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Abstract. Theoretical work concerning the statistical properties
of Stokes’ parameters usually relies on the assumption of a
normal distribution of the photon counts. However, as we show
in the present paper, if the exact Poissonian distribution is used
for modelling the photon counts, some important properties
about the estimators can be proved. Also the way of estimating
Stokes’ parameters could be tested. One of the estimators studied
is shown to be optimal, and a numerical test of its confidence
interval shows that it behaves as a normal one for most cases of
practical interest.
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1. Introduction

The improvements of polarimetric detectors and the related
development of low-level polarization measurements in the op-
tical region have made it important to critically assess the data
reduction techniques when computing the estimators of polariza-
tion. It has been widely recognized that the degree of linear
polarization P, and the position angle of the plane of vibration
have complicated statistical properties (e.g. Serkowski 1962). As a
consequence, it is frequently inconvenient to use these para-
meters in discussions of polarimetric data; Stokes’ parameters,
with their simpler statistical behavior, are to be preferred. The
importance of appreciating the underlying statistics associated
with stellar polarimetry is discussed in a review by Clarke &
Stewart (1986). An analysis of various estimators of P has been
made by Simmons & Stewart (1985). In setting confidence inter-
vals for P, they assume that the distribution for the underlying
counts parameters is normal.

Clarke et al. (1983), assuming a normal distribution for the
photon counts, calculated the distribution of the observed
Stokes’ parameter g, obtaining a very complicated expression,
and from it they showed that the observed g exhibits in general
non-null kurtosis and asymmetry. As a consequence, the ob-
served ¢ would be a biased estimator of the true parameter.
Although it would be, in principle, possible to derive the maxi-
mum-likelihood estimator from the calculated distribution, the
task seems overwhelming.
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In the present work, taking into account only photon count-
ing statistics, we drop the normality hypothesis and assume for
the counts the more natural Poissonian distribution. The conse-
quence of this is (paradoxically) a great simplification of the
analysis. The maximum-likelihood estimator is easily calculated,
and it coincides with the observed g. It is proved that this
estimator is unbiased and has an approximately normal distribu-
tion. We also show it to be “optimal” in that it possesses
minimum variance. Approximate confidence intervals for g are
derived and their validity is numerically tested.

We also deal with the problem of correcting for noise coming
from the sky. For this situation we derive the maximum-likeli-
hood estimator, show it to be approximately normal, and obtain
confidence intervals for it.

Since for large intensities the Poisson distribution is approxi-
mately normal, it may seem strange that the consequences of
assuming one or the other may be so different. But it is a common
experience in Statistics that, if a model is an approximation to
another, their consequences need not be approximately the same.

The outline of the paper is as follows. In Sect. 2 we present the
definition of the tested estimators and their properties. In Sect. 3
we present the proofs of the results. In Sect. 4 we describe the
numerical tests of confidence intervals and present the results.

2. The estimators and their properties

Let (X;, Y;) (i=1,...,n) represent the ith measurement of X
and Y. Then the statistical model of the observations will be
described by the following assumptions:

(A) The random variables X, Y, X,, Y,, ..
dent.

(B) X;and Y; have Poissonian distributions, with parameters
A and u, respectively. That is, define for all nonnegative integers x
and for all positive real numbers A the Poisson probabilities as

p(x, A)=e *1%/x! 2.1

. are indepen-

Then assumption (B) means that for all nonnegative integers x
and y

Prob{X;=x}=p(x, 1) and Prob{Y,=y}=p(y, u).

Let g=(A—u)/(A+u) be the true underlying Stokes’ para-
meter. The following estimators are defined from n measurements
of (X, Y;) (Clarke et al. 1983).

G=(X*—Y*)(X*+Y*)=(X-D[X-T), 22
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where X*=3%7_, X,, Y*=Y"_, YV, and X =X*/n, Y= Y*/n;and

a=n"' Y (X~ V)X +Y)

i=1

2.3)

(see also Piirola 1975).

Note that § is undefined when X* + Y*=0. This event has a
negligible probability, unless we observed a completely dark
source. In spite of its practical irrelevance, it introduces a slight
theoretical nuisance, since the estimator must be defined for all
possible cases for its distribution (and, hence, its expectation and
variance) to be well defined. To overcome this difficulty, we
require the assumption

X*4+Y*>0. 24

In practical terms, this assumption means that, if an experi-
ment (i.e. a series of n measurements) yielded X*+ Y*=0, it
would be repeated until condition (2.4) is satisfied. The trans-
lation of this idea into formal mathematical terms will be treated
in the next section.

We find similarly the nuisance that § is undefined if X+ Y;
=0 for some i. Hence, for our treatment of § we need the
assumption

X;+Y>0fori=1,...,n, (2.5)

which in practical terms means that, if for some i we had X;+ Y;
=0, this measurement would be repeated until condition (2.5) is
satisfied.

Recall that, according to statistical usage, we distinguish
between the true value of a parameter, which is constant but
unobservable, and the estimators of it, which are functions of the
observations and hence - if noise is present — random variables.

We now state our results, and comment upon them. To keep
the main concepts free from mathematical technicalities, proofs
are deferred to the next section.

Theorem 1. § is the maximum-likelihood estimator (MLE) of q.

Theorem 2. ¢ and § are unbiased estimators of g; that is, their
expectations satisfy

E(g)=E(§)=q, (2.6)

where E stands for the expectation (expected value) of a random
variable.

This result may seem surprising, since it is not true in general
that the expectation of a quotient is the quotient of the expecta-
tions. However, as it will be seen in the proof of the theorem, the
result holds in this special case as a consequence of the particular
dependence between numerator and denominator.

Theorem 3. The standard deviations of § and § satisfy
a(9)*=(nl)"'(1=g*)[1 + 1/(nD)+b/(nl)*],

6(§)*=(nl)"*(1=g®)(1 + 1/I+b'/I), 2.8)

where I = A+ p is the true underlying intensity, and where b and
b’ (both depending on I and n) are nonnegative, and are <8 if
I=2.

@.7)

Corollary. When nl— o0, § and § tend to g in probability.

Equations (2.7) and (2.8) imply that, when I—oo,
a(4)/o(g)— 1; that is, both estimators have similar variances for
“large” intensities. They also imply that when g approaches +1,
a(4) and o(§) approach 0.

Define 63 =(1 — q2)/nl. Then it follows from Eq. (2.7) that for
“large” values of nl (say nI > 1000), 63 is a good approximation to
a(4)* Note that g, is related to the “s,” of Clarke et al. (1983). A
still better approximation would be given by ¢3(1 + 1/nl), but the
difference is negligible for the usual values of nl. By Eq. (%8), 63 is
also a good approximation to ¢(§)? for “large” I. This confirms
the assertions on p. 261 of Clarke et al. (1983).

To construct confidence intervals for g, we need the distribu-
tions of 4 or of §. The exact distributions seem too complicated
for practical purposes, but an approximation valid for large
values of I is given by the normal distribution.

Theorem 4. (a) When n or both 1 and y tend to infinity, the
distribution of (§—q)/o, tends to the standard normal distribu-
tion A7(0, 1).

(b) When both A and u tend to infinity, the distribution of
(G—q)/o, tends to A7(0, 1).

Note that part (b) is not stated for n— oo. The reason is that, if
n tends to infinity but A and p do not, then § still tends to the
normal distribution, but ¢, ceases to be a good approximation to
a(g); hence, the limit distribution of (§—g)/o, would be normal,
but with a variance depending on 4 and p.

This theorem does not yet enable us to define confidence
intervals in the usual way, since g, is a function of the unknown
true parameters. But we can replace o, by an estimator depend-
ing only on the observations.

Theorem 5. Let the estimators of the variances ¢ and & be,
respectively, defined by

G2=(1—¢H)/X*+Y*) and 2=(1—G*)(X*+ Y*).

Then

(a) 6 is the MLE of a,.

(b) When n— oo or both 4— 0o and p— o0, the distribution of
(§—q)/6 tends to A7(0, 1).

(c) When both A— oo and u— oo, the distribution of (§ — q)/&
tends to A7(0, 1). Theorem 5 justifies the use of approximate
confidence intervals of the form § + hd, since for any real number
h>0 and for large enough nl,

Prob{§—hé <q<qd+hé}=Prob{—h<(§—q)/6<h}
= ®(h)—O(—h),

(2.9)

(2.10)

where @ is the cumulative distribution function of A4"(0, 1). Thus,
choosing, for example, h=1.96 yields ®(h)=0.97; hence, the
interval §+1.966 covers the true g with probability approxi-
mately equal to 0.95. The same can be said of intervals of the form
G+he.

The following result shows that § is in a certain sense optimal,
thus resolving the discussion in Clarke et al. (1983, Sect. 2) about
the relative merits of the different estimators proposed.

Theorem 6. § has minimum variance among all unbiased esti-
mators of g.

Comparing Eq. (2.7) with Eq. (2.8), we see that, as would be
expected from Theorem 6, § has in general a larger variance than
4, but the difference is negligible for large I.

The following result shows that, for large I, the values of 4
and G obtained from the same experiment are highly correlated
and, with high probability, are very near to one another.

Theorem 1. The correlation p between ¢ and § satisfies

p?=0(9)’/o(§)*21—¢, (2.11)
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where e<1~'(I+8)/(I+1), and the difference between the esti-
mators verifies

E(§—§)*=0(q)*—a(9)’ <a(§)’e. (212)
The case of background noise. The noise involved in the observed
Stokes’ parameters comes from the background subtraction (sky
and dark corrections) and others that depend on the design of the
instrument (from the amplifier, the atmosphere, the guidance of
the telescope, etc.). Considering the general case, the sky sub-
traction is the relevant one. Dark current could be very low or
negligible from the state of the art of new detectors. The noise
involved in the sky subtraction can be modelled, by assuming
that Poissonian noise with intensity ¢ is superimposed on the n
measurements from the source, and that m measurements from
the sky alone are also made. Since the sum of independent
Poissonian variables is Poissonian, the situation is represented
by the following assumptions.

(A1) The observations X;, Y; (i=1, ..., n) from the source
and Xy, Yo (i=1,...,m) from the sky are independent and
Poissonian.

(B1) X;,and Y;, have the same parameter ¢. The parameters
of X; and Y; are 1, =4+ ¢ and u, =p+ ¢, respectively.

We want to estimate the “true” Stokes’ parameter g=(4
—wW/(A+p). Let Z*=3" (X;0+Y,) and Z=Z*/2m, ie. the
sum and the average of all measurements of sky noise; and recall
the definitions of X*, Y* X and Y given at the beginning of
Sect. 2. The MLE’s obtained under the model given by assump-
tions (A1) and (B1) will be denoted by an asterisk, to distinguish
them from the ones obtained under the model of no noise given
by (A) and (B) at the beginning of Sect. 2.

Theorem 8. (a) The MLEs of 4, u, and ¢ are the following:

(i) ¢*=Z, A*=X and p*=7Y,if X>Z and Y>Z;

(i) p*=A¥=(X*+Z*)/[(n4+2m) and p*=7,if X<Z<7¥;

(il) p*=p¥=(Y*+Z*)[(n+2m) and 1*=X,if Y<Z<X,

(iv) p*=At=pf=(X*+Y*+Z*)/2n+2m), if X<Z and
Y<Z.

(b) The MLEs of 4, u and q are A*=1% —¢*, u*=u*—¢*
and g* = (4% —p*)/(2* + u*).

(c) The estimator § given by Eq. (2.2) tends to g/(1+2¢/I)
when n and m tend to co (where I =4+ p).

Unless the sky noise is almost as strong as the signal from the
source, cases (ii), (ii)) and (iv) will have an extremely small
probability; hence, for all practical purposes we can take q* =(X
— (X + Y—27),ie. the same as Eq. (2.2) but after “correcting”
X and Y for the noise, which is intuitively sensible. Result (c)
shows that, if the noise is not taken into account, the estimator
(2.2) actually underestimates g when it is positive, by an amount
which depends on the noise-to-signal ratio ¢/I.

We have not been able to calculate the expectation and
variance of g* as in Theorems 2 and 3; in particular, we do not
know whether g* is unbiased. We can, however, give an ex-
pression for its asymptotic distribution, which suffices to obtain
approximate confidence intervals.

Theorem 9. Let
o=(1—q?)/nl+2(1+q?)p/nl*+2q> p/mI>. (2.13)

(a) If (i) both n and m—oo or (ii) I-00 and ¢/I remains
bounded, then the distribution of (¢* —q)/a, tends to A7(0, 1).
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(b) Let o* be the MLE of ¢, obtained by replacing q and I in
Eq. (2.12) by their MLE g* and I'* = 4* + u*. Then under (i) or (ii)
above, the distribution of (¢* —¢q)/c* tends to A7(0, 1).

Note that ¢, is larger than o, defined in the corollary to
Theorem 3, which is natural, since the presence of noise implies a
loss of information and, hence, of precision. The difference de-
pends on the ratio ¢/I.

3. Proofs of results

Since we shall frequently refer to Bickel & Doksum (1976),
henceforth this book will be referred to simply as BD.

Proof of Theorem 1

It is easy to prove that the MLEs of 4 and u are X = X */n and
Y= Y*/n, respectively (see BD, Example 3.3.4). By the Substitu-
tion Principle of the MLE (BD, Problem 3.3.7), the MLE of a
function of the parameters is obtained by applying the same
function to the MLEs of the parameters. Hence, since g=(4
—w)/(A—p), its MLE is (X - Y)/(X + Y)=4.

We now turn to the proofs of Theorems 2 and 3. Recall that
for the treatment of § we have to take into account the assump-
tion that we restrict ourselves to the cases in which condition (2.4)
holds. The mathematical translation of this assumption is that we
deal with the expectation and variance of §, conditional on the
event (2.4). Similarly, the expectation and variance of § are
conditional on the event (2.5). The definitions of conditional
distributions and expectations are given in the Appendix.

To avoid repetition of calculations in the proofs of Theorems
2 and 3, we state a general lemma and then specialize it to each
situation.

Lemma 1. Let U and V be independent random variables having
Poissonian distributions with parameters « and S, respectively.
Put W=U+V,Q=(U-V)/W, y=a+f, and g=(a—f)/y. Then
the expectation and variance of Q, conditional on the event
{W=>0}, are

E(QIW>0)=q,

Var(Q|W>0)=y "' (1 -¢*) (1 +1/y+c/r?),
where ¢=c(y)<8 for y>2.

Proof. It is well known (see Feller 1957, Problem 1X.9.6) that,
although the distribution of U is Poissonian, its conditional
distribution given W is binomial. More precisely, for any non-
negative integer w, the conditional distribution of U, given the

event { W=w}, is binomial with number of trials w and prob-
ability of success p=a/y; that is, the conditional probabilities are

(3.1)
(3.2)

Prob{U =u| W=w}=<ﬁ) p(l—p)y* ™"
u

Recall that the expectation of the binomial distribution is the
number of trials times the success probability. Hence, the condi-
tional expectation is E(U|W=w)=wp, and Eq. (1.1.19) of BD
implies that

E(U|W=w)=(/WEU|W=w)=wp/w=p
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for all w>0. Since V= W—U, we have Q =2U/W —1 and, hence,
E(Q|W=w)=2E(U/W|W=w)—1=2a/y—1

=(a—f)/y=gq for all w>0. (3.3)
Finally, Eq. (1.1.20) of BD implies E(Q|W>0)=E(q|W>0)=q.

To simplify notation in the second part of the proof, denote,
respectively, by E, and Var,, the expectation and variance,
conditional on the event { W>0}. According to Eq. (1.6.12) of BD,
we can express variances in terms of conditional (on W) expecta-
tions and variances:

Vary(Q)=E,[Var(Q|W)]+ Var,[E(Q|W)]. (34)

According to Eq. (3.3), E(Q|W)=g; hence, the last term in
Eq. (3.4) vanishes, being the variance of a constant.

In the first term we have the conditional variance Var(Q| W).
Recall that the conditional distribution of U given W is binomial,
and that the variance of a binomial distribution with n trials and
probability p of success is np(1—p). Hence, Var(U|W)=Wp
(1—p)= Wup/y?; and since Q =2U/W —1, we have

Var(Q| W)= Var[(2/W)U|W]=(Q2/W)? Var(U| W)
=daf/(y?> W) for W>0. (3.5)
Hence, Var,(Q)=4apB/y? E,(1/W). Replacing g by its defini-
tion, it follows that
1—g*=4ap/y>. (3.6)

To calculate the expectation of 1/W, recall that W, being the sum
of two independent Poisson variables, is Poissonian with para-
meter y [see BD, Result A.13.12, or Feller 1957, Eq. (V1.10.4)].
Hence,

Eo(1/W)=E(l/W|W>0)=(1/P{W>0}) Y, p./w, 3.7
w=1

where we put for brevity p,,=P(W=w)=p(w, y) as in Eq. (2.1)

for each nonnegative integer w. Thus, P(W>0)=1-P(W=0)

=1—Py=1—e"". To deal with expressions of the form w!w

appearing in the denominators of the terms of the series, de-

compose

w=1(w+ 1)+ 1/[(w+D)(w+2)]+2/[w(w+1)(w+2)].

Hence, the series in Eq. (3.7) may be decomposed as A+B+C,
where

A=Y p/w+1), (38)
w=1

B=Y pw+1)(w+2), (3.9)
w=1

C=2Y pJ(w+Dw+2)w]. (3.10)

w=1

To calculate A, note that

A=Y ey w+ D=y Y puer=7"" Y pw
w=1 w=1 w=2

and since 2., p,, =1, we have finally

A=(1—po—p)/r- (3.11)

The same reasoning yields

B=(1—po—p;—p2)/7* (3.12)

Finally, since (w+ 1)/w<4 for w>1, we have

0<C<8 i Pw/lw+ D(w+2)(w+3)]1<8/y>.

w=1

(3.13)

Collecting all the terms in Egs. (3.11)—(3.13), a straightforward
and tedious calculation yields

Eo(1/W)=(A+B+C)/(1—e )=1/y+1/y*+DJy*,

where 0<D<[8—e "p%(1+3y/2)]/(1—e~?). A simple calcu-
lation shows that D <8 if y>2. This completes the proof.

Proof of Theorem 2

We begin by proving Eq. (2.6). Since X* and Y* are sums of
independent Poissonian variables, they are Poissonian, with
parameters nd and ny, respectively. Put U=X*, V=Y* a=nl
and f=nu. Then §=(U—V)/(U+ V)=Q, and the unbiasedness
of ¢ [under condition (2.4)] follows immediately from Eq. (3.1).
To prove that § is unbiased, application of Eq. (3.1) to U=X,
V=Y, a=Aand f=puforeachi=1,...,n, implies that each of
the terms of the sum in Eq. (2.2) has expectation g. Hence, § also
has expectation g.

Proof of Theorem 3

To prove Eq. (2.7), apply Eq. (3.2) to U=X*, V'=Y* a=ni and
B=np.

To prove Eq. (2.8), note that § is an average of the n indepen-
dent variables (X;~ ¥;)/(X;+ Y,), all with the same variance, say
v. Hence, Var(§)=uv/n. To calculate v, apply Eq. (3.2) to U=X,
V=Y, a=4and f=pu.

Proof of the corollary. Both estimators have expectation ¢g; and
their variances tend to 0 when nl— co. Thus, they must tend in
probability to g.

To prove Theorems 4 and 5, two previous results are needed.

Lemma 2. If U is a Poisson variable with parameter o, then when
a—> 00, (a) U/a tend to 1 in probability, and (b) the distribution of
(U—oc)/\/oz tends to A47(0, 1).

Proof. It is shown in Feller (1957, Problem IX.3.b and c) that EU
=Var(U)=0o. Hence, E(U/a)=1 and Var(U/a)=a/a*=1/a—0,
which implies that U/x—1 in probability. Besides, (U ——a)/\/ o
has mean 0 and variance 1, and by the central limit theorem it
tends to A7(0, 1) when a— co.

Lemma 3. Let U, V and Q be as in the statement of Lemma 1.
When both o« and S tend to infinity, the distribution of

(Q-q)[¥/(1—q*)]"'* tends to #7(0, 1).

Proof. Replacement of Q and g by their definitions yields Q —q
=2(BU—aV)/(yW) and 1—q?=4af/y>. Hence,

Q-1 —a*)]"*=[(BU —a¥)apy)'"*] (3/W).

The variable U —oF has mean 0 and — since U and ¥V are
independent — has variance B2« +a?B=0afy. Hence, the factor
within square brackets in Eq. (3.14) has mean 0 and variance 1;
and by part (b) of Lemma 2 applied to U and to V;, it tends to
(0, 1). Part (a) of Lemma 2 applied to W implies W/y—1 in
probability; and since the reciprocal is a continuous function,
y/W also tends to 1 according to BD (Result A.14.6). Thus

(3.14)
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Eq. (3.14) is the product of a variable tending in distribution to
A7°(0, 1), times another tending in probability to 1; hence
Slutsky’s theorem (see the Appendix) implies that the product
tends to A47(0, 1) in distribution.

Proof of Theorem 4

To prove (a), apply Lemma 3 to U=X*, V=Y* a=nl and §
=ny. This yields y/(1—g2)=1/03.

To prove (b), apply Lemma 3 to each term of the sum in
Eq. (2.3), with U=X,;, V=Y, a=1 and f=p. Thus,

1oo=[nI/1—g*)]"> = /nly/(1—g*)]"%;

hence,

(§—q)foo=n"1"? i L(Xi— Y)AX i+ Y)—q] [y/(1—q*)1"2
i=1
(3.15)

Thus, when 4 and p— oo (recall that here n remains fixed), each
term of the sum tends to .47(0, 1), the sum tends to 47(0, n), and
Eq. (3.15) tends to A7(0, 1).

Proof of Theorem 5

Part (a) follows again from the substitution principle for the
MLE.

To prove (b), note that (§—q)/6 =[(§—q)/0,]0/6. The first
factor tends in distribution to .4°(0, 1) by Theorem 4(a). We shall
prove that the second factor tends in probability to 1. In fact,
d—q in probability by the corollary to Theorem 3; and
(X*+Y*)/(nI)>1 in probability by Lemma 3(a); hence,
(6/64)*>~1 in probability. Finally, Slutsky’s theorem yields the
desired result.

Part (c) is proved likewise, recalling that §—g in probability
by the corollary.

Proof of Theorem 6

The pair of random variables (X*, Y*) is a “complete sufficient
statistic” for (4, u) (see the Appendix). Since ¢ is an unbiased
estimator which is a function of (X*, Y*), it has minimum
variance by the Lehmann—Scheff¢ Theorem (see the Appendix).

Proof of Theorem 7

Define for all real numbers r, the estimator g*=(1—r)§+rg.
Thus, q¢ =4 and g} =4. This estimator has no special meaning in
itself, being a mathematical construct used only for this proof.
Define the function v as

v(r)=Var(q})=(1-r)?¢(q)* +r*a(q)* +2r(1 —r)cov(q, ),

where “cov” stands for the covariance. Since § and § are unbiased
by Theorem 2, so is g¥. Hence, by Theorem 6, v(0)=a(4)>
<a(q¥)*=0v(r) for all r; thus, the function v has a minimum at
r=0. Hence, its derivative v'(r)=—2(1—r)a(§)*+2(1—2r)
cov(g, §) vanishes at r=0, and this implies

a(§)* =cov(4, §)=pa(§)a(q).

Then Eq. (3.16) implies p=0(4)/o(§), which implies the equality
in Eq. (2.11). To prove the inequality, replacing the variances by

(3.16)

529
Egs. (2.7) and (2.8) yields
pr=(1+1/nl +bj(nI* /(1 +1/I+b'/I?)
=21/ +1/I1+b'/1*)=1—¢, (3.17)

where e=(I+b")/(I?+1+b")<I~ (I +8)/(I+1).
To prove Eq. (2.12), Eq. (3.16) yields

Var(§—q)=0(4)* +a(3)* —2cov(4, §)
=0d(§)*—a(§)*=(1—p*)a(3)%,
and this is <o (g)*e by Eq. (3.17).

Proof of Theorem 8

(a) Since all observations are independent, their joint probability
(the likelihood function) is the product of the respective (Poisson-
ian) probabilities:

L=T1 p(Xe 2)p(Yeo 1) [T P(Xior $)0(Yi0, 6.
i=1 i=1

To find the MLE, it is equivalent and easier to maximize the
logarithm of L, which is

logL=—n(4; +u,)+X*logi, + Y*logu,
—2mp+Z*logp+ L',

where L’ is the sum of all terms which do not depend on 4,, u, or
¢. Since ¢ >0, we have to maximize log L under the restriction
that the point (4,, ¢;, ¢) belongs to the “admissible set” defined
by {4;>¢ and p,>¢}. It is trivial to calculate the partial
derivatives of log L with respect to the parameters. In case (i), the
point where all partial derivatives vanish belongs to the admis-
sible set and, hence, gives the desired maximum. In the other
cases, that point does not belong to the admissible set; hence, the
restricted maximum is at the boundary of the set. In case (ii), it
must fulfil 4, =¢; and is, thus, found by maximizing log L under
this simplification. The other cases are dealt with likewise.

(b) The proof follows from the substitution principle for the
MLE.

(c) The proof follows from Lemma 3(a).

Proof of Theorem 9

(a) Since the probability that Z< X and Z < ¥ tends to one, we
can restrict the proof to case (i) of Theorem 8, which implies g*
=(X-Y)/(X+Y—2Z). Hence, g*—q=2A4/B, where A=—AY
+uX+(A—p)Z and B=(X+Y—2Z)(A+pu). The rest of the
proof will be only sketched, since it is similar to the proof of
Lemma 3: the denominator B tends in probability to (14 p)?;
E(A)=0, and Var(A) is easily calculated in view of the indepen-
dence of its three terms. After some algebraic simplifications, the
proof follows from the central limit theorem and Slutsky’s
theorem.
(b) The proof follows from Slutsky’s theorem.

4. Numerical assessment of the confidence intervals

Since the exact calculation of the true coverage probabilities of
the approximate confidence intervals based on Eq. (2.11) seems
numerically unfeasible for large values of I, they were computed
using the Monte Carlo method in the following way. For each
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Fig. 1. The upper graph is the probability for a given g to be in the
interval ¢+ ¢ (from numerical modelling, see Sect. 3), versus the g for a
simulated source of light. The straight line is the probability of finding a
value in the interval between g + o for a normal distribution. The middle
graph is the same but for the interval § +26. The straight line is in this
case the probability for a normal distribution to be in the range of 20.
And the bottom one is for the interval § + 36, the straight line is now for
30. The three plots were calculated simulating a source of mag 13

value of I, 100 equally spaced values of q were chosen in the
interval [0, 1]. Each q determines 4 and u. The observations
(X;, Y,), i=1,...,n, with n=10, were generated according to
model (2.1), by means of Algorithm 3.15 in Ripley (1987), and
from them the interval (2.11) was computed. It was determined
whether the interval contained the true value of q. This procedure
was repeated 10000 times, and the proportion of times that the
confidence interval was taken as the empirical coverage prob-
ability of the interval. Three values of h were chosen: h=1, 2, 3,
with theoretical coverage probabilities of 0.683, 0.954 and 0.997,
respectively.

We have chosen the intensities I =330, 131, 52, which at our
facility, the 2.15m telescope of the Complejo Astronomico El
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Fig. 2. The same as Fig. 1 for a source of mag 14

Leoncito (Argentina), correspond to typical mags 12, 13 and 14.
These may be different for other combinations of telescopes,
polarimeters and filters, but we wanted to base our example on a
range of typical values on a practical polarimeter.

For each magnitude, the values of the calculated coverage
probabilities are plotted against the true g in Figs. 1-3, where the
approximate coverage normal probability is depicted for refe-
rence as a horizontal line. The results show that for the usual
values of g, the approximate intervals which can be considered as
reliable depend on the magnitude of the source; see Table 1.

Remark. The oscillations of the plot are not an effect of the
computing method: they would be also present if the values were
exact, and can be explained as follows. For each fixed I and h, the
exact value of the coverage probability corresponding to a given
q (i.e. a given combination of A and u) is given by the sum of the
(Poissonian) probabilities of all possible pairs of values (X *, Y*),
over the set which satisfies {|§—g|/6 <h}. When we change the
true value of g slightly, the probabilities change also slightly since
they are continuous functions of 4 and ; but the boundary of the
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Fig. 3. The same as Fig. 1 for a source of mag 12

Table 1

Intensity Magnitude Total intensity g,

330 12 3300 0.74

131 13 1310 0.48
52 14 520 0.24

Notes: q, is the lower value of g where deviations from the
normal approximation begins to be greater than 5%

set also changes (since g does) and, hence, some of the probabili-
ties will be excluded from the sum, and others will be included,
thus causing discontinuous changes in the result. To verify this,
we computed the exact values of the probabilities for nl =200
(this was the largest value for which we found numerical com-
puting feasible). The curves showed the same type of oscillations
as in Figs. 1-3, although with larger amplitude.
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Appendix
Conditional expectations

For more details, see BD, Sects. 1.1.A and 1.1.B.

Recall that, if G and H are two events, the conditional
probability of H given G is defined as Prob(H|G)=
Prob(HnNG)/Prob(G), where “n” stands for the intersection — or
simultaneous occurrence — of two events.

Let U be a discrete random variable, i.e. one that takes on
values in a finite or denumerable set % (e.g. for a Poissonian
random variable, % is the set of nonnegative integers). Let G be
any event. The conditional probabilities Prob(U =u|G) for ue %
define the conditional distribution of U given G. The expectation of
this distribution is the conditional expectation of U, given G, i.e.

E(U|G)= Y. uProb(U=u|G).
uel
Let W be another discrete variable, taking on values in a set
# . For any element w e #7, the conditional distribution of U given
W=w is defined by Prob(U =u|W=w) (for ue %). The expecta-
tion of this distribution is the conditional expectation of U given
W=w:

E(U|W=w)= Y uProb(U=u|W=w).
ue

We may consider the expression above as a function e(w), which
to each we #~ assigns the number E(U|W=w). Then e(W)is a
random variable, which is called the conditional expectation of U
given W, and is denoted by E(U|W).

The conditional variance is defined as the variance of the
conditional distribution, given either an event or a random
variable. In the latter case, we may express it as

Var(U|W)=E{[U—E(U|W)]*|W).

Convergence of random variables

Recall that a sequence S, of random variables converges in
probability to a random variable S when n— oo, if for each § >0,
lim,, , Prob(|S,—S|>d)=0, and that S, converges to S in
distribution if for all real numbers s, lim,. ,Prob(S,<s)=
Prob(S <s). Convergence in probability and in distribution are
denoted by S,—S (P) and by S,—S (D), respectively.

Slutsky’s theorem. (BD, Result A.14.9). Let R, and S, be two
sequences of random variables, such that when n— oo, R, tends in
distribution to a random variable R, and S, tends in probability
to a number s. Then R, S, tends in distribution to Rs.

Sufficiency. (see Sect. 2.2 of BD). Let T be a (real- or vector-
valued) function of the observations. Then T is a sufficient
statistic if the conditional distribution of the observations, given
T, does not depend on the unknown parameters. Intuitively, this
means that all the information about the parameters is sum-
marized in T.

It is proved in Sect. 2.3.A of BD that T=(X*, Y*) s sufficient
for A and p.

Completeness. [see Sect. 4.2 of BD, in particular Eq. (4.2.5)]. T'is
a complete statistic if any function of T having null expectation
for all values of the parameters must vanish with probability one.

It follows from Example 4.2.1 of BD that T=(X*, Y*) is
sufficient.
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The Lehmann—Scheffé Theorem (BD, Theorem 4.2.2) states
that an unbiased estimator which is a function of a sufficient
complete statistic has minimum variance among unbiased esti-
mators.
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