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ABSTRACT

Ocean exploration has seen significant advancements with the development of un-

derwater vehicles. However, the high costs of the current high-end vehicles limit their

widespread use. Low-cost vehicles are being explored to overcome this limitation, but

their limited navigation accuracy restricts their use in low-precision missions. This thesis

proposes a novel methodology to improve the navigation precision of low-cost navigation

systems for underwater exploration.

The MEMS Attitude Heading Reference Systems (AHRSs) are widely used for de-

termining the attitude of a system. However, the accuracy is limited due to sensor mea-

surement biases. To overcome this, this thesis proposes the Magnetometer and Gyroscope

Iterative Calibration (MAGICAL) method, which employs three-axis angular rate mea-

surements from an angular rate gyroscope. Four approaches based on linear and nonlinear

iterative least squares and batch and online incremental factor graphs are proposed to im-

plement this method, which is less restrictive regarding instrument movements required

for calibration, does not require knowledge of the local magnetic field or instrument’s

attitude, and can be integrated into factor graph algorithms for Smoothing and Mapping

frameworks.

The proposed methods were compared with the state-of-the-art methods in numerical

simulations and in-field experimental evaluations with a sensor onboard an underwater ve-

hicle. With MAGICAL, the underwater vehicle’s dead reckoning position estimation error

was reduced from 10% to 0.5% of the distance traveled. The results show that MAGICAL

can significantly improve the accuracy of low-cost navigation systems and pave the way

for more widespread use of underwater vehicles in oceanographic missions.

Keywords: Marine robotics, sensor fusion, magnetometer hard-iron bias and soft-

iron bias calibration, doppler navigation, gyroscope bias calibration.
x



RESUMEN

La exploración oceánica ha experimentado avances significativos debido al desarrollo

de los vehı́culos submarinos, sin embargo, los elevados costos de los actuales vehı́culos de

gama alta limitan su uso generalizado. Como alternativa, se han explorado vehı́culos de

bajo costo, pero su limitada navegación restringe su uso a misiones de baja precisión, para

lo cual esta tesis propone una metodologı́a novedosa que busca una navegación precisa.

Los sistemas de referencia de actitud y rumbo (AHRS, por sus siglas en inglés) basados

en sistemas microelectromecánicos (MEMS, por sus siglas en inglés) son ampliamente uti-

lizados para determinar la orientación de un sistema, sin embargo, su precisión se ve lim-

itada por los sesgos en las medición de los sensores que lo componen. Esta tesis propone

el método de calibración iterativa de magnetómetro y giróscopo, denominado MAGICAL,

por sus siglas en inglés, el cual utiliza medidas de velocidad angular, permitiéndole ser

menos restrictivo en cuanto a los movimientos necesarios para la calibración, no requiere

conocimiento del campo magnético local ni de la orientación del sistema, y puede inte-

grarse en algoritmos de grafos de factores. Este método puede ser implementado de cuatro

formas, utilizando mı́nimos cuadrados iterativos lineales y no lineales, y utilizando grafos

de factores, tanto en forma incremental como incluyendo todas las mediciones.

El método propuesto se compara con el estado del arte tanto en simulaciones numéricas

como en evaluaciones experimentales en terreno, utliizando un sensor a bordo de un

vehı́culo submarino. Con MAGICAL, el error de estimación de la posición del vehı́culo

submarino se redujo del 10% al 0,5% de la distancia recorrida, demostrando que MAGICAL

puede mejorar significativamente la precisión de los sistemas de navegación de bajo costo

y dar pie a uso más generalizado de los vehı́culos submarinos en misiones oceanográficas.

Palabras clave: Robótica marina, fusión de sensores, calibración de hard-iron y soft-

iron en magnetómetros, navegación doppler, calibración del sesgo del giróscopo.
xi



1. INTRODUCTION

The oceans constitute 71% of the Earth’s surface and are vital for sustaining all known

life (NOAA, 2023). They serve as a significant source of energy, food, and natural re-

sources and are critical in regulating the climate and weather conditions and preserving

the biodiversity of the planet’s ecosystem. Despite their immense importance, the under-

water floor remains mainly uncharted, with only 10% having been explored to date with

modern methods such as sonar technology (NOAA, 2023).

(a) MBARI Rachel Carson Research Vessel.
Image Source: MBARI.

(b) MBARI Ventana Remote Operated Vehicle.
Image source: MBARI.

Figure 1.1. Monterey Bay Aquarium Research Institute (MBARI) equipment for daily
deployments.

Oceanographic exploration using underwater vehicles is advancing rapidly, thanks to

continual improvements in precision underwater navigation technology. These advances

have expanded the operating range of underwater vehicles, enabling missions that were

once deemed impossible. However, many of these developments focus on large-scale

operations, requiring significant resources such as remote-operated vehicles (ROVs), au-

tonomous underwater vehicles (AUVs), and research vessels (RVs), leading to high costs

that can run into the millions of dollars for regular operations (Fig. 1.1). As an alterna-

tive to these costly operations, a new family of relatively low-cost underwater vehicles is

1



emerging, making ocean exploration more accessible. However, these vehicles are limited

by the lack of precise low-cost and low-power navigation methods.

(a) MBARI Long Range AUV. Image source:
MBARI.

(b) MBARI Mola AUV/ROV. Image source:
MBARI.

Figure 1.2. Monterey Bay Aquarium Research Institute (MBARI) relative low-cost un-
derwater vehicles.

Accurate sensing and estimation of attitude, including heading, roll, and pitch, are

critical components of navigation systems for underwater vehicles. This is especially im-

portant for vehicles operating in environments where global positioning system (GPS) sig-

nals are unavailable, such as underwater navigation. While high-precision sensors based

on optical gyroscopes, like the Kearfott SeaDevil Inertial Navigation System (Fig. 1.3a),

are available, they are much more expensive and require more power and space com-

pared to low-cost Micro-Electro-Mechanical System (MEMS) Attitude and Heading Ref-

erence Systems (AHRSs), such as the VectorNav VN-100 (Fig. 1.3b), which are typically

mounted in low-cost underwater vehicles.

MEMS AHRS generally consists of a three-axis magnetometer, a three-axis accelerom-

eter, a three-axis gyroscope, and a temperature sensor. The magnetometer measures the

local Earth’s magnetic field vector, enabling the determination of the system’s heading. In

the absence of considerable external accelerations, the accelerometer is employed to de-

termine the system’s inclination relative to the Earth’s local gravity vector, thus providing

2



(a) High-cost attitude sensor: Kearfott
SeaDevil Inertial Navigation System. Im-
age source: (Caress et al., 2008).

(b) Low-cost attitude sensor: Vec-
torNav VN-100. Image source:
(Vectornav, 2023).

Figure 1.3. Attitude sensors.

information regarding the orientation of the pitch and roll axes. Finally, the gyroscope pro-

vides the angular rate of the vehicle, which can be used to smooth the rotation estimation

of the system.

The accuracy of the estimation process is critically dependent upon the successful

elimination of biases, scale factors, and non-orthogonality that have the potential to im-

pact the functionality of the AHRS components. Specifically, biases pose a challenge to

gyroscopes and accelerometers. In contrast, magnetometers are susceptible to two main

types of sensor calibration errors induced by any ferrous materials or electric currents near

the object, which can bias and distort the background magnetic field, leading to increased

errors in the heading estimate. Hard-iron biases result from the constant errors from the

permanent magnetic field generated by the vehicle and onboard instruments, leading to a

constant bias in the sensor output. On the other hand, soft-iron biases manifest as errors

caused by the magnetic permeability of the materials surrounding the sensor, resulting in

the distortion or stretching of the magnetic field.

Changes in a vehicle’s physical configuration, such as adding or removing sensors

or other payloads, commonly occur in underwater vehicles, requiring the AHRS to be

recalibrated. However, most previously reported approaches for hard-iron and soft-iron

3



calibration require significant angular motion of the instrument in all rotational degrees of

freedom (i.e., roll, pitch, and heading), which can be impractical and even unfeasible on

many roll and pitch stable vehicles, leading to a failure in the calibration method. These

challenges allow us to propose this thesis hypothesis, which states that the development of

a magnetometer calibration method integrated with angular rates allows the estimation of

the biases of magnetometer and gyroscopes with improved robustness and versatility.

This thesis presents a novel approach called the Magnetometer and Gyroscope Itera-

tive Calibration (MAGICAL) method, which, taking advantage of the angular-rate mea-

surements, overcomes the limitations of current navigation systems for underwater vehi-

cles. Four different methods based on this approach are proposed, two using iterative least

squares and two using factor graphs. The MAGICAL method has the potential to make

oceanographic research more accessible by enabling the development of high-accuracy,

low-cost navigation systems for underwater vehicles. This will allow for ocean explo-

ration with similar performance to current approaches but at a fraction of the cost.

1.1. Literature Review

Accurate calibration of three-axis magnetometers is crucial for reliable attitude estima-

tion, and several methods have been proposed to estimate calibration parameters without

requiring additional reference sensors. One widely used approach proposed by Alonso

and Shuster is the TWOSTEP method, which estimates the magnetometer’s bias (Alonso

& Shuster, 2002b) and later estimates the scale and non-orthogonality factors as well

(Alonso & Shuster, 2002a) using an iterative least squares minimization. The full cali-

bration of a magnetometer can also be formulated as an ellipsoid fitting problem, which

Vasconcelos et al. (Vasconcelos, Elkaim, Silvestre, Oliveira, & Cardeira, 2011) solved

using a maximum likelihood estimate method. Several least squares methods have been

reported as well (Fang, Sun, Cao, Zhang, & Tao, 2011; Foster & Elkaim, 2008; Ousaloo,

Sharifi, Mahdian, & Nodeh, 2017). However, these methods are not practical in field ap-

plications as the device must perform wide ranges of angular motion in all three degrees of

4



freedom, which is infeasible for many devices mounted on full-scale vehicles, such as un-

derwater remote-operated vehicles that are pitch and roll stable. Furthermore, accurately

knowing the Earth’s local magnetic field is necessary for improved performance, which

magnetic field models can calculate (NOAA, 2021), but it can present significant errors

due to unmodeled local perturbations.

Given the availability of inertial sensors with magnetometers as a package, some

approaches have fused accelerometer and magnetometer measurements to estimate the

magnetometer sensor biases, taking advantage of the accelerometer to measure the local

gravity vector (Kok & Schon, 2016; Papafotis & Sotiriadis, 2019; Ammann, Derksen,

& Heck, 2015). However, these methods are affected by errors in the calibration caused

by translational accelerations of the system. Troni and Whitcomb (Troni & Whitcomb,

2020) proposed a novel method using angular velocity measurements, which assumes that

the angular velocity sensor is already bias-compensated, to estimate the magnetometer’s

hard-iron. This method was later extended by Spielvogel and Whitcomb (A. R. Spielvo-

gel & Whitcomb, 2018) to include the estimation of gyroscope and accelerometer biases.

However, neither of these methods addresses soft-iron magnetometer calibration.

The previously discussed methods are limited to batch calibrations, where all the mea-

surements must be collected beforehand. However, it is desirable to perform calibration

in the field when pre-calibration is not possible, for instance, due to changes in the vehi-

cle’s configuration deployed in highly disturbed environments. Crassidis et al. (Crassidis,

Lai, & Harman, 2005) presented an extension to the TWOSTEP method that incorpo-

rates an Extended Kalman Filter (EKF) and an Unscented Kalman Filter (UKF). Later,

Ma and Jing (Ma & Jiang, 2005), and Soken and Sakai (Soken & Sakai, 2019) proposed

alternative approaches for the UKF method, while Guo et al. (Guo, Qiu, Yang, & Ren,

2008) presented an alternative EKF method. Additionally, Han et al. (Han, Han, Wang,

& Xu, 2017) and Spielvogel et al. (A. Spielvogel, Shah, & Whitcomb, 2022) proposed

5



a gyroscope-aided EKF, with the latter also incorporating gyroscope biases in the esti-

mation. However, these approaches demand substantial angular motion for accurate cal-

ibration and may experience difficulties in accurately estimating the actual values if the

angular motion is insufficient.

Previous studies have highlighted that existing methods for calibrating magnetometer

and gyroscope biases are limited by at least one of the following: (i) the requirement

for a broad range of movements, which may not be attainable in many vehicles, (ii) the

need for accurate knowledge of the local Earth’s magnetic field, or (iii) the inability to

determine the magnetometer’s soft-iron error. This thesis introduces a novel approach,

called Magnetometer and Gyroscope Iterative Calibration (MAGICAL), which overcomes

these limitations and proposes four methods based on this approach: two based on iterative

least squares and two based on factor graphs. The MAGICAL approach offers several

advantages, including (i) fewer restrictions on angular movement requirements, (ii) no

need for information about the local magnetic field or system’s attitude, (iii) a complete

calibration for both magnetometer and gyroscope and (iv) integration into factor graph

algorithms for Smoothing and Mapping (SAM) frameworks with tools such as GTSAM or

iSAM (BORG Lab, 2023) for problems such as Simultaneous Localization and Mapping

(SLAM).

1.2. Thesis Outline

The thesis is structured as follows: Chapter 2 briefly overviews the required mathe-

matical background and the benchmark methods used in this thesis. Chapter 3 details the

sensor model, system model, and the proposed MAGICAL methods. Chapter 4 describes

the evaluation methodology of MAGICAL. Chapter 5 reports on the numerical simulation

evaluation of the MAGICAL approach, while chapter 6 reports on the field experimental

evaluation of MAGICAL in a full-scale ROV field survey in Monterey Bay, California,

USA. Chapter 7 summarizes and concludes the thesis.
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2. BACKGROUND

This chapter aims to provide readers with the necessary mathematical and method-

ological foundations to understand the research presented in subsequent chapters. The

first section offers the required mathematical resources for upcoming chapters, while the

second section outlines benchmark methods used to evaluate the proposed MAGICAL

method. Overall, this chapter provides the essential context to fully comprehend the the-

sis’s contributions.

2.1. Mathematical Background

2.1.1. Rotation Matrix

The special orthogonal group or also known as the group of rotation matrices, SO(3),

is the set of all 3 × 3 real matrices R describing the orientation of a frame V fixe to the

vehicle with respect to the inertial world W, that satisfy

SO(3) = {R : R ∈ R3×3, RTR = I, det(R) = 1}.

2.1.2. Kronecker Product

The Kronecker product, also known as tensor product or direct product, of the matrix

A ∈ Mp×q with the matrix B ∈ Mr×s is defined as an p × q block matrix whose (i, j)

block is the r × s matrix aijB

A⊗B =


a11B · · · a1qB

...
...

ap1B · · · apqB

 .

7



2.1.3. Operators

2.1.3.1. Skew-Symmetric

We denote [ · ]× : R3 → R3×3 as the usual skew-symmetric operator, which maps an

angular rates vector w ∈ R3 : w = [wx wy wz]
T into a 3× 3 matrix

[w]x =


0 −wz wy

wz 0 −wx

−wy wx 0

 .

2.1.3.2. vec-operator

For any matrix A ∈Mm×n the vec-operator is defined as

vec(A) = (a11, · · · , am1, a12, · · · , am2, a1n, · · · , amn)T ,

i.e., the entries of A are stacked columnwise, forming a vector of length m× n.

2.2. Attitude Calculation

The system coordinate frames are defined so that the x axis points forward, the y axis

points right, and the z axis points down. Based on this coordinate frame, the instantaneous

estimated roll φ̂ and pitch θ̂ (depicted in side view Fig. 2.1) angles are given by (Troni,

2013)

φ̂ = atan2(−ay,−az), (2.1a)

θ̂ = atan2(ax,
√
a2
y + a2

z), (2.1b)

8



where ax, ay and az are the x, y and z, respectively, accelerometer measurements compo-

nents. The measured magnetic field in the instrument frame, im ∈ R3, can be transformed

to the local frame by the relation lm = l
iR(t)im, where l

iR(t) ∈ R3×3 is a rotation matrix

using pitch and roll estimates. Then the instantaneous estimated heading ψ̂ (depicted in

upper view Fig. 2.1) can be computed as (Troni, 2013)

ψ̂ = atan2(−lmy,
lmx)− ψ0, (2.2)

where ψ0 is the known local magnetic field variation and lmx, lmy and lmz are the x, y,

and z, respectively, local frame magnetometer measurements components.

~g

x

z

θ

Side View

~m

x

y

ψ

Upper View

Figure 2.1. Diagram illustrating the attitude of an underwater vehicle from both a side and
top view. The side view displays the system’s pitch, while the top view shows the system’s
heading.

2.3. Doppler Dead Reckoning Navigation

Doppler Velocity Loggers (DVLs) are commonly used on underwater vehicles to mea-

sure three-axis linear velocity in the sensor frame, provided with respect to the seafloor

when the DVL has a bottom lock. Based on the attitude of the system and the mounting

offset of the sensor with respect to the vehicle, the velocity measurements can be trans-

formed into the world frame by (Troni, 2013)
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wv(t) = w
vR(t) v

dR
dv(t), (2.3)

where v
dR is the constant rotation matrix from the instrument coordinate frame to the ve-

hicle coordinate frame, w
vR(t) is the rotation matrix from the vehicle coordinate frame to

the inertial world coordinate frame, computed with the pitch, roll, and heading, dv(t) is

the vehicle’s velocity in the DVL’s coordinate frame, and wv(t) is the world frame vehicle

velocity. This velocity can later be integrated to provide the dead reckoning position

wp(t) = wp(t0) +

∫ t

t0

v(τ)dτ. (2.4)

2.4. Factor Graphs

Factor graphs are graphical representations of probabilistic or graphical models that

consist of nodes representing unknown random variables (xi ∈ X ) in the model and edges

representing the dependencies or relationships between these variables. The edges are as-

sociated with factors (fi ∈ F), which are probabilistic constraints derived from measure-

ments, prior knowledge, or relationships between variables. Factors can be categorized as

unary factors when connecting to a single node or binary factors if they connect two or

more nodes (Dellaert, 2012).

As a demonstrative example, let us consider the simple factor graph in Fig. 2.2, which

can model the state of a system. This factor graph has variables x1, x2, and x3, which

represent the system’s state over time and are rendered in the figure as circle nodes. In

yellow, we have one unary factor on the first state x1 that encodes our prior knowledge

about x1, while in red, we also have unary factors that represent the belief about the state

of the system given an external measurement, e.g., if the state encodes the position of the

system, this factor can represent a GPS measurement. Finally, in green, we have binary

factors that encode the relationship between successive states, e.g., the relative rotation in

the plane computed by the change in the heading.
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X0 X1 X2

Binary Factor Edge

Unary Factor Edge

Figure 2.2. Factor graph example.

The factor graph is a concise and intuitive way of representing a model that is well-

suited for performing various types of probabilistic inference tasks, such as bias estima-

tion given a set of measurements for sensor calibration. Compared to traditional filtering

methods, factor graphs have been shown to be better equipped to handle nonlinear process

and measurement models, with a significant advantage in processing time for large-scale

problems (Dellaert & Kaess, 2006; Dai, Liu, Hao, Ren, & Yang, 2022).

As a bipartite graph, the value of the factor will be modeled as (2.5), which encodes

the connectivity of a factor graph for each factor fi connected to a subset of variables Xi.

f(X0, · · ·Xn) =
∏

fi(Xi) (2.5)

Given the random set of variables X and a set of measurements Z , we can define a

factor graph as a Gaussian probabilistic distribution that represents the posterior density

P (Xi|Zi) for a subset of variables Xi and measurements Zi. Unary factors can be repre-

sented as measurement likelihood with a Gaussian noise model (Dellaert & Kaess, 2006),

which is only evaluated as a function of q since the measurement m is considered known

L(x;m) = exp

{
−1

2
||h(x)−m||2Σ

}
. (2.6)

Where m is the measurement, x is the unknown variable, h(x) is a nonlinear mea-

surement model, || · || is the Mahalanobis distance, and Σ is the noise covariance matrix.
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Based on the unary factor and a prior belief over the unknown variable P (x0), we can

rewrite the joint probability model of the factor graph as follows.

P (X,Z) = P (x0)
N∏
i=1

P (zi|xi) = P (x0)
N∏
i=1

L(xi, zi) (2.7)

To find the optimal set of parameters X ∗, we aim to obtain the maximum a posteriori

(MAP) estimate by maximizing the joint probability P (X,Z) (2.7), which leads us to a

nonlinear least squares problem (2.8). Using the factor graph structure and sparse connec-

tions in this estimation process reduces the computational complexity (Dellaert & Kaess,

2006; Dellaert, 2012).

X ∗ , argmax
x

P (X|Z) = argmin
x
−logP (X ,Z) (2.8)

2.4.1. Computational Implementation

The factor graph concept can be implemented in Python programs using the wrapper

available from the C++ GTSAM/iSAM library1. This section covers the basic concepts

for constructing and optimizing factor graphs, providing a foundation for understanding

the different pseudocode algorithms used to explain the implemented methods.

In GTSAM, a factor graph is just a specification of the probability density P (X|Z).

The corresponding FactorGraph class and its derived classes, such as NonLinearFactor-

Graph, do not contain ”solutions”. Instead, a separate type Values is used to specify spe-

cific values for the different states of the system (xi), which can then be used to evaluate

the probability, or, more commonly, the error, associated with particular values. The Val-

ues class holds values in different moments in a defined key-value pair structure, and these

values must be initialized with the initial guess for each state component.

1The GTSAM source code is available through https://github.com/borglab/gtsam/blob/develop/gtsam.
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Once the factor graph object has been created, we can add the different model factors.

For unary factors, GTSAM requires as arguments the keys of the state values affected by

the factor, the measurement model to compute the factor’s residual, and the noise model,

which can be defined as a diagonal matrix that gives the diagonal values of the covariance

matrix.

The optimization of the factor graph can be computed with the factor graph with all

the measurements included (GTSAM), or it can be optimized incrementally (iSAM), com-

puting the optimal values every predefined amount of added factors. The optimization can

be performed using different optimization options, such as Gauss-Newton, Levenberg-

Marquardt, Dogleg, among others.

2.5. Methods

This section presents the methods that will be used as benchmarks for evaluating the

proposed MAGICAL algorithm in Chapters 5 and 6.

2.5.1. TWOSTEP

Alonso and Shuster presented the widely-cited TWOSTEP method for estimating a

magnetometer’s bias (Alonso & Shuster, 2002b), which they later extended to estimate the

scale and non-orthogonality factors as well (Alonso & Shuster, 2002a) using an iterative

least squares minimization. The TWOSTEP algorithm is an improvement and extension

of Gambhir’s centering algorithm (Gambhir, 1975), which did not properly account for

the correlations introduced by the centering process or attempt to correct for the poten-

tially significant amount of data discarded during the centering process. The TWOSTEP

algorithm overcomes these drawbacks.

The first step of this method proposes an optimization problem that minimizes the

negative-log-likelihood of a cost function derived from the magnetometer’s model through

the derived scalar measurements and scalar measurement noise, defined as an alternative
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to avoid the use of the unknown attitude of the system. However, the minimization of this

model is complicated by the fact that the negative-log-likelihood function is quartic in the

magnetometer bias and, therefore, admits multiple minima and maxima, which does not

guarantee convergence of the method when initialized in the trivial solution mb = 0 and

A = I3. Therefore, any infinite process must start with a reasonable estimate of the bias

that the centering approximation provides in a closed-form solution. It is worth mentioning

that the centered estimate itself provides a consistent estimate of the magnetometer biases,

which will provide adequate accuracy in most cases.

The second step consists of using the centered estimate as an initial value and com-

puting the corrected estimate by applying an iterative optimization based on the Gauss-

Newton method to the full negative-log-likelihood function. For further details of this

method, refer to the section ”Estimation of the Magnetometer Bias, Scale Factors, and

Non-orthogonality Corrections” in the original publication (Alonso & Shuster, 2002a).

This method was implemented using Python 3.8, based on (Dinale, 2013), which pro-

vides an excellent overview of the TWOSTEP method. Appendix C.1 of (Dinale, 2013)

provides a reference Matlab implementation of the TWOSTEP method.

Algorithm 1 TWOSTEP Implementation
B← magnetometer measurements

H← local magnetic field

Σ← noise covariance

First Step

zk ← SCALAR MEASUREMENTS(B, H)

µk ← NOISE MEAN(Σ)

[σ2
k, σ̄2]← NOISE COVARIANCE(Σ)

Lk ← MODEL PARAMETRIZATION(B) . (Alonso & Shuster, 2002a, eq. 51)
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Algorithm 1 TWOSTEP Implementation (continued)

[µ̄, µ̃k]← CENTER DATA(µk, σ
2
k, σ̄

2)

[z̄, z̃k]← CENTER DATA(zk, σ2
k, σ̄

2)

[L̄, L̃k]← CENTER DATA(Lk, σ
2
k, σ̄

2)

θ̃0← CENTERED ESTIMATE(L̃k, µ̃k, z̃k, σ
2
k)

Second Step

θ← θ0 . Initial state for iterative step

while error > stop tol AND n iter > n max do

θ← GAUSS NEWTON OPTIMIZATION(quadratic model, θ)

end while

2.5.2. Ellipsoid Fit

The most widely used calibration method in commercial AHRS is the Ellipsoid Fit.

This method can estimate hard-iron and soft-iron values based on the geometric model of

an ellipsoid and magnetometer measurements. Since an ellipsoid is a type of concoid, its

equation can be expressed as a general equation of a concoid in 3D space (Fang et al.,

2011, eq. 6)

ax2 + by2 + cz2 + 2dxy + 2exz + 2fyz + 2gx+ 2hy + 2iz + j = 0. (2.9)

Moreover, we can add the constraint a+ b+ c+ 3 = 0, which removes one parameter

from the computations. If we apply the change of variable

a = α + β − 1, b = α− 2β − 1, c = β − 2α− 1, (2.10)

we can convert the general equation into a linear least squares model, which can be solved

in closed form:

DTDX = DT (x2 + y2 + z2), (2.11)
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whereD =
[
x2 + y2 − 2z2 x2 + z2 − 2y2 2xy 2xz 2yz 2x 2y 2z 1

]
is formed

with the magnetometer measurements and X =
[
α β d e f g h i j

]T
. As the

undistorted magnetic field measurements belong to the surface of a sphere, based on the

computed parameters, we can rewrite 2.9 as


a d e g

d b f h

e f c i

g h i j




x

y

z

1

 =


0

0

0

0

⇔

ax+ dy + ez

dx+ by + fz

ex+ fy + cz

gx+ hy + iz

 =


−g

−h

−i

−j

 . (2.12)

From Equation 2.12, we can compute the first magnetometer calibration parameter,

which is the bias or center, by solving the linear system

mb = −


a d e

d b f

e f c


−1 

g

h

i

 , (2.13)

which is later used to form a transformation matrix with an identity rotation matrix. This

will translate the ellipsoid to the center and, finally, from

R =


1 0 0 mbx

0 1 0 mby

0 0 1 mbz

0 0 0 1




a d e g

d b f h

e f c i

g h i j




1 0 0 mbx

0 1 0 mby

0 0 1 mbz

0 0 0 1



T

=

R00 R01

R10 R11

 , (2.14)

we can compute the soft-iron as A = −R00/R11, where R00 ∈ R3×3 and R11 ∈ R. This

method was implemented using Python 3.8, based on the implementation proposed by

Bazhin et al. (Bazhin, Vrba, & Zogopoulos-Papaliakos, 2022).
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Algorithm 2 Ellipsoid Fit Implementation

[x, y, z]← magnetometer measurements

D← [x2 + y2 − 2z2, x2 + z2 − 2y2, 2xy, 2xz, 2yz, 2x, 2y, 2z, 1]

General Equation Parameters

[α, β, d, e, f, g, h, i, j]← inv(DTD).dot(DT (x2 + y2 + c2))

a← α + β − 1

b← α− 2β − 1

c← β − 2α− 1

J ← [[a, d, e, g], [d, b, f, h], [e, f, c, i], [g, h, i, j]]

Calibration Parameters

hard iron← -inv([[a, d, e], [d, b, f ], [e, f, c]]).dot([[j], [h], [i]])

T ← identity(4)

T [: 3, 3]← hard iron

R← T.dot(J).dot(T T )

soft iron← - R[: 3, : 3] / R[3, 3]

2.5.3. GTSAM MagFactor3

The GTSAM MagFactor32 is a pose graph factor that calibrates the local Earth mag-

netic field and magnetometer bias. The original C++ implementation uses the idea of two

unknowns: a scale factor (α) that multiplies the local magnetic field (nM ) and a magne-

tometer bias (b) that is added to the multiplication. The measurement is then composed of

the following equation:

mm(t) = α · bRw(t) · nM + b. (2.15)

2The GTSAM MagFactor source code is available through https://github.com/borglab/gtsam/blob/develop/
gtsam/navigation/MagFactor.h.
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As we can see from Equation (2.15), the drawbacks of this approach do not allow us to

compute non-orthogonality. Instead, it assumes that the measured magnetic field belongs

to a sphere and requires the vehicle’s attitude, which is also affected by the magnetometer

biases.

As part of the implementation, it is required to compute the Jacobian of the model,

which is as follows:

∂mm(t)

α
= bRw(t) · nM

∂mm(t)

b
= I3. (2.16)

This method was implemented using Python 3.8, based on the C++ code implemen-

tation available through the GTSAM MagFactor source code3, using the Python wrapper

that provides the GTSAM module for the factor graph construction.

Algorithm 3 MagFactor3 Implementation
Initialize Factor Graph

graph← NONLINEARFACTORGRAPH( )

noise← NOISEMODEL(σxx, σyy, σzz)

keys← [(α(0), 0.0), (b(0), [0.0, 0.0, 0.0])] . Initial guess for the scale and bias

values← VALUES(keys)

function RESIDUAL(α, b, mm, nM, bRw)

local magfield← bRw.rotate(nM)

h x← a * local magfield + b

error← h x - magfield

jacobian← [bRw.rotate(nM), identity(3)]

return [error, jacobian]

end function

3https://github.com/borglab/gtsam/blob/develop/gtsam/navigation/MagFactor.h
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Algorithm 4 MagFactor3 Implementation (continued)
Process Measurements

for (magnetometer measurement, attitude) do

factor← FACTOR(noise, values, RESIDUAL(α, b, mm, nM, bRw))

graph.add factor( )

if optimization window then

values← graph.optimize( )

end if

end for
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3. PROPOSED CALIBRATION APPROACH

In this section, we report four methods based on the novel MAGICAL method to

estimate the complete calibration of a three-axis magnetometer, i.e., hard-iron and soft-

iron, and a three-axis gyroscope using magnetometer and angular rate measurements in

the instrument frame, i.e., the attitude of the instrument is not required.

Ground Truth

MAGICAL

Raw~m

x

y

ψ

Top View

Figure 3.1. Diagram illustrating an underwater vehicle’s dead reckoning position using
different magnetic field sources for the heading estimation with the corresponding trajec-
tories represented with dashed lines.

3.1. Sensor Error Model

As described in chapter 1, in operational conditions, magnetometers are subject to

biases known as hard-iron and soft-iron effects, which can cause inaccuracies in their

measurements. We assume these biases are static or vary slowly over time and hence can

be treated as constants. The magnetometer model is then given by

mm(t) = A(mt(t) + mb), (3.1)

where mm(t) ∈ R3 is the noise-free magnetic field measurement in the sensor’s frame,

mt(t) ∈ R3 is the noise-free magnetic field real value in the sensor’s frame, A ∈ R3×3 is
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the soft-iron, represented by a constant fully populated positive definite symmetric (PDS)

matrix, and mb ∈ R3 is a constant pseudo-hard-iron, that once scaled by A will give us

the magnetometer’s hard-iron.

In contrast, gyroscopes are affected by the constant sensor bias and can be represented

as

wm(t) = wt(t) + wb, (3.2)

wherewm(t) ∈ R3 is the noise-free gyroscope measurement in the sensor’s frame, wt(t) ∈ R3

is the noise-free gyroscope real value in the sensor’s frame, and wb ∈ R3 is the constant

gyroscope bias.

3.2. System Model

Like other multi-axis field sensors, a magnetometer measures the Earth’s local mag-

netic field in instrument coordinates, which can be considered constant and fixed with

respect to the world frame of reference. From (3.1), we can clear the true magnetic field

(mt(t)) and convert it to world coordinates given a rotation matrix R. Then, we can dif-

ferentiate the equation with respect to time, removing the local magnetic field from the

system’s model, which yields to

Ṙ(A−1mm(t)−mb) +RA−1ṁm(t) = 0. (3.3)

Using the standard equation Ṙ(t) = R(t) [w(t)]× (Lynch & Park, 2017), and also con-

sidering the gyroscope bias, for a more comprehensive AHRS calibration that considers

both magnetometer and gyroscope calibrations, we obtain a nonlinear system model where

the instrument attitude R(t) does not appear.
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[wm(t)−wb]× (A−1mm(t)−mb) + A−1ṁm(t) = 0 (3.4)

From (3.4), we wish to estimate the hard-iron (mb), soft-iron (A), and gyroscope bias

(wb) from the gyroscope (wm(t)) and magnetometer (mm(t)) measurements, either for

the full magnetometer and gyroscope calibration or if we assume that the gyroscope is

already bias-compensated, we can write the system model as a linear system over the

magnetometer calibration parameters

(mm(t)T ⊗ [wm(t)] + ṁm(t)T ⊗ I3) · vec(A−1)− [wm(t)] ·mb = 0. (3.5)

To solve the system model, the proposed solutions include four methods based on two

approaches to solving the nonlinear model: (i) a least squares-based approach and (ii) a

pose graph-based approach.

3.3. Iterative Least-Squares Approach

A first approach to compute the calibration parameters is to solve (3.4) using least

squares, which, as the model is nonlinear and therefore can not be solved in closed form,

uses an iterative approach. The cost function for the least squares minimization problem

is defined based on (3.4), or alternatively (3.5), as shown in (3.6). However, the cost func-

tion requires the derivative of magnetic field measurements (ṁi), which are not directly

available from magnetometers and require numerical differentiation, leading to potential

noise in the results.

SSR(A,mb, wb) =
n∑

i=0

|| [wi −wb]× (A−1mi −mb) + A−1ṁi||2 (3.6)
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To solve (3.6), we define the vector of parameters

~a = (A00 A01 A02 A11 A12 A22)T , (3.7a)

x = (a mb wb)
T , (3.7b)

where a is the vector of the unique six upper triangular terms of the soft-iron matrix, A.

The solution to these nonlinear least squares problems is typically found through trust-

region methods (Nocedal & Wright, 2006; Rosen, Kaess, & Leonard, 2014), which restrict

the update step within a defined trust region to ensure local linearity of the cost function.

Levenberg-Marquardt (Nocedal & Wright, 2006) is a widely used approach, but for bound-

constrained minimization problems, the trust-region reflective policy (Branch, Coleman,

& Li, 1999) has been shown to be highly reliable.

To maintain the method’s scale-invariant property post-optimization, we assume the

initial magnetic field lies on a unitary sphere’s boundary. A constraint is imposed to en-

sure the volume of the resulting ellipsoid, due to soft-iron and hard-iron effects, remains

constant. It can be demonstrated (demonstration in Appendix A.1) that this constraint is

satisfied by scaling the soft-iron matrix by (λ0λ1λ2)−1/3, where λ0, λ1, λ2 are the eigen-

values of the soft-iron matrix.

This method was implemented using Python 3.8, using the structure outlined in the

algorithm 5.

Algorithm 5 MAGICAL Iterative Least Squares Implementation
function COST FUNCTION(m, ṁ, w, a, mb, wb)

SI← [[a0, a1, a2], [a1, a3, a4], [a2, a4, a5]]

[eigval 0, eigval 1, eigval 2]← EIGVALS(SI)

SI scaled← SI * ((eigval 0 * eigval 1 * eigval 2) ** (−1/3)

residual error← 0.0

23



Algorithm 5 MAGICAL Iterative Least Squares Implementation (Continued)
for mi, ṁi, wi do

sensor model← || [wi − wb]× (SIscaled
−1mi −mb) + SIscaled

−1ṁi||2

residual error += sensor model

end for

return residual error

end function

SI← [[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]]

HI← [0.0, 0.0, 0.0]

Wb← [0.0, 0.0, 0.0]

while residual error > stop tolerance do

SI, HI, Wb, residual error← OPTIMIZE(m, ṁ, w, SI, HI, Wb)

end while

3.4. Factor Graph Approach

The second method for calculating the calibration parameters involves solving (3.4)

by modeling the system as a factor graph. As explained in chapter 2.4, the optimization

problem can be represented by a single variable node with 2mf unary factors. mf factors

represent the residual error of each measurement, while the other mf factors relate to the

constraint of a unitary norm over the unique upper triangular terms of the soft-iron matrix

to prevent the algorithm from converging to the trivial solution x = 0.

To reduce the computational load of the graph, we define mf as the number of mea-

surements, n, divided by the averaging window’s length (θ). By averaging θ measurements

before incorporating them into the graph, we can decrease the number of factors and effec-

tively smooth the raw measurements while filtering out high-frequency noise in the signal,

preserving the underlying trend. To ensure real-time operation during long-duration tasks,
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the averaging window’s length is set relative to the sensor’s frequency, which allows the

factor graph to manage the same period, irrespective of the sensor’s frequency.

 ~amb

wb

 LR0

LN0

LR1
LN1

LRmf

LNmf

LNi

LRi

Figure 3.2. A factor graph representation, depicting the residual factor, LRi, and the soft-
iron norm factor, LNi.

The decision to use a single node instead of one node for each average set, i.e., mf

nodes, is based on the assumption that the calibration parameters remain constant. If mul-

tiple nodes were used, a binary factor would be necessary between each state, i.e., mf − 1

in total, to ensure equality, but this may not always be feasible due to the probabilistic

nature of factor graphs. Modeling the system as a single node ensures one set of calibra-

tion values and spares the use of the mf − 1 constraints. It is worth noting that the same

factors introduced in this thesis, namely (3.8) and (3.10), can be added to different value

nodes in the graph to enable biases to vary over time and be integrated with SLAM graphs.

However, this integration is beyond the scope of this thesis.

The factor graph can be constructed in two ways, for batch or real-time solutions. The

first method involves calculating the calibration as a post-processing step, where all n

measurements are first collected, and the optimization process is then carried out with all

2mf factors. The second approach involves constructing the graph incrementally, where
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factors are added to the graph as they become available, and the optimization is performed

after a specified number of measurements have been received.

As per (3.4), a unary factor can be defined for the residual of each magnetometer-

gyroscope measurement pair. The equation for this factor is shown in (3.8), where hr(x)

represents the residual model (3.4). The model requires the derivative of magnetic field

measurements (ṁi), which are not directly available from magnetometers and need nu-

merical differentiation. This differentiation process may lead to potential noise in the

results.

LR(x; (zmag, zgyro) = exp

{
−1

2
||hr(x)||2Σ

}
(3.8)

We need to compute the algebraic Jacobian of the residual model to use the unary fac-

tor defined in (3.8). This can be achieved using the Kronecker product and vec-operator,

as shown in (3.9). For conciseness, we do not expand these equations further in this pub-

lication. In (3.9), the matrix C represents the inverse of the soft-iron matrix, the vector c

contains the upper triangular terms of matrixC, and i denotes the ith sample. Note that the

magnetic field differentiation is not directly available and must be computed numerically.

hri(x)

c
= (mi

T ⊗ [wi −wb] + ṁT
i ⊗ I3) · ∂vec(C)

∂c
(3.9a)

hri(x)

mb

= [wb −wi] ·
∂mb

∂mb

(3.9b)

hri(x)

wb

= −∂ (mi ⊗ [wb])

∂wb

· vec(C) +
∂[wb]

∂wb

·mb (3.9c)

The soft-iron norm factors (LN ) are defined as the error given by the difference be-

tween the Frobenius norm of the unique soft-iron’s upper triangular terms and 1,N(x) = || c ||F − 1.

The factor is given by
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LN(x) = exp

{
−1

2
||N(x)||2Σ

}
. (3.10)

The Jacobian of this factor can be found using

∂N(x)

∂c
=

(c)T

|| c ||F
. (3.11)

As Section II.D mentioned, constructing the graph requires solving a nonlinear least

squares problem with sparsity properties. To address this issue, Rosen et al. (Rosen et al.,

2014) proposed RISE, an incremental trust-region method for robust online sparse least-

squares estimation. Compared to current state-of-the-art sequential sparse least-squares

solvers, RISE offers improved robustness against nonlinearity in the objective function

and numerical ill-conditioning and takes advantage of recent advancements in incremental

optimization for fast online computation.

This method was implemented using Python 3.8, using the structure outlined in the

algorithm 6.

Algorithm 6 MAGICAL Factor Graph Implementation
function MRESIDUAL(c, mb, wb, m, ṁ, w) . From 3.8

C← [[c0, c1, c2], [c1, c3, c4], [c2, c4, c5]]

jacobian← JACOBIAN MRESIDUAL(c, mb, wb, m, ṁ, w)

error← [wm − wb]× (Cmm −mb) + Cṁm

return [error, jacobian]

end function

function NRESIDUAL(c) . From 3.10

jacobian← JACOBIAN NRESIDUAL(c)

error← || c ||F − 1

return [error, jacobian]

end function
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Algorithm 6 MAGICAL Factor Graph Implementation (Continued)
function JACOBIAN MRESIDUAL(c, mb, wb, m, ṁ, w) . From 3.9

J00← [[ṁx], [mx ∗ (−wbz + wz)], [mx ∗ (wby − wy)]]

J01← [[mx∗(wbz−wz)+ṁy], [my∗(wz−wbz)+ṁx], [mx∗(wx−wbx)+my∗(wby−wy)]]

J02← [[mx∗(wy−wby)+ṁz], [mx∗(wbx−wx)+mz∗(wz−wbz)], [mz∗(wby−wy)+ṁx]]

J03← [[my ∗ (wbz − wz)], [ṁy], [my ∗ (wx − wbx)]]

J04← [[my∗(wy−wby)+mz∗(wbz−wz)], [my∗(wbx−wx)+ṁz], [mz∗(wx−wbx)+ṁy]]

J05← [[mz ∗ (wy − wby)], [mz ∗ (wbx − wx)], [ṁz]]

J0← [J00, J01, J02, J03, J04, J05]

J10← [[0], [wbz − wz], [wy − wby]]

J11← [[wz − wbz], [0], [wbx − wx]]

J12← [[wby − wy], [wx − wbx], [0]]

J1← [J10, J11, J12]

J20← [[0], [−mbz +c2∗mx+c4∗my +c5∗mz], [mby−c1∗mx−c3∗my−c4∗my]]

J21← [[mbz−c2∗mx−c4∗my−c5∗mz], [0], [−mbx+c0∗mx+c1∗my +c2∗mz]]

J22← [[−mby +c1∗mx+c3∗my +c4∗mz], [mbx−c0∗mx−c1∗my−c2∗mz], [0]]

J2← [J20, J21, J22]

return [J0, J1, J2]

end function

function JACOBIAN NRESIDUAL(c) . From 3.11

α← || c ||F
J← [c0/α, c1/α, c2/α, c3/α, c4/α, c5/α]

return J

end function
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Algorithm 6 MAGICAL Factor Graph Implementation (Continued)

Initialize Factor Graph

graph← NONLINEARFACTORGRAPH( )

mnoise← NOISEMODEL(σm
xx, σ

m
yy, σ

m
zz)

nnoise← NOISEMODEL(σn
xx, σ

n
yy, σ

n
zz)

keys← [(c(0), [0.0, 0.0, 0.0, 0.0, 0.0, 0.0]), (b(0), [0.0, 0.0, 0.0]), (w(0), [0.0, 0.0, 0.0])]

v← VALUES(keys)

[θ,Γ]← average window, optimization window

[idx← 0

[sum m, sum mdot, sum w]← 0.0, 0.0, 0.0 state

while mi, ṁi, wi do

if idx % θ ! = 0.0 then

[sum m, sum mdot, sum w]← sum m + mi, sum mdot + ṁi, sum w + wi

else

[ṁi,mi, wi]← sum m / θ, sum mdot / θ, sum w / θ

mf← FACTOR(mnoise, v, MRESIDUAL(c, mb, wb, m, ṁ, w))

nf← FACTOR(nnoise, v, NRESIDUAL(c))

graph.add factor(mf, nf)

if online mode AND idx % Γ ! = 0.0 then

values← graph.optimize( )

end if

end if

end while

if NOT online mode then

values← graph.optimize( )

end if
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4. MAGICAL PERFORMANCE EVALUATION

This chapter introduces the calibration algorithm and performance metrics used for

evaluation in this thesis. These algorithms and metrics ensure data accuracy and enable

quantitative comparisons of research outcomes.

4.1. Calibration Algorithms

We compared the performance of seven methods for three-axis magnetometer calibra-

tion and, optionally, for three-axis gyroscope calibration. These methods can be divided

into batch and real-time solutions, with the proposed methods highlighted in bold. The

batch methods are as follows:

(i) MAGICAL-LS: The calibration parameters are estimated using the least-squares

method approach outlined in section 3.3, assuming that the angular velocity sen-

sor is already bias-compensated. The value of ṁ(t) is numerically computed

through first-order numerical differentiation of m(t).

(ii) MAGICAL-NLS: The calibration parameters are estimated using the least-squares

approach described in section 3.4.

(iii) MAGICAL-BFG: The calibration parameters are estimated using the batch mode

factor graph approach described in section 3.4, where all the factors are added

to the factor graph before optimization.

(iv) TWOSTEP: The calibration parameters are estimated using the widely cited

TWOSTEP method, presented in section 2.5.1.

(v) Ellipsoid Fit: The calibration parameters are estimated using the widely used

Ellipsoid Fit method, presented in section 2.5.2.
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The real-time methods are listed below:

(i) MAGICAL-IFG: The calibration parameters are estimated using the incremen-

tal mode factor graph approach described in section 3.4, where the factors are

added as they are received, and the graph optimization is performed after a pre-

defined number of added factors.

(ii) MagFactor3: The calibration parameters are estimated using the MagFactor3

method, presented in section 2.5.3. Unlike a full soft-iron matrix estimation,

this method only estimates a single scale factor uniform across all three axes, as

well as the hard-iron. The current attitude of the system and the local magnetic

field value must be provided as inputs.

To compare the batch and real-time methods, the calibration parameters estimated us-

ing the real-time methods were based on the average of the last 20% of the estimated

parameters. Because some of these methods have an up-to-scale nature, we will use the

normalized magnetic field for comparison purposes, which will not affect heading compar-

isons since, as seen in 2.2, heading is computed as the division of two magnetic field com-

ponents, and any scale factor will have no effect. It should be noted that the TWOSTEP

and MagFactor3 methods require knowledge of the local magnetic field magnitude, which

was obtained from the World Magnetic Model provided by the National Oceanic and At-

mospheric Administration (NOAA) (NOAA, 2023) for in-field evaluations.

The hyper-parameters for the least squares-based approaches were set empirically for

both numerical and in-field evaluations. The termination criteria for the iterations was set

to 1.0× 10−6 for the relative error tolerance, and the Jacobian was computed numerically.

In the case of the factor graph-based methods, the termination criteria were also set empir-

ically, with both the relative and absolute error tolerances set to 1.0×10−7. A multifrontal

Cholesky factorization was used, as it has been shown to outperform the LDL and QR fac-

torizations (Dellaert & Kaess, 2006). The factor graph optimization was computed using

the RISE method from GTSAM.
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For both least squares-based approaches and factor graph-based approaches, the initial

guess for the calibration parameters were

A0 =


1 0 0

0 1 0

0 0 1

 , mb0 =


0

0

0

 , and wb0 =


0

0

0

 .

4.2. Numerical Simulation Performance Metrics

In Chapter 5, we report the evaluation of these approaches in numerical simulations,

where the true simulated bias values and the true simulated heading values are known

precisely. To compute the estimation error of the biases, we compare the estimated value

(x) to the ground truth value (x∗). For the magnetometer hard-iron and gyroscope bias,

which are both 3-dimensional vectors in R3, we use the Euclidean norm to compute the

vector difference as follows:

|| mb −m∗b || =
√

(mbx −m∗bx)2 + (mby −m∗by)2 + (mbz −m∗bz)2, (4.1)

|| wb − w∗b || =
√

(wbx − w∗bx)2 + (wby − w∗by)2 + (wbz − w∗bz)2. (4.2)

For the magnetometer soft-iron, we use the more general Frobenius norm applicable

to Rm×n matrices, which sums the squared terms of the matrix:

|| A− A∗ ||F =

√√√√ m∑
i=0

n∑
j=0

|aij|2. (4.3)

Using the estimated calibration parameters, we can compute the corrected magnetic

field (mfc) and angular rates (wc). Based on the corrected magnetic field, we can compute

the normalized standard deviation of the magnetic field measurement as follows:
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σmfc =

√√√√ 1

N

N∑
i=1

(
mfci
m̄f c

− 1

)2

, where: m̄f c =
1

N

N∑
i=1

mfci. (4.4)

Here, N is the number of samples, mfci is the corrected magnetic field measurement

for the ith sample, and m̄f c is the mean of the corrected magnetic field measurements.

The standard deviation will later be scaled by the local magnetic field to recover the mG

dimension.

We can also compute the magnetic heading error standard deviation using the corrected

magnetic field using 2.2. This metric will be used for evaluation purposes.

4.3. Experimental Performance Metrics

In Chapter 6, we evaluate these approaches in an oceanographic survey using the Mon-

terey Bay Aquarium Research Institute ROV Doc Ricketts. In this scenario, the true bias

values and true heading are unknown, but we have access to heading measurements from

the Kearfott SeaDevil high-end INS (Kearfott Corporation, 2015), which are considered

as ground truth due to the sensor’s accuracy. To evaluate the performance of the methods

in these circumstances, we can use the same standard deviation of the magnetic heading

error as in the simulated experiments.

Additionally, we can estimate their effects on real-world applications, such as dead

reckoning navigation, by utilizing DVL measurements from the INS and the attitude of

the low-cost IMU, integrating them using 2.4, using the Kearfott SeaDevil (Kearfott Cor-

poration, 2015) as the ground truth, employing the trajectory error in the XY plane as a

metric,

errorxy =
√

(xins − x)2 + (yins − y)2. (4.5)
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5. MAGICAL NUMERICAL SIMULATION EVALUATION

5.1. Simulation Setup

A Monte Carlo numerical simulation was conducted to replicate 10,000 measurements

from a MEMS AHRS during sinusoidal motions of a vehicle. Three simulated datasets

represented varying degrees of angular motion constraint in all degrees of freedom. The

wide angular movement (WAM) dataset (Fig. 5.1a) covered a ±180◦ range in roll, pitch,

and heading. The moderate angular movement (MAM) dataset (Fig. 5.1b) had ±5◦ and

±45◦ ranges for roll and pitch, respectively, but the same heading range as WAM. The

low angular movement (LAM) dataset (Fig. 5.1c) retained the roll range while reducing

the pitch and heading ranges to ±15◦ and ±90◦, respectively. Each experiment lasted 400

seconds, with simulated data generated at a 25 Hz rate and magnetometer measurements

(σmag = 1 mG) and angular rate sensor (σgyro = 5 mrad/s) corrupted by Gaussian noise.

(a) (b) (c)

Figure 5.1. Simulated magnetometer data for three datasets: WAM, MAM, and LAM.
The 3D plots show green dots for magnetometer data, gray spheres for the true magnetic
field, and orange ellipsoids for the distorted magnetic field.

The true magnetic field vector is m0 = [227, 52, 412]T mG, the soft-iron upper tri-

angular terms are given by a = [1.10, 0.10, 0.04, 0.88, 0.02, 1.22]T , the hard-iron bias

is mb = [20, 120, 90]T mG, and the gyroscope bias is wb = [4, −5, 2]T mrad/s. The
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magnetic field used in the TWOSTEP and MagFactor3 methods and the attitude used in

MagFactor3 were 5% higher than the value used to generate the simulated data.

5.2. Simulation Results

The calibration methods presented in Chapter 4 were calibrated on the three datasets

mentioned previously (results summarized in Table 5.1) and later evaluated on a dedicated

unique excited evaluation dataset to avoid overfitting. Results in Table 5.2 and Fig. 5.2

show that the proposed MAGICAL methods consistently outperformed the benchmark

methods. Specifically, in the WAM dataset calibration, while the TWOSTEP method

performed best overall, both MAGICAL-BFG and MAGICAL-IFG demonstrated com-

parable performance in soft-iron estimation, with errors in hard-iron and gyroscope bias

estimation of less than 5 mG and 4 mrad/s, respectively.
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Figure 5.2. Performance comparison of seven calibration methods on three simulated
datasets. The hard-iron error, soft-iron error, and gyroscope bias error are analyzed for
the WAM (blue), MAM (yellow), and LAM (orange) datasets. Red dashed lines indicate
instances where the method failed to estimate the parameters for a particular dataset, and
gray-shaded zones show the raw data value.

However, in the MAM and LAM datasets, TWOSTEP failed to converge, and the

Ellipsoid Fit method exhibited significant worsening in the results, while MagFactor3

showed more robustness but did not compute non-orthogonality or scale factors in the
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three axes. In contrast, the four proposed MAGICAL methods showed overall better per-

formance, except for soft-iron estimation in the least squares methods.

Table 5.1. Estimated magnetometer and gyroscope biases for five batch and two real-
time calibration methods in three simulated datasets over 100 validation simulations. N/A
indicates failure.

WAM for Calibration

a0 a1 a2 a3 a4 a5 mbx mby mbz wbx wby wbz

[mG] [mG] [mG] [mrad/s] [mrad/s] [mrad/s]

Ground Truth 1.100 0.100 0.040 0.880 0.020 1.220 20.000 120.000 90.000 4.000 -5.000 2.000

B
A

T
C

H

MAGICAL-LS 1.024 0.068 0.031 0.874 0.015 1.125 19.101 119.609 89.008 N/A N/A N/A

MAGICAL-NLS 1.024 0.068 0.031 0.875 0.015 1.124 19.873 119.238 88.502 4.083 -5.027 1.935

MAGICAL-BFG 1.043 0.094 0.038 0.835 0.019 1.161 19.450 114.952 88.328 3.963 -4.800 1.812

TWOSTEP 1.045 0.095 0.038 0.836 0.019 1.159 19.944 120.034 90.029 N/A N/A N/A

Ellipsoid Fit 0.981 -0.096 -0.041 1.153 0.133 0.907 19.946 120.013 90.042 N/A N/A N/A

R
E

A
L

T
IM

E MAGICAL-IFG 1.043 0.094 0.038 0.836 0.019 1.161 18.954 115.106 88.004 1.775 -2.136 0.852

MagFactor3 1.000 0.000 0.000 1.000 0.000 1.000 21.733 64.467 63.398 N/A N/A N/A

MAM for Calibration

a0 a1 a2 a3 a4 a5 mbx mby mbz wbx wby wbz

[mG] [mG] [mG] [mrad/s] [mrad/s] [mrad/s]

Ground Truth 1.100 0.100 0.040 0.880 0.020 1.220 20.000 120.000 90.000 4.000 -5.000 2.000

B
A

T
C

H

MAGICAL-LS 1.037 0.040 0.009 0.945 0.004 1.022 36.233 126.694 144.367 N/A N/A N/A

MAGICAL-NLS 1.034 0.039 0.009 0.946 0.004 1.024 37.295 126.736 138.168 3.930 -4.980 1.972

MAGICAL-BFG 1.046 0.094 0.040 0.834 0.018 1.160 16.839 115.233 83.569 3.761 -4.771 1.946

TWOSTEP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ellipsoid Fit 0.976 -0.090 -0.048 1.127 0.149 0.937 19.711 120.385 106.324 N/A N/A N/A

R
E

A
L

T
IM

E MAGICAL-IFG 1.051 0.093 0.039 0.842 0.017 1.143 17.023 114.880 90.611 1.557 -1.967 0.938

MagFactor3 1.000 0.000 0.000 1.000 0.000 1.000 26.068 34.451 105.456 N/A N/A N/A

LAM for Calibration

a0 a1 a2 a3 a4 a5 mbx mby mbz wbx wby wbz

[mG] [mG] [mG] [mrad/s] [mrad/s] [mrad/s]

Ground Truth 1.100 0.100 0.040 0.880 0.020 1.220 20.000 120.000 90.000 4.000 -5.000 2.000

B
A

T
C

H

MAGICAL-LS 1.012 0.007 0.002 0.991 0.000 0.997 70.928 155.958 261.968 N/A N/A N/A

MAGICAL-NLS 1.009 0.007 0.003 0.992 0.000 0.999 72.205 147.713 169.811 4.095 -4.929 2.099

MAGICAL-BFG 1.078 0.086 0.024 0.837 0.012 1.119 12.191 117.941 88.120 3.904 -4.791 2.030

TWOSTEP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ellipsoid Fit 0.744 -0.041 0.232 0.503 0.023 2.762 66.652 133.566 228.005 N/A N/A N/A

R
E

A
L

T
IM

E MAGICAL-IFG 1.104 0.082 0.015 0.898 0.008 1.016 24.034 121.612 163.677 1.594 -1.581 1.216

MagFactor3 1.000 0.000 0.000 1.000 0.000 1.000 -6.282 57.361 130.686 N/A N/A N/A
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Table 5.2. Mean heading RMSE and magnetic field standard deviation metrics for five
batch and two real-time calibration methods in three simulated datasets over 100 validation
simulations. N/A indicates failure. The best two results in each column are bolded

WAM for Calibration MAM for Calibration LAM for Calibration

Mean Heading Magnetic Field Mean Heading Magnetic Field Mean Heading Magnetic Field
RMSE [deg] Std [mG] RMSE [deg] Std [mG] RMSE [deg] Std [mG]

Raw 28.864 60.330 28.864 60.330 28.864 60.330

B
A

T
C

H

MAGICAL-LS 3.703 13.516 5.300 23.997 14.368 61.142
MAGICAL-NLS 3.761 13.680 5.521 24.607 9.320 41.981
MAGICAL-BFG 2.659 9.794 2.735 9.875 3.812 16.016
TWOSTEP 2.518 9.421 N/A N/A N/A N/A
Ellipsoid Fit 18.232 62.522 16.235 60.211 50.842 157.802

R
E

A
L

T
IM

E MAGICAL-IFG 2.654 9.762 2.791 10.371 3.528 17.552
MagFactor3 15.915 45.192 16.917 49.603 14.431 48.784

These results suggest that the MAGICAL methods are more resilient to constrained

angular movements than state-of-the-art methods, particularly in the MAM and LAM

datasets that emulate actual operating conditions. Furthermore, the MAGICAL methods

show consistent performance even under conditions favorable to the benchmark methods,

such as in the WAM dataset. Additionally, the MAGICAL-BFG method demonstrated

greater robustness compared to MAGICAL-IFG, but both performed better than the bench-

mark methods. Furthermore, for the real-time MAGICAL-IFG method, from the 40% of

the data and on, converged to a constant bias estimation. Notably, the performance of the

MAGICAL-LS method indicated that least squares methods could converge even when

the gyroscope bias is not computed.

Regarding processing time, all MAGICAL methods run much faster than in real-

time. The MAGICAL-LS and MAGICAL-NLS methods exhibit a constant processing

time across the four datasets, with an average computation time of around 1.4 seconds

per simulation, each lasting 400 s. Meanwhile, the MAGICAL-IFG method has a com-

putation time of around 0.8 seconds for all datasets, demonstrating the feasibility of the

real-time operation. In contrast, the MAGICAL-BFG method shows a slight increase in

processing time with a decrease in the movement range, rising from around 0.3 seconds to

0.8 seconds due to longer iterations to reach the termination criteria.
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These simulation results support that all proposed MAGICAL methods show compet-

itive or better performance than the benchmark methods, indicating their effectiveness for

post-processing and real-time navigation applications.
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6. MAGICAL FIELD EXPERIMENTAL EVALUATION

6.1. Field Experimental Setup

This chapter evaluates the in-field performance of the proposed and benchmark meth-

ods. The navigation data employed in this study was obtained during a seafloor mapping

survey dive conducted by the Monterey Bay Aquarium Research Institute (MBARI) in

December 2014. The survey was conducted at a depth of 2,800 m in Monterey Bay, using

the Doc Rickets ROV (shown in Fig. 6.1b), which weighs 5,000 kg and is rated to a depth

of 4,000 m and was operated from the R/V Western Flyer (shown in Fig. 6.1a), both owned

and operated by MBARI.

(a) MBARI Western Flyer Research Vessel. Image
source: MBARI.

(b) MBARI Doc Ricketts Remote Oper-
ated Vehicle. Image source: MBARI.

Figure 6.1. Monterey Bay Aquarium Research Institute (MBARI) equipment deployed
during December 2014 Monterey Bay seafloor mapping expedition.

6.1.1. Doc Ricketts Navigation Sensors

The Doc Ricketts ROV is equipped with an extensive suite of sensors, including acous-

tic, physical oceanographic, geophysical, optical, and navigation sensors. For this evalu-

ation, we will focus on the VectorNav VN100 MEMS-based IMU operated at a sampling
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rate of 80 Hz, with a magnetometer noise level of σmag = 1 mG and an angular-rate gy-

roscope noise level of σgyro = 0.5 mrad/s (Vectornav, 2023), and in the Kearfott SeaDevil

high-end Inertial Navigation System (INS) operating at a sampling rate of 25 Hz, which

includes a Doppler Velocity Logger (DVL) and a ring-laser gyro, providing a precision

of 0.05◦ and 0.03◦ in heading and pitch/roll, respectively, with a real-time position accu-

racy of 0.1% of the total distance traveled when the DVL continuously tracks the seafloor

(Kearfott Corporation, 2015). Both sensors’ accuracy and operation rate are summarized

in Table 6.1.

Table 6.1. Doc Ricketts ROV sensors precision and update rate.

Sensor Instrument Variable(s) Accuracy Operation Rate

Kearfott SeaDevil

Heading 0.05o RMS

25 Hz
High-end Pitch/Roll 0.03o RMS

INS Position 0.1% DT
Velocity 0.3 m/s RMS

Low-cost
VectorNav VN100

Heading 2.00o RMS
80 HzAHRS Pitch/Roll 1.00o RMS

6.1.2. Dive Description

Two field experiments were conducted on the same day in the Monterey Bay in Cali-

fornia, USA, where the local magnetic field had a magnitude of 479 mG (NOAA, 2023).

The first experiment, denoted as EXP1 (Fig. 6.2a, Fig. 6.2c), involved a series of 360◦

heading rotations, with the pitch and roll configurations changing to produce 5◦ pitch and

roll movements. The second experiment, denoted as EXP2 (Fig. 6.2b, Fig. 6.2d), con-

sisted of a standard survey of 1395 m length, where the vehicle maintained a stable pitch

and roll, resembling the pattern of ”mowing a lawn” for a standard survey. The calibra-

tion parameters for the magnetometer and gyroscope were estimated using data from both

EXP1 and EXP2 with each method and evaluated with EXP1.
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Figure 6.2. Doc Rickett’s December 2014 Monterey Bay dive.

6.2. Heading Estimation Performance

We used the previously described VectorNav VN100 MEMS-based IMU and Kearfott

SeaDevil high-end INS to evaluate the heading estimation performance, using the latter

as the ground truth for heading comparison. We interpolated the MEMS IMU data to

the INS sampling time to estimate the vehicle’s heading. The heading error, defined as the

standard deviation between the measured heading from the INS and the calculated heading

from the bias-compensated magnetometer data for each evaluated method, was used as the

evaluation metric in order to isolate alignment errors.
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As shown in Fig. 6.3, the proposed MAGICAL methods exhibit outstanding perfor-

mance when calibrated using a standard ROV magnetometer calibration routine (EXP1),

reducing the original heading error from 6.33◦ to less than 1.53◦. The factor graph-based

methods improve in heading error for calibration with EXP2, while the benchmark meth-

ods fail to converge to a solution except for MagFactor3, which is still outperformed by

both proposed factor graph-based methods.

For this particular case, only minimal magnetometer calibration was required, with the

soft-iron value close to the identity and hard-iron values in the order of a few mG. The

gyroscope biases were also found to be in the order of a few mrad/s. While this is an

uncommon scenario, it emphasizes the importance of magnetometer calibration even in

less critical cases.

Furthermore, the results demonstrate the feasibility of both proposed factor graph

methods to improve the calibration for highly constrained implementations, converging

even under challenging scenarios in batch or real-time mode, such as calibration with

RAW MAGICAL-LS MAGICAL-NLS MAGICAL-BFG TWOSTEP Ellipsoid Fit MagFactor3 MAGICAL-IFG

6.21

0.89 0.92
0.57

4.81

1.74

0.57

Batch Real Time

Heading Error [deg]

Figure 6.3. Heading error for calibration parameters estimated with EXP1 and evaluated
with EXP2. Red dashed lines indicate parameter estimation failures.
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Table 6.2. Estimated magnetometer and gyroscope biases for five batch and two real-
time calibration methods in three simulated datasets over 100 validation simulations. N/A
indicates failure.

EXP1 for Calibration

a0 a1 a2 a3 a4 a5 mbx mby mbz wbx wby wbz

[mG] [mG] [mG] [mrad/s] [mrad/s] [mrad/s]

B
A

T
C

H

MAGICAL-LS 0.875 -0.036 0.061 1.038 -0.103 1.116 -30.309 73.232 -83.238 N/A N/A N/A

MAGICAL-NLS 0.875 -0.036 0.061 1.038 -0.104 1.117 -30.421 74.108 -82.123 -0.56 0.581 1.788

MAGICAL-BFG 1.007 0.000 0.011 1.030 0.004 0.964 -7.509 25.211 -0.732 0.175 -0.101 0.490

TWOSTEP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ellipsoid Fit 0.725 -0.006 -0.001 1.861 0.041 0.742 -3.003 14.301 332.575 N/A N/A N/A

R
E

A
L

T
IM

E MAGICAL-IFG 1.013 0.000 0.011 1.035 0.004 0.954 -7.431 25.107 5.238 0.162 -0.103 0.515

MagFactor3 1.000 0.000 0.000 1.000 0.000 1.000 -5.926 19.544 -29.264 N/A N/A N/A

EXP2 for Calibration

a0 a1 a2 a3 a4 a5 mbx mby mbz wbx wby wbz

[mG] [mG] [mG] [mrad/s] [mrad/s] [mrad/s]

B
A

T
C

H

MAGICAL-LS 0.717 -0.078 0.074 1.204 -0.114 1.184 -43.266 126.702 -236.364 N/A N/A N/A

MAGICAL-NLS 0.717 -0.078 0.074 1.204 -0.114 1.184 -43.070 126.849 -236.796 0.284 -0.003 0.948

MAGICAL-BFG 0.973 -0.007 0.029 1.009 -0.040 1.021 -16.870 45.694 -47.413 0.265 -0.070 0.746

TWOSTEP N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A

Ellipsoid Fit 0.725 -0.006 -0.001 1.861 0.041 0.742 -3.003 14.301 332.575 N/A N/A N/A

R
E

A
L

T
IM

E MAGICAL-IFG 0.970 -0.008 0.030 1.006 -0.041 1.028 -17.167 46.534 -51.592 0.271 -0.013 0.729

MagFactor3 1.000 0.000 0.000 1.000 0.000 1.000 2.717 2.464 -21.951 N/A N/A N/A

EXP2 (Fig. 6.4). Additionally, from the 25% of the data and on, MAGICAL-IFG con-

verged to a constant bias estimation. Overall, these findings suggest that the MAGICAL

methods can significantly enhance the accuracy of underwater vehicle navigation.

6.3. Navigation Performance

Accurate sensing and estimation of attitude, including heading, roll, and pitch, is a

critical component of navigation systems for underwater vehicles, especially for vehicles

operating in environments where global positioning system (GPS) signals are unavail-

able, such as underwater navigation. Bottom-lock Doppler sonar navigation is a common

method for high-precision near-bottom underwater vehicle navigation. Doppler sonar nav-

igation typically employs a 3-axis Doppler Velocity Logger (DVL), a precision pressure
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Figure 6.4. Soft-Iron, Hard-Iron, and Gyroscope Bias calibration parameters estimation
convergence using the MAGICAL-IFG method with data from EXP2.
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depth sensor, and a 3-axis attitude sensor, such as AHRS (Whitcomb, Yoerger, & Singh,

1999).

Biases in the AHRS measurements can cause heading errors, which are a critical factor

in accurate position estimation (Troni & Whitcomb, 2012). To address this, we used the

calibration obtained from EXP1, and for each method, we computed the dead reckoning

using the accelerations and corrected magnetic field measurements from the VectorNav

VN100 MEMS IMU to estimate the vehicle’s attitude and the velocity reported by the

Kearfott SeaDevil INS, which served as ground truth for the vehicle’s position, which as

shown in Table 6.1 has an error of 0.1% of the total distance traveled. We measured the

position error as the difference between the estimated and ground truth positions.

0 200 400 600 800 1000 1200 1400
Distance Traveled [m]

10−1

100

101

102

MAGICAL-LS
MAGICAL-NLS

MAGICAL-BFG
MAGICAL-IFG

ELLIPSOID FIT

MAGFACTOR3

RAWPosition Error [m]

RAW MAGICAL-LS MAGICAL-NLS MAGICAL-BFG Ellipsoid Fit MagFactor3 MAGICAL-IFG

138.25 m
(9.91 %)

4.70 m
(0.34 %)

7.53 m
(0.54 %)

2.19 m
(0.16 %)

9.28 m
(0.67 %)

36.97 m
(2.65 %)

2.45 m
(0.18 %)

Batch Real Time

Figure 6.5. Norm of XY position error, with method-wise total error and error relative to
the distance traveled, summarized in the table below.

Fig. 6.5 shows the norm of the XY position error for each calibration method. When

the magnetometer is not calibrated (RAW), the position error after traveling 1,395 me-

ters is 138 meters, which represents a significant 10% error. However, the four proposed
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MAGICAL methods show a significant improvement, with position errors of less than 7.5

meters, representing only 0.54% of the full distance traveled. Of the benchmark meth-

ods, only the Ellipsoid Fit produced comparable results with an error of 0.67%, while the

TWOSTEP method failed to converge.

Furthermore, when we analyze the trajectory output produced by dead reckoning using

each method, we find that navigation becomes unfeasible when the magnetometer is not

calibrated, as shown in Fig. 6.6a. Even small biases in the calibration parameters (see

Table 6.2) can lead to significant divergence in position estimation during straight sections

of the trajectory. Among the benchmark methods, we observe that the MagFactor3 method

shows some improvement in trajectory compared to raw measurements (Fig. 6.6c) but

still exhibits drift that leads to significant divergence from the ground truth trajectory. In

contrast, for the Ellipsoid Fit method (Fig. 6.6b), inaccuracies in calibration are reflected

in trajectory divergence during turns. However, the MAGICAL methods closely follow

the ground truth trajectory, accumulating error only during turns and in a significantly

smaller proportion than the benchmark methods.

The results presented in this section demonstrate that the proposed MAGICAL meth-

ods can significantly improve position estimation accuracy in real-time underwater vehicle

navigation scenarios. In particular, the MAGICAL approach can enhance the accuracy of

low-cost navigation systems and pave the way for more widespread use of underwater

vehicles in oceanographic missions.
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Figure 6.6. Comparison of XY trajectories estimated through dead reckoning using dif-
ferent magnetometer calibration methods. The calibrated trajectories are shown in color,
while dashed lines represent the ground truth trajectory.
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7. CONCLUSIONS

The Magnetometer and Gyroscope Iterative Calibration (MAGICAL) methods pro-

posed in this study have been demonstrated to significantly improve the performance of

Attitude and Heading Reference System (AHRS) sensors in both simulated and in-field

scenarios. Our results indicate that the MAGICAL methods outperform or are comparable

to previously reported methods, such as TWOSTEP and Ellipsoid Fit, which failed to con-

verge in constrained range scenarios, even when accurate knowledge of the local magnetic

field vector was available.

Our numerical simulations revealed that the MAGICAL methods consistently outper-

formed benchmark methods, including the MagFactor3 method, which requires accurate

knowledge of the local magnetic field and system attitude in different ranges of move-

ments. Specifically, MAGICAL methods demonstrated improved robustness in low ranges

of movements, which are common scenarios in oceanographic expeditions. In our in-field

experiments, we observed that the MAGICAL methods significantly reduced heading er-

ror compared to previously reported methods. In particular, the MAGICAL-BFG and

MAGICAL-IFG methods showed promising results, with a strong convergence even in

scenarios where the system is stable in roll/pitch, such as in standard oceanographic sur-

veys. These results were also complemented by the improved navigation performance,

where the MAGICAL methods reduced the underwater vehicle’s dead reckoning position

estimation error from 10% to 0.5% of the distance traveled. Our findings suggest that

MAGICAL can significantly improve the accuracy of low-cost navigation systems and

pave the way for more widespread use of underwater vehicles in oceanographic missions.

In conclusion, our study has demonstrated that the MAGICAL methods provide a

viable and effective approach to calibrating magnetometers and gyroscopes for attitude

estimation. Our findings can benefit the development of low-cost navigation systems and

improve the performance of ground, marine, and aerial vehicles in real-world scenarios.
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A. QUADRATIC SURFACES

For a second-order algebraic surface given by the general equation (Hilbert & Cohn-

Vossen, 1999)

ax2 + by2 + cz2 + 2fyz + 2gzx+ 2hxy + 2px+ 2qy + 2rz + d = 0, (A.1)

we can get the matrix form for a quadratic surface

xTSx+ 2Px+ d = 0, (A.2)

where

S =


a h f

h b g

f g c

 P =


p

q

r

 .
The general magnetometer equation, which represents an ellipsoid affected by non-

orthogonality and scale factors, which can be modeled as a quadratic surface by

hm = Ah+ b. (A.3)

From (A.3), we can get the local magnetic field and compute the norm as ||h||2 = hTh,

or equivalently

||h||2 = hTmMhm − 2bTMhm − bTMb, (A.4)
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where M = (A−1)T (A−1). Based on (A.2) and (A.4) we can find the following equiva-

lencies

S = (A−1)T (A−1),

P = −bT (A−1)T (A−1),

d = −(bT (A−1)T (A−1)b+ ||h||2).

Using S, P , and d, we can define the block matrix

E =

 S P

P T d

 , (A.5)

which combined with S, gives us the following set of conditions that a quadratic surface

must meet to be an ellipsoid in the real numbers domain (Zwillinger, 2018).

(i) Ranking of the S matrix must be equal to 3.

(ii) Ranking of the E matrix must be equal to 4.

(iii) The sign of the determinant of E must be negative.

(iv) The eigenvalues of matrix S must be all non-negative.

A.1. Soft-iron Regularization

To compare the soft-iron calculated by different calibration methods, it is necessary to

regularize them to set all of them on the same scale and remove the up-to-scale property

that different methods provide. In other words, we want to remove the scale component

and keep the non-orthogonality. Based on the up-to-scale concept, we can consider the

uncalibrated magnetic field as the ground truth magnetic field, represented by a unitary

sphere, i.e., ||h||2 = 1, transformed by the non-orthogonality and displaced due to the

bias. This transformation has the property that the volume must be conserved since we
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are not scaling the magnetic field, and the bias does not affect this property, so we can

consider b = 0. Hence, we can rewrite (A.4) as

hTm(A−1)T (A−1)hm − 1 = 0, (A.6)

and rewrite the quadratic surface representation as (A.2), finding S = (A−1)T (A−1). As

we know, A is a symmetric matrix, and therefore the corresponding eigendecomposition

is

A = QΛQT , (A.7)

where Q is an orthonormal base composed by the eigenvectors of A and Λ is a diagonal

matrix, populated with the eigenvalues of A, (λ0, λ1, λ2). Due to the symmetry of A, we

can directly get the inverse as A−1 = QΛ−1QT .

As a next step, we want to align the principal axes of the modified magnetic field with

the x-, y-, and z-axis of the coordinate frame taking advantage of the symmetry of the S

matrix. Based on (A.7),

S =
(
Q
(
Λ−1

)T
QT
) (
QΛ−1QT

)
= QΛ−2QT . (A.8)

Using the change of variable x = Py to remove the cross terms, i.e., non-orthogonality,

xTSx = (Py)TS(Py) = yTP TSPy → xTSx = yTΛ−2y.

An ellipsoid centered in the origin of the R3 cartesian space modeled as

x2

α2
+
y2

β2
+
z2

γ2
= 1,
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has a volume V = 4
3
παβγ, where α = λ0, β = λ1 and γ = λ2. As we started from

the unitary sphere and want to constrain the volume to stay constant, we have to scale the

eigenvalues as λ′i = λi/(λ0λ1λ2)−1/3. Therefore, the volume now is

V =
4

3
π

λ0

(λ0λ1λ2)−1/3

λ1

(λ0λ1λ2)−1/3

λ2

(λ0λ1λ2)−1/3

=
4

3
π

(λ0λ1λ2)

(λ0λ1λ2)

=
4

3
π

Based on the eigendecomposition, the scaled version of the S matrix is

S ′ = (λ0λ1λ2)−2/3
(
QΛ−2QT

)
→ S ′ = (λ0λ1λ2)−2/3S. (A.9)

Then, to get from the quadratic surface to the magnetometer model, define the scaled

soft-iron as A′ = αA

S ′ = (
1

α
A−1)T (

1

α
A−1) =

1

α2
(A−1)T (A−1),

and replacing (A.9):

(λ0λ1λ2)−2/3S =
1

α2
(A−1)T (A−1)→ α = (λ0λ1λ2)−1/3

Therefore, the scaled soft-iron is

A′ = (λ0λ1λ2)−1/3A.
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