding the survey itself, five surveyors worked for five hours each day, obtaining a total 

of 1,150 responses. The survey was applied for both metro and bus users and gathered 

information about five aspects, which are detailed below: 

1) Satisfaction 

Respondents provided a global satisfaction level, using a 1 to 7 scale (traditionally 

used for grading in the Chilean education system), to evaluate their perceived 

experience in the travel-leg they have just completed. In Chile 4 is the minimum 

passing grade. 

2) Number of denied boardings 

To have a more precise estimation of waiting time, respondents were asked about how 

many vehicles they could not board due to insufficient capacity before boarding the 

vehicle they alighted from. 

3) Location during the most heavily loaded section 

Given the differences in passenger density within the same vehicle, respondents were 

asked to indicate where (within the vehicle) they were located during the most heavily 

loaded moment of their travel-leg (Figure 5.4). 

4) Characterisation of the most heavily loaded section 

Finally, respondents characterised the passenger density experienced at the most 

heavily loaded moment of their travel-leg by choosing one of six images showing 

different crowding levels (Figure 5.4). 
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Figure 5.4 Crowding and location inside the vehicle diagrams for metro 

 

Income was not directly asked, but instead, their commune of residence was. In Santiago de 

Chile, average income is very heterogeneous between the different communes and people 

living in one of them tend to have a similar income. However, this categorization was not 

found to be significative in the models. 

 

 

5.4 Travel satisfaction model with crowding effects 

5.4.1 Exploring user categories 

To get an idea on how crowding affects different socioeconomical groups’ travel 

satisfaction, scatter plots with a linear trend lines were created (Figure 5.5). Two sets of 

characteristics were selected, which are sex (men and women) and age (under 35 and over 

35) to distinguish between four different groups. 
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Figure 5.5 Trend lines relationship between satisfaction evaluation and reported passenger 

density 

 

Overall, men over 35 years old show a lower slope in this linear relationship, which might 

be interpreted as a smaller sensitivity to crowding. Besides, women over 35 and men under 

35 both have a greater slope and intercept, meaning their satisfaction is more influenced by 

passenger density. Finally, even though the slope is not greater for women under 35, their 

intercept is lower, implying that people in this category are less satisfied with crowding, 

everything else being the same.  

However, this analysis is not conclusive as these relations are not sufficiently strong and 

rigid. Instead, latent classes will be analysed. 

5.4.2 Latent class Ordered Logit model 

Ordered Logit Models are estimated to explain the satisfaction grade given to the just 

finished trip based on the conditions of the trip and the respondent’s socio-economical 

information. Several models were separately calibrated for metro and bus users, as an initial 

exploratory approach, in order to analyse potential mode-specific effects. However, to 

compare the impacts of different variables obtained for bus and metro users, a model 
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considering both modes simultaneously is also calibrated. Finally, to address preference 

heterogeneity, a Latent Class model is estimated. 

Since both databases may have different variances (i.e. heteroscedasticity across samples), 

a first model with common parameters and a scale factor Bus  for bus users is estimated. 

Also, a shift parameter Bus  is considered, acting as an alternative specific constant. This 

parameter will test if, ceteris paribus, there is a difference in the evaluation given by users 

to the level of service experience inside a bus compared to metro. This parameter is expected 

to be negative, since bus services are found in the literature to be perceived more negatively 

than rail-bound services (this is commonly called “rail factor”; Scherer, 2010). This 

difference may not only stem from psychological factors, but also all those differences 

related with the operation (i.e. stopping at traffic lights, not constant speed) and the 

experience (i.e. noise, vibration, cleanliness). Moreover, it has been found that in some 

scenarios, this strong preference for rail actually hides significant level of service differences 

(Ben-Akiva & Morikawa, 2002).  In the case of Santiago de Chile, both kind of differences 

are specially noticeably between busses and metro and thus, all the conclusions are specific 

for this context and can not be generalized to every bus system. 

With this model, it is possible to test if there are significant differences between each 

attribute’s impact between modes. The first impact difference tested is for passenger density. 

No significant difference between bus and metro parameters is found, suggesting that density 

is perceived equally bad regardless of the mode when passengers are asked to evaluate their 

satisfaction. Specific parameters for each mode are tested for the number of denied boardings 

and the chance to get a seat. 
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To test the potential existence of a non-linear relation between crowding and satisfaction, 

two alternative approaches are tested. The first one consists of incorporating an exponent 

parameter. If this parameter turns out to be significantly different than 1, this means that the 

relation exercises non-linearity. The second one consists of estimating five different 

parameters, one for each crowding level, i.e. image (setting the first image as 0). Thus, if the 

hypothesis that the difference between consecutive parameters is not constant can be 

statistically rejected, then non-linearity exists. For the sake of readability, all the following 

models correspond to the first alternative, with an exponent, as it is easier to understand the 

existence of non-linearity this way and the fit is found not to be significantly better when 

considering specific crowding parameters for each level. 

Finally, to test the existence of preferences heterogeneity, a Latent Class Model (Train, 

2009) is calibrated. After trying different alternative specifications, the best resulting model 

consists of two classes: (i) considering all the attributes (Class 1) and (ii) without considering 

crowding nor being seated in their satisfaction evaluation (Class 2). Class 1 can be 

interpreted as being more sensitive to crowding when users evaluate their travel satisfaction 

because Class 2 lacks any comfort related attribute. This is known in the literature as attribute 

non-attendance or attribute ignoring (Nguyen, Robinson, Whitty, Kaneko, & Nguyen, 2015). 

This way, the differences between classes might be interpreted in terms of their comfort 

sensitivity.  

The socio-economic data considered are sex (1 if woman, 0 otherwise), age (1 if under 35 

years old, 0 otherwise), and if the respondent was travelling during the morning peak hour. 

The class membership function is a Multinomial Logit Model, where the Class1 membership 

systematic utility is: 
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1 1ASC woman under35 peakhourClass Class woman age hourV   = +  +  + 
 

The systematic utilities for each class and alternative are: 

Class 1 

( ) ,

, 1 , 11 Door Dens Vehcom m

m C com com m m veh C mV


  =  +   +   

( ),

, 1 , 1 , 1Dens Seat Vehcom b

b C bus bus C com b seatb b veh C bV


   =   +  +  +   

Class 2 

, 2 , 2 Veh under35m C veh C m ageV  =  + 
 

( ), 2 , 2 , 2 Veh under35b C bus bus C veh C b ageV   =   +  + 
 

 

Where, for mode k, Densk
is the density reported and the remaining are dummy variables: 

Seatk equals to 1 if the respondent travelled seated and 0 otherwise, Vehk
 equals to the 

number of denied boardings the respondent experienced, and Doorm
 equals to 1 if the 

respondent was located in front of the door in metro and 0 otherwise. 

Regarding the class membership model, we observe that, as expected, women are more 

likely to belong to Class 1, which is in line with previously reported results by research on 

gender mobility (Allen et al., 2017). This is arguably explained due to other factors related 

with overcrowding has a larger relative importance for women than for men, such as security 

and safety. 

The same is observed for people under 35 years old as well as with people travelling during 

the morning peak hour. It is important to emphasise the absence of endogeneity in the latter 

classification, as there are no significant differences in the distribution of reported densities 

over time. To complete this analysis, the probabilities of belonging to Class 1 are calculated 

(Table 5.1). 
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Table 5.1 Class 1 membership probabilities 

  Peak hour Non-peak hour 

Women Under 35 99.6% 98.4% 

Men Under 35 98.3% 93.6% 

Women Over 35 93.6% 78.6% 

Men Over 35 77.6% 46.6% 

 

Overall, people under 35 years old mostly belong to Class 1, regardless of sex and the time 

of travel. However, when it comes to people over 35 years old, women are significantly more 

likely to belong to this class, which reinforces that they are more sensitive to crowding. 

Besides, this was not found in a previous model without classes (tested as taste variations), 

which confirms the presence of preference heterogeneity in the sample. Finally, based on 

the socioeconomical distribution in the sample (Table 25.), we compute the average Class 1 

membership probability, which is 85.00%.  

 

Table 5.2 Socioeconomical distribution in the sample 

  Peak hour Non-peak hour 

Women Under 35 10.9% 10.0% 

Men Under 35 12.4% 10.6% 

Women Over 35 15.0% 9.8% 

Men Over 35 19.1% 12.4% 

Average Class 1 membership probability in the sample: 85.0% 

 

This Latent Class Ordinal Logit Model is estimated using PythonBiogeme (Bierlaire, 2016). 

The results of this process are summarized in Table 5.3. 
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Table 5.3 Latent Class calibrated parameters 

Attribute Parameter Estimate t-test 

Class 

Membership 

Model 

Alternative specific 

constant Class 1 1ClassASC  -0.137 -0.32 

Woman woman  1.440 1.87 

Under 35 years old age  2.820 2.23 

Morning peak hour hour  1.380 2.44 

Class 1 

Reported crowding  Com  -1.000 -4.97 

Door impact - metro Door  0.250 2.63 

Reported crowding Com  0.576 6.40 

Travelling seated - bus ,seat b  1.050 2.93 

Number of denied 

boardings , 1veh C  -0.316 -4.97 

Shift parameter – bus , 1Bus C  -1.450 -4.69 

Class 2 

Number of denied 

boardings 
, 2veh C  -1.270 -4.91 

Under 35 taste variation age  -2.460 -1.83 

Shift parameter – bus , 2Bus C  -2.470 -4.63 

Scale factor – bus 
Bus  0.758 6.62 

Number of observations 1150 

Log-likelihood -1786.836 

 

 

Overall, there is a significant and negative shift for bus evaluation ( ,Bus Ci ), which means 

that users have a more negative perception of the level of service experienced inside a bus 

than inside metro everything else being the same. Also, the impact of travelling seated is 

larger for bus users. Class 2 has a more negative perception of buses, as its shift parameter 

, 2Bus C  is approximately 1.70 times larger than Class 1 shift parameter. When considering 

people under 35, this perception is even worse as Class 2 members have a significant and 

negative taste variation age . 
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Regarding crowding perception in Class 1, the most interesting result is that this perception 

is found to be equal for bus and metro. This was tested against three additional models (equal 

Com  and different com , different 
Com - and equal com , different 

Com  and different com ) 

and none of them turned out to be significantly different to the model presented here. The 

only exception are the passengers located in front of the door in metro (locations C4, C5 and 

C6 in Figure 4). These users perceive 25% more negatively this attribute in comparison. 

Besides, the reported density parameter, 
Com ,  in Class 1 was found to be larger than the 

parameters found in previous models without classes. As Class 2 is not sensitive to comfort, 

these previous models ended up averaging the sensitivities of both classes, which resulted in 

a lesser estimated parameter. This confirms again the heterogeneity in user preferences. 

Respecting the hypothetical non-linearity, com  is significantly different from 1, which 

confirms the proposed hypothesis. However, the parameter value is lower than 1, which 

means that the relationship has the opposite curvature to the one proposed in section 2. An 

explanation for this finding and its implications will be further discussed in the following 

sections. 

In terms of the possibility of travelling seated, it is found not to be significant for metro users 

whereas it is positive and significant for bus users. As it is similar with opposite sign to the 

shift parameter in Class 1, this means traveling seated helps to reduce the breach between 

buses and metro, showing a more similar level of satisfaction for the same travel conditions.  

Finally, the impact of not being able to board a vehicle was found to be linear, same for both 

modes and significantly different between classes. In terms of denied boardings, Class 2 

values approximately four times more the impact of denied boardings. As Class 2 only 
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accounts for this variable in evaluating their satisfaction, it could be expected that they would 

be more sensitive to this. 

 

5.5 Satisfaction evaluation analysis 

With the Latent Class Model calibrated, it is possible to construct the relationship between 

the crowding level and satisfaction evaluation. As described in the previous section, Class 2 

is not sensitive to comfort, and most of the passengers belong to Class 1. Besides, as shown 

in Table 3, the average membership probability in the sample is 85%. Because of this, the 

following analysis will focus on Class 1.  

First, the probability to evaluate travel satisfaction with a grade from 1 to 7 for densities 

between 0 and 6 passengers/m2 for non-seated passengers in metro and bus services is 

calculated based on model estimation results. The results are displayed in Figure 5.6 and 

Figure 5.7 respectively. 

 

 

Figure 5.6 Satisfaction evaluation probabilities for bus services. 
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Figure 5.7 Satisfaction evaluation probabilities for metro services. 

 

From the comparison of the two figures, it is noticeable that the distribution of probabilities 

for metro services is concentrated in the higher part of the satisfaction scale. This means that, 

on average, people are highly satisfied with this mode even when travelling in overcrowded 

situations and are more satisfied than when travelling with the bus under the same 

circumstances. This is explained by the negative shift parameter , 1Bus C  described in the 

previous section.  

The share of users indicating low satisfaction rates (i.e. satisfaction levels 1 to 4) increases 

with passenger density, whereas the share indicating very high satisfaction (i.e. satisfaction 

level 7) decreases. However, the situation is different for satisfaction levels 5 and 6. Bus 

service’s satisfaction level 5 increases and then remains almost constant, and level 6 is 

always decreasing, while metro service’s satisfaction level 5 is always increasing and level 

6 increases and then decreases.  

The scale limits may influence the results when people try to give a higher or lesser 

evaluation. This limitation is referred in the literature as the ceiling effect (Castle & Engberg, 
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2004). This is not observed in the satisfaction evaluation distributions, even though metro’s 

are mostly in the higher scale limit for densities lesser than two passengers per square metre. 

As it might be difficult to analyse this probability distributions for every different number 

of denied boardings, we computed the average value for each reported density value and 

mode, and plotted one curve for zero, one and two denied boardings. The obtained 

satisfaction curves are presented in Figure 5.8. 

 

 

Figure 5.8 Satisfaction rating curves per number of denied boardings and mode. 

 

Metro and bus’s curves exhibit some similarities. For example, both modes’ curves are 

decreasing and convex, which is explained by the power parameter in density Com
 and the 

threshold parameters in the Ordinal Logit Model. Moreover, the difference between denied 

boardings’ curves for each mode has a greater spread with increasing passenger density. 

However, the differences between bus and metro curves is more substantial than among 

curves stemming from the same mode with a different number of denied boarding 

experiences. There is no single satisfaction evaluation point in bus services in the curves 
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which reflects a higher satisfaction value than the value obtained by the worse situation in 

metro for identical crowding. Thus, more than two denied boardings in metro are needed to 

obtain the same predicted evaluation value for bus and metro for a given density level. 

Furthermore, satisfaction rises 0.25 points on average when passenger density decreases 1 

passenger per square metre.  

Finally, we perform an analysis similar to the one exposed in section 2. Since each user has 

a different satisfaction curve, the analysis will focus on non-seated passengers which board 

the first vehicle for bus services, as can be seen in Figure 5.9. This way, the analysis is 

centred round the unreliability effects and without compounding it with denied boardings.   

 

 

 
Average 

crowding 

Average 

satisfaction 

Perfectly 

regular 

3.0 pax/m2 5.03 

Irregular 3.0 pax/m2 5.12 

Perceived 

comfort 

5.1 pax/m2 4.67 

 

Figure 5.9 Satisfaction fall due to headway irregularity. 

 

In this example, if the service maintains a perfectly regular headway, buses would have the 

same load, which in this case would be of 3.0 passengers per square metre. Under this 

situation, this model predicts an average satisfaction evaluation of 5.01 based on the 

estimated model (letter A in Figure 5.9). However, as in the previous example, we will 

assume that this service operates irregularly with two alternating headways which causes 

loads of 0.5 and 5.5 passengers per square metre. If we consider the average evaluation per 
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vehicle, we would observe the same average passenger density of 3 passengers per square 

metre but this time a satisfaction evaluation of 5.11, higher than the one under regular 

conditions (letter B in Figure 5.9). This occurs because of the convexity of the curve now 

presented. Nevertheless, when weighting the load in each vehicle, the situation moves in the 

opposite direction: the average passenger density rises to 5.1 passengers per square metre 

and the satisfaction evaluation drops to 4.59 (letter C in Figure 5.9). 

This situation substantiates the claim that performance indicators must be weighted properly 

by demand. If it is not the case, public transport agencies might be perceiving they are 

offering a good service (even better than expected) while passengers are experiencing the 

opposite, i.e. a deterioration in service satisfaction. 

 

5.6 Conclusions 

Providing evidence confirming the relationship proposed between headway reliability and 

traveller’s satisfaction could lead to a change in the perspective public transport systems are 

planned and operated. This research indicates that waiting time reliability and crowding 

levels have a very strong impact on users’ satisfaction evaluation. Irregular headways 

generate heterogeneity in vehicles’ level of service. An often-ignored problem here is that 

more travellers experience the more crowded vehicles, reducing the average satisfaction 

index further than if simply averaging over bus vehicles. A second issue is that crowdedness 

and waiting time are strongly correlated which should also be incorporated in the model.  

The impact of unreliability and crowding on passenger experience is further exacerbated by 

the non-linear relation between satisfaction and crowding level revealed in this study. Using 

a Likert-like semantic grade scale, the curve obtained is convex. This curve shape might bias 

public transport agencies if they do not consider evaluation metrics weighted by the number 
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of users, as gaps between the level of service believed to be offered and perceived by 

passengers will occur. 

The results of this study also confirm that users evaluate, ceteris paribus, worse the level of 

service in bus than in metro. In addition, regarding socio-economical heterogeneity, people 

under 35 years old almost always evaluate the service taking into account comfort. However, 

women over 35 years old are significantly more sensitive to the comfort level, which is in 

line with our current knowledge of women mobility preferences.  

Regarding the methodology employed in this study, we conclude that it is possible to obtain 

a crowding/satisfaction curve with a simple survey. It would be important to replicate this 

kind of experiment as the results are limited to the specific Santiago de Chile context. 

Presumably, since buses and metro offer a very different level of service in the case of the 

study area, it would be important to analyse how different satisfaction is perceived when 

buses perform significantly better.  

Our results are consistent with other studies that have identified a preference by transit users 

for metro to the detriment of buses. Understanding how much of this satisfaction or 

preference is explained by the difference in level of service experienced by users may 

encourage more affordable and cost-effective alternatives with high level performance, as 

Bus Rapid Transit (Delgado et al., 2016; Hidalgo & Gutiérrez, 2013). 

Future research should pursue at least two new directions of analysis. Firstly, it would be 

important to characterize respondents by income, to test preferences’ differences in the 

context of satisfaction evaluation. In many cities low income households are located far 

away the city centre, with poor public transport service. Thus, a better understand of their 

preferences and needs would enhance public policy application. Secondly, provided with 
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reliable load information for both metro and buses (i.e. weights or APC), the comparison 

between stated peak passenger density and actual density measures could be analysed. This 

may expand the current knowledge we have about crowding perception and its relationship 

with satisfaction.  

To make large cities more sustainable public transport should be one of the preferred modes 

to use. Thus, transport planners should measure, monitor and respond to traveller’s 

satisfaction with their service experience. As we have shown in this study, if transport 

agencies are evaluated based on performance indicators, these must be properly weighted by 

the actual number of passengers served to understand the real conditions they face and the 

perceived quality of the service they deliver. 
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6.1 Introduction 

Mode choice models, which are used to predict individuals’ behaviour regarding the use of 

different modes of transport, typically consider average attributes such as travel time, 

waiting time, fare and/or accessibility as explanatory variables (Ortúzar & Willumsen, 

2011). However, it is reasonable to think that travellers also consider these attributes’ 

variability, instead of only considering their average values. In the case of unscheduled 

public transport services (which is common when medium to high-frequency is offered), this 

variability is strongly affected by headway irregularity between consecutive vehicles. Still, 

most individual utility models neglect its effect. Its impact is sometimes recognized as part 

of the expected waiting time, since the average waiting time experienced by a user exceeds 

half of the average headway because of headway variability. Notice that even if headways 
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were to be completely regular, a user arriving randomly to the stop will face a random 

waiting time. Thus, in most cities waiting time is of uncertain nature for which its average 

value provides limited information. Finally, assuming that headway variability only affects 

the average waiting time fails to incorporate its full effect in users’ satisfaction. As Munoz 

et al (2020) argue, headway regularity also affects comfort, reliability and travel times. 

Despite its relevance, service reliability, both for travel time or waiting time, has been 

scarcely incorporated into choice models. Instead, its effect has been approached through 

psychological studies that are much more complex than the behavioural assumptions with 

which the individuals’ choices are usually modelled. Examples of this are the Prospect 

Theory (Kahneman & Tversky, 1979) or Regret aversion (Loomes & Sugden, 1982). This 

might explain why obtaining a reliability valuation for choice models has been so elusive. 

Over the last decades, stated preferences experiments involving service variability have been 

carried out, in which typically two or more travel alternatives are presented, with average 

travel times, cost, and some representation of the variability that travel time entails. These 

representations goes from possible delays or ranges (Batarce et al., 2015; Hjorth et al., 2015; 

Jackson & Jucker, 1982; Kouwenhoven et al., 2014; Li, Hensher, & Rose, 2010; Small, 

Noland, Chu, & Lewis, 1999; Small, Noland, & Koskenoja, 1995), circular diagrams (Bates, 

Polak, Jones, & Cook, 2001), bar diagrams (Devarasetty, Burris, & Douglass Shaw, 2012; 

D A Hensher, 2001; Hollander, 2006), histograms (Copley, Murphy, & Pearce, 2002; 

Tilahun & Levinson, 2010) and probabilities (Li et al., 2010). However, almost none of these 

studies intends to capture a broad impact of service variability in the level of service. 

Despite the correlation between headway irregularity and low comfort, only Batarce et al. 

(2015) incorporates crowding effects and waiting time variability in their study, finding no 
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significant impacts. This could have happened because of the large amount of information 

presented to each respondent, which may ignore certain information that seems less relevant 

or important, biasing their responses. Excess of information is a major problem when 

designing an experiment focused on public transport since to fully characterise an alternative 

it would be necessary to specify travel times, waiting times, cost, crowding and the 

variability of those attributes. 

Another approach to address reliability is to study travellers’ learning. This method 

recognizes that the variability of travel or waiting times is not understood in the same way 

as an average cost or time, since it relates to the repetitive realisation of the same trip 

(Bogers, Bierlaire, & Hoogendoorn, 2008). An example of this method is presented in 

Avineri and Prashker  (2005) for private car routes. They study a network consisting of two 

different alternatives with different average and variability of travel time, and in which the 

average fastest route is the more unreliable. However, according to our knowledge, very few 

studies have carried out this methodology, and none has been applied to a public transport 

context.  

Thus, the purpose of this research is to contribute in the understanding of the impact of 

service reliability on the choices made by public transport travellers. To do so, an experiment 

of stated preferences was conducted in Santiago de Chile, with headway regularity as a key 

design factor. In this experiment, this attribute is presented implicitly, through its impact in 

different day experiences. In Section 2, the survey design is described. The modelling 

approach and results are discussed in Section 3. Finally, conclusions and further research are 

presented in Section 4. 
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6.2 Survey Design 

6.2.1 Variability Representation 

Stated preference surveys have been widely used to understand people choices and 

behaviour in the last decades. However, attributes that are uncertain in nature, it is still 

unclear how to represent them in these experiments. Different schemes have been tried: 

regular schedules, circular schedules, probability distributions, vertical bars, among others 

(Bates et al., 2001; Copley et al., 2002; Hollander, 2006; Small et al., 1999) (Figure 6.1). 

Among these alternatives, travel time bars had the best performance in terms of people 

understanding. 

In our research, we expect respondents to compare different public transport services 

operating in a high-frequency context.  In principle, each of these services would be subject 

to variable waiting and travel time. As there is more than one time-attribute to compare (i.e. 

waiting time and in-vehicle travel time), horizontal bars were selected instead of vertical 

bars. By doing this, people can compare vertically the length of these horizontal bars 

between alternatives.  

To represent service variability, we represent each alternative by the level of service to be 

experimented by a user in a sample of five consecutive days, i.e. representing a typical week 

of service. Each day is characterized by a waiting time, a travel time, and a crowding level 

inside the vehicle.  
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Figure 6.1 Variability representations 

 

During the stated preference survey design, it is important to define the kind of relationship 

to analyse in advance. This way, scenarios representation will consider these expected results 

in the way they are framed. We defined a hypothetical utility function to calibrate after the 

survey is applied as follows: 

( )(WT)1j ttime k kj j wtime j disp j

k

V TT WT disp WT    
 

=  +   +  +   
 

    (1) 

 

Where, for every alternative j, TTj represents its travel time, kj is a dummy variable 

indicating the crowding level k, WTj is the average waiting time and disp(WTj) stands for a 

waiting time dispersion indicator. The objective is to identify the impact of service 

unreliability in people´s preferences. The source of this uncertainty would come from 

headway variability which we will assume exogenous. Thus, based on a given probability 

distribution for the headways, representative observations of crowding inside the vehicle and 

waiting time are obtained. By repeating this process five times we obtain the weekly travel 
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experience that will be included in the survey. It is important to highlight that monetary cost 

wasn’t considered in order to represent better the current public transportation system in the 

city of study. Besides, the utility function presented in (1) is represent a preliminary intuition; 

further specifications are tested in this work. 

In order to reduce the cognitive load of the survey, we made two design considerations. 

Firstly, we decided to restrict variability only to crowding and waiting time, leaving travel 

time constant. Secondly, each crowding level is presented combined with travel time. We 

have called this combination “crowding bars”, which means that a long and crowded 

experience is represented by a long bar filled with the respective number of passengers 

(Figure 6.2 represents three different trips of the same duration but with different levels of 

crowding). This is coherent with the literature, which states that the impact of occupancy in 

a public transport trip is directly related to its length through crowding multipliers.  

 

 

 

 
Figure 6.2 Crowding bars for 1, 3, and 6 passengers/m2 

 

6.2.2 Simulated Design 

One of the most important objections towards stated preference surveys is their lack of 

realism. This lack of realism would induce people to act differently in these virtual scenarios 

than in real life. To avoid this, we identified two potential sources of lack of realism: i) 

presenting alternatives that could rarely be observed in reality, and ii) neglect the inherent 
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uncertainty of random attributes by presenting them in the alternative as taking a stable fixed 

value. In order to reduce these problems, we designed the virtual scenarios based on four 

operational inputs, instead of directly defining the level of service to be experienced by each 

user. The four inputs are: i) speed, ii) frequency, iii) a headway probability distribution and 

iv) an average passenger arrival rate. In each choice scenario, the values associated to these 

four attributes are used to determine five representative and coherent instances. These five 

instances are used to represent the service experienced by someone during a work week. 

This service is defined by a constant travel time for all five days and variable waiting times 

and vehicle crowding across days (Figure 6.3). This type of information, that is, descriptive 

and experienced, has proven to be the one that best represents users’ learning process (Ben-

Elia & Avineri, 2015). This way, reliability is not presented as an attribute by itself but as a 

result of several repetitions of the same trip. As will be described later the sampling process 

we follow yields five instances that are as representative as possible of the probability 

distribution, and we present them to the respondent in a random order. 

 

 

Within this framework, travel time is obtained directly from speed. However, the waiting 

time experienced by a user during a week depends on bus headway distribution. And this 

Figure 6.3 Operational and experienced attributes 
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distribution depends on the frequency being offered and headway variability. The crowding 

inside the vehicle that a user would experience should be directly dependent of the length of 

the headway ahead and the passenger arrival rate to the stops. These relations between 

operational and experienced attributes are summarized in Figure 6.4. 

In our experiment we assign different levels to each operational attribute. For speed, we 

consider two levels, representing travel times 15% shorter and 15% longer than the travel 

time reported by the user at the beginning of the survey. This allows us to face each 

respondent with a scenario that mimics the level of service they experience daily. For 

frequency we also consider two levels, yielding an average headway of 5 and 10 minutes. 

For passenger demand we consider two levels yielding 1 and 3 passengers/m2 in the case of 

a bus trailing a headway that matches the average headway. The crowding inside the bus 

will be higher or lower if the headway that the bus us trailing is longer or shorter than the 

average one. The actual headway is obtained from the headway distribution as is explained 

in the next paragraph. 

For headway distributions we consider three levels named no variance (identical headways), 

irregular headways, and bus bunching. For the 5-minutes average headway, the irregular 

scenario consists of equally likely headways of 2, 5, and 8 minutes while the bunching 

scenario consists of equally likely headways of 5, 10 and 0 minutes (bunched vehicle). For 

the 10-minute average headway case, the distributions are identical, but with twice as large 

headways in each case. 

The headway distribution, fh(h), is used to determine the following waiting time distribution 

for a user arriving to the stop at any moment with identical probability: 
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To present respondents of the survey a set of five representative instances of this distribution, 

we calculate its 10%, 30%, 50%, 70%, and 90% percentiles. Such a set provides an unbiased 

sample of the experience of a user of this service. The order in which these five instances is 

presented to the user is randomized to better represent a typical week. Thus, the methodology 

to determine the waiting time and the travel time of each weekday in the survey alternative 

has already been described. The only remaining attribute to generate is the passenger density 

that the user would experience. It could be imagined that the crowding level should be 

proportional to the waiting time, but this is not as simple. Although long waiting times 

always respond to a long headway and therefore to a high crowding level, short waiting times 

can happen in long or short headways and therefore they are not indicative of the crowding 

level to be experienced by the user. For example, under an irregular operation consisting of 

headways of 2, 5, and 8 minutes, a 7-minutes waiting time can only be experienced by a user 

arriving during an 8-minutes headway, while a 1-minute waiting time could be experienced 

by users arriving in any of the three possible headways. Thus, given a waiting time, the 

probability that said wait occurred in a specific headway is the inverse of the amount of 

headways larger than that wait, K*.  

( )
1

| * *
*

i iP h h w w h w
K

= = =  
    (3) 

Thus, based on this distribution, we randomly associate a headway to each waiting time and 

the crowding experienced by the user corresponds to the demand arrival rate times the 

headway. 



132 

  

Thus, the entire scenario construction process can be summarized in the following diagram: 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.4 Scenario construction diagram. 

 

 

After all this process, one alternative to be presented in the survey looks like this:  

 

 
Figure 6.5 Alternative example 

 

 

6.2.3 Survey Description 

The whole survey is structured as follows: typical travel description, discrete choice 

experiment, attitudinal questions, and socio-economical characterization. 
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Firstly, respondents described their current travelling characteristics. For their most common 

trip, they identified the transport mode used in its most part, and its purpose.  

Public transportation users were asked for the average in-vehicle travel time for that trip. For 

the remaining modes, respondents indicated their average in-vehicle travel time as well but 

also, they were asked for their estimation of the in-vehicle travel time for the same trip but 

using public transportation. In addition, each respondent indicated the average number of 

weekly days they travel by public transport. 

Secondly, respondents were exposed to eight discrete choice scenarios with two independent 

public transportation alternatives each. These alternatives were unlabelled and represented 

generic public transportation services. Based on the results of the pilot survey, in every 

choice scenario only two out of the four operational attributes (speed, demand frequency and 

regularity) were different. This allowed us to present scenarios to respondents in which the 

number of elements changing between alternatives was not that many. The eight scenarios 

are presented in Table 6.1. They were randomized in the order they were presented in the 

survey, in order to avoid any cognitive load bias. 

 

Table 6.1 Survey scenarios 

Scenario 

Number 

Trade-off 

Attributes 
Alternative Speed Frequency Demand Regularity 

1 
Speed & 

Frequency 

Alt A High Low Low Bunched 

Alt B Low High Low Bunched 

2 
Speed & 

Demand 

Alt A High High High Irregular 

Alt B Low High Low Irregular 

3 
Frequency 

& Demand  

Alt A Low Low Low Regular 

Alt B Low High High Regular 

4 
Speed & 

Regularity 

Alt A Low Low Low Regular 

Alt B High Low Low Bunched 

5 Alt A Low High Low Regular 
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Speed & 

Regularity 
Alt B High 

High Low Bunched 

6 

Frequency 

& 

Regularity 

Alt A High Low High Irregular 

Alt B High 
High High Irregular 

7 

Frequency 

& 

Regularity 

Alt A Low Low High Irregular 

Alt B Low 
High High Irregular 

8 
Demand & 

Regularity 

Alt A High Low High Regular 

Alt B High Low Low Irregular 

 

Thirdly, after the discrete choice experiment, respondents had to evaluate their level of 

agreement with 12 attitudinal statements on a scale from 1 to 7 (which is the educational 

grading scale used in Chile). These statements are related to crowding aversion attitudes, 

public transport easiness, and punctual behaviour. Table 6.2 presents these statements, as 

well as the designed attitudinal latent variable. The survey ends with a set of socio-

economical questions. These questions asked about gender, age, education level, main 

occupation, household size, and monthly personal income.  

 

Table 6.2 Attitudinal statement 

N° Statement 
Crowding 

aversion 

Public 

Transport 

Easiness 

Punctual 

Behaviour 

1 It is hard for me to be punctual   ✓ 

2 
Public transport is a solution for environmental 

issues 
 ✓  

3 
It is easy to know how much time my most 

common trip will take 
 ✓ ✓ 

4 
I try to board the first bus or train, no matter how 

crowded it is ✓  ✓ 

5 Being late causes me an unpleasant feeling   ✓ 
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6 I can easily plan a public transport trip   ✓  

7 
I leave home in advance to ensure I will arrive 

on time and as comfortable as possible ✓  ✓ 

8 
I choose more comfortable travel options even if 

they take more time ✓  ✓ 

9 Waiting gives me an anxiety level that affects me   ✓ 

10 
Wherever I am, I know how to return home by 

public transport 
 ✓  

11 
Being late to my common destination can bring 

me problems 
  ✓ 

12 
When leaving home, I know how crowded the 

bus or train will come ✓ ✓  

 

 

The survey was applied during the first week of October 2019 in 10 different Public Notary 

Offices in Santiago de Chile. The locations of these offices are displayed in Figure 6.6. These 

places were selected as they gather people from different areas of the city and long waiting 

to be attended is common, so these people usually have enough time to respond. A total of 

1,314 people completed the survey, which corresponds to 10,512 choice scenarios. 
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Figure 6.6 Public Notary Offices’ location 

 

Regarding the sample, 59% of the respondents are public transport users and 31% are car 

users. Among car users, 71% of them declared that they know how long it would take to 

commute by public transport.  

 

6.3 Model Description and Results 

A Hybrid Discrete Choice Model was formulated for this study. One of the characteristics 

of these models is the possibility to include subjective elements, as perceptions or attitudes, 

in the form of latent variables (Ben-Akiva et al., 2002; Raveau, Álvarez-Daziano, Yáñez, 

Bolduc, & De Dios Ortúzar, 2010). In general terms, latent variables will be included to 

indicate random taste variation for different attributes in the discrete choice model. To do 

so, a Multiple-Indicator Multiple-Cause (MIMIC) model was estimated, where the proposed 
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latent variables are explained by different socio-economical characteristics. Both models 

were estimated simultaneously, as the latent variable, and therefore its error term, is part of 

both the measurement equations for the indicator and the utility function of the discrete 

choice model (Bierlaire, 2018).  

The tree latent variables presented in the previous section were found both by a MIMIC 

model and a Principal Component Analysis (PCA). However, only two of them, crowding 

aversion and punctual behaviour were found to have a significant impact in the discrete 

choice model. Our hypothesis is that the remaining latent variable, public transport easiness, 

has an impact on the evaluation of the system and not in the perception of public 

transportation level of service. For crowding aversion, the explanatory variables in the 

MIMIC model were car users, age, income, gender and being a dependent employee. For 

punctual behaviour, only age and being a dependent employee. The resulting latent variable 

model relationships in Figure 6.7 and equations 4 and 5. 

 

 

 

 

 

 

 

 

 

 

Figure 6.7 Public Notary Offices’ location 

 

With measurement equations for statements 4 and 8  

 

Statement Statement Statement CrowdingLVi i iV  = +                                (4) 
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Statement Statement Statement PunctualLVi i iV  = +                                  (5) 

for statements 1, 5, and 7. 

 

For the discrete choice model, the systematic utility considered travel time, its interaction 

with the punctual behaviour latent variable and the interaction with different crowding levels 

only for high density scenarios (i.e. high density level for both alternatives); the expected 

waiting time for each alternative; the coefficient of variation of headways; the average 

passenger density and its interaction with the crowding aversion latent variable; and the 

possibility of travelling seated. A Multinomial Logit Model was considered, and the best 

specification was found by the Likelihood-Ratio test and is presented as follows: 

 

,

(WT)

TT PunctualLV TT Dens TT WT

(WT) Dens CrowdingLV Dens Seat

i ii j TT i Punctual j i CrMultiplier HighDensityScenario i WT

i iCV i Dens Crowding j Seat i

V

CV

    

   

=  +   +    +  +

 +  +   + 
  

(6) 

Where: 

iTT  Average travel time for alternative i 

PunctualLVj Punctual behaviour latent variable for person j 

HighDensityScenario  Equals 1 for high density level for both alternative scenarios. 0 

in any other case. 

Densi  Average passenger density alternative i 

WTi  Expected waiting time for alternative i 

CV(WT)i Coefficient of variation of waiting times for alternative i  

Seati Number of days with available seats for alternative i 

 

This hybrid model was estimated simultaneously, as stated previously, with 50 Halton draws 

to simulate the latent variables. The results for the MIMIC model and discrete choice model 

are presented in Table 6.3 and 6.4 respectively.  
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Table 6.3 MIMIC model estimated parameters 

 Attribute Parameter Estimated  t-test 

C
ro

w
d
in

g
 a

v
er

si
o
n

 

 

Statement 4 
Constant  Statement 4  0.586 3.90 

LV Effect Statement 4  -0.781 -4.00 

Statement 8 
Constant  Statement 8  -0.161 -0.98 

LV Effect Statement 8  -1.000 fixed 

Car users 0.345 7.42 

Age 0.014 5.29 

Income 0.010 1.96 

Gender 0.327 7.28 

Dependent Employee -0.227 -5.28 

P
u
n
ct

u
al

 B
eh

av
io

u
r 

Statement 1 
Constant  Statement 1  0.366 2.03 

LV Effect Statement 1  1.000 fixed 

Statement 5 
Constant  Statement 5  1.42 5.16 

LV Effect Statement 5  0.978 4.80 

Statement 7 
Constant  Statement 7  0.616 2.68 

LV Effect Statement 7  1.27 5.93 

Age 0.037 7.87 

Dependent Employee 0.145 2.35 

 

 

Table 6.4 Discrete choice model estimated parameters 

Attribute Parameter Estimated  t-test 

Travel time 
TT  0.01400 1.98 

Punctual behaviour LV 
Punctual  -0.01940 -3.95 

Crowding multiplier 
CrMultiplier  -0.00162 -2.18 

Average waiting time 
WT  -0.11900 -7.59 

CV of waiting time 
(W )CV T  -2.42000 -5.05 

Average passenger density 
Dens  -0.29900 -5.13 

Crowding aversion LV 
Crowding  -0.12800 -2.44 

# Days with seats available 
Seat  0.05200 2.83 
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As there was no cost attribute in the experiment, we compare the marginal rate of substitution 

(MRS) between the alternatives’ attributes through in-vehicle travel time. Besides, as the 

modelling framework consider random latent variables, this produces both travel time and 

passenger density parameter distributions.  

In-vehicle travel time parameter distribution is presented in Figure 6.8. In this Figure, a 3 

passenger per square metre density is considered, as the crowding multiplier affects this 

distribution. Besides, punctual behaviour latent variable has a significant impact, which 

translates in a higher perception of time for people who consider punctuality higher. Both 

being a dependent employee and age have a significant and positive impact in this latent 

variable. This means that punctuality is valued higher for older and dependent employees. 

As the punctual behaviour latent variable has a positive value for every observation, we 

observe negative values for every person of the sample, as expected. Besides, we observe a 

significant difference between dependent and non-dependent employees. The average 

parameter for the former is -0.0190 while for the latter is -0.0159, which translates in a 19.5% 

difference. In addition, the average value of this parameter for 3 passengers per square metre 

is 37.99% larger than in an empty vehicle scenario and 75.98% larger when the passenger 

density rises to 6 passengers per square metre.  
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Figure 6.8 In-vehicle Travel Time Parameter distribution 

 

In terms of direct effects, we observe a significant impact of the coefficient of variation of 

waiting times, which confirms the importance of reliability on people choices. In addition, 

expected waiting times and the number of days with seats available have also a significant 

impact with expected sign. If we consider the average in-vehicle travel time for dependent 

employees and a 3 passenger per square metre density, we obtain a value of 6.26 for expected 

waiting time and 2.74 min for the number of days with seats available. This means that 

people, in average, perceive waiting time ~6 times longer than in vehicle travel time and are 

willing to increase in ~3 minutes of in-vehicle travel time each day, ~15 minutes in total to 

have an extra day with seats available. 

 

In terms of passenger density, we observe a significant impact of the crowding aversion 

latent variable. This variable is significantly explained by gender (being women), car as main 

travel mode, income, age, and being a dependent employee. The distribution of this 

parameter, differentiated by gender, is presented in Figure 6.9.  
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Figure 6.9 In-vehicle Passenger Density Parameter by gender 

 

We observe a negative parameter for every observation in the sample and a significant 

difference by gender, which is in line with our current knowledge (H. Allen et al., 2017; 

Soza-Parra, Raveau, Muñoz, & Cats, 2019). Though the average parameter has only a 11% 

difference, with -0.412 for women and -0.371 for non-women, we observe a 38.7% of non-

women with a passenger density parameter shorter and the smallest value of this parameter 

for women. In other words, around 2 out of 5 non-women perceive passenger density less 

than every woman. 

However, when we measure the marginal rate of substitution between this attribute and in-

vehicle travel time, as in Figure 9, we observe no difference between genders. This happens 

because travel time perception is also affected by passenger density. In sum, this means that 

regardless the gender, people are willing to exchange the same number of minutes in order 

to decrease their passenger density, but in terms of final utility, women will be worse.  
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Figure 9.- Marginal Rate of Substitution between Passenger Density and In-vehicle Travel 

time gender 

 

6.4 Conclusions  

 

This study has proved it is possible to model public transport reliability effects on users 

through a stated preference survey. The results presented in this article are in line with our 

current knowledge and confirms the importance of this attribute in people’s decisions. Being 

able to know public transport reliability’s impact allows us to improve the understanding we 

have of the way in which users choose their mode and route.  

Besides, we have shown significant evidence of the presence of deep psychological 

characteristics which influence the perception of different transportation attributes. 

Crowding aversion has been approximated previously by systematic taste variations. Our 

proposed approach expands this former modelling by incorporating random latent variables 

for each respondent part of the study, considering those socio-economical attributes typically 

considered. Regarding punctual behaviour, our approach only considers differences in the 

perception of the average in-vehicle travel time attribute. To the best of authors knowledge, 

this is the first time this latent variable is considered under a public transport discrete choice 
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scenario and a mean-variance approach. This effort should be extended, in order to consider 

not only travel time but its variability, as well as expected and excess waiting times.   

Nowadays, machine learning has proved its strong predictive capabilities. This fact, in 

addition with the large number of passive information available day after day, is producing 

better forecasting models every year. Even though this hybrid model does not enhance the 

predictive strength of an analogue Multinomial Logit significantly to be considerable, this 

framework expands our current understanding regarding people attitudes and considerations 

toward public and massive transport mobility. This point is by far the differentiating 

dimension between statistical and deep learning models. Thus, it would be interesting to 

analyse how to obtain the most of both modelling methods, with socio-economical 

characteristics effects on statistical models’ side and predictive capabilities on supervised 

learning models’ side.   

Combined with previous work related with headway irregularity causes, projects that 

improve the reliability of the system can be evaluated completely, fully understanding the 

benefits that this brings and how users respond to these changes. For example, the impact of 

bus corridors can now be better understood, as it is clearer than the effects are not only in 

the form of in-vehicle travel time reduction, but also in headway evenness, and the reduction 

of waiting times and crowding inside vehicles. All these attributes influence significantly 

passenger behaviour, meaning assignment models should consider them in order to quantify 

projects benefits.  

All of the above mentioned should lead us to a better planning of the public transportation 

systems of our cities. It becomes clear than headway regularity should be considered as a 

key attribute in every public transportation operation. Its effects on excess waiting time and 
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crowding variation have been studied in the last years. Through this article, we provide 

evidence that headway variability not only affects passengers’ behaviour indirectly through 

those attributes, but it also influences their choices by itself. Public transportation reliability, 

understood through the perspective of headway regularity, is worth studying further. 
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7.1 Introduction  

Service reliability, defined in terms of the certainty travellers have regarding their waiting 

time, their arrival time, or the comfort level they will experience inside the vehicle, is one of 

the most important attributes of a passenger trip. In a high-frequency context, poor reliability 

not only increases the risk associated with a travel alternative, but also worsens the 

experienced outcomes. For example, if the crowding level inside a vehicle is highly variable, 

the likelihood that a passenger will experience high density crowding increases. This 

increases the average crowding experienced over time (Tirachini et al., 2013). 

This paper focuses on high-frequency services where customers arrive at a stop without 

consulting a schedule, typically services that come at least every 15 minutes. Both comfort 
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and waiting time averages and variabilities in this high-frequency context are explained 

mainly by one attribute: headway regularity. A transit service is considered regular, in a 

frequency-based context, when consecutive headways are evenly distributed. When vehicles 

operate irregularly, passengers experience an extra amount of waiting, which has been 

coined excess waiting time. Besides, they experience more crowded vehicles because, as 

mentioned before, it is more probable that a passenger will arrive during a long headway 

interval (Cats, 2014). Moreover, additional costs are induced by irregular services. For 

example, if several bus routes are running along the same corridor, congestion around bus 

stops might arise. This issue adds extra travel time to the passengers on-board the vehicle 

and increases the waiting time for the passengers waiting at the bus stop.  

In the absence of real-time headway control, bus services have an inherent tendency towards 

irregular operations as small variations in headways lead to uneven crowding, irregular dwell 

times, and further widening of gaps in service. The positive feedback loop between service 

headways, number of boarding passengers, and dwell times results in a deterioration of 

service regularity. The latter implies longer passenger waiting times, more uneven on-board 

crowding and a skewed distribution of vehicle travel time, resulting in time losses and 

inefficient resource utilization.  

Headway control strategies require real-time vehicle positioning information. The possibility 

of using fleet management systems for improving service regularity was already conceived 

by Osuna and Newell (Osuna & Newell, 1972). With the increasing availability of automatic 

vehicle location data, a growing number of studies have investigated the prospects of 

headway control strategies. Analytical and simulation studies have concluded that methods 

based on the regulation of bus movements in relation to the headways from the proceeding 
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and succeeding buses are most promising (Cats, Larijani, Ólafsdóttir, et al., 2012; Daganzo 

& Pilachowski, 2011). 

In this study, a headway control experiment that was conducted for routes 70 and 79 operated 

by the Washington Metropolitan Area Transit Agency (WMATA) is described and analysed. 

These routes connect the northern part of Washington D.C. with the city-centre. Prior to the 

experiment, the practice was to run these routes as schedule-based services, even though 

service frequency is 6 buses per hour. A before-after performance evaluation is performed 

based on data collected six months after the implementation of a headway-based control. In 

the analysis, we elaborate on the organizational processes and related implementation 

challenges. We also quantify the impacts on service users and the service provider. This 

supports an empirical-based evaluation of such experiments and allows future 

implementations to learn from the experiences gained in this pilot. 

This document is structured as follows. Section 2 describes past headway control 

experiences as well as some state-of-the-art conclusions about this issue. Section 3 details 

the experimental design and implementation of the specific headway control experience on 

WMATA routes 70 and 79 in Washington, D.C. Section 4 describes the before and after 

evaluation. Section 5 presents the benefits quantification, considering both service users and 

service provider perspectives. Finally, Section 6 concludes and elaborates on the lessons 

gained and opportunities to move forward. 

 

7.2 Headway Control – The Premise, The Promise and Potential Pitfalls 

Even though methods for stabilizing service headways have been proposed for over almost 

half a century, field experiments have not been documented in the research literature until 
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fairly recently. Moreover, most of the field trials have been very limited and exhibited 

significant shortcomings in their implementation. Pangilinan (Pangilinan, Wilson, & Moore, 

2008) analyses the results of a field trial on a single bus line in Chicago that relied on a 

dedicated dispatcher in the control room and street supervisors. The critical shortcoming in 

this implementation was that the dispatcher was the only one with access to real-time vehicle 

positions. This resulted in a prohibitive workload that did not allow the dispatchers to 

effectively monitor and respond to discrepancies to achieve the desired service performance.  

Several studies have attempted to mitigate this shortcoming by providing operators with the 

means to monitor their relative positioning and instructions. However, technical difficulties 

were often prevalent and limited pilot execution and performance, resulting in experiments 

that were shorter and smaller-scale than planned. Lizana et al. (Lizana, Muñoz, Giesen, & 

Delgado, 2014) analyse the outcomes of a two day pilot on a bus line in Santiago de Chile 

where instructions were provided via tablets. They concluded that technical failures and 

operator compliance were persistent challenges. Tablets were also used by terminal 

personnel in a light rail multi-branch line in Boston to support an even-headway policy in 

their dispatching strategy (Fabian, Sanchez-Martinez, & Attanucci, 2018). Berrebi et al. 

(Berrebi, Crudden, & Watkins, 2018) report small scale implementations of headway control 

on the Atlanta streetcar system and a bus route in San Antonio. The former was operated by 

three vehicles and the latter lasted for two days. Based on their experiences, the authors 

conclude that headway control implementation involves technical challenges that may be 

overlooked in simulation experiments, including the quality and frequency of location data 

transmission and operators’ response. Cats et al. (Cats, Larijani, Ólafsdóttir, et al., 2012) 

examined in a transit simulation model the implications of operator compliance and the 



150 

  

frequency of vehicle positioning updates on the performance of headway control strategies. 

This robustness analysis was performed in preparation to a field experiment.   

Ideally, bus operators should be directly and frequently informed about the instructions (i.e. 

speed adjustment between stops, holding at stops) resulting from a headway control strategy. 

A series of field experiments in Stockholm benefited from the presence of a computer 

display that is positioned in the bus operator cabin. All buses are equipped with a system 

that enables projecting to the operator the discrepancy from the desired bus location in 

minutes (i.e. negative values indicate that the bus is running behind, positive values imply 

running ahead). Cats (Cats, 2014) found a reduction of 38% in excess waiting times. In 

addition, he discusses the relevant considerations in extending field experiments into full-

scale and long-term implementation of operation geared towards better regularity 

performance including aspects pertaining to performance monitoring, incentive schemes and 

business models. A detailed framework for quantifying the impacts of public transport 

interventions such as headway control strategy is provided by Fadaei and Cats (Fadaei & 

Cats, 2016). They concluded that the total service user and provider benefits associated with 

the latest experiment in the abovementioned series amounts to 36.8 million Swedish crowns 

on an annual basis (approximately $4.5 million USD). Following the field experiments, since 

2015 the transport authority and the incumbent bus company agreed that all trunk bus lines 

in the Stockholm inner city would use a headway control strategy. 
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7.3 Experimental Design and Implementation 

7.3.1 Headway management background 

The Washington Metropolitan Area Transit Authority (WMATA, also known as Metro) is 

the largest transit agency in the Washington, DC region. WMATA operates 6 rail lines and 

260 bus routes, with the bus system carrying about 380,000 people on an average weekday. 

WMATA’s bus service has been schedule-based, with on time performance (OTP) measured 

at several timepoints on each route. A route’s on time performance is based on how often 

the bus arrives at a timepoint within a window of two minutes before to seven minutes after 

the scheduled arrival time (i.e. [-2,+7]). This schedule-based metric works well on less 

frequent routes, but has some significant weaknesses on frequent service. When buses are 

scheduled to come every 10 minutes, for example, most customers simply arrive at the stop 

and wait without consulting a schedule, so even spacing is more important than schedule 

adherence. The relatively large window within which a vehicle is considered “on time” is 

also not well-suited to these more frequent routes. Figure 7.1 illustrates this situation, where 

all buses are considered on-time under a schedule-based on-time performance, but the 

average customer wait is approximately 7.99 minutes, instead of the 5 minutes one would 

expect in the event of a perfectly regular service.  



152 

  

 
Figure 7.1 WMATA’s schedule-based metric records the buses in green as on time 

 

 

WMATA staff began looking for ways to better manage and measure the service on frequent 

routes. Beginning in 2012 the agency had experimented with managing some frequent routes 

on a headway basis using street supervisors. These early efforts were generally successful 

but resource-intensive, and ultimately were discontinued due to lack of resources. Since that 

time, several frequent routes have had published timetables that indicate that, for example, 

“Managers will schedule departures every 10 minutes until 5:30 p.m.,” but little active 

management occurred on these routes. In the beginning of 2017 WMATA staff and 

management decided to renew efforts to actively manage frequent service on a headway 

basis. 

 

7.3.2 Experiment set-up 

 

The agency decided to start with one corridor to determine the best approach and 

demonstrate the benefits of the additional resources required. The corridor selected is known 

as Georgia Avenue and is served by two routes, the 70 and 79. These routes begin at the 

Silver Spring Transit Center in Maryland, near a job and population centre, and travel in a 
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mostly straight path down Georgia Avenue and 7th Street NW to the Washington, DC 

downtown core, with an end-to-end route length of about 7.5 miles (12 km). Traffic is a 

significant issue in the downtown core, where a major sports and event arena adjacent to the 

route can cause major disruption to route operations. The location of these lines can be 

observed in Figure 7.2. 

 

 

Figure 7.2 Routes 70 and 79 location map 
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A number of intersections on the corridor have transit signal priority, though the system is 

still relatively new. The parameters determining when priority is granted are conservative, 

so the benefits to travel time are modest. There is also a brief segment of dedicated bus lanes 

on the corridor, extending for four blocks. 

Route 70 is a local route with 60 stops carrying nearly 11,000 passengers on an average 

weekday using both 40-foot and articulated buses. Route 79 is part of the “MetroExtra” set 

of limited-stop routes, averaging about 6,000 passengers on weekdays and serving 25 stops. 

The 79 runs from 5 a.m. to 8 p.m. seven days a week, while route 70 offers 24-hour service. 

Exact frequency varies by the time of day, but during peak periods each route departs at least 

every 15 minutes. 

Unlike many similar corridors in the region, the chosen corridor has a relatively simple 

service pattern, which made it an excellent candidate for headway management. The corridor 

is also among the highest ridership in the system, but performance has been relatively poor. 

On-time performance prior to the implementation of headway management was 65-75%. 

More details regarding the performance of routes 70 and 79 are shown in Figure 7.3. 

WMATA’s systems report bunching as buses that arrive at less than 50% of the planned 

headway. 
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Figure 7.3 Performance indicators for routes 70 and 79 

 

As with many busy, frequent urban bus routes, the service had a lot of short and long gaps. 

Specialists in the operations communications centre were able to monitor these issues but 

had limited effectiveness at managing them. Specialists must call the operators on the radio 

to communicate problems. Since operators are required to stop and secure the bus prior to 

answering radio calls, these calls were often not answered in a timely manner. Street 

supervision was limited and focused on accidents, mechanical problems, and other incidents 

rather than on managing performance. 

Managers and planning staff knew that the shift to headway-based operations would be both 

a logistical and a cultural change. Bus operators and street supervisors who for decades have 

been expected to adhere to schedules would need to be retrained. Service adjustments like 

holds would need to become more common to keep service evenly spaced. Passengers who 

were unaccustomed to these service adjustments might have questions. Performance metrics 

would need to be adapted to encourage even spacing over schedule adherence. Management 

decided that training a group of dedicated street supervisors to be stationed along the route 

would be the most effective way to make this transition. 
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7.3.3 Pilot implementation  

To implement headway management, bus operators and street supervisors were trained on 

headway management and active service management techniques. A “playbook” of 

techniques was provided, including information on holding, expressing, short-turning, and 

other options for restoring even headways when bunching and large gaps occur. A small 

number of “reserve” buses were also stationed in strategic locations near the route to be 

inserted as needed to fill gaps in service. 

Street supervisors were stationed at key locations along the route, including both terminals, 

a major transfer point in the middle of the route near a rail station, and other locationsas 

needed. This required seven full-time positions to ensure adequate coverage on the route 

across two shifts from the early morning through the early evening hours on weekdays. 

These supervisors were dedicated to the corridor, with no other duties, and were provided 

with new tablets equipped with software that displays the location of all vehicles on the route 

in real time. The communications centre also dedicated specialists to managing the routes 

full time. These changes began in October 2017, with training for all operators complete in 

December of that year. 

This approach to actively managing headways is resource-intensive. The agency hopes to 

move to a solution based on in-vehicle technology in the future, such as that in use in 

Stockholm and Santiago, as headway management is expanded to other frequent routes. This 

interim approach was adopted to demonstrate the performance improvements of a headway-

based approach in order to build support for headway management techniques among bus 

operators, street supervisors, and other stakeholders. While bus operators might at first be 

reluctant to change their working routine, Hlotova et al. (2014) found that the headway-
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based strategy deployed in Stockholm resulted with lower stress levels based on the analysis 

of heart rate measurements. The on-site staff have also played an important role in 

communicating with customers about service adjustments, such as holds, that passengers 

may not be used to. 

New performance metrics were defined to go along with the project. In particular, staff began 

reporting on headway adherence on these routes, defined as the percentage of timepoints 

where buses arrive within the scheduled headway plus 3 minutes (i.e. [0, h+3]), rather than 

traditional schedule-based on-time performance. Comprehensive weekly reporting was 

implemented showing performance and other statistics such as accidents and incidents on 

the route. 

For a more comprehensive performance assessment, automated vehicle location (AVL) data 

from April 2017 and April 2018 was analysed for a before and after assessment. These 

months were chosen to capture an “after” period when the program had been fully 

established, and also because these time periods were relatively free of major disruptions. 

The AVL data is event-driven, with event records roughly every 15-30 seconds. 

 

7.4 Before and After Performance Analysis 

The following section describes and compares the level of service offered before and after 

the headway control implementation. The data used comprises the arrival time of every bus 

at every bus stop (even if they are not served) for the entire months of April 2017 and April 

2018. Only working days were considered and all the figures refer to data from route 70, the 

primary line. 

The most important outcome to analyse following this headway control experience are the 

consequences for passenger waiting times. Since headways are expected to be more regular 
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after the implementation, we expect passengers to wait less on average. Assuming random 

arrival of passengers to bus stops, there is a direct relationship between average headway, 

( )ˆE h , headways coefficient of variation, ( )ˆCV h , and the expected waiting time, ( )ˆE w  

(Osuna & Newell, 1972): 

 

( )
( )

( )
2

ˆ
ˆˆ 1

2

 =  + 
 

E h
E w CV h      (1) 

 

Instead of computing the coefficient of variation for the whole period of analysis, it was 

disaggregated per hour of the day. Figure 7.4 shows the average change observed between 

the before and after situation per direction and dispatch time between 06:00 and 23:00 hours. 

Moreover, in the lower right corner of each direction box, the average change per direction 

is shown. This display shows how the improvements are distributed within the day.  

 

 

Figure 7.4 Average change of the coefficient of variation of headways per direction and 

dispatch time 
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A significant improvement in terms of headway variability is observed, with average 

reductions of 16.44% and 5.92% for North and South directions, respectively. Headways on 

the North direction have become almost always more regular, with the exception of 19-20 

and 23-24 hours. Active headway management by street supervisors is not in place at these 

hours. 

This improvement can be further analysed to examine how the change in headways is 

spatially manifested along the route. Figure 7.5 shows the relative change of the coefficient 

of variation of headways per bus stop, dispatch time and direction.  

A visual inspection of this heatmap reveals that the only bus stop where regularity has 

systematically worsened rather than improved is bus stop number 31 in the Northbound 

direction (located in the intersection of Georgia Ave. with Shepherd St). Noticeably, 

regardless of the regularity in the previous bus stops, the coefficient of variation is 

significantly worse at that specific bus stop compared to the before period. Particular 

characteristics of the on-street conditions could be causing this performance decline, as 

signal timing, stop location, on-street parking, etc. Besides, this stop also comes just after a 

major transfer and supervision point at a rail station. During the time the data for the paper 

was collected that rail station was a relief location where drivers switched off, which caused 

occasional long delays. Aside from this Northbound stop, in the Southbound direction a 

significantly worse situation is observed at the hours of 6-7 and 22-23. Note that street 

supervisors do not implement headway management control during those hours. 
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Figure 7.5 Relative change heatmap of the coefficient of variation of headways per bus 

stop and dispatch time 

 

 

7.5 Benefits Evaluation 

The following section presents the methodology, assumptions and results of the benefit 

evaluation of the headway control strategy field experiment. The methodology is based on 

Fadaei & Cats (2016), with some amendments tailored for this case study. The results are 

divided into three sections: passenger benefits, provider’s costs, and overall evaluation. 

 

7.5.1 Passenger Benefits 

Passenger benefits are comprised of two components, as explained in the previous section: 

waiting times and travel times. For calculating waiting times, two variables are needed: 

actual headways and the corresponding number of passengers boarding each bus at each stop 

during the analysis period. With regards to the former, bus arrival times at each bus stop is 

sufficient to compute accurately the headway from the previous bus. The automatic 

passenger counter (APC) data collected in the case study is unfortunately deemed to be 
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unreliable for individual trips, though it is able to produce reliable averages for boardings 

and alightings at each stop by time of day. Consequently, the following correction is made: 

based on the assumption of random passenger arrivals at bus stops, there exist a directly 

proportional relationship between the number of boarding passengers and headways. For 

instance, if a specific headway is twice as long as the planned headway, it is expected that 

the number of passengers boarding the bus is approximately double the historical average 

for the planned headway.  

Mathematically, the number of boarding passengers, of a specific bus i  and a specific bus 

stop s , ,i sb , that is within the time period t  is: 

, ,
i

i s t s p

t

h
b b

h
=       (2) 

 

Where 
p

th is the planned headway at the time period t , ih is the headway of a specific bus 

and ,t sb is the historical average number of boarding passengers at a time period t  and bus 

stop .s  

Then, the perceived average waiting time, assuming waiting times are valued twice as much 

as in-vehicle time (Ortúzar & Willumsen, 2011), is: 
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
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    (3) 

 

A similar approach is adopted for travel times. Again, the position information is accurate 

enough to estimate travel time between consecutive bus stops. However, it is not possible to 

rely on APC information for estimating the load on-board each vehicle. Thus, load 

information was estimated based on previously estimated boarding data, historical alighting 
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patterns and the initial assumption of empty buses upon departure from the origin terminal. 

Then: 

 

i, i, 1 i, 1 i, 1 , 1

alight

s s s s t sl l b l p− − − −= + −       (4) 

 

Where i,sl  is the load of a specific bus i  and a specific bus stop s , and ,

alight

t sp  is the 

probability to alight at the time period t  and bus stop s . An important side-effect of more 

evenly distributed headways is the reduction of average crowding on-board vehicles (Cats, 

2014). Based on (Björklund & Swärdh, 2015), a perceived measure of in-vehicle travel time 

depending on the crowding level can be computed. This means that travel time is perceived 

differently depending on whether one is seated or standing and also depending on the total 

number of people per square metre inside the vehicle. Then, the perceived average in vehicle 

time is: 

, ,( 1, )
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Where ,( 1, )i s st −  is the travel time between stops 1s − and s of a specific bus i , and the 

perception multiplier ,i s is: 

   ( )sitting standing

, , , , ,min , max 0, (l )i s i s i i s i s i i sl    =  + −     (6) 

  

Considering i  as the number of seats of a specific bus i , and 

 
sitting

, ,
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, ,
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      (7) 
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And ,i s  corresponds to the standing passenger density factor (i.e. the total amount 

of standing passengers divided by the available area inside the vehicle i . 

7.5.2 Service Provider’s costs 

The service provider’s costs can also be divided into two parts: fleet size costs and vehicle-

hour costs. Note that the distance travelled by buses remains unchanged in the field 

experiment.  

Regarding fleet size costs, a fixed 
fixed cost is considered for each bus. For the variable 

costs, the fleet’s requirements per time period tz is calculated in the following way: 

 

, 90% , 90%

, ,S

2

Nd Sd

t P t P

t p Nd p d

t t

TT TT
z

h h

+ +
=

 +
 
 

     (8) 

 

where 
direction

, 90%t PTT is the 90th percentile for the end-to-end travel time in a specific direction 

and time period, 
,directionp

th is the planned headway for a specific direction and time period, 

and  considers recovery and terminal layover times. The use of the 90th percentile running 

time is a widespread practice among public transport agencies to ensure fleet availability.    

Then, the total service provider’s cost is defined by the following expression: 

 

( )( ), ,S

3600

2

Nd Sdoperator fixed hr
t tt p Nd p d

t t t

c z TT TT
h h

  


 
 
 =  +   + +
  +
   

  

   (9) 

 

where 
hr is the cost per vehicle-hour and 

direction

tTT is the average end-to-end travel time in 

a specific direction and time period. 
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7.5.3 Overall evaluation 

Service users’ waiting times and travel times as well as service provider savings or costs are 

calculated based on the comparison of AVL data of April 2017 and April 2018 and the 

estimated time-dependent passenger demand profile per line. The daily average difference 

per time period and passenger is calculated for each cost component. Then, these values are 

multiplied by the total number of passengers per time period and added up to obtain the 

overall daily savings/costs. Finally, time measures are multiplied by the Value of Time for 

commuting, which is assumed to be $14.38 USD/hr for this case study area (based on (White, 

2016) for 2016 all purposes value of travel time savings and adjusting the value by 1% each 

year). The results are presented as follows in Table 7.1. 

Table 7.1 Total daily savings per route and direction 

Total Savings 70 North 70 South 79 North 79 South 

PAWT minutes 846 min 3,648 min 4,171 min 3,392 min 

PAWT seconds 

per passenger 

19 s 94 s 201 s 230 s 

PAWT dollars $203 USD $874 USD $1,999 USD $1,626 USD 

PAWT cents per 

passenger 

7 ¢ 38 ¢ 80 ¢ 92 ¢ 

Total PAWT 

yearly savings 
1,128,519 USD 

PIVT minutes -2,165 min 5,983 min 4,577 min -662 min 

PIVT dollars -$519 USD $1,434 USD $1097 USD -$159 USD 

Total PIVT yearly 

savings 
444,789 USD 

Total time saving 

per passenger 

(PAWT + PIVT) 

-30 s 246 s 422 s 185 s 

Fleet size 0.26 buses -0.15 buses 

Hours of 

operation 

6.11 hours -0.75 hours 

Operator’s 

savings 

$683 USD -$103 USD 

Total operator’s 

yearly savings  
$139,279 USD 

Total yearly 

savings 
$1,712,587 USD 
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The assessment indicates annual savings of approximately $1.7 million USD associated with 

the field trial. Unlike what might be expected, holding buses does not necessarily slow down 

overall route operations. In this analysis, overall benefits in terms of passenger’s travel time, 

hours of operation and fleet size can be observed. Even though service regularity can lead to 

more even loads which can improve speeds, the headway control strategy is presumably not 

the only contributor explaining all these benefits. An analysis of the labour cost incurred by 

the experiment would enable an assessment of the effectiveness of the experiment execution. 

Some other facts that may explain these improvements may pertain to changes in traffic 

conditions related to roadworks and police enforcement. Notwithstanding, the most 

substantial change which is chiefly attributed to the control strategy pertains to waiting time 

savings, amounting to $1.1 million USD per year of savings of social benefits for the 

passengers.  

 

7.6 Conclusions 

 

The potential advantages of headway control strategies on high frequency routes have been 

examined and demonstrated in a large number of analytical and simulation studies. 

Nevertheless, the applicability of a headway-based holding strategy is still constrained by 

organizational and technical challenges, especially in circumstances where buses are not 

equipped with monitoring displays and operators are not accustomed to follow such service 

management practices. In this study, we add to the accumulated empirical experience in 

implementing headway management by sharing the lessons gained from a field experiment 

in Washington DC.   
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The evaluation of the field experiment suggests that waiting time savings amount to a total 

of $1.1 million USD per year. This outcome is achieved by reducing passenger waiting time 

by 1.1 minute on average. While substantial, further reductions can be potentially attained if 

key shortcomings in the experiment execution will be overcome in the future. As can be seen 

in Figure 7.6, the additional potential waiting time reductions are approximately three times 

larger than those that have been already attained. Considering all time periods, the average 

headway was 12.4 minutes, which means that if services were running perfectly regularly, 

the average waiting time would be 6.2 minutes. The experiment reported in this study 

reduced the average waiting time from 10.4 minutes to 9.3 minutes, meaning that there are 

3.1 minutes of excess waiting time remaining.  

 

 

 

Figure 7.6 Case study waiting time decomposition 

 

Service users expect service providers to leverage technological advancements. In the era of 

real-time journey planners and on-demand transport services, bus bunching is not only a 

costly phenomenon but also a visible indication of poor service performance. Real-time 

vehicle positioning data enables counteracting this otherwise inherent service deterioration. 

The design and deployment of data and communication systems has been traditionally driven 

by fleet circulation and fare collection considerations. Service management aspects should 
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be taken into consideration when detailing the user cases, requirements and purchasing 

details of automated data collection and communication systems to avoid hindering the 

applicability of operational and control schemes such as speed adjustments and holding 

strategies. 

Shifting from schedule-based operations to headway management involves a substantial 

organisational shift for operators, street supervisors, and communications centre staff. Many 

of the operational departments have been training staff on the importance of adhering to 

schedules for decades, meaning that significant training can be required to shift that mindset. 

To achieve this kind of change, it is important to communicate properly the positive impacts 

a measure like headway control might have for customers. Changing the performance 

metrics is hence an important aspect of the process. These new metrics should be passenger-

oriented rather than operations-oriented and they should also be easily understandable for 

all the people involved in service provision and management.  

Similar efforts to the one described here are staff-intensive, at least initially. The easiest way 

to deploy a trial in some specific routes to test the effectiveness of the headway-based 

approach is based on street supervisors and a proper communication channel. There are 

opportunities to mitigate the staff needs with in-vehicle technology, such as specialized 

tablet-like communications systems which indicate the exact amount of holding time or 

changes in speed between bus stops (Delgado, Muñoz, Giesen, & Cipriano, 2009). The 

deployment of a driver display unit, as in Stockholm and the Netherlands will involve initial 

investment cost but then practically eliminate the operational costs associated with 

communicating this strategy. Moreover, the quality and frequency of the information 

provided will be considerably superior to those attained with street supervisors, enabling 
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greater service improvements than those achieved in the experiment. While rail services have 

been running autonomously using headway control strategies in many cities for years, 

autonomous headway control has not yet been applied in the more complex operating 

conditions of bus service. The real-world effect of headway management strategies such as 

that in use at WMATA will provide valuable experience as autonomous buses are deployed 

in the coming years. However, none of these will happen before everyone in the agency 

understands and supports headway management. 
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8. CONCLUSIONS 

 

Public transport should be one of the preferred transport modes to make cities more 

sustainable. Thus, transport planners should be very attentive to public transport traveller’s 

experience. In addition to traditional attributes, such as in-vehicle travel time or fare, 

passengers consider a wide variety of aspects, such as safety, comfort, and reliability when 

making the travel choices. Reliability is directly related to many negative attributes 

perceived by public transport users. For instance, passengers reject long waits, lack of 

vehicles, over-crowded travels, buses skipping their stops, vehicle bunching, to mention a 

few. Thus, a better understanding of its causes and effects could orient and encourage 

agencies’ focus to reliability. This is essential to make public transport an attractive travel 

alternative, and therefore a path to follow for urban sustainability. 

 

One possible limitation of this dissertation is that most of the conclusions were supported by 

the same study of the public transportation system of the same city, Santiago de Chile. 

Therefore, the results obtained could be directly applied only to this city. However, the 

public transportation system’s characteristics offered in this city resembles those which are 

proper of many different cities worldwide, especially in emerging countries. This type of 

public transportation systems operates usually in highly populated cities, with long travel 

distances and high frequency offered. This means that passengers do not know in advance 

when the next bus will arrive, and their travel is shared with many others in the same 

direction. Thus, the conclusions presented in this dissertation are highly valuable and valid 

for many different public transportation systems.  
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As shown in this dissertation, it is essential to know what people seek when they are 

travelling on public transport. Operationally speaking, we know passengers desire a fast trip, 

short waits, a comfortable ride, and a reliable experience. In the last decades, public transport 

agencies have focused mostly in the first three attributes. The irruption of BRTs as a clear 

example, in which increasing speed is at the core of this mode. By increasing speed capacity 

rises, since it takes less time to complete a cycle. The main purpose of this dissertation is to 

extend our knowledge regarding public transport reliability.  

 

Based on the results and conclusions of the different articles comprised in this dissertation, 

it is clearer now public transport modes must become much more reliable to satisfy its users 

and attract new ones. When the focus is placed on traveller’s experience, reliability should 

play a role equally important as speed has today. Faster vehicles bring travellers closer to 

their desire destination, but all those benefits vanish if unreliability causes people to 

experience long waits and crowded buses. Headway irregularity is one of the sources of this 

irregularity, damaging users’ satisfaction and probably, makes shifting to a private car more 

attractive if they have one available, or taking new app-powered taxi services like Uber 

which are becoming more ubiquitous and convenient.   

 

Different data sources were analysed through the different chapters of this document. In this 

big-data era, every day, more (and new) data sources become available. Thus, an unpredicted 

issue turns relevant, as it is harder to analyse large volumes of data, which also changes day-

to-day. Most statistical analysis conducted in this dissertation consisted of intuitive 
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visualisations of reliability differences between different modes, the impact of specific 

infrastructure in headway regularity, marginal rate of substitutions for different choice 

models, among others. Based on this type of analysis, it was easy to find significant 

differences between metro and buses’ reliability level, where the former presented 

acceptable levels by users.  

 

In terms of the analysis of the causes of the reliability difference between surface and 

underground public transport modes, we conclude it is due mostly by infrastructure and 

operational disparities. The headway variability propagation model showed that the most 

significant attributes were related to segregated corridors, and off-board payment stops. 

These two infrastructure characteristics resemble the way metro operates, where passengers 

tap in when they enter the platform area and trains move through rails and tunnels. This 

difference also raises the risk of a vicious circle because buses availability at the terminal 

depends on cycle time reliability. Then, dispatch regularity worsens. 

 

When analysing the impact of service reliability three different perspectives are presented, 

which are related within each other. Firstly, we studied the effect reliability had at an 

aggregate level in the public transport alternative election. The coefficient of variation of 

headways turned out to be a significant attribute when explaining modal preferences beyond 

the sole impact of excess waiting time. In fact, this attribute replaced the bus alternative 

specific constant, which means it is a crucial attribute when explaining this kind of choices.  

Secondly, the effect on passengers’ satisfaction was examined. We observed that reliability 

has indirect effects on this matter, based on the amount of denied boardings and the increase 
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in passenger density. Thirdly, behavioural considerations were analysed when modelling 

passengers’ alternative choice. Again, the coefficient of variation of headways had a 

significant impact when explaining users’ choices. 

 

Overall, we observed a substantial effect of headway variability when explaining the 

aggregate modal choice, users’ satisfaction and individual behaviour. Besides, in both the 

satisfaction and individual choice models, significant socio-economical perception 

differences were found, both by latent classes and latent attitudinal variables.  An interesting 

fact to emphasize is the relationship between the curvature of satisfaction in terms of 

passenger density and the significant impact of the number of seats available in the choice 

model. The convexity of the curve means that passengers might prefer, to some extent, 

variable passenger density services if the average is kept constant. One possible explanation 

is as the possibility of travelling seated is significant, and there might not be considerable 

differences between travelling standing at different density levels. 

 

One direct consideration is the need to incorporate the coefficient of variation of headways, 

or any significant reliability attribute, in forthcoming public transport behavioural models. 

Otherwise, the omission of this attribute will bias the estimated related parameters. For 

example, average waiting time as well as average passenger density estimated parameters 

will be overestimated, as they will explain the impact of the omitted variable. 

 

Regarding the cost-benefit analysis, a simple headway regularity intervention was analysed. 

This analysis considered all time savings related effects with this phenomenon, such as 
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excess waiting time and time valuation by passenger density. By improving headway 

regularity, it was shown that there are measurable benefits both in terms of time savings and 

comfort improvement. This type of experiences should promote agencies to consider 

headway control to a bigger extent. 

 

This dissertation provides a better global understanding about public transport system level 

of service reliability importance. In a frequency-based context, we need to understand 

reliability from the viewpoint of headway regularity. We have demonstrated that regular 

headways not only enhance wait time but also comfort, travel time and operational costs. 

This claim gets more considerable when analysing emerging cities and or developing 

countries situations, where high frequency services is the common mobility solution to 

transport millions of people.  

 

In addition, headway unevenness, which leads to vehicle bunching, have significant 

distributional effects among passengers. Inspired by the antipoet Nicanor Parra, we can 

summarise these effects as follows: “There are two buses. Yours travels empty. Mine travels 

full. Average occupancy: 50%”. As shown in this dissertation, performance indicators 

should consider the number of passengers riding and boarding each vehicle, in opposition to 

consider total averages per service. Only this way the indicators will reflect real passenger 

experience. Otherwise, they will continue extending the gap between public transport 

agencies’ view and people’s perception. 
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“Frequency is freedom” maxim got popular by Jarret Walker and his work “Human Transit” 

(Walker, 2012). He explains how high frequency enables passengers to access different 

opportunities freely, without adjusting their schedules to their preferred public transport 

services’ availability. After all the results and conclusions of this dissertation, we would add 

“reliability is the path” to that motto. It is not hard to find good public transportation systems 

“on paper”, which offer high-frequency services across complex networks with poor 

passengers’ evaluation. We have reached the conclusion that all the possible benefits from 

the efforts put in frequency and speed might vanish in people’s perception when their day-

to-day experience varies from one end to another. 
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