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RESUMEN  

Actualmente, Chile el cuarto país exportador de vino del mundo. La mayor parte del 

vino se transporta en contenedores estándar, lo que lo expone a las condiciones de 

temperatura del ambiente durante su transporte marítimo, lo que puede afectar su 

calidad. Las decisiones de transporte se basan principalmente en los costos, y 

generalmente se prefiere la ruta más barata, sin considerar los riesgos potenciales de 

temperatura. En este estudio, desarrollamos un modelo de apoyo a las decisiones para el 

problema de selección de rutas de envío, teniendo en cuenta el riesgo de temperatura 

durante el transporte marítimo. Para lograrlo, construimos un modelo que considera la 

información de temperatura al interior de contenedores, obtenida de 167 dataloggers 

distribuidos en 74 envíos marítimos de vino, y determinamos la correlación de esta 

variable con la temperatura externa. Gracias a que la temperatura externa está disponible 

en la base de datos global NCEP-NCAR, podemos determinar la temperatura interna del 

contenedor de cualquier ruta de envío. También presentamos un conjunto de índices de 

riesgo de temperatura, que nos permite evaluar el riesgo para el vino si se envía por una 

ruta específica. Los resultados indican un buen rendimiento del pronóstico para nuestro 

modelo, con baja desviación media acumulada y bajos valores de error cuadrático 

medio. Validamos este modelo aplicándolo a un grupo de rutas y mostramos que la ruta 

de menor costo puede implicar un mayor riesgo para la calidad del vino. Por lo tanto, 

debe considerarse una ruta alternativa que puede ser más costosa, pero menos riesgosa. 

 

 

 

 

 

 

 

Palabras clave: calidad del vino, temperatura, riesgo, toma de decisiones, transporte 

marítimo. 
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ABSTRACT  

Chile is currently the fourth largest wine exporting country in the world. Most of the 

wine is transported in dry containers, exposing it to the prevailing temperature 

conditions during its maritime transport, which can affect its quality. Transport decisions 

are mostly based on costs, with the least cost route being preferred usually, without 

considering the potential temperature risks. In this study, we develop a decision support 

model for the shipping route selection problem, taking into account the temperature risk 

during maritime transport. To achieve this, we construct a model that considers the 

internal container temperature information obtained from 167 dataloggers placed on 74 

shipments of wine and determines the correlation with the external temperature. Because 

the external temperature is available through the global NCEP-NCAR database, we can 

determine the internal container temperature of any shipping route. We also present a set 

of temperature risk indices, which allows us to assess the risk to the wine shipment for a 

specific route. The results indicate a good forecasting performance for our model, with 

low mean accumulated deviation and root mean squared error values. We validate this 

model by applying it to a group of routes and show that the lowest cost route can have 

the highest risk for wine quality. Hence, a more expensive and less risky alternative 

route should be considered.  

 

 

 

 

 

 

 

 

 

 

Keywords: wine quality, temperature, risk, decision making, maritime transport.
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1. INTRODUCTION 

Chile is currently the fourth largest wine exporting country in the world, with 9.8 million 

hectoliters (mhl) exported in 2017. It is only surpassed by Spain with 22.1 mhl, Italy 

with 21.4 mhl, and France with 15.4 mhl (OIV, 2017). Wine export volumes have 

continuously increased. In 2016, the global export volume was 104 mhl, while in 2000 it 

was only 60 mhl (indicating a growth 5 of 73.33% in 16 years) (OIV, 2017). Moreover, 

wine exports have become highly significant in the case of wine producing countries 

with a small internal market, where most of the wineries obtain their income through 

sales in the foreign market. In the case of Chile, 67% of the wineries revenue derives 

from export markets, and 30% of them obtain 90% of their income from export sales 

(Wickramasekera and Bianchi, 2013). Therefore, within the international wine supply 

chain, good maritime transport decision making by the wineries has become increasingly 

important. 

 

On the other hand, the high cost of reefers, which is three times that of a dry van 

container (Mac Cawley, 2014), causes producers to export wine in the latter. As an 

example, in the case of South Africa, 80% of its wine is exported in standard 20-foot 

containers, while the rest is exported in reefers and 40-foot containers (Meyer, 2002). 

Consequently, during its maritime transport, the wine is potentially exposed to extreme 

environmental conditions which can affect its quality, with temperature being the most 

important variable to consider, according to previous research (Meyer, 2002; Butzke et 

al., 2012; Benítez et al., 2003; Chung et al., 2008; Lam et al., 2013; Pérez-Coello et al., 

2003; Recamales et al., 2006; Hasnip et al., 2004; Sivertsen et al., 2001; Hartley, 2001). 

Therefore, it becomes fundamental to consider the temperatures along different routes, 

as well as the risk they pose for the wine quality. 

 

The main problem is that transport decisions are currently based only on the cost of 

transportation. Usually, the 20 freight forwarders use the least cost route to send 

containers (Cullinane and Toy, 2000), without considering the risk to wine quality due 
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heat exposure (Mac Cawley, 2014). Previously, Butzke et al. (2012) pointed out the 

ignorance of producers, shippers, and consumers regarding this problem. As a result, 

according to Robert Parker (2008), between 10% and 25% of wines sold in America 

have been damaged by exposure to high temperatures. 

 

Our objective is to improve and support the current maritime transport decision making 

by assessing the risk to wine quality associated with a route, in addition to their 

transportation cost. To achieve this, our first contribution is to determine if there is a 

correlation between the temperature inside dry van containers and the external 

temperature along different shipping routes for bottled wine exports, in order to develop 

a model and predict the internal temperature along maritime trips around the world. Our 

second contribution is the identification of indicators that can assess the risk of a given 

route, based on the predicted internal temperatures along the routes and on the Arrhenius 

equation, which allows us to relate the temperature with an acceleration of chemical 

reactions in the wine (Mac Cawley, 2014). We present two case studies in section 4.3, in 

which the decision maker must select one of the routes available, using a port and date 

of departure, and a port and date of arrival. 

 

The thesis is structured as follows. Firstly, section 2 presents a review of the research 

related to this work. Subsequently, the work methodology is presented in section 3, 

followed by the results in section 4. Finally, a discussion on the results and the 

conclusions are presented in sections 5 and 6, respectively. 
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2. LITERATURE REVIEW 

 

One of the main studies that has documented temperature measurements in wine 

transport was carried out by Mac Cawley (2014). The author registered, within a four-

year period, transport temperatures of 735 trips in the entire wine supply chain, using 

more than 1,000 dataloggers. Subsequently, he compared the temperature behavior at 

various stages of the chain: land transport to the port of departure, maritime transport 

and transshipment, and ground transportation from the port of destination to the 

importer. Similar to Butzke et al. (2012), Mac Cawley used the Arrhenius equation to 

quantify the risk that temperature poses to the quality of wine, by comparing the rate of 

chemical reactions at the temperatures observed, with the rate under ideal temperature 

conditions along maritime routes. Prior to this work, the most important research in this 

aspect was carried out by Butzke et al (2012). The authors recorded the temperatures 

inside 47 standard 12-bottle cases of wine, dispatched from California to 13 destinations 

within the United States. Using the Arrhenius equation, the authors quantified the 

accumulated heat exposure of wine along land routes. On the other hand, Meyer (2002) 

summarized the research that was available on wine transportation temperatures in South 

Africa (based on recorded temperatures in various maritime trips) and the effect of heat 

exposure on some properties of wine. Another study was carried out by Marquez et al. 

(2012), where the temperatures of wine shipments to the United States from Australia 

were tracked with information recorded by 57 dataloggers between June and December 

2008. The temperatures were studied in three stages: land transport in Australia to the 

port of origin, travel at sea, and transportation by land in the United States. For each 

stage, the averages for the mean, minimum, and maximum temperatures were calculated. 

These authors proposed two thresholds of 25°C and 40°C, and calculated the time at 

which the wine was over these limits. Finally, Hartley (2001), based on Meyer's (2002) 

work, studied the feasibility of importing bulk wine to the United Kingdom to reduce 

glass waste. In this case, the difference in the effect of heat exposure between bottled 
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and bulk wine was studied. The author suggested that the thermal inertia of bulk wine 

reduces the effect of heat exposure, thus being an advantage compared to bottled wine. 

 

With the project NCEP-NCAR Reanalysis 1 of the National Oceanic and Atmospheric 

Administration (NOAA) (1996), we obtained data on environmental (external) 

temperatures along the maritime trips studied. Various climatological variables, 

including the temperature on Earth's surface, have been recorded since 1948, and 

documented in databases (one per year). Specifically, temperature has been recorded in a 

point mesh of 2.5 x 2.5 degrees of latitude and longitude, with a 6-hour frequency. The 

data provided by this project have mainly been used in recent climatology and 

atmospheric science studies (Hartmann et al., 2016; Varikoden and Ramesh Kumar, 

2014; Jadin et al., 2010; Yang et al., 2016; Zhang et al., 2011; Ji et al., 2018). As an 

example, Ji et al. (2018) evaluated the effects of Indian Ocean's springtime sea surface 

temperature on the Tibetan Plateau's heat source in summer, using daily NCEP-NCAR 

Reanalysis data of four climatological variables, including air temperature, at 17 

pressure levels, from 1979 to 2011. On the other hand, Zhang et al. (2016) used monthly 

mean NCEP-NCAR Reanalysis of five variables, including air temperature, from 1948 

to 2002, with the aim of studying the interdecadal variation in the intensity of the South 

Asian High (anticyclone in the upper troposphere over the Tibetan Plateau), explained 

by the potential anomalies in these variables. 

 

Regarding temperature modeling, there are no previous studies in the transport sector 

that relate the temperature inside a system (in our case, inside containers) to the outside 

temperature (air temperature on Earth’s surface). The relationship between temperatures 

has been modeled in climatological and hydrological studies. Laanaya et al. (2017) 

modeled the average daily water temperature of Santie-Marguerite River (Quebec, 

Canada), according to the average air temperature and flow. The aim was to compare the 

performance of four models, including a linear regression one. Another relevant study 

was carried out by Bilgili (2010), who  fitted three models (a linear regression model, a 

nonlinear regression model, and an artificial neural network) to explain the monthly soil 
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temperature as a function of the monthly values of air temperature and six other 

meteorological variables observed at the Adana meteorological station (Turkey). Lastly, 

a similar study was conducted by Sahoo et al. (2009). Based on the data from four water 

streams that flow into Lake Tahoe (USA), the authors compared the accuracy of three 

models (artificial neural network, chaotic non-linear dynamic model, and a regression 

model) to explain the behavior of the daily stream water temperature based on the daily 

air temperature and solar radiation. They studied the effect of considering different daily 

lags of these two explanatory variables on the forecast performance of the models. 

 

Related to risk in wine transport, the Arrhenius equation has been used previously to 

assess the danger for wine quality in the works of Butzke et al. (2012) and Mac Cawley 

(2014). However, within maritime transport, the risk concept has been addressed only 

for hazardous products and the environmental damage that can cause by the occurrence 

of accidents. Various works focused on the literature review about the risk assessment 

can be founded. Ozbas (2013) addressed qualitative and quantitative methods for risk 

analysis of accidents. On the other hand, Goerdlandt and Montewka (2015), based on 

Aven's (2012) classification of different approaches of risk (expected cost or loss, 

probability of an undesirable event, and others), reviewed works since 1970 to 2014 in 

which these approaches have been used. Most of the works have focused on model risk 

caused by collisions, groundings or petroleum spills. As an example, in the work done 

by Douligeris et al. (1997), an oil maritime transport planning model was solved. The 

model objective was to minimize a convex combination of the operational and spill 

expected risks costs of the shipping routes, used to transport oil between a port of 

departure and other of arrival. Later, Iakovou (2001) solved a similar multiobjective 

planning problem for petroleum products. 



6 

 

 

3. METHODOLOGY 

Firstly, the temperature values inside containers are obtained from the previous work by 

Mac Cawley (2014). Secondly, an explanation is provided for how the external 

temperature values were obtained, based on data provided by NOAA (1996), and how 

the correlation values between these two variables were calculated. Subsequently, the 

methodology used to fit and validate the model used to predict temperatures along routes 

is explained. The last section explains how risk indicators for wine quality were defined 

for the routes. 

 

This study presents differences with respect to previous studies. Firstly, there are no 

studies in the transport sector addressing the relationship between internal and external 

temperatures, which is possible using the NCEP-NCAR data. In addition, although 

environmental temperature has been used as an explanatory variable, it is always in 

conjunction with other variables (Laanaya et al., 2017; Bilgili, 2010; Sahoo et al., 2009). 

Furthermore, in all these studies, lags of internal temperature (dependent variable) are 

used as explanatory variables. In our study, the internal transport temperature is used 

only as a function of its previous values, while the external temperature has been 

modeled. 

3.1 Containers temperature data 

The temperature data inside dry van containers were obtained from the database by Mac 

Cawley (2014), with measurements taken by 167 thermographs placed on 74 transport 

trips, during various years and dates. In this database, each measurement of the 

thermograph is associated with the moment at which it was recorded. The measurement 

frequency is defined in two hours. Further, each thermograph is linked to the ship in 

which it traveled, and each ship has the times of departure and arrival to destination 

assigned to it and the specific maritime route followed. Finally, each route is described 

by its length and some marked points (longitude and latitude) that define its shape. As an 
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example, Figure 1 shows the points marked along a route from San Antonio (CHI) to 

New York (USA): 

 

 

Figure 1: Marked points along a San Antonio (CHI) - New York (USA) route (Mercator projection). 

Source: QGIS 2.18.15. 

 

Although information was available on the times when the measurements were recorded, 

the location of the ship was unknown, which is necessary to correlate the ships position 

with a point on the NCEP-NCAR mesh, and thus, to assign an external temperature 

value. To determine these points, an interpolation algorithm with two stages was 

programmed. At the first stage, the accumulated distance traveled until each marked 

point of the route was calculated. At the second stage, a ship was assumed to travel at a 

constant speed along a route. Thus, if the times of departure and arrival are ti and tf, 

respectively, and the distance of the route traveled is d, then the ships speed is calculated 

as v = d/(tf - ti). This allows the estimation of the distance traveled until each instant of 

temperature measurement. If we have M measurement times ti ≤ tm ≤ tf, m = 1,…,M, the 

distance traveled by the ship is dm = (tm - ti)·v.  

 

Then, the marked points of the route between which the ship was at each measurement 

time tm, can be deduced comparing dm with the accumulated distances of the marked 
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points. Subsequently, the distance between the measurement point and any of the 

marked points can be calculated, which is noted as d2
m. To assign a specific position 

(latitude and longitude) to each recording time, it is assumed that between each pair of 

marked points, the ship moves, approximately, around the shortest arc that joins them. In 

this sense, a point qm is determined on this arc, whose distance to the selected marked 

point is similar to d2
m. The algorithm pseudocode is presented below in Figure 2, and an 

explanation of this is presented in appendix section: 

 

 



9 

 

 

 

Figure 2: Interpolation algorithm pseudocode. Source: MiKTeX 2.9. 
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In this way, a trip over the route previously presented in Figure 1 can be reestablished, 

as shown in Figure 3: 

 

 

Figure 3: Application of interpolation algorithm on the example route (Mercator projection). Source: 

QGIS 2.18.15. 

 

3.2 External temperature data and correlations calculation 

Once the specific points of internal temperature measurement were obtained, it was 

necessary to associate them with external temperature values. As stated at the beginning 

of section 3, temperature measurements on the Earth's surface (NCEP-NCAR data) are 

provided by the NOAA (1996), with a 6-hour frequency. For each thermograph, the 

purpose was to assign an external temperature value to each internal measurement point 

q = (φ, λ) at a time t, and subsequently, calculate the correlation coefficient between the 

internal and external temperature (the longitude is denoted by φ, while the latitude is 

denoted by λ). To achieve this, a small routine was programmed with R commander. 

The flow chart of the routine is as shown below in Figure 4: 
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Figure 4: Flow chart of R commander routine. 

 

In this way, the temperature values of the closest points of the NOAA mesh can be 

assigned to the different internal temperature measurements of the example route. The 

reestablished example route and the points of the NOAA mesh are shown seen below, in 

Figure 5: 

 

1. read netCDF corresponding file 

2. find the closest point q2  = 

(φ2,  λ2) in NCEP-NCAR mesh to 

q 

3. find the closest time t2  in 

NCEP-NCAR mesh to t. 

4. save the temperature value at 

point q2 at time t 

5. select values of both 

temperatures with a 6-hour 

frequency 

6. build two vectors of internal and 

external temperatures 

7. output: correlation coefficient 

 

 

For all 

measruement 

points 
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Figure 5: Points of NOOA mesh (white) and rebuilt example route (green) (Mercator Projection). Source: 

QGIS 2.18.15. 

 

 

The correlations 145 between internal and external temperatures were calculated for 

each thermograph, distributed into 74 trips along 24 routes. In total, 167 correlations 

were calculated. The distribution of the devices and trips by route can be seen below, in 

Table 1: 
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Table 1: Trips and devices according to routes 1-24. 

ID Origin Destiny Trips Devices 

1 Melbourne (AUS) Oakland (USA) 1 3 

2 Valparaíso (CHI) New York (USA) 3 15 

3 San Antonio (CHI) Charleston (USA) 1 8 

4 San Antonio (CHI) Port Elizabeth (USA) 9 18 

5 San Antonio (CHI) Houston (USA) 4 7 

6 San Antonio (CHI) Port Elizabeth (USA) 2 5 

7 San Antonio (CHI) Charleston (USA) 1 5 

8 San Antonio (CHI) Miami (USA) 6 12 

9 San Antonio (CHI) Baltimore (USA) 2 3 

10 San Antonio (CHI) Long Beach (USA) 4 5 

11 San Antonio (CHI) Port Everglades (USA) 3 7 

12 San Antonio (CHI) Baltimore (USA) 7 12 

13 San Antonio (CHI) Long Beach (USA) 1 1 

14 San Antonio (CHI) Charleston (USA) 4 5 

15 San Antonio (CHI) New York (USA) 12 33 

16 San Antonio (CHI) Port Elizabeth (USA) 1 1 

17 San Antonio (CHI) Philadelphia (USA) 3 3 

18 Valparaíso (CHI) New York (USA) 2 8 

19 San Antonio (CHI) Nola (USA) 1 1 

20 San Antonio (CHI) Nola (USA) 2 4 

21 San Antonio (CHI) Seattle (USA) 2 2 

22 San Antonio (CHI) Boston (USA) 1 2 

23 Melbourne (AUS) Miami (USA) 1 3 

24 Melbourne (AUS) Philadelphia (USA) 1 4 

 

3.3 Regression model: fitting and validation 

An autoregressive model was fitted, in which the internal temperature only depends on 

its previous lags and on the external temperature, that it is, a model of type 

 

where yt represents the temperature inside the containers at a time t, xt represents the 

external temperature at the same time, K is the amount of internal temperature lags to 

      (1) 
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consider, and εt ~iid N(0, σ2). Each lag represents a 6-hour period. To fit the model, 

external temperature lags xt-k were not included, as their effect is summarized in the 

effect of the internal temperature lags. The fitting was made with information from 65 of 

the 74 trips (19,097 training data), and with temperature data on Celsius scale. To select 

variables, the model of equation 1 was initially fitted without any internal temperature 

lag. Subsequently, the first lag (K = 1), second (K = 2) lag, and so on were considered, 

until the increase of R2 value was observed to be insignificant.  

 

The model was used to forecast (every 6 hours) the internal temperatures along 9 trips 

(2,294 test data) of various durations and during different seasons. To measure the 

accuracy of the forecast, two scale-dependent measures were selected: MAD, which, as 

Hyndman (2014) suggests, is easy to understand, and RMSE, which has been used in 

previous studies where the temperature is the dependent variable (Laanaya et al., 2017; 

Sahoo et al., 2009). On the other hand, unlike MAD, it penalizes errors of greater 

magnitude. The advantage is that these measures are in the same data scale (° C). For a 

set of N internal temperature forecasts zt, t = 1,…,N and their respective realizations yt, t 

= 1,…,N, the MAD and the RMSE are defined, respectively, as 

 
 

 
 

    

3.4 Arrhenius equation 

The Arrhenius equation is a mathematical expression that allows to relate the speed of a 

chemical reaction based on the temperature at which it occurs. In this case, the decrease 

in the quality of the wine, can be correlated directly with the acceleration in its chemical 

reactions. 

(2) 

(3) 
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The Arrhenius equation relates the constant of a chemical reaction k, with the 

temperature at which it occurs, according to the expression 

  

where k0 is a constant, Ea corresponds to the activation energy, measured in J/mol, R is 

the universal constant of the ideal gases, measured in J-1·K-1·mol-1, and T is the 

temperature in Kelvin scale (K). Mac Cawley's method (2014) considers that the 

absolute increase in the speed of chemical reactions during a time t, with respect to 

normal temperature conditions, is given by the expression 

 

which represents the difference between the speed at which the reaction occurs at a 

variable temperature T and the speed at which it occurs at a base temperature Tb, during 

a time t. As base temperature, the optimal storage temperature of wine is taken, that is, 

13°C (Butzke et al., 2012). By calculating the quotient of the expression in equation 5 

and the reaction rate under optimal conditions, that is, by k0·t·exp(-Ea/RTb), a percentage 

increase in the speed of chemical reactions is obtained: 

 
 

                                                 
 

By integrating equation 6 over a trip, the accumulated acceleration of chemical reactions 

can be quantified as percentage, denoted as Δv (%).  

3.5 Indicators and risk definition 

Two practical cases were studied. The aim was to indicate which of the routes is the 

most convenient to use in terms of risk and cost (alternative route), in case the cheapest 

route is not the least risky. The route risk was assessed based on the internal temperature 

forecast, using the model obtained in equation 1. As an external temperature forecast, 

      (4) 

     (5) 

      (6) 
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the historical means of temperatures at each point along the route are used. These are 

calculated based on the last 30 annual realizations until now, obtained with NCEP-

NCAR database (1996).  

 

It is assumed that the probability of the merchandise arriving in poor condition is an 

increasing function of three proposed indicators, considered equally important. In this 

way, a route risk index ρ (non dimensional) was calculated for each route, based on the 

percentage difference between its indicators value and the indicators value of the 

cheapest route. The indicators are defined as follows. Firstly, the standard deviation 

(variability) of internal temperatures along the trip is calculated, denoted by σ (°C). 

According to Mac Cawley (2014), changes in temperature can cause piston movements 

on the corks, increasing the risk of the wine oxidation. Furthermore, a threshold of 25°C 

is proposed. This temperature is considered dangerous for wine quality (Mac Cawley, 

2014), specially during long periods of exposure (Ough, 1992). The second indicator is 

the travel time τ (days) in which this threshold is exceeded. Finally, based on the 

Arrhenius equation and previous study of Mac Cawley (2014), the last indicator is Δv 

(%), defined by equation 6. As base temperature, the optimal storage temperature of 

wine is taken, that is, 13°C (Butzke et al., 2012). The specific values of the parameters 

are Ea = 41,223 J/mol and R = 8.314472 J-1·K-1·mol-1. The value of Ea corresponds to the 

activation energy of starch hydrolyzed alcohol fermentation by the yeast Saccharomyces 

cerevisiae, used in wine fermentation (Mac Cawley, 2014; Converti et al., 1996). As 

temperature values in equation 6, the temperature forecast is used. Then, if a given route 

and the cheapest route have indicators Δv, τ, σ and Δvc, τc, σc, respectively, ρ (%) is 

defined as: 

 

where ωi = 1/3, i = 1,...,3. In this study, a given route is considered less risky than the 

cheapest route if it presents a positive ρ value. If various routes satisfy this condition, the 

alternative route is selected based on unitary costs, i.e. the route which presents the 

lowest value of the quotient of the transportation costs difference (compared with the 

      (7) 
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cheapest route) and its ρ value. This quotient is considered as the unitary (marginal) cost 

of risk reduction, denoted by cρ.  

 

For each case analyzed, two departure dates were defined: 1 January and 1 July. 

Information on the services provided by different shipping companies was used to 

determine the travel time from the port of origin to the port of destination. With this 

information, arrival dates were obtained. On the other hand, maps of routes between 

ports are available at marinetraffic.com (2007), which provided the length and marked 

points that define the routes. The transportation costs of the routes were quoted in US 

dollars with different shipping and freight forwarders companies, based on a port-to-port 

service of a 20-foot dry van container, full of bottled wine (FCL). Finally, various values 

of the weights ωi, i = 1,...,3 of equation 7 were used to calculate ρ for the routes of the 

second case in July, with the objective of showing how risk assessment of routes and the 

choice of alternative routes depend on the importance assigned to each indicator. 
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4. RESULTS 

In this section the results obtained are presented. Firstly, the correlations obtained 

between the internal and external temperatures and the results of the fitted model are 

shown. Secondly, the validation of the model and the obtained forecast error measures 

are presented. The last part presents the results for the application cases. 

4.1 Correlations and fitted model 

A total of 167 different correlations between internal temperature values and their 

respective external temperature values were calculated. Each correlation value was 

calculated based on a specific thermograph, as pointed out in section 3.1. Some 

statistical measures of the correlations obtained are shown in Table 2: 

 

Table 2: Statistical measures of obtained correlations. 

Indicator Value 

Min. 0.601 

Mean 0.802 

Median 0.814 

Upper quartile 0.888 

Max. 0.960 

 

Approximately, 50% of the correlations obtained are greater than 81.4%, while 25% are 

higher than 88.8%. The results indicate moderate and a strong linear relationship 

between these variables (Ratner, 2009). As an example, a graph of the internal and 

external temperatures related to a single thermograph is presented in Figure 6: 
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Figure 6: Example: external and internal temperatures related to a single thermograph. 

 

In this case, the correlation value is 88.9%. As pointed out in section 3.3, to fit the 

model, the training data were obtained from 65 of the 74 trips. The results of the fitted 

model are presented in Table 3:  

 

Table 3: Model results. 

Variable Estimator SE t value p value CI inf (95%) CI sup (95%) 

Intercept 0.0252 0.0382 0.6604 0.5090 -0.0497 0.1002 

xt 0.0348 0.0027 12.9842 0 0.0296 0.0401 

yt-1 0.6980 0.0066 106.4369 0 0.6852 0.7109 

yt-2 -0.0296 0.0067 -4.4165 0 -0.0428 -0.0165 

yt-3 0.1154 0.0067 17.2883 0 0.1023 0.1284 

yt-4 0.6445 0.0068 95.0867 0 0.6312 0.6578 

yt-5 -0.4643 0.0065 -71.6325 0 -0.4770 -0.4516 

  

R2 0.9514 

Adjusted R2 0.9514 

RSE 1.3152 

Observations (N) 19,097 

F statistic 62,318.9430 (p value = 0) 
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The internal temperature was considered up to the fifth lag (K = 5 in equation 1). The 

value obtained by R2 indicates that the variation of yt is explained up to 95.14% due the 

variation of the explanatory variables, while the high value of F statistic indicates a 

significant relationship between the response and the explanatory variables. An 

interpretation of the estimators values is provided in Section 5 (Discussion). As 

mentioned in section 3.3, a forward method was used to add variables to the model. 

Firstly, the model in equation 1 was fitted, which considers only the external 

temperature as a regression variable. Then, the lags of internal temperature were added 

until the increase in the value of R2 was not significant. The last significant increase of 

R2 occurred when the fifth lag (K = 5) was added. Figure 7 shows the increase in the 

value of R2 and the decrease in the value of the mean of squared error (MSE) of these 

models: 

 

 

                               (a) Value of R2.                                                                   (b) Value of MSE. 

Figure 7: R2 and MSE v/s lags of internal temperature in models (lags of yt on horizontal axis). 
 

4.2 Model validation 

As mentioned in the section 3.3, the model was tested on 9 trips (2,294 points). The two 

indicators used to determine the quality of the forecast of the fitted model were MAD 

and RMSE. The results obtained for the accuracy of forecasts on each trip and global 

data (considering large vectors that link all the values of current temperatures and 

forecast) are presented in Table 4: 
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Table 4: RMSE and MAD for forecast using testing data. 

Trip RMSE (°C) MAD (°C) 

1 2.472 1.012 

2 2.674 0.725 

3 0.069 0.198 

4 3.090 0.966 

5 0.780 0.527 

6 0.218 0.318 

7 0.236 0.357 

8 1.940 0.991 

9 2.142 0.836 

Global 1.425 0.805 

 

 The obtained values of RMSE are in a low-normal range, compared with those that 

have been obtained in research in which the temperature is predicted (Laanaya et al., 

2017; Gómez et al., 2014). In the study by Laanaya et al. (2017), quoted in section 2, 

values ranging from 1.29°C to 2.26°C were obtained by the regression model, while its 

global value was 1.83°C. The best performance model had a global value of 1.44°C, 

higher than the global RMSE obtained by the model in this study. The performance of 

other meteorological models has been measured with RMSE. Gómez et al. (2014) 

obtained values ranging from 2°C to 4°C for hourly forecast temperatures of RAMS 

model, in 72-hour periods. The RMSE values varied according to day or night, different 

seasons of year, and geographic location of meteorological stations (inland or coastal), 

within Valencia region (Spain). The authors concluded that RAMS performance was 

good in spring and summer for coastal stations and in fall and winter for inland ones, 

with RMSE ranging from 2°C to 3°C and 2°C to 4°C, respectively. The RMSE values 

per trip obtained in this study are low-normal compared with this range, and the global 

result is significantly smaller. On the other hand, the quality of the forecast is such that, 

the mean absolute deviation of 1.012°C was not exceeded for any trip. The global result 

of MAD was 0.805°C. These results indicate that, on an average, the forecast errors are 
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less than 1°C. As an example, Figure 8 presents the forecast and actual temperatures 

recorded for trip 4, and the corresponding tracking signal: 

 

 

                                     (a) Trip 4.                                                                    (b) Tracking signal. 

Figure 8: Forecast and actual temperatures for trip 4 and tracking signal values. 

 

4.3 Decision making 

The results are shown in the first two parts of this section. The aim was to indicate 

which route is the most convenient to use in terms of risk and cost, according to the 

criterion defined in section 3.5. The numeration and shape of the routes under study are 

shown in Figures 9 and 11, for each case, respectively. The case results are shown in 

Tables 5 and 6. Each table presents, for each route, the values of Δv, τ, σ, ρ (with ωi = 

1/3, i = 1, 2, 3) and of the unitary costs of risk reduction cρ (USD/%) for each departure 

date, and its transportation cost (USD). 

 

Furthermore, at the end of each case, heatmaps based on the internal temperature 

forecasts are presented in Figures 10 and 12. Finally, case 2, in July, was used as an 

example to show how different indicator weight values on ρ equation (7) affect the 

routes risk assessment and the choice of alternative routes. This example is presented in 

the last part of this section. 
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4.3.1 Case study 1: Melbourne (AUS) – Oakland (USA) 

In this case, four routes from Melbourne (AUS) to Oakland (USA) were compared, with 

35-day window. The routes studied are shown in Figure 9: 

 

 

Figure 9: Routes from Melbourne (AUS) to Oakland (USA) (Mercator projection). Source: QGIS 

2.18.15. 

 

In this case, the cheapest route is route 4. The results for January and July are presented 

in Table 5: 
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Table 5: Case 1: results for indicators and unitary costs of risk decrease. 

Month Indicator/Route 1 2 3 4 

January 

Δv (%) 54.914 36.672 27.167 28.124 

τ (days) 0 0 2.1 1.4 

σ (°C) 3.402 7.255 7.641 7.238 

ρ (%) 19.244 23.018 -17.391 - 

cρ (USD/%)  119.518 8.689 -11.500 - 

July 

Δv 68.198 52.316 45.845 43.287 

τ 12.1 0.9 4.7 4 

σ  5.259 4.435 4.774 4.546 

ρ  -91.077 19.947 -9.447 - 

cρ   -48.311 10.027 -21.171 - 

Cost (USD) 4,400 2,300 2,300 2,100 

 

The following can be noted:  

 Risk results: The values of the first two indicators increase in July for all routes, 

because most of their trajectory is in northern hemisphere (summer season). In 

January, routes 3 and 4 are less risky than routes 1 and 2 in terms of Δv. 

However, in terms of τ, the wine is exposed to temperatures above 25°C for 2.1 

and 1.4 days, respectively. Lastly, route 1 has less variability than the others. In 

terms of τ, routes 1, 3 and 4 are riskier than route 2, as wine can be exposed to 

temperatures above 25°C for 12.1, 4.7 and 4 days, respectively. On the other 

hand, variability results show that route 1 is the most variable. In this sense, the σ 

value increases only for this route, while it decreases for routes 2 to 4. Finally, 

according to the route risk index ρ, the route that presents the lowest risk is route 

2, for both months. 

 Alternative route: Route 4 is the cheapest with a value of USD 2,100. Based 

only on cost, it should be preferred in any season. Considering the indicators as 

equally important, the values of ρ indicate that only route 2 should be considered, 

with an extra cost of USD 200, for both months. The main advantage of this 

route compared with the others is its low τ. The risk reduction reaches 23.018% 
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and 19.947%, while the costs of risk reduction are USD 8.689 and 10.027 per 

unit of risk percentage, for January and July, respectively. In this case, the 

unitary costs and the ρ values of the alternative route are similar for both months. 

 

The heatmaps for January and July are shown in Figure 10: 

 

 

              (a) Case 1: January (Mercator projection).                          (b) Case 1: July (Mercator projection). 

 

(c) Temperature scale (°C). 

Figure 10: Heatmaps of routes in case 1. Source: QGIS 2.18.15. 

 

4.3.2 Case study 2: Melbourne (AUS) – Miami (USA) 

This case compares five routes between the ports of Melbourne (AUS) and Miami 

(USA) with a 40-day time window. The routes are shown in Figure 11: 
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Figure 11: Routes from Melbourne (AUS) to Miami (USA) (Mercator projection). Source: QGIS 2.18.15. 

 

In this case, route 5 is the cheapest. The results for January and July can be seen in Table 

6: 

 

Table 6: Case 2: results for indicators and unitary costs of risk decrease. 

Month Indicator/Route 5 6 7 8 9 

January 

Δv (%) 51.412 20.763 27.655 55.276 39.731 

τ (days) 0 0 0 0 0 

σ (°C) 3.532 5.481 5.955 3.034 4.163 

ρ (%) - 1.472 -7.470 2.193 1.612 

cρ (USD/%)  - 271.739 -53.548 729.59 434.24 

July 

Δv 80.849 45.348 47.521 28.924 15.116 

τ 18.8 0.2 0 2.4 0.4 

σ  5.269 3.867 3.980 4.375 5.036 

ρ  - 56.253 55.230 56.210 61.270 

cρ   - 7.111 7.242 28.465 11.425 

Cost (USD) 1,900 2,300 2,300 3,500 2,600 
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The following can be noted: 

 Risk results: The values of the first two indicators increase in July for the first 

three routes, and decrease for the others, because a significant part of the last two 

routes is in the southern hemisphere (winter in July). In January, routes 6 and 7 

are significantly less risky than the others in terms of Δv. In terms of τ, there is 

no risk on any route. Lastly, route 8 has less variability than the others. In July, 

results for Δv show that routes 8 and 9 are the least risky, because it is summer in 

the northern hemisphere. In terms of τ, routes 6, 7 and 9 have no risk. Route 8 

indicates 2.4 days with temperatures over the 25°C threshold, while route 5 is the 

most critical, with 18.8 days with temperatures over 25°C. On the other hand, 

variability results show than now route 5 is the most variable. In this sense, σ 

value increases for routes 5, 8 and 9, while it decreases for routes 6 and 7. 

Finally, according to ρ, route 8 poses the lowest risk in January (with a value of 

2.193%), while route 9 does it in July (with a value of 61.270%). 

 Alternative route: route 5 is the cheapest with a value of USD 1,900, and, based 

only on cost, it should be preferred in any season. Considering the indicators 

equally important, the values of ρ indicate that the only alternative is route 6, 

with an extra cost of USD 400, for both months. The risk decrease reaches values 

of 1.472% and 56.253%, while the costs of risk decrease are USD 271.739 and 

7.111 per unit of risk percentage, in January and July, respectively. In this case, 

there is a significant risk decrease with a low unitary cost in July, while a very 

low risk decrease with a high unitary cost is reached in January. 

 

The corresponding heatmaps for January and July are shown below, in Figure 12: 
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    (a) Case 2: January (Mercator projection).                        (b) Case 2: July (Mercator projection). 

 
 

(c) Temperature scale (°C). 

Figure 12: Heatmaps of routes in case 2. Source: QGIS 2.18.15. 

 

4.3.3 Case study 2: Route risk index analysis 

The routes risk assessment and the alternative routes of the case studies can change 

depending on the risk criteria, that is, the assigned relevance to each indicator, 

represented by changes in the indicators weights in ρ definition (equation 7). This is 

exemplified with case 2, in July. The analysis was carried out varying in 0.05 units the 

values of weights ω1, ω2 and ω3, ranging from 0 to 1, in a lexicographical order, with the 

aim of generating a set of points Ω on the plane ω1 + ω2 + ω3 = 1. In this way, ρ was 

calculated on each point according to equation 7, and the alternative routes were defined, 

considering their unitary costs of risk reduction. 

  

Figure 13 presents two colormaps for routes 6 to 9. In the first one, each color indicates 

the least risky route on each point of Ω. Analogously, in the second, each color indicates 

the most convenient route to use, instead of the cheapest, by considering the unitary 

costs of risk reduction: 
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                (a) Least risky routes in case 2, July.                      (b) Alternative routes in case 2, July. 

Figure 13: Colormaps of least risky and alternative routes in case 2, July. Source: R 3.4.4. 

 

With regard to most criteria, route 9 is the least risky, especially when Δv is considered 

highly important. On the other hand, route 6 is the least risky when σ is considered 

important, while the same holds true for route 7 and τ. Conversely, route 8 is considered 

the least risky only on a very specific combination of ω1, ω2 and ω3. 

 

Considering the unitary costs of risk reduction, route 6 should be selected as an 

alternative route for most of the criteria, as it is better than routes 8 and 9, due its low 

transportation cost (difference of USD 400 with the cheapest route), and consequently, 

its unitary cost of risk reduction. For the same reason, route 7 should be selected as an 

alternative instead route 9, based on high values of. Route 9 is selected only when Δv is 

considered highly important. 
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5. DISCUSSION 

Results show a strong correlation between the temperature inside the containers and the 

outside temperature: a median of 81.4% and an upper quartile of 88.8% were obtained 

for the calculated correlations. This indicates that the outside temperatures have a 

significant effect on the inside temperatures in the case of dry van containers. It should 

be noted that this effect is not perfect. Therefore, it is not sufficient to know the external 

temperatures along a route to quantify its risk. It is necessary to correctly model the 

effect of the outside temperature on the temperature inside the containers. 

 

Regarding the values of the estimators of the fitted model, it is necessary to discuss 

several aspects. It seems contradictory that the estimator value of α1 is only 0.0348, 

because the correlation between the external and internal temperatures in all trips was 

greater than 0.6. This is explained by the fact that the external temperature variable loses 

significance in the presence of internal temperature lags. On the other hand, high 

estimations of β1 (6-hour lag) and β4 (24-hour lag) were obtained. The first value 

(0.6980) could be explained by thermal inertia and the effect of the most recent 

temperature on the current temperature. The concept of thermal inertia was studied 

previously by Hartley (2001). Meanwhile, the significance of the internal temperature of 

the previous 24 hours (value of 0.6445) can be explained by the fact that a good 

predictor of the next days temperature at a time t is current days temperature at the same 

instant. On the other hand, the estimator of β2 is negative (-0.0296), and is explained by 

a "day-night" effect of the 12-hour lag temperature on the current temperature. However, 

the estimator values of β3 (18-hour lag) and β5 (30-hour lag) are not easily interpretable. 

 

Regarding the model validation, it can be noticed that the prediction quality of the model 

is completely satisfactory, according to the values obtained for MAD and RMSE, as 

shown in Table 4. The results indicate a good forecast performance. MAD values are 

easily interpretable, and, with a global value of 0.805°C, are considered low for a 

forecast with a 6-hour frequency and over 2-week periods. The RMSE values are low-
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normal compared with previous researches (Laanaya et al., 2017; Gómez et al., 2014), 

as mentioned in section 4.2, with a global value of 1.425°C. 

 

With regard to the case study results, a seasonal behavior of the proposed indicators is 

observed as expected. Those routes that are mostly in the northern hemisphere, present 

higher values of their  first two indicators during July, while they decrease in January, 

contrary to those that are mostly in the southern hemisphere, as shown in case 2 of 

section 4.3.2. In case 1 of section 4.3.1, the values of their first two indicators increase 

for all routes in July. With regard to σ, the reasons which explain its seasonal behavior 

are not clear. However, it can be noted that the value of the σ decreases for routes closer 

to the North Pole in July (routes 2 to 4 in case 1, and routes 6 and 7 in case 2). As a 

result of the indicators seasonal behavior, in terms of the route risk index ρ (with equal 

importance for all the indicators), the results of the case studies indicate that, in general, 

there is no least risky route at any time of the year. As case 2 shows, route 8 is the least 

risky one in January, while route 9 is the least risky in July. On the other hand, the 

cheapest route can be riskier for wine quality than some of the more expensive routes, as 

noted in both cases. Moreover, in case 2, in July, the cheapest route is always riskier 

than another one, according to any criterion analyzed in section 4.3.3. In this section, as 

shown in the first colormap of Figure 13, it is noted how the risk assessment depends on 

the risk criteria, and any route could be the least risky one. On the other hand, the second 

colormap shows how the routes transportation costs along routes become a determining 

factor for the choice of alternative routes: routes 6 and 7 (costs of USD 400) are 

preferred, instead of routes 8 and 9 (costs of USD 1,600 and 700, respectively) on points 

where the  latter are considered the least risky routes. In this sense, the variation of ρ for 

each route according to various risk criteria is not sufficient to balance the difference in 

transportation costs: routes 6 and 7 are more similar to routes 8 and 9, based on risk 

instead of costs. 
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6. CONCLUSION 

It is necessary to improve maritime transport decisions within the international supply 

chain, while considering the risk to wine quality due to transport temperatures. 

Currently, these decisions are based only on the transportation cost of the routes, with 

preference given to the minimum cost route between ports of origin and destination, and 

no consideration for the risk to wine quality. 

 

With the objective of supporting the current transport decision making, the correlation 

between internal and external temperatures has been studied for the first time within the 

transport sector, and a simple autoregressive model of six variables has been fitted. This 

model allows the forecast of the temperature inside standard shipping containers (dry 

van) along any maritime route in the world, during any time of the year, and assigns risk 

indicators to each route. To achieve this, the data of temperatures inside containers were 

obtained from the database by Mac Cawley (2014). Subsequently, the corresponding 

external temperature values were assigned, based on the data provided by NOAA 

(1996). In this way, the correlation study and the model fitting were carried out. Once 

the model was validated according to the values of MAD and RMSE, it was used to 

calculate three proposed indicators for wine quality along various routes in two case 

studies, based on the predicted temperatures and the Arrhenius equation. In both cases, 

the routes were studied according to their indicator values and costs, to determine which 

route can be used instead of the cheapest route. 

 

The obtained results indicate a moderate to strong lineal relationship (Ratner, 2009) 

between the internal and external temperatures, reaching correlation values over 60.1%, 

with a mean of 80.2%. On the other hand, the fitted model presents a great forecast 

performance, according to the obtained values of MAD and RMSE, with global values 

of 0.805°C and 1.425°C, respectively. Due the good model accuracy, the proposed 

indicators can be estimated with high confidence for various maritime routes. 
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The results of the case studies indicate that the cheapest routes can be riskier than some 

of the more expensive routes. It is possible to decrease the risk to wine quality 

significantly by using alternative routes. There is a strong seasonal behavior among the 

indicators. Thus, considering the seasonal factor in the route risks, there may not be a 

least risky route at any time of the year. Furthermore, the route risk assessment depends 

on the criteria, that is, the importance assigned to each indicator. 

 

Future efforts should focus on the origin, by improving the data capture. The main 

limitations of this work are related to this issue. Firstly, with regard to the internal 

temperature measurements, although each measurement time was known, the 

geographical position of the ships had to be interpolated. Secondly, considering the 

interpolated position as the actual one, the corresponding external temperature value was 

assigned by determining the closest point and time in the NCEP-NCAR point mesh to 

the interpolated point. Consequently, the external temperature values assigned were not 

exact. On the other hand, the containers positions on the ships were not registered. 

Therefore, this was not considered a variable in the fitted model. Containers exposed 

directly to the sunshine can have a different internal temperature from those that are 

surrounded by other containers. If it is possible to register the internal and external 

temperatures along maritime trips, and other variables as the containers positions, the 

inaccuracies will be minimized and a more accurate model can be developed. Future 

approaches can focus on documenting the temperatures inside dry van containers and the 

arrival status of the merchandise in various trips, with the aim of modeling the 

probability p = p(Δv, τ, σ,…) of loss of merchandise, according to the proposed 

indicators and other variables, in order to define a specific risk criterion to choose 

alternative routes. If the value of the transported merchandise is USD V, the risk cost 

becomes USD p·V. If probabilities of loss, pc and pa, are estimated for the cheapest and 

the alternative route with pc > pa and with prices USD cc and ca, respectively, the latter 

route should be preferred if the risk cost difference is greater than the transportation cost 

difference, that is, if (pc - pa)·V > ca - cc. 
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This work could be of interest to wineries, freight forwarders, and shipping companies. 

As a customer, a winery can assess the risk of the routes offered by shipping companies 

and freight forwarders, and improve transport decision making. As a supplier, a freight 

forwarder or a shipping company can offer better services by offering the costumer a set 

of routes with various risks to wine quality. 
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APPENDIX: INTERPOLATION ALGORITHM EXPLANATION 

The algorithm is described as follows. Consider the representation of φ for longitude and 

λ for latitude. The following input is considered, given a device with M measurements 

during a trip, associated with: 

 a maritime route with length d, marked with N points defined as p1 = (φ1, λ1),…, 

pN = (φN , λN), where point p1 corresponds to the port of origin and pN to the port 

of destination, 

 times of beginning and end of the trip ti, tf, respectively, and 

 times t1,…,tM  of temperature measurements, ordered chronologically. 

The purpose is to determine the approximate position of the ship at each measurement 

time tm, m = 1,…,M. The positions to be determined are defined as points qm = (φm, λm), 

m = 1,…,M. The two stages of the algorithm are as follows: 

 

1. Stage 1: 

1.1. Calculation of the distances between pairs of continuous points pn and pn-1 

along the route, defined as δn, with δ1 = 0. 

1.2. Calculation of accumulated distance to each point marked along the route, 

defined as  

. 

1.3. Calculation of the ship speed, as v = d/(tf – ti).  

 

The second stage is executed for each searched point qm = (φm, λm), m = 1,…,M: 

2. Stage 2: 

2.1. Calculation of the distance traveled up to the time of measurement tm, 

defined as dm = (ti – ti)·v.   

2.2.  Given the distance traveled until each measurement time m, the pair of 

marked points along the route between the ship was located is determined. If 

Δn  ≤ dm ≤ Δn+1, then the ship was between the mark marked points pn and 
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pn+1, and pn is defined as the lower extreme point and pn+1 as the upper 

extreme point associated to qm. If the same condition holds true for the 

previous searched measurement point, that is, Δn ≤ dm-1 ≤ Δn+1, m ≥ 2, then it 

is convenient to define the lower extreme point as qm-1, which is closer to qm. 

The lower and upper extreme points are denoted as en(m) and En(m), 

respectively. The extremes points are the points between the ship was, 

approximately, at time tm, following the direction from the lower to the 

upper point. 

2.3. The latitude λm and longitude φm of the searched point qm are initialized as 

the values of the coordinates of the lower extreme point, that is, λm = λn(m) 

and φm = φn(m). 

2.4. Calculation of the distance between the measurement point and the lower 

extreme point, defined as d2
m = dm - Δn(m). 

2.5. The longitude of the searched point is increased by a small angle Δφ:  

φm ← φm + Δφ. This angle can be positive or negative. If the longitude of the 

lower extreme point is less than the longitude of the upper point, then a 

positive Δφ is selected. Otherwise, a negative is selected. This allows 

considering the direction followed by the ship between the extreme points. 

2.6. Calculation of the new point latitude λm ←, assuming that the point is on the 

orthodrome between the extreme points. The orthodrome equation is used. 

2.7. Calculation of the distance between the obtained point qm = (φm, λm) and the 

point en(m), defined as d3
m, using orthodromic distances. 

2.8. If the orthodromic distance d3
m is similar to d2

m, that is, if |d3
m – d2

m| < ε, 

then the position of the ship at the time of measurement is determined and 

the algorithm returns the point coordinates (a point on the orthodrome 

between the extreme points which distance is very similar to d2
m was 

determined). ε is the error allowed. If not, it is necessary to return to point 

2.4, add a new longitudinal increase Δφ and execute steps 2.6, 2.7 and 2.8. 


