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NOVEL TECHNIQUES AND SIGNAL

MODELS WITH APPLICATIONS IN MRI

CARLOS CASTILLO PASSI

Thesis submitted to the Office of Research and Graduate Studies

in partial fulfillment of the requirements for the degree of

Master of Science in Engineering

Advisor:

PABLO IRARRÁZAVAL
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PART I

GINI REWEIGHTED `1
MINIMIZATION FOR RAPID MRI



ABSTRACT

Undersampled acquisitions are often used to reduce the scan time in Magnetic Reso-

nance Imaging (MRI). Compressed Sensing allows the reconstruction of the underlying

image from this data by solving a convex optimization problem. This exploits the sparsity

of the underlying image by using the `1-norm as a sparsity measure. This sparsity measure

is key in the performance of the algorithm. In this work, we propose a method that uses

the Gini Index (GI), a concept borrowed from economics, as a measure of sparsity for MR

image reconstruction, since it satisfies all the desirable properties of a sparsity measure.

Because the GI is a quasi-convex function, the optimization problem can be solved

by solving iteratively reweighted `1 problems. The algorithm was tested with a numerical

phantom and in vivo MRI data. For the phantom, a perfect reconstruction was achieved

using the GI with higher UnderSampling Factors (USFs) than with the traditional `1-norm.

Improvements were also observed for the in vivo data, reducing the reconstruction error

when using the GI which made possible to increase the USF by 0.5 with comparable error

to the `1-norm.

The novelty of the proposed method is the application of the GI with complex data,

undersampling and weak sparsity conditions, making it appropriate for many MRI appli-

cations, without an excessive computational load.

Keywords: Magnetic resonance imaging (MRI), Compressive sensing, Image recon-

struction - iterative methods, Inverse methods.
xi



RESUMEN

Las adquisiciones submuestreadas son comúnmente usadas para reducir el tiempo de

escaneo en Imágenes por Resonancia Magnética (IRM). Compressed Sensing permite la

reconstrucción de la imagen subyacente a partir de estos datos resolviendo un problema

de optimización convexo. Este método explota la raleza de la imagen usando la norma-

`1 como una medida de raleza. Esta medida es esencial en el desempeño del algoritmo.

En este trabajo, proponemos un método que utiliza el Índice de Gini (IG), un concepto

originado en economı́a, como una medida de raleza para la reconstrucción de IRM, debido

a que satisface todas las propiedades deseables para una medida de raleza.

Debido a que el IG es una función cuasi-convexa, el problema de optimización es

resuelto a través de resolver problemas `1 iterativamente pesados. Este algoritmo fue tes-

teado en un fantoma numérico y con datos de IRM in vivo. Para el fantoma, una recons-

trucción perfecta fue alcanzada usando el IG con Factores de SubMuestreo (FSM) más

altos que la norma-`1. Mejoras fueron también observadas para los datos in vivo, redu-

ciendo el error al usar el IG lo que hizo posible disminuir el FSM en 0.5 al comparar el

error con la norma-`1.

La novedad del método propuesto es la aplicación del IG con datos complejos, sub-

muestreo y condiciones débiles de raleza, haciéndolo apropiado para muchas aplicaciones

en resonancia magnética, sin un excesivo aumento de la carga computacional.

Palabras Claves: Imágenes por resonancia magnética (IRM), Compressive sensing,

Reconstrucción de imágenes - Métodos iterativos, Problemas inversos.
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1. INTRODUCTION

In many MRI applications the acquisition speed is important, since it is related to the

achievable spatial and temporal resolution, the spatial coverage, as well as making the

acquisition less sensitive to motion. Therefore, many researches are focused on reducing

the acquisition time without compromising image quality.

Undersampling k-space offers the possibility of shortening the scan time without de-

grading the image if an appropriate reconstruction method is used. Compressed Sensing

(CS) (Candès & Wakin, 2008; Candès, Romberg, & Tao, 2006a, 2006b) is such a recon-

struction method. It assumes that the image is compressible or sparse when represented

in some domain, that is, the image can be represented with a few coefficients, in that

domain. Mathematically this is described as having a small `0-norm. Since minimizing

the `0-norm is a difficult problem, normally the `1-norm is used, and under certain condi-

tions this will produce the same result. In particular the synthesis formulation of the basis

pursuit denoising problem is the following

BPε) min
α∈CN

‖α‖1 (I.1.1)

s.t. ‖ΦΨα− y‖2 ≤ ε,

where Ψ ∈ CN×N is the sparse dictionary, Φ ∈ CM×N is the undersampled Fourier

matrix and y ∈ CM the acquired data. Then the recovered image is x̂ = Ψα̂. The

acceleration factor is inversely proportional to the Under Sampling Factor which we will

call USF = N/M .

In the standard formulation of CS, the `1-norm is used as a sparsity measure, but other

measures of sparsity can be enforced (Hurley & Rickard, 2009). In this work we propose

the use of the Gini Index (GI), an index used in economics to measure inequality, that has

properties that could be useful in inverse problems.

1



2. THEORY

The GI is used in economics to measure inequality (Damgaard & Weiner, 2000). High

inequality, where only a few have all the wealth is the kind of sparsity one would like to

promote in the context of CS. We hypothesize that a formulation that maximizes the GI

will produce good reconstructions for higher undersampling factors than conventional CS:

max
α∈CN

GI (α)

s.t. ‖ΦΨα− y‖2 ≤ ε.

The GI is defined as the mean of the differences between every possible pair of individuals,

divided by the mean size (Damgaard & Weiner, 2000; Zonoobi, Kassim, & Venkatesh,

2011):

GI (α) =

N∑
i=1

N∑
j=1

||αi| − |αj||

2N ‖α‖1

. (I.2.1)

If the data is sorted according to magnitude, (I.2.1) can be rewritten in a much simpler

way. Let us define α[n] to be the n-th element of the sorted vector α,
∣∣α[1]

∣∣ < ∣∣α[2]

∣∣ <
. . . <

∣∣α[N ]

∣∣. Then, the definition in (I.2.1) can be applied to α ∈ CN as in (Zonoobi et

al., 2011; Huang, Shi, & Yan, 2015)

GI (α) = 1− 2
N∑
n=1

(
N − n+ 1

2

N

)
︸ ︷︷ ︸

wn

∣∣α[n]

∣∣
‖α‖1

(I.2.2)

= 1− 2

∥∥∥∥ w

‖α‖1

� (Pαα)

∥∥∥∥
1

(I.2.3)

= 1− 2‖Wα �α‖1, (I.2.4)

where Pα is a permutation matrix that represents the sorting unitary operator (PαPT
α = I),

Wα = PT
αw/ ‖α‖1 and a�b is the Hadamard product or component-wise multiplication.
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With this representation, the optimization becomes a weighted version of the denoised

basis pursuit problem

BPε) min
α∈CN

‖Wα �α‖1 (I.2.5)

s.t. ‖ΦΨα− y‖2 ≤ ε.

Hurley et al. showed that the GI satisfies all the desirable properties of a sparsity mea-

sure along with the pq − mean (Hurley & Rickard, 2009) and it has been already used in

inverse problems for image reconstruction of photography or radar images (Zonoobi et al.,

2011; Feng, Xiao, & Wei, 2014), but it has never been used to reconstruct undersampled

MRI data. Nevertheless, the proper mathematical background has not been fully devel-

oped yet, even though it is known that the GI is a quasi-convex function in |α| (Zonoobi

et al., 2011).

Zoonobi et al. (Zonoobi et al., 2011) solved this problem using the Simultaneous

Perturbation Stochastic Approximation (SPSA) method, but they only considered x ∈ RN

whereas in MRI the data is generally complex. Feng et al. (Feng et al., 2014) used the

GI in a reweighted `1 scheme, trying to solve the inverse synthetic aperture radar (ISAR)

imaging reconstruction. Their attempt explicitly included complex data and operators,

but it was only tested in numerical phantoms. In both cases the optimization with the

GI had better results compared with regular `1 optimization and also achieved perfect

reconstruction for larger USFs (Zonoobi et al., 2011).

3



3. METHODS

3.1. Gini iteratively reweighted `1 algorithm

One of the problems for solving (I.2.5) is that the objective function is not convex and

moreover it includes a sorting operation. As previously mentioned, Feng et al. (Feng

et al., 2014) used an iteratively reweighted method where, for iteration k, the weights

are Wαk = PT
αkw/

∥∥αk∥∥
1
. This enters in the category of an Iteratively Reweighted `1

(IRL1) algorithm proposed by Candès et al. (Candès, Wakin, & Boyd, 2008) in the family

of methods to solve non-convex problems (Ochs, Dosovitskiy, Brox, & Pock, 2015). In

contrast to previous works, since the factor
∥∥αk∥∥

1
is constant for a particular iteration, our

weight is just

Wαk = PT
αkw (I.3.1)

=
N − Ik + 1

2

N
, (I.3.2)

with Ikn the index of the sorted position of αkn such that
∣∣∣αk[1]

∣∣∣ < ∣∣∣αk[2]

∣∣∣ < . . . <
∣∣∣αk[N ]

∣∣∣
and Pαk a permutation matrix according to the sorting operation of αk. Thus, the method

will be equivalent to just a permutation of fixed weightsw for every iteration k. This type

of optimization problem and its properties are studied in (Huang et al., 2015; Bogdan,

van den Berg, Sabatti, Su, & Candès, 2015). More importantly, this optimization method

has been proven to converge in a finite number of iterations (Huang et al., 2015).

As for the effect of noise, we noticed an excessive variability in the weights. The

performance of the reconstruction was dramatically improved when these weights were

smoothed or denoised. The denoising was made by applying a median filter with an

isotropic structural element of size 3 in each iteration, so the weights were

W̃αk = medfilt (Wαk) , (I.3.3)
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interpretingWαk as a 2D image. Asαk are the wavelet coefficients, the filtering enhanced

the correlation in space of the weights and also reduced the noise that could be interpreted

incorrectly as a feature of the image. As IRL1 methods are sensitive to the starting point,

if a noisy weight is used, there is the risk of over-fitting to the noise. This effect was espe-

cially noticeable for USFs greater or equal to 4. With this filtering we slightly depart from

the permutation of weights that justified the convergence of the method, but in practice

gave more stable results.

In summary, we propose the following method:

Algorithm 1 Gini iteratively reweighted `1 algorithm

• Initialization: Choose Wα0 = 1, so the result of the first iteration is the stan-

dard CS solution.

• Update: withWαk =
(
N − Ik + 1

2

)
/N as in (I.3.2) and W̃αk as (I.3.3) do

αk+1 = argmin
α∈CN

‖W̃αk �α‖1, s.t. ‖ΦΨα− Y ‖2 ≤ ε.

Every weighted sub-problem in the algorithm can be solved either by using SPGL1

(van den Berg & Friedlander, 2007, 2008) or FISTA (Beck & Teboulle, 2009) (see Ap-

pendix), both implementations give the same result. For the data consistency tolerance ε,

we chose it to be proportional to the standard deviation of the noise and inversely propor-

tional to the square root of the under sampling factor (USF). The algorithm stops when

the change in αk is small. It is considered small when the normalized root mean squared

difference is between 1% and 5% (bigger for larger USFs).

5



3.2. Experimental setup

We tested the proposed reconstruction with a Shepp-Logan numerical phantom of size

256 × 256 and a radial undersampling pattern in the Fourier domain. The sparsifying

transform was the Haar wavelet. We added complex noise in the Fourier domain with

different Signal to Noise Ratios (SNRs), from 10 dB to ∞ dB. As we knew exactly the

noise vector η ∈ CN , the data consistency constant ε was set as ε = ‖Uη‖2 with U the

undersampling operator.

We also tested our algorithm with one in vivo data of the brain, acquired in a 3T Philips

scanner. Acquisition parameters were: 2D T2W, TSE = 16, size of 512× 512, NSA = 4,

voxel size of 0.5/0.5/2 mm, FA = 70 deg , TE = 100 ms , TR = 4000 ms, and fully

sampled acquisition.

For the reconstruction, we used retrospective undersampling with a variable density

cartesian pattern. The sparsifying transform was the Daubechies wavelet (db8 with a

decomposition level 8). A region of the background was used to estimate the noise ηBG ∈

CNBG and then a constant ε = K
∥∥∥ N
NBG

ηBG

∥∥∥
2
/
√

USF was used, with manually selected

constant K = 10 as we underestimated the noise.

For the in vivo case, we also compared with a more popular weight wn = (|αn|+ γ)−1

(Candès et al., 2008) which is related to solving the problem minx
∑

n log (|αn|+ γ),

often used in IRL1 algorithms.

In this work the quality of the reconstructions were compared against the fully sampled

gold standard using the Normalized Root Mean Squared Error (NRMSE), defined as

NRMSE (x̂,x) =
‖x̂− x‖2

‖x‖2

, (I.3.4)

where x̂ is the reconstruction and x the ground truth, both in CN .

6



4. RESULTS AND DISCUSSION

4.1. Numerical phantom

As shown in Figure I.4.1, the proposed method obtained less error at all USFs and

noise levels with SNR greater than 10 dB. In the noise-free case (SNR =∞ dB), a perfect

reconstruction was obtained for USFs up to 5 using the `1-norm and up to 5.5 using the

GI (Figure I.4.2).

The GI sparsity showed greater improvements for higher USFs and for low levels of

noise. The latter was expected since the noise effectively reduced the sparsity of the signal

and, in that case, the sparsity measure was less relevant (Figure I.4.1).

Figure I.4.1. NMRSE obtained for the phantom with the `1-norm and the
GI reconstruction at different USFs and SNRs. Multiple SNRs in the range
10 dB-45 dB where tested, but just a few of them are shown for visual
clarity.

7



Figure I.4.2. Reconstruction for a Region Of Interest (ROI) of the phantom
with the `1-norm and the GI sparsity measures at USF= 5.5 noise-free.

Tests were run in a computer with a Dual-Core Intel® Core™ i7-6500U CPU@2.50GHz.

Using FISTA the reconstruction times were 3 s with three iterations and 1 s for CS. Most

of the time three iterations were enough, but never more than eight. The reconstruction

time using SPGL1 was approximately 200 s. In contrast, the CS reconstruction took ap-

proximately 7 s. As shown in Figure I.4.1, the improvement in reconstruction quality may

be worth the extra reconstruction time.

4.2. In vivo MRI data

For the in vivo case, the reconstruction errors have the same behavior as for the nu-

merical phantom. For undersampling factors between 2 and 5.5, the NRMSE was always

8



Figure I.4.3. Results for MRI data of a brain at an USF of 4. The errors in
the obtained reconstructions is less for the GI measure of sparsity and the
characteristics of the errors agree with the results obtained in the phantom,
being less and most noticeable at the edges.

inferior when using the GI than using the `1-norm. The comparison was made in a Region

Of Interest (ROI) that excludes the background (Figure I.4.4). The mean reduction of the

NMRSE was 0.9 % in the tested range of USFs. It is interesting to note that with the GI

one can achieve the same error as the `1-norm even with a 0.5 higher USF.

In Figure I.4.3 we show the results for the USF of 4 at a section of the ROI. The GI

better preserved the edges of the image and the error was less localized when compared

with the `1-norm.

9



Figure I.4.4. Comparison between the `1-norm and the GI sparsity mea-
sures at different USFs for the MRI complex data. The log-weighted (LW)
line make reference to weights of the form wn = (|αn|+ γ)−1.

The reconstruction time using FISTA was approximately 21 s for three iterations. The

CS reconstruction took approximately 7 s. Using SPGL1 the reconstruction times were

530 s and 133 s respectively. The number of iterations was never more than three in this

case.

The proposed method was also better than weights of the formwn = (|αn|+ γ)−1(Candès

et al., 2008) as shown in Figure I.4.4. The reconstruction times were comparable using

FISTA.

10



5. CONCLUSIONS

Our hypothesis that using the GI will work better was validated by the results in this

work. We achieved a reduction of the NRMSE in both the phantom and the in vivo case.

For the phantom the reduction in error was significant, achieving a perfect reconstruction

for a higher USF. For the in vivo image, an increase in the undersampling factor of 0.5 was

possible with the same NRMSE as the `1-norm.

As the first iteration of the method is the standard CS, we provided a way to improve an

already existing solution by doing consequent weighted `1 problems. The advantage of the

proposed algorithm is that it is easy to implement with already existing codes for convex

optimization as SPGL1 or FISTA using proximal operators to reduce the reconstruction

time.

The filtering of the weights increased the reliability not only of the GI sparsity mea-

sure, but also is applicable for other IRL1 methods on problems with spatial correlation.

Making them more robust to noise, undersampling and non ideal sparsity characteristics

like the weak sparsity of natural images.

Future work should consider other ways of weight filtering, in particular, the denois-

ing of the weights could vary between levels of decomposition for the wavelet basis and

probably it is only necessary for higher levels (or more detailed basis). This algorithm

could potentially improve the performance for other applications in MRI-related problems

as SENSE, motion correction, etc.

11
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A. PROXIMAL OPERATOR

When using the Fast Iterative Shrinkage Algorithm (FISTA) (Beck & Teboulle, 2009),

every IRL1 sub-problem needs to be rewritten. Let us define f (α) = ‖W̃αk �α‖1, then

FISTA considers the following optimization problem

αk+1 = argmin
α∈CN

λf (α) +
1

2
‖ΦΨα− y‖2

2 . (I.A.1)

Then, this formulation can be solved by using the proximal operator of the function f

(Combettes & Pesquet, 2011; Huang et al., 2015)

proxλf (α) = max
(
|α| − λW̃αk , 0

)
� sign (α) , (I.A.2)

with the sign of a complex number defined as sign (α) = α/ |α|. In other words, proxλf (α)

is a soft thresholding of the coefficientsα. Note that there always exist a λ that makes this

formulation equivalent to the denoised basis pursuit.
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PART II

EFFECTIVE BARRIER SEPARATION
FOR MICROSTRUCTURE ANALYSIS

USING DSI



ABSTRACT

MR Diffusion Spectral Imaging is an effective tool for obtaining relevant parameters

from the tissue microstructure. This is particularly pertinent in the brain, for instance in

estimating axon diameters. Current methods use strong assumptions about the geometry,

shape and probability distributions. These assumptions limit their applicability in realistic

and complex tissue. In this work we propose a new method to estimate what we call an

effective barrier distribution by estimating the signal fraction of different barrier’s sizes.

In other words, we estimate the barrier distribution as a superposition of directional non-

permeable barriers using a dictionary based method.

We tested the method with two phantoms: crossing fibers and a realistic corpus callo-

sum with a distribution of axon diameters. The data was simulated with CAMINO with

and without added noise. Our method was able to find a correct approximation of the

barrier’s separations. For the crossing fibers, the separations were estimated with standard

deviation for each bundle of 1 and 1.6µm. For the corpus callosum phantom the nor-

malized root mean square error of the signal fractions was 62 % due to inaccurate results

for large barriers. As the separation increases the sensitivity is reduced, since the signal

decays faster. Additionally, for large separations it gets more difficult to differentiate size,

including free-diffusion.

This method allows to recover important information about the microstructure without

the need of multiple acquisitions with different diffusion times. In the future we propose

to include acceleration methods to acquire less q-space data points, and the use of other

regularization functions.

Keywords: Diffusion MRI, Microstructure imaging, Convex optimization.
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RESUMEN

Las IRM en difusión son una herramienta para obtener parámetros relevantes de la

microestructura del tejido. Esto es particularmente atingente en el cerebro, al estimar el

diámetro de los axones. Métodos actuales usan suposiciones acerca de la geometrı́a, forma

y densidad de probabilidad. En este trabajo proponemos un nuevo método para estimar lo

que llamamos distribución de barreras efectiva estimando la fracción de señal de diferentes

tamaños de barrera. En otras palabras, estimamos la distribución de barreras como una

superposición de barreras direccionales y no permeables usando diccionarios.

Testeamos con dos fantomas: uno con fibras cruzadas y uno de cuerpo calloso con

una distribución de diámetros de axones. Los datos fueron simulados con CAMINO con

y sin ruido añadido. Nuestro método fue capaz de encontrar una aproximación correcta

de la separación de barreras. Para las fibras cruzadas, la separación fue estimada con una

desviación estándar de 1 y 1,6µm. Para el fantoma de cuerpo calloso el error cuadrático

medio normalizado de las fracciones de señal fue 62 % debido principalmente a resulta-

dos poco precisos para las barreras más separadas. Cuando la separación incrementa la

sensibilidad es reducida, debido a que la señal decae más rápido. Adicionalmente, para

separaciones grandes se hace más difı́cil diferenciar los tamaños, incluyendo a la difusión

libre.

Este método recupera información de la microestructura sin la necesidad de múltiples

adquisiciones con distintos tiempos de difusión. En el futuro proponemos la inclusión

de métodos de aceleración para tomar menos muestras en el espacio-q, y el uso de otras

funciones de regularización.

Palabras Claves: IRM en difusión, Imágenes de microstructura, Optimización conve-

xa.
xiv



1. INTRODUCTION

Diffusion MRI (dMRI) senses the diffusion of water molecules inside the microstruc-

ture (Stejskal & Tanner, 1965; Tanner & Stejskal, 1968) which affects the signal. In-

formation obtained about axon morphometry by dMRI can give important insight about

the functionality of the brain (Ritchie, 1982) and also about disorders such as multiple

sclerosis and autism (Piven, Bailey, Ranson, & Arndt, 1997; Huang et al., 2016).

Several models and techniques have been proposed in the past to achieve this goal.

In this work we focus on Diffusion Spectrum Imaging (DSI), a variation of dMRI with

multiple gradient directions and strengths. There are several models to estimate the axon

diameter for only one fiber direction: CHARMED (Assaf & Basser, 2005), AxCaliber

(Assaf, Blumenfeld-Katzir, Yovel, & Basser, 2008), ActiveAx (Alexander et al., 2010),

NODDI (Zhang, Schneider, Wheeler-Kingshott, & Alexander, 2012), the Minimal Model

of White Matter Diffusion (MMWMD) and DIAMOND (Scherrer et al., 2013).

Every technique gives different ways to estimate parameters relevant to the micro-

structure. But, as the models are used to characterize the white matter, more strict as-

sumptions should be made. A clear example is that the mentioned models do not consider

more complex structures such as crossing fibers, which corresponds to 60 % to 90 % of the

brain (Jeurissen, Leemans, Tournier, Jones, & Sijbers, 2013). Another common simplifi-

cation, is to assume a gamma probability distribution for the axon diameters, even though

studies of rat brains show that the distribution is more similar to a Generalized Extreme

Value (GEV) (Sepehrband, Alexander, Clark, et al., 2016).

For multiple fiber directions, improvements to the reconstruction methods using opti-

mization algorithms have been explored. They create dictionaries based on the models, to

represent the signal and then minimize the `1 and `2-norms of the signal fractions, f , for

the different compartments. One example is the Accelerated Microstructure Imaging via

Convex Optimization (Daducci et al., 2015) for regions with multiple fibers (AMICOx)
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(Aurı́a et al., 2015). And for models with more compartments: MMWMD (Sepehrband,

Alexander, Kurniawan, Reutens, & Yang, 2016) and Microstructure Imaging of Crossing

(MIX) white matter fibers (Farooq et al., 2016).

In this work, we propose a new flexible model based on non-permeable membranes,

that removes the strong geometrical and distributional assumptions usually made about

the microstructure.
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2. THEORY

Diffusion Spectrum Imaging (DSI) acquires the Fourier transform of the Ensemble Av-

erage Propagator (EAP) (P. Callaghan, MacGowan, Packer, & Zelaya, 1991; P. T. Callaghan,

1993). This is obtained theoretically by first solving the diffusion equation. The problem

of interest is to solve this equation for a non-permeable enclosure of separation a. The

mathematical formulation of this phenomena for a particle positioned at x0 is described

by the following differential equation and boundary conditions
∂2p

∂x2
= D

∂p

∂∆

p (x, 0) = δ (x− x0)

∂p

∂x
(x,∆) = 0 x ∈ {0, a} ,

where p is the probability density distribution, D the diffusion coefficient and a the sep-

aration between barriers. By solving this equation we obtain the propagator for a given

initial position of the particle x0

px0 (x) =
1

a
u
(
x− a/2

a

)
×

[
1 + 2

∞∑
n=1

cos
(nπ
a
x
)

cos
(nπ
a
x0

)
e−D∆(nπ/a)2

]
.

(II.2.1)

After applying the ensemble average, assuming a uniform distribution of particles in space,

we get what is known as the Ensemble Average Propagator (EAP)1. Then, for the Pulsed

Gradient Spin Echo (PGSE) sequence together with the short pulse approximation (that

the gradient separation ∆ is much larger than the length δ or ∆ � δ), we can relate the

signal E (q) with the Fourier transform of the EAP. The signal E (q) is written in terms of

the q-space formalism, with q = γ
2π
δG, γ the gyromagnetic constant and G the diffusion

gradient strength. Finally we obtain the Tanner signal equation for an impermeable barrier

1Defining the Ensemble Average Propagator as p (r) =
∫
ρ (x0) px0 (r + x0) dx0, with ρ (x0) the den-

sity of spins in the position x0. For uniformly distributed spins the expression becomes p (r) =
1
a

∫ a

0
px0

(r + x0) dx0.
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of separation a (Stejskal & Tanner, 1965)

E∆̄,a (q) =
∞∑
n=0

(2− δ [n]) e−D∆̄(nπ/a)2
sinc2

(
aq +

n

2

)
(
1− n (2aq)−1)2 , (II.2.2)

with ∆̄ = ∆ − δ/3 the diffusion time2and ∆/δ the separation/duration of the diffusion

gradients. To visualize the effect of the barrier size on the signal in (II.2.2), the results for

different barrier separations are shown in Figure II.2.1.

Figure II.2.1. Signal for different barrier separations a, between 1µm and
9µm also including free diffusion (a → ∞), with ∆/δ = 70/10 ms, D =
2 · 10−9 m2/s and Gmax = 1000 mT/m.

For the case of permeable barriers with permeability µ, a closed expression can also

be obtained (Yablonskiy & Sukstanskii, 2010)

E∆,a,µ (q̃) =
(2q̃)2

µ̃

∑
k

e−D∆(nk/a)2n2
k sinnk

(q̃2 − n2
k) ((2µ̃+ 1) sinnk + nk cosnk)

,

2To simplify notation, we will call the diffusion time just ∆ from now on, and ∆ will only mean diffusion
gradient separation if it is in a parameter pair like ∆/δ.
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where q̃ = aq, µ̃ = aµ/D and the summation is over all non-negative roots nk of the

transcendental equation

2µ̃ (cosn− cos q̃)− n sinn = 0. (II.2.3)

Given that the solution of (II.2.3) can only be obtained numerically or by approximations,

a simplification for the long-time regime ∆D/a2 � 1 (highly constrained when com-

pared to the displacement) can be made (Yablonskiy & Sukstanskii, 2010; Sukstanskii,

Yablonskiy, & Ackerman, 2004)

E∆,a,µ (q) ≈ sinc2 (aq) exp

(
−4 sin2 (aq)

µ∆

a

)
. (II.2.4)

For the case of non-permeable barriers (µ = 0) the approximation becomes

E∆,a (q) ≈ sinc2 (aq) . (II.2.5)

This expression can be interpreted intuitively as if each propagator (II.2.1) will not depend

on the initial position x0 and therefore px0 (r) ≈ 1
a
u
(
r
a

)
. Thus, the ensemble average will

be just an auto-correlation of the compartment shape, and the diffusion signal is obtained

by using the correlation property of the Fourier transform

px0 (r) ? px0 (r) =
1

a
u
(r
a

)
?

1

a
u
(r
a

)
F→ sinc2 (aq) .

This result is also applicable to higher dimensions and it has been used to estimate axon

diameters under long diffusion times ∆→∞ (Sanguinetti & Deriche, 2014).
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3. METHODS

3.1. Effective barrier separation

We will introduce the concept of an effective barrier separation a as the separation

between planar and uniformly spaced barriers. Our hypothesis is that we can superimpose

many of these bundles to correctly approximate the true signal E (q). This can be done

in one given diffusion direction or in many directions. We will call the weights of these

superpositions: directional signal fraction, fi = f (ai) for one diffusion direction and total

signal fraction or simply signal fraction, fij for multiple diffusion directions.

The signal for a bundle of evenly spaced planes at separation a0, evaluated at an angle

θ with respect to the barrier normals is for the long-time regime

E (q) = E∆,a0 (q cos θ)E∆,∞ (q sin θ) (II.3.1)

∆D/a2�1
= sinc2 (a0q cos θ) exp

(
−4π2∆D (q sin θ)2) . (II.3.2)

Because of the free diffusion term, parallel to the barriers, this formula cannot be easily

interpreted in an angular manner. Nevertheless, the first two terms of its Taylor expansion,

do represent rotations that can be used to obtain angular information.

E (q) =

(
1− 1

3
(πa0q cos θ)2 + . . .

)(
1− 4∆D (q sin θ)2 + . . .

)
= 1− 1

3
(πq)2 [(a0 cos θ)2 + (afree sin θ)2]︸ ︷︷ ︸

a2

+ . . . (II.3.3)

≈ sinc2 (aq) ,

with afree = 2
√

3∆D a free diffusion effective barrier size and

a =

√
(a0 cos θ)2 + (afree sin θ)2 (II.3.4)
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the effective barrier separation.

Then, we propose that at any diffusion gradient direction n̂j , the microstructure can

be represented as a superposition of barriers with directional signal fractions fi or

y (q) = f∞E∆,∞ (q) +
M−1∑
i=1

fiE∆,ai (q)

y = E (a, q,∆)f , (II.3.5)

with E∆,∞ (q) = exp (−4π2q2D∆) the free diffusion signal, E∆,ai (q) the restricted dif-

fusion signal and ai barrier sizes uniformly sampled between arbitrary selected amin and

amax.

Figure II.3.1. (Left.) Barrier bundle with barriers with separations of 4µm
at an angle of 0 deg. (Right.) Diffusion signal obtained for the microstruc-
ture, sampled in a disk on the qx−qy plane. In red the signal for a diffusion
gradient in the direction θ = 0 deg, in orange for θ = 10 deg, in green for
θ = 45 deg and in cyan for θ = 90 deg. The central peak is almost entirety
due to free diffusion.
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Figure II.3.2. As the diffusion gradient direction change (the colored ar-
row), the signal will change also and therefore the equivalent barrier distri-
bution. Due to the acquisition parameters, there will be a point in which the
signal of a sufficiently big barrier bundle will not be distinguishable from
free diffusion.

For example, lets consider the simple case of a voxel with half free and half barriers

as shown in Figure II.3.1. At the right of the same sub figure, we show different directions

of encoding. Each of these directions generates a signal shown angularly. These signals

can be expressed as the sum of two effective barriers (one of them free diffusion) with the

directional signal fractions as shown in Figure II.3.2. There will be a barrier size large

enough such that the signal is no longer distinguishable from free diffusion either for the

acquisition parameters ∆/δ or because of the SNR (Sepehrband, Alexander, Kurniawan,

et al., 2016).

It is worth noting that this does not only work for planes, for example, for cylinders

the peak in the directional signal fractions will change from a delta to a wider distribution.
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The effective barrier can be related also with the cylinder diameter by multiplying by a

compensation factor

acyl = 2/
√

3 a, (II.3.6)

obtained using the Taylor series of Ecyl (q) = 2
J1 (acylπq)

acylπq
, similarly to (II.3.3).

3.2. Optimization method

As a non-permeable barrier distribution in every direction f j ∈ RM can effectively

characterize any geometry, this gives us a general model without strong assumptions in

the angular correlation of f j (geometry) or the distribution of those in the given direction

(probability distribution).

For this type of analysis it is common to use a multi-shell acquisition (Figure II.3.3).

In general, we can use N shells of radius q = γ
2π
δ �G ∈ RN ( � is the component-wise

mutltiplication) with different diffusion times ∆ ∈ RN and pulse widths δ ∈ RN . Now, if

we use the notation En,m = E∆n,am (qn), for every direction we have

Ef j =



E1,1 · · · E1,M−1

E2,1 · · · E2,M−1

E3,1 · · · E3,M−1

...
...

...

EN,1 · · · EN,M−1

E1,∞

E2,∞

E3,∞
...

EN,∞





f1

f2

...

fM−1

f∞


j

=

[
E∆,1 (q) · · · E∆,M−1 (q)︸ ︷︷ ︸

Restricted

| E∆,∞ (q)︸ ︷︷ ︸
Free

]
f j.

The acquisition parameters ∆/δ could have a different value per shell, which allow us to

modify the SNR per shell (Alexander et al., 2010).
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Figure II.3.3. Example of a multi-shell q-space sampling for N = 4 shells.
The ∆/δ parameters could potentially change between shells.

Finally, we propose to solve the following optimization problem

min
f∈R[0,1]

∑
j

∥∥f j∥∥1
+ λ

∥∥f∞,j∥∥2

2

s.t.
∥∥Ef j − yj

∥∥2

2
≤ ε, ∀j∥∥f j∥∥1

= 1, ∀j,

with E the matrix with the barrier signals defined in Equation II.2.2 (including free diffu-

sion, but not considering permeability), f j the signal fractions and f∞,j the free diffusion

component for the diffusion gradient direction n̂j . The rationale behind using an addi-

tional norm for the free diffusion was to avoid overfitting to those atoms of the dictionary,

since those contribute more to the overall signal. This problem was solved using CVX

(Grant & Boyd, 2008, 2014).
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3.3. Experiments

The proposed method was tested with synthetic data created with CAMINO (Hall &

Alexander, 2009). For the first experiment, crossing bundles were used (Figure II.3.4)

with N spins = 5 · 104 , T = 103, D = 2 · 10−9 m2/s, Gmax = 1700 mT/m and ∆/δ =

100/1 ms. For the second experiment, a more realistic corpus callosum phantom with

gamma distributed cylinders was used (Figure II.4.4). As this microstructure is more

complex, more computationally demanding parameters were used N spins = 105, T =

2 · 103 and D = 1.7 · 10−9 m2/s. For the acquisition parameters Gmax = 1000 mT/m and

∆/δ = 70/8 ms were used.

Both experiments were tested for the noise-free case and with Rician noise of standard

deviation σ,

E = |Etrue + η1 + i η2| , η1, η2 ∼ N (0, σ) .

The q-space sampling were multiple semi-disks in the qx − qy plane, constituted by 32

uniformly spaced directions and radii.
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Figure II.3.4. (Left.) Crossing fibers phantom with a barrier bundle of
separations of 4µm and 8µm. (Right.) Signal produced by the phan-
tom of crossing fiber, in red the signal for a diffusion gradient direction of
θ = 0 deg, in green for θ = 45 deg and in cyan for θ = 90 deg.
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4. RESULTS AND DISCUSSION

4.1. Crossing fibers

The results for the noiseless case shown in Figure II.4.1 approximate well the mi-

crostructure in Figure II.3.4.

Even though the signal fractions should be delta distributions in the correct barrier

sizes this is not possible for two reasons. The first is that the correct barrier size is not

necessarily sampled. In this case the closest were 4.5µm and 8µm. And the second,

due to the acquisition parameters, like q-space sampling or noise, is that there are lim-

its on the resolution for a. The maximum barrier size amax has a high signal fraction,

because it is similar to free diffusion and can compensate some errors in the estimation

of the constant D∆. While the position of the peaks are very close to the ground truth,

the signal fractions are not necessarily correct as the atoms {E∆,ai}i=1,..,M−1 are not lin-

early independent and it is always possible to attribute contributions of smaller separation

barriers to bigger ones. Different types of barrier sampling and weighting were tested to

tackle this problem, but they did not improved the results considerably. We can also see

a close relation between the effective barrier separation in Equation II.3.4 and the results

seen in Figure II.4.2. For more than one barrier, the effective barrier was calculated using

a = min {‖(4µm, afree)� n̂1‖ , ‖(8µm, afree)� n̂2‖}, with n̂k the unitary normal vector

to the barrier bundles.
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Figure II.4.1. Signal fractions obtained by the proposed method for a
noise-less signal for multiple diffusion gradient directions as stated in Fig-
ure II.3.4. The signal fractions peak near the corresponding barrier sepa-
rations 4µm at θ = 0 deg and 8µm at θ = 90 deg. The used parameters
were ε = 3%, σ = 0% and λ = 10−3.

30



Figure II.4.2. Multiple barrier signal fractions for every direction in a po-
lar grid, where the obtained values are plotted in white and the red dots
correspond to the effective barrier approximation stated in Equation II.3.4.
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Figure II.4.3. Signal fractions obtained by the proposed method for a noisy
signal with noise of σ = 2.1% for multiple diffusion gradient directions as
stated in Figure II.3.4. For larger separations the signal is interpreted as
noise. The used parameters were ε = 0.05, and λ = 10−1.

In the noisy case, shown in Figure II.4.3, similar results where obtained, but the sensi-

tivity to larger barrier separations decreases due to the noise as in (Sepehrband, Alexander,

Kurniawan, et al., 2016). The smaller barriers are less prone to noise if the qmax is big

enough.
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4.2. Diameter distribution phantom

Figure II.4.4. (Left.) Phantom of the corpus callosum, with ν the relation
between the area of the axons intra-cellular space and the voxel, ā the mean
diameter and ρ the density of axons. (Right.) Comparison between the
obtained axon diameter distribution and the barrier distribution.

In the case of the corpus callosum phantom shown in Figure II.4.4, we averaged the

resulting signal fractions in each direction f̄ as the microstructure is isotropic in the qx−qy
plane. This result gave similar results to the correct microstructure for the noiseless and

noisy case (Figure II.4.5).
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Figure II.4.5. Mean barrier distribution estimated from data, with opti-
mization parameters of ε = 0.03 and λ = 5 · 10−6 for the noise-free case
and ε = 0.14 and λ = 10−2 with noise of σ = 5%.

While our method estimates well the barrier distribution, it can not differentiate if the

signal comes from the intra or extra cellular space. Caution must be used interpreting

this results because, depending on the axon density ρ and axon fraction ν, the barrier

distribution can lead to underestimations or overestimations to the axon diameter acyl.

This is because a densely packed microstructure have extra cellular spaces with small

barriers and the opposite for loosely packed microstructure.

In our case, the ground truth mean axon diameter is ācyl = 4.4µm and mean barrier

size is ā = 3.4µm. The estimated mean barrier size were 4µm in the noise-free case and

5µm in the noisy case, giving ˆ̄acyl = 4.6µm and ˆ̄acyl = 5.7µm respectively, using the

method explained in (II.3.6). These values were calculated without considering amax and

the free diffusion signal fractions so

ā =

∑M−2
i=1 f̄iai∑M−2
i=1 f̄i

.
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For more parameters as the axon density ρ or axon fraction ν it is necessary to know which

signal comes from the intra and extra cellular spaces.
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5. CONCLUSIONS

The proposed method was able to find an effective barrier separation which agrees

well with the ground truth (available from the simulations). The advantage of this model

is that it can be fit with only one diffusion time per shell, and that it does not require

geometrical assumptions. In the future, undersampling techniques in order to reduce the

number of data points needed and other sparse domains besides the identity could be

explored. While not studied, some other types of regularization using angular correlations

could improve the results for noisy data as well. In this work we only tested the method

with simulated data. Nevertheless, Ex-vivo data sets (Assaf et al., 2008; Sepehrband,

Alexander, Kurniawan, et al., 2016) can also be used.

An estimation of the axon diameter is possible by being careful on the interpretation

of the data, as the signals from the intra and extra cellular spaces cannot be separated

by the information available. Thus, errors in the estimations of the axon diameters will

occur, but they can still be useful in comparative studies. Additional information about

the T2 decay of the compartments is needed for more accurate results. The sensitivity

of microstructure imaging is an ongoing topic of research, and the dependency on the

maximum gradient Gmax, number of shells N and noise levels are important as stated in

(Sepehrband, Alexander, Kurniawan, et al., 2016).

In summary our method estimates well the effective barrier separation without requir-

ing extra acquisition time.
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