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ABSTRACT

Many problems in civil engineering consist in finding optimal designs to maximize

the rigidity of slender structures such as tall buildings, in order to diminish the relative

displacements between floors, or drifts, that the structure may suffer during an earthquake,

and also diminish the shear demand capacity (D/C) ratio, because a failure from shear is

very fragile, therefore very dangerous. It is known that the rigidity of slender structures is

directly related with its eigenfrequencies, specially the first or smallest of them. Another

important issue civil engineers have to deal with is finding the optimal shape of structures,

such as bridges, to maximize its rigidity using the same amount of material.

In this work we propose two shape optimization methods: geometric optimization and

full homogenization; in order to maximize the first eigenfrequency of slender structures

such as tall buildings with rectangular plant and uniform in height, and bridges. Compu-

tational algorithms are derived for each one of the methods. Furthermore the results for

drifts and shear D/C ratios are compared between the two methods, in order to analyze

advantages and disadvantages of each of them.

Keywords: eigenfrequencies, optimization, tall buildings, drift, shear demand ca-

pacity (D/C) ratio.
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RESUMEN

Muchos problemas en ingenierı́a civil consisten en encontrar diseños óptimos de

manera de maximizar la rigidez de estructuras flexibles como edificios altos, ya que ası́

se logran disminuir los desplazamientos relativos de entrepiso, o drifts, que pueda sufrir

la estructura durante un sismo, y además disminuir los factores de utilización por corte,

ya que las fallas de corte son muy frágiles y, por lo tanto, muy peligrosas. Es sabido que

la rigidez de estructuras flexibles, como edificios altos, está directamente relacionada con

sus frecuencias propias, especialmente la primera o más pequeña de ellas. Otro problema

importante en ingenierı́a civil es determinar la forma óptima de estructuras como puentes

de manera de maximizar su rigidez usando la misma cantidad de material.

En este trabajo se proponen dos métodos de optimización de forma: optimización

geométrica y full homogenización; que buscan maximizar la primera frecuencia propia

de estructuras flexibles como edificios altos de planta rectangular y uniformes en altura y

puentes de acero. Mostraremos la derivación de algoritmos computacionales para cada uno

de estos métodos. Además se comparan los resultados de drifts y factores de utilización

por corte de los dos métodos en edificios altos para analizar las ventajas y desventajas de

cada uno de ellos.

Palabras Claves: frecuencias propias, optimización, edificios altos, drift, factores de

utilización.
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1. INTRODUCTION

1.1. Motivation

Eigenfrequencies are of a major concern in both Structural and Mechanical Engineer-

ing because of their implications in the design of structures and mechanical devices.

In structural engineering, the design of structures are mainly controlled by the effects

of earthquakes in structures. And it is well known that earthquakes are excitations that

produce displacements in structures with a wide spectrum of frequencies. And if this spec-

trum covers some of the eigenfrequencies of a structure, specially the smallest of them,

the structure will have a considerable increase in its displacements and stresses. For this

reason it is important to develop an optimization method dedicated to modify the smallest

eigenfrequencies of a structure in order to diminish these increases in displacements and

stresses.

In many seismic countries the building codes for design of structures have specific

restrictions for the maximum displacements and stresses in a structure produced by earth-

quakes. For instance, in Chile the building design code NCh433of2010, see INN-Chile

(2010), have strict restrictions for relative displacement between two consecutive floors,

called drifts. These drifts are directly related to the stiffness of the building, which in turn

is related to the first eigenfrequency of the building and its corresponding eigenfunction.

Another important issue engineers have to deal with is the solicitations in the structure

induced by an earthquake. These solicitations produce shear stresses, that can produce the

collapse of the structure if they overcome the resistance of the materials the building is

made of. And as it is shown in this thesis, the shear stresses are related to the rigidity of

the building, and the rigidity is directly related to the first eigenfrequency of the building

and its corresponding eigenfunction, .

Another problem in structural optimization is to decide where to put reinforcements

inside structural components in order to obtain a desired behavior of the structural system.
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Walls and beams are usually made of reinforced concrete, that is to say they are a mixture

of two different materials, one is rigid and the other is more flexible, say steel and concrete.

Also, we would like to know the optimal shape of a structure, such as a bridge, in order to

use the same amount of material and for instance maximize the rigidity of the structure.

This is done with the full homogenization method simulating the flexible material as a

very weak one in a way that in the limit it emulates void.

1.2. Problem Definition/Problem Description

When a structural system, such as a reinforced concrete building or a bridge, suffers

and external excitation that is cyclic or harmonic with a singular frequency or a variety

of frequencies as in an earthquake or movements produced by winds during a storm, the

structural system tends to move in a way that is mainly tuned or syntonized with its natural

frequencies or eigenfrequencies. When the frequencies of the external excitation are very

similar to the eigenfrequencies of the structural system, specially the first eigenfrequen-

cies, the displacements and stresses in the structural system increase. This phenomenon is

called pseudo-resonance.

These eigenfrequencies depend only on the structural system itself and are calculated

using the Rayleigh quotient.

Definition: for a given real symmetric matrix A and nonzero vector x, the Rayleigh

quotient R(A, x), is defined as:

R(A, x) =
xTAx

xTx
. (1.1)

It can be shown that, R(A, x) reaches its minimal value for a given real-symmetric matrix

A. The minimal value ofR(A, x) is λ1, the smallest eigenvalue ofA (square of the smallest

eigenfrequency in a physical system) and v1 is its corresponding eigenvector.

In the following chapters we are focus in finding an expression for (1.1) in two dif-

ferent settings. In chapter 2, matrix A is obtained from the weak formulation of equation

2



(2.1). In chapter 3, matrix A is M−1K, where M is obtained from the right- hand side of

equation (3.8) and K, from the left-hand side of equation (3.8) in the weak formulation.

We use the corresponding expressions for (1.1) as an objective function for optimization

algorithms.

1.3. Shape Optimization

Shape Optimization is a very active field of research, located at the crossing of civil,

mechanical, aeronautic engineering and applied mathematics and which has seen impor-

tant progress in the last thirty years or so. One could trace the first attempts to give it a firm

mathematical foundation to the work of J. Hadamard at the beginning of the XX century,

see Hadamard (1907), with its celebrated theorem that states that the shape derivative will

only depend on the deformation of the boundary of the current domain, along its normal

direction. Much later, in the 1970’s F. Murat and J. Simon significantly expanded the work

of Hadamard. See Murat and Simon (1976). There was, however, a fundamental problem

with this approach, namely that one could not create holes in the current domain, because

this will involve a discontinuous mapping from the current domain to the perturbed one.

This has been overcome now days by what is called topology optimization, which has

several lines of work, mainly homogenization based techniques, topological derivatives

and penalization techniques. See for example Allaire (2002), Novotny and Sokolowski

(2010), Bendsøe and Sigmund (2003) and Allaire et al. (2002).

One major difficulty of some of the above mentioned techniques is that they need a

fair amount of mathematical training to be safely applied. This has naturally made their

popularization among practitioners quite slow. One way around this difficulty is the use

of surrogate models, to solve a much simpler optimization problem and then translate

its results to the actual problem, hoping that it gives a sufficiently good performance.

In this work we concentrate on the problem of maximizing the first eigenfrequency of a

3



tall slender building, by modifying the depth of its columns, as a function of the vertical

direction.

This problem has been studied before by several authors. In Allaire et al. (2001),

Gopal (2007), Yoon (2009) and Kim et al. (2003). In this work we first use a surrogate

model of the building, based on a membrane of variable thickness, for which we derive a

very simple geometric optimization method to maximize its first eigenfrequency by chang-

ing its thickness profile. Next, we use the more powerful machinery of homogenization

applied to elasticity, that consist on allowing for mixtures of two elastic materials at the

micro-scale and obtaining the homogenized characteristics of the material at the macro-

scale. This technique is more expensive than geometric optimization used in the previous

chapter, but the results obtained are quite similar, validating the use of the surrogate model.

1.4. Summary of Contributions/Original Contributions

Here we present a list of original contributions developed in this thesis.

1. Implementation of a numerical algorithm developed by Arnoldi et al. from the

LAPACK group in order to obtain the first eigenvalue of a membrane with variable

thickness using FreeFem++. See chapter 2.

2. Find practical applications in structural engineering for the geometric optimiza-

tion method, such as tall buildings. See chapter 2.

3. Find practical applications in structural engineering for the full homogenization

method using FreeFem++, such as walls and bridges. See chapter 3.

1.5. Objectives

In its second chapter this work is concerned with improving the performance of a

slender structure as a tall building, by only modifying the depth of the columns of each

floor in a way to increase its first natural frequency. This will render the structure more

rigid, which is not always what is desired, diminishing its lateral displacements, but what is

4



more important, diminishing the maximal drift, which is the relative displacement between

two consecutive floors, and also diminishing the shear D/C ration, which measures how

far from being subject to collapse loads is the building. This optimization problem will

be solved by using as a surrogate model of the building a membrane of variable thickness,

only subject to transversal displacement, because the optimization technique we will use to

make the membrane stiffer, namely geometric optimization, is quite simple and effective.

The validity of this surrogate model requires the building to be slender in one horizontal

direction and sufficiently tall, so that its first vibration mode, or eigenfunction associated

with its first eigenfrequency, will be that of cyclic displacements only in the direction in

which the building is slender.

The third chapter is dedicated to a more complex method, full homogenization, which

allow us to develop more robust optimization algorithms in order to maximize the first

eigenfrequency of structural systems. It is important to notice that with this method we

can develop more sophisticated models and obtain better results. A brief description of

the mathematical model and the optimization algorithms is presented in chapter 3. Some

numerical examples are presented. Although the mathematical description of the method

and the numerical examples are in 2D, there is no mathematical obstacle to apply the full

homogenization method in the 3D setting. But for reasons of time and computational

capacity we were not able to apply it in 3D. However, the mathematical formulation of the

full homogenization method in 3D is shown in appendix A.2.3.

1.6. Thesis Outline/Document Organization

The content of the thesis is as follows.

Chapter 2 presents the mathematical formulation and computational algorithm for the

maximization of the first eigenfrequency of the surrogate model as a membrane of a slen-

der building, results and comparisons are made for different examples.

Chapter 3 presents a description of the full homogenization method, then the mathematical

5



formulation and computational algorithm for the maximization of the first eigenfrequency

of different structures, such as shear walls and bridges, results and comparisons are made

for different examples.

Chapter 4 presents a comparison between geometric optimization from chapter 2 and full

homogenization from chapter 3.

Finally chapter 5 presents a series of conclusions for the current thesis.

6



2. GEOMETRIC OPTIMIZATION USING A MEMBRANE

2.1. Basic Assumptions

If a structural system, such as a tall building, has a regular geometry both in floor and

in height, and if in floor one of its dimensions is bigger than the other in a reason of 2:1 or

more, it is reasonably to think that its behavior will be similar to that of a 2-D membrane

both in displacements and in stresses. Hence we model a tall building, with the mentioned

features, as a 2-D membrane. Figure 2.1 shows the geometry of the 2-D membrane. By

doing this we can develop an optimization method in a much simpler problem and then

translate the results to the actual problem. Now we describe the basic assumptions used

for this 2-D membrane model, figure 2.1 shows the geometry of the 2-D membrane.

z

y

x

u(x,y)
h(x,y)

L

b

FIGURE 2.1. 2-D Model of a Membrane.

Let Ω be a rectangular domain, representing a membrane of variable thickness

h : Ω → [hmin, hmax], with 0 < hmin ≤ hmax being given values. The membrane

has only displacements in the perpendicular direction of its plane, z. And its thickness,

h is a continuous function in L∞(Ω). Ω is a bounded and connected (without holes)

7



domain with two different boundary conditions. One is a zero displacement Dirichlet

condition, in figure 2.1 that condition corresponds with the lower bottom of the membrane.

The second boundary condition is a zero-traction Neumann condition, in figure 2.1 this

condition corresponds with the upper and lateral boundaries of Ω.

The main assumption we make is that in the case of tall slender buildings, with one

dimension in floor bigger than the other in a reason 2:1 or bigger, the first eigenfunction

of the building will have only displacements in the direction perpendicular to the plane of

the building, similar to the displacements of a 2-D membrane as it is seen in figure 2.1. If

this occurs, the error made by modeling the tall building as a 2-D membrane would not be

so significant.

In the next sections we develop a method that maximizes the first eigenfrequency of

a 2-D membrane by making changes in its thickness h.

2.2. Mathematical Model

The first eigenvalue of a continuous physical system corresponds to the square of the

minor natural frequency of the system (eigenfrequency), and to obtain this eigenfrequency

we calculate the Rayleigh quotient. For this we need to solve the following problem on

the 2-D membrane (see figure 2.1):

−div(h∇u) = ω2 u in Ω,

u = 0 on ΓD,

h∇u · n = 0 on ΓN ,

 (2.1)

where u is the deflection and ω is an eigenfrequency.

To optimize on h we need to look at the variational, or weak, formulation of problem

(2.1). Then, as usual, the space where we look for the solution is:

V = {v ∈ H1(Ω); v = 0 on ΓD}.
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Now we multiply in (2.1) by a test function v ∈ V and integrate in Ω.∫
Ω

−div(h∇u)v dx = ω2

∫
Ω

u v dx

−
∫
∂Ω

v h∇u · n ds+
∫
Ω

h∇u · ∇v dx = ω2

∫
Ω

u v dx

−
∫
ΓD

v h∇u · n ds−
∫
ΓN

v h∇u · n ds+
∫
Ω

h∇u · ∇v dx = ω2

∫
Ω

u v dx

The first and second term on the left-hand side of the last equation are zero because of the

boundary conditions stated in (2.1).

Then, the variational formulation of problem (2.1) becomes to look for u ∈ V such

that ∫
Ω

h∇u · ∇v dx = ω2

∫
Ω

u v dx for all u, v ∈ V. (2.2)

Then if v = u we obtain the Rayleigh quotient

ω2 =
1

∥u∥2L2

∫
Ω

h|∇u|2 dx.

If u = u1 is the eigenfunction associated with ω2 = ω2
1 , the smallest eigenvalue, the

objective function we want to maximize becomes:

J(u, h) =
1

∥u∥2L2

∫
Ω

h|∇u|2 dx.

The set of admissible thickness functions is given by

Uad =

{
h : Ω → [hmin, hmax];h ∈ L2(Ω);

∫
Ω

h dx = V0, V0 ∈ R+

}
,

where V0 is a given value for the volume constraint on the total volume of the material

the membrane is made of. Because if not, the problem has an obvious solution of making

h = hmax.
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As we maximize by changing the thickness h, we differentiate the objective function

on this variable and evaluate it on a generic admissible perturbation k, then

∂J

∂h
(k) =

1

∥u∥2L2

∫
Ω

k|∇u|2dx+ 2

∥u∥2L2

∫
Ω

h∇u · ∇∂u

∂h
dx+

∂

∂h

(
1

∥u∥2L2

)∫
Ω

h|∇u|2dx,

(2.3)

we notice that ∂u
∂h

∈ V because u = 0 on ΓD for all h, therefore u does not change within

a change in h on ΓD, then ∂u
∂h

= 0 on ΓD. Thus, replacing 1
∥u∥2

L2

∂u
∂h

in (2.2) we get:

1

∥u∥2L2

∫
Ω

h∇u · ∇∂u

∂h
dx =

ω2

∥u∥2L2

∫
Ω

u
∂u

∂h
dx (2.4)

And,
∂

∂h

(
1

∥u∥2L2

)
= − 1

∥u∥4L2

∂

∂h

∫
Ω

u2 dx = − 2

∥u∥4L2

∫
Ω

u
∂u

∂h
dx (2.5)

Then, replacing (2.4) and (2.5) in (2.3),

∂J
∂h
(k) = 1

∥u∥2
L2

∫
Ω
k|∇u|2 dx+ 2ω2

∥u∥2
L2

∫
Ω
u∂u
∂h
dx− 2

∥u∥2
L2

∫
Ω
u∂u
∂h
dx
(

1
∥u∥2

L2

∫
Ω
h|∇u|2 dx

)
=

1

∥u∥2L2

∫
Ω

k|∇u|2 dx .

Clearly if k = |∇u|2

∥u∥2
L2

, we obtain a positive value of the derivative and then the objective

function will increase if we perturb h in this direction. Therefore, we can now propose

a numerical algorithm to maximize ω2
1 , based on the so-called method of perpendicular

directions, meaning that we optimize on h and then adjust the eigenfunction u.

2.3. Computational Algorithm

The previous method is encoded in the finite elements software FreeFem++, see Hecht

et al. (2007).

The steps of the method described in the previous section are the following:
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1. Let h0 be a given initial thickness.

2. With h0 we calculate u0, the first eigenfunction, using the Arnoldi algorithm, see

Trefethen and Bau (1997).

3. Evaluate the objective function, J(u0, h0) = 1
∥u0∥2L2

∫
Ω
h0|∇u0|2dx, the initial

smallest eigenvalue. Call this Jold.

4. Calculate the direction of perturbation of h, k = |∇u0|2

∥u0∥2L2
.

5. Calculate the new thickness: h = h0+k · t+ l, where l is the Lagrange multiplier

for the volume constraint. Choose l in such a way that hmin ≤ h ≤ hmax and∫
Ω
h dx = V0 .

6. Evaluate J(h). Call this Jnew. If Jnew ≥ Jold we keep maximizing. Make Jold =

Jnew, recompute u0 using the new h by the Arnoldi method and go to step (4).

If Jnew < Jold we diminish the value of t. If t becomes too small, we stop. If not,

go to step (5).

2.4. Applications

Now we want to use the numerical algorithm described in section 2.3, to make a tall

building stiffer in its most flexible direction. Then, we use a surrogate model of the build-

ing as a 2-D membrane, as described in section 2.1. The deflection of the 2-D membrane

will now represent the displacement of each point of the building in the most slender di-

rection of the building. ΓD corresponds to the lower end of the building, the part in contact

with the ground that we assume perfectly anchored, while ΓN is the rest of the boundary,

namely, the upper end and the vertical sides of the building.

We model three frame buildings made of reinforced concrete, the difference between

them is the number of stories. The first is a 20 story building, the second is 10 stories

height and the last one has 9 stories. The buildings have stories of equal height of 250 cm.

and have 4 resistent frames. The width of each frame is 3600 cm, see figure 2.2 (right).
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Initially all columns in these frames are of 60 cm in width and 60 cm in depth.

FIGURE 2.2. 3-D Model of the 20 story building (left) and one resistant frame (right).

As seen in the 9 story building, the method is only valid for buildings with more than 9

stories, with the mentioned geometry. Because the first eigenvector of the optimal 9 story

building does not correspond with the first eigenvector of the original 9 story building.

The membrane model maintains the aspect ratio of the building, for instance, in the

20 story building (figure 2.2) the total height of the building is 250x20=5000 cm and

3600 cm of width, and the membrane has the same proportions Height
Wide

= 5000
3600

= 1.3889.

Then, using this simplified model of the building, we optimize on the thickness using the

optimization algorithm of section 2.3.

Then, we use the results thus obtained on a 3-D numerical model of the building,

changing the depth of the columns. This is done using the commercial software ETABS.

Note: ETABS is a software widely used by civil engineers around the world to analyze

and design buildings made of concrete and/or steel. And it can satisfactorily model 3-D

buildings and calculate its stresses and deformations when subjected to different kind of
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solicitations, including earthquakes and in particular to design spectrums, such as the one

used in this thesis, namely NCh433of2010, see INN-Chile (2010).

In ETABS we model the three 3-D buildings and introduce the pseudo-accelerations

spectrum, see INN-Chile (2010), and calculate two things, Drifts and Shear Demand Ca-

pacity (D/C) Ratios.

Drifts: relative displacement between consecutive floors, see figure 2.3.

Drifti(%) =
ui − ui−1

Li

100

i
L

cm

cmi

i-1

u

u

i

i-1

FIGURE 2.3. Drift in floor i.

Shear Demand Capacity (D/C) Ratio: measures how far from being subject to collapse

shear loads is the building. Then, the Shear D/C Ratio is calculated as follows,

Shear D/C ratio =
Solicitation

Resistance

for each floor of the building.

The solicitation in the Shear D/C Ratio comes from the pseudo-acceleration spectrum.

We use the Chilean legislation for seismic design of reinforced concrete structures, see
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INN-Chile (2010), to calculate the pseudo-acceleration spectrum. We introduce these

pseudo-accelerations in ETABS and calculate shear solicitations induced in the building.

To calculate the resistance to shear in the Shear D/C Ratio, we use a constant re-

inforcement of stirrups made of bars of 8 mm in diameter, with a separation of 20 cm

between stirrups. The bars have perfect elasto-plastic behavior with a yield tension of

fy = 4200 kg/cm2. The other part of the shear resistance comes from the area of concrete.

To calculate the resistance of one column we use the following equation, see American-

Concrete-Institute (2008).

Vn = 0.53
√
f ′
c b d+ Av fy d/s,

where b is the width of the column, d is the depth of the column, s is the distance between

stirrups and f ′c is the cylindric resistance of concrete, in this case we use 250 kg/cm2.

Finally Av is the area of steel crossing a crack. The resistance of one floor is calculated as

follows:

Resistance = Vn · (number of columns per floor)

The three models have the same amount of stirrups, and the only difference in re-

sistance comes from the depth of each column that changes from the initial model to the

optimal model.

Remark: It is important to notice that even though we change the first eigenfrequency of

the building with our optimization method, we use the same pseudo-acceleration spec-

trum for both models, the initial one (with all the columns of the same depth) and the

optimal model, because the Chilean legislation have a clause that requires a maximum

amount of total shear solicitation on the building depending on the weight of the build-

ing, and both models have the same weight because that is one of the constraints of our

optimization method (constant volume implies constant weight in our case). We use the

pseudo-accelerations spectrum to calculate this maximum shear solicitation for the initial

14



model, and use the same amount of solicitations in the optimal model. For this reason both

models, the initial and the optimal, have the same total shear solicitation and a change in

the first eigenfrequency does not affect these shear solicitation because we use that Chilean

legislation clause.

2.5. Results

As mentioned above, the 3-D model of the building has initially all columns with

square section of 60x60 cm2. We only make changes on the depth of the columns. We use

a minimum depth hmin = 30 cm and a maximum depth hmax = 90 cm. We analyze the

movement in the direction perpendicular to the plane in which the building is slender.

We show first the results of the optimization of the 2-D membrane model in FreeFem++.

This optimization gives us the thickness of the membrane and then, as mentioned before,

we extrapolate this thickness to the columns of the 3-D model of the building in ETABS.

Let us recall that the smallest eigenvalue is denoted by λ1 = ω2
1 . Then, T1 = 2π

ω1
is the

period of the first eigenfunction.

Remark: We notice that the thickness of the optimal membrane is constant in the short

direction, and only depends on the long direction of the membrane that corresponds with

the vertical direction on the 3-D model of the building. This is because the displacements

of the first eigenfunction of the membrane are in the perpendicular direction of the plane

of the membrane. Thus, ∇u is zero in the short direction. Therefore the gradient ∂J
∂h

does

not variate its value in the short direction.

For this reason we use only the information in the long direction and change the

columns depth only in the vertical direction.
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2.5.1. Results for the 20 story building

In FreeFem++ we run the optimization described on section 2.3, to maximize the

smallest eigenvalue of the membrane model. Figure 2.4 (left) shows the depth configura-

tion of the columns proposed by the optimization in FreeFem++. Figure 2.4 (right) shows

the convergence history.
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FIGURE 2.4. Proposed Thickness and Convergence History for the 20 story building.

We use the proposed thickness obtained by optimization in FreeFem++ in the columns

of the 3-D model in ETABS. Then, we use the pseudo-acceleration spectrum described

in the previous section to calculate solicitations and displacements in the 3-D model in

ETABS. Remember that we use the pseudo-acceleration spectrum to calculate the maxi-

mum shear solicitation and maintain this solicitation in both models, initial and optimal.

Figure 2.5 shows both models, initial uniform (all columns with the same depth) and

optimal, in ETABS. Figure 2.5 (up-left) shows a cut of the initial building in its slender
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direction. Figure 2.5 (down-left) shows a cut of the optimal building in its slender direc-

tion. Figure 2.5 (up-right) shows the first eigenfunction of the initial building. Figure 2.5

(down-right) shows the first eigenfunction of the optimal building.

FIGURE 2.5. 20 Story building: initial and optimal in ETABS

We notice that the first eigenfunction of both models, initial and optimal, corresponds

with the form of the displacements of the 2-D membrane, indicating that the surrogate

model represents in a good way the displacements of the 3-D model in the slender direc-

tion.

We can see in figure 2.4 (left) that the optimal depth configuration of the columns

tends to achieve the minimal value hmin on the upper floors of the building, and tends to

hmax on the lower floors. For this reason we propose an initial condition different from

the initial uniform condition (all columns of the same depth, h0 = 60cm), this initial

condition, divides the building into three equal parts, the lower one with thickness hmax =
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90cm, a middle part with thickness h0 = 60cm, and an upper part with thickness hmin =

30cm. Also we notice that the derivative of the proposed depth function, figure 2.4 (left),

is not continuous in floor 16, for this reason we propose a smoothed depth configuration,

that manually changes the depth of the columns on the sixteenth and seventeenth floors

such that the derivative of this new configuration depth function is continuous. Figure 2.6

shows the proposed depth configuration of the columns.
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FIGURE 2.6. Depth configuration functions for the 20 story building.

Now we proceed to calculate the Drifts and Shear D/C Ratios.
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FIGURE 2.7. Drifts (left) and Shear D/C Ratios (right) for the 20 story building.

The initial (divided in 3) model has the worst results in Shear D/C Ratios because of

the discontinuity in the thirteenth floor when we pass from depth h0 = 60cm to hmin =

30cm, this can cause the failure of the building in this floor. Also this model has the second

maximal drift, after the initial (uniform) model.

Table 2.1 sumarizes the results obtained and also shows a comparison with the initial

(uniform) model with both optimal models.

TABLE 2.1. Comparison between the optimal model and the initial model for the
20 story building.

I.U. O.O. O.S. % of Benefit (O.O.) % of Benefit (O.S.)
T = Period in sec. (from ETABS) 2.9901 2.8062 2.8033 6.15 6.25
Maximal Drift 0.0057 0.0049 0.0049 13.17 13.13
Maximal Shear D/C Ratio 0.75 0.68 0.64 9.83 14.76
Max. displacement on the top (cm) 19.00 18.69 18.56 1.64 2.29

I.U.=Initial uniform. O.O.=Optimal original. O.S.=Optimal smoothed.
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The Optimal smoothed model has the lowest Shear D/C Ratios because by smoothing

the depth configuration function in the Optimal original we ease the transition to hmin in

the upper floors, and reducing the peak in the Shear D/C Ratios function in those floors.

The reduction in Drifts are not significant because the optimal smoothed function is dif-

ferent from the optimal function.

It is important to notice that the Optimal smoothed model does not fully satisfy the

volume constraint.

2.5.2. Results for the 10 story building

In FreeFem++ we run the optimization described on section 2.3, to maximize the

smallest eigenvalue of the membrane model. Figure 2.8 (left) shows the depth configura-

tion of the columns proposed by the optimization in FreeFem++. Figure 2.8 (right) shows

the convergence history.
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FIGURE 2.8. Proposed Thickness and Convergence History for the 10 story building.
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We use the proposed thickness obtained by optimization in FreeFem++ in the columns

of the 3-D model in ETABS. Then we use the pseudo-acceleration spectrum described

in the previous section to calculate solicitations and displacements in the 3-D model in

ETABS. Remember that we use the pseudo-acceleration spectrum to calculate the maxi-

mum shear solicitation and maintain this solicitation in both models, initial and optimal.

Figure 2.9 shows both models, initial uniform (all columns with the same depth) and

optimal, in ETABS. Figure 2.9 (up-left) shows a cut of the initial building in its slender

direction. Figure 2.9 (down-left) shows a cut of the optimal building in its slender direc-

tion. Figure 2.9 (up-right) shows the first eigenfunction of the initial building. Figure 2.9

(down-right) shows the first eigenfunction of the optimal building.

FIGURE 2.9. 10 Story building: initial and optimal in ETABS

We notice that the first eigenfunction of both models, initial and optimal, corresponds

with the form of the displacements of the 2-D membrane, indicating that the surrogate

model represents in a good way the displacements of the 3-D model in the slender direc-

tion.
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Repeating the procedure of the previous building (20 story building), we generate an

initial condition divided in three equal parts. Figure 2.10 shows the proposed depth config-

uration of the columns. Also we notice that the derivative of the proposed depth function,

figure 2.8 (left), is not continuous in floor 8, for this reason we propose a smoothed depth

configuration, that manually changes the depth of the columns on the eighteenth floor

such that the derivative of this new configuration depth function is continuous. Figure

2.10 shows the proposed depth configuration of the columns.
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FIGURE 2.10. Depth configuration functions for the 10 story building.

Now we proceed to calculate the Drifts and the Shear D/C Ratios.
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FIGURE 2.11. Drifts (left) and Shear D/C Ratios (right) for the 10 story building.

The initial (divided in 3) model has the worst results in Shear D/C Ratios because

of the discontinuity in the seventh floor when we pass from depth h0 = 60cm to hmin =

30cm, this can cause the failure of the building in this floor. Also this model has the second

biggest maximal drift, after the initial (uniform) model.

Table 2.2 summarizes the results obtained and also shows a comparison between the

initial model having columns with equal depth and the optimal model.

TABLE 2.2. Comparison between the optimal model and the initial model for the
10 story building.

I.U. O.O. O.S. % of Benefit (O.O.) % of Benefit (O.S.)
T = Period in sec. (from ETABS) 1.4143 1.3100 1.3076 7.37 7.54
Maximal Drift 0.0027 0.0023 0.0023 14.47 14.47
Maximal Shear D/C Ratio 0.29 0.25 0.24 14.22 18.45
Max. displacement on the top (cm) 4.61 4.53 4.50 1.76 2.48

I.U.=Initial uniform. O.O.=Optimal original. O.S.=Optimal smoothed.

23



The Optimal smoothed model has the lowest Shear D/C Ratios because by smoothing

the depth configuration function in the Optimal original we ease the transition to hmin

in the upper floors, reducing the peak in the Shear D/C Ratios function in those floors.

The reductions in Drifts are not significant because the optimal smoothed function is quite

similar to the original function.

It is important to notice that the Optimal smoothed model does not fully satisfy the

volume constraint.

2.5.3. Results for the 9 story building

When a slender building is shorter than those shown above, the surrogate model of

a membrane representing the 3-D model of the building is not accurate, because the first

eigenfunction of the optimal building would not correspond with the displacements of the

2-D membrane. In the examples chosen for this thesis this problem occurs in buildings

with less than 10 stories.

We model a 9 story building, and run the optimization algorithm described in the

previous sections. Figure 2.5.3 (left) shows the first eigenfunction of the initial building

in ETABS, and figure 2.5.3 (right) shows the first eigenfunction of the optimal building in

ETABS.
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In this case the second eigenfunction of the optimal building corresponds with the

displacements of the 2-D model. Hence the surrogate model is not accurate for the opti-

mization in slender buildings with less than 10 stories, with the geometric characteristics

described at the beginning of this chapter.
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3. FULL HOMOGENIZATION

3.1. Full Homogenization Method

The full homogenization method is a technique developed by F.Murat and L.Tartar in

Murat and Tartar (1983). Its main objective is to obtain characteristic of an element or do-

main composed of a mixture of two different materials. The mixture of this two materials

is in a micro-scale with a very small size or diameter, called ε. The full homogenization

method gives us sufficient conditions to pass to the limit when ε goes to 0+. It is important

to notice that the micro-scale does not go to the level of the atomic particles of the material,

but it is sufficiently small so the heterogeneity in the small scale fades to an homogeneous

material at the macro-scale.

The full homogenization theory gives us the tools to safely apply the limit when ε

goes to 0 and obtain the characteristics of the homogenized material with proportion θ of

the more rigid material B and 1− θ of the less rigid material A.

Note that θ can take values in the interval [0, 1], thus by taking the limit ε→ 0 we are

allowing designs with fine mixtures of the two materials, and that is impossible in practice.

But this relaxation, in general, makes the problem well-posed and makes possible to find

an optimal design that afterwards, by means of penalization (see 3.2.4), can be passed to

a classical or constructible design.

An advantage of the full homogenization method is that it can be used in the elasticity

setting. Hence, with this method, we can model more complex structures such as shear

walls and bridges.

Another important feature of the method is that, thanks to the relaxation we make

by allowing fine mixtures, we can develop optimization algorithms for different objective

functions, in our case to maximize the first eigenvalue (square of the first eigenfrequency)

of a domain containing two elastic materials.
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There are two optimization methods based on full homogenization, one is the so called

optimality criteria method and the second is the gradient method. Sometimes both meth-

ods are complementary as seen in example iii) in 3.2.6.1.

In this chapter we briefly describe the mathematical basis of the two methods and

show some numerical examples in order to validate the methods. A more complete de-

scription of the method can be found in Allaire (2002) and specifically for Eigenfrequency

optimization in Allaire et al. (2001).

3.2. Full Homogenization in 2D

3.2.1. Mathematical Model

Let Ω ⊂ R2 be a bounded open set in R2. In Ω we have two linearly elastic materials

with elasticity tensors A and B. Let ϵ be a positive real number, ϵ ≈ 0, such that A = ϵB.

This way A is the tensor of a very flexible material, and in the limit when ϵ→ 0+ imitates

void.

Let χ(x) ∈ L∞(Ω; {0, 1}) be a characteristic function of the most rigid material, i.e.,

χ(x) = 1 if material B is present at x, and χ(x) = 0 otherwise. The heterogeneous

Hooke’s law in Ω is

Aχ(x) = (1− χ(x))A+ χ(x)B

The heterogeneous density in Ω is

ρχ(x) = (1− χ(x)) ρA + χ(x)ρB

where ρA, ρB > 0 are the mass densities of the materials.

The boundary ∂Ω is divided in two disjoint parts ΓD and ΓN supporting respectively

Dirichlet boundary condition (zero displacement) and Neumann boundary condition (zero

traction).
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The vibration frequencies ω of the heterogeneous domain Ω, filled by A and B, are

the square roots of the eigenvalues of the following problem:

−div (Aχ e(u)) = ω2ρχu inΩ

Aχ e(u) · n⃗ = 0 onΓN

u = 0 onΓD

 (3.1)

where u ∈ H1(Ω)2 is the displacement vector, and e(u) = 1
2
(∇u+∇tu) is the strain

tensor. As is well known, problem (3.1) admits a countable family of positive eigenvalues

0 < ω2
1 ≤ ω2

2 ≤ ... ≤ ω2
k → +∞ ,

In this work we want to maximize the first eigenvalue, which is given by the following

formula

ω2
1 = min

u∈H

∫
Ω

Aχe(u) · e(u) dx∫
Ω

ρχ |u|2 dx

where H = {u ∈ H1(Ω)2 |u = 0 onΓD}.

We want to find the best arrangement of A and B in Ω that would maximize ω2
1 . If

we assume that ρA = ρB, the problem has a trivial solution, that is to fill Ω with the most

rigid material B only. Therefore, we add a constraint on the volume of B. Introducing a

Lagrange multiplier l ∈ R, our objective functional is

sup
χ∈L∞(Ω;{0,1})

{
ω2
1(χ)− l

∫
Ω

χ(x) dx

}
(3.2)

We want to find a sequence of characteristic functions χn(x) that maximize (3.2). But it is

known that this problem admits no optimal solution. Hence, one needs to enlarge the class

of admissible designs by allowing fine mixtures of the two materials in a scale which is

much smaller than the mesh used for the actual computation. Full homogenization gives us

the tools to determine the effective properties of these fine mixtures and find the optimal

ones. In the case of eigenfrequency optimization, the set of effective elasticity tensors
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can be computed among the well-known subset of sequential laminates. This process

of enlarging the set of admissible designs in order to get a well-posed problem is called

relaxation. The derivation of the relaxed formulation was done by the pioneering work of

Murat and Tartar, see Murat and Tartar (1983). Now we briefly sketch it for the reader.

Let {χn} ⊆ L∞(Ω; {0, 1}) be a maximizing sequence for (3.2). We want to pass

to the limit in (3.2) and compute its maximal value. The sequence χn(x) is bounded

in L∞(Ω), therefore one can extract a subsequence, still denoted by χn(x), such that

it converges weakly-∗ in L∞(Ω) to a limit θ(x). The limit θ(x) has no reason to be a

characteristic function, but is rather a density, i.e., it belongs to L∞(Ω; [0, 1]). According

to the theory of H- or G-convergence (see Murat and Tartar (1983)), a subsequence of

Aχn = (1−χn(x))A+χn(x)B H- or G-converges to a homogenized tensorA∗ as n→ ∞.

As a consequence the eigenvalue (ωn
1 )

2 and its corresponding normalized eigenvector un1 ,

solutions of
−div (Aχn e(u

n
1 )) = (ωn

1 )
2ρχnu

n
1 inΩ

Aχn e(u
n
1 ) · n⃗ = 0 onΓN

un1 = 0 onΓD

 (3.3)

satisfy limn→+∞ ωn
1 = ω1, and the sequence of eigenvectors un1 converges weakly in

H1(Ω)2 and strongly in L2(Ω)2 to a limit eigenvector u1 such that

−div (A∗ e(u1)) = (ω1)
2ρ̄u1 inΩ

A∗ e(u1) · n⃗ = 0 onΓN

u1 = 0 onΓD

 (3.4)

with ρ̄(x), the weak limit of the sequence ρχn , i.e.,

ρ̄(x) = (1− θ(x))ρA + θ(x)ρB ,

A∗ belongs to Gθ, defined by

Gθ = {H-limits of Aχn = (1− χn)A+ χnB |χn ⇀ θ}
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Thanks to the work of Francfort and Murat (see Francfort and Murat (1986)), following

the lead of Tartar (see Tartar (1985)), we can find the optimal elasticity tensor A∗ in the

subset Lθ ⊂ Gθ of sequential laminates obtained by laminating B around a core of A in

proportion θ and 1−θ respectively. WhereGθ is the closure of the set of effective Hooke’s

laws obtained by periodic homogenization of a mixture of A and B in proportions 1 − θ

and θ.

Thus, we define a relaxed objective functional by

max
θ∈L∞(Ω;[0,1])

max
A∗∈Lθ

{
ω2
1(θ, A

∗)− l

∫
Ω

θ(x) dx

}
, (3.5)

The new material is built by laminating a proportion θ1 of B with a proportion 1− θ1

of A in one direction, let us say e1, and then the resultant tensor A1 is laminated again, let

us say in a direction e2, and in proportion θ2 with one of the pure materials, say A, and

obtain A∗, a rank 2 laminate. Figure 3.1 illustrate the situation.
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FIGURE 3.1. Homogenized Material
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Its effective tensor is obtained from equation (2.68) in Allaire (2002) by interchanging

the roles of A and B and calling A∗
p as A∗,

A∗ = B + (1− θ)
(
(A−B)−1 + θ

(
m1 fB(e

1) +m2 fB(e
2)
))−1

(3.6)

Where θ = θ1θ2 is the total proportion of material B, the unit vectors e1, e2 are the

lamination directions, and the real numbers 0 ≤ m1,m2 ≤ 1 such that
∑2

i=1mi = 1, are

the lamination parameters, and fB(ei) is a nonpositive definite fourth-order tensor defined

for any symmetric matrix ξ by the following quadratic form

fB(e
i)ξ : ξ =

1

µ

∣∣ξ ei∣∣2 −K
(
ξ ei · ei

)2 (3.7)

where K = µ+λ
µ(2µ+λ)

and µ, λ are the Lamé parameters of material B.

In appendix A.3.4 we verify equation (3.6) obtaining the effective elasticity tensor us-

ing successive laminations in perpendicular directions (see Gutiérrez (1998) and Gutiérrez

(2004)) and compare the results.

3.2.2. Optimality criteria method

By means of theorem (2.3.35) in Allaire (2002) we can find the optimal lamination

parameters and lamination directions in order to maximize our objective function. This is

called the optimality criteria method.

If the eigenvalues of the stress tensor σ = A∗e(u1) are σ1 and σ2, given by

σ1 =
1

2

(
σ11 + σ22 +

√
(σ11 − σ22)2 + 4σ2

12

)
,

σ2 =
1

2

(
σ11 + σ22 −

√
(σ11 − σ22)2 + 4σ2

12

)
,

The lamination parameters are

m1 =
|σ2|

|σ1|+ |σ2|
and m2 =

|σ1|
|σ1|+ |σ2|

,
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therefore the intermediate proportions are:

θ1 =
|σ1|+ θ|σ2|
|σ1|+ |σ2|

and θ2 =
θ(|σ1|+ |σ2|)
|σ1|+ θ|σ2|

.

The lamination directions are chosen as the eigenvectors of σ. Then

e1 =


σ12√

σ2
12+(σ1−σ11)2+δ2

σ1−σ11√
σ2
12+(σ1−σ11)2+δ2

 e2 =

 e1y

−e1x

 ,

where δ = ϵ 10−6 is introduced to avoid numerical problems in FreeFem++.

The optimal density of rigid material is chosen by:

θ = min

{
1,

√
g∗(σ)

l
∫
Ω
ρ̄ |u|2

}
,

where:

g∗(σ) = 2µ+λ
4µ(µ+λ)

(|σ1|+ |σ2|)2

l = Lagrange multiplier for the volume constraint of the rigid material

ρ̄ = θp ρB + (1− θp) ρA

θp = optimal density of rigid material obtained in the previous iteration

u = first eigenvector obtained in the previous iteration.

Appendix A.1.2 shows the implementation of the method in the 2D setting, to be

programmed in FreeFem++.

3.2.3. Gradient Method

As in the previous sections, Ω ⊂ R2 is a bounded open set containing two elastic

materials with elasticity tensors A and B. Being A the elasticity tensor of a very flexible

material.
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We want to make a mixture of these two materials in proportions θ of B and 1− θ of

A. The new material is built by laminating a proportion θ1 of B with a proportion 1 − θ1

of A in one direction, let us say e1, and then the resultant tensor A1 gets laminated again,

let us say in direction e2, and in proportion θ2 with one of the pure materials, say A, and

obtain A∗, a rank 2 laminate. See figure 3.2.
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FIGURE 3.2. Laminated Material

The basis of the method is to differentiate the first eigenvalue with respect to the de-

sign parameters, we still assume that the first eigenvalue is simple, and thus differentiable.

A gradient method for maximizing the first eigenvalue ensures that it will always increase

through the iterations (although it can fall into a local maximum).

By theorem 4.1.46 in Allaire (2002) we can restrict the setGθ of homogenized Hooke’s

laws A∗ to the subset of rank-2 sequential laminates with orthogonal lamination direc-

tions. Such a laminated composite is parameterized by three variables: The density of
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rigid material (B) θ ∈ [0, 1], the lamination parameter m ∈ [0, 1], and an angle of rotation

ϕ ∈ [0, π]. More precisely, by formula (2.69) in Allaire (2002) its homogenized Hooke’s

law A∗(θ, ϕ,m) is given by

(1− θ) (A∗ −B)−1 = (A−B)−1 + θR(ϕ)t
(
mfB(e

1) + (1−m) fB(e
2)
)
R(ϕ)

Solving for A∗(θ, ϕ,m)

A∗ = B + (1− θ)
[
(A−B)−1 + θR(ϕ)t

(
mfB(e

1) + (1−m) fB(e
2)
)
R(ϕ)

]−1

where (e1, e2) is the canonical basis of R2, R(ϕ) is a fourth order tensor corresponding to

a rotation Q(ϕ) of angle ϕ in the physical space R2 defined by

R(ϕ)ξ = Qt(ϕ)ξQ(ϕ) , where ξ ∈ Sim2×2

Q(ϕ) =

 cos(ϕ) −sin(ϕ)

sin(ϕ) cos(ϕ)

 Qt(ϕ) = Q−1(ϕ) =

 cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)


R(ϕ)−1ξ = Q(ϕ)ξQt(ϕ)

and fB(e) is defined, for any symmetric matrix ξ, by

fB(e)ξ : ξ =
1

µ
|ξ e|2 −K (ξ e · e)2

where K = µ+λ
µ(2µ+λ)

and µ , λ are the Lamé parameters of the rigid material B.

As new design parameters, we choose the material density θ ∈ [0, 1], the angle of

rotation ϕ ∈ [0, π], and the proportion m ∈ [0, 1]. The relaxed optimal design problem is

equivalent to

max
(θ,ϕ,m)∈L∞(Ω;[0,1]×[0,π]×[0,1])

{
J∗(θ, ϕ,m) = ω2

1(θ, ϕ,m) + l

∫
Ω

θ dx

}
,
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where ω2
1 is the first eigenvalue of

−div (A∗ e(u)) = ω2ρ̄u inΩ

A∗ e(u)n = 0 onΓN

u = 0 onΓD

 (3.8)

and is given by

ω2
1(θ, A

∗) = min
u∈H

∫
Ω

A∗e(u) : e(u) dx∫
Ω

ρ̄ |u|2 dx
.

with ρ̄ = θρB + (1 − θ)ρA, where ρB, ρA > 0 are the densities of materials B and A

respectively.

H is the displacement space, defined by

H =
{
u ∈ H1(Ω)2 such thatu = 0 onΓD

}
,

We assume the parameters (θ, ϕ,m) ∈ L∞(Ω; [0, 1]× [0, π]× [0, 1]) are such that the

first eigenvalue ω2
1(θ, ϕ,m) is simple. Then, for a given direction (δθ, δϕ, δm) ∈ L∞(Ω)3,

we define a function of t in the neighborhood of zero by

F (t) = J∗(θ + tδθ, ϕ+ tδϕ,m+ tδm) .

By a classical result of spectral perturbation, for sufficiently small positive values of t

the first eigenvalue in F (t) is simple and F (t) is differentiable.

Then J∗ is Gateaux differentiable at (θ, ϕ,m),

F ′(0) = δJ∗(θ, ϕ,m) =

∫
Ω

∇θJ
∗δθ dx+

∫
Ω

∇ϕJ
∗δϕ dx+

∫
Ω

∇mJ
∗δmdx
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with partial derivatives given by

∇θJ
∗ =

∂A∗

∂θ
e(u) : e(u)− ω2

1(ρB − ρA) |u|2∫
Ω
ρ̄ |u|2 dx

+ l

∇ϕJ
∗ =

∂A∗

∂ϕ
e(u) : e(u)∫

Ω
ρ̄ |u|2 dx

∇mJ
∗ =

∂A∗

∂m
e(u) : e(u)∫

Ω
ρ̄ |u|2 dx

,

where u is the first eigenvector of (3.8) associated to the first eigenvalue ω2
1(θ, ϕ,m) and

∂A∗

∂θ
= −T−1 − (1− θ)T−1M(ϕ,m)T−1

∂A∗

∂ϕ
= −θ(1− θ)T−1 ∂M

∂ϕ
T−1

∂A∗

∂m
= −θ(1− θ)T−1S T−1

with
M(ϕ,m) = R(ϕ)t(mfB(e

1) + (1−m)fB(e
2))R(ϕ) ,

T (θ, ϕ,m) = (A−B)−1 + θM(ϕ,m) ,

S(ϕ) = R(ϕ)t(fB(e
1)− fB(e

2))R(ϕ) .

We have to use the standard isometry (see A.1.1) to obtain these relationships in the

space of 3 × 3 matrices in order to implement the method in FreeFem++. The process is

very similar to the one described in section 3.2.2 with the complication that the fourth-

order tensor fB has a rotation in between.
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Let ξ ∈ Sim2×2(R). Then

RT (ϕ)fB(e)R(ϕ) ξ : ξ = RT (ϕ)fB(e)Q
T (ϕ)ξQ(ϕ) : ξ

= RT (ϕ)fB(e)ξ̃ : ξ , where ξ̃ = QT (ϕ)ξQ(ϕ)

= RT (ϕ)ψ̃ : ξ , where ψ̃ = fB(e)ξ̃

= Q(ϕ)ψ̃QT (ϕ) : Q(ϕ)ξ̃QT (ϕ)

= ψ̃ : ξ̃

Because the inner product remains unchanged under a rotation . And replacing ψ̃ we

get:

RT (ϕ)fB(e)R(ϕ) ξ : ξ = fB(e) ξ̃ : ξ̃ .

Therefore we use the rotated base of Sim2×2.

Ã1 = QT (ϕ)A1Q(ϕ) =

 cos2(ϕ) −cos(ϕ)sin(ϕ)

−cos(ϕ)sin(ϕ) sin2(ϕ)


Ã2 = QT (ϕ)A2Q(ϕ) =

 sin2(ϕ) cos(ϕ)sin(ϕ)

cos(ϕ)sin(ϕ) cos2(ϕ)


Ã3 = QT (ϕ)A3Q(ϕ) =

 sin(2ϕ) cos(2ϕ)

cos(2ϕ) −sin(2ϕ)


We use this base to calculate the components of the gradient vector ∇θJ

∗, ∇ϕJ
∗

and ∇mJ
∗ through the tensors M(ϕ,m), T (θ, ϕ,m) and S(ϕ). Then we can develop a

gradient algorithm.

3.2.4. Penalization

Penalization is a process used during the iterations of the computational algorithm to

obtain classical designs, say for example, if the density of rigid material is close to 1 the

penalization process replaces the density by 1. See Allaire (2002) chapter 5.2.4.
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3.2.5. Computational Algorithm

We develop computational algorithms based on the optimality criteria method, and

if necessary, we pass to a gradient method, namely when the optimality criteria method

does not give satisfactory results. These algorithms are written in the free finite element

software FreeFem++.

3.2.5.1. Optimality criteria method

Section 3.2.2 shows the formulas necessary to implement an algorithm, sometimes

called Alternate Directions algorithm. The algorithm is constructed as follows:

1. Initialization of the design parameters (θ0, A
∗
0) (for example, taking θ0 = 0.35

and A∗
0 = θ0B + (1− θ0)A everywhere in the domain).

2. Iteration until convergence, for k ≥ 0:

(a) Computation of the first eigenvector uk with the previous design parameters

θk, A
∗
k, and calculate σk.

(b) Updating of the design variables (θk+1, A
∗
k+1) by using the stress σk in the

explicit optimality formulas.

3.2.5.2. Gradient method

Section 3.2.3 shows the formulation to obtain the gradient

δJ∗(θ, ϕ,m) = (∇θJ
∗(θ, ϕ,m),∇ϕJ

∗(θ, ϕ,m),∇mJ
∗(θ, ϕ,m)) of the objective function

J∗. But, since there are constraints on the parameters m and θ (which must stay both in

the range [0, 1]), the formulas for the gradient are combined with a projection step in order

to satisfy the constraints. The projected gradient algorithm is thus:
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1. Initialization of the design parameters θ0, ϕ0,m0 (for example, we take them to

be constant).

2. Iteration until convergence, for k ≥ 0:

(a) Computation of the first eigenvector uk with the previous design parameters

θk, ϕk,mk.

(b) Updating of these parameters by

θk+1 = max(0,min(1, θk + tk∇θJ
∗
k )) ,

mk+1 = max(0,min(1,mk + tk∇mJ
∗
k )) ,

ϕk+1 = ϕk + tk∇ϕJ
∗
k

where tk > 0 is a small step such that

J∗(θk+1, ϕk+1,mk+1) > J∗(θk, ϕk,mk) .

A good step tk is computed through a line search that may be expensive, especially if there

is also a total volume constraint. (Recall that each evaluation of the objective function

requires the solution of an eigenvalue problem.) The gradient method is usually more

expensive than the optimality criteria method (section 3.2.2). Therefore, in practice the

best strategy is to start with the optimality criteria method and switch to the gradient

method only when the computed eigenvalue becomes lower than the previous one.

3.2.6. Applications

3.2.6.1. Shear Wall

Walls designed to support shear forces in a building, due to wind or seismic solicita-

tions, for example, are called Shear Walls. This walls are of major concern in structural
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engineering because they are usually in the first floors of the building and if one of these

walls collapse, probably the whole building will collapse.

In order to validate the method, we show the examples from Allaire et al. (2001), that

are solved. We show that the method described in this chapter delivers optimal designs

for the reinforcement of Shear Walls, because by maximizing the first eigenvalue of the

wall (square of the first eigenfrequency) we can improve the behavior of this kind of walls

against lateral solicitations such as wind and earthquakes.

We run the optimization algorithm for three different domains. They contain two

elastic materials, a more rigid one with elasticity modulus E = 9/7 (all the parameters

are dimensionless to avoid numerical problems in FreeFem++) and density ρ = 1, and a

weaker one with elasticity modulus E ′ = 0, 01E and density ρ = 0, 01. Also a resource

constraint for the most rigid material of θ0 = 0, 35, namely only 35% of the domain,

because if not the problem has an obvious solution of filling the domain with the most

rigid material.

We choose three different domains to run the optimization described in 3.2.5, i) Ω is

a 1× 2 rectangle with a small fixed zone of density 10 in the middle of the upper side, ii)

Ω is a 1× 2 rectangle with two small fixed zones of density 10 in the left and right corners

of the upper side, and iii) Ω is a 2 × 1 rectangle with a small fixed zone of density 10 in

the middle of the upper side.

i) First we choose a domain Ω ⊂ R2 as a wall with dimensions 1 × 2, say 1 in the

fixed bottom and 2 of height. Figure 3.3 shows the initial configuration of the problem,

notice that we fix a small zone of density 10 in the middle of the upper side because if not,

the optimal design will not connect the top of the wall with the fixed bottom of the wall.
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FIGURE 3.3. Initial configuration and boundary conditions for domain i)

In this case it is not necessary to use the gradient method of section 3.2.5.2 because the

optimality criteria method of section 3.2.5.1 does not oscillate nor decrease the objective

function between two or more consecutive iterations as seen in figure 3.6. After few

iterations we obtain a design with many homogenized areas with density θ ∈ ]0, 1[, see

figure 3.4.
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FIGURE 3.4. Optimal design without penalization

Then we run additional iterations of the algorithm but using penalization and obtain a

penalized or classical design, see figure 3.5.
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FIGURE 3.5. Optimal design with penalization

The first eigenvalue (square of the first eigenfrequency) of the penalized optimal de-

sign is multiplied by 8.29 compared to the first eigenvalue of the initial configuration in

figure 3.3.

Now we show the converge history of the method.

43



0 20 40 60 80 100 120
0

0.05

0.1

0.15

0.2

0.25

0.3

iterations

F
irs

t E
ig

en
va

lu
e

FIGURE 3.6. Convergence history

The peaks at iteration 40 and 80 are due to not fulfilling the volume of rigid mate-

rial constraint because of the partial penalization at iteration 40 and full penalization at

iteration 80.

ii) Second, we choose a domain Ω ⊂ R2 as a wall with dimensions 1× 2, say 1 in the

fixed bottom and 2 of height. Figure 3.7 shows the initial configuration of the problem,

notice that we fix two small zones of density 10 in the left and right corners of the upper

side of the domain because if not, the optimal design will not connect the upper corners

of the wall with the fixed bottom of the wall. Another reason to do this is that the optimal

design would be more constructible, say with reinforcement similar to classical walls with

vertical bars on the sides.
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FIGURE 3.7. Initial configuration and boundary conditions for domain ii)

Like the previous case we also does not need to use the Gradient method. After few

iterations we obtain a design with many homogenized areas with density θ ∈ ]0, 1[, see

figure 3.8.
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FIGURE 3.8. Optimal design without penalization

Then we run additional iterations of the algorithm but using penalization an obtain a

penalized or classical design, see figure 3.9.
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FIGURE 3.9. Optimal design with penalization

The first eigenvalue (square of the first eigenfrequency) of the penalized optimal de-

sign is multiplied by 8.12 compared to the first eigenvalue of the initial configuration in

figure 3.7.

Now we show the converge history of the method.
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FIGURE 3.10. Convergence history

The peaks at iteration 40 and 80 are again due to not fulfilling the volume of rigid

material constraint because of the partial penalization at iteration 40 and full penalization

at iteration 80.

iii) Third, we choose a domain Ω ⊂ R2 as a wall with dimensions 2× 1, say 2 in the

fixed bottom and 1 of height. Figure 3.11 shows the initial configuration of the problem,

notice that we fix a zone of density 10 in the middle of the upper side because if not,

the optimal design will not connect the top of the wall with the fixed bottom of the wall.

Another reason to do this is that the optimal design would be more constructible.
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FIGURE 3.11. Initial configuration and boundary conditions for domain iii)

After few iterations of the optimality criteria method, the shape of the function θ of

rigid material B breaks its symmetry and the eigenvalue starts to oscillate. For this reason

we decided to stop this algorithm at the third iteration and from there use the gradient

method of section 3.2.5.2. We obtain a design with many homogenized areas with density

θ ∈ ]0, 1[, see figure 3.12.
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FIGURE 3.12. Optimal design without penalization

Now we show the converge history of the method.
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FIGURE 3.13. Convergence history
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The first eigenvalue does not grow much after the gradient algorithm is used. The first

eigenvalue is multiplied by 1.32 compared to the first eigenvalue of the initial configuration

in figure 3.11.

3.2.6.2. Steel Bridge

Steel bridges are structures used to connect two places, often separated by a river or

strait. One major problem steel-bridge-designers have to deal with is the high-price of

steel. Therefore it is a good idea to increase the rigidity of steel bridges, by means of its

first eigenfrequency, with a volume constraint in the amount of steel. In most bridges the

value of the first eigenfrequency is low, making the bridge very flexible against excitations

with a range of frequencies containing the first eigenfrequency of the bridge, such as wind

and earthquakes. The purpose of this section is to maximize the first eigenfrequency of

a bridge in order to increase its rigidity with a constraint in the amount of rigid material

(steel).

We use the computational algorithm described in this chapter, say optimality criteria

method and gradient method if necessary, to maximize the first eigenfrequency of a steel

bridge with volume constraint for the rigid material. We use a rigid material B (for ex-

ample steel), with Lamé parameters µ and λ, and a flexible material degenerating to void,

that is to say material A with Lamé parameters µ = εµ and λ = ελ with ε→ 0+.

We model a bridge as a domain Ω ⊂ R2, see figure 3.14. The value of the parameters

are the same as those from the shear walls shown in the previous section. We fix a zone

with density 10 in the place where the highway its supposed to be. This part is not subject

to optimization and its Lamé coefficients are the same as those from material B.
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FIGURE 3.14. Initial configuration and boundary conditions

After few iterations we obtain a design with many homogenized areas with density

θ ∈ ]0, 1[, see figure 3.15.
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FIGURE 3.15. Optimal design without penalization
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Then we run additional iterations of the algorithm but using penalization and obtain a

penalized or classical design, see figure 3.16.
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FIGURE 3.16. Optimal design with penalization

The first eigenvalue (square of the first eigenfrequency) of the penalized optimal de-

sign is multiplied by 8.05 compared to the first eigenvalue of the initial configuration in

figure 3.14.

The first eigenvector is the same for the initial configuration, figure 3.14, and the

optimal design with penalization, figure 3.16, with displacements only in the horizontal

direction of the plane. Now we show the converge history of the method.
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FIGURE 3.17. Convergence history

The peaks at iteration 60 and 120 are due to not fulfilling the volume of rigid mate-

rial constraint because of the partial penalization at iteration 60 and full penalization at

iteration 120.
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4. COMPARISON BETWEEN GEOMETRIC OPTIMIZATION

AND FULL HOMOGENIZATION

As seen in chapters 2 and 3, geometric optimization (chapter 2) and full homogeniza-

tion (chapter 3) are able to satisfactorily increase the first eigenvalue (square of the first

vibration eigenfrequency) of slender structures. In chapter 2 we use geometric optimiza-

tion to obtain optimal configurations for column-thickness of slender buildings. In this

chapter we show that the full homogenization method can be easily adapted to optimiza-

tion in slender buildings. By doing this we can compare the results thus obtained between

the two methods.

We use both methods, full homogenization and geometric optimization, to maximize

the first eigenvalue of the same slender structures and compare the results. We compare

the results for 3 different buildings, 13 story, 20 story and 30 story building.

It is important to notice that the full homogenization method is computationally more

expensive than the geometric optimization method. Also the mathematical model and the

differential equations used by the full homogenization method are more accurate for the

examples we want to analyze.

4.1. Procedure

The procedure to pass the results of geometric optimization to optimal designs in

ETABS is the same as the one shown in chapter 2.

In the case of full homogenization, the procedure to obtain optimal designs in ETABS

variates mainly because, unlike geometric optimization, full homogenization gives us a

detailed arrangement of material and void, instead of geometric optimization that only

gives us the contour of the material, namely the thickness. Therefore the procedure to

obtain optimal designs in ETABS from full homogenization is a little more complicated.

The procedure is as follows.
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We want to pass the optimal design obtained by full homogenization to thickness

configuration for the columns of a building. Then the optimal design, obtained by full

homogenization, is divided in equal horizontal laminates among the number of floors the

building is compound, and in each floor we calculate the area of rigid material, divide it

by the area of the laminate and obtain a coefficient ci ∈ [0, 1]. Where i ∈ {1, 2, ..., n},

n = number of stories the building is made of. Then the thickness of the columns in the

floor i is hi = hmin + ci(hmax − hmin). Where hmin, hmax are defined in section 2.5.

Another difference between geometric optimization and full homogenization is that

the latter model the 3D building as a 2D rectangular domain simulating the transversal area

of the building. This way the displacements of the 2D domain in its plane represent the

displacements of the building in its slender direction. And geometric optimization model

the 3D building as a membrane with displacements perpendicular to its plane, simulating

the displacements of the building in its slender direction.

For each example, we run first the full homogenization method to obtain an optimal

design. Then we pass the optimal design to the column-thickness configuration for the

3D model of the building. Now the column-thickness configuration is compared with the

configurations shown in chapter 2, say initial (uniform), initial (divided by 3), optimal

(geometric optimization) called optimal (original) in chapter 2, and optimal (smoothed)

which is the optimal (geometric optimization) with a few manually-changed floor’s col-

umn thickness. See the examples in chapter 2.

4.1.1. Results for the 13 story building

Figure 4.1 shows the model in ETABS of a 13 story building made of reinforced

concrete. To use the full homogenization method we model the building as a rectangular

2D domain simulating the transversal area of the building by looking at the building from

the y direction, see figure 4.1(right).
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FIGURE 4.1. Model of the 13 story building in ETABS.

Figure 4.2(left) shows the model in FreeFem++ of the building (figure 4.1 right), the

total height of the building is 13 · 250 = 3250cm and width 3 · 600 = 1800cm. Then the

reason between height and width is Height/Width = 3250/1800 = 1.8056/1.

57



IsoValue
0
0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95
1

FIGURE 4.2. 2D model in FreeFem++. Initial (left) and Optimal with penaliza-

tion (right)

Figure 4.2 (right) shows the penalized optimal design obtained by the full homoge-

nization method using the algorithm of section 3.2.5.1, the convergence is smooth so the

gradient method of section 3.2.5.2 is not needed. The first eigenvalue (square of the first

eigenfrequency) of the penalized optimal design is multiplied by 6.83 compared to the first

eigenvalue of the initial configuration in figure 4.2 (left).

Now using the procedure described in 4.1 we obtain the thickness of the columns for

each floor of the 13 story building. Table 4.1 shows the proposed thickness for the columns

of the building.
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TABLE 4.1. Column-thickness of the 13 story building proposed by the full ho-

mogenization method
Floor thickness (cm)

13 33.61

12 34.74

11 37.12

10 40.13

9 44.83

8 48.66

7 55.58

6 68.94

5 81.13

4 88.62

3 90.00

2 83.38

1 67.75

Figure 4.3 shows the thickness configuration of the columns proposed by the full

homogenization method, and the four other cases mentioned at the end of section 4.1.
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FIGURE 4.3. Proposed thickness functions

Initial (uniform) is the model with all the columns of the same thickness h0 = 60cm.

Initial (divided in 3) is the model with three different thickness, hmax = 90cm for the

lower floors, h0 = 60cm for the middle ones, and hmin = 30cm for the upper floors. Op-

timal (geometric optimization) is the optimized model directly obtained from geometric

optimization (chapter 2). Optimal (smoothed) is the same as Optimal (geometric opti-

mization), but with a softer thickness function for the columns (described in chapter 2).

Optimal (full homogenization) is the model obtained by the full homogenization method.

The Optimal (full homogenization) column-thickness function does not reach the

hmax = 90cm value, because as seen in figure 4.2 (right) the rigid material does not

fill the lower part of the domain. This makes the building model more flexible in the lower

floors, increasing the Shear D/C Ratio in these floors.
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Now we compare the results of Drifts and Shear D/C Ratios for the two optimization

methods. Figure 4.4 show the results.
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FIGURE 4.4. Drifts (left) and Shear D/C Ratios (right)

It is important to notice that in terms of Drifts, both models, Optimal (smoothed) and

Optimal (full homogenization) are very similar, considerably reducing the Drifts in the

lower floors, but increasing them in the upper floors. Although both reduce the maximal

Drift.

Initial (uniform) and initial (divided in 3) have the worst results, showing that it is not

a good idea to have all the columns of the same thickness or doing a very rough distribution

of thickness.

In terms of Shear D/C Ratios, the worst results come from the Initial (divided in 3)

model, because it has a huge discontinuity when we pass from h0 = 60cm to hmin = 30cm

in the upper floors, producing an increase in the Shear D/C Ratios.
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Maximal Shear D/C Ratios are very close in value in models Optimal (geometric

optimization), Optimal (smoothed) and Optimal (full homogenization), but Optimal (full

homogenization) has larger Shear D/C Ratios in the lower floors because of a reduction in

the thickness of the columns in those floors.

Table 4.2 resumes the results.

TABLE 4.2. Comparison between the optimal model and the initial model for the

13 story building.
I.U. O.P.O.S. O.F.H. % of Benefit(O.P.O.S.) % of Benefit(O.F.H.)

T = Period in secs.(from ETABS) 1.8808 1.7530 1.8070 6.79 3.92

Maximal Drift 0.0037 0.0032 0.0032 13.32 12.99

Maximal Shear D/C Ratio 0.49 0.42 0.39 14.58 19.81

Max. Displacement on the top(cm) 8.13 7.98 8.18 1.86 -0.59

I.U.=Initial uniform. O.P.O.S.=Optimal with geometric optimization smoothed.

O.F.H=Optimal with full homogenization.

The Optimal model obtained by the method of full homogenization has very similar

results in Drift and Shear D/C Ratio to the results of geometric optimization, and by doing

simple changes to the later one, we can obtain even better results.

4.1.2. Results for the 20 story building

Figure 4.5 shows the model in ETABS of a 20 story building made of reinforced

concrete (the same of section 2.5.1). As in the 13 story building, in order to use the full

homogenization method we model the building as a rectangular 2D domain simulating the

transversal area of the building by looking at the building from the y direction, see figure

4.5(right).
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FIGURE 4.5. Model of the 20 story building in ETABS.

Figure 4.6(left) shows the model in FreeFem++ of the building (figure 4.5 right), the

total height of the building is 20 · 250 = 5000cm and width 3 · 600 = 1800cm. Then the

reason between height and width is Height/Width = 5000/1800 = 2.7778/1.
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FIGURE 4.6. 2D model in FreeFem++. Initial (left) and Optimized (right)

Figure 4.6 (right) shows the penalized optimal design obtained by the full homoge-

nization method using the algorithm of section 3.2.5.1, the convergence is smooth so the

gradient method of section 3.2.5.2 is not needed. The first eigenvalue (square of the first

eigenfrequency) of the penalized optimal design is multiplied by 9.17 compared to the first

eigenvalue of the initial configuration in figure 4.6 (left).

Now using the procedure described in 4.1 we obtain the thickness of the columns for

each floor of the 20 story building. Table 4.3 shows the proposed thickness for the columns

of the building.
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TABLE 4.3. Proposed thickness for columns of the 20 story building
Floor thickness (cm) Floor thickness (cm)

20 32.51 10 55.87

19 32.58 9 66.05

18 33.64 8 72.80

17 34.11 7 84.24

16 34.85 6 89.91

15 35.52 5 90.00

14 43.55 4 90.00

13 48.15 3 89.49

12 48.00 2 78.29

11 53.52 1 67.75

Figure 4.7 shows the thickness configuration of the columns proposed by the full

homogenization method, and the four other cases mentioned at the end of section 4.1.
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FIGURE 4.7. Proposed thickness functions

As in the 13 story building, the Optimal (full homogenization) column-thickness func-

tion does not reach the hmax = 90cm value, because as seen in figure 4.6 (right) the rigid

material does not fill the lower part of the domain. This make the building model more

flexible in the lower floors, increasing the Shear D/C Ratio in these floors.

Now we compare the results of Drifts and Shear D/C Ratios for the two optimization

methods. Figure 4.8 show the results.
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FIGURE 4.8. Drifts (left) and Shear D/C Ratios (right)

In general, the results are similar to the ones shown in the previous example (13 story

building). That is to say, both models, Optimal(smoothed) and Optimal(full homogeniza-

tion), reduce the Drifts in the lower floors, but increasing them in the upper floors, although

reducing the maximal Drift. Also, initial models (Initial(uniform) and initial(divided in 3))

have the worst results in Drifts and in Shear D/C Ratios.

Table 4.4 resumes the results.

TABLE 4.4. Comparison between the optimal model and the initial model for the

20 story building.
I.U. O.P.O.S. O.F.H. % of Benefit(O.P.O.S.) % of Benefit(O.F.H.)

T = Period in secs.(from ETABS) 2.9901 2.8062 2.8735 6.15 3.90

Maximal Drift 0.0057 0.0049 0.0048 13.17 15.90

Maximal Shear D/C Ratio 0.75 0.68 0.68 9.83 9.36

Max. Displacement on the top(cm) 19.00 18.69 18.46 1.64 2.82
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4.1.3. Results for the 30 story building

Figure 4.9 shows the model in ETABS of a 30 story building made of reinforced

concrete. As in the previous buildings, in order to use the full homogenization method

we model the building as a rectangular 2D domain simulating the transversal area of the

building by looking at the building from the y direction, see figure 4.9(right).

FIGURE 4.9. Model of the 30 story building in ETABS.

Figure 4.10(left) shows the model in FreeFem++ of the building (figure 4.9 right), the

total height of the building is 30 · 250 = 7500cm and width 3 · 600 = 1800cm. Then the

reason between height and width is Height/Width = 7500/1800 = 4.1667/1.
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FIGURE 4.10. 2D model in FreeFem++. Initial (left) and Optimized (right)

Figure 4.10 (right) shows the penalized optimal design obtained by the full homoge-

nization method using the algorithm of section 3.2.5.1, the convergence is smooth so the

gradient method of section 3.2.5.2 is not needed. The first eigenvalue (square of the first

eigenfrequency) of the penalized optimal design is multiplied by 10.48 compared to the

first eigenvalue of the initial configuration in figure 4.10 (left).

Now using the procedure described in 4.1 we obtain the thickness of the columns for

each floor of the 30 story building. Table 4.5 shows the proposed thickness for the columns

of the building.
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TABLE 4.5. Proposed thickness for columns of the 30 story building
Floor thickness (cm) Floor thickness (cm) Floor thickness (cm)

30 32.57 20 42.58 10 87.19

29 32.64 19 43.37 9 89.91

28 32.34 18 47.03 8 89.97

27 32.58 17 49.81 7 89.97

26 32.90 16 53.25 6 89.99

25 32.82 15 59.82 5 90.00

24 35.48 14 60.63 4 90.00

23 37.04 13 69.64 3 85.49

22 39.75 12 73.25 2 76.15

21 42.47 11 78.33 1 68.80

Figure 4.11 shows the thickness configuration of the columns proposed by the full

homogenization method, and the four other cases mentioned at the end of section 4.1.
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FIGURE 4.11. Proposed thickness functions

As in the previous buildings, the Optimal (full homogenization) column-thickness

function does not reach the hmax = 90cm value, because as seen in figure 4.10 (right) the

rigid material does not fill the lower part of the domain. This make the building model

more flexible in the lower floors, increasing the Shear D/C Ratio in these floors.

Now we compare the results of Drifts and Shear D/C Ratios for the two optimization

methods. Figure 4.12 show the results.
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FIGURE 4.12. Drifts (left) and Shear D/C Ratios (right)

In general, the results are similar to the ones shown in the previous examples (13 story

and 20 story buildings). That is to say, both models, Optimal(smoothed) and Optimal(full

homogenization), reduce the Drifts in the lower floors, but increasing them in the upper

floors, although reducing the maximal Drift. Also, initial models (Initial(uniform) and

initial(divided in 3)) have the worst results in Drifts and in Shear D/C Ratios.

Table 4.6 resumes the results.

TABLE 4.6. Comparison between the optimal model and the initial model for the

30 story building.
I.U. O.P.O.S. O.F.H. % of Benefit(O.P.O.S.) % of Benefit(O.F.H.)

T = Period in secs.(from ETABS) 4.6900 4.4028 4.4727 6.09 4.59

Maximal Drift 0.0093 0.0082 0.0082 12.26 11.88

Maximal Shear D/C Ratio 0.87 0.71 0.76 19.14 12.82

Max. Displacement on the top(cm) 49.68 47.02 48.38 5.36 2.62
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5. CONCLUSION AND FUTURE RESEARCH

5.1. Review of the Results and General Remarks

From the results presented in this thesis we can conclude that both methods, geometric

optimization (chapter 2) and full homogenization (chapter 3), are able to maximize the first

eigenfrequency of elastic structures such as tall buildings, in order to make them stiffer and

as a consequence we get to reduce its drifts and shear D/C ratio.

Although for slender structures the convergence of both methods is smooth, the com-

puter capacity needed is greater in the case of full homogenization. Because the differen-

tial equation used by full homogenization (elasticity) is more complex than the membrane

equation of geometric optimization. Also, full homogenization requires more iterations

to converge than geometric optimization. Hence, full homogenization is more demanding

for computer capacity than geometric optimization.

In the case of tall slender buildings we show in chapter 2 that by using a surrogate

model of the building as a membrane we can derive a gradient algorithm that in few it-

erations we can increase its first eigenfrequency reducing its drifts and shear D/C ratio.

But the method is only valid for tall buildings, because in the case of shorter buildings,

as the one showed in example 2.5.3, the method is invalid, because the first eigenfunction

in the 3D model of the optimal building is not compatible with the displacements of the

membrane.

By using a continuous model in elasticity we develop a more complex optimization

method based in full homogenization, as seen in chapter 3. This method can effectively

increase the value of the first eigenfrequency of several structures as walls and bridges.

The convergence of the method is very smooth for slender structures such as tall walls

(with a reason height/width > 1.5). But for shorter and stiffer structures we need to

use a gradient method due to a crossing of the first eigenfunction, similar to the problem

with short buildings in chapter 2. We can only guess that this problem occurs because
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the original building is rigid, therefore by making its first eigenfrequency stiffer we are

making that eigenfrequency to cease to be the first eigenfrequency. Therefore in the case

of shorter and stiffer buildings the approach we follow is not entirely correct.

Although for slender structures the convergence of the full homogenization method

is smooth, it takes more iterations to converge than the optimization algorithm using geo-

metric optimization of chapter 2.

Chapter 4 shows that both optimization methods, geometric optimization and opti-

mization based in full homogenization, can effectively reduce Drifts and Shear D/C Ratios

in tall, slender buildings. And the benefit we earn by using a more sophisticated method,

such as full homogenization, is not significant in the final 3D design of the building, be-

cause the processing to pass the optimal design in the 2D model to the 3D model is very

rough, loosing the fine geometry given by the full homogenization. Therefore a less ex-

pensive optimization method using a simpler model of the building can deliver almost as

good results, and by means of a post-processing technique (smoothing the thickness func-

tion) we can obtain even better results, as we can see in model 3 in chapter 4.1 where the

benefit in maximal Drift and maximal Shear D/C Ratio are 0.38% and 6.32% bigger in the

smoothed optimal (geometric optimization) than the optimal (full homogenization).

The effectiveness of both methods gets dimmish when applying to taller buildings, as

can be seen in the last two columns of table 4.6 in the T (period) line in the models shown

in chapter 4.1, where the percentage of benefit for both methods diminishes for taller

buildings (30 stories or more). This phenomenon could be explained because in taller

buildings the difference between the optimal design and the original (uniform) design is

not as big as the case of shorter buildings. This tendency is not seen in the results of Drift

and Shear D/C Ratio because the latter two were not our objective functions, that is to say,

the optimization was focused in maximizing the first eigenfrequency of the building, and

diminishing Drifts and Shear D/C Ratios is a positive side-effect.
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It is important to notice that diminishing the maximal Shear D/C Ratio in tall buildings

produces a considerable decrease in the total cost of the building, because designers will

not need big amounts of steel for shear solicitations. Also, the maximal Shear D/C Ratio in

the original designs was always in the lower floors and in the optimal design the maximal

Shear D/C Ratio is in the upper floors, and it is known that the latter situation is preferable

for designers, because a failure of some parts of the upper floors is more manageable than

a failure in the lower floors.

The main conclusion of this work is that through a very simple mathematical model

of a tall, slender building, by means of geometric optimization with a post-processing

technique, we can obtain significant improvements in the behavior of the building facing a

cyclic excitation like an earthquake, as a side-effect of maximizing the first eigenfrequency

of the building. More complex and expensive method, such as full homogenization, is not

needed because it gives us sufficiently similar results.

5.2. Future Research Topics and Applications

There is no mathematical difficulty to implement an optimization method based in

full homogenization in 3D, the formulation is described in appendix A.2.3, but because

of computational capacity, we were not able to run a numerical algorithm in order to

maximize the first eigenvalue of different domains in 3D settings.

In a future work, the maximization of the first eigenfrequency can be mixed with a

compliance minimization or a stress reduction. Also, a selective optimization algorithm

can be developed, that is to say, a part of the domain subjected to compliance optimization

while the rest of the domain is subjected to a maximization of the first eigenfrequency,

similar to the algorithm developed for steel bridges in chapter 3, where a small zone of the

domain were out of the optimization.
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From the application point of view, the developing of a friendly-user software for

eigenfrequency optimization is to be explored, in order that practitioners without fur-

ther knowledge in the mathematics behind optimization, can safely apply the optimization

methods presented in this thesis in the design of tall, slender buildings.
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APPENDIX A. ADDITIONAL RESOURCES

A.1. Implementation of the Optimality criteria method in 2D

A.1.1. Standard Isometry

Since during the calculations we need to invert several fourth-order tensors which

could be a little difficult, we prefer to write these tensors as 2x2 matrices, because their

inverses are standard. We identify the space of symmetric 2x2 matrices with R3 using the

following isometry:

Φ

 x z

z y

 =


x

y
√
2 z

 .

Now we can write the constitutive relation as

σ̂ = Φ(σ) = ĉ Φ(ϵ) = ĉ ϵ̂,

where ĉ is defined as the following 3× 3 matrix:

ĉ11 = C1111, ĉ12 = C1122, ĉ13 =
√
2C1112,

ĉ21 = C2211, ĉ22 = C2222, ĉ23 =
√
2C2212,

ĉ31 =
√
2C1211, ĉ32 =

√
2C1222, ĉ33 = 2C1212.

And Cijkl, for i, j, k, l = 1, 2 is the fourth-order elasticity tensor of an elastic material, and

µ, λ are its Lamé parameters.

In the isotropic case ĉ11 = ĉ22 = 2µ+ λ, ĉ33 = 2µ, ĉ12 = ĉ21 = λ and ĉ13 = ĉ31 = ĉ23 =
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ĉ32 = 0. Also:

C

 x z

z y

 :

 x z

z y

 =


x

y
√
2 z

 · ĉ


x

y
√
2 z

 .

Let ĉ = Ψ(C), we have that ϵ̂ = Ψ(C−1)σ̂ = Ψ(C−1)ĉϵ̂, therefore ĉ−1 = Ψ(C−1), then

C−1 = Ψ−1(ĉ−1).

A.1.2. Implementation

We need to apply fB of equation 3.7 to the elements of a base of the space of sym-

metric 2× 2 matrices. We use the following base:

A1 = e1 ⊗ e1 =

 1 0

0 0

 A2 = e2 ⊗ e2 =

 0 0

0 1


A3 = e1 ⊗ e2 + e2 ⊗ e1 =

 0 1

1 0

 .
Then

fB(e)A
1 : A1 = 1

µ
(e2x)−K (e2x)

2
,

fB(e)A
2 : A2 = 1

µ

(
e2y
)
−K

(
e2y
)2
,

fB(e)A
3 : A3 = 1

µ

(
e2x + e2y

)
−K (2exey)

2 ,

fB(e)(A
1 + A2) : (A1 + A2) = 1

µ

(
e2x + e2y

)
−K

(
e2x + e2y

)2
,

fB(e)(A
1 + A3) : (A1 + A3) = 1

µ
((ex + ey)

2 + e2x)−K (ex(ex + 2ey))
2 ,

fB(e)(A
2 + A3) : (A2 + A3) = 1

µ

(
(ex + ey)

2 + e2y
)
−K (ey(2ex + ey))

2 ,
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fB(e)A
1 : A2 = 1

2
(fB(e)(A

1 + A2) : (A1 + A2)− fB(e)A
1 : A1 − fB(e)A

2 : A2)

= −K e2xe
2
y,

fB(e)A
1 : A3 = 1

2
(fB(e)(A

1 + A3) : (A1 + A3)− fB(e)A
1 : A1 − fB(e)A

3 : A3)

= 1
µ
(ex ey)−K (2e3xey) ,

fB(e)A
2 : A3 = 1

2
(fB(e)(A

2 + A3) : (A2 + A3)− fB(e)A
2 : A2 − fB(e)A

3 : A3)

= 1
µ
(ex ey)−K

(
2exe

3
y

)
.

Then, given that

(A−B)−1 = ((ϵ− 1) B)−1 =
1

ϵ− 1
B−1,

if b̂ = Ψ(B), we have that

b̂ =


2µ+ λ λ 0

λ 2µ+ λ 0

0 0 2µ

 b̂−1 =


2µ+λ

4µ(µ+λ)
−λ

4µ(µ+λ)
0

−λ
4µ(µ+λ)

2µ+λ
4µ(µ+λ)

0

0 0 1
2µ

 .

Calling

d̂i =


Ai Di Fi

Di Bi Ei

Fi Ei Ci

 ,

for i = 0

A0 = m1fB(e
1)A1 : A1 +m2fB(e

2)A1 : A1

B0 = m1fB(e
1)A2 : A2 +m2fB(e

2)A2 : A2

C0 = 1
2
(m1fB(e

1)A3 : A3 +m2fB(e
2)A3 : A3)

D0 = m1fB(e
1)A1 : A2 +m2fB(e

2)A1 : A2

E0 = 1√
2
(m1fB(e

1)A2 : A3 +m2fB(e
2)A2 : A3)

F0 = 1√
2
(m1fB(e

1)A1 : A3 +m2fB(e
2)A1 : A3) .
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Therefore

d̂1 =
1

ϵ− 1
b̂−1 + θ d̂0

and, finally

b̂∗ = b̂+ (1− θ)(d̂1)−1.

By means of theorem (2.3.35) in Allaire (2002) we can find the optimal lamination

parameters and lamination directions in order to maximize our objective function. This is

call the optimality criteria method.

If the eigenvalues of the stress tensor σ are σ1 and σ2, given by

σ1 =
1

2

(
σ11 + σ22 +

√
(σ11 − σ22)2 + 4σ2

12

)
,

σ2 =
1

2

(
σ11 + σ22 −

√
(σ11 − σ22)2 + 4σ2

12

)
,

With lamination parameters

m1 =
|σ2|

|σ1|+ |σ2|
and m2 =

|σ1|
|σ1|+ |σ2|

,

therefore the intermediate proportions are:

θ1 =
|σ1|+ θ|σ2|
|σ1|+ |σ2|

θ2 =
θ(|σ1|+ |σ2|)
|σ1|+ θ|σ2|

.

The lamination directions are chosen as the eigenvectors of σ. Then

e1 =


σ12√

σ2
12+(σ1−σ11)2+δ2

σ1−σ11√
σ2
12+(σ1−σ11)2+δ2

 e2 =

 e1y

−e1x

 ,

where δ = ε 10−6.

The optimal density of rigid material is chosen by:
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θ = min

{
1,

√
g∗(σ)

l
∫
Ω
ρ̄ |u|2

}
,

where:

g∗(σ) = 2µ+λ
4µ(µ+λ)

(|σ1|+ |σ2|)2

l = lagrange multiplier for the volume constraint of the rigid material

ρ̄ = θpB + (1− θp)A

θp = optimal density of rigid material obtained in the previous iteration

u = first eigenvector obtained in the previous iteration.

A.2. Homogenization in 3D

A.2.1. Mathematical Model

Let Ω ⊂ R3 be a bounded open set in R3. In Ω we have two linearly elastic materials

with elasticity tensors A and B. Let ϵ be a positive real number, ϵ ≈ 0, such that A = ϵB.

This way A is the tensor of a very flexible material, and in the limit when ϵ → 0 imitates

void.

We want to make a mixture of these two materials in proportions θ of B and 1 − θ of A.

The new material is built by laminating a proportion θ1 of B with a proportion 1 − θ1 of

A in one direction, let us say e1, and then the resultant tensor A1 is laminated again, let

us say in a direction e2, and in proportion θ2 with one of the pure materials, say A, and

we obtain A2, a rank 2 laminate. This new material is laminated again in direction e3 in

proportion θ3 with A, and obtain A3, a rank 3 laminate. Its effective tensor is defined by

A3 = B + (1− θ)
(
(A−B)−1 + θ

(
m1 fB(e

1) +m2 fB(e
2) +m3 fB(e

3)
))−1
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Where fB is a known fourth-order tensor and mi are the lamination parameters, which

depends on the intermediate proportions.

m1 =
1− θ1
1− θ

mi =
1− θi
1− θ

i−1∏
j=1

θj i = 2, ..., n.

A.2.2. Standard Isometry

Since during the calculations we need to invert several fourth-order tensors which

could be a little difficult, we prefer to write these tensors as 6x6 matrices, because their

inverses are standard. We identify the space of symmetric 3x3 matrices with R6 using the

following isometry:

Φ



a d e

d b f

e f c


 =



a

b

c
√
2 d

√
2 e

√
2 f


.

Now we can write the constitutive relation as

σ̂ = Φ(σ) = ĉ Φ(ϵ) = ĉ ϵ̂,

In the isotropic case, with Lamé parameters λ, µ, the non-zero entries of the 6× 6 matrix

ĉ are:

ĉ11 = ĉ22 = ĉ33 = 2µ+ λ,

ĉ44 = ĉ55 = ĉ66 = 2µ,

ĉ12 = ĉ21 = ĉ13 = ĉ31 = ĉ23 = ĉ32 = λ
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C


a d e

d b f

e f c

 :


a d e

d b f

e f c

 =



a

b

c
√
2 d

√
2 e

√
2 f


· ĉ



a

b

c
√
2 d

√
2 e

√
2 f


.

Let ĉ = Ψ(C), we have that ϵ̂ = Ψ(C−1)σ̂ = Ψ(C−1)ĉϵ̂, therefore ĉ−1 = Ψ(C−1), then

C−1 = Ψ−1(ĉ−1).

A.2.3. Sequential Iterative Laminations

Then, we can explicitly find the composite material that maximizes the first eigenvalue

by means of a rank-3 sequential laminate in perpendicular directions e1, e2 and e3 and with

lamination parametersm1,m2 andm3, using the formula (5.32) to (5.42) in Allaire (2002),

this is

B∗ = B + (1− θ)
(
(A−B)−1 + θ

(
m1 fB(e

1) +m2 fB(e
2) +m3 fB(e

3)
))−1

,

where the tensor fB is defined by the quadratic form induced over the space of symmetric

3× 3 matrices. In the case where B is an isotropic tensor with Lamé parameters µ and λ,

that is to say

B = λ I2 ⊗ I2 + 2µ I4,

we have that:

fB(e)ξ : ξ =
1

µ
|ξ e|2 −K (ξ e · e)2 ,
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where K = µ+λ
µ(2µ+λ)

.

We need to apply fB to the elements of a base of the space of symmetric 3× 3 matri-

ces. We use the following base:

A1 = e1 ⊗ e1 =


1 0 0

0 0 0

0 0 0



A2 = e2 ⊗ e2 =


0 0 0

0 1 0

0 0 0



A3 = e3 ⊗ e3 =


0 0 0

0 0 0

0 0 1



A4 = e1 ⊗ e2 + e2 ⊗ e1 =


0 1 0

1 0 0

0 0 0



A5 = e1 ⊗ e3 + e3 ⊗ e1 =


0 0 1

0 0 0

1 0 0



A6 = e2 ⊗ e3 + e3 ⊗ e2 =


0 0 0

0 0 1

0 1 0


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Then

f c
B(e)A

1 : A1 = 1
µ
(e2x)−K (e2x)

2
,

f c
B(e)A

2 : A2 = 1
µ

(
e2y
)
−K

(
e2y
)2
,

f c
B(e)A

3 : A3 = 1
µ
(e2z)−K (e2z)

2
,

f c
B(e)A

4 : A4 = 1
µ

(
e2x + e2y

)
−K (2exey)

2 ,

f c
B(e)A

5 : A5 = 1
µ
(e2x + e2z)−K (2exez)

2 ,

f c
B(e)A

6 : A6 = 1
µ

(
e2y + e2z

)
−K (2eyez)

2 ,

f c
B(e)(A

1 + A2) : (A1 + A2) = 1
µ

(
e2x + e2y

)
−K

(
e2x + e2y

)2
,

f c
B(e)(A

1 + A3) : (A1 + A3) = 1
µ
(e2x + e2z)−K (e2x + e2z)

2
,

f c
B(e)(A

1 + A4) : (A1 + A4) = 1
µ
((ex + ey)

2 + e2x)−K (ex(ex + 2ey))
2 ,

f c
B(e)(A

1 + A5) : (A1 + A5) = 1
µ
((ex + ez)

2 + e2x)−K (ex(ex + 2ez))
2 ,

f c
B(e)(A

1 + A6) : (A1 + A6) = 1
µ

(
e2x + e2y + e2z

)
−K (e2x + 2eyez)

2
,

f c
B(e)(A

2 + A3) : (A2 + A3) = 1
µ

(
e2y + e2z

)
−K

(
e2y + e2z

)2
,

f c
B(e)(A

2 + A4) : (A2 + A4) = 1
µ

(
(ex + ey)

2 + e2y
)
−K (ey(2ex + ey))

2 ,

f c
B(e)(A

2 + A5) : (A2 + A5) = 1
µ

(
e2x + e2y + e2z

)
−K

(
e2y + 2exez

)2
,

f c
B(e)(A

2 + A6) : (A2 + A6) = 1
µ

(
(ey + ez)

2 + e2y
)
−K (ey(ey + 2ez))

2 ,

f c
B(e)(A

3 + A4) : (A3 + A4) = 1
µ

(
e2x + e2y + e2z

)
−K (e2z + 2exey)

2
,

f c
B(e)(A

3 + A5) : (A3 + A5) = 1
µ
((ex + ez)

2 + e2z)−K (ez(2ex + ez))
2 ,

f c
B(e)(A

3 + A6) : (A3 + A6) = 1
µ
((ey + ez)

2 + e2z)−K (ez(2ey + ez))
2 ,

f c
B(e)(A

4 + A5) : (A4 + A5) = 1
µ
((ey + ez)

2 + 2e2x)−K (2ex(ey + ez))
2 ,

f c
B(e)(A

4 + A6) : (A4 + A6) = 1
µ

(
(ex + ez)

2 + 2e2y
)
−K (2ey(ex + ez))

2 ,

f c
B(e)(A

5 + A6) : (A5 + A6) = 1
µ
((ex + ey)

2 + 2e2z)−K (2ez(ex + ey))
2 ,
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And,

f c
B(e)A

1 : A2 = 1
2
(f c

B(e)(A
1 + A2) : (A1 + A2)− f c

B(e)A
1 : A1 − f c

B(e)A
2 : A2)

= −K (ex)
2 (ey)

2 ,

f c
B(e)A

1 : A3 = 1
2
(f c

B(e)(A
1 + A3) : (A1 + A3)− f c

B(e)A
1 : A1 − f c

B(e)A
3 : A3)

= −K (ex)
2 (ez)

2 ,

f c
B(e)A

1 : A4 = 1
2
(f c

B(e)(A
1 + A4) : (A1 + A4)− f c

B(e)A
1 : A1 − f c

B(e)A
4 : A4)

= ex ey
µ

− 2K (ex)
3 ey ,

f c
B(e)A

1 : A5 = 1
2
(f c

B(e)(A
1 + A5) : (A1 + A5)− f c

B(e)A
1 : A1 − f c

B(e)A
5 : A5)

= ex ez
µ

− 2K (ex)
3 ez ,

f c
B(e)A

1 : A6 = 1
2
(f c

B(e)(A
1 + A6) : (A1 + A6)− f c

B(e)A
1 : A1 − f c

B(e)A
6 : A6)

= −2K (ex)
2 ey ez ,

f c
B(e)A

2 : A3 = 1
2
(f c

B(e)(A
2 + A3) : (A2 + A3)− f c

B(e)A
2 : A2 − f c

B(e)A
3 : A3)

= −K (ey)
2 (ez)

2 ,

f c
B(e)A

2 : A4 = 1
2
(f c

B(e)(A
2 + A4) : (A2 + A4)− f c

B(e)A
2 : A2 − f c

B(e)A
4 : A4)

= ex ey
µ

− 2K (ey)
3 ex ,

f c
B(e)A

2 : A5 = 1
2
(f c

B(e)(A
2 + A5) : (A2 + A5)− f c

B(e)A
2 : A2 − f c

B(e)A
5 : A5)

= −2K ex (ey)
2 ez ,

f c
B(e)A

2 : A6 = 1
2
(f c

B(e)(A
2 + A6) : (A2 + A6)− f c

B(e)A
2 : A2 − f c

B(e)A
6 : A6)

= ey ez
µ

− 2K (ey)
3 ez ,

f c
B(e)A

3 : A4 = 1
2
(f c

B(e)(A
3 + A4) : (A3 + A4)− f c

B(e)A
3 : A3 − f c

B(e)A
4 : A4)

= −2K ex ey (ez)
2 ,
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f c
B(e)A

3 : A5 = 1
2
(f c

B(e)(A
3 + A5) : (A3 + A5)− f c

B(e)A
3 : A3 − f c

B(e)A
5 : A5)

= ex ez
µ

− 2K (ez)
3 ex ,

f c
B(e)A

3 : A6 = 1
2
(f c

B(e)(A
3 + A6) : (A3 + A6)− f c

B(e)A
3 : A3 − f c

B(e)A
6 : A6)

= ey ez
µ

− 2K (ez)
3 ey ,

f c
B(e)A

4 : A5 = 1
2
(f c

B(e)(A
4 + A5) : (A4 + A5)− f c

B(e)A
4 : A4 − f c

B(e)A
5 : A5)

= ey ez
µ

− 4K e2x ey ez ,

f c
B(e)A

4 : A6 = 1
2
(f c

B(e)(A
4 + A6) : (A4 + A6)− f c

B(e)A
4 : A4 − f c

B(e)A
6 : A6)

= ex ez
µ

− 4K ex e
2
y ez ,

f c
B(e)A

5 : A6 = 1
2
(f c

B(e)(A
5 + A6) : (A5 + A6)− f c

B(e)A
5 : A5 − f c

B(e)A
6 : A6)

= ex ey
µ

− 4K ex ey e
2
z .

Then, given that

(A− B)−1 = ((ε− 1) B)−1 =
1

ε− 1
B−1,

if b̂ = Ψ(B), we have that

b̂ =



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 2µ 0 0

0 0 0 0 2µ 0

0 0 0 0 0 2µ


.

The non-zero entries of b̂−1 are:

b̂−1
11 =

1

9λ+ 6µ
+

1

3µ
= b̂−1

22 = b̂−1
33
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b̂−1
12 =

−λ
2µ(3λ+ 2µ)

= b̂−1
21 = b̂−1

13 = b̂−1
31 = b̂−1

23 = b̂−1
32

b̂−1
44 =

1

2µ
= b̂−1

55 = b̂−1
66 .

Calling

d̂i =



Ai
11 Ai

12 Ai
13 Ai

14 Ai
15 Ai

16

Ai
12 Ai

22 Ai
23 Ai

24 Ai
25 Ai

26

Ai
13 Ai

23 Ai
33 Ai

34 Ai
35 Ai

36

Ai
14 Ai

24 Ai
34 Ai

44 Ai
45 Ai

46

Ai
15 Ai

25 Ai
35 Ai

45 Ai
55 Ai

56

Ai
16 Ai

26 Ai
36 Ai

46 Ai
56 Ai

66


,
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for i = 0

A0
11 = m1f

c
B(e

1)A1 : A1 +m2f
c
B(e

2)A1 : A1 +m3f
c
B(e

3)A1 : A1

A0
22 = m1f

c
B(e

1)A2 : A2 +m2f
c
B(e

2)A2 : A2 +m3f
c
B(e

3)A2 : A2

A0
33 = m1f

c
B(e

1)A3 : A3 +m2f
c
B(e

2)A3 : A3 +m3f
c
B(e

3)A3 : A3

A0
44 = 1

2
(m1f

c
B(e

1)A4 : A4 +m2f
c
B(e

2)A4 : A4 +m3f
c
B(e

3)A4 : A4)

A0
55 = 1

2
(m1f

c
B(e

1)A5 : A5 +m2f
c
B(e

2)A5 : A5 +m3f
c
B(e

3)A5 : A5)

A0
66 = 1

2
(m1f

c
B(e

1)A6 : A6 +m2f
c
B(e

2)A6 : A6 +m3f
c
B(e

3)A6 : A6)

A0
12 = m1f

c
B(e

1)A1 : A2 +m2f
c
B(e

2)A1 : A2 +m3f
c
B(e

3)A1 : A2

A0
13 = m1f

c
B(e

1)A1 : A3 +m2f
c
B(e

2)A1 : A3 +m3f
c
B(e

3)A1 : A3

A0
23 = m1f

c
B(e

1)A2 : A3 +m2f
c
B(e

2)A2 : A3 +m3f
c
B(e

3)A2 : A3

A0
14 = 1√

2
(m1f

c
B(e

1)A1 : A4 +m2f
c
B(e

2)A1 : A4 +m3f
c
B(e

3)A1 : A4)

A0
15 = 1√

2
(m1f

c
B(e

1)A1 : A5 +m2f
c
B(e

2)A1 : A5 +m3f
c
B(e

3)A1 : A5)

A0
16 = 1√

2
(m1f

c
B(e

1)A1 : A6 +m2f
c
B(e

2)A1 : A6 +m3f
c
B(e

3)A1 : A6)

A0
24 = 1√

2
(m1f

c
B(e

1)A2 : A4 +m2f
c
B(e

2)A2 : A4 +m3f
c
B(e

3)A2 : A4)

A0
25 = 1√

2
(m1f

c
B(e

1)A2 : A5 +m2f
c
B(e

2)A2 : A5 +m3f
c
B(e

3)A2 : A5)

A0
26 = 1√

2
(m1f

c
B(e

1)A2 : A6 +m2f
c
B(e

2)A2 : A6 +m3f
c
B(e

3)A2 : A6)

A0
34 = 1√

2
(m1f

c
B(e

1)A3 : A4 +m2f
c
B(e

2)A3 : A4 +m3f
c
B(e

3)A3 : A4)

A0
35 = 1√

2
(m1f

c
B(e

1)A3 : A5 +m2f
c
B(e

2)A3 : A5 +m3f
c
B(e

3)A3 : A5)

A0
36 = 1√

2
(m1f

c
B(e

1)A3 : A6 +m2f
c
B(e

2)A3 : A6 +m3f
c
B(e

3)A3 : A6)

A0
45 = 1

2
(m1f

c
B(e

1)A4 : A5 +m2f
c
B(e

2)A4 : A5 +m3f
c
B(e

3)A4 : A5)

A0
46 = 1

2
(m1f

c
B(e

1)A4 : A6 +m2f
c
B(e

2)A4 : A6 +m3f
c
B(e

3)A4 : A6)

A0
56 = 1

2
(m1f

c
B(e

1)A5 : A6 +m2f
c
B(e

2)A5 : A6 +m3f
c
B(e

3)A5 : A6)

Therefore

d̂1 =
1

ε− 1
b̂−1 + θ d̂0

and,

b̂∗ = b̂+ (1− θ)(d̂1)−1.
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Theorem 2.3.36 in Allaire (2002) yields, under the assumption that λ ≥ 0, the follow-

ing result. If σ1 ≤ σ2 ≤ σ3 are the eigenvalues of σ, then

g(σ, θ) = B−1σ : σ +
θ

1− θ
g∗(σ)

Note: g(σ, θ) depends on the objective function one wants to minimize or maximize which

is our case.

with g∗(σ) as given in the following cases:

(1) In the case when 0 ≤ σ1 ≤ σ2 ≤ σ3

if σ3 ≤ σ1 + σ2

g∗(σ) =
2µ+ λ

4µ(2µ+ 3λ)
(σ1 + σ2 + σ3)

2

m1 =
σ3 + σ2 − σ1
σ1 + σ2 + σ3

, m2 =
σ1 − σ2 + σ3
σ1 + σ2 + σ3

, m3 =
σ1 + σ2 − σ3
σ1 + σ2 + σ3

if σ3 ≥ σ1 + σ2

g∗(σ) =
1

2µ

(
(σ1 + σ2)

2 + σ2
3

)
− λ(σ1 + σ2 + σ3)

2

2µ(2µ+ 3λ)

m1 =
σ2

σ1 + σ2
, m2 =

σ1
σ1 + σ2

, m3 = 0
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(2) In the case when σ1 ≤ 0 ≤ σ2 ≤ σ3

if σ3 + σ2 ≥ − µ

µ+ λ
σ1 , and σ3 − σ2 ≤ − µ

µ+ λ
σ1

g∗(σ) =
2µ+ λ

4µ(2µ+ 3λ)

(
σ3 + σ2 −

µ+ 2λ

µ+ λ
σ1

)2

m1 =
σ3 + σ2 +

µ
µ+λ

σ1

σ3 + σ2 − µ+2λ
µ+λ

σ1
, m2 =

µ+ λ

µ

σ3 − σ2 − µ
µ+λ

σ1

σ3 + σ2 − µ+2λ
µ+λ

σ1

m3 = −µ+ λ

µ

σ3 − σ2 +
µ

µ+λ
σ1

σ3 + σ2 − µ+2λ
µ+λ

σ1

if σ3 + σ2 ≤ − µ

µ+ λ
σ1

g∗(σ) =
1

2µ

(
(σ3 + σ2)

2 + σ2
1

)
− λ(σ1 + σ2 + σ3)

2

2µ(2µ+ 3λ)

m1 = 0 , m2 =
σ3

σ2 + σ3
, m3 =

σ2
σ2 + σ3

if σ3 − σ2 ≥ − µ

µ+ λ
σ1

g∗(σ) =
1

2µ

(
σ2
1 + σ2

2 + σ2
3

)
− 2µσ1σ2

2µ(µ+ λ)
− λ(σ1 + σ2 + σ3)

2

2µ(2µ+ 3λ)

m1 =
σ2

σ2 − σ1
, m2 =

−σ1
σ2 − σ1

, m3 = 0
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(3) In the case when σ1 ≤ σ2 ≤ 0 ≤ σ3

if σ1 + σ2 ≤ − µ

µ+ λ
σ3 , and σ1 − σ2 ≥ − µ

µ+ λ
σ3

g∗(σ) =
2µ+ λ

4µ(2µ+ 3λ)

(
σ1 + σ2 −

µ+ 2λ

µ+ λ
σ3

)2

m1 =
σ1 + σ2 +

µ
µ+λ

σ3

σ1 + σ2 − µ+2λ
µ+λ

σ3
, m2 =

µ+ λ

µ

σ1 − σ2 − µ
µ+λ

σ3

σ1 + σ2 − µ+2λ
µ+λ

σ3

m3 = −µ+ λ

µ

σ1 − σ2 +
µ

µ+λ
σ3

σ1 + σ2 − µ+2λ
µ+λ

σ3

if σ1 + σ2 ≥ − µ

µ+ λ
σ3

g∗(σ) =
1

2µ

(
(σ1 + σ2)

2 + σ2
3

)
− λ (σ1 + σ2 + σ3)

2

2µ(2µ+ 3λ)

m1 = 0 , m2 =
σ1

σ2 + σ1
, m3 =

σ2
σ2 + σ1

if σ1 − σ2 ≤ − µ

µ+ λ
σ3

g∗(σ) =
1

2µ
(σ2

1 + σ2
2 + σ2

3)−
2µσ3σ2

2µ(µ+ λ)
− λ (σ1 + σ2 + σ3)

2

2µ(2µ+ 3λ)

m1 =
σ2

σ2 − σ3
, m2 = − σ3

σ2 − σ3
, m3 = 0
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(4) In the case when σ1 ≤ σ2 ≤ σ3 ≤ 0

if σ1 ≥ σ3 + σ2

g∗(σ) =
2µ+ λ

4µ(2µ+ 3λ)
(σ1 + σ2 + σ3)

2

m1 =
σ1 + σ2 − σ3
σ1 + σ2 + σ3

, m2 =
σ3 − σ2 + σ1
σ1 + σ2 + σ3

, m3 =
σ3 + σ2 − σ1
σ1 + σ2 + σ3

if σ1 ≤ σ3 + σ2

g∗(σ) =
1

2µ

(
(σ3 + σ2)

2 + σ2
1

)
− λ (σ3 + σ2 + σ1)

2

2µ(2µ+ 3λ)

m1 =
σ2

σ3 + σ2
, m2 =

σ3
σ3 + σ2

, m3 = 0

Finally, the lamination directions are chosen as the eigenvectors of σ.

And the optimal density of rigid material is chosen by:

θ = min

{
1,

√
g∗(σ)

l
∫
Ω
ρ̄ |u|2

}
,

where:

ρ̄ = θpB + (1− θp)A

θp = optimal density of rigid material obtained in the previous iteration.

u = first eigenvector obtained in the previous iteration.
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A.3. Effective elasticity tensor for a rank-2 laminate composite

A.3.1. Introduction

Let Ω ⊂ R2 be a bounded open set in R2. In Ω we have two linearly elastic materials

with elasticity tensors A and B. We want to make a mixture of these two materials in pro-

portions θ of A and 1− θ of B. The new material is built by laminating a proportion θ1 of

A with a proportion 1−θ1 ofB in one direction, let us say e1, and then the resultant tensor

A∗
1 is laminated again in a perpendicular direction e2, and in proportion 1− θ2 with one of

the pure materials, sayA, in proportion θ2 and obtainA∗
2, a rank 2 laminate. See figure A.1.

A

A

A

B

B

A

A
A

B

B

A

e
1

e
2

θ
1

θ
1

1-

θ
2

θ
2

1-

φ

FIGURE A.1. Laminated Material

Notice that e1, e2 is the base of R2 resulting of applying a rotation in angle ϕ to the

canonic base of R2.
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According to equation (2.68) in Allaire (2002) the effective tensor of the laminated

material is defined by

A∗
2 = A+ (1− θ)

(
(B − A)−1 + θ

(
m1 fA(e

1) +m2 fA(e
2)
))−1

Where, θ = θ2+θ1(1−θ2) is the total proportion of materialA, 1−θ = (1−θ1)(1−θ2)

is the total proportion of material B, and fA is a known fourth-order tensor and mi are the

lamination parameters, which depend on the intermediate proportions.

m1 =
θ1
θ

=
θ1

θ1 + θ2(1− θ1)
m2 =

θ2(1− θ1)

θ1 + θ2(1− θ1)
.

A.3.2. Standard Isometry

Since during the calculations we need to invert several fourth-order tensors which

could be a little difficult, we prefer to write this tensors as 3x3 matrices, because their

inverses are standard. We identify the space of symmetric 2x2 matrices with R3 using the

following isometry:

Φ

 x z

z y

 =


x

y
√
2 z

 .

Now we can write the constitutive relation as

σ̂ = Φ(σ) = ĉ Φ(ϵ) = ĉ ϵ̂,

where ĉ is defined as the following 3× 3 matrix:

ĉ11 = C1111, ĉ12 = C1122, ĉ13 =
√
2C1112,

ĉ21 = C2211, ĉ22 = C2222, ĉ23 =
√
2C2212,

ĉ31 =
√
2C1211, ĉ32 =

√
2C1222, ĉ33 = 2C1212.
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In the isotropic case ĉ11 = ĉ22 = 2µ+ λ, ĉ33 = 2µ, ĉ12 = ĉ21 = λ and ĉ13 = ĉ31 = ĉ23 =

ĉ32 = 0. Where λ , µ are the Lamé parameters of an elastic material. Also:

C

 x z

z y

 :

 x z

z y

 =


x

y
√
2 z

 · ĉ


x

y
√
2 z

 .

Let ĉ = Ψ(C), we have that ϵ̂ = Ψ(C−1)σ̂ = Ψ(C−1)ĉϵ̂, therefore ĉ−1 = Ψ(C−1), then

C−1 = Ψ−1(ĉ−1).

A.3.3. Sequential Iterative Laminations

Then, we can explicitly find the composite material that maximize the first eigenvalue

by means of a rank-2 sequential laminate in perpendicular directions e1 and e2 and with

lamination parameters m1 and m2, using the formula (2.68) in Allaire (2002), this is

A∗ = A+ (1− θ)
(
(B − A)−1 + θ

(
m1 fA(e

1) +m2 fA(e
2)
))−1

,

where the tensor fA its defined by the quadratic form induced over the space of symmetric

2 × 2 matrices. In the case where A and B are isotropic tensors with Lamé parameters

µA , µB and λA , λB, that is to say

A = λA I2 ⊗ I2 + 2µA I4 , B = λB I2 ⊗ I2 + 2µB I4,

we have that:

fA(e)ξ : ξ =
1

µA

|ξ e|2 −K (ξ e · e)2 ,

where K = µA+λA

µA(2µA+λA)
.

We need to apply fA to the elements of a base of the space of symmetric 2× 2 matri-

ces. We use the following base:
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A1 = e1 ⊗ e1 =

 1 0

0 0

 A2 = e2 ⊗ e2 =

 0 0

0 1


A3 = e1 ⊗ e2 + e2 ⊗ e1 =

 0 1

1 0

 .
And e1 =

 cos(ϕ)

sin(ϕ)

 , e2 =

 −sin(ϕ)

cos(ϕ)

,

with |ei| =
√
(eix)

2 + (eiy)
2 = 1 i = 1, 2

Then

fA(e
1)A1 : A1 = 1

µ
cos2(ϕ)−Kcos4(ϕ),

fA(e
1)A2 : A2 = 1

µ
sin2(ϕ)−Ksin4(ϕ),

fA(e
1)A3 : A3 = 1

µ
−Ksin2(2ϕ),

fA(e
1)(A1 + A2) : (A1 + A2) = 1

µ
−K,

fA(e
1)A1 : A2 = 1

2
(fA(e

1)(A1 + A2) : (A1 + A2)

−fA(e1)A1 : A1 − fA(e
1)A2 : A2)

= −Kcos2(ϕ)sin2(ϕ),

fA(e
1)(A2 + A3) : (A2 + A3) = 1

µ
((cos(ϕ) + sin(ϕ))2 + sin2(ϕ))

−K (sin(ϕ)(2cos(ϕ) + sin(ϕ)))2 ,

fA(e
1)A2 : A3 = 1

2
(fA(e

1)(A2 + A3) : (A2 + A3)

−fA(e1)A2 : A2 − fA(e
1)A3 : A3)

= 1
µ
(cos(ϕ)sin(ϕ))−K(2cos(ϕ)sin3(ϕ)),

fA(e
1)(A1 + A3) : (A1 + A3) = 1

µ
((cos(ϕ) + sin(ϕ))2 + cos2(ϕ))

−K (cos(ϕ)(cos(ϕ) + 2sin(ϕ)))2 ,
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fA(e
1)A1 : A3 = 1

2
(fA(e

1)(A1 + A3) : (A1 + A3)

−fA(e1)A1 : A1 − fA(e
1)A3 : A3)

= 1
µ
(cos(ϕ)sin(ϕ))−K (2cos3(ϕ)sin(ϕ)) .

fA(e
2)A1 : A1 = 1

µ
sin2(ϕ)−Ksin4(ϕ),

fA(e
2)A2 : A2 = 1

µ
cos2(ϕ)−Kcos4(ϕ),

fA(e
2)A3 : A3 = 1

µ
−Ksin2(2ϕ),

fA(e
2)(A1 + A2) : (A1 + A2) = 1

µ
−K,

fA(e
2)A1 : A2 = 1

2
(fA(e

2)(A1 + A2) : (A1 + A2)

−fA(e2)A1 : A1 − fA(e
2)A2 : A2

= −Kcos2(ϕ)sin2(ϕ),

fA(e
2)(A2 + A3) : (A2 + A3) = 1

µ
((cos(ϕ)− sin(ϕ))2 + cos2(ϕ))

−K (cos(ϕ)(−2sin(ϕ) + cos(ϕ)))2 ,

fA(e
2)A2 : A3 = 1

2
(fA(e

2)(A2 + A3) : (A2 + A3)

−fA(e2)A2 : A2 − fA(e
2)A3 : A3

= − 1
µ
(cos(ϕ)sin(ϕ)) +K(2cos3(ϕ)sin(ϕ)),

fA(e
2)(A1 + A3) : (A1 + A3) = 1

µ
((cos(ϕ)− sin(ϕ))2 + sin2(ϕ))

−K (sin(ϕ)(sin(ϕ)− 2cos(ϕ)))2 ,

fA(e
2)A1 : A3 = 1

2
(fA(e

2)(A1 + A3) : (A1 + A3)

−fA(e2)A1 : A1 − fA(e
2)A3 : A3)

= − 1
µ
(cos(ϕ)sin(ϕ)) +K (2cos(ϕ)sin3(ϕ)) .
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if b̂ = Ψ(B), we have that

b̂ =


2µB + λB λB 0

λB 2µB + λB 0

0 0 2µB

 â =


2µA + λA λA 0

λA 2µA + λA 0

0 0 2µA

 .
and

(
b̂− â

)−1

=


λB−λA+2µB−2µA

4(µA−µB)(λA−λB+µA−µB)
λA−λB

4(µA−µB)(λA−λB+µA−µB)
0

λA−λB

4(µA−µB)(λA−λB+µA−µB)
λB−λA+2µB−2µA

4(µA−µB)(λA−λB+µA−µB)
0

0 0 1
2(µB−µA)


Calling

d̂i =


Ai Di Fi

Di Bi Ei

Fi Ei Ci

 ,
for i = 0

A0 = m1fA(e
1)A1 : A1 +m2fA(e

2)A1 : A1

B0 = m1fA(e
1)A2 : A2 +m2fA(e

2)A2 : A2

C0 = 1
2
(m1fA(e

1)A3 : A3 +m2fA(e
2)A3 : A3)

D0 = m1fA(e
1)A1 : A2 +m2fA(e

2)A1 : A2

E0 = 1√
2
(m1fA(e

1)A2 : A3 +m2fA(e
2)A2 : A3)

F0 = 1√
2
(m1fA(e

1)A1 : A3 +m2fA(e
2)A1 : A3) .

Therefore

d̂1 =
(
b̂− â

)−1

+ θ d̂0

and, finally

â∗ = â+ (1− θ)(d̂1)−1. (A.1)
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A.3.4. Direct Method

Another way to obtain formulas for the effective elasticity tensor is by means of suc-

cessive limits, as in Gutiérrez (1998) and Gutiérrez (2004). With this method we can

directly obtain the homogenized or effective elasticity tensor, but it is not easy to iterate

with this method to obtain higher rank laminations, because each new lamination requires

the inverse of several 2× 2 matrices.

First we calculate the rank-1 effective elasticity tensor, then we laminate B in propor-

tion 1− θ1 with A in proportion θ1 in direction e1 as seen in figure A.2.

A AA BB e1

θ
1

θ
1

1-

FIGURE A.2. rank-1 laminated material

We form a succession of elasticity tensors Cn that depends on a scale or length factor

that goes to zero when n goes to ∞.

We notice that the elasticity tensor Cn depends only in the direction x1 (parallel with

e1).

Cn(x1) = χn(x1)A+ (1− χn(x1))B
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where χn is a sequence of characteristic functions of material A that weakly-⋆ con-

verges to θ1(x1) in L∞ (Ω; [0, 1]). Although χn is always equal to 0 or 1, its limit θ1 can

take any value between 0 and 1.

Assuming A and B are elastic materials the stress-strain relation is

σn
ij = Cn

ijklε
n
kl i, j, k, l = 1, 2 , (A.2)

where εnkl =
1
2

(
∂un

k

∂xl
+

∂un
l

∂xk

)
, un ∈ R2 is the strain tensor, σn ∈ Sym(2× 2) is the stress

tensor and if A and B are isotropic,

Cn
ijkl = λn(x1)δijδkl + µn(x1) (δikδjl + δilδjk).

Then,
Cn

1111 = λn + 2µn

Cn
1122 = λn = Cn

2211

Cn
1112 = 0 = Cn

1211

Cn
2212 = 0 = Cn

1222

Cn
2222 = λn + 2µn

Cn
1212 = µn

Using the standard isometry (see section A.3.2):

ĉn =


λn + 2µn λn 0

λn λn + 2µn 0

0 0 2µn

 , σ̂n = ĉnε̂n

By means of Tartar (2009), σn
1j , j = 1, 2 and εn22 do not oscillate in the x1 direction.

Then for any n, equation A.2 stands, and we can obtain expressions for the oscillating

parameters (σn
22 , ε

n
12 , ε

n
11) in terms of the non oscillating ones (σn

12 , σ
n
11 , ε

n
22).
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σ̂n
11 = (λn + 2µn)ε̂n11 + λnε̂n22

→ ε̂n11 = 1
λn+2µn σ̂

n
11 − λn

λn+2µn ε̂
n
22 (1)

σ̂n
22 = λnε̂n11 + (λn + 2µn)ε̂n22

= λn

λn+2µn σ̂
n
11 +

(
4µn(λn+µn)

λn+2µn

)
ε̂n22 (2)

σ̂n
12 = 2µnε̂n12

→ ε̂n12 = 1
2µn σ̂

n
12 (3)

Passing to the limit n→ ∞+,

(1) → ε̂∞11 = ασ̂∞
11 − βε̂∞22 → σ̂∞

11 = 1
α
ε̂∞11 +

β
α
ε̂∞22

(2) → σ̂∞
22 = βσ̂∞

11 + γε̂∞22 → σ̂∞
22 = β

α
ε̂∞11 +

(
β2

α
+ γ
)
ε̂∞22

(3) → ε̂∞12 = δσ̂∞
12 → σ̂∞

12 = 1
δ
ε̂∞12

with
α = θ1

(
1

λA+2µA

)
+ (1− θ1)

(
1

λB+2µB

)
β = θ1

(
λA

λA+2µA

)
+ (1− θ1)

(
λB

λB+2µB

)
γ = θ1

(
4µA(λA+µA)

λA+2µA

)
+ (1− θ1)

(
4µB(λB+µB)

λB+2µB

)
δ = θ1

(
1

2µA

)
+ (1− θ1)

(
1

2µB

)
.

Then the rank-1 effective tensor in the standard isometry look is:

ĉ∗1 =


1/α β/α 0

β/α β2/α+ γ 0

0 0 1/δ


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Now to calculate the rank-2 laminate effective tensor, we laminate the rank-1 effective

material in proportion 1 − θ2 with material A in proportion θ2 in perpendicular direction

e2 as seen in figure A.3.

A

A

A

BB

A

A

A BB

A
e
1

e
2

θ
1

θ
1

1-

θ
2

θ
2

1-

FIGURE A.3. rank-2 laminated material

Now the non oscillating quantities are σn
i2 ; i = 1, 2 and εn11, and looking at the

stress-strain relation using the standard isometry, we can write the oscillating quantities

(σn
11 , ε

n
12 , ε

n
22) in terms of the non oscillating ones (σn

12 , σ
n
22 , ε

n
11).


σ̂n
11

σ̂n
22

σ̂n
12

 =


ĉn11 ĉn12 ĉn13

ĉn12 ĉn22 ĉn23

ĉn13 ĉn23 ĉn33




ε̂n11

ε̂n22

ε̂n12


For each n ∈ N, ĉn13 = ĉn23 = 0, then
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→

 σ̂n
22

σ̂n
12

 =

 ĉn12

0

 ε̂n11 +

 ĉn22 0

0 ĉn33


 ε̂n22

ε̂n12



→

 ε̂n22

ε̂n12

 =

 1/ĉn22 0

0 1/ĉn33


 σ̂n

22 − ĉn12ε̂
n
11

σ̂n
12


→ ε̂n22 = 1

ĉn22
σ̂n
22 −

ĉn12
ĉn22
ε̂n11

→ ε̂n12 = 1
ĉn33
σ̂n
12

→ σ̂n
11 = ĉn11ε̂

n
11 + ĉn12

(
1
ĉn22
σ̂n
22 −

ĉn12
ĉn22
ε̂n11

)
=
(
ĉn11 −

(ĉn12)
2

ĉn22

)
ε̂n11 +

ĉn12
ĉn22
σ̂n
22

Passing to the limit n→ ∞

σ̂∞
11 = A1ε̂

∞
11 +B1σ̂

∞
22 → σ̂∞

11 =
(
A1 +

B2
1

D1

)
ε̂∞11 +

B1

D1
ε̂∞22

ε̂∞22 = −B1ε̂
∞
11 +D1σ̂

∞
22 → σ̂∞

22 = B1

D1
ε̂∞11 +

1
D1
ε̂∞22

ε̂∞12 = C1σ̂
∞
12 → σ̂∞

12 = 1
C1
ε̂∞12 ,
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where
A1 = θ2

4µA(λA+µA)
λA+2µA

+ (1− θ2)
(
ĉ∗1(1, 1)−

(ĉ∗1(1,2))
2

ĉ∗1(2,2)

)
= θ2

4µA(λA+µA)
λA+2µA

+ (1− θ2)

(
1
α
− (β/α)2

β2

α
+γ

)
B1 = θ2

λA

λA+2µA
+ (1− θ2)

(
ĉ∗1(1,2)

ĉ∗1(2,2)

)
= θ2

λA

λA+2µA
+ (1− θ2)

(
β/α
β2

α
+γ

)
C1 = θ2

(
1

2µA

)
+ (1− θ2)

(
1

ĉ∗1(3,3)

)
= θ2

(
1

2µA

)
+ (1− θ2)δ

D1 = θ2

(
1

λA+2µA

)
+ (1− θ2)

(
1

ĉ∗1(2,2)

)
.

Then the rank-2 effective tensor in the standard isometry look is:

ĉ∗2 =


A1 +B2

1/D1 B1/D1 0

B1/D1 1/D1 0

0 0 1/C1


In order to compare the effective tensors ĉ∗2 and â∗ from equation A.1 we need to apply

a rotation in angle −ϕ to the effective tensor ĉ∗2. We define a rotation rotation matrix,

Q(ϕ) =

 cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)


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Then applying the rotation in the strain-stress relation,

σ = Ceffε

QσQT = QCeffεQT

= QCeffQTQεQT

Calling σ̃ = QσQT and ε̃ = QεQT we get,

σ̃ = QCeffQT ε̃

Therefore the effective elasticity tensor obtained by laminating in perpendicular directions

e1 and e2 (e1 and e2 rotated in angle ϕ) is,

˜Ceff = QCeffQT

Using the standard isometry we can find an easy way to obtain the effective elasticity

tensor in rotated directions by means of the non-rotated one.

If σ =

 σ11 σ12

σ11 σ22

, then σ̂ =


σ11

σ22

√
2σ12


Now we calculate the rotated tensor σ̃,

σ̃ = QσQT

=

 cos(ϕ) sin(ϕ)

−sin(ϕ) cos(ϕ)


 σ11 σ12

σ11 σ22


 cos(ϕ) −sin(ϕ)

sin(ϕ) cos(ϕ)


then,
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σ̃11 = σ11cos
2(ϕ) + σ22sin

2(ϕ) + σ12sin(2ϕ)

σ̃22 = σ11sin
2(ϕ) + σ22cos

2(ϕ)− σ12sin(2ϕ)

σ̃12 = −1
2
σ11sin(2ϕ) +

1
2
σ22sin(2ϕ) + σ12cos(2ϕ)

In the standard isometry,

ˆ̃σ =


σ11cos

2(ϕ) + σ22sin
2(ϕ) + σ12sin(2ϕ)

σ11sin
2(ϕ) + σ22cos

2(ϕ)− σ12sin(2ϕ)

−
√
2
2
σ11sin(2ϕ) +

√
2
2
σ22sin(2ϕ) +

√
2σ12cos(2ϕ)



=


cos2(ϕ) sin2(ϕ) sin(2ϕ)/

√
2

sin2(ϕ) cos2(ϕ) −sin(2ϕ)/
√
2

−sin(2ϕ)/
√
2 sin(2ϕ)/

√
2 cos(2ϕ)




σ11

σ22

√
2σ12


Calling

L =


cos2(ϕ) sin2(ϕ) sin(2ϕ)/

√
2

sin2(ϕ) cos2(ϕ) −sin(2ϕ)/
√
2

−sin(2ϕ)/
√
2 sin(2ϕ)/

√
2 cos(2ϕ)


and using the standard isometry form of the strain-stress relation,

σ̂ = ĉε̂

L−1 ˆ̃σ = ĉL−1 ˆ̃ε

ˆ̃σ = LĉL−1 ˆ̃ε
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Then,

ˆ̃c = LĉL−1

Therefore,

ˆ̃c∗2 = Lĉ∗2L
−1

Finally by replacing the value of the entries in the matrix ˆ̃c∗2 we can check that all the

entries of this matrix are exactly the same of the ones in matrix â∗2 of equation (A.1).
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