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ABSTRACT

In addition to the established mechanisms of intercellular signaling, a new way of communication has gained much attention in the last 
decade: communication mediated by exosomes. Exosomes are nanovesicles (with a diameter of 40-120 nm) secreted into the extracellular 
space by the multivesicular endosome after its outer membrane fuses with the plasma membrane. Once released, exosomes modulate 
the response of the recipient cells that recognize them. This indicates that exosomes operate in a specifi c manner and participate in 
the regulation of the target cell. Remarkably, exosomes occur from unicellular organisms to mammals, suggesting an evolutionarily 
conserved mechanism of communication. In this review we describe the cascade of exosome formation, intracellular traffi  c, secretion, and 
internalization by recipient cells, and review their most relevant eff ects. We also highlight important steps that are still poorly understood.
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INTRODUCTION

Cell-cell communication is imperative for life. There are 
diff erent pathways of intercellular communication, such as 
the expression of signalling molecules on plasma membranes 
or the secretion of soluble ligands (Grimmelikhuijzen and 
Hauser, 2012), gap junctions and tunneling nanotubes that 
allow electrical and metabolic coupling among cells (Abounit 
and Zurzolo, 2012; Orellana et al., 2012). In addition to these 
modes of communication, cells release membrane vesicles into 
the extracellular environment that aff ect target cells (Simons 
and Raposo, 2009).

In the 1980s, the groups of Stahl and Johnstone described 
the secretion of nano-sized vesicles during reticulocyte 
maturation (Harding et al., 1983; Pan et al., 1985). These 
vesicles were named exosomes and were thought to be 
necessary to remove unneeded proteins from cells (Johnstone 
et al., 1987). Later, Raposo et al. described that exosomes had 
antigen-presenting capacity (Raposo et al., 1996). Thereafter, 
the study of functional eff ects of exosomes has grown steadily 
(Simons and Raposo, 2009; Thery et al., 2009; Record et al., 
2011; Pant et al., 2012).

Exosome release has been shown in eukaryotes, from 
microorganisms up to mammals. For example, they are 
secreted by protists like Dictyostelium discoideum (Lavialle et 
al., 2009) and Trypanosoma cruzi (Bayer-Santos et al., 2012), 
fungi (Rodrigues et al., 2011), plants (Regente et al., 2012), and 
animals from invertebrates such as Drosophila melanogaster 
(Korkut et al., 2009; Beckett et al., 2012; Gross et al., 2012) 
and Caenorhabditis elegans (Liegeois et al., 2006) to vertebrates 
(Record et al., 2011).

As depicted in figure 1, four sequential steps have 
been described in the literature for exosome-mediated 
communication. To date, this cascade comprising exosome 
formation, intracellular traffi  c, secretion and internalization 
by recipient cells, has been best characterized in immune cells 
(Thery et al., 2009; Bobrie et al., 2011) while the information in 
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other cell types is fragmented. Considering this, we propose 
that communication mediated by exosomes between cells must 
have been conserved throughout evolution, although how this 
pathway may have evolved is not yet known. In this review 
we aim to illustrate the current state of knowledge of this 
particular way of cellular communication.

EXOSOME-MEDIATED COMMUNICATION

1. Exosome biogenesis

Multivesicular endosomes (MVE, also called multivesicular 
bodies or MVB) give rise to exosomes as follows. The 
membrane of late endosomes invaginates and forms small 
vesicles that are pinched off  into the endosomal space. These 
are the intralumenal vesicles (ILV) and the whole is the MVE 
(Fig. 1A). Notice that the internal face of an ILV membrane 
corresponds to the cytoplasmic face of the endosome limiting 
membrane, and the content of the ILV is originated from 
the cytosol prior to ILV formation. This anatomical fact has 
functional relevance for exosomes. A set of MVEs fuse their 
limiting membranes to the plasma membrane and the ILVs 
with their cargo into the extracellular space. These secreted 
vesicles are exosomes (Fig. 1B-C) (Simons and Raposo, 2009).

Formation of ILVs in the late endosome involves the 
endosomal sorting complex required for transport (ESCRT) 
proteins (Babst, 2011). ESCRT proteins are components of four 
ESCRT complexes, ESCRT-0, ESCRT-I, ESCRT-II, and ESCRT-III 
(Hanson et al., 2009). Each of these complexes is sequentially 
and transiently recruited to the forming MVE until a vesicle 
is fully shaped and released as an ILV into the endosomal 
space (Hurley and Emr, 2006). However, increasing evidence 
suggests that some lipids such as ceramide may play a key 
role in ILV formation, independently of ESCRT complexes 
(Trajkovic et al., 2008; Babst, 2011).

As mentioned above, a set of MVE fuse with the plasma 
membrane while other MVEs follow a degradative route and 
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fuse with lysosomes. This pathway leads to the degradation 
of ILVs content. Which are the mechanisms that guide MVE 
fusion with the plasma membrane or with lysosomes? Evidence 
to date is incomplete but supports the existence of diff erent 
populations of MVEs (White et al., 2006) and/or diff erent 
subpopulations of ILVs within a pool of common MVEs. 
Accordingly, MVEs rich in Rab7 GTPase and ILVs containing 
phosphatidylinositol-3-phosphate and ubiquitinated proteins 
are sorted to lysosomes (Vanlandingham and Ceresa, 2009). 
Conversely, MVEs rich in Rab11 GTPase and ILVs with high 
amounts of ceramide are sorted for exosome secretion (Zerial 
and McBride, 2001; Savina et al., 2005). Rab GTPases coordinate 
intracellular traffi  c, such as vesicle formation, transport and 
fusion with the target membranes (Zerial and McBride, 2001). 
In this way, the recruitment of specifi c Rabs and their eff ectors 
to MVEs membrane directs their fi nal destination towards 
degradation or exosome secretion.

2. Loading of exosomes

In eukaryotes, most secreted proteins use the endoplasmic 
reticulum/Golgi-dependent secretory pathway (Keller and 
Simons, 1997). These proteins have a signal peptide which 
directs their fate towards the exocytic route (Nickel, 2005). 
However, proteins that follow unconventional secretory 
pathways, such as the exosome-mediated route, do not use 
this signal peptide. What commands the secretion of cellular 
components within vesicles and how are molecules sorted 
into exosomes? Ubiquitination is the best characterized signal 

that commands protein sorting into ILVs, for both cytosolic 
proteins and the cytosolic tail of membrane receptors (Baietti et 
al., 2012). Ubiquitinated-proteins interact sequentially with the 
ESCRT complex and with specifi c domains of late endosomes. 
This leads to the invagination of the late endosome membrane 
together with the tagged-protein and the fi nal formation of 
an ILV (Babst, 2011; MacDonald et al., 2012). However, some 
non-ubiquitinated proteins such as the transferrin receptor 
interact with the ESCRT complex and are sorted into exosomes, 
suggesting that diff erent protein interactions can provide access 
to ESCRT processing (Marsh and van Meer, 2008). In fact, an 
alternative mechanism to ubiquitin-tagging has been recently 
described for a plasma membrane receptor (Baietti et al., 
2012). Syndecans –transmembrane proteins that off er heparin 
sulphate to the cell surface– recruit the fi broblast growth factor 
receptor into MVEs. To achieve this, the cytosolic domain of 
syndecan interacts with the adaptor protein syntenin which in 
turn connects syndecans to Alix, an auxiliary component of the 
ESCRT machinery. This syndecan-syntenin-Alix pathway leads 
to the exosome secretion of fi broblast growth factor receptor 
(Baietti et al., 2012). It remains to be explored whether this new 
pathway is suffi  cient to recruit other plasma receptors, such as 
the transferrin receptor, into exosomes.

F ina l ly,  te t raspanins  –evolut ionar i ly  conserved 
transmembrane proteins– have been proposed to mediate 
molecule sorting into ILVs (Rana and Zoller,  2011). 
Tetraspanins form microdomains in the cell surface by 
interacting between themselves and a large variety of 
transmembrane and cytosolic proteins and participate in 

Figure 1. Sequential steps necessary for exosome-mediated communication. Intralumenal vesicles (ILV) are formed after the invagination 
of the multivesicular endosome membrane. These ILVs are loaded with specifi c cargo originated from the plasma membrane and/
or the cytoplasm (A). Notice that the internal face of an ILV membrane corresponds to the cytoplasmic face of the endosome limiting 
membrane, and the ILV is loaded with cytosolic components. Upon fusion of the MVE with the plasma membrane (B), ILV are secreted as 
exosomes (C). Exosomes can be lost (D) or taken up by target cells (E) by fusion, or internalization mediated by surface molecules or by 
macropinocytosis. Additional abbreviation: ESCRT, endosomal sorting complex required for transport.
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vesicular traffi  c (Levy and Shoham, 2005). Although this fi eld 
is quite speculative to date, exosomes from all cell types are 
enriched in tetraspanins, thus they are plausible candidates to 
mediate selective cargo recruitment into these vesicles.

The sorting process of protein complexes into ILVs is 
a highly regulated mechanism. Most proteins secreted by 
exosomes derive from parent cell membranes, the cytosol or the 
Golgi, but rarely the endoplasmic reticulum or mitochondria. 
Some of the proteins sorted into ILV participate in antigen 
presentation (MHC-I, MHC-II), cell adhesion (integrins), cell 
structure and motility (actins, tubulin, myosin, etc.), stress 
regulators (heat shock proteins 70 and 90), metabolic enzymes 
(b-enolase, peroxidases, pyruvate kinase) proteins of ESCRT 
machinery, proteins of the signalling cascade (kinases), 
tetraspanins (CD9, CD63, CD81, CD82), proteins involved 
in transcription and protein synthesis (histones, ribosomal 
proteins, ubiquitin), and proteins involved in traffi  cking and 
membrane fusion (Rabs, annexins) (Lakkaraju and Rodriguez-
Boulan, 2008). Additionally, cytosolic proteins remain in 
the lumen of exosomes and those derived from the plasma 
membrane remain in the vesicle membrane, maintaining the 
same topology they had in the cell, with potential roles in 
sequestering soluble ligands (Pan et al., 1985; Thery et al., 2009).

Although exosomes were originally described in 1980’s, 
interest in these vesicles was renewed in recent years when 
exosomes were reported to contain functional mRNA and 
microRNA (Valadi et al., 2007). The functional consequences of 
transfer of genetic material include the induction, amplifi cation 
and/or modulation of immune responses, as well as acquisition 
of new functional properties in other recipient cells. For example, 
glioblastoma cells carrying EGFRvIII mRNA have been shown to 
stimulate tubule formation in endothelial cells and proliferation 
of glioblastoma cells, thereby promoting acquisition of the 
angiogenic phenotype and metastatic abilities (Skog et al., 2008). 
Exosomes have been shown to be highly enriched in defi ned 
mRNA species compared to their distributions in the donor cell 
(Skog et al., 2008). This fact supports the existence of a sorting 
mechanism, but it has not been characterized so far.

Exosomes contain not only proteins and nucleic acids 
but also a specific lipid composition; they are rich in 
cholesterol, sphingomyelin and ceramide; and they also exhibit 
phosphatidylserine (Thery et al., 2009). Interestingly, bioactive 
lipids such as prostaglandins are also sorted into exosomes 
(Subra et al., 2010). ExoCarta –a free to use web-database of 
proteins, RNA and lipids identifi ed in exosomes– has been 
compiled and reveals molecules that are more often found 
in exosomes and those that are specifi c to certain cell types 
(http://www.exocarta.org) (Mathivanan and Simpson, 2009).

In conclusion, the eff ort to characterize the composition 
of exosomes has been largely successful but the data on a 
mechanism to recruit the cargo have been meager. This shows 
a clear need to characterize the interactions between proteins, 
lipids and RNAs that allow specific cargo packaging into 
exosomes.

3. Secretion of exosomes

The secretion of exosomes has been described both in vivo and 
in vitro as a non-conventional secretory mechanism (Nickel, 
2005). As mentioned above, once the MVEs fuse with the 
plasma membrane, ILVs are secreted as exosomes (Fig. 1C). 
Electron microscopy analysis of exosomes show a cup-shaped 

morphology and a size between 40-120 nm (Simons and 
Raposo, 2009). Exosomes have been isolated in vitro but also in 
vivo in bodily fl uids such as blood, urine, breast milk, amniotic 
fluid, malignant ascites, bronchoalveolar lavage fluid and 
synovial fl uid (Record et al., 2011).

Exosomes are released both constitutively and in a 
regulated manner. For example, B cells secrete detectable 
levels of exosomes only following the activation of a cell 
surface receptor (Saunderson et al., 2008) while most tumor 
cells constitutively secrete exosomes (Record et al., 2011). 
Importantly, distinct subpopulations of exosomes are secreted 
from polarized cells; apical and basolateral exosomes (Tauro 
et al., 2012). This indicates that exosome secretion can be even 
more complex, since a diff erent mechanism may coexist in the 
cell to target exosome release to the appropriate membrane.

Intracellular calcium is a physiological second messenger 
in the secretion of exosomes (Savina et al., 2003; Faure et al., 
2006). In murine macrophages, dendritic and neuroblastoma 
cells, activation of P2X7 receptors (purinergic receptor P2X) 
by ATP increases intracellular calcium and also secretion 
of exosomes (Qu et al., 2009; Emmanouilidou et al., 2010). 
Pharmacological elevation of intracellular calcium also induces 
exosome secretion in cortical neurons, oligodendrocytes and 
erythroleukemia cells (Savina et al., 2003; Faure et al., 2006; 
Fruhbeis et al., 2012), which confi rms the role of calcium as 
second order messenger. Together with a cytosolic calcium 
increase, the expression of Rab11 GTPase is needed for 
exosome secretion in erythroleukemia cells in vitro (Savina 
et al., 2005). In fact, calcium dependent-exosome secretion 
is enhanced when cells with low endogenous levels of the 
Rab11 are manipulated to overexpress this GTPase (Savina 
et al., 2005). Although the direct link between calcium and 
Rabs is missing, two other Rab proteins have been implicated 
in the fusion of MVE membrane to the plasma membrane 
of mammalian cells. For example, Rab35 is involved in 
the secretion of myelin protein-enriched exosomes in 
oligodendroglial cells and Rab27a/b but not Rab11 mediates 
MVE transport and docking to the plasma membrane in HeLa 
cells in vitro (Hsu et al., 2010; Ostrowski et al., 2010). Finally, 
in the motor nerve endings of the fl y D. melanogaster exosome 
secretion is regulated by Rab11 but not by Rab27 or Rab35, 
while secretion of vesicles loaded with neurotransmitter 
required Rab3, which suggests a specifi c pathway for exosomes 
(Koles et al., 2012). These results refl ect the variety of secretory 
pathways during exosome formation within a cell and in 
diverse cell types (Koles et al., 2012). Collectively, calcium 
and specifi c Rab GTPases participate in the fusion of MVEs to 
the plasma membrane as a step in the secretion of exosomes. 
Taken together, this evidence indicates that exosome secretion, 
besides being constitutive, is also regulated.

Eukaryotic cells have developed elaborate mechanisms 
of quality control within their classical ER/Golgi-dependent 
secretory pathway. It is likely that a quality control is also 
operating in the exosome pathway. However, the molecular 
machinery involved in the transport of MVEs to the plasma 
membrane, their docking and fusion to release exosomes is 
poorly understood.

4. Exosome uptake by recipient cells

Once in the extracellular space, exosomes may be eliminated 
(Fig. 1D). This fate is illustrated by their presence in urine 
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(Miranda et al., 2010). The biological significance of this 
elimination, if any, has not been explored. By contrast, 
exosomes have important effects on target cells (Fig. 1E). 
Interaction of exosomes with target cells follows two 
alternatives; endocytosis of the whole vesicle or and/or fusion 
with the plasma membrane. Membrane vesicles of all cellular 
origins express adhesion molecules on their surface, which 
could favor their endocytosis by recipient cells (Record et 
al., 2011). For example, surface molecules such as integrins, 
tetraspanins and phosphatidylserine in exosomes form 
complexes with cell surface molecules and participate in the 
attachment of exosomes, as studied in dendritic cells (Thery 
et al., 2009). In these cells, the whole exosome is internalized 
and sorted into recycling endosomes and then through late 

endosomes/lysosomes (Morelli et al., 2004). Co-incubation of 
exosomes and dendritic cells with specifi c antibodies to block 
various adhesion molecules reduces exosome internalization 
by these cells (Morelli et al., 2004). By this mechanism, 
dendritic cells process and then present to T lymphocytes 
peptides derived from the internalized exosomes. Alternatively, 
exosomes can be selectively internalized by macropinocytosis, 
a mechanism where macromolecules are taken by actin-
membrane ruffles, and that does not necessarily depend 
on receptor-ligand interaction (Fitzner et al., 2011). On the 
other hand, fusion of exosomes has been shown to be a lipid-
dependent process, in which a high content of sphingomyelin/
ganglioside GM3 in exosomes is responsible for the increased 
fusion effi  ciency in tumor cells (Parolini et al., 2009), while 

TABLE I

Representative fi ndings of functional effects of exosomes in eukaryotes

Organism Exosome source Eff ect References

Protists Dictyostelium 
discoideum

Exosomes-like vesicles are secreted by D. 
discoideum migrating cells and coordinate cell 
migration. These vesicles have been proposed 

for drug carriers in cancer therapy.

(Kriebel et al. 2008; Lavialle et al. 2009)

Leishmania 
donovani, 

Trypanosoma cruzi

Exosomes deliver parasite cargo into host cells 
and modulate the immune response.

(Silverman et al. 2010; Bayer-Santos et al. 2012)

Fungi Histoplasma 
capsulatum,

Cryptococcus 
neoformans

Fungal species secrete extracellular vesicles with 
similar composition to exosomes. These vesicles 

are involved in host-pathogen interactions.

(Albuquerque et al. 2008; Rodrigues et al. 2008)

Plants Sunfl ower seeds, 
barley leaves

Isolation and characterization of exosomes from 
seed and leaved fl uids.

(An et al. 2007; Regente et al. 2009)

Animals Caenorhabditis 
elegans

Polarized secretion of morphogens mediated by 
exosomes.

(Liegeois et al. 2006)

Drosophila 
melanogaster

Wnt morphogens secretion during development. (Korkut et al. 2009; Beckett et al. 2012; Gross et al. 2012)

Mammalian cells Antigen presenting capacity First functional eff ect: (Raposo et al. 1996)

Others: (Mittelbrunn et al. 2011; Huan et al. 2012)

Exosomes contain mRNA and microRNA  that 
can be transferred

First antecedent: (Valadi et al. 2007)

to other cells where they are functional. Others: (Lasser et al. 2011; Gallo et al. 2012)

“Trojan horses” for pathogens propagation:

– Prions – (Fevrier et al. 2004; Vella et al. 2008)

– Virus – (Barreto et al. 2010; Lenassi et al. 2010)

– Bacteria – (Yang et al. 2012)

Spread of neurodegenerative diseases. (Emmanouilidou et al. 2010; Saman et al. 2012)

Antitumoral eff ects. (Zhang et al. 2011; Lv et al. 2012)

Pro-angiogenic, pro-metastasic. (Al-Nedawi et al. 2008; Peinado et al. 2012)

Biomarkers for cancer diagnosis and prognosis. (Skog et al. 2008; Miranda et al. 2010; Khan et al. 2012)

Future therapy models. (Alvarez-Erviti et al. 2011; Zhuang et al. 2011)

Tolerogenic pre-transplantation and anti-cancer 
vaccines

(Hartman et al. 2011; Rountree et al. 2011; Viaud et al. 
2011; Li et al. 2012)
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cholesterol-rich microdomains are necessary for dendritic cell 
exosome fusion with target cells (Montecalvo et al., 2012).

In any case, an important unanswered question in the fi eld 
is how exosomes deliver their intralumenal content into the 
cytosol of the recipient cells.

5. Eff ect of exosome cargo on recipient cells

Since the discovery that exosomes participate in the cascade 
of antigen presentation (Raposo et al., 1996), this novel 
mechanism of intercellular communication has been implicated 
in various essential processes such as development (Korkut et 
al., 2009), immune responses (Thery et al., 2009), cancer and 
tumor metastasis (Peinado et al., 2012), and in the transmission 
of infectious agents like prions and viruses (Fevrier et al., 2004; 
Lenassi et al., 2010). Table I provides an overview of the most 
relevant fi ndings of exosome functional eff ects in eukaryotes 
to date. It is worth mentioning that studies on exosomes 
other than mammalian cells are scant but still support the role 
of exosomes as a conserved mechanism of communication 
throughout evolution.

Finally, exosomes are promising tools to target drugs or 
biological material to specifi c cells across diff erent biological 
barriers (O’Loughlin et al., 2012; Pant et al., 2012). For example, 
Alvarez-Erviti et al. (2011) obtained neuronal-targeted 
exosomes from genetically modified dendritic cells in vitro and 
loaded them with specific siRNA. After intravenous injection, 
these exosomes loaded with siRNA knocked down their target 
gene in brain neurons (Alvarez-Erviti et al., 2011). Thus, the 
possibility to deliver agents in a specifi c manner to defi ned 
target cells opens a wide avenue of research, even to overcome 
important challenges such as biological barriers, or tolerance to 
vesicles by using those derived from patient cells.

CONCLUSION

In this review we illustrate the sequential steps for exosome-
mediated communication and compile the evidence supporting 
this role in eukaryotes. Although exosomes have been 
described in many cells from a wide variety of organisms, 
many important gaps remain concerning their formation 
cascade and their physiological relevance. Addressing 
these questions implies important challenges, such as the 
development of sensitive techniques to purify these nano-
vesicles from small volumes of fluids and to determine 
precisely how and with what types of cells exosomes interact 
in vivo. The disclosure and growth of this research area will 
help to address these issues and lead to major advances in 
understanding exosomal functions as means for cell-to-cell 
communication.
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