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ABSTRACT 

 

 

Systems modeling is a wide field in science and engineering aimed to understand how the 

components of a system evolve through time and space. For centuries, modeling has been 

used for the description of a variety of simple systems and with the advent of computation, 

we were able to model highly detailed systems, analyze them, and propose hypotheses for 

further experimental testing. 

 In this doctoral thesis, the utilization of rule-based models was proposed for the rapid 

development of draft models describing the regulation of bacterial gene expression. The 

developed methodology is able to model transcription, translation, and the degradation of 

macromolecules as well the bacterial metabolism. The aforementioned processes are 

essential for cell viability, albeit modeling is widely adopted for metabolism. To circumvent 

the time-consuming development of models, the modeling proposition is accompanied by 

the development of computational tools to automatically model each process, a technique 

previously available only for metabolic models. 
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Regulation of gene expression is essential for cell homeostasis and adaptation. This 

regulation relies on transcription factors and other proteins that bind specific DNA sequences 

and control genetic programs. However, the complexity of this regulatory network precludes 

efforts to model gene regulation at a genome-scale. In the first place, we propose a 

methodology build upon the Kappa Biobrick Framework, which was automated and 

extended to describe correctly the genome architecture, initiation of bacterial transcription, 

and incorporate metabolism. We developed Atlas, a software that is able to convert the many 

interactions and reactions encoded in biological networks in rule-based models. Rules are 

similar to chemical equations describing only the characteristics involved in a reaction. In 

doing that, a rule could represent thousands and even millions of individual reactions. The 

method was employed with known gene regulation data and metabolic reactions of the 

bacterium Escherichia coli. 

Later, we developed Pleione, a software that employs a genetic algorithm to calibrate 

rule-based models. The tool gives support to four stochastic simulators (compatible with two 

rule languages). Pleione distributes simulations and calculations of the goodness of fit in 

high-performance computing infrastructures, and more importantly, harness equivalence 

statistical tests to determine the pertinence of stochastic simulations to experimental data. 

We also developed tools to estimate parameter uncertainty of calibrations and to estimate 

sensitivity indexes of user-selected parameters. 

Modeling is viewed as a specialized task, inaccessible without proper knowledge of 

modeling frameworks. Atlas takes inspiration on available tools to reconstruct draft 

Genome-Scale Metabolic Models, and this thesis satisfactorily presents a software library to 

develop and analyze rule-based models for gene regulation and metabolism in bacteria. The 

developed tools allow the assess the impact of modifications like gene copy number, operon 

architecture, and other common genetic modifications to understand bacterial physiology, 

pathogenicity, and eventually, the engineering of bacterial cells for biotechnology and 

biomedicine applications. 

The tools presented in this doctoral thesis are open-source and freely available for 

download from the Python Package Index and from github.com/networkbiolab/pleione and 

github.com/networkbiolab/PythonCyc. 
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RODRIGO ALBERTO SANTIBÁÑEZ PALOMINOS 

 

RESUMEN  

 

 

El modelado de sistemas es un amplio campo en ciencias e ingeniería enfocado en entender 

cómo los componentes de un sistema evolucionan a través del tiempo y espacio. Por siglos, 

el modelado ha sido usado para la descripción de una variedad de sistemas simples y con la 

llegada de la computación, hemos sido capaces de modelar sistemas altamente detallados, 

analizarlos y proponer hipótesis para posterior testeo experimental. 

 En esta tesis doctoral, la utilización de modelos basados en reglas fue propuesta para 

el rápido desarrollo de modelos borradores describiendo la regulación de la expresión génica 

bacteriana. La metodología desarrollada es capaz de modelar transcripción, traducción y la 

degradación de macromoléculas así como también el metabolismo bacteriano. Los procesos 

anteriormente mencionados son esenciales para la viabilidad celular, aunque el modelado es 

ampliamente adoptado para el metabolismo. Para sobrepasar el lento desarrollo de modelos, 

la proposición de modelado está acompaña por el desarrollo de herramientas 

computacionales para modelar automáticamente cada proceso, una técnica previamente 

disponible solo para modelos metabólicos. 
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 La regulación de la expresión génica es esencial para la homeostasis celular y 

adaptación. Esta regulación depende de factores transcripcionales y otras proteínas que unen 

específicamente secuencias de ADN y controlan programas genéticos. Sin embargo, la 

complejidad de esta red regulatoria impide esfuerzos para modelar regulación génica a escala 

genómica. En primer lugar, nosotros proponemos una metodología construida sobre Kappa 

BioBrick Framework, la cual fue automatizada y extendida para describir correctamente la 

arquitectura del genoma, la iniciación de la transcripción bacteriana, e incorporar el 

metabolismo. Desarrollamos Atlas, un software que es capaz de convertir las muchas 

interacciones y reacciones codificadas en redes biológicas en modelos basados en reglas. 

Reglas son similares a ecuaciones químicas describiendo únicamente las características 

involucradas en una reacción. Al hacer eso, una regla puede representar miles o incluso 

millones de reacciones individuales. El método fue empleado con datos conocidos de 

regulación génica y reacciones metabólicas de la bacteria Escherichia coli. 

 Luego, desarrollamos Pleione, un software que emplea un algoritmo genético para 

calibrar modelos basados en reglas. La herramienta da soporte a cuatro simuladores 

estocásticos (compatible con dos lenguajes de reglas). Pleione distribuye simulaciones y 

cálculos de bondad de ajuste en infraestructuras de computación de alto rendimiento, y más 

importantemente, aprovecha pruebas estadísticas de equivalencia para determinar la 

pertinencia de simulaciones estocásticas a datos experimentales. También desarrollamos 

herramientas para estimar la incertidumbre en calibración de parámetros y para estimar 

índices de sensibilidad de parámetros seleccionados por el usuario. 

 El modelado es visto como una tarea especializada, inaccesible sin el conocimiento 

apropiado de métodos de modelado. Atlas toma inspiración en herramientas disponibles para 

reconstruir borradores de modelos metabólicos a escala genómica, y esta tesis 

satisfactoriamente presenta una biblioteca de software para desarrollar y analizar modelos 

basados en reglas para regulación génica y metabolismo en bacteria. Las herramientas 

desarrolladas permiten evaluar el impacto de modificaciones como variación del número de 

copias génicas, arquitectura del genoma, y otras modificaciones génicas comunes para 

entender la fisiología bacteriana, patogenicidad, y eventualmente, la ingeniería de células 

bacterianas para aplicaciones de biotecnología y biomedicina. 
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1. INTRODUCTION 

Mathematical and computational modeling are tools employed in systems biology, 

bioengineering, and other science fields with increasing use for the understanding of 

biological processes and their manipulation (Fisher & Henzinger, 2007). Given the technical 

advances in computing infrastructure and simulation methods, it is easier than ever model 

and simulates highly complex biological processes with high spatial and time resolution 

(Takahashi et al., 2005). Therefore, a variety of models have been developed and they are 

comprehensive compilations of knowledge and could be employed for further experimental 

design and hypotheses testing (Eng & Borenstein, 2016; Jahan et al., 2016; Khodayari et al., 

2015). For instance, model complexity varies from simple enzyme kinetics (Wong et al., 

2015) and cell growth (Wade et al., 2016) to the complex representation of metabolism at 

genome-scale (Simeonidis & Price, 2015) and phenotype (Carrera et al., 2014). Those 

models could make use of a simple system of equations that represent the dynamic of a few 

variables or complicated systems to reproduce the dynamics of thousands of cellular 

components. 

 Systems modeling could contextualize experimental data from diverse sources, 

which are common transcriptomics and proteomics (M. Kim et al., 2016; Sowa et al., 2017; 

Winter & Krömer, 2013). Those computational models seek to describe the phenotype as a 

function of the genotype, and once validated, its simulation is a cost-effective prediction tool 

of the outcome of experiments (Fisher & Henzinger, 2007). The evaluation of in silico 

interventions such as genetics modifications –single knockouts or copy number variation– 

has allowed rational strain design intending to improve the microorganism behavior in 

bioprocesses. For instance, Costa et al. (Costa et al., 2016) reviewed how the analysis of 

metabolic models has helped for the identification of genetic modifications able to optimize 

process parameters such as yield. Also and more importantly, new experimental data is 

incorporated into models as knowledge to improve sensitivity and specificity, or to develop 

new analysis methods (Costa et al., 2016; Zomorrodi et al., 2012). However, modeling of 

biological processes is a labor-intense task due to the structural complexity –understood for 

instance as a large number of components and reactions– of the considered systems (Vanlier 
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et al., 2013). The consequence of complexity in biological systems is the growth of reactions 

and their parameters, often exceedingly large for efficient analysis methods even with the 

incorporation of assumptions to reduce such complexity (Wade et al., 2016; Wong et al., 

2015). In the case of large models, notably, there are two exponents: genome-scale metabolic 

models, GSMMs or GEMs (Terzer et al., 2009) and whole-cell models, WCMs (Sanghvi et 

al., 2013). 

1.1 GENOME-SCALE METABOLIC MODELS (GSMMs). 

Genome-scale metabolic models are an exhaustive recapitulation of cellular metabolism as 

they include all metabolic reactions in a compartment, cell, tissues, and communities. These 

GSMMs were firstly developed due to the computational limitation to identify sensible 

parameters for kinetic models based on ordinary differential equations (ODEs) (Hahl & 

Kremling, 2016; Terzer et al., 2009). The GSMMs describe the metabolic reactions as a 

stoichiometric matrix, where the columns are the reactions (of any type such as spontaneous, 

enzymatic, transport, and exchange) while rows represent the stoichiometric coefficient of 

every metabolite for each reaction (Terzer et al., 2009). A negative coefficient represents the 

consumption of the metabolite in the reaction and its synthesis by a positive coefficient. In 

the presented form, GSMMs are systems of linear equations without a single solution. The 

stoichiometric matrix has more reactions than metabolites, making them mathematically 

underdetermined. To solve a GSMM it is necessary the use of constraints to the reaction 

velocity (Kauffman et al., 2003). The constraints convert the GSMM into an overdetermined 

problem, reducing the feasible solution space, and allow the optimization of reaction rate 

(Costa et al., 2016), where flux balance analysis (FBA) is a commonly employed tool. 

 The first generation of constraint-based models is static and simulates a pseudo-

stationary state. Later on, more complex models were developed to include changes in 

messenger RNAs (mRNAs), proteins, and/or metabolites concentration as constraints, 

allowing a more accurate and dynamic description of metabolism (Birch et al., 2014; Covert 

et al., 2008; Winter & Krömer, 2013). Besides the stoichiometric matrix and the constraints, 

and another important feature of GSMMs is the incorporation of genetic relationships known 

as gene-protein-reaction (GPR) associations (Dias et al., 2015; Machado et al., 2016) that 
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allows the predictive capability of the considered GSMM. For example, the GPR 

associations allow the identification of in silico essential genes (Terzer et al., 2009) and 

evaluate sensitivity and specificity concerning experimental data. Also, the GPR 

associations allow the evaluation of single, double, or multiple gene knock-outs and its 

impact on the optimal production rate, including biomass (B. Kim et al., 2015). 

 The GSMMs are the most successful methodology to describe and simulate 

metabolism at a large scale, for which is available a vast number of analysis tools (Zomorrodi 

et al., 2012, 2014). These models have allowed the accurate prediction of cellular growth in 

diverse genetic and environmental conditions (Edwards et al., 2001; Mccloskey et al., 2014). 

1.2 WHOLE-CELL MODELS (WCMs). 

The development of GSMMs can be viewed as an intermediate step towards a better 

understanding of every biological process that regulates metabolism (King et al., 2015; 

Smallbone et al., 2007). For instance, GSMMs are unable to evaluate the impact of gene 

deletions or amplifications of genes without metabolic function (enzymes or transporters) or 

evaluate metabolism rate under activation or repression caused by the concentration of 

metabolites (Carrera & Covert, 2015; Karr, Takahashi, et al., 2015). Regulatory information 

has been added to GSMMs as part of refinements outside the above description, known as 

ensemble or hybrid models such as GSMMs coupled to ODEs to describe cell growth during 

(fed-)batch (Gottstein et al., 2016). Whole-cell models are computational models aiming to 

include every gene product and their functions in every cell process (Purcell et al., 2013). 

The first WCM was published in 2012 and is a quantitative description of every mechanism 

controlled by and that control cell metabolism. Karr et al. (Karr et al., 2012) developed a 

WCM for the bacteria Mycoplasma genitalium, an intracellular human pathogen with a small 

genome of 580,070 bp and 525 genes (W. H. Chen et al., 2016). Due that the stationary state 

assumption made for GSMM does not apply to the totality of the cell processes, is 

impracticable the modeling using only mathematical formalism (Karr, Williams, et al., 

2015). The Karr et al. WCM is an ensemble model of 28 different submodels, covering every 

cell process employing the best available method (Karr et al., 2012). The simulator is ad-

hoc, simulating each model separately and combined at every second until cell division. 
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 Including every gene function, the WCMs promise to predict with higher accuracy 

the phenotype and have broader applications in comparison with GSMMs (D. M. Morris & 

Jensen, 2008; Purcell et al., 2013). For instance, the M. genitalium WCM was able to 

determine with genes impact the most cell viability, and those genes been proposed as 

pharmacological targets for future treatment of M. genitalium infections (Karr et al., 2012). 

1.3 STOCHASTIC MODELS AND RULE-BASED MODELS. 

Although ODEs are frequently employed (Szigeti et al., 2018) to model from a simple 

system of equations to highly complex kinetic models, nowadays is recognized that some 

biological properties remain disregarded as long it is assumed their impacts are small 

enough. In specific, the deterministic simulation of ODE models disregards two fundamental 

facts: cellular processes are stochastics and involve thousands of different interactions and 

thousands of types of cell components which are discrete entities (J R Faeder et al., 2005; 

Fisher & Henzinger, 2007; Hahl & Kremling, 2016; Wilkinson, 2009). 

 Cell processes exhibit intrinsic and extrinsic noise without exception (Kærn et al., 

2005; Raj & van Oudenaarden, 2008). For instance, extrinsic noise results in correlated gene 

expression and refers to the variation in the availability of factors that control gene 

expression (Shahrezaei et al., 2008; Swain et al., 2002), while intrinsic noise refers to the 

inherent variability and results in uncorrelated gene expression for identical genes (Raj & 

van Oudenaarden, 2008). To model stochastic processes, it is necessary to consider 

mathematical formalisms different from mainstream tools. Notably, the chemical master 

equation (CME) is the classical approach and dynamically define all possible states and the 

transition probability of them. The CME defines “the probability of a reaction 𝑅𝑗 to happen 

somewhere in the volume Ω in the infinitesimal time interval [𝑡, 𝑡 + 𝑑𝑡) given the state 𝑋(𝑡) 

equal to 𝑥” (Engblom, 2008; Hahl & Kremling, 2016). For instance, in a simple model of 

gene expression, the CME solution relates the noise of mRNA and its encoded protein to the 

Poisson distribution (Wilkinson, 2009) and a decay process to the binomial distribution 

(Daniel T. Gillespie, 2007). However, rarely the CME has an analytical solution and 

numerical solutions were hard to obtain. Daniel Gillespie described in 1977 a practical 

algorithm for the numerical solution, the stochastic simulation algorithm (SSA), to simulate 
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reactive systems which its components are homogeneously distributed (the propensity of 

reaction is identical and does not depends on the spatial distribution) (Daniel T. Gillespie, 

2007). Often, the modes of a model simulated with the SSA and with numerical integrators 

for ODEs do not differ, but when they do, the conclusion is that variability is high enough 

and an ODE does not provide an adequate description of the system true behavior (Daniel 

T. Gillespie, 2007; Wilkinson, 2009). Although the CME is the natural candidate to 

formulate stochastic models instead of stochastic differential equations (SDEs), the large 

size of biochemical systems precludes an exhaustive description using only a CME. 

 Rule-based models (RBMs) are an adequate alternative to describe comprehensively 

interactions and reactions for any system under consideration. Rules are similar to chemical 

equations that represent elementary reactions (Chylek et al., 2014; Hogg et al., 2014) in 

which only intervene objects with the necessary properties for the execution and describe 

only the modified properties after the execution (Feret et al., 2009). As Rules are similar to 

chemical equations, the “substrates” are described at the left (left-hand side, LHS) and the 

“products” are described at the right (right-hand side, RHS). Figure 1-1 shows the five basic 

Rules and exemplifies one using an “agent” (the abstract representation of a real entity) 

which has two sites (𝑥 and 𝑦). Optionally, each site could encode a particular state of the site 

(orange and green) with a meaningful property (figure adapted from Feret et al., 2009). 
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Figure 1-1. Basic patterns in rule-based modeling. 

A. The five basic rules: Change of site state, defined as the change of the value of a 

characteristic (from orange to green) potentially representing phosphorylation of a protein 

residue; Binding and unbinding of agents, two rules that represent the assembly and 

separation of protein complexes; and the Deletion and Addition of agents, effectively 

modeling the introduction and subtraction of components from the considered system. An 

agent is the abstract representation of any component of the modeled system, in its free form 

(e.g. agent 𝐴) or in combination with others (e.g. agent 𝐴𝐴). 

B. Example of polymerization rule. Defining only the binding between the involved sites of 

identical agents, a single rule is only necessary to describe the lineal binding (and circular in 

a unimolecular reaction) of any number of agents into an arbitrarily long polymer. 
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It is common for the utilization of RBMs to describe and simulate (cellular) signaling 

pathways due to a large number of possible interactions (James R Faeder et al., 2003). For 

instance, the immunoglobulin IgE high-affinity receptor model is described by 354 different 

species. The counterpart RBM only required 15 rules (6 of them reversible) and 21 rates to 

model 3680 reactions (James R Faeder et al., 2003). Another example is the human insulin 

receptor which is composed of eight proteins that could be in 145 156 469 non-isomorphic 

conformations, without considering further post-translational modification (Koschorreck et 

al., 2007; Koschorreck & Gilles, 2008). Finally, the epidermal growth factor 

receptor/extracellular regulated kinase (EGFR/ERK) pathway model required only 70 rules, 

that reconstitute 1023 distinct molecular species (Danos et al., 2007a). In the case of 

numerical simulation employing ODEs, the model will require an explicit description of the 

many species and reactions. That is, the case of the IgE model (James R Faeder et al., 2003) 

requires the description of 354 ODEs with mass balance equations summing up 3680 

reactions instead of the original 15 rules. The description of a large number of reactions that 

derive from a single rule is referred to as the combinatorial explosion. The three small, 

medium and large-size examples manifest explicitly how the rule-based modeling allows a 

compact description of the reactive system while employing ODE models could hinder 

analysis, calibration, inspection, correction, and the ensemble of models (J R Faeder et al., 

2005; Koschorreck & Gilles, 2008). 

Due to the large size of the equivalent ODE models, the Gillespie´s SSA has been 

implemented to simulate stochastically RBMs instead of the cumbersome deterministic 

simulation of ODE models (Daniel T. Gillespie, 2007; Hogg et al., 2014; McCollum et al., 

2006). Although the original SSA is affected by the combinatorial explosion, network-free 

simulators such as NFsim (Sneddon et al., 2008) and KaSim (Danos et al., 2007a) discover 

the many species encoded through the simulation itself. The BioNetgen and kappa stand out 

as the most employed rule languages (Lopez et al., 2013), although exist other languages are 

less known such as Allosteric Network Compiler (Ollivier et al., 2010) and Infobiotics 

(Blakes et al., 2011). As noted, many rule languages have been proposed, while multiple 

simulation algorithms and software have been developed to increase the modeling spectrum 

and reduce calculation time, although sacrificing statistical accuracy (Wilkinson, 2009). A 
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useful property of rules languages is the ability to declare explicit compartments using an 

extended notation (Sorokina et al., 2013; Stewart & Wilson-Kanamori, 2011). Specialized 

software such as BioNetGen (James R. Faeder et al., 2009), Spatial kappa (Sorokina et al., 

2013), and PISKaS (Bustos et al., 2018; Perez-Acle et al., 2018) have simplified the 

modeling process and reduced the computational cost of single simulations. 

1.4 MODELING BIOLOGICAL PROCESSES 

There are few consensuses on how to model biological processes due to the high structural 

complexity and interdependence of biological processes (Yordanov et al., 2016). For 

example, the most simple mathematical expression to model mRNA synthesis and 

degradation is ∅ → 𝑅𝑁𝐴 → ∅ (Bewick et al., 2009) and have being employed recurrently to 

simulate gene transcription (Hahl & Kremling, 2016; Qu et al., 2011). As expected, a more 

complex computational model should consider the availability of RNA polymerase, 

transcription factors, RNases, and nucleotides among other functional and structural 

components that affect the mRNA synthesis and degradation rates. Moreover, (bacterial) 

transcription is a succession of events involving the reversible binding of RNA polymerase 

to the promoter and the initiation, transcription, and termination of mRNA synthesis (A. 

Robinson & Van Oijen, 2013). Similarly, DNA replication and RNA and protein degradation 

also could be considered mechanisms composed of many successive events (Racle et al., 

2015; A. Robinson & Van Oijen, 2013; Zouridis & Hatzimanikatis, 2007), and some authors 

have employed the presented idea to model transcription and translation from a theoretical 

point of view, e.g. (MacNeil & Walhout, 2011). The complexity of the aforementioned 

processes (number of components and interactions) hinders the development of WCMs from 

omics data and knowledge databases. Without a streamlined method to develop drafts 

WCMs, its adoption is hampered and precludes the analysis of cellular networks or the 

design of bacterial cells with applied purposes in biotechnology or biomedicine.  

 As aforementioned, the main reason to choose rules languages to model biological 

processes is the capacity to describe complex mechanisms in a concise and compact 

approach. Cells are the conjunction of distinct processes such as DNA replication (A. 

Robinson & Van Oijen, 2013), DNA transcription (A. Robinson & Van Oijen, 2013), 
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translation (A. Robinson & Van Oijen, 2013), RNA degradation (Strahl et al., 2015), protein 

degradation (Sekar et al., 2016; Striebel et al., 2009), metabolism (Costa et al., 2016; 

Srinivasan et al., 2015), cell division (Adiciptaningrum et al., 2015), signaling (Klipp & 

Liebermeister, 2006), protein translocation (J. K. Liu et al., 2014), assembly and degradation 

of protein complexes (e.g. RNA polymerase and ribosomes Davis et al., 2016; Gupta & 

Culver, 2014; Ishihama, 1981), post-translational modifications (Soufi et al., 2015), DNA 

modification (Casadesús & Low, 2013), DNA repair (Gowrishankar, 2015), as well as other 

general and specific bacterial processes such as sporulation or conjugation. As cells are 

complex enough systems, the thesis is centered at the molecular biology central dogma 

coupled to metabolism. 

 The central dogma was coined by Francis Crick and defines the information flow 

between biological molecules (not the mechanisms of such flow). The central dogma 

includes DNA replication, DNA transcription, and RNA translation. To obtain an adequate 

computational description of cell behavior, the central dogma should be coupled to the 

consumption of nucleotides, amino acids, and cofactor, while its production requires the 

synthesis of the corresponding enzymes (Lerman et al., 2012). Another necessary feature is 

the competitive and cooperative behavior exhibited by some transcription factors (Gutierrez 

et al., 2012). As a generalization, competitive behavior is expressed when two transcription 

factor DNA binding sites overlap at some extension. On the other hand, cooperative behavior 

when the binding of a transcription factor facilitates the binding of a second at an adjacent 

binding site (Shinar et al., 2006). Also, competition and cooperation have been described for 

replication, transcription, and translation (A. Robinson & Van Oijen, 2013), and metabolism 

(Notebaart et al., 2014). 

 Three advantages were identified for the proposed model of metabolism coupled to 

the five processes that regulate gene expression. The model will eliminate the dependence 

in omics data for the correlation of variables (e.g. transcriptomics to constraint further 

allowed reaction rates in GSMMs), potential incorporation of every gene which products are 

enzymes and regulators of metabolism or gene expression, and explicit bidirectional 

interaction of gene regulation and metabolism (Labhsetwar et al., 2013). The noted 

advantages have been explored previously, although not modeling explicitly the considered 
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mechanisms (Lerman et al., 2012; O´Brien et al., 2013; Pey et al., 2013). Consecutively, and 

in contrast to automatic tools that draft and refine GSMMs (semi-)automatically (Dias et al., 

2015; N. E. Lewis et al., 2012; Magnúsdóttir et al., 2016), WCMs lack a unified 

methodology of development and the thesis will propose a software to develop such models 

for bacterial cells. 

 To develop a WCM limited to the processes for the central dogma coupled to the 

metabolism, a divide-and-conquer strategy will be developed from useful network 

representations of the many interactions. Networks (or graphs) encode any kind of data, and 

biological networks represent meaningful information, typically physical interactions, 

correlations, or directional effects. As networks can be arbitrarily large and complex, the 

method will employ data from the EcoCyc database (Keseler et al., 2017) to validate the 

modeling methodology. Escherichia coli strain K-12 MG1655 is the best-known 

microorganism from a genetic and cellular point of view (Baumstark et al., 2015; Bennett et 

al., 2009; S. Li et al., 2013; Mori, 2004), and the EcoCyc database recapitulates more than 

32 000 publications (Keseler et al., 2017). 
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1.5 HYPOTHESIS AND OBJECTIVES 

The main hypothesis of this thesis is that rule-based modeling in conjunction with tailored 

software allows automated reconstruction from biological networks into computational 

models at genome-scale for the mechanisms of gene expression regulation coupled to the 

bacterial metabolism, and the efficient stochastic simulation for model analyses. 

General Objective 

The general objective of this thesis is to develop software that allows the automatic 

reconstruction of rule-based models for the central dogma coupled to bacterial metabolism 

from biological networks such as genome graphs, and metabolic, gene regulatory, and 

interaction networks for protein-protein, RNA-protein, and mRNA-regulatory RNAs. 

The specific objectives are: 

1. To develop software for the automatic reconstruction of rule-based models that 

describe the regulation of gene expression and metabolism. 

1.1 Automatic reconstruction of models employing the Kappa BioBrick Framework. 

1.2 Extension to incorporate genome architecture of transcription factor binding sites, 

DNA polymerase binding sites, and genes. 

1.3 Extension to couple metabolism to gene expression. 

2. To propose a draft model for the central carbon metabolism of the bacterium 

Escherichia coli strain K-12 MG1655. 

3. To develop computational tools to calibrate and analyze rule-based models. 
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1.6 APPROACH OF THIS THESIS 

In this work, the central theme is to develop a computational tool that enables a complete 

reconstruction of an RBM for bacterial gene regulation coupled to cell metabolism. Data 

from the EcoCyc database for the bacterium Escherichia coli was employed to test the 

proposed methodology. Three additional computational tools were developed to calibrate, 

estimate the uncertainty of model parameters, and to perform sensitivity analysis. 

  

 Chapter 1 discusses how to develop RBMs. The Chapter presents an informal derivation 

of the Gillespie´s Stochastic Simulation Algorithm and its use through a simple 

example. Consequently, it presents the κ-algorithm that performs the SSA to a site graph 

describing the modeled system, and through examples of increased complexity, it 

finally describes a Lotka–Volterra dynamics in spatially defined environments. 

 Chapter 2 discusses through three examples the utilization of the PISKaS software to 

simulate κ language RBMs of explicit compartments with and without transport. The 

PISKaS software is an extension of the κ algorithm that simulates dependent SSA and 

perform corrections to the dynamics when transport reactions will change the system 

component quantities. It presents the three examples that describe genomic and plasmid 

gene regulation, disease outbreaks, and social prosperity in game theory. 

 Chapter 3 discusses the formulation of a modeling framework able to transform a 

biological network into an RBM. The Chapter presents a divide-and-conquer strategy 

to convert four types of biological networks: genome graphs and gene regulatory, 

interaction, and metabolic networks. Consequently, it presents Atlas, a software that 

incorporates the formulated framework for the draft of RBMs and it describes how to 

curate and convert networks into a model of the bacterium Escherichia coli. 

 Chapter 4 presents Pleione, a software for the calibration of any RBM employing a 

genetic algorithm. The software gives support for four stochastic software compatible 

with two rule languages. More importantly, the Chapter discusses the use of three 

equivalence statistical tests for the comparison of stochastic trajectories to experimental 

data. 
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 Chapter 5 presents Sterope, a software to perform a global sensitivity analysis of kappa 

RBM. The software is only compatible with the KaSim software due to the calculation 

of the Dynamic Influence Network. The Chapter compares, when appropriate, the 

results using Sterope for RBMs with flux control coefficients of exact ODEs and it 

shows the advantage to analyze RBMs in which their ODE counterparts suffer from 

excessive combinatorial explosion. 

 

In addition to the main chapter, the thesis explores and describes bioinformatics approaches 

to analyze data and develop further the presented tools to analyze other systems. 

 Annex Chapter 1 analyzes 16S sequence data from a placebo-treatment study. The 

microbiome composition at the phylum level was correlated to the consumption of 

sucralose in subgroups of healthy men adults in a two-week intervention. 

 Annex Chapter 2 presents a rule-based model for the evaluation of theoretical societies 

with the translation of survey data into model parameters. It compares and discusses the 

evolution of two societies with disparate trust distributions, cooperation-deception 

probabilities, and interaction rates. 

 Annex Chapter 3 presents Alcyone, a software developed around Pleione to determine 

the uncertainty in model parameters through the implementation of the one-leave-out 

Jackknife and the Bootstrapping methods. The Chapter shows results for a simple model 

analyzed with the two methodologies. 

 Annex Chapter 4 shows how to extend Pleione to calibrate antimony models, a 

specialized programming language for deterministic and stochastic simulation (ODE 

solvers and SSA, respectively). The Chapter presents the calibration of a simple model 

with the Tellurium software, a package that reads and simulates antimony models. 

 Annex Chapter 5 describes how to implement parallel computing workloads with four 

methodologies, all implemented in the software presented in the thesis main body.  
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2.1 SUMMARY 

Complex systems are governed by dynamic processes whose underlying causal rules are 

difficult to unravel. However, chemical reactions, molecular interactions, and many other 

complex systems can be usually represented as concentrations or quantities that vary over 

time, which provides a framework to study these dynamic relationships. An increasing 

number of tools use these quantifications to simulate dynamically complex systems to 

understand better their underlying processes. The application of such methods covers several 

research areas from biology and chemistry to ecology and even social sciences. 

In the following chapter, we introduce the concept of rule-based simulations based 

on the Stochastic Simulation Algorithm (SSA) as well as other mathematical methods such 

as Ordinary Differential Equations (ODE) models to describe agent-based systems. Besides, 

we describe the mathematical framework behind Kappa (κ), a rule-based language for the 

modeling of complex systems, and some extensions for spatial models implemented in 

PISKaS (Parallel Implementation of a Spatial Kappa Simulator). To facilitate the 

understanding of these methods, we include examples of how these models can be used to 
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describe population dynamics in a simple predator-prey ecosystem or to simulate circadian 

rhythm changes.  

2.2 THE STOCHASTIC SIMULATION ALGORITHM (SSA) 

The SSA, also known as Gillespie´s algorithm (Daniel T. Gillespie, 2007), is the basis of 

most stochastic simulation tools available. This algorithm and the tools based on it assume 

there is a homogeneous and “well-stirred” system of particles named agents. Agents can 

represent any type of entity within a system, i.e., molecules or individuals, and the 

interactions between agents are determined by a set of rules or equations taking place at in 

rates. These rules are ordered and divided into agents to which the rule applies and products 

(outcome agents). For instance, in a system of chemical reactions described by an equation 

or rule (𝑟𝑒𝑎𝑐𝑡𝑎𝑛𝑡𝑠 → 𝑝𝑟𝑜𝑑𝑢𝑐𝑡𝑠), every set of particles matching the left side of the equation 

(or reactant agents) has an equal probability of being the subject of that rule; that is, to 

undergo the process described by the rule. To clarify, given a reaction of the form 𝐴 + 𝐵 →

𝐶 in a system with 1000 particles of type 𝐴 and 1000 of type 𝐵, this “well-stirring” 

assumption means that every pair of particles {𝐴1, 𝐵1}, {𝐴1, 𝐵2}, …, {𝐴𝑖, 𝐵𝑗}, …, 

{𝐴1000, 𝐵1000} has equal probability of interacting to produce a particle of type 𝐶. Another 

important assumption made by the SSA is that the volume or area where the simulation takes 

place is fixed, and thus, concentrations of agents correspond to the discrete number of agents 

of each type. 

To describe chemical systems, and this can be extended to any other type of system, 

a specific set of reactions is required. Reactions in this algorithm always match the following 

schema (Equation 2-1): 

𝑚1𝐴1  + ···  + 𝑚𝑟𝐴𝑟  →  𝑛1𝐶1  + ···  + 𝑛𝑠𝐶𝑠 (2-1) 

 

Whenever a reaction of this type takes place, a set of 𝑚 reactant particles of types 𝐴𝑖 

are removed from the simulation (for 𝑖 = 1, . . . , 𝑟) and are in turn replaced by another set of 

𝑛 product particles of types 𝐶𝑗 (for 𝑗 = 1, . . . , 𝑠). It should be noted that any of the products 

𝐶𝑗 could be of the same kind as one of the reactants, and that this schema covers reactions 

as simple as 𝐴𝑖 → 𝐴𝑗  to more complicated reactions requiring several types of different 
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agents. Other important reactions that follow the same schema are 𝐴𝑖 → Ø to indicate 

degradation of agents and very similarly, Ø → 𝐴𝑖 to model the addition of a new element in 

a system. Rules are applied according to reaction rates, which defines different behaviors of 

the system upon variations in the concentration of its reactants. 

The quantity of each type of agent, or state of the system, at a given time 𝑡 can be 

represented by a vector of non-negative integers, or state vector, in which each entry 

represents the amount of each agent type. The outcome of a given chemical reaction can also 

be represented by a state-change vector, with the same size as the state-vector at time 𝑡. The 

negative entries in the state-vector depict the consumption of an agent, positive values mean 

the creation of an agent, and 0 or null value indicates no change for a particular agent type. 

Therefore, if the state vector before a given reaction 𝑟 is �⃑� and the associated state-change 

vector is 𝑑𝑟, the state of the system changes from �⃑� to �⃑� + 𝑑𝑟 after the reaction occurs. For 

example, in a medium that has samples of three different chemicals 𝐴, 𝐵, and 𝐶, the 

following vector represents the existence of 1000 molecules of type 𝐴, 900 of type 𝐵, and 

1200 of type 𝐶 at time 𝑡: 

�⃑� = [
1000
900

1200
] 

 

In a similar way, the following two chemical reactions 𝑟1 and 𝑟2 correspond, 

respectively, to the two state-change vectors 𝑑𝑟1
 and 𝑑𝑟2

: 

𝑟1: 2𝐴 + 𝐵 → 𝐶 𝑟2: 2𝐶 → 2𝐴 + 𝐵 + 𝐶 

𝑑𝑟1
= [

−2
−1
+1

] 𝑑𝑟2
= [

+2
+1
−1

] 

 

Note that in the second reaction one of the particles of type 𝐶 acts as a catalyst and 

the outcome effect of the reaction 𝑟2 is the same as of 𝐶 → 2𝐴 + 𝐵 with a 𝑑𝑟2
 state-change 

vector identical to −𝑑𝑟1
. However, the relationship between the different probabilities of 
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reactions 𝑟1 and 𝑟2 happening and the number of particles of type 𝐶 present leads to different 

long-term behaviors of the system. 

A reaction 𝑟 is fully specified by the state-change vector 𝑑𝑟 and a propensity function 

𝑎. This propensity function takes the state vector �⃑� as an argument and calculates the rate of 

every reaction 𝑟 in the system; thus, if 𝑎(𝑟1, �⃑�)  >  𝑎(𝑟2, �⃑�) reaction 𝑟1 is more likely to 

occur than 𝑟2. This is a discrete model; therefore, the function 𝑎(𝑟, �⃑�) is combinatorial in 

nature. For a fixed 𝑟, it should, theoretically, be directly proportional to the number of 

distinct sets of molecules that match the left side of the equation describing the reaction 𝑟 

and the physical properties of the medium being simulated. In this way, a probabilistic 

mathematical model of any set of reactions can be built given their state-change vectors 𝑑𝑟 

and a propensity function 𝑎. The function 𝑎 reflects the constraints given by the chemical 

nature of the system being modeled and allows the description, at least indirectly, of the 

probability distribution of the possible future state of the system, given its initial state and a 

time-lapse: 

𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0) ≔ ℙ(�⃑�(𝑡) = �⃑�|�⃑�(𝑡0) = �⃑�0) (2-2) 

 

Equation 2-2 is the Markovian condition that assumes the future state of the system 

relies exclusively on the present state (�⃑�0, 𝑡0) and the propensity function of each possible 

reaction. To be precise, to get to state �⃑� at time 𝑡 + 𝑑𝑡 for a 𝑑𝑡 small enough to ensure that 

the probability of two reactions occurring in that time interval is negligible, either the state 

at time 𝑡 is also �⃑�, or the state at time 𝑡 is �⃑� − 𝑑𝑟, and reaction 𝑟 takes place during the 

interval [𝑡, 𝑡 + 𝑑𝑡]. Thus, we have the following approximate equality (in which 𝑅 is the set 

of all reactions): 

𝑃(�⃑�, 𝑡 + 𝑑𝑡|�⃑�0, 𝑡0)

≈ ∑ 𝑃(�⃑� − 𝑑𝑟 , 𝑡|�⃑�0, 𝑡0)ℙ(reaction 𝑟 happens in [𝑡, 𝑡 +  𝑑𝑡])

𝑟∈𝑅

+  𝑃(�⃑� − 𝑑𝑟 , 𝑡|�⃑�0, 𝑡0)ℙ(no reaction happens during [𝑡, 𝑡 +  𝑑𝑡])

≈ ∑ 𝑃(�⃑� − 𝑑𝑟 , 𝑡|�⃑�0, 𝑡0)𝑎(𝑟, �⃑� − 𝑑𝑟)𝑑𝑡

𝑟∈𝑅

+ 𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0) (1 − ∑ 𝑎(𝑟, �⃑�)𝑑𝑡

𝑟∈𝑅

) 
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From the last expression, moving the term 𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0) to the left side of the equality 

and dividing by 𝑑𝑡, the following identity is obtained as 𝑑𝑡 → 0: 

𝑑

𝑑𝑡
𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0) = ∑ [𝑃(�⃑� − 𝑑𝑟 , 𝑡|�⃑�0, 𝑡0)𝑎(𝑟, �⃑� − 𝑑𝑟)𝑑𝑡 − ∑ 𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0)𝑎(𝑟, �⃑�)𝑑𝑡

𝑟∈𝑅

]

𝑟∈𝑅

 (2-3) 

 

Equation 2-3, commonly known as the Chemical Master Equation (CME), can be 

rigorously formalized from the laws of probability and the theory of Markov processes 

(Daniel T. Gillespie, 1992), but for simplicity, we will use the informal derivation given 

above. Although the previous equation is theoretically enough to determine the probabilities 

involved in the simulation at any moment given an initial state (i.e., the function 

𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0)), determining an explicit form of 𝑃(�⃑�, 𝑡|�⃑�0, 𝑡0) analytically from the CME is 

usually extremely hard. This difficulty is due to Equation 2-3 being a system of coupled 

differential equations with one function for each different state vector, and thus it can 

potentially have infinite unknown functions. Therefore, using this equation directly as a basis 

for a simulation is extremely impractical for systems composed of many different types of 

agents and/or with a large number of rules. However, it is possible to construct accurate 

numerical Markov simulations that follow the distribution given by the CME (Daniel T. 

Gillespie, 2007). To accomplish this and accurately simulate the future state of a system 

based on information of the current state, only two questions need to be answered: 

• Which reaction will happen next? and 

• How much time will pass from now until it happens? 

Thus, for an accurate simulation, we only need information about the conditional 

probability distribution of the next reaction 𝑟 and expected time 𝜏. So, we define the function 

𝑝(𝑟, 𝜏|�⃑�, 𝑡) as follows: 

𝑝(𝑟, 𝜏|�⃑�, 𝑡)𝑑𝜏 ≈  ℙ(the next reaction happens in the interval [𝑡 + 𝜏, 𝑡 + 𝜏

+ 𝑑𝜏] and is of type 𝑟|�⃑�(𝑡) = �⃑�) 

 

If we assume the Markovian memoryless property, this probability should be 

independent of the current time 𝑡; thus, the definition can be simplified slightly by removing 

references to 𝑡: 
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𝑝(𝑟, 𝜏|�⃑�, 𝑡)𝑑𝜏

≈ 𝑃(no reactions during [0, 𝜏] and a reaction of type 𝑟 during [𝜏, 𝜏 + 𝑑𝜏] | �⃑�(0) = �⃑�) 

 

Assuming that every reaction 𝑟 takes place independently of all other reactions, the 

Markovian assumption tells us that the expected time 𝑇𝑟 until a reaction of type 𝑟 is an 

exponential variable of rate 𝑎(𝑟, �⃑�) [(Pardoux, 2010), chapters 6–7]. Thus, the time 𝑇 =

min𝑟∈𝑅 𝑇𝑟 until the next reaction is an exponential variable of rate 𝑎0(�⃑�) ≔ ∑ 𝑎(𝑟, �⃑�)𝑟∈𝑅 , 

and it is independent of the reaction 𝑟 chosen. Therefore, an explicit value for the probability 

density 𝑝 can be easily determined: 

𝑃(𝑟, 𝜏|�⃑�, 𝑡) = 𝑎(𝑟, �⃑�)exp(−𝜏𝑎0(�⃑�)) (2-4) 

 

Equation 2-4 can be used to generate trajectories that follow the desired distribution 

since it implies that the probability of choosing a given reaction r is 𝑎(𝑟, �⃑�) 𝑎0(�⃑�)⁄   and it is 

independent of the expected time 𝑇, we get the following simple algorithm for generating 

valid trajectories given an initial state 𝑥0: 

 

1. Initialize the state �⃑� as �⃑�0 and the current time 𝑡 to 0. 

�⃑�0 = �⃑�(𝑡 = 𝑡0) = [
1000
900

1200
] × [𝐴 𝐵 𝐶] 

2𝐴 + 𝐵 → 𝐶 

2𝐶 → 2𝐴 + 𝐵 + 𝐶 

 

2. Generate two random numbers 𝑝1, 𝑝2 in [0,1] (uniform distribution), for example: 

𝑝1 = 0.18 and 𝑝2 = 0.67 

3. Determine the reactivity of the system as 𝑎0(�⃑�) = ∑ 𝑎(𝑟, �⃑�)𝑟∈𝑅  and set 𝛿𝑡 as the 

value ln(1 𝑝1⁄ ) 𝑎0(�⃑�)⁄ . This ensures that the random variable δt has an exponential 

distribution with rate 𝑎0(�⃑�). For simplicity, each reaction occurs at the same 

frequency 𝑟 = 𝑟1 = 𝑟2 = 1.0𝑠−1 

𝑎0(�⃑�) = 𝑟1 × 𝐴 × (𝐴 − 1) × 𝐵 + 𝑟2 × 𝐶 × (𝐶 − 1) 

𝑎0(�⃑�) = 𝑟1 × 1000 × (1000 − 1) × 900 + 𝑟2 × 1200 × (1200 − 1) 

𝛿𝑡 = ln(1 0.18⁄ ) 900,538,800⁄ = 1.90 × 10−9𝑠 =  1.90𝑛𝑠 
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4. Suppose the set of reactions is given by 𝑅 = {𝑟1, . . . , 𝑟𝑗 , . . . , 𝑟𝑛}. The probability to 

choose any reaction 𝑟 ∈ 𝑅 is 𝑎(𝑟, �⃑�) 𝑎0(�⃑�)⁄ . We choose the reaction 𝑟𝑗 testing the 

following inequality: 

∑
𝑎(𝑟𝑗 , �⃑�)

𝑎0(�⃑�)

𝑛−1

𝑗=1

≤ 𝑝2 < ∑
𝑎(𝑟𝑗 , �⃑�)

𝑎0(�⃑�)

𝑛

𝑗=1

 

For example, given the two reactions 𝑟1 and 𝑟2, we test the following inequalities: 

0 ≤ 0.67 < ∑
𝑎(𝑟𝑗 , �⃑�)

𝑎0(�⃑�)

1

𝑗=1

= 0.9984 

0.9984 ≤ 0.67 < ∑
𝑎(𝑟𝑗, �⃑�)

𝑎0(�⃑�)

2

𝑗=1

= 1.000 

5. Replace the old value of 𝑡 by the new value 𝑡 + 𝛿𝑡 and the old value of �⃑� with �⃑� +

𝑑𝑟, where 𝑟 is the reaction chosen in step (4). 

�⃑�1 = �⃑�(𝑡 = 𝑡0 + 𝛿𝑡) = [
1000
900

1200
] [

−2
−1
1

] = [
998
899

1201
] 

6. Save the new values of 𝑡 and �⃑� and go back to step (2) or finish if 𝑎0(�⃑�) = 0. 

 

This is a basic form of the SSA, readers interested in a more in-depth analysis of the 

model may consult the review by Gillespie (Daniel T. Gillespie, 2007). Common methods 

for the simulation of rule-based models use adapted versions of this algorithm to generate 

accurate simulations, each approach making certain assumptions and often requiring a 

formal language to describe the models. Examples of such SSA-based implementations are 

BioNetGen (Chylek et al., 2015) and KaSim (https://kappalanguage.org), each with its 

formal language (BNGL, James R. Faeder et al., 2009; and kappa, Murphy et al., 2010, 

respectively). 

  

https://kappalanguage.org/
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2.3 INTRODUCTION TO ORDINARY DIFFERENTIAL EQUATIONS 

MODELS 

Another common approach to the study of the dynamic behavior of complex systems 

employs ODEs or Partial Differential Equations (PDEs) based on the empirical law of mass 

action (Jost, 2011; Tu, 1994). This law states that the rate of a chemical reaction is 

proportional to the activity of each of its reactants. In order to simplify the model, it is often 

assumed that such activity values match the concentrations of each reactant. While this is 

generally not true, for elemental reversible reactions with no intermediate steps, it is a 

reasonable assumption and an acceptable approximation. For instance, given an elemental 

reversible reaction such as the following: 

𝐴 + 𝐵 ⇄ 𝐶 

the rate at which the forward reaction 𝐴 + 𝐵 → 𝐶 occurs is proportional to the concentrations 

of 𝐴 and 𝐵, with a similar remark applying to the backward reaction. This simple reversible 

equation prompts the following three ODEs systems as a candidate for modeling its 

evolution or dynamic behavior over time 

𝑑[𝐴]

𝑑𝑡
= −𝑘1[𝐴][𝐵] + 𝑘2[𝐶] 

𝑑[𝐵]

𝑑𝑡
= −𝑘1[𝐴][𝐵] + 𝑘2[𝐶] 

𝑑[𝐶]

𝑑𝑡
= 𝑘1[𝐴][𝐵] − 𝑘2[𝐶] 

in which [𝑋] stands for the concentration of the reactant 𝑋 and 𝑘1 and 𝑘2 are rate constants 

usually determined from experimental data. The right-hand side of the equation represents 

that in the forward reaction (𝐴 + 𝐵 → 𝐶), one instance of 𝐴 and one of 𝐵 are replaced by 

one of 𝐶, with the opposite happening for the reverse reaction. 

This small system of ODEs is usually nonlinear. The model has a very simple 

structure and allows both numerical and theoretical analyses. For instance, equilibrium can 

be calculated assuming that 𝑘1[𝐴][𝐵] − 𝑘2[𝐶] = 0, which leads to Equation 2-5: 
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𝐾 =
𝑘1

𝑘2
=

[𝐶]

[𝐴][𝐵]
 (2-5) 

where 𝐾 is called the equilibrium constant of the system and does not depend directly on the 

concentrations of the reactive substances but only on the rate constants 𝑘1, 𝑘2. 𝐾 governs 

the asymptotic behavior of the system as time goes to infinity (Quack & International Union 

of Pure and Applied Chemistry. Physical and Biophysical Chemistry Division., 2007; 

Silberberg, 2015); more precisely, a system of chemical reactions eventually reaches a 

situation in which the concentration of each chemical involved remains unchanged, with this 

value being determined by the constant 𝐾 [(Silberberg, 2015), chapter 17]. This can be seen 

mathematically by noticing that the system of equations above has a constant solution whose 

value depends on 𝐾, and any other positive solution converges to this value as 𝑡 → ∞ (Tu, 

1994). 

However, for more complex reactions and systems with more types of agents, the 

setup of the ODE system and the structure of the resultant reactions become very difficult to 

simulate using this type of equation (Daniel T. Gillespie, 2007). Chemical reactions such as 

electrolysis, which involves two or more instances of the same reactant, introduce higher-

order terms that might induce unexpected and/or difficult-to-explain behavior in numerical 

simulations. In addition, non-elementary reactions have to be decomposed into a series of 

elementary reactions, which can greatly increase the number of terms and variables involved 

in the system. Thus, the ODE approach becomes impractical very quickly on sufficiently 

complex chemical systems. Another drawback of this approach is that low concentrations or 

quantifications of agents can lead to unrealistic simulations of the behavior of the system in 

the long term upon the extinction of these agents. This is particularly noticeable in small 

systems comprised of only hundreds or thousands of agents. 

Another characteristic of the ODE-based approach is that it is purely deterministic. 

Given that in a real chemical system there are random fluctuations and non-deterministic 

phenomena, a deterministic model might not be able to fully represent all of the possible 

outcomes of the system. As in the previous paragraph, it is worth mentioning that random 

fluctuations usually have negligible long-term influence in large systems with sufficiently 

high concentrations of every species in the system. However, they become much more 
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evident in systems with a lower number of components. In such systems, there are potential 

alternative outcomes (different from the average behavior simulated by deterministic 

models) with large quantitative differences and non-negligible probabilities. Hence, taking 

into account this non-deterministic behavior becomes essential to understand small-scale 

systems (Daniel T. Gillespie, 2007). 

Lastly, ODE-based models usually carry no spatial information, as the medium is 

assumed homogeneous and well-stirred, with a uniform distribution of all system 

components. Here, we describe several biological systems in which those assumptions are 

invalid. The most straightforward way to create models that take into account spatial 

information is by replacing the concentration value as a function of simulated time for each 

entity [𝑋](𝑡) by a spatial density term 𝜌𝑋(𝑡; 𝑥, 𝑦, 𝑧), which represents the density of 𝑋 in a 

small neighborhood of points in the area or volume comprised by the model. Also, additional 

terms in the differential equations above are required to model physical phenomena that may 

affect density. For example, the chemical entities in the simulated system are liquids capable 

of diffusion; a possible set of equations for the reaction 𝐴 + 𝐵 → 𝐶 could be defined as 

𝜕𝜌𝐴

𝜕𝑡
= −Δ𝜌𝐴 − 𝑘𝜌𝐴𝜌𝐵 

𝜕𝜌𝐵

𝜕𝑡
= −Δ𝜌𝐵 − 𝑘𝜌𝐴𝜌𝐵 

𝜕𝜌𝐶

𝜕𝑡
= −Δ𝜌𝐶 + 𝑘𝜌𝐴𝜌𝐵 

where each 𝜌 term corresponds to the following sum of partial derivatives (known as the 

Laplacian or Laplace operator): 

Δ𝜌 =
𝜕2𝜌

𝜕𝑥2
+

𝜕2𝜌

𝜕𝑦2
+

𝜕2𝜌

𝜕𝑧2
 

This conforms to the usual diffusion-reaction from physics (as stated in Evans, 2009, 

Chapter 2), 𝜕𝜌 𝜕𝑡⁄ + Δ𝜌 = 0 (with constant diffusion rates uniformly equal to 1), after 

adding the additional terms brought by the law of mass action considering that for a very 

small neighborhood of a point (𝑥, 𝑦, 𝑧) the term [𝑋] is proportional to 𝜌𝑋 and the chemical 

𝑋 may be assumed approximately homogeneous. 
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2.4 PARALLEL IMPLEMENTATION OF SPATIAL κ 

2.4.1 The κ Algorithm 

In this section, we introduce a modified version of the SSA that allows more complex 

simulations in a variety of contexts beyond the standard chemical applications. We do not 

go in-depth into the mathematical formalisms behind the modifications of the SSA 

introduced here; these details may be consulted in publications about the κ language such as 

the work of Danos et al. (Danos et al., 2007a; Danos et al., 2007b). The discussion below 

follows the theoretical framework setup by Danos, with a schematic graphical notation 

whenever possible. For the actual language and syntax used in standard implementations 

such as KaSim, please consult the KaSim reference manual (Boutillier, Feret, et al., 2018). 

Nevertheless, the examples in this and the following sections can be easily implemented in 

KaSim, which provides all of the standard κ framework. Further examples that involve 

spatial information are designed to be compatible with PISKaS (Perez-Acle et al., 2018), 

which is a spatially-enhanced fork of KaSim. 

The classical Gillespie´s algorithm treats every kind of chemical compound (or, in 

general, a variation of an agent) as a separate type, no matter how similar it may be to a 

previously existent type of compound (Danos et al., 2007b). This becomes problematic when 

there is a large number of different compounds that are similar —but not identical— as there 

is no way to express this similarity properly in the classic SSA framework, even if these 

cannot participate in the same reactions. Thus, these results in state-vectors with a large 

number of entries and (usually) several almost-duplicate reactions or rules involving small 

variants of the same compound, requiring too many computational resources to simulate 

such systems. Another problem is that the described SSA framework ignores the internal 

structure of the compounds involved. This is a problem when dealing with complex 

molecules such as proteins or DNA since their internal structure can severely influence the 

outcome of a chemical process out of sheer geometrical positioning, let alone physical or 

chemical constraints caused by the size of the molecule. Last, biological systems and other 

complex systems are naturally compartmentalized (cellular compartments), a characteristic 

difficult to replicate into a model using an algorithm that assumes a homogeneously mixed 
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environment where all reactions take place. 

The first two observations made above suggest that a modification of the data 

structure used to store the current status of the system, as well as a change in the idea of what 

constitutes an agent, might allow for a more flexible and robust framework. The concerns 

about information regarding the fixed structure of a compound suggest that an atom is 

probably a better model than a molecule for the concept of “agent”. An atom interacts with 

other atoms in several ways, the covalent bond being among the simplest to understand 

conceptually: Each atom can form a finite number of pre-established links of a specific type 

with one or more other atoms, which in turn can also have links between themselves. For 

instance, an oxygen atom can form two covalent bonds, or in other words, it has two “open 

places” where other atoms can bind to, while a hydrogen atom can form a single covalent 

bond. When two hydrogen atoms bond to one oxygen atom by forming two covalent bonds, 

a water molecule is formed. Similarly, chemical reactions can be expressed as the formation 

or destruction of links between reactants or agents. 

This motivates storing the current state of the system as a site graph (Danos et al., 

2007b). This graph corresponds to a network in which the nodes or agents have a specific 

structure that limits the kinds of connections or bonds that can be formed. More specifically, 

• Each agent has a type. Going with our chemical analogy, this would correspond to the 

specific element (hydrogen, helium, oxygen, etc.) of each atom. 

• Each type has a set of sites associated with it. Every site has a set of possible internal states. 

In our example, these sites correspond to the places in the atom where covalent bonds can 

be formed, while the internal states may correspond to markers of phenomena like partial 

charges, or differentiators between distinct types of chemical bonds. 

• Each link between two nodes (agents) connects exactly one site from one of the agents to 

one site of the other; reciprocally, a site from an agent can be involved with at most one link 

with another agent. In our chemical example, this means, for instance, that each of the two 

“open positions” from an oxygen atom can participate in only one covalent bond with 

another atom and thus this atom can be bound to at most two other atoms at once. 

Reactions or rules can be also described via site graphs. A rule 𝑟 is expressed via a 

site graph 𝑆𝑟 and a set of transformations 𝐴𝑟, which corresponds to the addition or removal 
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of edges between sites of 𝑆𝑟, changing their internal states, or adding or removing agents 

from 𝑆𝑟. 

As a simple example, let us consider the reaction of electrolysis 2H2O → 2H2 + O2. 

To describe this reaction, only two types of agents are needed: 𝐻 and 𝑂, each one 

representing the type of atom. Agents of type 𝐻 have one site, ℎ1, while agents of type 𝑂 

have two sites 𝑜1 and 𝑜2. For our current purpose, neither of the sites has a specific internal 

state. The reactants can be represented by a graph with six nodes (agents), two of type 𝑂 and 

the rest of type 𝐻; each of the four sites 𝑜𝑖, 𝑖 = 1,2 is linked to a single ℎ1 site from one of 

the 𝐻 agents. Furthermore, the set of transformations to be applied to this graph are as 

follows: 

• Delete the four 𝑜𝑖ℎ1 links. 

• Add a ℎ1ℎ1 link to the two 𝐻 agents corresponding to each water molecule. 

• Add two links, 𝑜1𝑜1 and 𝑜2𝑜2, between the two 𝑂 agents. 

 

The effects of these operations on a set of agents can be observed graphically in 

Figure 2-1. 

 

 

Figure 2-1. Rearrangement of agents over the application of a rule corresponding to the 

reaction of hydrolysis. 

 

Observe that by the specific combinations of two types of agents, we are able to 

describe three different species participating in this reaction (H2O, H2, O2). With the same 

two agents, other chemical species can be easily described. For example, ozone can be 

described using three O agents and different internal states to represent the hybridization of 

the chemical bonds involved. Another example is hydrogen peroxide, which uses two H and 
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two O agents, with a pattern of links mimicking the chemical structure of the molecule. By 

adding only a third type of agent with four sites 𝑐1, ..., 𝑐4, we can include carbon atoms in 

our model and thus represent the whole set of hydrocarbon species and other related types 

of compounds. 

The κ framework allows declaring certain internal states or site links as “undefined,” 

which allows applying the same rule to similar, but not identical, species. For example, the 

formation of alcohols from hydrocarbons corresponds to a set of very similar reactions, 

usually consisting of replacing a single 𝐻 agent by a two-agent subgraph corresponding to 

the radical −OH. Therefore, specifying the whole structure of the hydrocarbon involved is 

usually superfluous. 

2.4.2 Non-Chemical Models in κ: A Predator–Prey Ecosystem 

While the original motivation for the SSA comes from the literal expression of chemical 

reactions, this framework can be used to model other types of systems where the agents 

involved do not represent chemical units but instead more complex entities. A simple 

example of this is the implementation of a predator–prey model, where agents represent a 

predator species that may consume other agents (prey). In this model, additional agents may 

also be used to indicate the availability of limited resources, such as plants or edible fruits 

for the sustenance of herbivorous prey. 

A simple system involving two species 𝐴, 𝐵 (prey and predator, respectively) can be 

modeled via a set of Lotka–Volterra equations (as seen in Kot, 2001, chapter 7, section B), 

which correspond to the following system of differential equations: 

𝑑𝐴

𝑑𝑡
= 𝛼𝐴 − 𝛽𝐴𝐵 

𝑑𝐵

𝑑𝑡
= 𝛾𝐴𝐵 − 𝛿𝐵 

Here, 𝛼, 𝛽, 𝛾, and 𝛿 are nonnegative rate constants. The two terms of the first 

equation are interpreted as follows: 𝛼𝐴 means that the rate of growth of the prey species is 

proportional to the number of extant members of the species (i.e., exponential growth); 

−𝛽𝐴𝐵 represents the predation rate of members of 𝐴 by the 𝐵 species, which assuming a 



28 

 

 

 

homogeneous population is proportional to the product 𝐴𝐵. With respect to the two terms of 

the second equation, these are interpreted as: 

 The term 𝛾𝐴𝐵 corresponds to the growth rate of the predator species, which is 

proportional to the number of extant members of 𝐵 and 𝐴 as well as to the number of 

available resources or the amount of prey population;  

 The term −𝛿𝐵 is the rate of extinction of the predator, assumed to be proportional to the 

current population of 𝐵. 

Note that the rate of natural death of 𝐴 is neglected (technically, it can be represented 

by a diminished value of the constant 𝛼) as well as the dependence of 𝐴 on other resources 

(for instance, available plants for an herbivorous animal). Moreover, the population density 

of both species is assumed constant. For instance, sexual reproduction is not considered, no 

age groups are taken into account (which makes this model inaccurate for predator species 

that target young members of the prey species), and no extinction of any of the involved 

species can be studied since the population densities are assumed to be constant. 

The simple Lotka–Volterra model can be implemented as a κ model, allowing the 

inclusion of different parameters into the model such as natural dead, variable population 

densities, sexual reproduction, and age groups. In order to simplify notation, we expressed 

the model as chemical equations with internal states being represented via parentheses and 

linked sites via lines whenever necessary. 

The rules of reproduction for 𝐴 and extinction for 𝐵 have a very simple format: 

𝑟1: 𝐴 → 2𝐴 

𝑟2: 𝐵 → ∅ 

The reproduction rule for 𝐵 has 𝐴 as a catalyst, as the frequency at which 

reproduction of 𝐵 occurs depends on the 𝐴 population, as 𝐵 will attempt to reproduce more 

often if there are more resources available, but this does not mean they should consume a 

member of 𝐴 every time they attempt to reproduce. Thus, the rule is 

𝑟3: 𝐴 + 𝐵 → 𝐴 + 2𝐵 
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Finally, the predation rule has 𝐵 as a catalyst; for it to occur, a member of 𝐴 needs to 

encounter a predator 𝐵. In this model, “hunger” or similar states are not considered. Thus, 

the rule appears as follows: 

𝑟4: 𝐴 + 𝐵 → 𝐵 

The rates of each of those rules depend on the values of 𝛼, 𝛽, 𝛾, and 𝛿 and they can 

be determined in the same way as if they were chemical reactions. Note that this model does 

not take into account internal states (e.g., hunger) or links between agents (e.g., two 𝐵 agents 

acting together to capture prey). Next, we will discuss possible improvements to the model 

by using internal states or links to represent this type of situation. 

One simple addition to this model would be the implementation of sexual 

reproduction. Of course, this will not apply to every type of species, and its effects might be 

negligible in simple ecological systems; however, for environments with a large disparity in 

sex distribution or acute sexual dimorphism, this approach might provide an accurate model. 

To implement sexual reproduction into the model, we can use sites as a property of 

the agents. Sites are variables that can be used to store a finite set of values or states in the 

form of qualitative or quantitative descriptors. Thus, we can use a site 𝑔 in each agent to 

represent the sex (e.g., ♀, ♂ for male and female, respectively, or ♆ for species with 

hermaphroditic individuals). Thus, the rules for sexual reproduction are as follows: 

𝐴(♀) + 𝐴(♂)  →  𝐴(♀) + 𝐴(♂) + 𝐴(♀) 

𝐴(♀) + 𝐴(♂)  →  𝐴(♀) + 𝐴(♂) + 𝐴(♂) 

𝐴(? ) + 𝐵(♀) + 𝐵(♂)  →  𝐴(? ) + 𝐵(♀) + 𝐵(♂) + 𝐵(♀) 

𝐴(? ) + 𝐵(♀) + 𝐵(♂)  →  𝐴(? ) + 𝐵(♀) + 𝐵(♂) + 𝐵(♂) 

Note the “𝐴(? )” term on the left side of the predator reproduction rules. As stated 

before, we allow for sites or links to be undefined so a single rule can be applied to every 

combination of internal states of 𝐴. In this case, what matters is that there are available 

resources (i.e., prey) and not the specific sex of the prey animals present. The “𝐴(? )” term 

on the right-hand side means that the corresponding term on the left-hand side remains 

untouched. These rules add new agents of a specific type (𝐴(♂), 𝐴(♀), 𝐵(♂), 𝐵(♀)) without 

affecting the existing ones. 
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Age information or the stage of maturation of the agents can also be useful to improve 

the Lotka–Volterra basic model. For instance, we can suppose that predators more often 

capture young or elderly animals of the prey species due to inexperience, physical weakness, 

or illness. Similarly, only animals that have reached sexual maturity can reproduce, and in 

some species, elderly animals present diminished fertility. 

To incorporate this information into the model, we include an additional internal state 

𝑑, whose values correspond to the different stages of development of each species, for 

instance {𝐷𝑐, 𝐷𝑦, 𝐷𝑎 , 𝐷𝑒} (child, young or adolescent, adult or sexually mature, elderly or 

senescent, respectively). We need to define rules of growth that make every agent transit 

through those internal states sequentially:  

𝐴(? , 𝐷𝑐) → 𝐴(? , 𝐷𝑦) 

For examples of sex- and age-segregated ecological models that served as the 

inspiration for the set of rules shown here, see Fundamentals of Mathematical Ecology, by 

Mark Kot (Kot, 2001). 

Every rule introduced above could be reproduced in a relatively simple way in the 

usual Gillespie´s framework. However, the possibility to link agents through sites has not 

yet been covered in the κ language in this section. As an example, we will consider the 

formation of herds in both predator and prey species. A large group of prey animals can fend 

off a lone predator, while a prey animal can be more easily overwhelmed by a herd of social 

predators when alone or in a small group. 

A potential way to implement this would be to add a few sites through which an agent 

can be linked to others of the same kind. Those links can represent social relations in the 

herd, and we can define rules to represent both herd protection and social hunting. For 

instance, we can add a few “relation sites,” e.g., 𝑝♀, 𝑝♂, 𝑐, 𝑚 (mother, father, child, mate) to 

represent a monogamous species with just one offspring per reproduction event and define 

the following state rules: 

𝐵(♀, 𝐷𝑎) 
𝑚
 

 𝐵(♂, 𝐷𝑎) → 𝐵(♀, 𝐷𝑎) 
𝑐, 𝑝♀

 𝐵(♂, 𝐷𝑐) 
𝑝♂, 𝑐

 𝐵(♂, 𝐷𝑎)  
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Here, the notation 𝐵
𝑠, 𝑡

 
𝐵 means site 𝑠 from agent 𝐵 is linked to site 𝑡 of another 

agent 𝐵. Thus, this rule reads as follows: two agents who are in the “adult” stage of 

development and are a mating couple (there is a link between the 𝑚 sites of both agents) 

engender a third agent (in this case, female) and the 𝑐 site of each parent agent gets linked 

to the respective 𝑝 site of the new 𝐵(♀, 𝐷𝑐) agent (the former two agents get marked as 

parents to the new child agent). 

2.4.3 Spatial Information in κ  

Usually, the setup for the simulation algorithm of the κ framework in the standard 

implementations of κ such as KaSim (Boutillier, Feret, et al., 2018; Danos et al., 2007b) 

makes the same physical assumptions as the standard SSA, in particular, that the medium is 

homogeneous and well-stirred, which means that the agents are uniformly distributed in the 

environment. This simplifies the model defining the probability of two agents interacting as 

proportional to their respective population. While this assumption is valid for certain 

systems, e.g., chemical reactions in gases, it might not be applicable to systems that are not 

homogeneous or have spatial dependences. For instance, the cell membrane provides 

different chemical and physical properties to the intracellular and extracellular medium. 

Moreover, the transfer of certain substrates from one medium to the other is in itself a 

phenomenon of interest, which is entirely ignored by the κ framework. Thus, incorporating 

spatial information into an implementation of the κ language allows for more realistic 

models. However, the assumption of homogeneity cannot be completely eliminated, as we 

usually care only about large-scale tendencies and not individual agent behavior. 

In the cell membrane system, there are two different and clearly defined media. 

Interactions between them consist of transportation of certain agents from one environment 

to the other through the membrane. We assume that both environments and cellular 

compartments are homogeneous; hence, the probability of a certain agent approaching the 

membrane depends on the quantity of that agent, which can be represented using rules. 

One way to implement such a system of compartments is simply to add a new site 𝑤 

to every agent to represent each medium, which can have two states 𝑖 and 𝑜 corresponding 
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to inside and outside the cell. Each rule becomes a set of rules, one per compartment, to 

ensure that agents only interact with other agents in the same compartment: 

𝐴 + 𝐵 → 𝐶 becomes {
𝐴(𝑖) + 𝐵(𝑖) → 𝐶(𝑖)

𝐴(𝑜) + 𝐵(𝑜) → 𝐶(𝑜)
 

The transport rules change the states of agents from one compartment to another. In 

this case, we can represent this via rules like 𝐴(𝑖) → 𝐴(𝑜) and 𝐴(𝑜) → 𝐴(𝑖), each with a 

certain rate. In this way, to simulate osmosis through equal volumes, each of those rules 

should have an equal rate, such that the compartment with higher concentration has a higher 

rate of transportation. 

For a more complete system with many more compartments, we can separate the cell 

space into a series of subspaces that we assume approximately homogeneous. This is 

analogous to the Riemann sums method to compute an integral: 

∫ 𝑓(𝑥)𝑑𝑥
1

0

≈ ∑
𝑓(𝑘 𝑛⁄ )

𝑛

𝑛−1

𝑘=0

 

To recall, this method allows to approximate the area under a curve given by the 

function 𝑓 as a sum of the areas of small rectangles (Apostol, 1967). Here, we divide the 

interval [0,1] into 𝑛 equal subintervals (subspaces) of length 1/𝑛, and we assume that the 

value of 𝑓(𝑥) in [𝑘/𝑛, (𝑘 + 1)/𝑛] is approximately 𝑓(𝑘/𝑛), i.e., this assumption does not 

significantly affect the value of 𝑓(𝑥) and it is similar to the “approximately homogeneous” 

assumption from above. For Riemann summations, a large value of n, and, thus, smaller 

subintervals, gives a better estimation of ∫ 𝑓(𝑥)𝑑𝑥
1

0
, at least when 𝑓 is a continuous function. 

In a similar way, we can suppose that with smaller subspaces we should reach a better 

approximation. 

If the space of agents has some kind of geometrical properties, we can represent them 

via the transport rules: Compartments that are geometrically adjacent should have a higher 

rate of transfer reactions. For instance, we could represent a cell as two different 

compartments, nucleus and cytoplasm (Figure 2-2), interconnected by several transport 

mechanisms, or build a more complex system where the nucleus is represented as a central 
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compartment surrounded by several other compartments representing subspaces of the 

cytoplasm (Figure 2-3). 

 

 

Figure 2-2. Internal representation and interpretation of a two-compartment model for a cell.  

Note that the geometry of the cell is not taken into account and thus the cytoplasm and the 

nucleus are taken as entirely homogeneous. 

 

 

Figure 2-3. Potential compartment arrangements to represent the geometry of a cell.  

(Left) A 2D arrangement of nine compartments with eight representing the cytoplasm and 

the central one representing the nucleus. The arrows represent possible transport rules. 

(Right) A potential 3D version of the former 2D arrangement. The marked (central) 

compartment corresponds to the nucleus, while the other 26 represent the cytoplasm; there 

are transport rules among compartments that share a face. 

 

To represent the geometry of the system, here we assume that there are only transport 

rules between adjacent compartments, automatically considering that the rate of any 

transport rule between nonadjacent compartments is zero. 

As stated before, this does not require a special implementation of κ and can be done 

in the usual implementations such as KaSim by using a special site whose states correspond 

to the different compartments. However, since we need a copy of a rule for each 

compartment, this may result in several redundant rules that may severely affect execution 

time. Thus, an implementation allowing the explicit declaration of compartments can reduce 

the total number of rules needed and improve the performance of the simulation. In what 

follows, we will discuss one such implementation, namely Parallel Implementation of a 
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Spatial Kappa Simulator (PISKaS, Perez-Acle et al., 2018), which is a forked branch of 

KaSim. PISKaS focuses on the independent, parallel simulation of each compartment; 

however, most remarks below should apply to any spatial κ implementation. 

2.4.4 Meta-population Dynamics in a Predator–Prey Model with Explicit 

Spatial Information 

In the following section, we will introduce a model of population dynamics that attempts to 

reproduce the experimental results obtained in the work of Holyoak and Lawler (Holyoak & 

Lawler, 1996). The study subject here was the evolution of the population of a set of predator 

and prey species in an environment that allows spatial migration. The goal is to verify 

whether a prey species which is prone to extinction by predation can survive in a medium 

that allows for migration. The end result of the simulation appears to conform to the 

experimental results; further details of an implementation of this simulation can be consulted 

(Fuenzalida et al., 2015). 

The experiment in Holyoak & Lawler (1996) studied two species of microorganisms, 

Didinium nasutum (predator) and Colpidium striatum (prey), which inhabit an environment 

consisting of several bottles (compartments) linked by four-way connectors in a specific 

configuration. Given that the prey species shows logistic behavior (i.e., short-term 

exponential growth, which eventually is stunted due to lack of resources, resulting in a stable 

population) in the absence of predators, it becomes natural to suggest a Lotka–Volterra 

model to represent the interaction between those two species, with rules similar to the ones 

introduced in Section 2.4.2. 

This model incorporates transport rules to represent microorganisms from both 

species moving through the different bottles. A coarse geometry has to be introduced, 

representing the spatial arrangement of the system of bottles and connections. Each bottle 

can be assumed to be a homogeneous medium and, thus, can be taken as a compartment. In 

the original experiment, the configurations consisted of square grids of bottles joined by 

four-way connectors that linked each bottle to the bottles adjacent horizontally, vertically, 

and diagonally, as seen in Figure 2-4. 
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Figure 2-4. Representation of the bottle arrangement and the four-way connections linking 

each bottle to its neighbors. 

 

Thus, this simulation is performed in an arrangement of 25 compartments, where 

each one represents a single bottle. The bottles have labels that represent their position in a 

square matrix of 5 rows and 5 columns; namely, a bottle labeled (𝑖, 𝑗) is placed in the 𝑖-th 

column, 𝑗-th row. For example, the third bottle from the second row (from bottom to top) is 

labeled (3,2). Transport rules allow the microorganisms from a bottle to move to other 

bottles but only to adjacent ones; for instance, a microorganism in the bottle (3,4) can move 

only to the bottles with labels (2,3), (2,4), (2,5), (3,3), (3,5), (5,3), (5,4), or (5,5). 

The rate of movement of the microorganisms between bottles is determined by 

analysis of the physical characteristics of the system. If no further information regarding the 

physical properties of the system is provided and there are no external factors affecting inter-

bottle transportation, it is reasonable to assume that the movement of the prey species 

through the bottles corresponds to simple diffusion. In this way, diffusion happens at the 

same rate through each connection the bottles have, which is linked to the physical capacity 

of those connections (assumed equal in all directions). The predator species follows similar 

rules. This is summarized by the following set of rules, with equal rate 𝜆𝑇 for every non-

boundary compartment: 
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transport 𝐴: (𝑖, 𝑗) → (𝑖 − 1, 𝑗 − 1)

transport 𝐴: (𝑖, 𝑗) → (𝑖, 𝑗 − 1)

transport 𝐴: (𝑖, 𝑗) → (𝑖 + 1, 𝑗 − 1)
⋮

transport 𝐴: (𝑖, 𝑗) → (𝑖 + 1, 𝑗 + 1)

 

with eight rules in total, one for every adjacent bottle. For bottles located in the border, the 

same reasoning applies, but with fewer rules (e.g., the bottle with a label (1,2) should have 

five neighbors instead of eight, so there are five rules in that case). Given that some bottles 

may have more than one connection with another bottle (e.g., to get from (2,2) to (3,2) one 

can go up right first and then down right or down right first and then up right), we do not 

really need to assume all transport rates are equal and may adjust them accordingly if needed. 

After stating the transport rules, we specify the behavior of both species. First of all, 

the agents will be of two types, prey (𝐴) and predator (𝐵); the prey species reproduce by 

simple mitosis, while the predator requires a certain minimal mass before it can undergo this 

process (Holyoak & Lawler, 1996). To implement this distinction, we need to introduce a 

way to count how many agents of the prey species have been consumed by a specific 

predator agent, and only allow “sated” predators to reproduce. We implement this by 

introducing agents with the following specifications: 

• Prey: The associated agents have two sites, 𝑖 and 𝑠. We use the second site to store the 

status of the prey agent (in this case, either alive, ℓ or dead, 𝑑), while the first site is used to 

link the prey agent to other agents to set up the aforementioned “counter.” 

• Predators: The corresponding agents have a single site 𝑎 that is used to create links to a 

prey agent and store the state of the predator agent (ℎ, 𝑓, 𝑑 corresponding to hungry, sated 

or fed, and dead, respectively). 

The rules are as follows: 

• Prey species reproduction (mitosis): 

𝐴(? , ℓ) → 𝐴(? , ℓ) + 𝐴(? , ℓ) 

• Predator feeding: 

𝐵(ℎ) + 𝐴(? , ℓ) → 𝐵(ℎ) 
𝑎, 𝑖

 𝐴(? , 𝑑) 
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? 
? , 𝑖

𝐴(? , 𝑑) + 𝐴(? , ℓ) →? 
? , 𝑖

 𝐴(? , 𝑑) 
𝑠, 𝑖

 𝐴(? , 𝑑) 

The first rule is a rather straightforward statement of the situation that happens when 

a hungry predator meets an alive prey animal that then is consumed. The link formed 

between the 𝐵 agent and the dead 𝐴 agent indicates that the latter is incorporated into the 

mass of the predator. 

The second rule, although less intuitive in the formulation, corresponds to the exact 

same statement; if an alive prey agent meets a dead prey agent that has its 𝑖 site linked to 

some other agent, then the dead agent must be part of the mass of a predator, and thus this 

means the alive prey has encountered a predator. Once again, when this rule is applied, the 

alive prey is killed and consumed. Since both rules represent the same phenomenon, they 

should be assigned equal rates. 

 

• Predator satiation: 

𝐵(ℎ) 
𝑎, 𝑖

 𝐴(? , 𝑑) 
𝑠, 𝑖

 𝐴(? , 𝑑) 
𝑠, 𝑖

… 
𝑠, 𝑖

 𝐴(? , 𝑑) → 𝐵(𝑓) 

This rule specifies that a 𝐵(ℎ) agent with a sufficiently long chain of 𝐴(? , 𝑑) agents 

linked to it (with “sufficiently long” corresponding to a specific number that represents the 

average amount of prey eaten before a predator undergoes mitosis) becomes a 𝐵(𝑓) agent 

(i.e., not hungry but sated) and the 𝐴(? , 𝑑) agents are discarded and eliminated from the 

simulation. To ensure that the 𝐴(? , 𝑑) agents are eliminated from the simulation immediately 

so that a predator does not continue feeding after reaching the satiation level, we give this 

rule a rate of ∞. 

 

• Predator mitosis: 

𝐵(𝑓) → 𝐵(ℎ) + 𝐵(ℎ) 

This is similar to prey mitosis, with the only difference being that we only allow 

𝐵(𝑓) agents (i.e., predators that have gathered enough mass) to undergo this process. Since 

the agents representing the progeny of the parent agents will only have a fraction of the mass 
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of their parent, they need to gather additional mass themselves before they undergo 

reproduction, thus starting in the ℎ (hungry) state. 

 

• Predator unfed: 

? 
? , 𝑖

 𝐴(? , 𝑑) 
𝑠, 𝑖

 𝐴(? , 𝑑) → ? 
? , 𝑖

 𝐴(? , 𝑑) 

This rule is the opposite of the second feeding rule. It states that a predator that has 

not been able to consume prey for long stretches of time has to utilize some of the mass it 

has already consumed and stockpiled for sustenance. 

 

• Prey death: 

𝐴(? , ℓ) → ∅ 

• Predator death: 

𝐵(ℎ) → ∅ 

𝐵(𝑓) → ∅ 

𝐵(ℎ) 
𝑎, ?

 ? → ∅ 

The reason to have three distinct rules for predator death is to give different rates to 

each agent depending on how “hungry” they are. A 𝐵(ℎ) agent with no links does not have 

food reserves and is “starving” (the end result of a long period unfed), thus it has a higher 

rate of death than a 𝐵(ℎ) agent linked to others, i.e a predator that has been able to feed 

recently. Similarly, a 𝐵(𝑓) agent has a big reserve of mass and thus is not susceptible to 

starvation, hence having a lesser rate of death than other 𝐵 agents. 

 

• Prey cleanup: 

𝐴(? , 𝑑) → ∅ 

This eliminates any 𝐴(? , 𝑑) agents that do not have their 𝑖 site linked to any other 

agent. Those 𝐴(? , 𝑑) agents appear whenever a predator 𝐵(ℎ) linked to one or more 𝐴(? , 𝑑) 

dies before reaching satiation, and since they serve no purpose anymore they are removed 
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from the simulation. As before, to ensure those agents are removed immediately we assign 

a rate ∞ to this rule. 

With those rules, together with the transport scheme outlined above, we have set up 

a description for the predator–prey compartmentalized system as set up in the experiment by 

Holyoak and Lawler (Holyoak & Lawler, 1996). For a comparison between the results of 

the simulation and the experimental output, the reader may consult Fuenzalida et al. 

(Fuenzalida et al., 2015). 

An equivalent ODE-based model applied in this specific example provides a fixed 

output: either both species always go extinct or both species manage to survive. This depends 

only on the parameters (rates) of the model, and thus it is impossible to see the effect that 

random fluctuations have on the output. The experiment by Holyoak and Lawler (Holyoak 

& Lawler, 1996) shows that these fluctuations are actually of importance in the current 

situation, as some iterations of the experiment showed total extinction while others result in 

survival under the same initial conditions. This can be interpreted as a result of the way in 

which the population of prey species migrates and distributes along with the bottles (which 

can be seen as random dispersal) and how the formation or dispersion of aggregates 

determines its survival, and by extension, the survival of the predator species as well. The 

usage of stochastic models in place of a deterministic ODE-based set of equations allows us 

to observe the effect that those random events have on the outcome of the simulations. 

This model also allows us to observe the importance of spatial characterization in a 

simulation (see Figure 2-5). In this framework, we can easily observe how an isolated bottle 

usually reaches extinction events very quickly, which is analogous to the situation of a 

homogeneous medium with uniform population densities of the prey and predator species. 

Also, the complete system of linked bottles shows a much higher likelihood of survival of 

both species, also exhibiting the oscillatory behavior of both populations associated with the 

prey species favoring bottles with fewer population densities. 
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Figure 2-5. Population behavior of the species in a bottle arrangement of four cells.  

The figure shows the influence of spatial configuration, in particular, isolation on the left 

and migration on the right and extinction events. 

 

2.4.5 A Circadian Clock Model 

In this section, we discuss a simplified model of the mammalian circadian clock. Our goal 

is to represent how the day–night cycle affects the transcription processes inside the cell, 

resulting in a 24-h periodic behavior regarding the concentration of proteins, transcription 

factors, mRNA, and others. This is the second sample model described in (Fuenzalida et al., 

2015) as an example of the usage of PISKaS for simulations, and it is based on a certain 

system of transcription factors regulated by the presence of sunlight and the molecular 

interactions and feedback loops initiated by them, as described in (Agostino et al., 2011). 

The system modeled here consists of two compartments, corresponding to the 

nucleus and cytosol of the cell. Additional complexity can be added by dividing the cytosol 

into a set of compartments to represent the heterogeneity of the environment. For instance, 

the cell may be represented by a cube of 3 × 3 × 3 = 27 compartments as shown in the right 

panel of Figure 2-3, with the central compartment representing the nucleus and the remaining 

26 the cytosol, reflecting its geometric structure. However, for the sake of simplicity, this 

example uses the least complex two-compartment model. 

We modeled the periodic behavior of five different genes in this model, PER1, PER2, 

CRY1, CRY2, and NR1D1, each coding a protein. In addition, there are two transcription 

factors (CLOCK and BMAL1) and a phosphatase (CKI), all of which are assumed to be at 
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constant concentrations within the cell. The model also considers an agent for each mRNA 

and its transportation to the cytoplasm. All protein components of this model are described 

in Table 2-1. 

 

Table 2-1. Protein components of the circadian clock model and their respective UniProt 

IDs. 

 

Type Name UniProt Id 

Genes PER1 O15534 

 PER2 O15055 

 CRY1 Q16526 

 CRY2 Q49AN0 

 NR1D1 P20393 

Transcription factors CLOCK O15516 

 BMAL1 O00327 

Phosphatase CKI Q06486 or P49674 

 

Genes and corresponding messenger RNA are represented by agents 𝐺(𝑖, 𝑠1, . . . , 𝑠5) 

and 𝑅(𝑖), respectively, where the 𝑖 site is used as an identifier of the encoded protein and, in 

the case of the gene agents, the 𝑠1, ..., 𝑠5 sites allow linking to other agents that represent 

transcription factors. Those agents, 𝑇𝑒 and 𝑇𝑟, will have two sites, one to allow binding to 

DNA, while the other allows binding to certain proteins. 

The proteins will be actually represented by different types of agents instead of a 

single one with an “identifier” site. The reason for this is different proteins interact in specific 

ways with the transcription factors and with each other, thus resulting in different numbers 

of binding sites and reactions. In this case, our protein agents will be declared as follows: 

 

• 𝑃𝐸𝑅(𝑖, 𝑝1, 𝑝2, 𝑠𝑐𝑟𝑦, 𝑠𝑐𝑘𝑖): here, 𝑖 is an identifier taking the values 1 or 2 (as we include two 

types of proteins that form similar kinds of bonds), 𝑝1 and 𝑝2 are phosphorylation sites (with 

states 𝑝 phosphorylated and 𝑑 not), and the remaining sites allow linking to other proteins 

and agents. 
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• 𝐶𝑅𝑌(𝑖, 𝑠𝑝𝑒𝑟, 𝑠𝑐𝑙𝑘): same as before, the 𝑖 site is an identifier with two possible values, and 

the s sites are for interaction with other agents. 

• 𝑁𝑅1𝐷1(𝑟): for this agent, we only include one site, which allows linking to a transcription 

factor 𝑇𝑟. 

 

The rules describing the processes of phosphorylation and dephosphorylation that 

involve PER protein agents are handled by the phosphatase agents CKI. 

 Transport rules are to be limited to certain kinds of agents, since, for instance, we do 

not allow DNA to “leak” to the cytosol. Unlike the previous example, the linking between 

compartments is not symmetrical and has specific directions for each transport rule. For 

instance, we allow mRNA to move from the nucleus, where it is synthesized, to the cytosol 

where protein production occurs. However, there is no transport of mRNA from the cytosol 

back to the nucleus. In contrast, we allow certain PER and NR1D1 proteins to move in both 

directions depending on the status of certain binding sites. A sample of those rules is as 

follows: 

transport 𝑅: 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 → 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 

transport 𝑃𝐸𝑅 
𝑠𝑐𝑟𝑦, 𝑠𝑝𝑒𝑟

 𝐶𝑅𝑌: 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 → 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 

transport 𝑃𝐸𝑅(? , 𝑝, 𝑢): 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 → 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

transport 𝑁𝑅1𝐷1: 𝑐𝑦𝑡𝑜𝑠𝑜𝑙 → 𝑛𝑢𝑐𝑙𝑒𝑢𝑠 

The 𝑅 agents are only allowed to go in one direction, while PER agents are allowed 

to move in both directions, but only in certain arrangements (e.g., intranuclear transport is 

only allowed during a specific state of phosphorylation, while moving toward the cytosol is 

affected by the interaction between PER and CRY proteins). 

The remaining rules are also different in the two compartments. For example, since 

there is no DNA in the cytosol, there is no need to process rules pertaining to DNA 

transcription in the corresponding compartment, and similarly, there is no translation in the 

nucleus. PISKaS and similar rule-based compartmentalized software usually allow declaring 

some rules as exclusive for a subset of compartments. In this case, we have several rules to 

represent the phases of the encoding and expression process: 
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• Translation rules: Those rules govern the production of proteins with the information 

encoded in the corresponding messenger RNA, and thus are cytosol-exclusive. They take a 

very simple form, e.g., 

𝑅(𝑝𝑒𝑟1) → 𝑅(𝑝𝑒𝑟1) + 𝑃𝐸𝑅(1, 𝑢, 𝑢, 𝑠𝑐𝑟𝑦, 𝑠𝑐𝑘𝑖) 

 

in which the identifier site of the mRNA agent 𝑅 takes the value 𝑝𝑒𝑟1 to indicate that it 

encodes a 𝑃𝐸𝑅(1, . . . ) protein. 

 

• Transcription rules: This kind of rule is nucleus-exclusive and manages the production 

of mRNA (𝑅(𝑖) agents) from the corresponding DNA in the nucleus (𝐺(𝑖, . . . ) gene agents) 

in the presence of adequate transcription factors. Those rules are stated in ways similar to 

this example: 

 

 

in which an NR1D1-encoding gene bonded through its first three sites to adequate 

transcription factors produces a 𝑅(𝑁𝑅1𝐷1) agent, representing the corresponding 

messenger RNA. This agent is afterward moved to the cytosol compartment using the 

respective transport rules, where it induces the creation of a 𝑁𝑅1𝐷1(𝑟) agent, representing 

the phenomenon of protein translation. Note that, as it is to be expected, 𝐺(𝑁𝑅1𝐷1) agents 

act only as catalysts with no modifications either to themselves or to the associated 

transcription factors. 

 

• RNA and protein degradation: Rules to represent degradation, usage, or elimination of 

mRNA and proteins are included, in a similar way as the death rules in the previous example: 

𝑅(? ) → ∅ 
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RNA degradation rules are deemed exclusive to the cytosol, while protein degradation rules 

are applied in both compartments. 

 

• Phosphorylation rules: These are limited to PER agents and managed by CKI agents: 

𝐶𝐾𝐼 
ℓ, 𝑠𝑐𝑘𝑖

 𝑃𝐸𝑅(1, 𝑢, 𝑢) → 𝐶𝐾𝐼 
ℓ, 𝑠𝑐𝑘𝑖

 𝑃𝐸𝑅(1, 𝑝, 𝑢) 

 

Different rates can be given to other configurations involving distinct kinds of proteins or 

with other states of phosphorylation. 

 

• Protein reactions: A set of rules to determine the interaction between proteins and 

transcription factors both inside and outside the nucleus. These rules are either exclusive to 

the nucleus or to the cytosol. For example, the interaction of phosphatase agents with PER 

proteins and their further linking to CRY proteins only happens in the cytosol: 

𝑃𝐸𝑅(? ) + 𝐶𝐾𝐼 → 𝑃𝐸𝑅 
𝑠𝑐𝑘𝑖 , ℓ

 𝐶𝐾𝐼 

𝑃𝐸𝑅(? , 𝑝) + 𝐶𝑅𝑌 → 𝑃𝐸𝑅(? , 𝑝) 
𝑠𝑐𝑟𝑦, 𝑠𝑝𝑒𝑟

 𝐶𝑅𝑌 

 

Note that the second reaction has to follow the first as phosphorylation of the PER agent has 

to be achieved. 

 

• Light-dependent transcription: To express the dependence of this phenomena to the day–

night cycle, we incorporate an additional set of transcription rules, which do not depend on 

𝑇𝑒 or 𝑇𝑟 agents. Those rules have a variable rate, with much higher activity during the 

“daytime”; otherwise, they are similar to previously shown transcription rules (Agostino et 

al., 2011; Fuenzalida et al., 2015): 

𝐺(𝑝𝑒𝑟1) → 𝐺(𝑝𝑒𝑟1) + 𝑅(𝑝𝑒𝑟1) 

 



45 

 

 

 

Only PER(1) and PER(2) agents are generated by those rules, as these are the proteins 

intended to be dependent on the circadian clock. 

2.4.6 Perturbations 

In this section, we discuss a final feature of PISKaS and other rule-based simulation 

environments: the possibility to incorporate perturbations. Perturbations correspond to 

changes in the status of the system attributed to external factors; in κ, they can be manifested 

as variations on the rate of certain rules, for instance. 

In the current example, perturbations are implemented as if-then-else statements, 

which verify the timer of the simulation and assign values to certain variables accordingly: 

 

𝐢𝐟 0 ≤ 𝑇 mod 24 < 12 𝐭𝐡𝐞𝐧 

𝐬𝐞𝐭 𝜆𝐿 ←  0.2 

𝐞𝐥𝐬𝐞 𝐢𝐟 12 ≤ 𝑇 mod 24 < 24 𝐭𝐡𝐞𝐧 

𝐬𝐞𝐭 𝜆𝐿 ←  0.01 

 

Here, 𝑇 is the timer of the simulation, thus “T mod 24” represents the value shown in 

a 24-h clock. Daylight corresponds to the time when the clock is between 0 and 12, while 

nighttime corresponds to the remaining values in this time frame. The variable 𝜆𝐿 is then 

assigned as a rate to the rules from the Light-dependent transcription section above. Other 

kinds of perturbation rules exist and may be applied to different contexts. 

This model is a very simple example of an application of rule-based simulation of a 

biological process without explicit reference to the underlying rules of chemistry. It also 

shows a simulation in which there is a natural requirement for two compartments (as the 

nucleus and cytosol show vastly different phenomena) and how having an explicit 

framework for those compartments separation benefits the description of the model, as it 

allows for simpler expressions of the rules and other factors involved. It also shows how 

other features of the simulation environment, i.e., how the possibility of incorporating 

perturbations, allow us to describe many phenomena of interest. 
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As stated above, it is also possible to generate complex models of this phenomenon 

that incorporate more fine-grained spatial information regarding the cytosol, together with 

the mentioned two-environment situation. This allows for a much richer simulation but does 

not notably affect the expression of the rules, as we only need to distinguish nucleus and 

non-nucleus compartments. Thus, this gives us a model with good readability as the rules 

match closely the observed phenomena and we do not need to restate rules for each 

compartment. In addition, this model allows faster execution in a practical situation as the 

number of rules affects the execution time, and, for standard κ environments, this number 

scales at least linearly with the number of compartments involved. Analysis performed and 

described in (Fuenzalida et al., 2015) shows that the results in an environment that allows 

for explicit compartment declaration such as PISKaS do not suffer from severe losses of 

accuracy when the synchronization time is small, and thus follow the behavior of the 

observed biological system. 

2.5 CONCLUSIONS AND OUTLOOK 

In this chapter, we have described and introduced rule-based stochastic simulation. 

We highlighted the characteristics of this type of modeling and compared it with 

deterministic approaches widely employed in the modeling literature. In doing so, we 

explained several example models that will help the reader to understand the strengths and 

limitations of this approach. Simulation engines such as KaSim and its fork PISKaS to allow 

explicit spatial declaration are freely available in public repositories (KaSim can be obtained 

at github.com/Kappa-Dev/KaSim and PISKaS at github.com/DLab/PISKaS). The models 

describing the predator–prey ecosystem with explicit spatial information and the circadian 

clock for both simulation engines can be obtained at github.com/DLab/models.  

https://github.com/Kappa-Dev/KaSim
https://github.com/DLab/PISKaS
https://github.com/DLab/models
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2.6 NOMENCLATURE 

 

Term Definition 

Agent Abstract representations of entities on a system. An agent can bind 

each other´s agents through its sites. Optionally, each site could 

harbor a state, a label that recapitulates a feature of the mentioned 

site, or a numeric property of the agent. 

Bond  A representation of binding between two sites of two different agents. 

Compartment  A declaration that represents a physical or logical space or volume, 

which is part of a system. 

Rule  Chemical equations that represent elemental reactions where reactants 

are agents with a set of features necessary and sufficient for a 

transformation to occur (Left-Hand Side) and the resulting pattern for 

each participating agent (Right-Hand Side). κ rules declare reactions 

that change the value of a site, create or destroy bonds between 

agents, and create or remove agents on the modeled system. 

Site  An abstract representation of a physical or logical interface where an 

agent binds another agent or where different states are declared. 

Specie  Each of the individual instances of an agent. 

State  An abstract representation of a qualitative or quantitative 

characteristic that recapitulates a feature of the declared site. 

Transport  A declaration that states the link that uses an agent to travel from one 

compartment to another. Additionally, it may declare the frequency 

and time employed to move the agent between compartments. 
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3.1 SUMMARY 

Computational simulation is a widely employed methodology to study the dynamic behavior 

of complex systems. Although common approaches are based on either ordinary differential 

equations or stochastic differential equations, these techniques make several assumptions 

that, when it comes to biological processes, could often lead to unrealistic models. Among 

others, model approaches based on differential equations entangle kinetics and causality, 

failing when complexity increases, separating knowledge from models and assuming that 

the average behavior of the population encompasses any individual deviation. To overcome 

these limitations, simulations based on the Stochastic Simulation Algorithm (SSA) appear 

as a suitable approach to model complex biological systems. In this work, we review three 

different models executed in PISKaS: a rule-based framework to produce multiscale 

stochastic simulations of complex systems. These models span multiple time and spatial 

scales ranging from gene regulation up to Game Theory. In the first example, we describe a 
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model of the core regulatory network of gene expression in Escherichia coli highlighting the 

continuous model improvement capacities of PISKaS. The second example describes a 

hypothetical outbreak of the Ebola virus occurring in a compartmentalized environment 

resembling cities and highways. Finally, in the last example, we illustrate a stochastic model 

for the prisoner´s dilemma; a common approach from social sciences describing complex 

interactions involving trust within human populations. As a whole, these models 

demonstrate the capabilities of PISKaS providing fertile scenarios were to explore the 

dynamics of complex systems. 

3.2 INTRODUCTION 

Complex Systems (CSs) encompass a variety of phenomena where the interaction between 

constituent elements produces emergent properties. Among other characteristics, CSs 

exhibit degeneracy being highly robust to random failures (Kitano, 2002). Such systems are 

ubiquitous in nature and society and, when it comes to their analysis, they are usually 

represented as networks. In these networks, edges represent the interactions occurring 

between the entities composing the system, which are typically depicted as nodes. 

Nevertheless, networks are static pictures of CSs: they disregard its dynamic behavior 

precluding the study of some of its fundamental properties such as evolvability (Mayer & 

Hansen, 2017). Among other methods, two main approaches for the dynamic modeling of 

CSs prevail: deterministic methods based on ordinary differential equations (ODEs) or 

agent-based modeling, and stochastic approaches based either on stochastic differential 

equations (SDEs) or on the Stochastic Simulation Algorithm (SSA). 

Approaches based on ODEs and SDEs require the definition of an equation for each 

different reaction or interaction in the model. Despite their broad applicability (Fisher & 

Henzinger, 2007), ODEs models rely on several unrealistic assumptions. For instance, ODEs 

require a homogeneous distribution of components, and furthermore, a continuous 

distribution of interactions and quantities that, in real systems, are of discrete nature. On the 

other hand, SDEs assume that the stochasticity of the systems can be modeled as a source of 

noise acting as a modulator of the average dynamic of the population. In contrast, ODE 

models assume a deterministic behavior, focusing on the mean distribution of the system 
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under study. On top of this, ODE- and SDE-based models usually entangle kinetics and 

causality. This characteristic excels when unrelated simultaneous processes produce an 

apparent causality. Last but not least, approaches based on differential equations require as 

many equations as variables, hindering continuous model improvement, and therefore 

separating domain knowledge from the models. 

Although both ODEs and SDEs are well-established methods, SSA-based methods 

are gaining momentum among other approaches as both reliable and versatile strategies to 

model a variety of CSs (Barrio et al., 2006). An SSA model occurs in a reactor where a set 

of species or agents interact by a set of reactions or rules. While the reactor is a well-mixed 

and homogeneous environment containing the initial quantities of every agent, the 

application of the set of rules will produce the dynamic of the system. Within the reactor, 

stochastically selected rules are applied as discrete events generating trajectories through 

time to produce solutions representing feasible temporal paths of the system. Importantly, 

as time depends on the execution of rules, time intervals are asymmetric over the trajectory 

of the system and between parallel reactors. Current variants of SSA use their own language 

to describe the systems under simulation. Some examples are the BioNetGen language 

(James R. Faeder et al., 2009) and the Kappa language (Murphy et al., 2010). Importantly, 

for each one of these languages, a proper simulation engine should be used: NFSim (Chylek 

et al., 2015) executes models written in BioNetGen and KaSim (Boutillier, Feret, et al., 

2018) executes models written in Kappa. Several simulation engines based on the SSA have 

been developed. While some implementations account for a large number of species (Danos 

et al., 2007b; James R. Faeder et al., 2009; Gibson & Bruck, 2000; Lok & Brent, 2005), 

some others deal with systems formed by numerous particles (Cao et al., 2006; D. T. 

Gillespie, 2001), or with slow-scale systems (Cao et al., 2005; Rathinam et al., 2003), and 

some others were developed to add computational power to the simulation (Dematté & 

Prandi, 2010; Dittamo & Cangelosi, 2009). 

Despite the increasing relevance of SSA and the expanded features included in 

several of its implementations, these fail to deal properly with the combinatorial diversity 

and spatial heterogeneity of biological systems. To overcome these issues, we developed 

PISKaS, a parallel implementation of a spatial Kappa simulator (Fuenzalida et al., 2015; 
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Fuenzalida, Bustos, et al., 2017; Fuenzalida, Martin, et al., 2017; Nuñez et al., 2012). PISKaS 

is a multiscale simulation tool suitable to perform stochastic simulations on distributed 

memory computing architectures. PISKaS expands the Kappa language by allowing the 

explicit declaration of compartments interconnected by links to simulate heterogeneous 

environments. In PISKaS, these links account for different types of transport between 

compartments. Each PISKaS compartment is executed in parallel, running its own SSA. The 

execution of a communication rule between compartments is treated as a perturbation 

modifying the number of agents in both the source and the destination compartment. Due to 

these new features, Kappa models are easier and more compact to write and to understand 

than those employed by other implementations. While the original motivation for both the 

SSA and the Kappa language comes from the modeling of chemical reactions, PISKaS can 

be used to model systems unrelated to chemistry, or where the species or agents involved do 

not represent chemical units but instead more complex entities (v.g. genes, individuals or 

communities). 

In the following pages, three models of CSs will be used to demonstrate the 

versatility and capabilities of PISKaS to deal with multiscale models. In doing so, we present 

a partial model for the transcriptional regulation of Escherichia coli; a highly 

compartmentalized model to study the spread of Ebola virus disease; and a well-known 

model from Game Theory (GT): the Prisoner´s dilemma (PD) which is aimed at the study of 

cooperation and competition between individuals in a society. While in the E. coli model we 

exploit PISKaS capabilities to deal with continuous model improvement, on the Ebola model 

we rely on a highly compartmentalized environment, and in the PD, we follow an approach 

where rules operate considering the value of certain agent properties. As a whole, we propose 

PISKaS as a suitable tool to produce stochastic simulations of multiscale CSs using a rule-

based approach 

3.3 METHODS 

PISKaS was developed from a forked branch of the Kappa language simulator, KaSim v3.5 

(Boutillier, Feret, et al., 2018), adding new features to improve performance by 

implementing parallelism, and to allow spatial declaration of the model environment by 
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using compartments and links. KaSim is written in Ocaml (http://www.ocaml.org), a 

programming language following both the functional and object-oriented paradigms. 

PISKaS employs OcamlMPI 1.01 (https://forge.ocamlcore.org/ projects/ocamlmpi/), taking 

advantage of the MPI library to implement the parallel execution of compartments. To 

execute a simulation, PISKaS starts an iterative process determining the probability that the 

next event on the simulation occurs at time 𝜏, selecting the rule 𝑅𝑗, given the state of the 

system 𝑥 in time 𝑡 (Equation 3-1): 

𝑝(𝜏, 𝑅𝑗|𝑥, 𝑡) = 𝑎𝑗(𝑥)𝑒−𝑎0(𝑥)𝜏 (3-1) 

 

where 𝜏 = 𝑡 + Δ𝑡, 𝑎0 is the total reactivity of the system and 𝑎𝑗 is the reactivity of rule 𝑗. 

Importantly, 𝜏 is calculated from a random number 𝑟1 distributing uniformly between 0 and 

1 according to Equation 3-2: 

𝜏 =
1

𝑎0(𝑥)
ln

1

𝑟1
 (3-2) 

 

By doing so, each temporal step over the simulation randomly selects a single rule 

that creates, destroys, binds, unbinds agents, or modifies some property of an agent: the five 

primitives of the Kappa language (Murphy et al., 2010). Importantly, PISKaS proposes a 

new algorithm to deal with the heterogeneous spatiality of CSs. This modified version of the 

traditional SSA partitions the initial state of the system into several compartments. Each 

compartment is considered as a homogeneous volume following the SSA fundamental 

assumption; reactions operating over agents are considered as collisions between particles 

and, no collisions occur between agents belonging to different compartments. As a 

consequence, every compartment in the model executes its own SSA. Transport between 

compartments is produced by rules executing perturbations to modify the number of agents 

in both linked compartments: whereas a transport rule removes an agent from a 

compartment, it will then create that agent in the linked compartment. To produce the system 

dynamics, PISKaS implements a parallel algorithm that supports, at the cost of some 

accuracy that is tunable by the modeler, the scalability of the model by adding compartments, 

links, and transport rules. These features provide a more accurate physical description of the 

http://www.ocaml.org/
https://forge.ocamlcore.org/%20projects/ocamlmpi/
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environment, allowing the execution of millions of agents in thousands of compartments, 

depending on hardware capabilities. 

The performance of PISKaS implementation depends on several parameters of the 

model. The main parameter regulating performance is the synchronization step ℎ, i.e. the 

elapsed time between synchronization processes occurring in different compartments. A 

small value for h produces a slower but more accurate simulation compare to that of a larger 

ℎ. Unfortunately, finding the optimum ℎ value requires a trial-and-error approach because it 

is tightly linked to both the spatial complexity of the model and its rules. Nevertheless, our 

divide-and-conquer approach allows creating orthogonal reactors in the simulation where 

each SSA runs in parallel, using its own agents and rules. 

To deal with the problem of finding a proper h parameter, at least 1000 simulations 

were run for every model varying the value of ℎ, considering 10 time-intervals equally 

distributed, starting from the smallest time ticking between all linked compartments, up to 

the largest one. To do so, an initial simulation was run for every model, monitoring the 

behavior of time ticking in all different compartments. To compute statistics, trajectory 

ensembles were obtained by averaging over time and calculating the standard deviation. 

Importantly, as the SSA can be defined as a state algorithm dedicated to solving numerically 

a continuous first-order Markov chain, there is no need to use a more complex process such 

as the block average, to compute the error over the average trajectory of the system. 

All simulations were run in a distributed memory cluster composed of two computing 

nodes of 64 cores with 128 GB RAM interconnected by a Mellanox Infiniband switch. Each 

node has 4 AMD Opteron 6376 processors running at 2.3 GHz. 

The development of PISKaS is under the GNU license and can be downloaded from 

GitHub at https://github.com/DLab/PISKaS/wiki. All models used in this work can be 

downloaded from GitHub at https://github.com/DLab/PISKaS/wiki/Models. 

3.4 RESULTS: APPLICATION CASES 

3.4.1 Simulation of transcriptional networks in E. coli 

The regulation of gene expression occurring in living organisms is an epitome of biological 

CSs. Even though it can be argued that gene regulation is an interconnected process highly 

https://github.com/DLab/PISKaS/wiki
https://github.com/DLab/PISKaS/wiki/Models
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dependent on gene expression, whole-genome control is usually modeled by dividing it into 

more or less independent processes (Lim et al., 2013; Nishimura et al., 2015). Partitioning 

has two main purposes; to facilitate knowledge generation and to simplify parameter 

optimization. To demonstrate PISKaS capabilities to support continuous improvement of 

models, two systems were studied: the core gene regulatory network of E. coli and the 

replication of the ColEI plasmid. Both models were subsequently combined into a more 

detailed system, taking advantage of the natural compartmentalization of biological systems 

(Figure 3-1A). By using the gene regulatory network (GRN) of E. coli MG1655 and a 

custom-made script written with the Python PySB library (Lopez et al., 2013), all Kappa 

models were written automatically following the Kappa Biobrick Framework (Stewart & 

Wilson-Kanamori, 2011). The GRN was created combining literature (Cho et al., 2014) and 

the EcoCyc database (Keseler et al., 2017) in a format that permitted the creation of models 

where agents, rules, parameters, and the initial condition of the system were predefined. 

Specific rules created and employed in all three models are described using a graphical 

notation in Figure S 3-1. 

 

 

Figure 3-1. The gene regulatory network simulated in both the core regulatory network and 

in the ColEI replication models. 

(A) The regulation of transcription (upper-left) and plasmid replication (upper-right) were 

compartmentalized and allowed to share free proteins and protein complexes (arrows). 
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Figure 3-2. The gene regulatory network simulated in both the core regulatory network and 

in the ColEI replication models (continued).  

The outcome of the simulation of transcriptional networks in E. coli. (B) Presence of RNAP-

SF complexes in the three settings of the core regulatory network model: Red dots represent 

the percentage of free RNAP-SF complexes, while blue and green represent one and seven 

RNAP-SF complexes, respectively. (C) Two simulations of ColEI replication model: red 

line represents the unconstrained situation where RNA I and RNA primer show no 

interaction, and the blue line indicates RNA interaction inhibits replication. 

 

3.4.1.1 Core regulatory network: Sigma factors 

The core regulatory network in E. coli is controlled by seven proteins called Sigma Factors 

(SFs) (Cho et al., 2014). An SF binds to the RNA Polymerase (RNAP) core enzyme giving 

specificity and causing competition for different transcription factor binding sites (Mauri & 

Klumpp, 2014). This model is composed of 10 agents representing genes, three of them 

encoding for each RNAP subunits, and the remaining seven agents encoding for each SFs. 

The assembly of every possible complex RNAP-SF was modeled as a reversible process as 

reported previously (Ishihama, 1981; Mauri & Klumpp, 2014). Gene regulation conducted 

by the binding of each RNAP-SF complex to each of the promoters was also modeled as a 

reversible process, whereas transcription and termination were irreversible events. Our 

model also accounted for the transcription units present in this system. Specifically, rpoC is 
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the only unit transcribed right after rpoB, and both genes coding for RNAP subunits are 

regulated by the same RNAP-SF. 

 Three different settings were explored with 1000 simulations each: in the first setting, 

only one RNAP could be assembled, while seven were possible in the second and 28 in the 

third setting: one RNAP for each non-redundant regulation according to Figure 3-1. 

Moreover, in both the first and second settings, only one copy of each SF was available, 

while in the third setting, there was a copy of every regulation present in the GRN. The 

setting with a higher number of SFs resulted in better stability of the number of RNAPSF 

complexes, showing an average slightly lower than 20% (Figure 3-1B). Notably, having a 

higher number of copies of the SFs, this setting resulted in the closest one to previously 

reported experimental data (Patrick et al., 2015) where the fraction of free RNAP-SF 

complexes was 30%, rendering a more realistic version of the model. The fraction of free 

RNAP-SF is regulated by additional layers of regulatory elements and the rate of interaction 

between components. Several antagonists regulate the E. coli SF activity. Of note is the rsd 

protein that binds rpoD and controls the transition to a stationary state (Mitchell et al., 2007). 

Other Sigma antagonists are the FlgM that binds FliA and controls flagellar synthesis, and 

the rseAB protein that regulates rpoE activity, necessary for stress response. Eleven 

components have sigma factor antagonist activity and anti-sigma factor antagonist activity 

in E. coli. Therefore, the incorporation of the aforementioned elements in the core regulatory 

model could reduce the notorious distance between simulated and experimental values, prior 

to parameter adjustment. 

3.4.1.2 ColEI replication model 

The regulatory network controlling the replication of the ColEI plasmid is formed by two 

non-coding RNAs (Polisky, 1988). The first is an RNA that binds tightly to the DNA, 

making a hybrid DNA-RNA that after processed by RNase E serves as a primer for the DNA 

Polymerase (A. Robinson & Van Oijen, 2013). To control its replication, this plasmid 

encodes an antisense RNA, called RNA I, which binds the 50 ending nucleotides of the RNA 

primer, destabilizing the hybrid and effectively inhibiting DNA replication. To explore 

further PISKaS capabilities, our ColEI replication model simulates the formation of an 
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RNA-RNA pairing to inhibit DNA replication (Figure 3-1C). Even though arbitrary rates 

were employed, a pseudo-stationary state was reached with near 300 plasmid copies. On the 

other hand, without the RNA-RNA interaction, the plasmid reached approximately 48,000 

copies over the simulation, which is far beyond the numbers obtained from the model with 

both non-coding RNAs. 

3.4.1.3 Combined model 

Given that, both previous models share common components (SFs, RNAP, and RNase E), a 

more realistic setting was developed by joining them, demonstrating the continuous 

improvement strategy supported by PISKaS. During the combined simulation, despite the 

explicit communication between compartments, each type of agent behaves in a very similar 

way to that observed in the separated simulations. However, the dynamic of the plasmid 

replication was heavily impacted; reaching only 20 copies of the plasmid instead of the 200 

obtained in the separated model, with some simulations stalled after only one copy was 

produced. 

3.4.2 A hypothetical outbreak of the Ebola virus 

Other interesting models of CSs are those employed in the study of the spread of infectious 

diseases. Of note, the accurate modeling of infectious diseases leads to several significant 

consequences such as predictions on the impact of an outbreak over the population; 

determining the number of infected, exposed, and total cases. Moreover, a proper model 

could lead to identifying the rate of disease growth, and to the definition of the most effective 

policies aimed at avoiding the spread of the disease, such as vaccination strategies. One of 

the earliest mathematical models ever developed to study the propagation of an infectious 

disease was the SIR model developed by Kermack and McKendrick in 1927 (Kermack & 

McKendrick, 1927). In this seminal work, the authors defined a compartmentalized ODE 

model where people could be categorized into three groups. As a consequence, the SIR 

model defines susceptibles (S), i.e. those who can be infected; infected (I), i.e. those who 

have been infected; and removed (R), those who cannot further participate in the dynamics 

either by acquiring immunity or by being dead. This simple but effective model predicts the 

number of infected people over time by finding both the basic reproductive number 𝑅0, i.e. 
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the number of individuals that each infected person could infect over time, and the 

exponential growth rate of the disease 𝑟0, i.e. a number defining how quickly the growth of 

the disease follows the exponential trend. 

 Despite its broad applicability (Hethcote, 2000; Newman, 2002; Shulgin et al., 1998), 

this model lacks important features of some contagious diseases such as the transmission of 

viruses from dead people, as was recently observed for the Ebola virus (Aylward et al., 

2014). A model explicitly dealing with this type of transmission was recently developed 

(Weitz & Dushoff, 2015). In this SEIRD model, individuals are classified into susceptible 

(S), exposed (E), infected (I), removed (R), and dead (D) (Figure 3-2A). To assess the 

capabilities of PISKaS to deal with such compartmentalized models, we developed a SEIRD 

model to simulate an outbreak of the Ebola disease in a hypothetical country composed by 

four cities (Figure 3-2B), named C1 to C4, and having a bidirectional highway system 

interconnecting them. In doing so, we produced a country-level model by including 

compartments resembling four large cities with population densities of 9200, 3912, 3867, 

and 3958 habitants per km2 for C1, C2, C3 and C4, respectively. Moreover, our model allows 

the free travel of agents between cities from all S, E and I states. This is particularly 

important when considering that both E and I agents could spread the disease by travelling 

along the hypothetical country. Rates of exposition from infected people (𝛽𝑖), exposition 

from dead people (𝛽𝐷), the time needed to transit from the exposed to the infected state (𝑇𝐸), 

and the time (𝑇𝐼) in which infected people remain until the application of the rate of either 

death (𝑓) or removal (1 − 𝑓), were all obtained from the ODEs adjustment of the SEIRD 

model to actual data coming from the last Ebola outbreak in Africa, as proposed in (Weitz 

& Dushoff, 2015). Kappa rules employed to generate the set of stochastic SEIRD 

simulations are shown in Figure S 3-2. 
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Figure 3-3. A hypothetical outbreak of the Ebola virus.  

(A) Graphical representations of the SEIRD model. Black boxes describe each state that can 

be achieved by any agent of the simulation: Susceptible, Exposed, Infected, Removed and 

Dead. Solid arrows represent how these states evolve over time, while dashed arrows 

indicate the transmission of the virus. (B) The topology of connectivity between cities of our 

model. The size of each city is proportional to the population density normalized by the 

population density of C1. (C) and (D), results from the simulations of the spread of Ebola. 

(C), averaged occurrence of the five different states for agents participating in the SEIRD 

model using a log scale. (D), exponential growth rates calculated for each city in the model 

according to the 1000 independent simulations. Data is shown using a box-plot where the 

central black line is the average, the limits of the boxes represent the standard deviation and 

the whiskers represent the variance. 

 

As an initial condition, ten infected persons appeared in city C1 on day 0. Of note, 

this relatively large number of initially infected people ensured the expansion of the disease 

since the disease did not spread in the majority of the simulations initialized with fewer 

infected individuals (data not shown). These simulations were employed to characterize the 
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dynamic properties of the disease spreading in each city, including the exponential growth 

rate 𝑟0 averaged after 1000 simulations. City-level 𝑟0 (Figure 3-2D) were calculated using 

Equation 3-3, where 𝐼(𝑡) is the number of infected people at time 𝑡. 

𝐼(𝑡) = exp(𝑟0𝑡) (3-3) 

 

As expected, the average trajectory over an ensemble of 1000 stochastic simulations 

shows the typical exponential spread of the Ebola disease (Figure 3-2C). It is worth noting 

that in the first day of the disease spread, the number of infected people decreases due to two 

factors: first, the transit of infected people to either the dead or the removed states, and 

because of the time that people spend in the susceptible state, around 6 days after the 

exposition to the virus. This can be noted in Figure 3-2C, by considering that people of types 

R, D, and E, appear around day 6 from the simulation start. Previously to this day, only 

infected and susceptible people are present in the simulation. When considering the growth 

rates for different cities (Figure 3-2D), our results indicate that in each city the disease 

spreads at different rates. This behavior could be the consequence of both differences 

between the population density of each city, and the highway connectivity between cities. 

Of note, while it is expected that city C1 being the largest city will exhibit the highest 𝑟0 

(Figure 3-2D), it is interesting that the second highest 𝑟0 belongs to city C2 instead of city 

C4, which is the closest city to the origin of the disease (city C1). Importantly, population 

densities of cities C2, C3, and C4 are similar therefore, the important parameter influencing 

𝑟0 in city C2 seems to be the topology of connectivity. Despite the degree of connectivity 

between cities C2, and C3 is the same (𝐷 = 2), the larger value of 𝑟0 for C2 must be 

influenced by the close proximity of C2 to the origin of the infection. Notably, city C4 is the 

closest city to the origin of the infection and is the smallest city in the model (Figure 3-2D). 

On the contrary to what we expected, 𝑟0 for city C4 is the smallest one, denoting the 

importance of the degree of connectivity for the spread of the disease. As a whole, our data 

indicate that both proximity and degree of connectivity should be key factors to consider 

when developing contingency policies to avoid the spread of contagious diseases such as 

Ebola. 
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3.4.3 Exploring human collaboration using the Prisoner´s dilemma 

Social Dilemmas (SDs) encompass different situations in which people may cooperate or 

defect, thus obtaining a personal benefit and producing a detriment to their counterpart, 

represented by other individuals, and by extension to society at large (Capraro, 2013). In 

general, SDs include a variety of problems spanning economics, political sciences, 

anthropology, and cultural evolution. To formally treat these SDs, mathematical approaches 

from Game Theory (GT) provide a theoretical framework suitable to produce computational 

models such as the Prisoner´s Dilemma (PD) or the investor´s game, among others (Veloz 

et al., 2014). These games have guided quantitative research on social sciences for decades, 

predicting under which circumstances cooperation or defection may surge, providing a rich 

scaffold to understand the evolution of collaboration in human societies (El-Seidy et al., 

2016; Nowak & Sigmund, 1990; Rogers & Ashlock, 2010; Veloz et al., 2014). In each 

matrix-based game, such as the PD, there are two players: each player, or agent, has two 

possible moves or actions interpreted as Cooperation (C) or Defection (D), resulting in four 

possible outcomes of the game (Table 3-1). The possible outcomes from this game are 1) 

reward from mutual cooperation (R); 2) punishment arising from mutual defection (P); 3) 

suckers outcome, obtained by the player who cooperates against a defecting partner (S); and 

4) temptation outcome, achieved by defecting against a cooperating partner (T). 

In its simplest form, a PD is a matrix-based game described by the following relations 

(Equations 3-4 and 3-5): 

𝑇 > 𝑅 > 𝑃 > 𝑆 (3-4) 

2𝑅 > 𝑇 + 𝑆 (3-5) 

where Equation 3-4 ensures that exploiting a cooperating partner is preferred over mutual 

cooperation, which is preferred to mutual defection, and the latter is preferred over being 

exploited. Importantly, Equation 3-5 ensures that mutual cooperation is preferred to both 

unilateral cooperation and defection (Capraro, 2013; Kuhn, 2019; Veloz et al., 2014). 

Despite GT provides a versatile theoretical framework to tackle several SDs, usual 

approaches do not consider the relationship between trust among agents participating in the 

game and the probability of cooperation or defection. Of note, the creation and production 
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of social capital in human societies depends on the level of trust between people belonging 

to the same social class (i.e. intra-class trust), and also between people belonging to different 

social classes (i.e. inter-class trust) (Evers, 2001). Moreover, societies with higher trust 

levels usually exhibit higher social capital and, as a consequence, a higher tendency to 

collaborate (Fukuyama, 1995). Therefore, we decided to integrate trust as part of the social 

variables belonging to the agents. In doing so, the economic prosperity of a society, 

expressed in the form of gross domestic product (GDP), will depend on the creation and 

development of social capital, which in our simulation is in direct relationship with both 

intra- and inter-class trust. 

To explore PISKaS capabilities to produce a model where the operation of rules 

depends on the value of certain properties belonging to the agents, we produced a PD where 

the probability of defection or cooperation will depend on the level of trust held among the 

agents. Consequently, reward or punishment will be received by the agents of the simulation 

according to the pay-off matrix of the PDG (Table 3-1). This behavior will increase or 

decrease individual wealth over the simulation and summing over the agents of the 

simulation, which will produce the GDP of the society. 

 

Table 3-1. The pay-off matrix used for our simulation of the PD. 

Temptation (T) produces +2 units of goods, reward (R) produces +1 units, punishment (P) 

produces –1, and sucker´s pay-off produces –2 units. 

 

  Player 1 

  C D 

Player 2 
C +1 (R), +1 (R) –2 (S), +2 (T) 

D +2 (T), –2 (S) –1 (P), –1 (P) 

 

To define the players participating in the PD, our agents have the following interface: 

Person(𝑋, 𝑇~1~2~3~4, 𝑊), where Person is the name of the agent, 𝑋 corresponds to the 

interaction site between agents, 𝑇 defines the level of trust, and 𝑊 represents a wallet where 

every agent accumulates the reward obtained from the last interaction, according to the pay-

off matrix. To explore the hypothesis of whether the size of the population is directly related 

to the creation of GDP, we decided to model two isolated cities, City 1 and City 2, with 800 
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and 1000 agents, representing the urban and rural population of New Zealand, respectively. 

The distribution of trust for both cities was obtained from the trust profiles of the urban 

population of New Zealand, as revealed by the “The Global Trust Inventory” (J. H. Liu et 

al., 2018). In brief, the trust profile of the population is composed by a 28.3% of High Trust 

(HT), 46.4% Moderate Trust (MT), 19.0% Low Institutional Trust (LIT), and 6.2% Low 

Trust (LT). Therefore, the number of agents belonging to each class of trust was obtained by 

multiplying the number of total agents by the trust distribution. Kappa rules to run the 

simulation were written for each trust profile (Figure S 3-3) describing how players engage 

in interactions with other players during the PD games. Importantly, independent of the level 

of trust, all agents have the same probability of interaction over the simulation. However, as 

the number of agents corresponding to each trust profile is different, generally speaking, the 

probability of interactions will be higher for those larger groups compared to that of the 

smaller groups. 

To produce an ensemble trajectory of our PD model, each simulation was run for 200 

arbitrary units (A.U.) of time, and their results were averaged between 1000 independent 

simulations. Results shown in Figure 3-3 correspond to a model composed of two isolated 

compartments, named City 1 (Figure 3-3A, 3-3B, 3-3E, and 3-3F) and City 2 (Figure 3-3C, 

3-3D, 3-3G, and 3-3H). The normalized social wealth (GDP) was calculated by summing up 

to over the 𝑊 site of the individual agents and dividing by the number of agents (Figure 3-

3A and 3-3C). We also computed the normalized contribution to the GDP of each trust 

profile, as shown in Figure 3-3B and 3-3D. The percentage of different outcomes coming 

from the interactions between trust profiles is shown in Figure 3-3E and 3-3H. In general, 

the average normalized GDP generated over the simulation by City 2 is higher compared to 

that of City 1. Moreover, the slope of the curve showing the creation of the GDP over time 

is higher in City 2 compared to that of City 1. 
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Figure 3-4. Results of the PD model.  

The outcome of 1000 independent simulations for City 1 and for City 2 are presented in 

panels A, B, E, and F; and panels C, D, G, and H, respectively. The accumulation of social 

goods as a measurement of the average normalized GDP (solid red line) for City 1 and City 

2 is shown in panels A and C, respectively. Dotted lines represent the standard deviation of 

the GDP over 1000 simulations. The normalized individual accumulation of goods for agents 

belonging to different trust profiles of City 1 and City 2, is presented in panels B and D, 

respectively. The total outcome of the PD interactions between agents from City 1 and City 

2 over the simulation is shown using percentages in panels E and G, respectively. The four 

possible outcomes of the PD matrix-game are denoted as CC (cooperate-cooperate), DD 

(defect-defect), CD (cooperate-defect) and DC (defect-cooperate). Total interactions from 

the PD occurring between agents of the same trust profile in City 1 and City 2 are shown in 

panels F and H, respectively. For panels B, D, F, and H, the black line represents HT, the 

red line represents MT, the green line represents LIT and the blue line represents LT. 
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When we consider the standard deviation (Figure 3-3A and 3-3C) generated by 1000 

independent simulations (see methods), both GDP curves seem to be generated from the 

same distribution. Therefore, no significant differences can be observed between both 

curves. However, a slightly significant difference between the standard deviation of the GDP 

curve of City 2 compared to that of City 1, at both the lower and higher extremes, can be 

seen in Figure 3-3A and 3-3C. This behavior implies that at the beginning of some 

simulations –between 0 and 80 a. u. of time– City 2 will generate a lower GDP. On the other 

hand, for some other simulations, City 2 will generate a higher GDP at the end of the 

simulation, between 110 and 220 A.U. of time. Consequently, these differences could be 

explained by the accumulation of individual wealth of the population. 

To explore further the role of wealth accumulation by different trust profiles over the 

creation of GDP, we calculated the distribution of wealth by trust level, normalized by the 

number of agents of each profile, as seen in Figure 3-3B and 3-3D. As a whole, the average 

individual accumulation of wealth by both MT and LIT is similar when comparing both 

cities. When considering the average individual accumulation of wealth for both HT and LT 

at the end of the simulation, City 2 exhibits both the largest and the lowest values compared 

to that of City 1. This behavior could explain the differences shown in Figure 3-3A and 3-

3C denoting the importance of individual wealth accumulation. Despite a higher GDP for 

City 2 appears as the obvious result –considering that City 1 has a 20% lower number of 

agents–, unexpectedly, the accumulation of individual wealth per trust profile in City 2 did 

not follow a proportional increase. Notably, only the accumulation of individual wealth of 

both HT and LT are the ones that seem to be affected by the number of agents. To determine 

whether this effect is generated by the interactions between agents, we calculated the 

percentage of interactions coming from the PD, as seen in Figure 3-3E and 3-3G. As a whole, 

the percentage of interactions of types cooperate-cooperate (CC), defect-defect (DD), and 

cooperate-defect (CD) from both cities is similar, with higher differences shown for 

interactions of type defect-cooperate (DC), which is significantly higher in City 1 compared 

to that of City 2. When considering the number of interactions normalized per trust profile 

(Figure 3-3F and 3-3H), is interesting to note that the total number of interactions for every 

trust profile in City 2 is higher than that of City 1. Moreover, the ranking of interactions 
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between trust profiles is different when comparing both cities: while in both cities the profile 

showing the largest interaction is LT, in City 2 the profile showing the lowest interaction is 

HT, whereas in City 1 the lowest one is MT. As the probability of interactions between all 

profiles is the same (see above), the most important factor influencing the increase of the 

GDP of City 2 compared to that of City 1, is the number of interactions occurring in the 

larger profiles named MT and LIT which in City 2 appear at the middle of the interaction 

ranking. In contrast, these two larger groups appear at the bottom of the interactions ranking 

in City 1. Therefore, the higher GDP of City 2 compared to that of City 1 could be the result 

of an elevated number of interactions of the two larger trust profiles of the society. 

3.5 DISCUSSION 

Through the description of three multiscale examples representing CSs from different 

domains of knowledge, we have explored the versatility of PISKaS. Despite we have 

explored different features from our models, an exhaustive parameter exploration, including 

the topology of connectivity between compartments, the sensibility of the models to changes 

on rates of rules, adjustment of rates to real data, among other, are all efforts we are currently 

executing and whose results will be published elsewhere. Of note, PISKaS could scale-up 

compared to the original implementation by adding distributed memory in computational 

resources and, in doing so, allows for the definition of more realistic models with increased 

complexity. Due to the explicit declaration and usage of compartments, models in PISKaS 

overcome the limitation of running the SSA only on homogeneously mixed volumes, using 

a divide-and-conquer approach to speed-up the calculations. 

As denoted by the simulation of the transcriptional networks of E. coli, non-

compartmentalized approaches to conduct computational simulations may render unrealistic 

or over-simplified results: a limitation that is overcome by the declaration of compartments 

in PISKaS. It is also well known that transcription and other biological processes at the 

molecular level are stochastic; therefore, simulations based on differential equations 

oversimplify the inherent dynamics of these biological processes disregarding the 

importance of individual components. Our models, first simulated independently and then 

combined, reproduced properties of their natural counterpart. Of note, this simple model 
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could be further expanded following the same modular procedure depicted above: separated 

modules, representing different parts of the whole system, can be modeled independently to 

then be added to produce a global model. In addition, once the parameters of the smaller 

models are determined, their re-optimization in the final model should be less expensive, 

requiring only smaller fine-tuning. This is particularly relevant when considering that by 

mixing the two compartments given the simple scheme that enables PISKaS to simulate 

compartments and transportation of agents, we are expanding this model to include the 

regulation of gene expression for the entire genome of E. coli (to be published elsewhere). 

By studying a hypothetical outbreak of the Ebola virus in Chile, we demonstrated 

how explicit compartmentalization permits the identification of important properties of a 

system that may be overlooked otherwise. Traditional modeling of disease spread calculates 

a single exponential growth rate 𝑟0 for each disease. In contrast, our simulations identified 

the different 𝑟0 of each city, demonstrating the importance of both the population density 

and the connectivity pattern between cities. Despite the obvious idea that an infectious agent 

is transmitted at higher rates in densely populated cities than in the countryside, a 

compartmentalized model combining both population density and highway topology is very 

hard to produce using differential equations. In the case of our PISKaS model, to produce 

such a model is worth only a dozen lines of Kappa rules. 

Assessing human collaboration scenarios by producing a computational model of the 

PD, highlights a completely different level of abstraction when modeling CSs. Interactions 

between humans follow complex rules, difficult to understand, and quantify, where the 

relevance of an individual could be of radical importance for the whole (Asimov, 1951). To 

simplify the complexity of these interactions, we have produced a PISKaS model of the PD 

where, apart from the classical GT approach, we introduced trust as a proxy to the creation 

of social wealth. As a consequence, we quantified the GDP or our artificial societies that is 

generated by the dynamics of the PD. Notably, our simulations suggest that to increase the 

wealth of a society, the most relevant actor is the accumulation of goods by the middle class, 

usually the largest segment in western societies. Moreover, to support the advancement of 

societies, a relevant factor is the creation and development of trust between individuals 
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belonging to the same social class but more importantly, is the creation and development of 

trust between different social classes. 

3.6 CONCLUSION 

In this work, we illustrate an alternative to the deterministic simulation of CSs based on the 

stochastic simulation paradigm. Our three examples introduce the most relevant 

characteristics of PISKaS, our rule-based stochastic simulation engine. As a whole, PISKaS 

versatility provides a suitable framework for the study of complex multiscale systems with 

explicit spatial definitions. As discussed above, these features are particularly important to 

model biological systems where the spatial heterogeneity and the stochasticity generated by 

individual components are both key elements to understand the dynamics of the system. 
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4.1 SUMMARY 

Cells are complex systems composed of hundreds of genes whose products interact 

to produce elaborated behaviors. To control such behaviors, cells rely on transcription 

factors to regulate gene expression and gene regulatory networks (GRNs) are employed to 

describe and understand such behavior. However, GRNs are static models and dynamic 

models are difficult to obtain due to their size, complexity, stochastic dynamics, and 

interactions with other cell processes. 

We developed Atlas, a python software that converts genome graphs and gene 

regulatory, interaction, and metabolic networks into dynamic models. The software employs 

these biological networks to write rule-based models for the PySB framework. The 

underlying method is a divide-and-conquer strategy to obtain sub-models and combine them 

later into an ensemble model. To exemplify the utility of Atlas, we used networks of varying 

size and complexity of Escherichia coli and evaluated in silico modifications such as gene 

knockouts and the insertion of promoters and terminators. Moreover, the methodology could 

be applied to the dynamic modeling of natural and synthetic networks of any bacteria. Code, 

models, and tutorials are available online (https://github.com/networkbiolab/atlas). 

  

https://github.com/networkbiolab/atlas
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4.2 INTRODUCTION 

Recent technological advances have allowed the inquiry and understanding of biological 

systems at unprecedented detail (e.g., Regev et al., 2017). From such developments, the 

impact of stochastic dynamics in living systems has been corroborated, measured, and 

modeled (Raj & van Oudenaarden, 2008). To date, most of the available models look for the 

reproduction of cell metabolism at genome-scale using constraint-based models (Szigeti et 

al., 2018). However, constraint-based models disregard the dynamic and stochastic nature 

of metabolism (Costa et al., 2016) and the prediction of the impact of genetic modifications 

remains challenging (e.g., Foster et al., 2019, or Long & Antoniewicz, 2019). Dynamic 

modeling of metabolism has been proposed to circumvent the drawbacks of constraint-based 

models (e.g., Hädicke & Klamt, 2017) despite specific issues such as the need for calibration, 

extensive validation, and showing a time-consuming development. Also, it is necessary to 

consider that metabolism is only one aspect of cellular behavior and models are desired 

encompassing all cellular processes (Karr et al., 2012; Karr, Takahashi, et al., 2015; Sanghvi 

et al., 2013). If available, those models would help in understanding complex cell dynamics, 

with applications in biotechnology or biomedicine (Carrera & Covert, 2015), e.g. designing 

minimal cells (Rees-Garbutt et al., 2020) or synthetic genomes (Fredens et al., 2019). 

Although there are available whole-cell models for Mycoplasma genitalium (Karr et al., 

2012) and recently for Escherichia coli (Macklin et al., 2020) and there is a clear pathway 

to develop integrative and larger models (Covert et al., 2008; Szigeti et al., 2018), whole-

cell models are still not widely developed neither adopted (Szigeti et al., 2018). 

4.3 APPROACH 

Gene expression regulates metabolism, which in turn modulates transcription, translation, 

and degradation rates as well as the activity of transcription factors (Covert et al., 2008). 

These processes interplay in networks of molecular interactions between DNA, RNA, 

proteins, and metabolites (Grimbs et al., 2019; Hernández-Prieto et al., 2014). Here, we 

aimed to perform the integrative modeling of transcription, translation, regulation of gene 

expression, metabolism, and genome architecture, which is considered a prototype whole-

cell model (Szigeti et al., 2018). We developed Atlas, a software that facilitates the dynamic 
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modeling of gene regulation and bacterial metabolism by using biological networks to 

develop Rule-Based Models (RBMs) employing the PySB framework (Lopez et al., 2013) 

for later simulation, curation, and analysis. The developed software takes inspiration in 

available tools that automate the reconstruction of draft constraint-based models such as 

Merlin (Dias et al., 2015), RAVEN (Agren et al., 2013; H. Wang et al., 2018), ModelSEED 

(Henry et al., 2010), KBase (Arkin et al., 2018), and other software (reviewed in Faria et al., 

2018). 

An RBM employs an abstract language very similar to chemical equations capable 

to encode millions of individual reactions (Danos, Feret, Fontana, Harmer, et al., 2007) 

depending on the strictness of rule definitions. Further, we chose to develop RBMs because 

of their modularity, they allow deterministic simulations through network generation 

(Blinov et al., 2004, 2006; Hlavacek et al., 2006), they do not require the modeling of mass 

balances for all molecular species (network-free simulations, Sneddon et al., 2011), and 

permit stochastic simulations employing the Gillespie´s Stochastic Simulation Algorithm 

(SSA, Daniel T. Gillespie, 1976) or modifications (Danos et al., 2008; Danos, Feret, 

Fontana, Harmer, et al., 2007; Sneddon et al., 2011). In addition to the mentioned features, 

RBMs are more readable than counterparts such as ODE-based models, making RBMs 

easier to review, inspect, and correct collaboratively using version control tools, e.g. Git 

(Perez-Riverol et al., 2016). Finally, Rule-based languages were used previously to model 

automatically signaling pathways, e.g. with the software INDRA (Gyori et al., 2017) and 

KAMI (Harmer et al., 2019). 

4.4 MATERIAL AND METHODS 

4.4.1 Biological networks 

Primary data employed was obtained from the EcoCyc database (Karp, Ong, et al., 2018; 

Keseler et al., 2017) with help of an updated version of PythonCyc (github.com/latendre/ 

PythonCyc) and PathwayTools version 24 (Karp et al., 2019). The modified API is 

distributed freely from github.com/networkbiolab/PythonCyc and the Python Package Index 

with examples of use at github.com/networkbiolab/pythoncyc notebooks.  

https://github.com/latendre/PythonCyc
https://github.com/latendre/PythonCyc
https://github.com/networkbiolab/PythonCyc
https://github.com/networkbiolab/pythoncycnotebooks
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Data was formatted as biological networks. For instance, genes are connected to their 

regulators in a canonical GRN and we modified the network to connect transcription factors 

to DNA binding sites and RNA Polymerase-Sigma Factors (RNAP-σ) to promoters to obtain 

a sigma-specificity network. In the case of metabolic networks, we employed tripartite 

networks where a reaction connects to the associated enzyme and metabolite(s) instead of 

the more common bipartite representation of reactions and metabolites. Finally, the protein-

protein, the protein-DNA binding sites (a GRN), and the protein-metabolite interaction 

networks were formatted as collapsed hyper-graphs (Klamt et al., 2009) to encode 

complexes, i.e., networks where (a group of) nodes connect to a group of nodes. We 

employed brackets to denote complexes, e.g. "[crp,crp]" representing the CRP homodimer 

and "[crp,CAMP,crp,CAMP]" to define the CRP-cyclic AMP heterodimer. The software 

Atlas disregards the order of components: "[crp,CAMP,crp,CAMP]" and 

"[crp,crp,CAMP,CAMP]" are equivalents. The networks employed in this work are in the 

Supplementary Tables and in the examples directory at github.com/ networkbiolab/atlas. 

4.4.2 Natural and synthetic GRNs used as examples 

Natural GRNs representing data from E. coli were employed as examples and include the 

lactose, arabinose, and fucose degradation operons (LacI, AraC, FucR regulons), the central 

carbon metabolism (Millard et al., 2017), and all E. coli transporters and enzymes from the 

BioCyc database (Karp, Billington, et al., 2018; Keseler et al., 2017). In addition, we 

employed the regulation of gene expression for the E. coli sigma factors (Sigma Factors 

Model, Perez-Acle et al., 2018). Primary data was completed with available information on 

genome architecture from Cho et al., (2009) and sigma factor specificity from Cho et al., 

(2014). 

We modified the Sigma Factors Model (Perez-Acle et al., 2018) to exemplify the 

modeling of synthetic designs prior to experimentation. These modifications include the 

knockout of each sigma factor modeled and the incorporation of a promoter and/or a 

terminator to modify the rpoBC operon (Cho et al., 2014). The two types of in silico 

modifications were made modifying the genome graph used as input for Atlas, adding a 

promoter or a terminator between the rpoB coding DNA sequence (CDS) and the rpoC 

https://github.com/networkbiolab/atlas
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ribosome binding site (RBS) or removing the CDS of each sigma factor preserving the 

natural promoters, RBS, and terminators. In the case of the insertion of a rpoC promoter, the 

GRN was modified to incorporate the RNAP-σ specificity of the rpoB promoter. 

4.4.3 Draft, simulation, curation, and analysis of RBMs 

Draft sub-models were obtained using biological networks as input and combined 

later in a divide-and-conquer modeling strategy. These ensemble models were employed for 

simulation, curation, and calibration. 

Models were simulated with the PySB interfaces for the SciPy ODE integrator 

(Virtanen et al., 2020) and the Kappa Simulator v4.0 (KaSim, Boutillier, Maasha, et al., 

2018). The ODE integration requires the enumeration of all components and individual 

reactions (network generation, Blinov et al., 2004, 2006; Hlavacek et al., 2006). In any 

situation where the network generation procedure took excessive time to finalize (set as a 5 

minutes threshold), network-based simulations were replaced by network-free simulations 

employing KaSim. 

Models were exported to kappa language and analyzed with the Kappa Static 

Analyzer (KaSA) from the Kappa platform (Boutillier, Maasha, et al., 2018) to perform 

reachability analysis (Danos et al., 2008; Feret, 2007), after their reconstruction or any 

manual curation. In brief, RBMs describe a network of reactions, and some of them could 

be dead rules due to the unavailability of preceding rules that synthesize reactants in the 

required form. Curation of the data was carried out manually, for instance, to remove 

duplications (e.g., gene products with two identical reactions, but different metabolite 

names), ambiguities (e.g., names referring to a family of metabolites), lack of compartmental 

information (e.g., transport reactions which substrate(s) and product(s) are the same 

metabolite, but located in different compartments), the incorrect stoichiometry of reaction 

per enzymatic complex, missing gene regulations, and others. 

In the case of the Sigma Factor Model and its in silico genetic modifications, we 

performed the following analysis. Dynamics of 1000 stochastic simulations for 100 units of 

time performed with KaSim were contrasted employing the software edgeR (Y. Chen et al., 

2014; M. D. Robinson et al., 2009). Simulations were carried on with arbitrary rates at one 
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event per unit time (also arbitrary). In the case of the addition of a promoter and/or a 

terminator to modify the rpoBC operon, the three resulting models were subject to 

calibration with transcriptomics data of cold stress from Jozefczuk et al. (2010) assuming 

the new networks describe the correct genome architecture. We calibrated the binding and 

unbinding rates of the RNAP-σ complexes to promoters and the RNA decay rates of the new 

models and the reference model employing the software Pleione and the described strategy 

3 with the chi-square fitness function (Santibáñez et al., 2019): 100 iterations, 100 models 

per iteration, selecting two models to recombine with a probability inverse to the ranking. 

After calibration, co-expression networks were constructed with ExpressionCorrelation 

(www.baderlab.org/Software/ExpressionCorrelation) for the average values of 20 

simulations. The ExpressionCorrelation employs the Pearson´s correlation coefficient and 

we selected absolute values higher than 0.95 for visualization. 

The co-expression and other networks were visualized with the software Cytoscape 

v3.7.2 (Shannon et al., 2003; Su et al., 2014) and models were visualized within Jupyter 

notebooks with the software pyViPR (Ortega & Lopez, 2020). 

4.5 RESULTS AND DISCUSSION 

4.5.1 Software overview and basic workflow 

An overview of the Atlas software is depicted in Figure 4-1. The main module is able to 

reconstruct independent models from genome graphs and protein-protein, protein-

metabolites, and protein-DNA interaction and metabolic networks. In addition, a specialized 

function could employ simultaneously data from the genome graph and from a sigma-

specificity network (RNAPσ-promoters interaction network) to produce a model of bacterial 

regulation of gene expression. As models are independent, the module also provides a 

function to combine them, and functions to add regulatory relationships to gene expression 

rules; to get, remove, modify, and add rules; and remove and get the current value of a 

parameter. After reconstruction, models require to set their parameters (if they were not 

provided as metadata in the networks) and to define the initial condition.  

http://www.baderlab.org/Software/ExpressionCorrelation
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Figure 4-1. Overview of the Atlas software and a typical workflow from gathering data to 

plot simulation results.  

Left. Atlas is a python3 software divided into four modules: The main module (atlas) has 

functions to reconstruct rule-based models from biological networks in plain text. The utils 

module has functions to read and check networks (uniqueness of reactions and uniqueness 
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of interactions), analyze the models produced by Atlas with KaSA, and get information from 

locally installed BioCyc databases with help of the PathwayTools software. The simulation 

module has functions to set parameters, observables, and initials, simulate the model with a 

variety of software, and to plot the results. Finally, the export module has functions to export 

the model through any supported format in the PySB framework. Right. A typical workflow 

is divided into the following steps: 1) Review data from the literature, 2) Obtain protein 

complex composition from PathwayTools with ‘utils.interactionNetwork.FromGeneList‘, 3) 

Obtain metabolic data from PathwayTools with ‘utils.metabolicNetwork.FromGeneList‘ or 

‘utils.metabolicNetwork.FromEnzymeList‘, 4) Expand the metabolic network (Enzymes, 

Substrates, Products) to a source-target format, 5) Compile data from any source employing 

a spreadsheet software or a text editor, 6) Reconstruct models matching the type of network 

and execute ‘combine_models‘, add regulatory interactions of protein-DNA interactions to 

gene expression rules or correct rules if necessary, 7) Set parameters, observables, and the 

initial condition of model components, 8) Optionally, export the model for simulation, 

analysis, or curation with external tools, and 9) Simulation and plot of variables. A.U.: 

Arbitrary Unit. 

 

The user of Atlas could choose from a variety of simulators and finally, to plot the 

results of simulations. In the case of stochastic simulations, results include every simulation 

along with the mean and the standard deviation. The user could export the model at any stage 

in a variety of formats, and employ external tools to simulate, curate, or analyze the 

reconstructed model. Complementary, Atlas provides utilitarian functions able to read and 

check the different networks, analyze the connectivity of the model, and obtain data from 

the BioCyc databases (Caspi et al., 2016; Karp, Billington, et al., 2018). Data could be 

transformed and exported for visualization with Cytoscape (Shannon et al., 2003; Su et al., 

2014) and models could be visualized within Jupyter notebooks with pyViPR (Ortega & 

Lopez, 2020). 

An important note is the definition of the different components of the model (or 

agents). We defined five distinct agents: Proteins (’prot’), Metabolites (’met’), DNA (’dna’), 

RNA (’rna’), and Complexes (’cplx’). A ‘Complex‘ agent is an alias for complexes such as 

the RNAP or the bacterial ribosome. All agents have a ‘name‘ and a ‘location‘ sites for 

identification purposes. In addition, all components have interaction sites named as ’dna’, 

’met’, ’prot’, and ’rna’ that allow interaction with another agent of the matching type. The 

DNA agents have an additional identification site called ’type’ to define their nature: 

promoter, RBS, CDS, terminator, or binding site. Finally, proteins, DNA, and RNA agents 
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have two sites named ’up’ and ’dw’ that allow the automated description of complexes of 

the same type (e.g. two proteins interacts in their ’up’ and ’dw’ sites, instead of the ’prot’ 

site). Following the definition of agents, Atlas is capable to write complexes of any size and 

determine the correct internal links of components. 

4.5.2 The lactose operon: Modeling regulation of gene expression, 

transcription, translation, and metabolism 

We modeled a variety of metabolic networks of different size and complexity. The lactose 

model is composed of three enzyme-coding genes and one regulator, the arabinose-fucose 

model is composed of 13 enzyme-coding genes and 2 regulators, the E. coli central carbon 

metabolism model is composed of 200 enzyme-coding genes, and the genome-scale 

metabolic model of E. coli with 3596 transport and enzymatic reactions. To highlight the 

capabilities of Atlas, we describe in detail the modeling of the lactose metabolism because 

it is a common model of gene regulation with more than 50 years of biochemical information 

(M. Lewis, 2011). 

The lactose operon from E. coli consists of three genes: the β-galactosidase gene 

lacZ, the lactose permease gene lacY (also known as lactose-proton symporter), and the 

galactoside O-acetyltransferase gene lacA. The EcoCyc database informs that LacY is able 

to incorporate αlactose, melibiose, lactulose, 3-O-galactosylarabinose, and melibionate into 

the cell cytoplasm. Interestingly, the common synthetic activator IPTG (o-nitrophenyl-β-

galactoside) is mentioned in the description for the lactose transport, but there is no inclusion 

of the reaction for LacY. Next, LacZ could metabolize lactose into β-galactose and glucose, 

lactulose into β-galactose and fructofuranose, and 3-O-galactosylarabinose into βgalactose 

and arabinose. Data from literature (e.g. Huber et al., 1981; Juers et al., 2012) was used to 

complete the data derived from the EcoCyc database and was added manually to the network 

(Table S 4-1, Table S 4-2, and Figure S 4-1) and the final network is depicted in Figure 4-

2A (labels were omitted for visualization purposes). The modeling of similar corrections for 

other enzymes could be useful to understand the dynamic properties of metabolic pathways 

before experimental validation of the kinetics properties of each enzyme. For the case of 

lactose degradation, simulations of the curated metabolic network are shown in Figure 4-2B 
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for the two anomers of glucose, galactose, and allolactose produced from a source of 100 

molecules (or an arbitrary concentration unit) of β-lactose. As expected, the degradation of 

lactose into glucose and galactose is complete, while mutarotation allows equilibrium of 

anomers. Although sugar mutarotations are very slow reactions, they are spontaneous and 

we included in Atlas the capacity to model non-enzymatic reactions as EcoCyc reports 145 

"spontaneous" and three transport reactions without an identified gene. 

 

 

Figure 4-2. Simulation of RBMs for the lactose degradation pathway.  

Panel A shows a visualization of the curated metabolic network from the EcoCyc database. 

Nodes represent enzymes (red), reactions (green), and metabolites (cyan). Shapes represent 

substrates (diamonds), intermediates (triangles), and products (circles). Arrows show the 

reaction reversibility.  

 



79 

 

 

 

 

Figure 4-2. Simulation of RBMs for the lactose degradation pathway (continued) 

(B-E) The total concentration of glucose, galactose, and allolactose produced from 100 

molecules of lactose with hypothetical parameters. The continuous lines represent a 

deterministic simulation (SciPy, panels B and C) or the mean of 100 stochastic simulations 

(KaSim, D and E) with the area showing one standard deviation. (B) Simulation of the 

metabolic network reconstructed from network in panel A. (C) Simulation of the metabolic 

and protein-protein interaction networks. (D, E) Simulation of the metabolism, protein-

protein interactions, transcription, translation, and gene expression regulation: Panel D 

depicts the natural situation where allolactose binds a lacI protein and is protected from 

degradation, and panel E shows a hypothetical situation where allolactose cannot bind the 

lacI protein. Models at github.com/networkbiolab/atlas/tree/master/examples/lactose. A.U.: 

Arbitrary Unit. 

https://github.com/networkbiolab/atlas/tree/master/examples/lactose
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Once we curated the metabolic network, we modeled next the protein-protein 

interaction network, which connects gene expression to the metabolism for reactions 

performed by protein complexes (Figure S 4-2, Table S 4-4). For the E. coli lactose 

metabolism, the β-galactosidase is a homotetramer, the galactoside O-acetyltransferase is a 

homotrimer, and the lactose-proton symporter acts as a monomer. We employed the 

collapsed hyper-network representation to describe the protein-protein interactions from 

literature or assumptions and automated the modeling of assembly processes. For instance, 

the assembly process for the β-galactosidase tetramer comes from dimers (Matsuura et al., 

2011), and we supposed the existence of a galactoside O-acetyltransferase dimer as pre-

complex (Fowler et al., 1985). Additionally, we took into consideration the reaction 

stoichiometry for each enzymatic complex. In this curation step, we identified if reactions 

could happen independently of complex assembly (i.e., monomers are catalytically active) 

or if the protein complex is necessary for the catalytic activity in vivo (i.e., monomers are 

inactive). For the β-galactosidase complex, each subunit is catalytically active only when the 

tetramer is assembled (X. Li et al., 2018). Similarly, the galactoside O-acetyltransferase 

active sites act independently of each other and since they are formed with residues from 

two adjacent monomers (Lewendon et al., 1995; X. G. Wang et al., 2002) the trimer was 

assumed as the only active catalytic form. Figure 4-2C shows deterministic and stochastic 

simulations for an RBM including the assembly of protein complexes and the metabolic 

reactions. Interestingly, the deterministic and stochastic simulations disagree at the 

beginning of the dynamics, although they reached a similar steady-state. As the stochastic 

simulation requires the assembly of enzyme complexes before performing any metabolic 

reaction, they show a lag-phase in contrast to the deterministic simulation. 

Next, the model was coupled to a representation for transcription and translation in 

addition to the activity of transcription factors. We employed the Kappa BioBrick 

Framework (KBF, Stewart & Wilson-Kanamori, 2011) and automated the modeling of rules 

describing bacterial transcription and translation. The KBF describes transcription and 

translation as a succession of rules: The reversible docking of RNAP (ribosome) to a 

promoter (RBS), the sliding of the RNAP through the DNA and sliding of the ribosome 

through the RNA, and fall off from the terminator (RNAP) or the stop codon (ribosome). 
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Atlas considers all promoters and terminators to write the rules described in the KBF. The 

transcription from the lactose operon is initiated at four promoters and terminated by two 

Rho-independent terminators (Figure 4-3). Moreover, we modeled an internal promoter that 

drives transcription from the lacYA operon, although its importance in vivo is not clear 

(Zaslaver et al., 2006). Employing the rules defined in KBF, we reconstructed a model for 

transcription and translation that considers the genomic architecture of the lactose operons 

and we coupled it to the metabolic model presented previously (including protein assembly). 

Therefore, the resulting ensemble model requires only DNA (and the transcription-

translation machinery) to produce the necessary proteins for metabolic activity. 

Finally, the RBM representing the lactose metabolism was completed with a 

representation of transcriptional control. To model gene regulation, we added to the 

interaction network the LacI-allolactose and LacI-DNA binding site complexes. In the case 

of LacI, each dimer binds in tandem to one DNA binding site, and two dimers could 

dimerize, forming a DNA loop that impedes the binding of RNAP-σ to promoters or initiates 

transcription (Rutkauskas et al., 2009). To inactivate LacI, free proteins bind allolactose that 

seems to impede the binding of LacI-allolactose to DNA binding sites (M. Lewis, 2005). In 

principle, the modeling of DNA binding protein interactions requires one rule per 

transcription factor, as we could ignore differences in the rates of DNA-protein kinetics. 

However, the different affinities, the genomic architecture, and the transcription factor 

mechanisms (reviewed in van Hijum et al., 2009) encouraged the development of another 

approach. To do so, overlapping DNA binding sites and other genomic features were defined 

as a collapsed hyper-network similar to was done for protein complexes (Figure 4-3, Table 

S 4-5). Figure 4-2D shows the results of simulations where allolactose binds free lacI 

proteins, while Figure 4-2E shows the simulation from a hypothetical situation where free 

lacI proteins cannot bind allolactose. The difference from both situations was modest and 

showed an earlier rise of the glucose and galactose concentration of near 100 units of time 

when allolactose could bind lacI proteins (Figure S 4-3). Because of allolactose binds free 

lacI proteins, the release of lacI proteins freeing the promoter occurred in both models. 



82 

 

 

 

 

Figure 4-3. Genomic organization of the Escherichia coli lactose operon.  

The lactose operon shows four promoters controlled independently by the repressor LacI, 

the activator-repressor CRP, the repressor H-NS, and the repressor MarA. An internal 

promoter and two terminators contribute to the expression dynamics of enzymes and the 

transporter. Image reproduced from the EcoCyc website (https://www.ecocyc.org/gene? 

orgid=ECOLI&id=EG10527#tab=TU; Keseler et al., 2017). 

 

Although system parameters could be found in databases or calibrated (e.g. with 

pyBioNetFit, Mitra et al., 2019, or Pleione, Santibáñez et al., 2019), the results show that 

modeling of RBMs for metabolism, protein complex /.assembly, transcription, translation, 

and regulation of gene expression can be done in an automated manner, facilitating 

deterministic and stochastic simulation. Parameters employed for simulation are detailed in 

Table S 4-2, S 4-3, S 4-4, and S 4-5, and a benchmark is detailed in Table S 4-6. 

4.5.3 Modeling natural and synthetic transcriptional control: The sigma 

factors model. 

We later addressed the modeling of RNAP-σ assembly and transcriptional control of its 

expression mediated by the activity of sigma factors. Compared to eukaryotes, bacteria have 

only one RNAP and different sigma factors that confer promoter specificity (Mauri & 

Klumpp, 2014). E. coli has seven sigma factors that interact physically with the core RNAP 

to form holoenzymes. The purpose here is to present how to model transcription control as 

the RBM is presented and calibrated elsewhere (Perez-Acle et al., 2018; Santibáñez et al., 

2019) and to employ it to model synthetic transcriptional control. Also, Atlas models a 

molecular step in bacterial transcription disregarded in KBF (Stewart & Wilson-Kanamori, 

2011): the sigma factor is released from holoenzymes when transcription is initiated (Mauri 

& Klumpp, 2014). 

https://www.ecocyc.org/gene?%20orgid=ECOLI&id=EG10527#tab=TU
https://www.ecocyc.org/gene?%20orgid=ECOLI&id=EG10527#tab=TU
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 We modeled the holoenzymes binding to promoters as if those interactions were the 

binding of any transcription factor to their cognate DNA binding sites. To do so, the RNAPσ 

specificity (Table S 4-7) and the genome architecture (Table S 4-8) were considered 

simultaneously, two features employed separately for the modeling of DNA-protein 

interactions and transcription. Both networks are represented in Figure 4-4A (a canonical 

GRN) and Figure 4-4B (an extended network to show the considered genome architecture). 

The resulting model describes holoenzymes explicitly as a complex of five proteins instead 

of a unique agent modeling the RNAP complex employed in the lactose model. Results for 

the dynamics of the described GRN are shown in Figure 4-4C and Figure 4-4D for a 

hypothetical case of only RNA synthesis without mRNA degradation. It can be seen that 

gene expression shows similar rates, though results are influenced by the parameter values 

and the initial condition for proteins. 

 

 

Figure 4-4. Stochastic simulation of the Escherichia coli sigma factor GRN. 

(A) Visualization of the curated GRN from the EcoCyc database. Light blue nodes represent 

the seven sigma factor and the green nodes represent the three RNAP subunits encoding 

genes. Arrows represent the positive regulation of transcription determined from sigma 

factor specificity for promoters. 



84 

 

 

 

 

Figure 4-4. Stochastic simulation of the Escherichia coli sigma factor GRN (continued).  

(B-D) Mean of 100 stochastic simulations (KaSim) and one standard deviation from the 

mean. (B) Extension of the GRN to encode the genomic architecture of the ten considered 

genes. The rpoB and rpoC (left side of the outer ring) form a single operon. Labeled white 

nodes are the promoters, purple nodes are the ribosome binding sites, red nodes are the 

coding DNA sequence, and unlabeled white nodes are the terminators. (C, D) Stochastic 

simulation of the natural genomic architecture and regulatory interactions. (E) Stochastic 

simulation for the network modified with an in silico internal rpoC promoter. (F) Stochastic 

simulation for the network modified with an in silico internal rpoB terminator. Models at 

github.com/networkbiolab/atlas/tree/master/examples/sigma-model. A.U.: Arbitrary Unit. 

 

The use of Atlas is not restricted to natural networks and allows the modeling of 

different genomic arrangement of genes. One purpose of such procedure is to assess 

differences in mRNA and other cell component dynamics with the final goal of the 

computational-aided design before experimental evaluation. For the sigma model, we 

modeled three variants that modified the rpoBC operon architecture. Those variants were: 

a) the incorporation of an internal promoter between rpoB and rpoC genes allowing the 

https://github.com/networkbiolab/atlas/tree/master/examples/sigma-model
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interaction of an RNAP-σ complex, b) the incorporation of an internal terminator allowing 

falloff of the RNAP, and c) the incorporation of both. Our simulations showed that the 

incorporation of a promoter for rpoC reduced the synthesis rate for rpoB due to reduced 

RNAP availability for its promoter (Figure 4-4E), which in turn is determined by the model 

parameters and the initial condition. On the contrary, the addition of the internal terminator 

reduced the synthesis rate for rpoC (Figure 4-4F) due to the reduced probability to continue 

RNA elongation from rpoB into rpoC. Finally, both modifications showed no changes in 

RNA synthesis rates due to the compensation of falling off RNAPs from the rpoB terminator 

and interaction of RNAP-σ holoenzymes to the synthetic rpoC promoter (Figure S 4-4B). In 

addition, the model showed similar expression rates as the situation of independent rpoB and 

rpoC operons (Figure S 4-4D). 

More realistic stochastic simulations were performed with the Sigma Factors Model 

extended to model RNA degradation as unimolecular decay (Perez-Acle et al., 2018). In 

contrast with the simulation results shown in Figure 4-4E, Figure 4-4F, and Figure S 4-4, 

the in silico variants were calibrated as if the new models represent the natural genomic 

architectures. Also, we performed an indirect comparison of mRNA quantities using 

Pearson´s correlation coefficient to compare mRNA dynamics for the average of 

simulations. We report correlations higher than 0.95 as an absolute value in a co-expression 

network (Figure S 4-5). The expression profiles for rpoB and rpoC remained correlated in 

all variants, in contrast to a correlation coefficient of 0.57 determined from the original data. 

A complete explanation is tailored to the ability of the performed calibration to find 

parameter values that resemble the experimental data the best possible for an unnatural 

transcriptional network and delineates the need for (cell-free) experiments to accurately 

measure RNA synthesis rates in modified genomic contexts. 

Finally, we performed in silico knockout experiments. Comparisons employing the 

edgeR software (Y. Chen et al., 2014; M. D. Robinson et al., 2009) and a threshold for the 

False Discovery Rate (FDR) of 0.05 showed that the deletion of rpoD and rpoS impacted the 

most in mRNA synthesis, while the other deletions did not show differential expressed 

genes. The knockout of rpoD impedes the expression of rpoS (Figure 4-4B) while we 

observed lower expression for fliA and fecI and higher expression for rpoA, rpoE, rpoH, and 
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rpoN compared to the reference model. In turn, the knockout of rpoS showed lower 

expression for rpoB and fecI, and higher expression for fliA. Determined fold change and 

FDR values are in Table S 4-9 and Table S 4-10, respectively. Consider that, simulations 

were done to highlight the capability of Atlas to model different genetic modifications and 

parameters did not reflect any experimentally determined rate. Also, the models did not 

incorporate degradation rules for mRNAs and an extension of the model to synthesize and 

degrade proteins will allow the detailed modeling of in silico designs and the comparison of 

simulations to experimental data from synthetic constructs employing cell-free translation-

transcription technologies (Borkowski et al., 2018). 

4.6 CONCLUSIONS 

Mathematical and computational modeling is often viewed as a specialized task. To facilitate 

modeling, we automated the development of RBMs as these types of models show 

simulation flexibility, a reasonable degree of readability, modularity for integrative 

modeling, and good simulation scalability. 

Atlas produces sub-models from genome graphs, protein-protein, protein-

metabolites, and protein-DNA interaction, and metabolic networks. We developed in this 

work a divide-and-conquer strategy supported by the modularity of RBMs as it is the 

pathway for the development of whole-cell models (Szigeti et al., 2018). The software 

produces RBMs for the PySB framework (Lopez et al., 2013) and rules can be added in any 

order while PySB checks if new rules are compatible with the current model. In addition, 

PySB could export to kappa language and we employed the KaSA software (Boutillier, 

Maasha, et al., 2018) to assess further the coherence of the developed RBMs. Simulation of 

RBMs could be done within PySB and calibration of exported models could be performed 

with pyBioNetFit (Mitra et al., 2019, only BNGL models) or Pleione (Santibáñez et al., 

2019, BNGL and kappa models) to compare the reconstructed models with experimental 

data or available models. 

Atlas contrast to available software because it lacks a graphical interface (e.g. 

RuleBender, Smith et al., 2012, and VirtualCell, Blinov et al., 2017) although the user could 

employ Atlas within a Jupyter notebook and use pyViPR (Ortega & Lopez, 2020) to 
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visualize the model structure. Also, Atlas relies on the user to obtain formatted data to model 

interactions in contrast to INDRA (Gyori et al., 2017) that could use Natural Language 

Processing to read information and reconstruct models. In turn, Atlas could model 

metabolism, transcription, and translation, besides protein-protein interactions widespread 

found in signaling pathways that INDRA (Gyori et al., 2017) and KAMI (Harmer et al., 

2019) could model. 

Finally, the models and the Atlas software are extensible, for instance, to model 

cooperative behavior currently not supported. The utilization of the law of mass action for 

the metabolic network (and other reactions) limits the utility of the resulting RBMs in the 

current form, but export to BNGL or kappa leverages this imposition as they support 

mathematical expressions as reaction rate. However, we expect to extend Atlas to consider 

enzyme-metabolites interactions and describe detailed mechanisms of enzyme reactions 

(Saa & Nielsen, 2017), allosteric regulations of metabolic activity, and to model the 

assembly of ribosomes (Davis et al., 2016; Gupta & Culver, 2014; Shajani et al., 2011). 

Notably, Atlas is already compatible with metabolic and interaction data from eukaryotes 

and we obtained a model from data for 1991 metabolic reactions of the yeast Saccharomyces 

cerevisiae from BioCyc. In addition, we expect further interoperability with INDRA models 

of signaling pathways to model protein modifications such as phosphorylation and the 

collaboration from researchers. With collaboration in mind, we shared the developed models 

in this work at https://github.com/networkbiolab/Atlas/examples.  

  

https://github.com/networkbiolab/Atlas/examples
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5.1 SUMMARY 

Mathematical models based on Ordinary Differential Equations (ODEs) are 

frequently used to describe and simulate biological systems. Nevertheless, such models are 

often difficult to understand. Unlike ODE models, Rule-Based Models (RBMs) utilize 

formal language to describe reactions as a cumulative number of statements that are easier 

to understand and correct. They are also gaining popularity because of their conciseness and 

simulation flexibility. However, RBMs generally lack tools to perform further analysis that 

requires simulation. This situation arises because exact and approximate simulations are 

computationally intensive. Translating RBMs into ODEs is commonly used to reduce 

simulation time, but this technique may be prohibitive due to the combinatorial explosion. 

Here, we present the software called Pleione to calibrate RBMs. Parameter calibration is 

essential given the incomplete experimental determination of reaction rates and the goal of 

using models to reproduce experimental data. The software distributes stochastic simulations 

and calculations and incorporates equivalence tests to determine the fitness of RBMs 

compared with data. The primary features of Pleione were thoroughly tested on a model of 

gene regulation in Escherichia coli. Pleione yielded satisfactory results regarding calculation 

time and error reduction for multiple simulators, models, parameter search strategies, and 

computing infrastructures. 
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5.2 INTRODUCTION 

Systems biology studies the behavior of biological systems by determining and quantifying 

all of the molecular interactions that characterize them (Endy & Brent, 2001). This area of 

science relies on different experimental, mathematical, and computational tools to address 

system generalities such as robustness and specific details such as bi-stability (Breitling, 

2010; Fisher & Henzinger, 2007). Notably, these computational approaches can be classified 

into two primary types: those that aim to determine cell component interactions (e.g., 

methods to infer Gene Regulatory Networks GRNs, from expression data Marbach et al., 

2012) and those used to study the dynamical properties that define such systems (Endy & 

Brent, 2001; Fisher & Henzinger, 2007). 

In the post-genomic era, elucidating gene regulation remains one of the primary 

challenges of systems biology (Martin et al., 2016). This information is highly relevant to 

understanding metabolism (Fischer & Sauer, 2003; Fuhrer et al., 2017), cell responses 

(Jozefczuk et al., 2010; M. Kim et al., 2015), and cell-to-cell interactions (Shoaie et al., 2013; 

Sung et al., 2017) and for developing industrial applications of microorganisms (Johns et al., 

2018). The increasing availability of omics data has facilitated the modeling of biological 

systems with the goal of understanding and predicting their behavior (Bartocci & Lió, 2016). 

Frequently modeled experimental data include genomics, transcriptomics, proteomics, and 

metabolomics (Szigeti et al., 2018). These datasets can be modeled in single-omics or 

integrated, multi-omics representations of cell behavior (M. Kim & Tagkopoulos, 2018). 

Historically, Ordinary Differential Equations (ODEs)-based models have been extensively 

used for modeling biological systems (Szigeti et al., 2018). Nowadays, Rule-Based Models 

(RBMs) are gaining popularity because of their advantages over their ODE counterparts 

(Chylek et al., 2015; Danos et al., 2007a; Lopez et al., 2013). For example, RBMs are best 

suited to modeling large systems that may be composed of millions of different types of 

components and transformations (Danos et al., 2007a; Lopez et al., 2013). To simulate 

RBMs, most of the available tools use the Gillespie´s Stochastic Simulation Algorithm 

(SSA), a method to retrieve an exact numerical solution from a Chemical Master Equation 

(Daniel T. Gillespie, 1977). The SSA and its derivatives are implemented in RBM simulators 
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such as KaSim (Danos et al., 2007a), BioNetGen (BNG) (Blinov et al., 2006; James R Faeder 

et al., 2003), and others (Gibson & Bruck, 2000; Hogg et al., 2014; McCollum et al., 2006; 

Schaff et al., 2016; Sneddon et al., 2008). Unfortunately, tools to perform calibration and 

determine parameter uncertainty of RBMs are generally lacking; they are available only for 

BioNetGen Language (BNGL) and Systems Biology Markup Language (SBML) models 

(Mitra et al., 2019; Thomas et al., 2015). Without proper calibration, analyses of model 

perturbations and predictions beyond experimental data are impossible. 

One significant difficulty of modeling biological systems is robustly estimating 

parameter values. This calibration procedure is especially relevant considering that the 

purpose of models is to reproduce observed data or phenomena (Sun et al., 2012). Notably, 

this problem is computationally expensive in the case of RBMs, where conventional 

approaches rely on an equivalent ODE model to reduce the calculation time (Aguilera et al., 

2017; Kozer et al., 2013). In general, multiple simulations of an RBM converge on a 

numerical solution to its ODE counterpart. However, both modeling frameworks entail 

different assumptions (Chylek et al., 2015). As a calibration example, Kozer et al. (Kozer et 

al., 2013) employed BNG to simulate multiple RBMs that differed only in parameter values, 

solving each model in a deterministic fashion with the CVODE software (Hindmarsh et al., 

2005). In contrast to Kozer et al. (Kozer et al., 2013), Aguilera et al. (Aguilera et al., 2017) 

developed and performed a calibration of a stochastic model employing first deterministic 

simulations. These authors argued that if a deterministic stationary state closely matches the 

modes of the experimental data, the employed parameters are good candidates for fitting 

stochastic simulations to the same data (Aguilera et al., 2017). However, their approach fails 

if the stationary state is remarkably different from the simulated pseudo-stationary state of 

stochastic simulations, as was argued by Halh & Kremling (Hahl & Kremling, 2016), or in 

situations where a deterministic simulation is not possible. For instance, KaSim (Danos et 

al., 2007a) does not provide an ODE solver, and while KaDE (Camporesi et al., 2017) can 

export a kappa model to ODEs in a variety of compatible software, the size of the generated 

model is affected by combinatorial complexity, the explosion in the number of ODEs due to 

the numerous interactions and modifications modeled (Hogg et al., 2014). For example, the 

EGFR/ERK pathway model contains 70 rules that are equivalent to approximately 1023 
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ODEs (Danos et al., 2007a). Despite the availability of robust methods to calibrate and 

analyze ODE models, using these methods to calibrate RBMs may disregard the stochastic 

behavior of a system and accordingly result in a loss of useful information. To circumvent 

these problems, Thomas et al. (Thomas et al., 2015) developed BioNetFit (BNF) and 

recently Mitra et al. (Mitra et al., 2019) developed PyBioNetFit (pyBNF). Both of these tools 

harness computational load schedulers to parallelize simulations and cut down on the time 

necessary to calibrate an RBM. Although BNF (and pyBNF) address the need for a 

calibration tool, they support only RBMs written in BNGL and SBML (James R Faeder et 

al., 2003) and rely on algebraic equations to compare experimental data and simulation that 

may be of special concern depending on the nature of the modeled phenomena. 

In this study, we present and describe the features of Pleione, an open resource to 

calibrate RBMs. Pleione encodes a Genetic Algorithm (GA), a robust and general 

methodology that searches the parameter space with operations that select, recombine, and 

mutate models with increased fitness (Whitley, 1994). Pleione was developed to perform 

three primary tasks: calibrate RBMs regardless of their underlying formal language, 

statistically assess models against experimental data, and distribute calculations with 

minimal user intervention. Pleione supports BNG2 (James R Faeder et al., 2003), NFsim 

(Sneddon et al., 2008), KaSim (Blinov et al., 2006; Danos et al., 2007a), and PISKaS (Perez-

Acle et al., 2018) to perform simulations of RBMs either in BNG or kappa language. SBML 

models can be transformed with BNG into BNGL models (James R Faeder et al., 2003) or 

with PySB and exported to a myriad of formats (Lopez et al., 2013). Furthermore, Pleione 

can evaluate models employing unique or combined fitness functions (Konak et al., 2006) 

referred to hereafter as single-objective GA (SOGA) or multi-objective GA (MOGA). 

Additionally, it incorporates parametric and non-parametric equivalence tests such as the 

two one-sided t-tests (Schuirmann, 1987), the Double Mann-Whitney U-test (Cornell, 1990), 

and the Wellek´s test (Wellek, 1996, 2010) as measurements of the fit between the 

experimental data and the stochastic simulations. Pleione can accordingly determine 

significant equivalences between experimental and simulated data. Lastly, we parallelized 

calculations employing the SLURM software, the de-facto standard for high-performance 
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computing infrastructure. We also support parallelized calculations without SLURM using 

the python multiprocessing package. 

We tested Pleione in a variety of settings and report its behavior. We employed 

multiple search strategies with algebraic functions to calibrate 79 free parameters of the core 

GRN model of E. coli (Perez-Acle et al., 2018). We also report the uncertainty in parameter 

values using jackknife and bootstrap procedures. Subsequently, we calibrated the Aguilera´s 

simple model of gene regulation (Aguilera et al., 2017) employing the equivalence tests 

alone and in combination with a second fitness function. Finally, we provide a comparison 

of the developed method against BNF (Thomas et al., 2015), and we perform a calibration 

of an example RBM with six free parameters. 

5.3 METHODS 

5.3.1 Software implementation 

Pleione is open software written in python3 and it is cross-platform compatible. The GA 

implemented is a simple iterative process of selection, recombination, and mutation of 

parameter values (Whitley, 1994). Before performing any optimization, Pleione reads an 

RBM and identifies the free parameters in the model, i.e., user-selected variables that are 

going to be calibrated and their allowed search space. After building the first population, 

Pleione writes as many models as defined by the user with each parameter set; it then queues 

the simulation jobs using SLURM or the python multiprocessing API. After the first 

population is simulated, the models are ranked using one or more of the nine algebraic and 

two statistical fitness functions. Then, two selection strategies can be used. The first is a 

uniform probability selection that selects two parents from the best (“elite of”) models. The 

second strategy employs a distribution that is inversely proportional to the rank (and optional 

elitism). The latter is a selection strategy previously implemented in BNF (Thomas et al., 

2015). The user can control crossover and select between single and multiple crossover 

points. Finally, each parameter value can be mutated, and a new value can be selected from 

a uniform or log-uniform distribution or multiplied by a random factor centered on the old 

parameter value. The simulation, selection, and mutation procedures are repeated until the 

number of iterations reaches the user-defined value. Pleione´s default is to perform elitism 
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with multiple crossing points and parameter mutations from a uniform distribution. Pleione 

is able to perform calibrations employing BNG2 (James R Faeder et al., 2003), NFsim 

(Sneddon et al., 2008), KaSim (Blinov et al., 2006; Danos et al., 2007a), and PISKaS (Perez-

Acle et al., 2018), regardless of differences in model configuration, command-line interface, 

or format of the reported simulation results. Other (stochastic) simulators can be 

incorporated into Pleione if they provide a command-line interface. Pleione is freely 

available at Python Package Index and Github (see the Pleione Manual for installation and 

user instructions at https://pleione.readthedocs.io). 

5.3.2 Fitness functions 

5.3.2.1 Software implementation of iterative equivalence tests. 

Equivalence tests aim to determine the significance of the extent to which two distributions 

differ or are equivalent to practical purposes (Cornell, 1990). The tests determine the 

rejection of one of the two null hypotheses that the difference lies beyond the equivalence 

range. The first of these implemented tests were the “two one-sided t-tests” (Schuirmann, 

1987) from the python statsmodels package with a predefined 5% significance level. The 

fitness function is selected by its acronym TOST (see the Pleione Manual for details at 

https://pleione.readthedocs.io). TOST shifts simulated values to the left and the right and 

test whether the resulting distribution is statistically smaller or larger than unaltered data. 

Only when both unpaired t-tests reject their null hypotheses does TOST reject its own. 

The second test, the Double Mann-Whitney U-test, is a straightforward adaptation of 

the Mann-Whitney U-test as mentioned by Cornell (Cornell, 1990) and discussed by Wellek 

(Wellek, 1996). The fitness function is selected by its acronym DUT (see the Pleione Manual 

for details at https://pleione.readthedocs.io). Like TOST, DUT shifts the simulated variables 

toward the left and the right and compares them with unaltered data using a one-sided U-

test. The U-test determines whether a random variable is stochastically larger than another 

random variable (Marshall, 1951); it is the non-parametric counterpart of the unpaired t-test. 

To calculate the U-test, we first determined how many experimental values were smaller and 

greater than the shifted simulated values using Algorithm 1. Here, 𝑒𝑥𝑝 stands for an 

experiment replication; shifted sim stands for shifted stochastic simulations of an RBM. 

https://pleione.readthedocs.io/
https://pleione.readthedocs.io/
https://pleione.readthedocs.io/
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Lower and upper are the threshold limits. After comparing the experimental data and 

simulations, the observed difference 𝑈𝑒𝑥𝑝 and 𝑈𝑠𝑖𝑚𝑠 were compared against a critical value 

using Algorithm 2. 

 

Algorithm 1. Count how many times experimental data is larger than shifted simulated 

values. 

1: for i in range(0, len(exp)) do 

2: for j in range(0, len(shifted sim)) do 

3:  if expi > shifted simj then 

4:   Uexp = Uexp + 1.0 

5:  else if expi < shifted simj then 

6:   Usim = Usim + 1.0 

7:  else 

8:   Uexp = Uexp + 0.5 

9:   Usim = Usim + 0.5 

10:  end if  

11: end for  

12: end for 

 

Algorithm 2. Double Mann-Whitney U-test. Determine if the difference is statistically 

significant for each variable. 

1: Umax = Umodel = len(exp) × len(shifted sim) 

2: for i in range(0, len(exp)) do 

3: for j in range(0, len(shifted sim)) do 

4:   test H0: exp > sim − lower 

5:   if Umax − Uexp ≤ Ucritic then null hypothesis, H0, is rejected 

6:    Ulower = 1.0 

7:  else 

8:   Ulower = 0.0 

9:   end if 

10:   test H0: exp < sim + upper 

11:   if Umax − Usim ≤ Ucritic then null hypothesis, H0, is rejected 

12:    Uupper = 1.0  

13:  else 

14:   Uupper = 0.0 

15:   end if 

16:   Umodel = Umodel − Ulower × Uupper 
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The third equivalence test is the Wellek´s test (Wellek, 1996, 2010) that determines 

whether if the probability of the difference of two random variables lies within a (small) 

threshold around 50%. We implemented the mawi.R routine from the EQUIVNONINF R 

package (https://rdrr.io/cran/EQUIVNONINF/) in python. Pleione uses WMWET as an 

acronym for the fitness function. 

All three equivalence tests were calculated for each variable and time point, and the 

fitness functions minimize the total sum of successful equivalence tests subtracted from the 

total number of performed tests (e.g. 𝑈𝑚𝑎𝑥  in Algorithm 2). 

5.3.2.2 Algebraic functions. 

Pleione includes nine algebraic fitness functions, which are described below with their 

acronyms in parentheses. As noted previously, 𝑒𝑥𝑝 stands for an experiment replication, 𝑠𝑖𝑚 

stands for a simulated value, 𝑒𝑥𝑝̅̅ ̅̅ ̅ refers to the average, and 𝜎𝑒𝑥𝑝 is the standard deviation of 

experimental values. 

• Squared Difference of two Averages (SDA): 

(
1

𝑚
∑ 𝑒𝑥𝑝𝑖

𝑚

𝑖=1
−

1

𝑛
∑ 𝑠𝑖𝑚𝑗

𝑛

𝑗=1
)

2

 (5-1) 

 

• Absolute value of the Difference of two Averages (ADA): 

|
1

𝑚
∑ 𝑒𝑥𝑝𝑖

𝑚

𝑖=1
−

1

𝑛
∑ 𝑠𝑖𝑚𝑗

𝑛

𝑗=1
| (5-2) 

 

• Pair-Wise Square Deviation (PWSD): 
1

𝑚𝑛
∑ ∑ (𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗)

2𝑛

𝑗=1

𝑚

𝑖=1
 (5-3) 

 

• Absolute Pair-Wise Deviation (APWSD): 
1

𝑚𝑛
∑ ∑ |𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗|

𝑛

𝑗=1

𝑚

𝑖=1
 (5-4) 

 

• Normalised Pair-Wise Square Deviation (NPWSD): 

1

𝑚𝑛
∑ ∑ (

𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗

𝑒𝑥𝑝𝑖
)

2𝑛

𝑗=1

𝑚

𝑖=1
 (5-5) 

 

https://rdrr.io/cran/EQUIVNONINF/
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• Normalised Absolute Pair-Wise Deviation (ANPWSD): 
1

𝑚𝑛
∑ ∑ |

𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗

𝑒𝑥𝑝𝑖
|

𝑛

𝑗=1

𝑚

𝑖=1
 (5-6) 

 

• Sum of Squares (SSQ)(Thomas et al., 2015): 

∑ ∑ (𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗)
2𝑛

𝑗=1

𝑚

𝑖=1
 (5-7) 

 

• Chi-Square (CHISQ)(Thomas et al., 2015): 

∑ ∑ (
𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗

𝜎𝑒𝑥𝑝
)

2𝑛

𝑗=1

𝑚

𝑖=1
 (5-8) 

 

• Mean Normalised Square Error (MNSE)(Thomas et al., 2015): 

∑ ∑ (
𝑒𝑥𝑝𝑖 − 𝑠𝑖𝑚𝑗

𝑒𝑥𝑝̅̅ ̅̅ ̅
)

2𝑛

𝑗=1

𝑚

𝑖=1

 (5-9) 

 

5.3.3 Models and experimental data  

5.3.3.1 Calibration of transcriptional dynamics. 

To test Pleione, we employed a simple model of gene regulation (Aguilera et al., 2017) and 

the core GRN model of E. coli that we published previously (Perez-Acle et al., 2018). The 

former is a four-equation model developed and used by Aguilera et al. (Aguilera et al., 2017) 

with known parameters to create a synthetic dataset. The equations describe the synthesis 

and degradation of an mRNA and its encoded protein. We randomly selected ten simulations 

using the “true” parameters and then set all rates as free parameters. The latter model 

resembles the GRN, protein-protein interactions, and genome architecture of E. coli K-12 

(see Figure S 5-8). The core GRN is composed of ten genes, of which seven encode sigma 

factors (Cho et al., 2014). The other genes correspond to the α, β, and β´ subunits of the E. 

coli RNAP. This GRN was built from EcoCyc (Keseler et al., 2017) and complemented with 

literature data (Cho et al., 2014). It resulted in a network of 30 positive regulations (see 

Figure S 5-8). The experimental data used to calibrate the model correspond to microarrays 

of E. coli gene expression after stress performed by Jozefczuk et al. (Jozefczuk et al., 2010) 
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(GEO accession GSE20305). These data were processed as in Marbach et al. (Marbach et 

al., 2012), and the resulting values were assumed to represent the absolute quantity of mRNA 

per cell for each available time point after stress induction (see Supplementary File S1 

online). We selected the binding and unbinding of each sigma factor to the core RNAP (14 

parameters), the binding and unbinding of the seven RNAP holoenzymes to their cognate 

promoters (56 parameters), and the decay of RNA molecules (9 parameters) as free 

parameters. 

We employed six different GA configurations, which are described below. All 

strategies included 100 models simulated ten times through 100 iterations. We repeated the 

calibration from the same initial population choosing the same random number generator 

seed to test the fitness functions included in Pleione. All of the simulations for the Aguilera´s 

simple model were done with BNG v2.2.6 (https://github.com/RuleWorld/bionetgen/ 

releases/tag/BioNetGen-2.2.6-stable). For the core GRN model, the simulations were done 

with KaSim v4.0 (https://github.com/Kappa-Dev/KaSim/releases/tag/v4.0). The scripts to 

repeat the calibration are in Supplementary File S1 online. The differences between 

strategies to calibrate are as follows: 

 

• Strategy 1, elitist GA: After each iteration, the ten best models were selected and left 

unaltered until the next iteration. From this elite of models, two parents were selected with 

a uniform probability and crossed in a single, random point. We allowed the self-

recombination of parents. The mutation of parameters resulted in a new value from the 

original range with a 30% probability. We did not repeat simulations from the elite 

population. 

• Strategy 2, non-elitist GA. After each iteration, all models were subjected to selection with 

an inverse to the rank probability distribution. For instance, the model 𝑖 with a rank 𝑟𝑖 had a 

probability of selection 𝑝𝑖 equal to 1 𝑟𝑖 ∑ 1 𝑟𝑗⁄𝑅
𝑗=1⁄ . After selecting two different parents, they 

were recombined in a single, random point. The mutation of parameter values was the same 

as in Strategy 1. 

https://github.com/RuleWorld/bionetgen/%20releases/tag/BioNetGen-2.2.6-stable
https://github.com/RuleWorld/bionetgen/%20releases/tag/BioNetGen-2.2.6-stable
https://github.com/Kappa-Dev/KaSim/releases/tag/v4.0
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• Strategy 3. The same as Strategy 2, but the mutation of parameters yielded a new value 

with a 20% probability from a random factor within a ±10% interval centered at the old 

value. This strategy was applied using BNF. 

• Strategies 4, 5, and 6 (MOGA). These strategies were similar to Strategy 1, but we selected 

the CHISQ (Equation 5-8) and WMWET; the ANPWSD (Equation 5-6), WMWET, and 

PWSD (Equation 5-3); and the CHISQ, WMWET, SDA (Equation 5-1), and NPWSD 

(Equation 5-5) simultaneously as fitness functions for the rank models. 

5.3.3.2 Comparison with BioNetFit.  

Pleione was also used to calibrate an equivalent model to “example 6” reported by Thomas 

et al. (Thomas et al., 2015) in kappa language. Although Thomas et al. published another 

two models, some of the BNGL syntax within them do not have a simple or equivalent 

expression in kappa language. The “example 6” is a toy model with synthetic experimental 

data that resemble the ligand-induced autophosphorylation of a receptor (Thomas et al., 

2015). The model was rewritten employing PySB version 1.5.0 (Lopez et al., 2013) and 

exported to kappa and BNGL. The latter was simulated with BNG2 and compared with the 

original model to discard syntax misinterpretation while rewriting the model. The kappa 

model was further modified to enable an equilibration step similar to that of the original 

model. To perform the comparison with BNF, both GAs were run employing strategy 3. The 

first population was drawn from a log-uniform distribution between 10−2 and 10+2. The same 

options were used when calibrating with BNF, and we selected equivalent objective 

functions to fit with BNF and Pleione. The simulators were BNG v2.2.6 https://github.com/ 

RuleWorld/bionetgen/releases/tag/BioNetGen-2.2.6-stable and NFsim v1.12.1, which was 

compiled from source obtained at the BNF GitHub repository (https://github.com/ 

PosnerLab/BioNetFit). BNF was obtained from https://github.com/ RuleWorld/BioNetFit/ 

releases/tag/v1.01. 

5.3.4 Complementary analysis and statistical tests 

The core GRN model simulates the availability of RNAP, also referred to as the free RNAP 

fraction. To determine whether the simulated free fraction was in a pseudo-stationary state, 

we employed the one-way ANOVA test and the Kruskal-Wallis H-test, both from the python 

https://github.com/%20RuleWorld/bionetgen/releases/tag/BioNetGen-2.2.6-stable
https://github.com/%20RuleWorld/bionetgen/releases/tag/BioNetGen-2.2.6-stable
https://github.com/%20PosnerLab/BioNetFit
https://github.com/%20PosnerLab/BioNetFit
https://github.com/%20RuleWorld/BioNetFit/%20releases/tag/v1.01
https://github.com/%20RuleWorld/BioNetFit/%20releases/tag/v1.01
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SciPy package (Jones et al., 2015). Additionally, to determine the probability of a range of 

simulated free RNAP, we repeatedly employed the one-sample t-test with a 95% confidence 

level in a one-tail test; we adjusted the threshold of free RNAP fraction over the entire time 

interval until the t-test rejected the null hypothesis at least once. Finally, to determine which 

fitness functions to employ in a multi-objective GA, we calculated the Pearson´s, 

Spearman´s rank (𝜌), and Kendall´s rank (𝜏) correlation coefficients, which were also 

implemented within the SciPy package (Jones et al., 2015). Parameter uncertainty for the 

core GRN model was assessed using Alcyone https://github.com/networkbiolab/ 

alcyone/tree/master/example employing the leave-one-out jackknife and the bootstrap 

resampling methods. The latter was performed with 20 GA runs, which enabled a maximum 

90% confidence interval. Animations of the dynamics were prepared from 1000 simulations 

with KaSim. We plotted the average and one standard deviation for a total of 40 variables 

during the first minute at intervals of one second; the remaining simulated times had intervals 

of 0.1 minutes (i.e., 6 seconds). 

5.4 RESULTS AND DISCUSSION 

5.4.1 Single-objective genetic algorithm 

5.4.1.1 Algebraic fitness functions. 

Pleione calculates nine algebraic equations commonly used as fitness functions (see the 

Methods section for the definition of these equations). We provide all fitness functions in a 

single file and separately from the Pleione main code for three reasons. First, the supported 

stochastic simulators report their results in different formats. Second, the separation enables 

transparent parallelization of fitness calculations and its utilization to validate models with 

new or independent data not used to calibrate the model. And third, the separation allows a 

straightforward and easy way to add new fitness functions following specific guidelines 

(https://pleione.readthedocs.io) and to give support to new deterministic or stochastic 

simulators. 

To test Pleione, we employed an elitist GA (see the Methods section, strategy 1) and 

transcriptomic data from Jozefczuk et al. (Jozefczuk et al., 2010) to calibrate the core GRN 

model (Perez-Acle et al., 2018). Jozefczuk et al. used a variety of conditions to evaluate the 

https://github.com/networkbiolab/%20alcyone/tree/master/example
https://github.com/networkbiolab/%20alcyone/tree/master/example
https://pleione.readthedocs.io/
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changes in mRNA expression using microarrays. We selected cold stress to exemplify the 

use of Pleione, although any experimental procedure that determines the abundance of 

mRNA molecules is suitable for matching with the model utilized in this work. We used 

Pleione with the same seed for the random number generator so all GAs started from the 

same population of models. The resulting error convergence for each fitness function is 

shown in Figure 5-1A for the ten best models. To provide a fair comparison between each 

of the fitness functions, we report the fractional error that corresponds to the averaged error 

normalized by the average error at the first iteration for the elite of models. This procedure 

makes it possible to determine the fitness function characterized by the largest error 

reduction compared with its first iteration. For the tested model, calibration strategy, and 

fitness functions, the squared difference of averages (SDA, Equation 5-1), the normalized 

pair-wise squared deviation (NPWSD, Equation 5-5), the chi-square error (CHISQ, Equation 

5-8), and the mean normalized standard error (MNSE, Equation 5-9) exhibited the best 

performances. These four fitness functions reduced the average error for the elite of models 

to nearly 20% of their original value (Figure 5-1A). 
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Figure 5-1. Parameter calibration using algebraic fitness functions.  

The RBM representing the core GRN of E. coli was calibrated against transcriptome data 

and evaluated algebraically. (a) Error convergence. The traces correspond to the mean of the 

10 best models (the elite population) per iteration, normalized by the mean error at the first 

iteration (fractional error). (b) Comparison of the best model. The 10 simulations used to 

evaluate the best model at the end of the GA employing the chi-squared fitness function are 

plotted along with experimental data for the rpoS mRNA. The symbols correspond to the 

mean and one standard deviation. Data were plotted purposely with an offset to prevent the 

error bars from overlapping. (c) Independent validation. The calibrated model predicts free 

RNAP in a pseudo-stationary state in the 17–22% range; stars denote where a one-sample t-

test concludes the model simulates a larger value (at 10 minutes, p-value ≈ 0.041; at 30 

minutes, p-value ≈ 0.049; at 40 minutes, p-value ≈ 0.036) and a smaller value (at 20 minutes, 

p-value ≈ 0.038; at 50 minutes, p-value ≈ 0.040) compared with the 17–22% interval. 

 

Overall, we obtained good agreement between most of the experimental mRNA observations 

compared with their simulated values. Figure 5-1B shows the dynamics of the rpoS mRNA 

for the best-fit model based on CHISQ, and for all ten simulated mRNAs dynamics in Figure 

S 5-1. The remarkably poor fit for rpoA, rpoB, and rpoD mRNAs (Figure S 5-1 C, D, and 

F) may be explained by the lack of negative regulatory mechanisms in the model. There is a 

second regulatory layer in E. coli composed of antagonist proteins of sigma factor activity 

and a third layer that includes the antagonists of sigma-factor antagonists36. Incorporating 

those regulatory proteins into the model would benefit the calibration of mRNA responses 

that exhibit increased degradation and recovery, or vice versa. For instance, the fecI mRNA 

is rapidly synthesized and then degraded throughout the cold stress experiment (see Figure 

S 5-1A), however, the model predicted positive net synthesis. Moreover, the model that we 

used as an example has constant levels of proteins. Extending the model beyond gene 

regulation to incorporate protein translation, degradation, and metabolism would increase 

the repertoire of responses and regulatory mechanisms that are active in a given condition. 

Finally, the model represents a small portion of the complete E. coli GRN and ignores all 

transcription factors and small regulatory RNAs with known function (Hershberg et al., 

2003; Keseler et al., 2017) that directly or indirectly affect the dynamics of the considered 

mRNA. For instance, the Rsd protein accumulates throughout exponential growth and 

sequesters the RpoD protein, enabling higher activity of the sigma factor RpoS that drives 

gene expression in the stationary growth phase (Piper et al., 2009). Another example is the 
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rpoH mRNA that responds to high temperatures by restructuring its folding and increasing 

its translation rate (Kamath-Loeb & Gross, 1991). 

Complementary to the results, we also estimated the uncertainty on parameter values 

using leave-one-out jackknife and bootstrap resampling (Table S 5-1 and Table S 5-2). 

Furthermore, we provide the predicted values for all mRNAs, free and bound proteins, and 

protein complexes (40 variables) in Supplementary Video S1 (before calibration) and Video 

S2 (after calibration) online. The videos show that the model simulates a fast regime 

dominated by the formation of protein complexes during the first minute and then a slow 

regime dominated by the synthesis and degradation of mRNA later on. Small multiple 

snapshots of the model dynamics at 0, 1, 10, and 90 minutes are shown in Figure S 5-2. To 

validate with independent data, we compared the free fraction of RNA Polymerase (RNAP) 

with that quantified experimentally by Patrick et al. (Patrick et al., 2015). The free RNAP 

simulated fraction was in close agreement with the reported value. In this case, the best 

model selected by the CHISQ function predicted a free RNAP fraction in the 17–22% range 

(Figure 5-1C); an ANOVA test revealed no statistical difference among the nine simulated 

time points (F(8, 81) ≈ 0.4185, p-value ≈ 0.9067). For comparison, Patrick et al. showed that 

the free fraction of RNAP in E. coli depends on the growth rate, and they reported a free 

fraction of 28% in fast-growing cells (Patrick et al., 2015). 

5.4.1.2 Iterative equivalence tests as fitness functions. 

Statistical tests are commonly used to determine significant differences between treatments. 

Usually, researchers use parametric tests such as the paired and unpaired t-tests or their non-

parametric counterparts, the Wilcoxon rank-sum and the Mann-Whitney U-test, to determine 

if responses are different (Lauzon & Caffo, 2009). However, the applicability of those 

statistical tests for calibrating models simulated stochastically is questioned in the base of 

their null hypotheses. While common statistical tests determine whether two particular 

values such as the mean or variance from two distribution are statistically different, 

equivalence tests determine the opposite hypotheses. Equivalence tests aim to determine the 

significance of the extent to which two distributions can differ and also be equivalent for 

practical purposes (Cornell, 1990). 
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We incorporated three equivalence tests in Pleione: the parametric two one-sided t-

tests (Schuirmann, 1987) and the non-parametric Double Mann-Whitney U-test (Cornell, 

1990) and Wellek´s test (Wellek, 1996, 2010). The two one-sided t-tests and the Double 

Mann-Whitney U-test are straightforward implementations of the t-test and U-test employed 

to determine whether a distribution shifted to the left and the right is now smaller and greater 

respectively compared to the other distribution. If one of the shifted distributions lies outside 

the predefined equivalence range, the equivalence test cannot reject its null hypothesis. On 

the other hand, Wellek´s test determines whether the probability of one random variable 

being greater than another is between a (small) range centered at 50%40. Pleione calculates 

the selected test for each time point and variable, a procedure conducted to build a rejection 

matrix. Then, the iterative equivalence test is defined as the sum of the non-rejected 

equivalence tests (i.e., tests that do not conclude the distributions are equivalent). A 

characteristic of the above definition is that the iterative equivalence tests are discrete 

functions with known limits: A perfect model has a score equal to zero, and a completely 

wrong model score equals the number of variables times the number of experimental time 

points. For instance, if the experimental setup measured ten variables for ten time points, the 

maximum score is 100. Additionally, defined in a way that counts how many failed tests 

were, the iterative equivalence tests are fitness functions suitable to be minimized, therefore 

useful to improve stochastic models through an evolutionary algorithm or similar procedure. 

To determine the applicability of these equivalence tests, we used Aguilera et al.´s 

simple model of gene regulation (Aguilera et al., 2017). These authors employed the model 

with known parameters to test their calibration method. Thanks to these known or “true” 

parameters, we constructed large batches of synthetic data. We randomly selected ten 

replications and calibrated the model using strategy 1. In general, the GA recovered the four 

“true” parameters. In the case of the two one-sided t-tests, the percent error between the 

found and “true” parameters was no greater than 13.5% (31.2% cumulated percent error for 

the four parameters) when using one standard deviation as symmetric equivalence range. 

Similarly, employing the Double Mann-Whitney U-test, the GA recovered all parameters 

reasonably well, with a cumulated percent error close to 40%. Finally, employing the 

Wellek´s test with equivalence probabilities in the range of 19–76% (as similarly done in 
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Wellek40) yielded two parameters with percent errors less than 2.0%. However, the other 

two parameters were approximately 88% of the value of the “true” parameters. All of the 

results are listed in Table 5-1. Next, we will show that combining the equivalence test with 

other search strategies and fitness functions greatly improved the calibration of the 

considered model. Also, results for the core GRN model calibrated with the Wellek´s test 

are shown in Figure 5-2 and Figure S 5-1. As depicted in Figure 5-2A, calibration with the 

Wellek´s test yielded a low reduction in error, despite a good agreement for rpoS mRNA 

(Figure 5-2B) and free RNAP (Figure 5-2C). 

 

Table 5-1. Results of employing each equivalence test for the calibration of the Aguilera´s 

simple model.  

Each strategy and fitness function (see the Methods section) was run once and the table 

shows the parameters of the best model at the end of the calibration. A comparison is shown 

for the percentual error compared to the “true” value of the parameters (r1_v = 5, r2_k1 = 

0.03, r3_k1 = 0.1, r4_k1 = 0.03) and the cumulative error of all parameters. 

 

 Fitness 

function Score 

Parameters Percent error Cumulative 

error r1_v r2_k1 r3_k1 r4_k1 r1_v r2_k1 r3_k1 r4_k1 

strategy1 

TOST 4 5.672 0.034 0.097 0.029 13.43% 12.60% −2.92% −2.26% 31.21% 

DUT 3 5.672 0.034 0.094 0.028 13.43% 12.60% −6.30% −6.81% 39.14% 

WMWET 5 9.355 0.056 0.099 0.029 87.10% 87.77% −1.47% −1.71% 178.05% 

strategy2 

TOST 3 5.264 0.031 0.092 0.026 5.28% 3.22% −7.79% −12.49% 28.77% 

DUT 5 5.616 0.033 0.092 0.028 12.32% 10.99% −7.79% −6.93% 38.02% 

WMWET 4 5.275 0.032 0.094 0.028 5.49% 6.53% −5.98% −6.77% 24.77% 

strategy3 

TOST 5 8.493 0.050 0.216 0.015 69.85% 68.30% 116.40% −49.29% 303.85% 

DUT 6 7.242 0.046 0.236 0.029 44.83% 52.36% 136.36% −3.99% 237.54% 

WMWET 6 5.792 0.035 0.297 0.017 15.84% 17.43% 196.97% −43.96% 274.20% 

strategy3 

TOST + SDA 8 5.065 0.032 0.099 0.029 1.29% 8.30% −1.25% −3.94% 14.78% 

DUT + SDA 7 6.117 0.037 0.091 0.027 22.34% 22.58% −9.11% −11.66% 65.70% 

WMWET + 

SDA 

4 4.829 0.028 0.097 0.029 −3.42% −6.89% −3.46% −3.71% 17.48% 
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Figure 5-2. Parameter calibration using the non-parametric Wellek´s equivalence test.  

The RBM representing the core GRN of E. coli was calibrated against transcriptome data 

and evaluated algebraically. (a) Error convergence. The heat map corresponds to the value 

of the 10 best models (the elite population) per iteration. (b) Comparison of the best model. 

The 10 simulations used to evaluate the best model at the end of the GA are plotted along 

with experimental data for the rpoS mRNA. The symbols correspond to the mean and one 

standard deviation. Data were plotted purposely with an offset to prevent the error bars from 

overlapping. (c) Independent validation. The calibrated model predicts free RNAP in a 

pseudo-stationary state in the 24–29% range; stars denote where a one-sample t-test 

concludes the model simulates a larger value (at 30 minutes, p-value ≈ 0.039) and a smaller 

value (at 70 minutes, p-value ≈ 0.037) compared with the 24–29% interval. 

 

5.4.2  Multiple-objective genetic algorithm 

Discrepancies between fitness functions can be resolved using multi-objective calibration. 

We present the fitness calculated by one of each fitness functions included in Pleione for the 

core GRN model (Figure S 5-3). For nearly all of the fitness functions, the model with the 

lowest error was noted with the employed objective function as well with other fitness 

functions. This result reveals the strong correlation between the employed metrics (see 

Figure S 5-4). The included fitness functions accordingly consider and measure the 
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variability of data and simulations in different ways and justify the developed multi-

objective capability in Pleione. There are multiple procedures for implementing such 

MOGAs, which were reviewed by Konak et al. (Konak et al., 2006). We included the sum 

of individual rankings per fitness function (without weighting) to determine the contribution 

of each metric to the overall error. To exemplify the use of the multi-objective capability of 

Pleione, we selected multiple fitness functions based on the Spearman´s ρ correlation 

coefficient calculated between all fitness at the first iteration (see Figure S 5-4). We could 

accordingly exclude fitness functions that would yield the same result after the calibration. 

In other words, the use of two highly correlated fitness functions is redundant. For instance, 

calibrations with the SDA (Equation 5-1) and with the sum of squares function (SSQ, 

Equation 5-7; see the Methods section) were highly correlated for the core GRN model; 

differences in the final error would be marginal if the user decided to use SDA instead of the 

other to calibrate the model. In the tested strategy 1, the fractional error for the elite of models 

employing SDA as fitness function was 23.8% while for SSQ was 31.6%. 

We expect that combining fitness functions with low correlation among them will 

lead to better calibrations compared with using a single function. We found that the 

convergence behavior of some fitness functions in a MOGA was comparable or better to 

those in a SOGA (see Figure S 5-5). However, other fitness functions exhibited erratic 

behavior consistent with a search strategy that attempts to satisfy multiple objectives at the 

same time. One remarkable example was the CHISQ (Equation 5-8), where the error 

diverged compared with the single-objective optimization in the tested configuration. The 

fit of rpoS mRNA is shown online in Figure S 5-6 for two of the three tested calibration 

settings (see the Methods section, strategies 4 and 5). Comparisons between the MOGA and 

SOGA strategies are shown in Figure 5-3 and Figure S 5-7. Figures 5-3A, B, and S 5-6 show 

the mean ratio between a fitness function in a MOGA for the same fitness function in a 

SOGA for strategies 4, 5, and 6, respectively. In general, utilizing a MOGA reduced the 

calibration error (i.e., the ratios were below unity), but modest or no improvement was 

observed for the Wellek´s test compared with the situation where the Wellek´s test was used 

as a single objective. Although, the primary rationale for using a MOGA is that the resulting 

model is more robust because it minimizes multiple fitness functions simultaneously. 
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Figure 5-3. Comparison of MOGAs with their corresponding SOGAs.  

The RBM representing the core GRN of E. coli was calibrated against transcriptome data. 

(a) Strategy 4 mean ratio. The panels show the behavior of the chi-squared (CHISQ, 

Equation 8) and the Wellek´s test (WMWET) fitness functions in a multi-objective 

optimization ratioed by the same error in the respective single-objective optimization 

(minimizing CHISQ, pink lines; or the Wellek´s test, blue lines). (b) Strategy 5 mean ratio. 

The panels show the behavior of ANPWSD (Equation 6), WMWET, and PWSD (Equation 

3) in a MOGA divided by their corresponding error in a SOGA (purple lines: minimizing 

ANPWSD; blue lines: minimizing WMWET; green lines: minimizing PWSD). Values 

below 1.0 correspond to MOGA found an average error lower that SOGA. The legend 

indicates the objective function employed to calibrate the model. 

 

5.4.3 Comparison with BioNetFit: The “example 6” model 

Recently, Thomas et al. (Thomas et al., 2015) developed BNF intended for BNGL models, 

and Mitra et al. (Mitra et al., 2019) presented an improved version of Thomas´ software with 

more calibration algorithms and analysis (e.g., determination of the uncertainty of 

parameters values Daly et al., 2018). To perform a comparison between Pleione and BNF, 

we translated the “example 6” model (https://github.com/RuleWorld/BioNetFit) to PySB 

(Lopez et al., 2013) and then exported it to BNGL and kappa. The resulting models were 

calibrated with both BNF employing the network-free simulator NFsim and Pleione with the 

network-free simulators KaSim and NFsim, and the network-based Gillespie´s SSA within 

BNG2. Figure 5-4A shows the square root of the SDA (Equation 5-1) for the best model 

achieved at each iteration. Our calibrations reveal that the error after calibrating the kappa 

“example 6” model is similar to the calibration with BNF. A comparison of the first and last 

https://github.com/RuleWorld/BioNetFit
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iterations is shown in Figure 5-4B, where each dot represents an independent calibration. 

The calibration with BNF yielded the smallest error. However, BNF only calibrates BNGL 

models; Pleione introduces the necessary methods to calibrate kappa RBMs. Moreover, we 

tested the equality of the independent runs using the Kruskal-Wallis H-test. We concluded 

that there was no significant difference between the lowest model errors at the last iteration 

(H(4) ≈ 4.128, p-value ≈ 0.248). This result further supports the notion that Pleione can 

perform as well as available tools for finding a candidate model. Notably, Pleione extends 

the use of GAs to a second RBM language as well to other stochastic simulators such as 

KaSim, PISKaS, and NFsim. 

 

 

Figure 5-4. Comparison of calibration with BNF and Pleione.  

The “example 6” model from Thomas et al. (Thomas et al., 2015) was calibrated with 

synthetic data provided by the authors. Left. The traces correspond to the square root of the 

SDA (Equation 5-1) for the best model per iteration. Each GA was run three times with the 

same initial population of models for each stochastic simulator. Differences at the first 

iteration are due to the stochastic simulations of each model. Each model was simulated with 

the network-free simulators KaSim and NFsim and with the Gillespie´s SSA within the BNG 

software. Right. The dots indicate the error achieved at the last iteration (lower group) and 

the initial error at the first (blue, seed = 0), second (orange, seed = 2), and third independent 

calibration (green, seed = 2596283685). 
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5.4.4 Calibration of the core GRN model without elitism 

Multiple strategies have been developed to select individuals and generate new solutions 

from them with GAs (Whitley, 1994). To calibrate RBMs, BNF selects individuals to 

recombine from the entire population; Pleione chooses individuals from an elite of models. 

Furthermore, BNF prohibits self-recombination by default while Pleione allows it. 

Moreover, another difference between the approaches pertains to the probability distribution 

used to select a model as a parent. In BNF, the selection is inversely proportional to the rank 

(see the BNF Manual, Thomas et al., 2015); Pleione selects individuals from a uniform 

distribution within the elite of models. To analyze thoroughly the developed method, we also 

calibrated the core GRN model with Pleione following an inverse rank strategy to select 

parents within the GA. This technique is referred to as strategy 2 (see the Methods section). 

For instance, from a population of 100 individuals, the first-ranked model has a probability 

of 19.28% of being selected as a parent; the second-best model has a probability of 9.64%. 

The calibration results of the core GRN model with all fitness functions are shown 

in Figure 5-5A for the elitist GA (see the Methods section; strategy 1), in Figure 5-5B for 

the non-elitist GA (strategy 2), and in Figure 5-5C for strategy 3, the selection and 

recombination strategy most similar to BNF. Notably, the results revealed that the selection 

of parents implemented in Pleione (referred to as strategy 1) outperformed the selection of 

parents implemented in BNF (strategy 2) for the core GRN model (Figure 5-5B). That is, 

the selection of individuals from an elite of models was more beneficial to find better 

solutions than selecting individuals from all models. These results must be specifically 

interpreted for the considered model in which the number of parameters is nearly 13 times 

larger than in the “example 6” model. Moreover, the parameter search benefits from other 

features in BNF that recombines two individuals in multiple points, not just one as initially 

tested. We performed a calibration employing an inverse to the rank selection, a multiple 

crossing-over, and a mutation strategy within a ±10% range of the original parameter value 

(strategy 3). The results, shown in Figure 5-5C, expose that the strategy used in BNF 

performed better for the considered model. For instance, the fractional error at the final 

iteration with the CHISQ error was roughly 5% of the original error for all models. That is 
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nearly a six-fold improvement compared with strategy 1, where the fractional error was 29% 

for all models. 

 

 

Figure 5-5. Calibration of the core GRN model with strategies 1, 2, and 3.  

The RBM representing the core GRN of E. coli was calibrated against transcriptome data 

and evaluated individually. (a–c) Error convergence in a single-objective calibration. The 

traces correspond to the mean of all models per iteration, normalized against the maximum 

value achieved at the first iteration (fractional error). 

 

Complementary to the calibration of the core GRN model, we calibrated the simple 

model of gene regulation with each one of the equivalence tests using strategy 3. In the case 

of the Wellek´s test, the percent error for each parameter was as low as 3.42% and as high 

as 6.89%, with a total percent error of 17.48%, but only when combined with SDA (Equation 

5-1). In general, strategy 3 exhibited the worst performance than strategy 1 at recovering the 

“true” parameters using equivalence tests. In the case of Wellek´s test, the total percent error 



111 

 

 

 

was increased from 178% (strategy 1) to 274% (strategy 3) and in all cases reduced by 

employing a second fitness function (e.g. SDA, Equation 5-1) for calibration employing 

strategy 3 (see the Methods section). All of the results are listed in Table 5-1. 

5.5 CONCLUSION 

Parameter estimation is a common problem when developing predictive models in systems 

biology. In the case of stochastic simulations, the problem is magnified when data variability 

is disregarded using deterministic simulations to reduce simulation time or when fitness 

functions disregard simulation variability even when the model is simulated stochastically. 

Our method, Pleione, solved these two issues. Pleione takes less time to calibrate as the 

increasing availability of CPUs reduces the burden of multiple stochastic simulations, 

leveraging the need for deterministic simulations of RBMs. Parallelization permits Pleione 

could use a sufficient number of stochastic simulations to be compared with experimental 

data. Regarding fitness functions, we propose using equivalence tests to determine the 

similarity of data and simulations. Although we included parametric and non-parametric 

tests, the Wellek´s test makes it possible to render a confident assessment of the pertinence 

of a few stochastic simulations to reproduce a small number of experiment replications. 

Moreover, our approach provides support to kappa RBMs and can select models according 

to multiple metrics that overcomes the drawbacks of each fitness function. 

One limitation of our method is the source of noise as Pleione does not currently 

consider experimental variability. Also, Pleione does not perform identifiability and 

parameter uncertainty determination on its own. We developed Alcyone (see the Methods 

section) to supplement this deficiency using jackknife and bootstrapping methods. However, 

Approximate Bayesian Computation (ABC, reviewed by Warne et al., 2019) has strengths 

in terms of identifiability and parameter uncertainty. ABC methods are preferred, but they 

take exceedingly long computational times as the discrepancy threshold is lower (as shown 

by Warne et al., 2019), and selecting the discrepancy metric may be non-trivial. 

Features within Pleione are extensible. The incorporation of a noise model into 

simulated data, new fitness functions, and other statistical approaches like the ones 

introduced by Liu and Faeder (B. Liu & Faeder, 2017) and others (Warne et al., 2019) are 
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considered and will take advantage of parallelization of simulations and calculations. 

Finally, Pleione is part of a larger project that will introduce common procedures to analyze 

RBM like swarm particle optimization (Benuwa et al., 2016) (already present in Mitra´s 

pyBNF), maximum likelihood optimization (Daigle et al., 2012), and sensitivity analysis 

(Campolongo et al., 2007; Kent et al., 2013) of parameter values, all based on parallelization 

of stochastic simulations. We also expect that Pleione will facilitate broader adoption and 

development of RBMs to reproduce the structure and dynamics of complex biological 

systems. 
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6.1 SUMMARY 

The development and use of computational models is a foundation pillar in systems biology. 

More and more models have been employed to describe metabolism, gene regulation, and 

other processes ranging from few genes to complete genomes in a myriad of conditions and 

cell types. Among modeling techniques, Rule-Based Models have been proposed as tools 

able to model and simulate complex systems unattainable by other modeling approaches. 

Despite this, rule-based models are not widely adopted and one reason for this is the lack of 

analysis tools that are common to other techniques and allow further understanding of the 

model structure and dynamics. 

In this article, we present Sterope, a tool for the efficient calculation of global 

sensitivity indices of rule-based model parameters. Sterope relies on the stochastic simulator 

KaSim to obtain rule execution counts and influences to estimate elementary, interaction, 

and total-effects sensitivities. In addition, Sterope distributes simulations and calculations 

enabling the analysis of complex models. Using models of varying complexity, we describe 

how to use Sterope to determine parameters that control the dynamics of a model and the 

practical consequences for experimental determination, calibration, and process 
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optimization. We attained satisfactory results even considering tens of thousands of samples 

and for models with long simulation times, a large number of parameters, and rules. Finally, 

Sterope is easy to configure and run, and we expect to contribute with it to the wider adoption 

of rule-based modeling in systems biology. 

6.2 INTRODUCTION 

Systems biology relies on the development and use of computational models to understand 

the role of the different components of a biological system and to provide hypotheses for 

further experimental testing (Endy & Brent, 2001). Most of the models developed use 

Ordinary Differential Equations (ODEs), a technique for which a body of simulators and 

robust analysis methods exists (Szigeti et al., 2018). However, ODE models are not 

appropriated in all situations and Rule-Based Models (RBMs) have been proposed to solve 

those issues (Chylek et al., 2015). This kind of models describes biochemical reactions by 

successive statements called rules that closely resemble chemical equations (Daniel T. 

Gillespie, 2007, 1977), but they encode the sufficient requirements for a reaction to happen 

(Danos et al., 2007a). In doing that, RBMs compress into a few rules thousands or even 

millions of individual reactions (Danos et al., 2007a; James R Faeder et al., 2003b). 

Despite the fact that RBMs could be transformed into ODE models and simulated 

(Aguilera et al., 2017; Kozer et al., 2013), this transformation is not always attainable and 

RBMs must rely on stochastic simulation through the Gillespie´s Stochastic Simulation 

Algorithm and derivatives (Daniel T. Gillespie, 1977; Hogg et al., 2014; McCollum et al., 

2006). The critical reason for unsuitable deterministic simulations of RBMs is the 

combinatorial explosion. Firstly, the combinatorial explosion refers to the excessively large 

number of complexes where a single modeled component could participate. This issue could 

impact negatively on deterministic simulations and analyses of the dynamics (Hogg et al., 

2014). For example, an RBM proposed for the EGFR signaling pathway required 70 rules 

that describe the dynamics of approximately 1023 different components (Danos et al., 2007a). 

In addition, a second reason to avoid the deterministic simulation of RBMs is that biological 

systems show stochastic dynamics (Raj & van Oudenaarden, 2008; Wilkinson, 2009) that a 

deterministic simulation will necessarily disregard. However, doing a stochastic simulation 
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and subsequent analysis imperatively requires tailored methods and software to simulate and 

analyze efficiently many repetitions of the same model. The lack of core analysis methods 

impedes the application of RBMs for the further understanding of biological systems besides 

the simple reproduction of observed or experimental data. 

We present Sterope, an open-source software to perform a global sensitivity analysis 

(Kent et al., 2013) of RBMs. Methods for global sensitivity analysis define samples in a 

selected region of interest (ROI) and analyze the output of all samples to estimate sensitivity 

indices (Saltelli et al., 2005). Sterope relies on KaSim (Danos et al., 2007a) to retrieve a 

numeric representation of the rules execution counts and influences through a defined time 

frame. The analysis is formally called Dynamic Influence Network (DIN, Forbes et al., 

2018) and the sensitivity indexes of rules influences are comparable with the determination 

of flux control coefficients in Metabolic Control Analysis (MCA, Tomar & De, 2013), 

although they come from different modeling and algorithmic approaches. Sterope contrasts 

with R4Kappa (Sorokin et al., 2019) which allows the analysis of snapshots, a graph of 

modeled components with their non-zero quantities at a certain simulated time, but 

potentially suffer from combinatorial explosion. Another feature of Sterope is its ease of set 

up configuration and the distribution of simulation and calculations, a feature that also 

contrasts with R4Kappa that do not easily distribute simulations and calculation of 

sensitivity indices. Also, R4Kappa do not generalize the analysis, while Sterope calculate 

sensitivity indices for all defined rules in the model. 

Through example models of varying complexity degree, we describe the benefits of 

doing global sensitivity analysis of RBMs using Sterope. We analyzed two main cases: when 

parameters are known and sensitivity indices gave insights to hypothesize interventions for 

process optimization and allow the determination of the calibration quality; and a second 

case where the analysis of unknown parameters determines priority for experimental efforts 

and subsequent computational calibration. 
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6.3 MATERIAL AND METHODS 

6.3.1 Implementation 

Sterope is an open-source python package. It performs a global sensitivity analysis through 

four steps (Figure 6-1). In the initial step, the user sets up the problem definition inside the 

text file that encodes the RBM and executes Sterope with mandatory options: model and 

time to simulate. In the following step, Sterope submits samples for repeated and distributed 

simulation that follow one of seven methods: Sobol´s method (Sobol, 2001), Random 

Balance Designs-Fourier Amplitude Sensitivity Test and Fourier Amplitude Sensitivity Test 

(Cukier et al., 1973), Delta Moment-Independent Measure (Borgonovo, 2007), Derivative-

based Global Sensitivity Measure (Sobol´ & Kucherenko, 2009), Fractional Factorial 

Sensitivity Analysis (Saltelli et al., 2008), or the Morris´ method (M. D. Morris, 1991). Next, 

the DINs of each sample are bootstrapped to reduce the bias of having few stochastic 

simulations. Finally, Sterope performs parallelized analysis of the bootstrapped DINs (one 

per parameter for rule execution, and the square of the parameter number for rule influences) 

and reports the sensitivity indices (including confidence intervals if the selected method 

calculates them) in text files. The Sobol´s method is the default analysis method and with it, 

Sterope reports first order (elementary effects), second order (interaction effects), and total 

effects. Parameter samples and sensitivity indices are calculated through the Sensitivity 

Analysis Library (SALib) python package (Herman & Usher, 2017), and Sterope bridges the 

samples to sensitivity calculation through the simulation and bootstrapping of the samples. 

Distributed simulation, bootstrapping, and indexes calculation is achieved through the Dask 

python package (Rocklin, 2015), and therefore, Sterope is compatible with High-

Performance Computing infrastructures if the SLURM Workload Manager is installed. We 

also provide support for sensitivity analysis of the flux control coefficients from a Metabolic 

Control Analysis (Tomar & De, 2013), through the use of the libRoadRunner python 

package (Somogyi et al., 2015). For further details, please see the Manual at 

https://sterope.readthedocs.io. 

  

https://sterope.readthedocs.io/


117 

 

 

 

 

Figure 6-1. Workflow employing Sobol´s method and results from three global sensitivity schemes. 

Panel A describes the main steps performed by Sterope from reading the model to finalize reporting the sensitivity indexes. Panel B 

shows three different schemes to calculate sensitivity indexes. From left to right, the first scheme employs the complete trajectory 

from the simulation; the second employs a fraction of the simulation, useful to understand the importance of parameters in a relevant 

period; and the third, a generalization of the second case, useful when the full dynamics could bias the sensitivity index. Each line 

represents the average of ten simulations. Panel C shows the total-effect sensitivity indexes obtained from analyzing the corresponding 

DINs. In the case of the last example, the windowed analysis corresponds to periods of ten time units, with steps of ten units of time.
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6.3.2 Example models and configuration 

Models analyzed in this work include the following: 

1. The Aguilera´s simple model (Aguilera et al., 2017), a representation of constitutive gene 

expression modeled by four rules and four parameters of known value that represent the 

synthesis and degradation of an mRNA and its encoded protein. 

2. The oscillatory repressilator model (BIOMD0000000012). The SBML model was 

imported and exported to kappa employing the PySB python package (Lopez et al., 2013). 

It is a model of three mRNAs and their encoded proteins which repress the synthesis of one 

mRNA forming a repression cycle that oscillates indefinitely with dynamics modeled by 12 

rules (six synthesis rules and six degradation rules for mRNA and proteins) controlled by 

seven parameters of known value. 

3. The Thomas´ example6 model obtained from the BioNetFit GitHub repository 

(github.com/RuleWorld/BioNetFit). The model reproduces ligand-induced phosphorylation 

of a receptor modeled by seven rules and six parameters of unknown values. The model was 

previously exported to kappa (Santibáñez et al., 2019) employing the PySB python package 

(Lopez et al., 2013). 

4. The core Gene Regulatory Network (GRN) of Escherichia coli (Perez-Acle et al., 2018). 

The model reproduces the synthesis and degradation of ten genes controlled by 28 gene 

regulations of seven RNA Polymerases in 142 rules and 79 parameters of unknown value 

that were selected for analysis. The parameters control protein-protein interaction rates, 

RNA Polymerase binding and unbinding rates to promoters, and the degradation rates of the 

modeled mRNAs. 

The first two models were analyzed in the ±20% range of the known parameters, 

while the Thomas´ and the core GRN models were analyzed in the 10−2–10+2 range due to 

uncertainty of the true parameter values. The models were analyzed with the Sobol´s method 

which requires 𝑁(2𝑘 + 2) samples were k is the number of selected parameters to analyze, 

to calculate first and second order, and total-effect sensitivity indices. For all models, N was 

equal to 1000, except for the core GRN model were N was 100 due to RAM limitations. 

Simulation time was set accordingly to each model and the DIN analysis comprised the 

https://github.com/RuleWorld/BioNetFit
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whole length of the simulation. In the case of the repressilator model, the sensitivity analysis 

was performed further in framed windows of 10 units of time. To compare the obtained 

sensitivity indexed to the ones obtained with MCA, flux control coefficients were obtained 

with the getUnscaledFluxControlCoefficientMatrix method of the libRoadRunner python 

package (Somogyi et al., 2015). 

Further information about the configuration of models and analysis is presented in 

Supplementary File S1 online at https://figshare.com/articles/File_S1_zip/9941927  

6.4 RESULTS 

We exemplify the utilization of Sterope for two applications of sensitivity analysis; process 

optimization by identifying parameters with important sensitivity indices, and second, to 

simplify calibration by fixing parameters with low sensitivity indices and prioritizing them 

for experimental determination. 

6.4.1 Sensitivity analysis of known parameter values 

The sensitivity analysis for the Aguilera´s model is shown in Figure 6-2 and for the 

repressilator model in Figure 6-3. Both analyses were done for selected parameters, 

determining the sensitivity indices with respect to the number of rules executions (hits) and 

for the rule influence on all rules (including itself). In the case of the Aguilera´s model of 

gene expression, the sensitivity analysis revealed that the synthesis rate of the mRNA (r1_v 

parameter) affects the most over the execution of every modeled rule (Figure 6-2A), 

particularly to those rules referred to the synthesis and degradation of the mRNA (rules R1 

and R2). Additionally, the degradation rate of the mRNA (r2_k1 parameter) affects the 

synthesis (and degradation) of the encoded protein (rules R3 and R4). Similarly was the case 

of the synthesis rate of the protein (r3_k1 parameter) that is sensitive and controls its own 

execution (rule R3) and degradation (rule R4). Interestingly, all second-order indices were 

not significant as they were estimated with a 95% confidence interval that includes zero, 

although, all total effects were significant (Figure 6-2B). In the case of rules influence, the 

sensitivity analysis indicated that few influences are significantly controlled by parameter 

values (Figure 6-2C). In particular, the synthesis and degradation rates of mRNA (r1_v and 

r2_k1 parameters) are sensitive parameters determining the influence of the synthesis of 

https://figshare.com/articles/File_S1_zip/9941927
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mRNA (rule R1) and its degradation (rule R2) over the execution of mRNA synthesis and 

protein synthesis (rule R3). Similarly, the first-order sensitivity indexes of protein synthesis 

and degradation rates (r3_k1 and r4_k1 parameters) affected locally the influence of protein 

synthesis and degradation over its degradation. In turn, total-effect indexes revealed that 

both all parameters contributed to the influence of all rules (Figure 6-2D). Comparatively, 

an MCA analysis (Figure 6-2E) showed an agreement of first-order sensitive parameters 

(Figure 6-2A) and with the most important total-effect sensitive parameters (Figure 6-2B). 

 

 

 

Figure 6-2. Global Sensitivity Analysis for Aguilera´s simple model of gene expression.  

Panels A and C show the elementary effects of the four parameters corresponding to the 

synthesis (r1_v, r3_k1) and degradation (r2_k1, r4_k1) rates of the mRNA and its encoded 

protein, respectively. Both figures omit non-significant sensitivities as reported by Sobol´s 

method (with a 95% confidence level). Similarly, panels B and D show total-effects 

sensitivity indices. None of the interaction effects (second-order sensitivity indices) were 

significant. Panel E shows the flux control coefficients from an equivalent model analyzed 

with the libRoadRunner python library. 

 

The sensitivity analysis of the repressilator model gave insights into which 

parameters control the observed behavior of the model. In this case, the Hill coefficient (the 

parameter n) is the most important parameter as it affects every rule execution (Figure 6-

3A). Also, the sensitivity analysis revealed that the degradation rate of proteins also impacts 
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the execution count of each rule, except for the synthesis and degradation of the cI mRNA 

(Reaction3 and Reaction6) and the cI protein (Reaction9 and Reaction12). However, the 

sensitivity indexes for mRNA and protein synthesis were closer to zero compared to the Hill 

coefficient sensitivities, indicating the low importance of those parameters. In the case of 

the second-order sensitivities, the analysis revealed that affected the synthesis and 

degradation of the cI mRNA and protein (Supplementary File S1). Also and similarly to the 

Aguilera´s simple model, all total-effect sensitivity indices were significant (Figure 6-3B). 

In the case of influences, the Hill coefficient (n) was again the most important parameter 

controlling the observed dynamics (24 of the 144 total rules influences, Figure 6-3C), 

followed by the degradation rate of the mRNAs (12 of the 144 influences) and then by the 

degradation rate of the proteins (2 of the 144 influences). Finally, the magnitudes of the 

sensitivity indices are close to zero (Figure 6-3C), revealing the low importance of mRNA 

and protein degradation rates to control rules influences. 

 

 

Figure 6-3. Global Sensitivity Analysis for the repressilator model.  

Panels A and B show first-order sensitivity indices for the execution of Rules, while Panel 

C shows the same index for Rules influences over the execution of other Rules. Panel A and 

C omit indices that are non-significant. 
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6.4.2 Sensitivity analysis of unknown parameter values 

Sensitivity analysis can also be used before model parameterization to prioritize parameters 

for calibration (those with large sensitivity indices) or experimental determination of those 

with low sensitivity. To demonstrate the use of Sterope for this purpose, we analyzed two 

models: the Thomas´ model consisting of six parameters originally calibrated in the 10−2–

10+2 ROI (Thomas et al., 2015), and the core GRN model analyzed within the same ROI. 

For the Thomas´ model, the sensitivity analysis revealed that the KD1 parameter that 

corresponds to the reversible binding of the ligand to a free receptor and the km2 parameter 

that controls the unbinding of the receptor dimer are the most sensitive parameters. The KD1 

and the km2 parameters are followed in importance by the kphos and kdephos parameters 

that control the phosphorylation and dephosphorylation of the receptor, respectively (Figure 

6-4A). Similarly, the same parameters showed the greatest total-effects, although all 

parameters contribute to the observed dynamics (Figure 6-4B). The sensitivity analysis 

revealed only two parameter interactions (for instance, the kphos and kdephos parameters 

over the phosphorylation and dephosphorylation rules, respectively) with a confidence range 

above zero (Supplementary File S1 online). In the case of the influence of rules, the KD1 

and the K2RT parameters, the last corresponding to the receptor-receptor interaction, are the 

most important parameters with the larger sensitivity indices (Figure 6-4C and 6-4D). Again, 

analysis of the kphos and kdephos parameters showed their values control the self-influence 

of the dephosphorylation and phosphorylation rules, respectively. 
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Figure 6-4. Global Sensitivity Analysis for the Thomas´ example6 model of ligand-induced 

phosphorylation of a receptor.  

Panels A and C show the elementary effects of the six selected parameters that correspond 

to ligand-receptor binding and unbinding, receptor dimerization in the presence and absence 

of its ligand, and phosphorylation of the ligand-receptor and dephosphorylation of the 

receptor. Both figures omit non-significant sensitivities as reported by Sobol´s method (with 

a 95% confidence level). Similarly, panels B and D show total-effects sensitivity indices. 

None of the interaction effects (second-order sensitivity indices) were significant. 

 

With respect to the sensitivity analysis of the core GRN model, it revealed that 

parameters act locally on the execution of rules. Also, the analysis revealed rules are affected 

significantly by the contribution of all parameters (Figure 6-5). In addition, we found 2852 

interaction effects (of 3081, 92.5%) that showed at least one sensitivity index with a 95% 

confidence range excluding zero. Those 2852 interactions control the execution of 114 rules 

(80.3% of the total). Interestingly, sensitivity analysis for the rules influences showed that 

all parameters have at least one significant first-order sensitivity index, but they control 4.6% 

of the 20164 possible influences. 
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Figure 6-5. Global Sensitivity Analysis for the core Gene Regulatory Network.  

The figure shows the total-effect sensitivity indices for the 79 analyzed parameters, that 

correspond to 14 protein-protein interaction rates (binding and unbinding), 56 RNA 

Polymerase and promoter interactions (binding and unbinding), and 9 degradation rules (the 

ten genes are organized in 9 operons). Sensitivity indices were calculated over the range 

from 10-2 to 10+2. 

 

6.5 DISCUSSION 

Sterope is an open-source software package able to determine global sensitivity indices of 

RBMs. It solves the necessity of having an easy to set up software while achieving parallel 

simulations and calculations of global sensitivity indices. Although there are several 

software tools that perform a global sensitivity analysis of deterministic simulations, as far 

as we know, R4Kappa is the only method specially designed to analyze RBMs. While 
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R4Kappa allows sensitivity analysis of the model components and their dynamics through 

the simulation (employing the sensitivity R package), in contrast, Sterope analyzes the 

interactions of parameters and rules execution counts and influences. The selected approach 

for Sterope differs greatly and is more appropriate to analyze the complete structure of the 

RBMs, due that employing R4Kappa, the combinatorial explosion forces the selection of 

one modeled component at a time to analyze sensitivity indexes of parameters. Sterope uses 

state-of-the-art methods to determine the sensitivities of RBMs parameters. The method 

allows the determination of non-sensitive parameters through the analysis of a few samples 

but requires many samples to narrow the confidence interval, for what parallel computing is 

indispensable. 

We analyzed four RBMs with varying degrees of complexity and the number of 

selected parameters. We achieved fast analyses through the implementation of parallel 

computing approaches, allowing the analysis of tens of thousands of samples to determine 

the parameter sensitivities indices (log files describing total time are in the Supplementary 

File S1 online). Sterope was able to analyze and find which parameters control the observed 

dynamics in a reasonable time, but not memory. The analyzed models correspond to two 

applications of sensitivity analysis; when parameter values are known with low uncertainty, 

those parameters with high sensitivity could be selected and intervened to modify the 

dynamics in order to improve the modeled process. In the case of Aguilera´s model, the 

observed dynamics were strongly affected by the synthesis rate of the mRNA and, therefore, 

a target for experimental intervention. Subsequently, in the case of the repressilator model, 

the dynamics are affected the most by the Hill coefficient, however, its intervention could 

not be feasible experimentally. The second application of sensitivity analysis is used when 

models require calibration. Relative high sensitive parameters are preferred and parameters 

with low sensitivity indices should be prioritized for fixing with experimentally determined 

values. For the Thomas´ model, the dissociation rate of the ligand-receptor complex seems 

to be a candidate for experimental measurement, while for the core GRN model, the 

promoter affinities seem good candidates for experimental determination and then, to reduce 

the model dependence on parameter calibration.  
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7. CONCLUSIONS AND FUTURE PERSPECTIVES 

In the first place, this thesis demonstrates the feasibility of the automatic reconstruction of 

RBMs to recover a computational representation of cellular processes. The main technique 

developed, Atlas, was inspired by tools available for the automated metabolic modeling of 

constraint-based models at the genome-scale. Of note, the tool additionally models three 

aspects of cell behavior. Firstly, it models gene expression covering transcription, 

translation, and the degradation of macromolecules as these processes regulate the 

availability of enzymes and therefore the activity of the metabolic network. Secondly, it 

models the regulation of gene expression governed by the differential activity of 

transcription factors and other cell components such as RNA polymerases. Finally but not 

least, it models explicitly the bacterial genome architecture including promoters, ribosome 

binding sites, coding DNA sequences, terminators, and importantly, transcription factors 

binding sites. In contrast, other projects that are aimed to reconstruct models from 

information (e.g., INDRA, Gyori et al., 2017, and KAMI, Harmer et al., 2019) are 

circumscribed to protein-protein interactions and post-translational modifications. 

We utilized real data from the bacterium Escherichia coli and we sought the 

developed method to be employed for other bacteria, such as the industrial relevant Bacillus 

subtilis or Pseudomonas and Cyanobacteria strains. A notable characteristic of the work is 

the ability to develop models for different cellular processes under a unique modeling 

framework. We expect all remaining cellular processes should be compatible in a WCM 

developed in a single rule language. Of note, this single-language model is a difference from 

the Karr et al. work (Karr et al., 2012) which combined different models (ODE, stochastic, 

GSMM, etc.) to simulate the bacterium Mycoplasma genitalium. As for disadvantages, the 

method relies on the user´s skills and familiarity with the python programming language. 

Also, we do not provide a graphical user interface, but Jupyter (Kluyver et al., 2016) and 

pyViPR (Ortega & Lopez, 2020) could be employed for interactive programming and 

visualization of the model, respectively. As a minor note, we developed integration with the 

BioCyc databases and potentially able to model 11090 organisms. 
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 More in detail, we developed a divide-and-conquer strategy to develop RBMs. Those 

models offer advantages over natural counterparts such as ODE-based models. The 

developed models required stochastic simulation due to excessive combinatorial explosion, 

for which simulation tools are fast enough to not perceive the burden raised from the 

necessity to simulate hundreds or even thousands of trajectories. For the developed models 

(Chapter III), we simulated them 100 times employing a single core (i.e., no parallelized) 

and found total time to simulate less than ten minutes (see Table S 4-6). However, the 

calibration, uncertainty analysis, and sensitivity analysis of models required tailored 

methods able to harness high-performance computing infrastructures and simulate tens of 

thousands of models. We developed open-source tools to perform such tasks compatible 

with clusters of computing servers, encouraged also because of limitations of the available 

methods. For instance, BNF calibrates only BNGL models and R4kappa suffers from the 

combinatorial explosion and constrains the sensitivity analysis to one component at a time. 

 To calibrate models, we developed Pleione. The software encodes a genetic 

algorithm and it supports two rule languages and four stochastic simulation software. 

Moreover, it utilizes equivalence statistical tests besides the ability to calculate classical 

fitness functions. We demonstrated the utility of using those tests to calibrate a variety of 

models and the results relied on the type of statistical comparison made. Then, to perform 

uncertainty analysis, we developed Alcyone. The software could perform a one-leave-out 

Jackknife or bootstrapping to estimate uncertainty in parameter values. Alcyone utilizes 

Pleione to calibrate RBMs, and the required time to perform the analysis depends on the 

type and number of experimental replications (n). For Jackknife, Alcyone requires to 

calibrate 𝑛 + 1 times, while bootstrapping requires a confidence level (α): for a confidence 

level of 90% are required 20 calibrations; for 95% are required 40; for 99% are required 200 

calibrations (max 𝛼 = (calibrations-2)/calibrations). Of note, pyBNF employs a Bayesian 

approach to determine uncertainty (Mitra et al., 2019). Finally, for global sensitivity 

analysis, we developed Sterope. The software employs KaSim (Boutillier, Maasha, et al., 

2018) to retrieve the number of rule executions and the influences of rules over other rules 

called Dynamic Influence Network (a heuristic approach that calculates activity and control 

coefficients from simulations) and from that results, estimates first-order, second-order, and 
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total sensitivity indexes. The influences are a constant number equal to the square number 

of rules, and therefore, the method does not suffer from the combinatorial explosion. 

Additionally, the method determines all sensitivity indexes at once. The mentioned software 

could harness a high-performance computing infrastructure to reduce the needed time to 

analyze models. The reduction is proportional to the total number of available CPUs, but 

other constraints could affect the performance such as is the network and file read/write 

speeds and the exact parallelization approach. 

 Besides the technical aspects of the developed software tailored to the specific 

analyses, it is ensured the extensibility of them to utilize other (stochastic) simulation 

software, rule languages, fitness functions, etc. In the case of Pleione, there is a functional 

interface for the simulation software Tellurium (deterministic and stochastic, K. Choi et al., 

2018) and there is a plan to develop a tool to perform an Approximate Bayesian Computation 

to calibrate and perform uncertainty analysis at the same time. Also, there are plans to 

systematize the analysis of genomic modifications (gene copy numbers and genome 

rearrangements) and extend the method incorporated in Atlas to model simple bacterial 

communities for the understanding, simulation, design, and use of models to propose 

biotechnological applications. 

 In conclusion, this thesis proposes software, distributed freely in the python meta-

package called Pleiades, to tackle specifically the problem of modeling, calibration, and 

complementary analyses of RBMs for the development of WCM. We sought that cellular 

processes not covered explicitly in this thesis, such as allosteric metabolic control, 

cooperative behavior and competition in metabolic reactions, and protein or RNA 

modifications could be added in a similar strategy developed for metabolism, physical 

interactions, transcription, translation, and genome architecture. 
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9. SUPPLEMENTARY MATERIAL 

S 3-1 Schematic representation of rules to model gene expression and plasmid 

replication control. 

 

Figure S 3-1. Schematic representation of rules to model gene expression and plasmid 

replication control. 

The top two groups of rules recapitulate the assembly of the RNAP and the holoenzymes, 

and the reversible binding of RNAP holoenzyme to promoters. Gene expression is modeled 

in the following sets of rules, while the remaining rules depict the control of plasmid 

replication.  
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S 3-2 Graphical description of the rules used to implement the SEIRD model. 

 

Figure S 3-2. Graphical description of the rules used to implement the SEIRD model. 

Each big circle represents an agent and the small circles represent the site used to store the 

class to which the agent belongs. Therefore, agents named Person belonging either to the 

class susceptible or infected are denoted by Person (S) and Person (I), respectively. Rule 1; 

a susceptible person becomes an exposed person. This exposure can be the result of 

interaction either with an infected or a dead person. Rule 2; an exposed person becomes 

infected after an average incubation period of 7 days. Rule 3; an infected person dies at a 

certain rate. Rule 4; an infected person is removed from the simulation by acquiring 

immunity at a certain rate. Rule 5; a dead infected person can be removed from the 

simulation by being buried/incinerated at a certain rate. All transition rates were obtained 

from an ODE model of the Ebola disease (Weitz & Dushoff, 2015).  
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S 3-3 Graphical description of the rules of the PD model.  

 

Figure S 3-3. Graphical description of the rules of the PD model.  

Rule 1; a rule of entanglement/interaction by which two free agents (individuals) become a 

complex through their interaction site 𝑋. Rule 2; disentanglement/dissociation by 

cooperation, a complex breaks apart and every agent receives a payoff that is stored on its 

own wallet site (W). Rule 3; disentanglement-dissociation by temptation, a complex breaks 

apart leaving one agent with the temptation payoff on its 𝑊 site and the other with the 

sucker´s payoff on its W site. Rule 4, disentanglement/dissociation by mutual defection, a 

complex of agents break apart and each agent receives the punishment payoff on its W site. 
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S 4-1. Lactose metabolic network.  

 

Figure S 4-1. Lactose metabolic network. 

The figure shows the metabolic network constructed with data from the EcoCyc Database v24. Reactions are shown in green, gene 

products that catalyze those reactions are shown in red (undirected edges), and metabolites are shown in cyan (directed edges). Node 

shapes for metabolites represent substrates (diamonds), intermediates (triangles), and products (circles). Reaction reversibility is 

shown from the available information. The image was created from Supplementary Table S 4-2 with the Cytoscape software v3.7.2. 

Visualization from https://github.com/networkbiolab/atlas/blob/master/cytoscape-sessions/ecoli-lactose.cys.  

https://github.com/networkbiolab/atlas/blob/master/cytoscape-sessions/ecoli-lactose.cys
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S 4-2. Two representations of the protein-protein interaction network for the E. coli lactose consumption.  

 

Figure S 4-2. Two representations of the protein-protein interaction network for the E. coli lactose consumption. 

The left side of the figure shows the canonical representation of a protein-protein interaction network without any further encoded 

information. In the canonical form, both monomers interact with molecules of the same kind but disregarding stoichiometry and 

assembly pathways. The right side shows a collapsed hypergraph (nodes encoding subnetworks) representing how each protein 

complex (white nodes) is formed by the interaction of protein monomers and showing the stoichiometry for each complex. In addition, 

the collapsed hypergraph encodes the assembly steps, from monomers to fully assembled complexes. The image was created manually 

with help of the Cytoscape software v3.7.2. 
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S 4-3. Magnification of the glucose dynamics in response to allolactose activity.  

 

 

Figure S 4-3. Magnification of the glucose dynamics in response to allolactose activity. 

Plots depict the early dynamics of glucose, the product of lactose degradation. Allolactose 

binding to lacI proteins allowed an earlier response of glucose (upper panel) in comparison 

with a hypothetical situation where allolactose could not bind lacI proteins (bottom panel).   
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S 4-4. Simulation of in silico genetic modifications.  

 

 

Figure S 4-4. Simulation of in silico genetic modifications. 

The model for the regulation of the sigma factors was reconstructed from two genomic 

architectures. The panel A shows the in silico modification to add an rpoB terminator 

(unlabeled white node) and an rpoC promoter (labeled white node). The panel B shows the 

in silico modification to split the rpoBC operon into independent operons. Panel C shows 

the stochastic simulation of the modifications depicted in panel A. In contrast, panel D 

depicts the dynamics for the modifications B. The area shows the average and one standard 

deviation from 100 stochastic simulations. 
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S 4-5. Co-expression networks of in silico genetic modifications.  

 

Figure S 4-5. Co-expression networks of in silico genetic modifications. 

From left to right, each network represents the Pearson's correlation coefficient for two mRNA dynamics obtained from simulation 

greater than 0.95. Nodes represent the dynamics of the corresponding gene and edges exist between two dynamics if they are 

significantly correlated (p-value < 0.05). Networks were prepared from the average values of the ten simulations employed to 

determine the goodness of fit during parameter calibration with Pleione (Santibáñez et al., 2019). 

(A) Co-expression network showing correlations for a model representing the natural genome architecture. 

(B) Co-expression network for the model including the rpoC in silico promoter. 

(C) Co-expression network for the model including the rpoB in silico terminator. 

(D) Co-expression network showing correlations for the dynamics of a calibrated model for both in silico modifications, the internal 

rpoB terminator, and rpoC promoter. 
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S 4-6. Lactose metabolism from the EcoCyc database version 24. 

Table S 4-1. Lactose metabolism from the EcoCyc database version 24. 

 

 GENE OR COMPLEX 
ENZYME 

LOCATION 
REACTION SUBSTRATES PRODUCTS 

FWD 

RATE 

RVS 

RATE 

1 BETAGALACTOSID-CPLX cytosol BETAGALACTOSID-RXN CPD-15972,WATER GALACTOSE,Glucopyranose 1.0 0.0 

2 BETAGALACTOSID-CPLX cytosol RXN0-5363 Alpha-lactose ALLOLACTOSE 1.0 1.0 

3 BETAGALACTOSID-CPLX cytosol RXN-17726 CPD-3561,WATER GALACTOSE,Fructofuranose 1.0 0.0 

4 BETAGALACTOSID-CPLX cytosol RXN0-7219 CPD-3785,WATER 
GALACTOSE,D-

ARABINOSE 
1.0 0.0 

5 
GALACTOACETYLTRAN-

CPLX 
cytosol 

GALACTOACETYLTRAN-

RXN 

Beta-D-

Galactosides,ACETYL-

COA 

6-Acetyl-Beta-D-

Galactosides,CO-A 
1.0 0.0 

6 LACY-MONOMER inner membrane TRANS-RXN-24 PROTON,Alpha-lactose PROTON,Alpha-lactose 1.0 1.0 

7 LACY-MONOMER inner membrane TRANS-RXN-94 PROTON,MELIBIOSE PROTON,MELIBIOSE 1.0 1.0 

8 LACY-MONOMER inner membrane RXN0-7215 PROTON,CPD-3561 PROTON,CPD-3561 1.0 1.0 

9 LACY-MONOMER inner membrane RXN0-7217 PROTON,CPD-3785 PROTON,CPD-3785 1.0 1.0 

10 LACY-MONOMER inner membrane RXN-17755 PROTON,CPD-3801 PROTON,CPD-3801 1.0 1.0 
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S 4-7. Curated lactose metabolism from the EcoCyc database version 24 and literature. 

Table S 4-2. Curated lactose metabolism from the EcoCyc database version 24 and literature. 

Note: The locations for the ”spontaneous” reactions refer to the locations where the reactions occur. 

 
 GENE OR COMPLEX ENZYME 

LOCATION 

REACTION SUBSTRATES PRODUCTS FWD 

RATE 

RVS 

RATE 

1 spontaneous cytosol LACTOSE-MUTAROTATION alpha-lactose beta-lactose 1.0 1.0 

2 spontaneous cytosol GALACTOSE-MUTAROTATION alpha-GALACTOSE beta-GALACTOSE 1.0 1.0 

3 spontaneous cytosol GLUCOSE-MUTAROTATION alpha-glucose beta-glucose 1.0 1.0 

4 LACY-MONOMER inner membrane TRANS-RXN-24 
PER-PROTON,PER-alpha-

lactose 
PROTON,alpha-lactose 1.0 0.0 

5 LACY-MONOMER inner membrane TRANS-RXN-24-beta 
PER-PROTON,PER-beta-

lactose 
PROTON,beta-lactose 1.0 0.0 

6 LACY-MONOMER inner membrane TRANS-RXN-94 
PER-PROTON,PER-

MELIBIOSE 
PROTON,MELIBIOSE 1.0 0.0 

7 LACY-MONOMER inner membrane RXN0-7215 
PER-PROTON,PER-CPD-

3561 
PROTON,CPD-3561 1.0 0.0 

8 LACY-MONOMER inner membrane RXN0-7217 
PER-PROTON,PER-CPD-

3785 
PROTON,CPD-3785 1.0 0.0 

9 LACY-MONOMER inner membrane RXN-17755 
PER-PROTON,PER-CPD-

3801 
PROTON,CPD-3801 1.0 0.0 

10 BETAGALACTOSID-CPLX cytosol BETAGALACTOSID-RXN beta-lactose,WATER beta-GALACTOSE,beta-glucose 1.0 0.0 

11 BETAGALACTOSID-CPLX cytosol BETAGALACTOSID-RXN-alpha alpha-lactose,WATER 
alpha-GALACTOSE,alpha-

glucose 
1.0 0.0 

12 BETAGALACTOSID-CPLX cytosol RXN0-5363 alpha-lactose alpha-ALLOLACTOSE 1.0 1.0 

13 BETAGALACTOSID-CPLX cytosol RXN0-5363-beta beta-lactose beta-ALLOLACTOSE 1.0 1.0 

14 BETAGALACTOSID-CPLX cytosol ALLOLACTOSE-DEG-alpha alpha-ALLOLACTOSE 
alpha-GALACTOSE,alpha-

glucose 
1.0 0.0 

15 BETAGALACTOSID-CPLX cytosol ALLOLACTOSE-DEG-beta beta-ALLOLACTOSE beta-GALACTOSE,beta-glucose 1.0 0.0 

16 BETAGALACTOSID-CPLX cytosol RXN-17726 CPD-3561,WATER 
beta-

GALACTOSE,Fructofuranose 
1.0 0.0 

17 BETAGALACTOSID-CPLX cytosol RXN0-7219 CPD-3785,WATER 
beta-GALACTOSE,D-

ARABINOSE 
1.0 0.0 

18 
GALACTOACETYLTRAN-

CPLX 
cytosol 

GALACTOACETYLTRAN-RXN-

galactose 

beta-

GALACTOSE,ACETYL-

COA 

6-Acetyl-beta-D-Galactose,CO-

A 
1.0 0.0 
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S 4-8. Curated lactose metabolism from the EcoCyc database version 24 and literature. New parameters. 

Table S 4-3. Curated lactose metabolism from the EcoCyc database version 24 and literature. New parameters. 

New parameters for the simulation of gene expression and regulation of gene expression. 

Note: The locations for the ”spontaneous” reactions refer to the locations where the reactions occur. 

 
 GENE OR 

COMPLEX 

ENZYME LOCATION REACTION SUBSTRATES PRODUCTS FWD 

RATE 

RVS 

RATE 

1 spontaneous cytosol LACTOSE-MUTAROTATION alpha-lactose beta-lactose 0.001 0.001 

2 spontaneous cytosol GALACTOSE-MUTAROTATION alpha-GALACTOSE beta-GALACTOSE 0.001 0.001 

3 spontaneous cytosol GLUCOSE-MUTAROTATION alpha-glucose beta-glucose 0.001 0.001 

4 lacY inner membrane TRANS-RXN-24 PER-PROTON,PER-alpha-
lactose 

PROTON,alpha-lactose 0.100 0.000 

5 lacY inner membrane TRANS-RXN-24-beta PER-PROTON,PER-beta-lactose PROTON,beta-lactose 0.100 0.000 

6 lacY inner membrane TRANS-RXN-94 PER-PROTON,PER-
MELIBIOSE 

PROTON,MELIBIOSE 0.100 0.000 

7 lacY inner membrane RXN0-7215 PER-PROTON,PER-CPD-3561 PROTON,CPD-3561 0.100 0.000 

8 lacY inner membrane RXN0-7217 PER-PROTON,PER-CPD-3785 PROTON,CPD-3785 0.100 0.000 

9 lacY inner membrane RXN-17755 PER-PROTON,PER-CPD-3801 PROTON,CPD-3801 0.100 0.000 

10 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] BETAGALACTOSID-RXN beta-lactose,WATER beta-GALACTOSE,beta-glucose 0.100 0.000 

11 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] BETAGALACTOSID-RXN-alpha alpha-lactose,WATER alpha-GALACTOSE,alpha-
glucose 

0.100 0.000 

12 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] RXN0-5363 alpha-lactose alpha-ALLOLACTOSE 10.000 0.100 

13 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] RXN0-5363-beta beta-lactose beta-ALLOLACTOSE 10.000 0.100 

14 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] ALLOLACTOSE-DEG-alpha alpha-

ALLOLACTOSE,WATER 

alpha-GALACTOSE,alpha-

glucose 

0.100 0.000 

15 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] ALLOLACTOSE-DEG-beta beta-ALLOLACTOSE,WATER beta-GALACTOSE,beta-glucose 0.100 0.000 

16 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] RXN-17726 CPD-3561,WATER beta-

GALACTOSE,Fructofuranose 

1.000 0.000 

17 [lacZ,lacZ,lacZ,lacZ] [cytosol,cytosol,cytosol,cytosol] RXN0-7219 CPD-3785,WATER beta-GALACTOSE,D-

ARABINOSE 

1.000 0.000 

18 [lacA,lacA,lacA] [cytosol,cytosol,cytosol] GALACTOACETYLTRAN-RXN-

galactose 

beta-GALACTOSE,ACETYL-

COA 

6-Acetyl-beta-D-Galactose,CO-A 1.000 0.000 
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S 4-9. Protein-protein, protein-metabolites, and Transcription Factors DNA binding sites interactions. 

Table S 4-4. Protein-protein, protein-metabolites, and Transcription Factors DNA binding sites interactions. 

The prefix ”BS-” defines a DNA binding site with coordinates relative to the lacZ transcription start site. Brackets denote a single 

complex. For the case of allolactose could not bind lacI proteins, parameters in rows 6-8 were set to zero 

 

 SOURCE TARGET FWD RATE RVS RATE LOCATION 

1 lacZ lacZ 1.0 0.0000 cytosol 

2 [lacZ,lacZ] [lacZ,lacZ] 1.0 0.0000 cytosol 

3 lacA lacA 1.0 0.0000 cytosol 

4 lacA [lacA,lacA] 1.0 0.0000 cytosol 

5 lacI lacI 1.0 0.0000 cytosol 

6 [lacI,lacI] SMALL-alpha-ALLOLACTOSE 10.0 0.0001 cytosol 

7 [lacI,lacI,SMALL-alpha-ALLOLACTOSE] SMALL-alpha-ALLOLACTOSE 10.0 0.0001 cytosol 

8 [lacI,lacI] SMALL-beta-ALLOLACTOSE 10.0 0.0001 cytosol 

9 [lacI,lacI,SMALL-beta-ALLOLACTOSE] SMALL-beta-ALLOLACTOSE 10.0 0.0001 cytosol 

10 [lacI,lacI] BS-lacI-422-402 1.0 0.0100 cytosol 

11 [lacI,lacI] BS-lacI-21-1 1.0 0.0100 cytosol 

12 [lacI,lacI] BS-lacI-72-92 1.0 0.0100 cytosol 
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S 4-10. Physical interactions between the RNA Polymerase holoenzymes and promoters in the Lactose degradation Model. 

Table S 4-5. Physical interactions between the RNA Polymerase holoenzymes and promoters in the Lactose degradation Model. 

The table shows the architecture of the three genes that were considered for the development of the lactose degradation Model. The 

prefix ”BS-” defines a DNA binding site with coordinates relative to the lacZ transcription start site. Brackets denote a single complex. 

Figure 4-2 shows the information represented in this table. 

 

 UPSTREAM DOWNSTREAM 

RNAP 

FWD 

DOCK 

RATE 

RNAP 

RVS 

DOCK 

RATE 

RNAP 

FWD 

SLIDE 

RATE 

RNAP 

FWD 

FALL 

RATE 

RIB FWD 

DOCK 

RATE 

RIB RVS 

DOCK 

RATE 

RIB FWD 

SLIDE 

RATE 

RIB FWD 

FALL 

RATE 

1 [lacZ-pro4 lacZ-pro3 1.0 1.0 1.0      

2 lacZ-pro3 lacZ-pro2 1.0 1.0 1.0      

3 lacZ-pro2 BS-lacI-72-92 1.0 1.0 1.0      

4 BS-lacI-72-92 BS-lacI-21-1   1.0      

5 BS-lacI-21-1 lacZ-pro1   1.0      

6 lacZ-pro1 lacZ-rbs 1.0 1.0 1.0      

7 lacZ-rbs lacZ-cds   1.0  1.0 1.0 1.0 1.0 

8 lacZ-cds BS-lacI-422-402   1.0      

9 BS-lacI-422-402 lacY-pro1   1.0      

10 lacY-pro1 lacY-rbs 0.0 0.0 1.0      

11 lacY-rbs lacY-cds   1.0  1.0 1.0 1.0 1.0 

12 lacY-cds lacA-rbs   1.0      

13 lacA-rbs lacA-cds   1.0  1.0 1.0 1.0 1.0 

14 lacA-cds lacA-ter1   1.0 1.0     

15 lacA-ter1 lacA-ter2]   1.0 1.0     
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S 4-11. Benchmarks. 

Table S 4-6. Benchmarks. 

The table shows the components of each model developed in this work. The time to retrieve data from BioCyc was measured for the 

case of the central carbon and the genome-scale models, while the latter model provides a limit case. The time of ”simulation” is the 

total time of 100 stochastic simulations with KaSim v4 including the time to calculate the average and the standard deviation of 

simulations. A.U.: Arbitrary units. 

 
 Lactose models Sigma Factors Model Other models 

 Metabolic Interactions Gene 

expression 

No 

binding 

Reference rpoC 

pro 

rpoB 

ter 

both independent Arabinose Central Carbon 

Metabolism 

Genome-Scale 

Metabolism 

Genes  3 4 4 10 10 10 10 10 7 200  

Enzymes 2 2 2 2        1380 

Transporters 1 1 1 1        286 

Metabolic 

reactions 
18 18 18 18      9 458 3595 

Metabolites 20 20 20 20      19 354 2072 

Operons   1 1 9 9 9 9 10 4   

Protein-protein  5 5 5 10 10 10 10 10 10   

Protein-

metabolites 
  4 4      11   

TFs-DNA   3 3      18   

RNAP-promotor     28 30 28 30 30    

Obtain data 

BioCyc 
          141 s 291 s 

Construct model 0.74 s 1.062 s 2.231 s 2.164 s 2.897 s 3.89 s 3.73 s 3.13 s 5.11 s 2.57 s 53.9 s 44.4 s* 

Combine models  0.857 s 3.150 s 3.980 s 2.300 s 3.29 s 3.13 s 3.63 s 3.51 s 3.37 s   

# Monomers 3 2 5 5 4 4 4 4 4 5 2 3 

# Rules 18 23 62 62 125 130 127 132 130 106 332 (72.48%**) 2193 (61.00%**) 

# Initials 26 32 49 49 38 39 39 40 40 52 520 0 

# Observables 22 30 48 48 48 49 49 50 50 52 354 2072 

Simulation 15.9 s 17.8 s 324 s 308 s 186 s 256 s 233 s 255 s 163 s 527 s   

Time to simulate 
10 A.U. 10 A.U. 10000 A.U. 

10000 

A.U. 
100 A.U. 

100 

A.U. 

100 

A.U. 

100 

A.U. 
100 A.U. 1000 A.U.   

 

* Model reconstructed without initials for metabolites. 

** Percentage of the total metabolic reactions in the network due to identical names.  
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S 4-12. Physical interactions between the RNA Polymerase holoenzymes and 

promoters in the Sigma Model. 

Table S 4-7. Physical interactions between the RNA Polymerase holoenzymes and 

promoters in the Sigma Model. 

The table shows the physical interactions for the RNA Polymerase of Escherichia coli and 

the associated promoters. Brackets denote a single protein complex. 

 

 SOURCE TARGET 
FWD DOCK 

RATE 

RVS DOCK 

RATE 

FWD SLIDE 

RATE 

1 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoA-pro1 1.0 1.0 1.0 

2 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoB-pro1 1.0 1.0 1.0 

3 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoD-pro1 1.0 1.0 1.0 

4 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoE-pro1 1.0 1.0 1.0 

5 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoH-pro1 1.0 1.0 1.0 

6 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoN-pro1 1.0 1.0 1.0 

7 [rpoA,rpoA,rpoB,rpoC,rpoD] rpoS-pro1 1.0 1.0 1.0 

8 [rpoA,rpoA,rpoB,rpoC,rpoD] fliA-pro1 1.0 1.0 1.0 

9 [rpoA,rpoA,rpoB,rpoC,rpoD] fecI-pro1 1.0 1.0 1.0 

10 [rpoA,rpoA,rpoB,rpoC,rpoE] rpoD-pro1 1.0 1.0 1.0 

11 [rpoA,rpoA,rpoB,rpoC,rpoE] rpoE-pro1 1.0 1.0 1.0 

12 [rpoA,rpoA,rpoB,rpoC,rpoE] rpoH-pro1 1.0 1.0 1.0 

13 [rpoA,rpoA,rpoB,rpoC,rpoE] rpoN-pro1 1.0 1.0 1.0 

14 [rpoA,rpoA,rpoB,rpoC,rpoH] rpoA-pro1 1.0 1.0 1.0 

15 [rpoA,rpoA,rpoB,rpoC,rpoH] rpoD-pro1 1.0 1.0 1.0 

16 [rpoA,rpoA,rpoB,rpoC,rpoN] rpoA-pro1 1.0 1.0 1.0 

17 [rpoA,rpoA,rpoB,rpoC,rpoN] rpoD-pro1 1.0 1.0 1.0 

18 [rpoA,rpoA,rpoB,rpoC,rpoN] rpoH-pro1 1.0 1.0 1.0 

19 [rpoA,rpoA,rpoB,rpoC,rpoS] fecI-pro1 1.0 1.0 1.0 

20 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoA-pro1 1.0 1.0 1.0 

21 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoB-pro1 1.0 1.0 1.0 

22 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoD-pro1 1.0 1.0 1.0 

23 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoE-pro1 1.0 1.0 1.0 

24 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoH-pro1 1.0 1.0 1.0 

25 [rpoA,rpoA,rpoB,rpoC,rpoS] rpoN-pro1 1.0 1.0 1.0 

26 [rpoA,rpoA,rpoB,rpoC,fliA] rpoD-pro1 1.0 1.0 1.0 

27 [rpoA,rpoA,rpoB,rpoC,fliA] rpoN-pro1 1.0 1.0 1.0 

28 [rpoA,rpoA,rpoB,rpoC,fliA] fliA-pro1 1.0 1.0 1.0 
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S 4-13. Genomic architecture for the RNA Polymerase genes. 

Table S 4-8. Genomic architecture for the RNA Polymerase genes. 

The table shows the architecture of the ten genes that were considered for the development of the Sigma Model. Figure 4-3B shows 

in the outer ring the information contained in this table. 

 

 UPSTREAM DOWNSTREAM 

RNAP 

FWD 

DOCK 

RATE 

RNAP 

RVS 

DOCK 

RATE 

RNAP 

FWD 

SLIDE 

RATE 

RNAP 

FWD 

FALL 

RATE 

RIB 

FWD 

DOCK 

RATE 

RIB 

RVS 

DOCK 

RATE 

RIB 

FWD 

SLIDE 

RATE 

RIB 

FWD 

FALL 

RATE 

1 [rpoA-pro1 rpoA-rbs 1.0 1.0 1.0      

2 rpoA-rbs rpoA-cds   1.0  1.0 1.0 1.0 1.0 

3 rpoA-cds rpoA-ter1]   1.0 1.0     

4 [rpoB-pro1 rpoB-rbs 1.0 1.0 1.0      

5 rpoB-rbs rpoB-cds   1.0  1.0 1.0 1.0 1.0 

6 rpoB-cds rpoC-rbs   1.0      

7 rpoC-rbs rpoC-cds   1.0  1.0 1.0 1.0 1.0 

8 rpoC-cds rpoC-ter1]   1.0 1.0     

9 [rpoD-pro1 rpoD-rbs 1.0 1.0 1.0      

10 rpoD-rbs rpoD-cds   1.0  1.0 1.0 1.0 1.0 

11 rpoD-cds rpoD-ter1]   1.0 1.0     

12 [rpoE-pro1 rpoE-rbs 1.0 1.0 1.0      

13 rpoE-rbs rpoE-cds   1.0  1.0 1.0 1.0 1.0 

14 rpoE-cds rpoE-ter1]   1.0 1.0     
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S 4-13. Genomic architecture for the RNA Polymerase genes (continued). 

Table S 4-8. Genomic architecture for the RNA Polymerase genes (continued). 

The table shows the architecture of the ten genes that were considered for the development of the Sigma Model. Figure 4-3B shows 

in the outer ring the information contained in this table. 

 

 UPSTREAM DOWNSTREAM 

RNAP 

FWD 

DOCK 

RATE 

RNAP 

RVS 

DOCK 

RATE 

RNAP 

FWD 

SLIDE 

RATE 

RNAP 

FWD 

FALL 

RATE 

RIB 

FWD 

DOCK 

RATE 

RIB RVS 

DOCK 

RATE 

RIB 

FWD 

SLIDE 

RATE 

RIB 

FWD 

FALL 

RATE 

15 [rpoH-pro1 rpoH-rbs 1.0 1.0 1.0      

16 rpoH-rbs rpoH-cds   1.0  1.0 1.0 1.0 1.0 

17 rpoH-cds rpoH-ter1]   1.0 1.0     

18 [rpoN-pro1 rpoN-rbs 1.0 1.0 1.0      

19 rpoN-rbs rpoN-cds   1.0  1.0 1.0 1.0 1.0 

20 rpoN-cds rpoN-ter1]   1.0 1.0     

21 [rpoS-pro1 rpoS-rbs 1.0 1.0 1.0      

22 rpoS-rbs rpoS-cds   1.0  1.0 1.0 1.0 1.0 

23 rpoS-cds rpoS-ter1]   1.0 1.0     

24 [fliA-pro1 fliA-rbs 1.0 1.0 1.0      

25 fliA-rbs fliA-cds   1.0  1.0 1.0 1.0 1.0 

26 fliA-cds fliA-ter1]   1.0 1.0     

27 [fecI-pro1 fecI-rbs 1.0 1.0 1.0      

28 fecI-rbs fecI-cds   1.0  1.0 1.0 1.0 1.0 

29 fecI-cds fecI-ter1]   1.0 1.0     
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S 4-14. Effect of the in silico deletions of DNA coding sequences. 

Table S 4-9. Effect of the in silico deletions of DNA coding sequences. 

The table shows the logarithm of the fold change compared to a reference model. Negative 

values represent lower observed expression and positive values greater observed expression 

in comparison with the reference condition. Columns show the in silico deletion and rows 

the effect of the deletion on the expression levels at the end of 1000 simulations of 100 units 

of time. 

 ∆rpoD ∆rpoE ∆rpoH ∆rpoN ∆rpoS ∆fliA ∆fecI 

rpoS mRNA -7.88e+00 3.17e-02 1.02e-02 2.96e-02  2.93e-02 9.41e-03 

fliA mRNA -1.32e-01 1.55e-02 -3.27e-03 6.85e-03 5.01e-02  -1.02e-03 

rpoH mRNA 5.20e-02 -1.55e-02  -2.17e-02 1.65e-02 8.69e-03 -2.13e-03 

rpoA mRNA 4.70e-02 2.35e-04 -1.01e-02 -7.21e-03 1.59e-03 8.50e-04 5.10e-03 

rpoN mRNA 4.58e-02 -1.33e-02 -2.66e-03  1.53e-02 -1.30e-02 -6.51e-03 

fecI mRNA -3.27e-02 -7.07e-03 -7.58e-03 -5.13e-03 -7.14e-02 -7.03e-03  

rpoE mRNA 3.10e-02  4.96e-03 8.35e-04 -6.12e-03 1.35e-03 -2.86e-03 

rpoC mRNA 7.67e-03 7.47e-03 8.91e-03 4.91e-03 -2.72e-02 1.08e-02 4.11e-03 

rpoB mRNA 6.29e-03 7.80e-03 9.98e-03 5.13e-03 -2.90e-02 1.03e-02 9.65e-04 

rpoD mRNA  -1.59e-02 -1.25e-02 -7.84e-03 1.36e-02 -1.89e-02 -7.29e-03 

 

S 4-15. False Discovery Rates of the effect of the in silico deletions of coding DNA 

sequences. 

Table S 4-10. False Discovery Rates of the effect of the in silico deletions of coding DNA 

sequences. 

The table shows the False Discovery Rate determined with the edgeR software (FDR < 0.05). 

Columns show the in silico deletion and rows show the FDR of the change of expression 

levels at the end of 1000 simulations of 100 units of time. 

 ∆rpoD ∆rpoE ∆rpoH ∆rpoN ∆rpoS ∆fliA ∆fecI 

rpoS mRNA 0.00e+00       

fliA mRNA 6.56e-29    3.77e-05   

rpoH mRNA 6.76e-06       

rpoA mRNA 4.54e-05       

rpoN mRNA 5.81e-05       

fecI mRNA 5.74e-03    2.49e-09   

rpoE mRNA 6.69e-03       

rpoC mRNA        

rpoB mRNA     4.03e-02   

rpoD mRNA        
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S 5-1 Simulation of the best parameter set after calibration of the Core GRN Model 
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Figure S 5-1. Simulation of the best parameter set after calibration of the Core GRN Model. 

Simulation of the best parameter set after calibration of the Core GRN Model with the 

iterative Wellek´s test (WMWET) and the chi-square (CHISQ) fitness functions employing 

Strategy1. The panels show one of the ten mRNA which dynamics were reproduced by the 

Core GRN Model to some extent. There are 4 main outcomes: good agreement for both 

metrics, like the case of rpoC and rpoS mRNA; good agreement with only one fitness 

function, for instance, the rpoB and rpoE mRNAs; and complete lack of fit with both, as is 

seen for the rpoD mRNA and others.  
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S 5-2 Small multiple of simulations through the time. 
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Figure S 5-2. Small multiple of simulations through the time. 

Small multiple depicting the initial condition (top panel) and how it evolved through the 

simulated time (1, 10, and final time of 90 minutes) with model parameters before (panels 

at the left) and after calibration (panels at the right).  
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S 5-3 Difference for the error of the best models calibrated with Strategy1 at each 

single fitness function. 
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Figure S 5-3. The difference for the error of the best models calibrated with Strategy1 at 

each single fitness function. 

The error determined for the first rank model at the end of the calibration is shown subtracted 

by the error found when the same fitness function was used as the objective function. Most 

of the fitness functions showed equal or lower capability to reduce other fitness errors, 

indicated by the positive difference. Interestingly, the absolute value of the difference of two 

averages (ADA, Equation 5-2, panel A) as well as other fitness functions were minimized 

even further employing another function as the objective.  
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S 5-4 Correlation coefficients (left) and p-values (right) for the ten fitness functions 

included in Pleione. 

 

Figure S 5-4. Correlation coefficients (left) and p-values (right) for the ten fitness functions 

included in Pleione. 

A, B. Pearson´s correlation coefficient; C, D. Spearman 𝜌 correlation coefficient; and E, F. 

Kendall 𝜏 correlation coefficient. All coefficients were calculated with the python SciPy 

package at the first iteration of 100 individuals to calibrate the Core GRN Model.  
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S 5-5 Fractional mean error convergence. 
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Figure S 5-5. Fractional mean error convergence. 

Fractional mean error convergence for a calibration employing Strategy1 (blue circles) and 

Strategy4 (orange squares). Each panel shows the convergence for a single fitness function 

while it was selected to calibrate the Core GRN Model, and comparatively with the same 

error while was selected simultaneously the ANPWSD (first row, right panel), the Wellek´s 

test, and PWSD (the fourth row, left panel) fitness functions.  
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S 5-6 Best fits for the rpoS mRNA. 

 

Figure S 5-6. Best fits for the rpoS mRNA. 

Best fits for the rpoS mRNA employing a single (left panels) and multiple fitness functions 

(right panels) simultaneously. The two Multi-Objective calibrations were performed 

employing the chi-square and the Wellek´s test (C), and the other with the absolute pair-wise 

deviation, the Wellek´s test, and the normalized absolute pair-wise deviation fitness 

functions (F). Differences are marginal between each calibration.  
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S 5-7 Calibration with Pleione with the Strategy3. 

 

Figure S 5-7. Calibration with Pleione with the Strategy3. 

The RBM representing the Core GRN of E. coli was calibrated against transcriptomic data 

and evaluated individually with all ten fitness functions. A. Error convergence in a Single-

Objective Calibration. The traces correspond to the mean of all models per iteration, 

normalized against the maximum value achieved at the first iteration (fractional error) B. 

Multi-Objective Performance. The traces correspond to the ratio between a single fitness 

function in a Multi-Objective calibration against itself when selecting one of three fitness 

functions in a Single-Objective GA. Ratios below the unity mean that the fitness function in 

a Single-Objective calibration achieved greater errors than itself in the Multi-Objective 

optimization. C. Comparison to elitist GA. The figure shows the ratio between the fractional 

errors to compare the inverse and the elitist strategies. Ratios below the unity mean that the 

selection and mutation implemented in Strategy3 achieved a lower error reduction compared 

to the initial population than the elitist strategy to select parents.  
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S 5-8 Biological networks employed to develop the Core Gene Regulatory Network 

Model. 

 

Figure S 5-8. Biological networks employed to develop the Core Gene Regulatory Network 

Model. 

A: The Gene Regulatory Network is a directed network composed of 30 positive regulations 

and 10 genes, seven of which are sigma factors (light blue) and the remaining encode the 𝛼, 

𝛽, and 𝛽′ subunits of the RNA Polymerase Core Enzyme (RpoA, B, and C). B: The Protein-

Protein Interaction Network encoding the physical interactions between all proteins. The 

core enzyme is a tetramer composed of two 𝛼 subunits, and one of each β and β0 subunits 

(green nodes). The RNAP holoenzyme is completed with one of the seven sigma factors. 

The hard lines are physical interactions while the dashed line between RpoA and RpoC 

proteins denotes an indirect interaction.  
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S 5-9 Inference of parameter uncertainty throughout one-leave-out Jackknife for 

the core GRN model. 

Table S 5-1. Inference of parameter uncertainty throughout one-leave-out Jackknife for the 

core GRN model. 

”Jack” refers to the Jackknife estimator corrected after bias consideration. ”Mean” refers to 

the average of all subsamples, ”SE” the standard error of subsamples, and ”bias” refers to 

the Jackknife bias. 

 
Parameter Jack Mean SE bias 

degrade_RNA_fecIRBSRNA_fecICDS_k -0,03359 0,075229 0,01532 0,072546 

degrade_RNA_fliARBSRNA_fliACDS_k 0,074741 0,053473 0,004697 -0,01418 

degrade_RNA_rpoARBSRNA_rpoACDS_k 0,131001 0,082656 0,026083 -0,03223 

degrade_RNA_rpoBRBSRNA 

_rpoBCDSRNA_rpoCRBSRNA_rpoCCDS_k 
0,071978 0,081669 0,013136 0,006461 

degrade_RNA_rpoDRBSRNA_rpoDCDS_k 0,127786 0,079709 0,026003 -0,03205 

degrade_RNA_rpoERBSRNA_rpoECDS_k 0,113551 0,084511 0,009664 -0,01936 

degrade_RNA_rpoHRBSRNA_rpoHCDS_k 0,102653 0,092558 0,011236 -0,00673 

degrade_RNA_rpoNRBSRNA_rpoNCDS_k 0,097976 0,085013 0,010174 -0,00864 

degrade_RNA_rpoSRBSRNA_rpoSCDS_k 0,108318 0,06769 0,026675 -0,02709 

docking_rnap24_p1rpod_fwd 1,445771 0,582415 0,288675 -0,57557 

docking_rnap24_p1rpod_rvs 0,173118 0,53066 0,253974 0,238362 

docking_rnap24_p1rpoe_fwd -0,57589 0,315666 0,527432 0,59437 

docking_rnap24_p1rpoe_rvs 0,696355 0,54036 0,456712 -0,104 

docking_rnap24_p1rpoh_fwd -1,06251 0,605495 0,584072 1,112003 

docking_rnap24_p1rpoh_rvs -0,75318 0,594018 0,546206 0,898129 

docking_rnap24_p1rpon_fwd -0,43668 0,602523 0,410908 0,692804 

docking_rnap24_p1rpon_rvs 1,569712 0,600113 0,206707 -0,6464 

docking_rnap28_p1flia_fwd -0,36672 0,659787 0,132764 0,684337 

docking_rnap28_p1flia_rvs 0,070267 0,347218 0,31347 0,184634 

docking_rnap28_p1rpod_fwd 0,199553 0,895794 0,135881 0,464161 

docking_rnap28_p1rpod_rvs -0,19469 0,175885 0,175418 0,247047 

docking_rnap28_p1rpon_fwd -1,04314 0,69326 0,47154 1,1576 

docking_rnap28_p1rpon_rvs 1,218488 0,560888 0,488593 -0,4384 

docking_rnap32_p1rpoa_fwd 1,267096 0,363877 0,483783 -0,60215 

docking_rnap32_p1rpoa_rvs 2,104009 0,329714 0,389054 -1,18286 

docking_rnap32_p1rpod_fwd 0,669233 0,350031 0,411611 -0,2128 

docking_rnap32_p1rpod_rvs 1,391538 0,453387 0,259699 -0,62543 

docking_rnap38_p1feci_fwd 1,945819 0,277128 0,249491 -1,11246 

docking_rnap38_p1feci_rvs 0,352451 0,508967 0,466181 0,104344 

docking_rnap38_p1rpoa_fwd 2,079586 0,357589 0,557333 -1,148 

docking_rnap38_p1rpoa_rvs -0,27816 0,730746 0,223807 0,672603 

docking_rnap38_p1rpob_fwd 0,283344 0,386651 0,35836 0,068871 

docking_rnap38_p1rpob_rvs -0,33383 0,79434 0,286838 0,752116 

docking_rnap38_p1rpod_fwd -0,02745 0,67524 0,397401 0,468459 

docking_rnap38_p1rpod_rvs -0,17494 0,268199 0,278194 0,295427 

docking_rnap38_p1rpoe_fwd -0,14534 0,659037 0,630924 0,536253 

docking_rnap38_p1rpoe_rvs 0,047703 0,529356 0,173448 0,321102 

docking_rnap38_p1rpoh_fwd -0,8298 0,506609 0,235179 0,890936 

docking_rnap38_p1rpoh_rvs 0,555719 0,434632 0,329177 -0,08072 

docking_rnap38_p1rpon_fwd 1,56973 0,343754 0,29229 -0,81732 
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docking_rnap38_p1rpon_rvs 1,575125 0,458534 0,199591 -0,74439 

docking_rnap54_p1rpoa_fwd -0,50234 0,331603 0,343427 0,555961 

docking_rnap54_p1rpoa_rvs 0,548096 0,501163 0,44061 -0,03129 

docking_rnap54_p1rpod_fwd 1,403161 0,371097 0,334056 -0,68804 

docking_rnap54_p1rpod_rvs 0,379299 0,581213 0,362477 0,134609 

docking_rnap54_p1rpoh_fwd -0,2703 0,265867 0,207013 0,357441 

docking_rnap54_p1rpoh_rvs -0,61039 0,358586 0,537333 0,645986 

docking_rnap70_p1feci_fwd -0,39592 0,368121 0,338683 0,509362 

docking_rnap70_p1feci_rvs 0,883405 0,638015 0,216305 -0,16359 

docking_rnap70_p1flia_fwd 1,616003 0,45535 0,254541 -0,77377 

docking_rnap70_p1flia_rvs -0,10751 0,287335 0,216224 0,263228 

docking_rnap70_p1rpoa_fwd 0,632337 0,345819 0,425477 -0,19101 

docking_rnap70_p1rpoa_rvs 0,597349 0,686827 0,366964 0,059652 

docking_rnap70_p1rpob_fwd 0,306648 0,428711 0,26828 0,081375 

docking_rnap70_p1rpob_rvs 1,211016 0,453764 0,205415 -0,50483 

docking_rnap70_p1rpod_fwd -0,92441 0,593744 0,485754 1,012101 

docking_rnap70_p1rpod_rvs 1,178694 0,126788 0,03708 -0,70127 

docking_rnap70_p1rpoe_fwd -0,05674 0,142428 0,14174 0,132776 

docking_rnap70_p1rpoe_rvs -0,77975 0,613189 0,305522 0,928623 

docking_rnap70_p1rpoh_fwd -1,53598 0,77517 0,123273 1,540769 

docking_rnap70_p1rpoh_rvs -0,49271 0,583872 0,159728 0,717723 

docking_rnap70_p1rpon_fwd 0,297563 0,804841 0,138248 0,338186 

docking_rnap70_p1rpon_rvs -0,85372 0,591613 0,43974 0,963555 

docking_rnap70_p1rpos_fwd 0,091168 0,452659 0,444664 0,240994 

docking_rnap70_p1rpos_rvs -0,02759 0,44272 0,477901 0,313537 

rpoa_rpoa_rpob_rpoc_feci_fwd 197,1614 46,75603 52,63992 -100,27 

rpoa_rpoa_rpob_rpoc_feci_rvs 111,2242 40,73381 46,77473 -46,9936 

rpoa_rpoa_rpob_rpoc_flia_fwd -7,86049 56,3545 43,37604 42,80999 

rpoa_rpoa_rpob_rpoc_flia_rvs 199,3186 42,13268 48,42403 -104,791 

rpoa_rpoa_rpob_rpoc_rpod_fwd -11,6538 8,633392 11,531 13,52482 

rpoa_rpoa_rpob_rpoc_rpod_rvs 22,95695 47,70991 43,90544 16,50197 

rpoa_rpoa_rpob_rpoc_rpoe_fwd -103,89 53,4257 10,76507 104,8774 

rpoa_rpoa_rpob_rpoc_rpoe_rvs -47,1222 30,03322 32,35312 51,43695 

rpoa_rpoa_rpob_rpoc_rpoh_fwd -43,5907 68,99582 24,76471 75,05766 

rpoa_rpoa_rpob_rpoc_rpoh_rvs 4,132941 54,25928 54,25458 33,41756 

rpoa_rpoa_rpob_rpoc_rpon_fwd 189,1148 31,4646 37,85269 -105,1 

rpoa_rpoa_rpob_rpoc_rpon_rvs 153,2202 58,58658 35,33477 -63,0891 

rpoa_rpoa_rpob_rpoc_rpos_fwd -25,4132 14,10009 24,37087 26,3422 

rpoa_rpoa_rpob_rpoc_rpos_rvs 17,20758 31,1371 14,56806 9,286347 
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S 5-10 Inference of parameter uncertainty using 20 bootstraps. 

Table S 5-2. Inference of parameter uncertainty using 20 bootstraps.  

The procedure allows a confidence interval of 90.0%. 

 
 Minimum Maximum  

degrade_RNA_fecIRBSRNA_fecICDS_k 0,015418 0,093511 

degrade_RNA_fliARBSRNA_fliACDS_k 0,011663 0,074076 

degrade_RNA_rpoARBSRNA_rpoACDS_k 0,01 0,094953 

degrade_RNA_rpoBRBSRNA 

_rpoBCDSRNA_rpoCRBSRNA_rpoCCDS_k 
0,029113 0,098912 

degrade_RNA_rpoDRBSRNA_rpoDCDS_k 0,03878 0,096884 

degrade_RNA_rpoERBSRNA_rpoECDS_k 0,031806 0,097227 

degrade_RNA_rpoHRBSRNA_rpoHCDS_k 0,063836 0,09933 

degrade_RNA_rpoNRBSRNA_rpoNCDS_k 0,02077 0,097391 

degrade_RNA_rpoSRBSRNA_rpoSCDS_k 0,008518 0,091329 

docking_rnap24_p1rpod_fwd 0,095833 0,942509 

docking_rnap24_p1rpod_rvs 0,103773 0,993867 

docking_rnap24_p1rpoe_fwd 0,01094 0,881966 

docking_rnap24_p1rpoe_rvs 0,0603 0,906298 

docking_rnap24_p1rpoh_fwd 0,037422 0,943149 

docking_rnap24_p1rpoh_rvs 0,018008 0,82974 

docking_rnap24_p1rpon_fwd 0,093583 0,916892 

docking_rnap24_p1rpon_rvs 0,060983 0,847561 

docking_rnap28_p1flia_fwd 0,05987 0,895893 

docking_rnap28_p1flia_rvs 0,009676 0,924858 

docking_rnap28_p1rpod_fwd 0,019887 0,961636 

docking_rnap28_p1rpod_rvs 0,339933 0,91945 

docking_rnap28_p1rpon_fwd 0,015624 0,844661 

docking_rnap28_p1rpon_rvs 0,138558 0,904499 

docking_rnap32_p1rpoa_fwd 0,019595 0,827524 

docking_rnap32_p1rpoa_rvs 0,217859 0,956201 

docking_rnap32_p1rpod_fwd 0,021209 0,835443 

docking_rnap32_p1rpod_rvs 0,049484 0,920967 

docking_rnap38_p1feci_fwd 0,017611 0,915298 

docking_rnap38_p1feci_rvs 0,051926 0,948303 

docking_rnap38_p1rpoa_fwd 0,009059 0,892295 

docking_rnap38_p1rpoa_rvs 0,03737 0,961912 

docking_rnap38_p1rpob_fwd 0,132154 0,956783 

docking_rnap38_p1rpob_rvs 0,215169 0,993703 

docking_rnap38_p1rpod_fwd 0,088594 0,976686 

docking_rnap38_p1rpod_rvs 0,150762 0,981178 

docking_rnap38_p1rpoe_fwd 0,050735 0,89449 

docking_rnap38_p1rpoe_rvs 0,018819 0,94098 

docking_rnap38_p1rpoh_fwd 0,05578 0,975849 

docking_rnap38_p1rpoh_rvs 0,241838 0,966549 

docking_rnap38_p1rpon_fwd 0,257689 0,968392 

docking_rnap38_p1rpon_rvs 0,027071 0,892891 

docking_rnap54_p1rpoa_fwd 0,018159 0,74595 

docking_rnap54_p1rpoa_rvs 0,038679 0,866578 

docking_rnap54_p1rpod_fwd 0,03544 0,848812 

docking_rnap54_p1rpod_rvs 0,176343 0,962994 
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docking_rnap54_p1rpoh_fwd 0,006197 0,775382 

docking_rnap54_p1rpoh_rvs 0,090734 0,974517 

docking_rnap70_p1feci_fwd 0,019493 0,92872 

docking_rnap70_p1feci_rvs 0,180631 0,896933 

docking_rnap70_p1flia_fwd 0,130893 0,966198 

docking_rnap70_p1flia_rvs 0,144216 0,987815 

docking_rnap70_p1rpoa_fwd 0,016978 0,972855 

docking_rnap70_p1rpoa_rvs 0,3019 0,952864 

docking_rnap70_p1rpob_fwd 0,048642 0,780183 

docking_rnap70_p1rpob_rvs 0,055855 0,941712 

docking_rnap70_p1rpod_fwd 0,202404 0,965757 

docking_rnap70_p1rpod_rvs 0,175459 0,819108 

docking_rnap70_p1rpoe_fwd 0,042815 0,931646 

docking_rnap70_p1rpoe_rvs 0,046631 0,858377 

docking_rnap70_p1rpoh_fwd 0,014443 0,940546 

docking_rnap70_p1rpoh_rvs 0,087262 0,857371 

docking_rnap70_p1rpon_fwd 0,390051 0,951194 

docking_rnap70_p1rpon_rvs 0,188165 0,935545 

docking_rnap70_p1rpos_fwd 0,118926 0,978016 

docking_rnap70_p1rpos_rvs 0,073125 0,947389 

rpoa_rpoa_rpob_rpoc_feci_fwd 8,337535 95,10719 

rpoa_rpoa_rpob_rpoc_feci_rvs 1,715186 71,85666 

rpoa_rpoa_rpob_rpoc_flia_fwd 22,55262 87,54622 

rpoa_rpoa_rpob_rpoc_flia_rvs 1,43309 99,53465 

rpoa_rpoa_rpob_rpoc_rpod_fwd 0,070744 81,59405 

rpoa_rpoa_rpob_rpoc_rpod_rvs 28,6883 94,72592 

rpoa_rpoa_rpob_rpoc_rpoe_fwd 1,552307 88,211 

rpoa_rpoa_rpob_rpoc_rpoe_rvs 0,470571 93,89551 

rpoa_rpoa_rpob_rpoc_rpoh_fwd 6,008725 96,79683 

rpoa_rpoa_rpob_rpoc_rpoh_rvs 1,057004 98,13897 

rpoa_rpoa_rpob_rpoc_rpon_fwd 3,466332 77,08649 

rpoa_rpoa_rpob_rpoc_rpon_rvs 7,007182 75,74328 

rpoa_rpoa_rpob_rpoc_rpos_fwd 0,210678 78,48835 

rpoa_rpoa_rpob_rpoc_rpos_rvs 29,67281 90,96462 
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10.1 SUMMARY 

Sucralose is an artificial non-nutritive sweetener used in foods aimed to reduce sugar and 

energy intake. While thought to be inert, the impact of sucralose on metabolic control has 

shown to be the opposite. The gut microbiome has emerged as a factor shaping metabolic 

responses after sweetener consumption. We examined the short-term effect of sucralose 

consumption on glucose homeostasis and the gut microbiome of healthy male volunteers. 

We performed a randomized, double-blind study in 34 subjects divided into two groups, one 

that was administered sucralose capsules (780 mg/day for seven days; n=17), and a control 

group receiving a placebo (n=17). Before and after the intervention, glycemic and 

insulinemic responses were assessed with a standard oral glucose load (75 g). Insulin 

resistance was determined using HOMA-IR and Matsuda indexes. The gut microbiome was 

evaluated before and after the intervention by 16S rRNA sequencing. During the study, body 

weight remained constant in both groups. Glycemic control and insulin resistance were not 

affected during the 7-day period. At the phylum level, the gut microbiome was not modified 
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in any group. We classified subjects according to their change in insulinemia after the 

intervention, to compare the microbiome of responders and non-responders. Independent of 

consuming sucralose or placebo, individuals with a higher insulinemic response after the 

intervention had lower Bacteroidetes and higher Firmicutes abundances. In conclusion, the 

consumption of high doses of sucralose for 7 days does not alter glycemic control, insulin 

resistance, or gut microbiome in healthy individuals. However, it highlights the need to 

address individual responses to sucralose. 

10.2 INTRODUCTION 

Sucralose (1,6-dichloro 1,6-dideoxy β-D-fructofuranosyl 4-chloro 4-deoxy α-D-

galactopyranoside) is a non-caloric artificial sweetener (NAS) synthesized by the selective 

halogenation of sucrose (Magnuson et al., 2016). Approved by the FDA for use in humans, 

it is 600 times sweeter than sucrose. Due to its low production cost, high thermostability, 

and solubility, sucralose has emerged as an important sugar substitute in foods and drinks. 

The acceptable daily intake (ADI) of sucralose has been established at 15 mg/kg body weight 

(Martyn et al., 2018).  

The concept that replacing sucrose with NAS in foods and drinks improves metabolic 

control has been challenged (Shearer & Swithers, 2016). In mice, sucralose added to 

drinking water for 11 weeks impaired oral glucose tolerance when compared with water 

alone or water with sucrose or glucose (Suez et al., 2014). Such deleterious effect was 

prevented when mice were treated with broad-spectrum antibiotics against Gram-Negative 

or Gram-Positive bacteria. The fact that sucralose displays bacteriostatic action on several 

gut microbes (Omran, Ahearn, et al., 2013; Q. P. Wang et al., 2018), and that most of the 

sucralose is not absorbed in the intestine (Magnuson et al., 2016; Roberts et al., 2000; 

Sylvetsky et al., 2017), gives support to observations showing that sucralose can alter gut 

microbiome composition (Rodriguez-Palacios et al., 2018; Q. P. Wang et al., 2018). Taken 

together, the notion that sucralose influences glucose control through alterations in intestinal 

microbiota has emerged. 

In humans, the consumption of high doses of sucralose for three months has been 

assessed in nondiabetic (Grotz et al., 2017) and type-2 diabetic (Grotz et al., 2003) 
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individuals. Those studies showed no influence of sucralose on glycemic control when 

compared with placebo. However, between-subject variability in given markers of glycemic 

control appears higher after sucralose vs. placebo, particularly in non-diabetic individuals. 

Eventually, the glycemic response to sucralose in humans, as in mice, is also mediated 

through changes in gut microbiota (Lobach et al., 2019). 

Considering the relevance of chronic diseases and the wide availability of sucralose 

in foods and drinks, it is critical to determine the effect of sucralose on metabolic responses 

and the gut microbiome. The goal of this study was to evaluate the short-term effect of 

sucralose on glycemic control and its interaction with the microbiota in healthy subjects. 

10.3 EXPERIMENTAL METHODS 

10.3.1 Subjects 

This study was conducted in accordance with the Declaration of Helsinki and approved by 

the Ethics Committee of the Faculty of Medicine, Pontificia Universidad Católica de Chile. 

All participants provided written informed consent. Thirty-four healthy men between 18 and 

50 years with stable weight (variation < 2 kg in the last three months) and body mass index 

(BMI) between 20–30 kg/m2 were recruited. None of them carried out intense physical 

activity regularly or received any drug treatment during the last three months. The fulfillment 

of all the inclusion criteria was evaluated in an initial screening, and individuals not meeting 

the requirements were excluded. Only males were included in order to avoid potential 

menstrual cycle-related changes in insulin sensitivity. 

10.3.2 Study design 

A parallel, double-blind, placebo-controlled study was performed. Selected participants 

were requested to fast overnight and instructed to avoid intense physical activity the day 

before the evaluation, in addition to smoking, alcohol, and energy drinks consumption 12 h 

previous to the evaluation. On the evaluation day, subjects were requested to bring or collect 

in the clinical facility a fecal sample in a 15 ml anaerobic container. The fecal sample was 

immediately stored at –80 °C for gut microbiome analysis. Body weight was measured 

followed by the insertion of an intravascular cannula in a peripheral vein of the arm. After 
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resting for 30 min, two 10-min apart blood samples were taken followed by the 

administration of an oral glucose load (75 g in 290 ml solution). Blood samples were 

obtained after 30, 60, 90, and 120 min of glucose ingestion. Once finished this procedure, 

volunteers were randomly assigned to an intervention group with sucralose (n = 17) or 

placebo (n = 17). For this, we used an online resource (https://www.randomizer.org/). 

Randomization was conducted by one of the members of our group. This person was not 

involved in recruiting, selecting, or performing any of the measurements of this study, and 

broke the labels after data analysis. Four subjects did not finish the study, resulting in 16 

subjects in the sucralose group and 14 in the placebo group. Individuals were instructed to 

ingest one capsule containing sucralose or placebo, three times a day for 7 days. Sucralose 

was purchased from VitaSweet (Beijing, China). Each sucralose capsule contained 260 mg 

sucralose and 70 mg calcium carbonate; thus the three capsules consumed daily were 

equivalent to the 75% of the Acceptable Daily Intake (ADI) (Martyn et al., 2018) (15 

mg/kg/d) of a subject weighing 70 kg. Each placebo capsule contained 250 mg of calcium 

carbonate. Each subject was instructed to register and report any adverse events. After 7 

days, subjects were requested to attend the clinical facility to repeat the same procedures. 

Volunteers were instructed to record any adverse events or changes in their customary diet. 

10.3.3 Glucose and insulin tests 

Plasma concentrations of glucose were determined by the glucose oxidase method, in a dry 

chemistry equipment (Vitros 4600, Ortho Clinical Diagnostics, Raritan, NJ). Serum 

concentrations of insulin were quantified by a capture chemiluminescent immunoassay 

(Centaur XPT, Siemens, Henkestr, Germany). Insulin resistance was calculated as the 

HOMA-IR index (Homeostasis Model Assessment of Insulin Resistance), using the formula 

by Matthews et al. (Matthews et al., 1985): (fasting insulin [µU/ml] × fasting glucose 

[mmol/l])/22.5. Alternatively, the ISI-Composite index was also determined, using the 

formula proposed by Matsuda and De Fronzo (Matsuda & DeFronzo, 1999): 10,000/(fasting 

glycemia [mg/dl] × fasting insulin [µU/ml] × average glycemia in the oral test (30 – 120 

min) [mg/dl] × average insulin in the oral test (30 – 120 min) [µU/ml])0.5. Total Area Under 

https://www.randomizer.org/
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the Curve (AUC) for insulinemic and glycemic responses were also calculated, using the 

trapezoidal rule (Krzyzanski & Jusko, 1998). 

10.3.4 Statistical analysis 

Clinical data were expressed as the average ± SD. Statistical analyses were run on SAS v9.2 

(SAS Institute. Cary. NC). Subject´s characteristics at screening were compared between 

groups using the Student´s t-test. Differences in the AUC for the glycemic and insulinemic 

responses were assessed through the Wilcoxon´s rank sums test and the Mann-Whitney U-

test. Differences in clinical variables before and after the intervention were determined using 

a repeated-measure ANOVA including group, time (repeated), and the group × time 

interaction. The significance level for all analyses was set at a p-value < 0.05. 

10.3.5 Sample size 

The sample size needed to detect a difference in glycemia (i.e., mean of glycemia between 

30–120 min after OGTT) after one-week sucralose ingestion was estimated from two 4-

weeks apart OGTTs performed in healthy, young, non-obese individuals (Galgani et al., 

2013). Considering a within-subject SD of ±11 mg/dL as the expected variability without 

intervention, and a between-subject SD of 21 mg/dL, 15 subjects will allow detecting a 

difference of 13 mg/dL in glycemia after one-week sucralose ingestion, with a power of 82% 

for paired samples two-sided and a significance level of 5%. 

10.3.6 Gut microbiome analysis 

Fecal samples stored at –80 ºC were first thawed and 150 mg were used for total DNA 

extraction (Quick-DNA Fecal/Soil Microbe Miniprep Kit; Zymo Research, Irvine, CA) by 

using a Disruptor Genie device (Scientific Industries, USA) (Medina et al., 2017). DNA 

samples were quantified (NanoDrop 2000c; Thermo Fisher Scientific USA) and diluted to 

20 ng/µl in nuclease-free water (IDT; Coralville, IA). DNA samples were submitted for 

Illumina MiSeq sequencing at Integrated Microbiome Resource (Halifax, NS). The 16S 

rRNA gene V3-V4 variable region was amplified using V3-V4 primers (Comeau et al., 

2017), which also included a barcode in the forward primer. The DADA2 v1.10 R package 

was used to analyze the 16S rRNA gene sequences, following a modified procedure 
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(Callahan et al., 2016). Briefly, the sequences were filtered by the quality and trimmed to 

remove the barcode and low-quality nucleotides prior to estimating the sequencing error. 

Then, sequences were denoised to identify Amplicon Sequence Variants (Callahan et al., 

2017), then merged and used to assign microbial taxonomy following a Naïve Bayesian 

classifier (Q. Wang et al., 2007), employing the SILVA database version 132 (Quast et al., 

2013; Yilmaz et al., 2014). Raw data paired-end reads obtained from the MiSeq platform 

were stored in the European Nucleotide Archive database (ENA), under study accession 

number PRJEB27704. 

10.3.7 Bioinformatics analysis 

Microbiome composition similarity at the phylum level was determined employing Principal 

Coordinates Analysis with distances calculated with the weighted UniFrac method (C. 

Lozupone et al., 2011; C. A. Lozupone et al., 2007). The weighted UniFrac quantitatively 

estimates the beta-diversity taking into account phylogenetic distances between microbial 

taxa and their relative abundance. The similarity between microbiome compositions was 

calculated with the Unweighted Pair Group Method with Arithmetic Mean (UPGMA) 

Algorithm. Fold changes in the relative microbiome composition at the phylum level (values 

after/before intervention), for each group of subjects and subgroups were determined using 

the Mann-Whitney U-test. The significance level for all analyses was set at p < 0.05. 

10.4 RESULTS 

10.4.1 Subjects characteristics at the screening 

Age, weight, and height were similar between groups (Table 10-1), while BMI was higher 

in the placebo compared with the sucralose group (p-value = 0.04). Such difference in BMI 

was accompanied by higher blood cholesterol concentration (p-value < 0.01), but similar 

blood glucose concentration (Table 10-1). 
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Table 10-1. Clinical parameters at screening (mean ± SD [range]) 

 

 
Placebo 

(n = 14) 

Sucralose 

(n = 16) 
t-test 

Age (years)  
23.5 ± 2.9  

[18.2 – 29.3]  

22.8 ± 3.0  

[18.7 – 30.2]  
0.51 

Weight (kg)  
77.0 ± 8.3  

[57.9 – 88.0]  

73.2 ± 6.9  

[60.9 – 83.7]  
0.19 

Height (m) 
1.73 ± 0.04  

[1.67 – 1.80]  

1.75 ± 0.07  

[1.63 – 1.90]  
0.31 

Body mass index (kg/m2)  
25.7 ± 2.9  

[20.8 – 28.9]  

23.8 ± 1.7  

[21.1 – 26.6]  
0.04 

Glycemia (mg/dl)  
84 ± 8  

[67 – 95]  

85 ± 6  

[72 – 94]  
0.50 

Cholesterol (mg/dl)  
173 ± 23  

[134 – 219]  

147 ± 22  

[106 – 184]  
<0.01 

 

10.4.2 Metabolic responses to sucralose 

Body weight remained stable throughout the study, with an average change of 0.16 ± 0.74 

kg (p-value = 0.44) and 0.21 ± 1.17 kg (p-value = 0.49) in the placebo and sucralose groups, 

respectively. Volunteers in the placebo and sucralose groups did not report adverse events 

or changes in their usual dietary patterns. As observed at screening, fasting plasma glucose 

concentration was similar between groups, and not affected by the consumption of placebo 

or sucralose (Table 10-2). In turn, a borderline higher fasting serum insulin concentration 

was observed in the placebo vs. sucralose group (p-value = 0.07; Table 10-2). Similar to 

fasting plasma glucose, consumption of sucralose or placebo did not affect fasting serum 

insulin concentration (Table 10-2). 
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Table 10-2. Metabolic response to intervention (mean ± SD). 

 

 Placebo (n = 14) Sucralose (n = 16) p-value 

 Before After Change* Before After Change* Group Time Group×Time 

Fasting 

Glycemia 

(mg/dl) 
82 ± 5 79 ± 4 –2.2 ± 5.0 82 ± 5 82 ± 5 0.0 ± 6.1 0.22 0.31 0.29 

Insulinemia 

(µU/ml) 
12 ± 5 11 ± 4 –1.0 ± 3.3 9 ± 4 8 ± 4 –0.9 ± 4.6 0.07 0.22 0.93 

HOMA-IR 2.4 ± 1.1 2.1 ± 0.8 –0.3 ± 0.7 1.9 ± 0.9 1.7 ± 0.9 –0.2 ± 1.1 0.13 0.21 0.77 

After oral glucose 

Glycemia 

(mg/dl)** 
115 ± 17 112 ± 21 –3.0 ±17.4 107 ± 21 113 ± 21 6.2 ± 18.6 0.65 0.63 0.17 

Insulinemia 

(µU/ml)** 
81 ± 38 87 ± 51 5.6 ± 38.1 63 ± 40 78 ± 41 15.4 ±30.5 0.35 0.11 0.44 

ISI-Composite 4.1 ± 2.1 4.7 ± 3.0 0.5 ± 2.4 7.8 ± 10 5.9 ± 4.2 –1.9 ± 7.7 0.21 0.52 0.29 

*Calculated as values after minus before intervention.  

**Mean of the respective response over the 30 to 120 min period after glucose ingestion. 

 

Upon glucose ingestion, the average glycemic and insulinemic responses were 

similar between groups and not affected by the consumption of sucralose or placebo (Table 

10-2). Regarding insulin resistance (sensitivity) markers, no differences by group and 

intervention were detected (Table 10-2). One further assessment included the analysis of the 

changes in the aforementioned variables after both interventions. Consistent with ANOVA, 

none of the changes were different from zero (Table 10-2). We calculated the area under the 

curve for glycemic and insulinemic responses for each subject (Figure 10-1). This analysis 

did not show alterations in glycemia or insulinemia in any group. 
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Figure 10-1. Changes in metabolic responses upon oral glucose consumption before and 

after the intervention.  

A: Total Glycemic Area Under the Curve (AUC) for each group; B: insulinemic total AUC. 

Subjects with insufficient data to calculate the AUC were not included. The kernel density 

estimation shows the probability of the values. 

 

ANOVA 

F = 0.67 

p-value = 0.57 

ANOVA 

F = 0.43 

p-value = 0.73 

A 

B 
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10.4.3 Changes in gut microbiome composition 

The gut microbiome of all subjects in each group, both before and after the 7-day 

intervention period, was analyzed. As expected, the Firmicutes and Bacteroidetes phyla were 

dominant in the microbiome of these subjects (Figure S 10-1). Smaller representations of 

Actinobacteria, Verrucomicrobia, and Proteobacteria were also observed. On average, a 

higher relative abundance of phylum Firmicutes in the placebo vs. sucralose group was 

observed before initiating the treatments (Figure 10-2). However, microbiome composition 

remained stable throughout both interventions (Figure 10-2). 

 

 

Figure 10-2. Gut microbiome compositions for each group before and after each treatment.  

Bars show the average relative abundance of the four dominant phyla of the human gut 

microbiome. 

 

We performed a principal component analysis (PCA) to identify variations in the gut 

microbiome composition for each individual before and after interventions (Figure 10-3A). 

This PCA represents the normalized absolute abundance for all 14 phyla identified in every 

microbiome sample evaluated. Consistent with the aforementioned analysis, most subjects 

displayed modest variations in their microbiome composition (Figure 10-3A). 
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Figure 10-3. Comparisons of gut microbiome composition between subjects.  

A: Principal Coordinates Analysis of all phyla identified showing close similarity for groups 

including both Placebo and Sucralose at both intervention times. Arrows show the 

trajectories of changes in microbiome composition for each individual in the study. B: 

Heatmap of distances calculated as the weighted UniFrac and clustering of closest distances 

using the UPMGA Algorithm. 

 

A 

B 
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We also calculated the weighted UniFrac distances for each gut microbiome (Figure 

10-3B), in order to determine biological diversity among the microbiomes. This analysis 

showed that microbiomes in the sucralose group before and after the intervention (S1/S2) 

tend to cluster together, as well as microbiomes from subjects in the placebo group before 

and after the intervention (P1/P2). Again, this analysis indicates that both treatments did not 

substantially modify the microbiome of these subjects, while differences detected before 

interventions remained. 

10.4.4 Correlations between the gut microbiome and metabolic markers 

Next, we classified individuals according to their metabolic responses, by calculating the 

after-to-before ratio for serum insulin and glucose AUCs, BMI, and insulin resistance 

(sensitivity) markers. This was aimed to determine if within the same treatment certain 

subjects responded differently, identifying “responders” (subjects with a ratio higher than 

1), and “non-responders” (a ratio smaller or equal to 1) (Suez et al., 2014). 

 Independent of the treatment received, responders vs. non-responders according to 

insulin AUC had higher Firmicutes and lower Bacteroidetes abundances in their 

microbiomes (Figure 10-4A, Figure 10-4B). Such differences were also noted when 

classifying subjects according to their change in glucose AUC, albeit with borderline 

significance (Figure S 10-2). Bacteroidetes relative abundance was also lower in responders 

according to changes in HOMA (Figure S 10-3). Finally, classifying individuals by their 

BMI (overweight or normal weight) did not show significant changes in their gut 

microbiomes regardless of the treatment received. Only for individuals in the placebo group, 

we observed that overweight individuals had higher Firmicutes and Actinobacteria 

compared to those with normal weight (Figure S 10-4). 
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Figure 10-4. Pairwise correlations between fold changes in microbiome phyla and 

insulinemia responder status.  

The figure shows the fold change in all major four phyla before and after the intervention, 

correlated with subgroups in the x-axis. Insulinemia AUC ratios were calculated with AUC 

values after/before the intervention. A: Fold changes in Firmicutes; B: Bacteroidetes; C: 

Actinobacteria; D: Proteobacteria. Boxplots indicate the median and the interquartile range, 

with whiskers determined as the 1.5 range of the box. An asterisk denotes significant 

differences (p-value < 0.05) determined with the Mann-Whitney U-test. 

 

10.5 DISCUSSION 

10.5.1 Evidence of metabolic impairments for NAS 

Sucralose is one of the most consumed NAS in the world (Schiffman & Rother, 2013), with 

several foods and beverages being supplemented with this sweetener. While recognized as 

safe by several studies, recent evidence has shown that sucralose among other NAS may 

A B 

C D 
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promote weight gain and metabolic disturbances such as glucose intolerance (Swithers, 

2013). Therefore, it is critical to understand the actual impact of NAS in our metabolism. 

Previous findings in mice showed no adverse effects of sucralose on inflammatory 

markers or fasting glucose levels, even at large doses for up to 2 years (Goldsmith, 2000; 

Grice & Goldsmith, 2000). A study in diabetic subjects administrating sucralose at a dose of 

667 mg (~7.5 mg/kg/day) for 13 weeks did not observe changes in glycated hemoglobin, 

fasting glycemia, or fasting C-peptide against placebo (Grotz et al., 2003), which are similar 

observations compared to this work. Another study conducted in non-diabetic individuals 

who consumed 1000 mg/day of sucralose (~13.2 mg/kg/day) for 12 weeks did not detect 

differences relative to placebo in fasting glycemia, insulinemia or glycated hemoglobin 

(Grotz et al., 2017). Sucralose consumption at the population level may reach up to 15% 

ADI, which is evidently lower compared with the amount provided in these previous reports 

(Magnuson et al., 2017). None of these studies evaluated the gut microbiome composition 

of these subjects. Here we performed a short-term study with a small sample size, finding 

that sucralose consumption at high doses does not alter the glycemic response of healthy 

individuals. 

Recently the gut microbiome has emerged as a factor that could contribute to the 

biological effects of NAS, in particular sucralose (Suez et al., 2015). Early environmental 

studies revealed a strong bacteriostatic effect of several NAS, including sucralose and 

saccharin (Omran, Ahearn, et al., 2013; Omran, Baker, et al., 2013; Suez et al., 2015; Q. P. 

Wang et al., 2018). Wang et al. also showed increases in Firmicutes in mice exposed to 

sucralose (Q. P. Wang et al., 2018). Thus, alterations in the gut microbiome have been shown 

to be associated with NAS exposure, and these alterations could be causative of metabolic 

impairments such as glucose intolerance and insulin resistance (Suez et al., 2014). In 

C57/BL6 mice sucralose altered microbiome composition, increased pro-inflammatory fecal 

metabolites, and induced hepatic pro-inflammatory markers (Bian et al., 2017). Suez et al. 

(Suez et al., 2014) reported that in addition to saccharin, sucralose induced glucose 

intolerance in mice, and importantly this metabolic effect is transmittable to germ-free mice 

through their gut microbiome, indicating causality (Suez et al., 2014). 
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The Suez´s study was a pioneer in showing that after short-term saccharin exposure, 

individuals display contrasting responses in terms of glucose tolerance and microbiome 

composition. Some of the observations raised have however been questioned by other 

studies (Lobach et al., 2019). Interestingly, that contrasting glucose tolerance was emulated 

in germ-free mice transplanted with the microbiome of the human donors. That study also 

provided insights into what microorganisms are being altered in the complex gut 

microbiome. Saccharin consumption in the short-term resulted in enrichment in Bacteroides 

phyla, especially B. vulgatus and B. fragilis (Suez et al., 2014). Interestingly this exposure 

in mice also resulted in decreased abundance of Akkermansia muciniphila, a key gut microbe 

that has been associated with anti-inflammatory properties (Everard et al., 2013; Zhao et al., 

2017). While short-term saccharin consumption resulted in an increase in Bacteroidales and 

decrease in Clostridiales in responders (Suez et al., 2014), here we observed that sucralose 

administration at 75% of the maximum ADI for a similar period of time resulted in no major 

changes in the gut microbiome composition in healthy subjects. Evidently, metabolic and 

microbiome responses to saccharin could be very different compared to those of sucralose, 

considering their chemical properties and their differences in absorption and metabolism. 

The absence of effect of sucralose consumption on gut microbiome composition could be 

explained for powering the study on glycemia and not on gut microbiome data. 

We observed that at the beginning of the study, subjects in the placebo group had a 

different gut microbiome (higher Firmicutes and lower Bacteroidetes) compared to the 

sucralose group. Interestingly this correlated with these subjects having higher initial BMI 

and cholesterol compared to the sucralose group. These differences were not intentional and 

could be expected from the randomization of a population of healthy subjects. Moreover, 

subjects in the placebo group with higher insulinemia, HOMA, or BMI presented significant 

changes in their gut microbiomes (Figure 10-4, Figure S 10-3, and Figure S 10-4). These 

changes were a higher abundance of the Firmicutes phylum and lower Bacteroidetes. These 

observations indicate that the placebo group had substantial differences regarding glycemic 

response and gut microbiome compared to the sucralose group, and even inside the placebo 

group there were interesting differences between these individuals. In spite of these baseline 
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differences, neither group presented changes in glycemic response or gut microbiome 

associated with the treatment received. 

In addition, we did not observe differences in the gut microbiome between 

responders and non-responders associated with sucralose or placebo consumption, using 

criteria changes in serum insulin AUC. However, subjects who had a higher insulin AUC 

after the intervention, and regardless of the treatment received, had a higher 

Firmicutes/Bacteroidetes ratio (Figure 10-4). This indicates that this metabolic difference 

could be more relevant than the intervention itself. This also correlates with the idea of this 

cohort being so healthy that only minimal or very sensitive changes in the gut microbiome 

were obtained. Changes in these phyla are probably relevant and implicate a considerable 

rearrangement of the community, considering they represent more than 90% of the total gut 

microbiome. This same phenotype (higher Firmicutes and lower Bacteroidetes, or a higher 

Firmicutes/Bacteroidetes ratio) has been observed in several studies reporting alterations in 

the gut microbiome in obese subjects and especially in type 2 diabetes (Kasai et al., 2015; 

Most et al., 2017; Sircana et al., 2018; Turnbaugh et al., 2006). Mechanistically, these 

microbiomes have been associated with low-grade inflammation, higher gut permeability, 

and higher circulating lipopolysaccharide (Boulangé et al., 2016). 

10.6 CONCLUSION 

This study shows that the consumption of high doses of sucralose for 7 days in healthy 

subjects does not alter glycemic control. There were no changes in the gut microbiomes of 

these subjects with respect to the consumption of sucralose or placebo. Independent of the 

intervention, subjects displaying an increase vs. decrease in insulinemia after either 

intervention had different gut microbiome compositions. Thus, initial metabolic differences 

could have been more important than the intervention itself in terms of altering the gut 

microbiome. Further studies should study the impact of other important non-caloric 

sweeteners, but including potential responder-non responder differences among subjects. 
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10.7 SUPPLEMENTARY FIGURES 

S 10-1 Relative abundance of identified phyla in each sample. 

 

 

Figure S 10-1. Relative abundance of identified phyla in each sample. 

A: The 28 taxonomic assignment and determined abundance (before and after intervention) 

for the subjects in the sucralose treatment. B: Taxonomic assignment and abundance for the 

subjects in the placebo treatment.  

A 

B 
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S 10-2 Pairwise correlations between fold changes in microbiome phyla and 

glycemia responder status. 

 

Figure S 10-2. Pairwise correlations between fold changes in microbiome phyla and 

glycemia responder status. 

The figure shows the fold change in all major four phyla before and after the intervention, 

correlated with subgroups in the x-axis. Glycemia AUC ratios were calculated with AUC 

values after/before the intervention. A: Fold changes in Firmicutes; B: Bacteroidetes; C: 

Actinobacteria; D: Proteobacteria. Boxplots indicate the median and the interquartile range, 

with whiskers determined as the 1.5 range of the box. The asterisk denotes significant 

differences (p-value < 0.05) determined with the Mann-Whitney U-test.  

D 

A 
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S 10-3 Pairwise correlations between fold changes in microbiome phyla and HOMA 

responder status. 

 

Figure S 10-3. Pairwise correlations between fold changes in microbiome phyla and HOMA 

responder status. 

HOMA ratios were calculated with AUC values after/before the intervention. A: Fold 

changes in Firmicutes; B: Bacteroidetes; C: Actinobacteria; D: Proteobacteria. Boxplots 

indicate the median and the interquartile range, with whiskers determined as the 1.5 range 

of the box. An asterisk denotes significant differences (p-value < 0.05) determined with the 

Mann-Whitney U-test.  

A B 
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S 10-4 Pairwise correlations between fold changes in microbiome phyla and BMI.  

 

Figure S 10-4. Pairwise correlations between fold changes in microbiome phyla and BMI. 

BMI values considered were only on day 1 of the study, and subjects were classified as 

overweight (BMI > 25) or normal weight (BMI < 25). Then the abundances of the four gut 

microbiomes were correlated with these groups. A: Fold changes in Firmicutes; B: 

Bacteroidetes; C: Actinobacteria; D: Proteobacteria. Boxplots indicate the median and the 

interquartile range, with whiskers determined as the 1.5 range of the box. An asterisk denotes 

significant differences (p-value < 0.05) determined with the Mann-Whitney U-test. 
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11.1 SUMMARY 

According to Robert Putnam, trust can be a proxy for social capital. Thus, a higher societal 

trust could be related to economic growth. To test this hypothesis, we simulated the 

association between trust and economic growth in two artificial societies. One artificial 

society (New Zealand) exhibited higher levels of initial trust, and the other (Argentina) had 

lower levels of trust. Initial starting points for simulations were set using representative 

survey data (using the global trust inventory). Computational simulation relied on a rule-

based model (RBM), integrating time through a stochastic simulation algorithm 

implemented in PISKaS. Agents in the artificial societies were distributed according to 

proportions of four trust profiles, with more high trusters (HTs) in New Zealand. In each 

iteration, the agents played a prisoner´s dilemma, earning or losing money according to 

different payoff matrices, cooperation probabilities, and interaction frequencies, modeling 

different conditions for economic exchange. We analyzed the economic performance of each 

country, together with the performance of each trust profile. Results support the notion that 
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societies with high trust perform economically better, on average, than those with low trust, 

but only if interaction frequency is held constant. Despite the relevance of HTs for economic 

development, their performance is tightly linked to the type of society in which they interact: 

they prosper more in a Rule of Law society, and where HTs are more common, compared 

with a predators´ paradise, where the sucker´s payoff is more punitive. 

11.2 INTRODUCTION 

One of the more difficult challenges in social sciences is to develop diachronic accounts of 

how processes and structures unfold in time and across space (Fuchs & Archer, 1997; Regan 

& Archer, 1992). Typically, empirical data in the social sciences (e.g., surveys, experiments, 

and observations) focus on particular times (like the present) and places (i.e., western 

societies, see Henrich et al., 2010). By contrast, computer simulations can easily examine 

the consequences of social processes unfolding over a thousand or a hundred thousand 

iterations, simulating extended passages of time. Hence, these have been part of evolutionary 

theorists´ toolkit since the classic computer simulation tournament on the evolution of 

cooperation (Axelrod & Hamilton, 1981).  

The tradition of using computer simulations to examine the evolution of cooperation 

has continued to extraordinarily sophisticated models, such as Choi and Bowles´ simulation 

(2007) of the evolution of parochial altruists. It would seem that there should be a thriving 

interplay between social science theory and its empirical tests through computer simulation. 

However, to date, this study is thin. There are, for example, much less advanced studies on 

simulating the growth of economic prosperity compared with the evolution of cooperation 

even though they both involve processes of social exchange. 

The evolution of cooperation is rooted in biology, whereas the growth of prosperity 

is rooted in material conditions involving the economics of a society. Simulating the growth 

(or decline) or prosperity therefore potentially requires many more factors that could be hard 

to simulate. The purpose of this article is to describe a rule-based simulation of the growth 

of prosperity using a model of trust derived from real, nationally representative survey data 

(J. H. Liu et al., 2018) as the first step in this direction. To do so, New Zealand and Argentina 

were treated as prototypes of a developed (OECD) and a developing economy, respectively. 
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We demonstrate that the basic processes involved in simulating the evolution of cooperation 

can be applied to derive insights into the growth of prosperity across different contemporary 

societies. 

11.2.1 Growth of Prosperity from a Trust/Social Capital Perspective 

In recent decades, there has been a surge of interest across the social sciences in examining 

the functions of social capital in producing prosperity (Coleman, 1988; Putnam, 2000a). 

According to Woolcock and Narayan (2000), social capital refers to the norms and networks 

that enable people to act collectively. It is all the values that flow from people´s inclinations 

to form associations with one another and from the individual to the group level (Evers, 

2001). Such a vast concept is notoriously difficult to measure (see Paldam, 2000), especially 

across time and across cultures. Therefore, for the purposes of this article, we focus on a 

more easily measured concept that is theoretically closely related to social capital, that of 

trust. Putnam (Evers, 2001) conceptualized trust as a proxy for measuring social capital. 

While other theorists differ as to the exact relationship between the two, most agree with 

Simmel (1950) that trust is one of the synthetic forces capable of integrating micro-level 

social processes with group dynamics and macrolevel institutions (see Rousseau et al., 

1998). 

Where there is social capital, is also likely there is trust. The basic idea is that trust 

opens up opportunities to form social capital (Coleman, 1988), and social capital builds trust 

(Evers, 2001). Many poorer communities lack trust beyond small and immediate relations, 

so they cannot benefit from the prosperity an open economy brings (Fukuyama, 1995). They 

tend to stay within small, tightly sealed communities with a limited radius of trust. They 

remain poor because the dilemma of trust is one in which opening oneself up to possibilities 

of prospering by trusting strangers also opens oneself up to the possibility of being exploited 

(see Fukuyama, 1995; or Rousseau et al., 1998). 

Furthermore, previous research has shown that wealthy countries typically have 

higher levels of trust than poorer countries (as illustrated, for instance, in J. H. Liu et al., 

2018, with the notable exception of China, Zhang et al., 2019). Liu et al. (2018) developed 

a new measure of trust, i.e., the global trust inventory (GTI) that conceptualizes trust as a 
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system of meaning with “subcomponents (factors) and an overall configuration that makes 

sense of social interactions that link the individual to different levels of society.” The GTI 

measures the factors of trust with reasonable scalar invariance across 11 countries varying 

from developed to developing, allowing the functions of trust to be tested across economies 

at different stages of development. 

The particular factor that we focus on here is the Rule of Law (see 

data.worldjusticeproject.org/). A liberal (open) economy needs the Rule of Law to thrive. 

What Rule of Law does it is to protect a person or company from incurring maximum 

damage from being cheated by some unscrupulous other during social/economic exchange. 

Typically, poorer countries with shorter histories of democracy have weaker legal 

institutions: they tend to be more corrupt than more advanced economies (Fukuyama, 1995; 

Mishler & Rose, 2001). Putting these two patterns together, a theory of trust/social capital 

would predict that higher trusters should do better in a society with a stronger Rule of Law, 

whereas low trusters (LTs) (or cheaters) should do better where the Rule of Law is weak 

(and they are less likely to be punished for cheating others). This hypothesis connects the 

growth of prosperity with evolutionary theories, where higher-level institutions (i.e., group-

based selection in this case Rule of Law) impact on the individual-level characteristics (e.g., 

propensity to trust, see J. K. Choi & Bowles, 2007 for an evolutionary simulation the effects 

of group-level selection). 

11.2.2 A Rule-Based Simulation of New Zealand and Argentina 

The abovementioned hypothesis is consistent with evolutionary theory but could be 

criticized as being too simple for simulating a modern economy. In this article, we argue to 

the contrary that simulations are useful in projecting the outcomes of simple rules of trust 

and social exchange because they enable inferences about real-life situations. 

 The key finding of Axelrod and Hamilton´s classic simulation (Axelrod & Hamilton, 

1981) (replicated many times subsequently, see Rand & Nowak, 2013 for a review) was that 

tit-for-tat (reciprocal altruism, a high trust strategy) is evolutionarily stable against the 

rational, egoistic strategy of always-defect (a low trust strategy) as long as the computer 

agent is able to learn from prior encounters. That is, over repeated interactions, the computer 

http://data.worldjusticeproject.org/
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agent in their simulations learned whom to trust and whom not to trust, and as long as there 

were enough other trusters in the simulation, their mutually rewarding interactions would 

win the day and compensate for the “sucker´s payoff” of being cheated after trusting 

someone who betrays their trust. However, the requirements for a high trust strategy to be 

successful could depend on other things, such as the reward-cost environment (e.g., Rule of 

Law, or other normative factors reducing the cost of being cheated in the PDG), in addition 

to the preponderance of other trusters in the local environment. Furthermore, a major 

question in the field is: What are the minimum conditions required for high trusters (HTs) 

to thrive against defectors? (Rand & Nowak, 2013). This is precisely what we intend to 

examine. 

 As mentioned earlier, it is a challenge, especially in the initial steps of a long-term 

research project, to decide what factors to simulate in the growth of prosperity. In this 

research, we use the same paradigm of Axelrod and Hamilton (1981), the prisoner´s dilemma 

game (PDG), to model social interactions in our simulation, where avoiding or, at least, 

mitigating the costs of the sucker´s payoff is critical to the growth of cooperation and by an 

extension (we argue) to the growth of prosperity. We simulate social exchange between 

different agents with different levels of trust [e.g., HT, medium truster (MT), LT, and low 

institutional truster (LIT)] over repeated interactions. This research is the first step of what 

it is planned to be a series of increasingly more sophisticated simulations. We begin our 

program of research with naïve agents, that is, agents who are unable to learn from their 

previous encounters and unable to adjust their behavior to avoid being repeatedly cheated 

by defectors. The literature from evolutionary theory suggests that such a cooperative 

strategy is unlikely to survive competition against defecting strategies over the course of 

evolution (Axelrod & Hamilton, 1981; Rand & Nowak, 2013). Since our simulation is 

focused on a different question, whether HTs can thrive under specific initial societal 

conditions surveyed in two countries, we reasoned that beginning our program with naïve or 

“dumb” trusters is the logical starting point to look at for minimum conditions required for 

co-operators to prosper. 

Our simulation further differs from evolutionary theory-based simulations in two 

crucial ways. The first is in the meaning of the dependent variable. In the abstract, this is 
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points gained after a round of PDG exchanges. In evolutionary theory-based simulations, 

these are interpreted as “survival scores” because they are used to determine how many 

offspring a given computer agent/strategy spawns in the next round. Thus, points gained in 

the social exchange are used as the metric to decide the survivability of a given strategy 

(Axelrod & Hamilton, 1981) or personality type (J. K. Choi & Bowles, 2007). ]. Each round 

or iteration of the computer simulation can be interpreted as the success or failure of a 

generation of living organisms competing with one another to survive and pass their genetic 

material (i.e., their computer algorithms) onto the next generation. This interpretation does 

not apply to our simulation, as points are treated as money earned, not as survival scores. 

Each iteration of our simulation can be abstractly interpreted as a certain period in the agent´s 

life. In a 100-time-step simulation, each round could be interpreted as six months, whereas 

in a 1000-time-step simulation, each iteration could be treated as a fortnight— this is not 

important. What is crucial is that in our simulation, points are interpreted as the overall 

financial success of a given computer agent during a significant span of time in their lives. 

Second, we innovate by varying the outcome matrix or rewards and costs associated 

with the social exchange in the context of real survey data related to actual economies, using 

a rule-based modeling approach. As mentioned previously, highly developed economies 

tend to have a Rule of Law that attenuates the costs of being cheated and lowers the rewards 

of cheating. For example, the cheater would be more likely to be caught by police or 

successfully sued in the court for unscrupulously taking advantage of someone in New 

Zealand compared with Argentina (see Corruption Perceptions Index, 2018, or the Rule of 

Law measure at https://worldjusticeproject.org/). We used data from a multi-country survey 

on trust and trusting behavior as the starting point of our simulations of the growth of 

prosperity in these two societies. This principle of normative (or group-based) cooperation 

in punishing defectors is also crucial in the evolution of cooperation (see Choi & Bowles, 

2007; or Richerson et al., 2016), but to the best of our knowledge, varying the outcome 

matrix has not been prioritized in simulating environmental conditions surrounding dyadic 

interaction in evolutionary PDGs. 

Liu et al. (2018) used nationally representative samples to demonstrate that the 

structure of trust was consistent across 11 democratic societies, including both developed 

https://worldjusticeproject.org/
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and developing societies. Aggregating across the seven factors of trust (from close 

relationships all the way up to trust in government), they used latent profile analysis 

(Andersen et al., 2003) to ascertain the overall number of people with high trust (HT), 

moderate trust (MT), low trust (LT), and low institutional trust (LIT). In New Zealand, the 

percentage of HTs was 28.3%, versus 7.3% in Argentina, whereas LTs were 6.2% of the 

survey population in New Zealand and 12.7% in Argentina. Furthermore, Romano et al. 

(Romano et al., 2017) used a behavioral experiment (the trust game) to report the likelihood 

of actually trusting another person from these same samples (and other non-democratic and 

nonwestern societies) in economic exchange. HTs were found to trust another person in a 

social dilemma of trust 57% of the time compared with only 47% of the time for LT. MTs 

were in between these two categories in terms of the likelihood of trusting another person. 

Furthermore, we found that HT self-reported more social interactions per week than LT and 

Argentinians reported far more social interactions than New Zealanders. We use these data 

as the starting point to define the computer agents in our prosperity simulation. 

Starting points are particularly important according to critical junctures theory (J. H. 

Liu et al., 2014), a dynamical system theory-based approach to study the rise and fall of 

societies. Within this approach, small differences in initial settings can end up producing 

large differences in a system´s trajectory, known as the “butterfly effect” (for an overview, 

see Vallacher et al., 2010). Hence, we seek to examine whether initial starting points of states 

and the distribution and tendencies of individuals within states determine both the relative 

individual prosperity and the wealth of the state as a whole. This is of particular interest in 

attempting to identify critical junctures characterizing the growth of prosperity in a 

developing (Argentina) versus a developed (New Zealand) state.  

11.2.3 Rule-based Models: a novel approach to model human societies 

Human societies are an exemplar of complex systems: the diversity of interactions as well 

as the intricacy of their connectivity produce emergent behavior over time (Perez-Acle et 

al., 2018). In studying their dynamics, they are often modeled by using agent-based model 

(ABM) approaches. A particularity of these models is that interacting agents follow a set of 

internal rules (Gilbert, 2008), imposing a teleonomic nature on these agents (de Laguna, 
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1962). Hence, ABM models are interesting for simulating human beings because they do 

not necessarily follow a strict biologically bound reproduction framework. Moreover, from 

both the philosophical and biological points of view, it is arguable that living systems have 

a general-purpose beyond reproduction (de Laguna, 1962; Perez-Acle et al., 2018). 

Rule-based models (RBMs) offer an alternative to ABM because these do not require 

interacting agents to have an internal purpose nor teleonomy. RBM agents express properties 

that allow them to interact with each other by following rules that are environmentally coded. 

While some properties may account for internal states of the agents (e.g., trust level, 

individual prosperity, and sociability), others afford interaction between agents [e.g., 

population density might increase interaction rates (IRs)]. Following these premises, our 

simulations were performed by using PISKaS, a parallel computational platform to execute 

RBMs using the stochastic simulation algorithm (SSA, Daniel T. Gillespie, 1976). PISKaS 

is capable of interpreting and executing models written in the Kappa language (Perez-Acle 

et al., 2018). While RBMs and SSA have been applied to study system dynamics in a variety 

of fields (Chylek et al., 2015; James R. Faeder et al., 2009), applications to social systems 

are less common and more recent. Their fundamentals have been extensively reviewed in 

Bustos et al., 2018. 

A particularity of our RBMs is that the system dynamics are generated directly from 

the interaction between agents rather than through an imposed teleonomic mechanism. In 

other words, the system´s dynamics is the consequence of the continuous interaction 

between agents over time. Hence, by following this modeling framework, we treat human 

societies as complex systems exhibiting emergent behavior as a consequence of the 

nonlinear and highly correlated interaction between agents in the simulation. Importantly, 

modeling human societies using RBMs allows us to follow an approach without 

preconceived notions of its global behavior, nor how the studied phenomenon emerges. In 

doing so, we are studying social phenomena by gradually expressing all the known facts 

governing the interactions between agents using incrementally complex rules along with 

simulation time (Forbes et al., 2018). Of note, RBMs are also ideal to perform causal 

mechanistic analyses, that is, to identify the chain of events necessary to obtain a particular 

result in a given system (Forbes et al., 2018). This characteristic is very appealing to our 
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study because we want to disentangle the intimate relationship between trust and prosperity, 

shedding light on the causality between trust/social capital, system characteristics (such as 

the presence of Rule of Law or not), and economic development. 

11.3 MATERIALS AND METHODS 

11.3.1 Simulations 

All simulations were based on initial starting points obtained from surveys of Argentina and 

New Zealand reported by Liu et al. (2018). As mentioned earlier, contrary to classical works 

linking empirical methods with ABM (Janssen & Ostrom, 2006), we followed an RBM 

approach. In doing so, we focused on analyzing the economic performance of the 

computational social systems that we developed, intended to resemble human societies at 

different stages of social and economic development. In both cases (New Zealand and 

Argentina), agents were categorized according to the trust profiles identified by J. H. Liu et 

al. (2018). 

In our RBMs, interactions between agents consider the particularities of each trust 

profile and the consequences of these interactions, as expressed by a precise formal 

statement or rule. Each rule has a certain reactivity or probability to be executed, which is 

defined by specific parameters of each trust profile: the size of the profile, their IRs, and 

their cooperation probabilities (CPs). Importantly, while IR determines how often agents 

interact, CP denotes how often agents defect or cooperate while playing the PDG during 

their interactions. 

All simulations were performed using the PISKaS stochastic simulation engine 

(Perez-Acle et al., 2018). Each simulation is defined by a set of parameters (see below), 

considering the country, the distribution of the trust profiles within this country, the IR, the 

CP, and the payoff matrix. Each simulation was executed 1000 times, randomly changing 

the initial seed of the SSA each time, to collect data and compute statistics.  

Our RBM is generally defined by the following premises:  

1) all the agents belonging to the same country inhabit in the same compartment;  

2) interactions occurring between pairs of agents involve a positive or negative 

outcome, increasing or decreasing the agents´ prosperity;  
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3) all agents, irrespective of their trust profile, are homogeneously distributed in the 

compartment;  

4) when agents interact, they do it at the lowest IR of the interacting agents;  

5) money is earned (or lost) by agents in each particular interaction;  

6) each country has 200000 agents distributed according to the percentages of each 

trust profile (defined by the GTI using representative national samples); and  

7) agents are naïve in the sense that they do not learn from previous interactions and 

cannot remember information about previous transactions. A representative set of simulation 

rules is shown in Figure 11-1. 

 

 

Figure 11-1. Main simulation steps.  

(a) Example of two agents belonging to New Zealand, one HT and one MT, interacting along 

with the simulation. As a result of the interaction at rate IR between both agents, a complex 

is formed. (b) Two interacting agents forming a complex play the PD game during an 

iteration of the simulation. As a result of the PD game, one of the four outcomes of the payoff 

matrix is obtained, either increasing or decreasing the amount of money that it is stored on 
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the agents´ wallet (𝑊). Note that each agent has sites identified as properties denoting their 

trust profile (𝑃), 𝐼𝑅, 𝐶𝑃𝑠, and the interaction site (𝑖). Numerical values for all the properties 

belonging to the interacting agents are extracted from Table 11-1. Both agents are 

immediately separated after playing the PDG game, becoming available to participate in new 

iterations of the algorithm. 

 

11.3.2 General parameters 

For each country, we considered the four trust profiles established by the GTI according to 

Liu et al. (2018): HTs, MTs, LITs, and LTs. Of note, due to the characteristics of the applied 

instrument, these parameters are both empirically based and nationally representative. For 

each trust profile, we defined a set of parameters, including profile distribution, IRs, and CPs 

(see Table 11-1). IRs for New Zealand and Argentina were obtained from the GTI instrument 

designed and applied by our collaborators (J. H. Liu et al., 2018). Therefore, these values 

were extracted from representative samples of each society, reflecting, in a certain way, the 

character of the social dynamics in each country. 

 

Table 11-1. General parameters according to the Trust profiles per country.  

Note that we defined cooperation probabilities to be the same for the four profiles across the 

two countries. 

 

Profiles  Profile distribution Interaction rates 
Cooperation 

probabilities 

 Arg Nz Arg Nz  

HT 7.30% 28.30% 14.09 4.31 0.57 

MT 29.80% 46.40% 10.75 3.43 0.55 

LIT 50.20% 19.00% 9.86 3.21 0.55 

LT 12.70% 6.20% 8.32 1.46 0.47 

 

11.3.3 Payoff matrices 

In order to evaluate the effects of societal organizations that to a different degree punish (or 

reward) defection in economic transactions between individuals, we evaluated the effect of 

two different payoff matrices: A Predator´s Paradise and a Rule of Law matrix. The 
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Predator´s Paradise is conceptualized as a society where there is a high benefit for cheating 

and a high cost for being cheated. By contrast, a Rule of Law society is conceptualized as 

one in which there is a higher chance of being caught and being punished for cheating, so 

the benefit for cheating is less and the cost of cooperating with a defector is also lower. 

Hence, the Predator´s Paradise matrix consists of a higher payoff to defecting versus 

cooperating in the PDG. In the Predator´s Paradise, the payoff matrix is T: +10; R: +1; P: 

−1; and S: −10, where T represents the temptation, R represents the (mutual) reward for 

cooperation, P represents the (mutual) punishment (for mutual defection), and S represents 

the sucker´s payoff (being cheated). In the case of the Rule of Law payoff matrix, defecting 

is less encouraged, as it only pays 2. Hence, the payoff matrix is T: +2; R: +1; P: −1; and S: 

−2. Note that with these payoff matrices, the only interactions that contribute to increasing 

prosperity of the society overall are those of mutual reward (R/R), whereas mutual defection 

(P/P) produces an overall loss of prosperity to society. 

11.4 RESULTS 

11.4.1 Gross Domestic Product 

As a first approach to study the relationship between trust and economic performance, we 

analyzed the overall economic performance of the two countries during the simulation. 

Hence, we considered the total accumulated money per country [or gross domestic product 

(GDP)] at the end of every simulation. To do so, earnings per agent per iteration were added 

up and the accumulated per trust profile summed up to compute the country´s GDP. Using 

the parameters obtained from Table 11-1, independently of the selected payoff matrix, the 

overall economic outcome of Argentina was better than that of New Zealand under either 

Predator´s Paradise or Rule of Law (see Figure 11-2A and 11-2B). This better performance 

is likely to be due to the higher IR for Argentina that was derived from Liu et al. (2018), 

compared with that of New Zealand (see Table 11-1). To confirm this hypothesis, for both 

countries, we divided the GDP by the total number of interactions in every time step (see 

Figure 11-2C and 11-2D). Now, independently of the type of societal organization, the 

economic performance of New Zealand (controlling for the number of dyadic interactions 

per time step) was better than that of Argentina. This denotes that the higher trust rates in 
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New Zealand lead to more mutually beneficial interactions (which are the only ones that 

increase overall GDP). 

 

 

Figure 11-2. Cumulative and per interaction GDP.  

Cumulative GDP for the payoff matrices representing high sucker´s payoff (Predator´s 

Paradise, A and C), and low sucker´s payoff (Rule of Law, B and D). Panels A and B show 

the cumulative GDP achieved along with the simulation. Panels C and D show the 

cumulative GDP when this amount is divided by the total of interactions within each country. 

 

11.4.2 Dissecting economic performance per trust profile in the two societies. 

To explore the dynamics of economic performance for the different trust profiles, we 

examined the per capita GDP per trust profile contrasting the Predator´s Paradise versus the 

Rule of Law payoff matrices for Argentina and New Zealand (see Figure 11-3). 
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Figure 11-3. Economic performance per trust profile in Predator´s Paradise and Rule of law 

societies using GTI parameters. 

The GDP per capita for HT (High), MT (Medium), LIT (Low Institutional) and LT (Low 

Trust) profiles for both countries is displayed for the two payoff matrices. 

 

In the Predator´s Paradise payoff matrix, where there is a high benefit for cheating and a 

high cost for being cheated, agents belonging to the MT, LIT, and LT profiles all earned 

more money in Argentina (per capita), whereas agents belonging to the HT profile lost 

money during the simulation. As consequence, the cumulative GDP of the HT profile was 

negative at the end of the simulation. Of note, even though the LIT profile was numerically 

the largest in Argentina, the economic growth within the country (GDP) was largely 

attributable to the performance of the LT profile. Other profiles linearly decreased in per 

capita prosperity compared with this profile of agents most likely to defect. Thus, if the 

payoff matrix is modeled as a Predator´s Paradise for a simulated society, such as Argentina, 

cheaters prosper and naïve HTs suffer. 

On the other hand, in contrast to Argentina, all trust profiles in New Zealand earned 

money over the course of the Predator´s Paradise simulation. In agreement with Argentina, 

the LT profile was also the best performer per capita in New Zealand, and both MT and LIT 

profiles exhibited similar per capita economic performance. Although cheaters also 

prospered in New Zealand, the HT profile did as well, having a positive GDP per capita, 

contrasting with the case of Argentina, where they lost money. This is probably due to the 
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greater preponderance of HT and MT profiles in New Zealand, as well as a less exaggerated 

tendency for the higher trust profiles to interact more per round in New Zealand compared 

with Argentina. 

For the Rule of Law payoff matrix, irrespective of their trust profile, all agents earned 

money during the simulation. The far less punitive sucker´s payoff was responsible for this 

result. The per capita economic performance of the LT and LIT profiles in Argentina was 

very similar. Of note, the per capita economic performance of the HT and MT profiles in 

Argentina was also very similar and lower than that for the two less trustful profiles. Notably, 

the difference in prosperity between the four profiles was far less pronounced under the Rule 

of Law compared with the Predator´s Paradise payoff matrix in Argentina. 

In marked contrast to Argentina, using the Rule of Law payoff matrix, the best per 

capita economic performance in New Zealand was achieved by the HT profile, followed by 

LIT, MT, and, in the last position, the LT profile. Of note, despite the limitations of our 

simple model that used naïve agents incapable of discriminating between cheating and co-

operating interaction partners, the HT profile exhibited the best per capita economic 

performance. Even without any social intelligence (Yamagishi et al., 1999), more 

cooperative and more socially interactive agents (HT) prospered more than a defecting type 

of agent (operationalized by LT), given the Rule of Law payoff matrix. Differences between 

the four profiles were relatively small in this scenario. 

Independent of the societal organization as modeled by the payoff matrix, the per 

capita economic performance of the trust profiles in Argentina was always the same: the best 

performers are LT, followed by LIT, MT, and, in the last position, HT. The stability of this 

order suggests that the key element for per capita economic performance in the Argentina 

simulation is the interaction strategy of the trust profiles. The poor per capita economic 

performance of the HT profile in Argentina in the Predator´s Paradise payoff matrix—losing 

money—contrasts with the performance of the HT profile in the Rule of Law payoff matrix, 

where all agents earned money. The dependence of the economic performance of the HT 

profile on the type of institutions prevalent in a specific society highlights the critical role of 

institutions in growing prosperity for a country (see J. H. Liu et al., 2018; Richerson & 

Henrich, 2012). 
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11.5 DISCUSSION 

Insights into the growth of prosperity were uncovered through an RBM stochastic simulation 

using real survey data from two societies as its initial starting point. First, the minimum 

conditions for the growth of individual-level prosperity through cooperation in society were 

identified. It was found that even without any social intelligence (Yamagishi et al., 1999), a 

highly interactive, cooperative agents (HT) were capable of outperforming a less interactive, 

less cooperative agents (LT) when there were more cooperative agents in the social 

environment (28% HT in New Zealand versus 7% in Argentina). In addition, these agents 

interacted more often than less cooperative agents, under conditions where the sucker´s 

payoff for being cheated was less punitive (−2 versus −10). The vast majority of the studies 

that simulated cooperation between computer agents have used an evolutionary 

interpretation of the PDG payoff matrix and, hence, have largely neglected to theorize about 

details of the numerical settings for these payoffs. In our simulations, many of these 

parameters were derived from real survey results (J. H. Liu et al., 2018), and, therefore, are 

meaningfully concrete numbers rather than abstract indicators. The interpretation of the 

payoff matrix, therefore, also deserves theoretical attention. 

In the evolutionary literature, one Prisoner´s Dilemma is more or less the same as 

any other, whereas, in our prosperity simulation, the Predator´s Paradise payoff matrix 

yielded qualitatively different outcomes compared with the Rule of Law matrix. When the 

sucker´s payoff was set at +10 for temptation and −10 for being cheated, the LT profile, with 

a 47% cooperation rate (8%–10% lower than the other three profiles), prospered massively 

(making 10 times more than the next profile in Argentina and three times more than the next 

in New Zealand). When the sucker´s payoff was set at ±2, this resulted in far more equitable 

results between the four trust profiles in Argentina even though the rank order of their per 

capita GDP earnings remained unchanged (𝐿𝑇 > 𝐿𝐼𝑇 > 𝑀𝑇 > 𝐻𝑇). In New Zealand, a 

qualitatively different set of results appeared, where the more cooperative, trusting profiles 

prospered more (𝐻𝑇 > 𝐿𝐼𝑇 > 𝑀𝑇 > 𝐿𝑇), even though the computer agents could not 

distinguish cheaters from co-operators. 
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These results highlight the importance of the institutional environment in deciding 

which types of individuals would thrive in a given society. Trust and social capital have been 

predominantly theorized as positive or perhaps even necessary attributes for societal 

prosperity (e.g., Fukuyama, 1995) and this received considerable empirical support (e.g., 

Knack & Keefer, 1997; Zak & Knack, 2001). However, the literature has not emphasized 

how many institutional conditions weigh into this as an important contextual constraint. This 

is probably because trust and institutional performance are often tangled together in real-life 

situations. For example, a high trust society is often one with high institutional performance 

as well; therefore, it is difficult to examine whether a change of institutional conditions 

would alter the impact of trust (see also Guiso et al., 2004). Here, we were able to disentangle 

the interplay of trust and the institutional environment by setting them as separate parameters 

in simulations. Our results indicate that, in contradiction to hardline social capital theorists, 

there are negative implications of being a trustful person in the wrong context. A high trustor 

ends up in a most disadvantaged position if their cooperative tendencies are not safeguarded 

by normative protections, such as a rule of law being observed by other people around them. 

This insight accords with survey research from South Africa, a developing country with 

tough living conditions in many places (Adjaye-Gbewonyo et al., 2018), research reported 

that HTs living in a district with lower generalized trust showed more depressive symptoms 

in the second wave of a cross-lagged panel study. 

Even though modeling a modern economy as the sum of dyadic interactions between 

individuals is a gross simplification, the parameters that we used in these initial simulations 

are still instructive. In accord with insights from evolutionary theory (Rand & Nowak, 2013), 

the number of other co-operators in society was influential in deciding the overall earning 

of a given trust profile. In New Zealand, where more than a quarter of the population is HT, 

the social environment is more conducive to an HT thriving if institutional conditions are 

favorable (e.g., if there is Rule of Law). In Argentina, even with the Rule of Law, HT was 

disadvantaged because LTs were twice as common as in New Zealand. Making the situation 

more complicated were the survey results that made Argentina agents about 3-fold more 

socially active than New Zealand agents. The Argentina HTs could be viewed as gluttons 

for punishment as they not only were more likely to cooperate than any other profile, but 
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also, they interacted more per round and, hence, were constantly being exploited by LT. By 

contrast, the New Zealand LTs were like the alligator snapping turtles, ready to take a bite 

out of naïve HTs, but slow to do so (they only interacted 1.46 times per round compared 

with 14.09 times for Argentina HT). The differential social interaction rate was undoubtedly 

part of the reason for the results obtained. Future research might want to take this factor out, 

or make it less salient, as it may be that our Latin American survey respondents were 

reporting their frequency of social rather than economic interactions. 

The high level of interaction simulated for Argentina produced the unanticipated 

result that Argentina had better performance overall than New Zealand. Only when 

interaction rates were controlled for (Figure 11-2, C and D) made New Zealand have better 

economic performance compared with that of Argentina, as was anticipated due to its high 

number of HT and MT (in New Zealand the two profiles constitute 74.7% of the total 

population compared with only 37.1% in Argentina). Thus, in our simulations, although New 

Zealand society had fewer interactions between agents, these interactions were more 

successful on average in contributing to GDP than those for Argentina. 

11.6 CONCLUSION 

Whether we think of payoff matrices in the relative terms of economic prosperity or in 

absolute terms of evolutionary survival, the distribution of trust types makes a difference, 

just as predicted by the literature (Axelrod & Hamilton, 1981; Rand & Nowak, 2013). HT 

does better in New Zealand, where there are more like-minded and like-acting people. A 

highly versus slightly punitive sucker´s payoff makes a difference in terms of the relative 

performance of different trust types. If HT is dispositional rather than learned (as implied in 

our simulation, where there was no social learning by the agents), it will be punished more 

(or eliminated) in a developing society, such as Argentina, but not in a developed society, 

such as New Zealand. We saw this in the case of the Predator´s Paradise in Argentina, where 

the HT profile alone became impoverished, while all the other three profiles prospered. In 

future simulations, we plan to allow agents to learn and switch their trust type or acquire 

social intelligence at discriminating between trustworthy versus untrustworthy interaction 
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partners (see Yamagishi et al., 1999). This might produce a more realistic simulation and 

reduce the robustness of the advantage of LT in a Predator´s Paradise. 

Notwithstanding these limitations, it was an impressive result for HT to earn the most 

money per capita in New Zealand under a Rule of Law societal organization, even with zero 

social intelligence. This suggests that there may be ranges of societal conditions within 

which co-operators may prosper economically that extend beyond those previously 

identified in the evolutionary literature. It suggests that there are some societies that make it 

easier to be a “good person” (a co-operator) than others, and this can be attributed to the 

situation, not the individual. Although we have interpreted our results as the growth or 

decline of prosperity in contemporary society, mathematically, our simulations are not that 

different from previous simulations with evolutionary interpretations. More systematically 

exploring/varying initial simulation parameter settings (e.g., the distribution of trust types, 

the form of societal organization and interaction tendencies of different trust types) may be 

a fruitful direction for expanding our understanding of the conditions under which 

cooperative actors may thrive in future research. 
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12. ANNEX CHAPTER III: UNCERTAINTY OF PARAMETER VALUES 

To determine the uncertainty of parameter values, Alcyone serves as a wrapper function 

around Pleione (Chapter IV). It calculates uncertainty in parameter values from a one-leave-

out Jackknife and Bootstrapping procedures. 

12.1 IMPLEMENTATION 

12.1.1 One-leave-out Jackknife 

Jackknife works taking out one experimental value from the measurements and calculating 

the parameter of interest from the remaining values. It is a general procedure, and in the case 

of calibration, the calculation proceeds as: 

First, take out one observation and perform calibration with the remaining values. 

For instance, if there are available three replications, Alcyone prepares three sets of two 

observations each. Then, Alcyone calls Pleione to calibrate with them (hence, the 

qualification as a wrapper function). Optionally, to determine the bias and determine an 

unbiased estimation of parameter values, Alcyone calls Pleione to calibrate the model with 

the totality of observations. Once finished the calibrations, the parameters for each best 

model are employed to calculate an estimation with equations 12-1 to 12-4. Equation 12-1 

determines a biased estimation considering each parameter 𝜃𝑖, where 𝑖 is one of the 

Jackknifed calibrations. Then, Alcyone determines the variance with equation 12-2. To 

correct the estimation, equation 12-3 estimates the bias (the difference between the expected 

value and the true value) using the parameter values determined using the totality of 

observations (𝜃) and the unbiased estimation is calculated with equation 12-4 and 12-5. 

�̅� =
1

𝑛
∑ 𝜃𝑖

𝑛

𝑖=1
  (12-1) 

Var(�̅�) =
𝑛 − 1

𝑛
∑ (𝜃𝑖 − �̅�)2

𝑛

𝑖=1
  (12-1) 

Biaŝ(𝜃) = (𝑛 − 1)(�̅� − 𝜃)  (12-3) 

𝜃Jack = 𝜃 − Biaŝ(𝜃) = 𝑛𝜃 − (𝑛 − 1)�̅� (12-4) 

𝜃Jack ± 𝑡
(1−

𝛼
2

,𝑛−1)
∗ √Var(�̅�) (12-5) 



220 

 

 

 

12.1.2 Bootstrapping 

Bootstrapping is the generalization of Jackknife and works simply as a random sampling 

with replacement. After calibration, the uncertainty is calculated as the percentile range. 

However, to estimate uncertainty with high confidence, many calibrations must be done to 

have enough samples to determine closed percentile ranges. For instance, to determine a 

95% confidence range, Alcyone should calibrate at least 40 samples. 

12.2 RESULTS 

The simple model of gene regulation presented by Aguilera et al. (2017) was used as a 

testbed for its simplicity (four Rules, four parameters) and known parameters. From this 

model, ten stochastic simulations were used as synthetic experimental values. Alcyone was 

employed to determine uncertainty employing Jackknife (Table 12-1), and bootstrapping 

(Table 12-2) in a similar setting to those employed in strategy 3 for Pleione (Chapter IV). 

The function used was the two one-sided t-tests (TOST) and the Squared Deviations of two 

Averages (SDA, Equation 5-1). Deterministic simulation of the biased parameters estimated 

from Jackknifed calibrations is shown in Figure 12-1. 

 

Table 12-1. Uncertainty in parameter values for the Aguilera´s model employing Jackknife. 

 

 

mRNA synthesis 

rate 

mRNA 

degradation rate 

Protein synthesis 

rate 

Protein 

degradation rate 

Jackknife 1 5,893897 0,03613419 0,1003642 0,02874476 

Jackknife 2 6,334189 0,03962465 0,09436991 0,02713551 

Jackknife 3 5,046561 0,0308266 0,1024753 0,02919243 

Jackknife 4 5,165796 0,0303539 0,09126425 0,02704501 

Jackknife 5 4,588181 0,02719895 0,1000036 0,02906013 

Jackknife 6 5,977492 0,03517676 0,09115435 0,02769493 

Jackknife 7 6,994644 0,04365462 0,09127987 0,02783525 

Jackknife 8 6,129591 0,03798136 0,0961096 0,02862402 

Jackknife 9 5,414017 0,03330024 0,1014478 0,02948169 

Jackknife 10 5,025488 0,02913781 0,09970754 0,02980731 

Complete dataset 6,107979 0,03837579 0,09381348 0,02661513 

biased estimates 5,656986 0,034339 0,096818 0,028462 

Jackknife estimates 10,166920 0,074708 0,066776 0,009992 

Standard errors 2,088007 0,014674 0,012890 0,002781 

90% CI ±4,723400 ±0,033194 ±0,029158 ±0,006292 
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Figure 12-1. Deterministic simulation with the biased parameters estimated from Jackknifed 

calibrations.  

Bars show one standard deviation of 10 stochastic simulations used as synthetic 

experimental data. 

 

Table 12-2. Uncertainty in parameters values for the Aguilera´s model employing 

Bootstrapping with an 80% confidence interval (10 bootstrapping runs) 

 

 True value minimum maximum 

mRNA synthesis rate 5,0 4,910416 5,984259 

mRNA degradation rate 0,03 0,0289544 0,0360525 

Protein synthesis rate 0,10 0,0930859 0,1009508 

Protein degradation rate 0,03 0,026989 0,0294768 

 

12.3 OUTLOOK 

Jackknife and Bootstrapping are common, general, and straightforward methods to 

determine uncertainty for any calculation derived from samples. In the case of parameter 

values, the procedure was able to determine ranges with close or no deviation from the “real” 

parameter values. Jackknife is fast as is complexity is only the number of measurements plus 

one calibration to estimate bias. However, it is an approximation and bootstrapping could be 

employed to determine uncertainty linked to confidence ranges at expense of slower 

calculation time due to the calibration of many subsamples. Moreover, both methods could 

be replaced with Bayesian and Approximate Bayesian Calculation methods.  
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13. ANNEX CHAPTER IV: TOWARDS PLEIONE 2.0 

Pleione (Chapter IV) was developed with Rule-Based Models simulators in mind. Of the 

many simulators, Pleione supports four of them (covering two languages) and three main 

simulations methods: the original Stochastic Simulation Algorithm, the network-free 

method, and the deterministic method implement inside BioNetGen. Moreover, one of the 

claims was the ability to extend the method to support other simulation software. Here, it is 

explained the procedure using the Tellurium python package. The package allows simulation 

and analysis of SBML models, a standard used to disseminate models. However, SBML is 

not human-readable and Tellurium supports a model specificity language called Antimony. 

The model is human-readable and consistent as a programming language, and an important 

feature to determine how to encode inside the model the calibration specifications. Line 

numbers refer to the KaSim interface (https://github.com/networkbiolab/Pleione/blob/ 

master/Pleione/kasim.py) while Pleione transits to be an object-oriented software. 

13.1 SET THE REGULAR EXPRESSION 

Pleione determines which parameters to calibrate from a regular expression. The variable is 

encoded on lines 261 to 267. The regular expression captures parameter names (using 

“(\w+)”) and numbers (“([-+]?(?:(?:\d*\.\d+)|(?:\d+\.?))(?:[Ee][+-]?\d+)?)”). As 

complex enough, the regular expression captures numbers if they are integer or float 

numbers, in either exponential form or not, written explicitly with the sign or not. KaSim 

encodes parameters as “%var: name value” and use a double dash (“//”) and pound (“#”) 

symbols to determine inline comments. Antimony models resemble python structure (as well 

as many other programming languages) and parameters are defined as simple as 

“variable_name = number”. Line 261 was modified to “(\w+) = number […]” (for details 

see line 259 in github.com/glucksfall/Pleione/blob/master/Pleione/tellurium.py) 

13.2 WRITE A SYSTEM CALL 

Pleione calls simulation software with a system call (optionally wrapped inside a SLURM 

sbatch call). In this step, the variable on line 358 should be modified to match the 

programming language specification and line 380 to call the simulation software with the 

https://github.com/networkbiolab/pleione/blob/%20master/pleione/kasim.py
https://github.com/networkbiolab/pleione/blob/%20master/pleione/kasim.py
https://github.com/glucksfall/pleione/blob/master/pleione/tellurium.py
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model and other arguments. In the case of Tellurium, the simulation software is python itself, 

and therefore, an ad-hoc script was written to read a model, simulate it, and write results in 

an appropriate format, script executed with the “python –m pleione.sim-tellurium model 

time step output” system call: 

 

import os, sys 
import pandas, tellurium 
 
rr = tellurium.loada(sys.argv[1]) 
rr.integrator = 'rk4' 
results = rr.simulate(0, float(sys.argv[2]), int(sys.argv[3]) + 1) 
 
with open(sys.argv[4], 'w') as outfile: 

pandas.DataFrame(data = results,  
columns = results.colnames).fillna(0).to_csv(outfile,  
sep = '\t', index = False) 

 

13.3 RESULTS 

The Aguilera´s model (Aguilera et al., 2017) was used to test the Pleione´s Tellurium 

interface. In contrast to stochastic simulations, the Tellurium interface simulates ODEs, 

although the model specifications are reactions. The model was calibrated in similar settings 

to the description in Pleione (Chapter IV) employing the Chi-Square (Equation 5-8) fitness 

function. Figure 13-1 and 13-2 show the best fit found in two settings that differ only in the 

number of models per iteration. The initial condition for mRNA synthesis in the linear range 

1 to 10, mRNA degradation in the linear range 0.01 to 0.06, protein synthesis in the linear 

range 0.09 to 0.3, and protein degradation in the linear range 0.01 to 0.06. Parameter 

mutation was in the ±10% range done with a probability of 20%. Recombination had a 50% 

probability per parameter. General options were 100 iterations, the recombination of models 

followed an inverse to the rank probability, and doing 100 or 1000 models per iteration. 
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Figure 13-1. Best fit for the Aguilera´s model employing the Pleione Tellurium interface.  

One hundred models per iteration. Bars show one standard deviation of 10 stochastic 

simulations used as synthetic experimental data. 

 

 

Figure 13-2. Best fit for the Aguilera´s model employing the Pleione Tellurium interface.  

One thousand models per iteration. Bars show one standard deviation of 10 stochastic 

simulations used as synthetic experimental data. 

 

13.4 OUTLOOK 

Pleione was firstly developed to support Rule-Based Models written in kappa language and 

simulated with KaSim only. Further development added support for PISKaS, and the 

necessary comparison with BioNetFit encouraged the support for BioNetGen and NFsim. 

The developed method supporting two rule languages and four simulation software was 

presented in Chapter IV.  
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Three modeling frameworks –E-cell, Tellurium, and PySB– are written in python and were 

developed to be unified platforms for model specification, simulation, plotting, and 

reporting. However, none of them provides calibration methods by itself and the simple two-

steps method to extend Pleione to support them, as it was done for Tellurium, will allow 

users to keep their modeling tools instead of changing them for another that provides the 

required analysis methods.  
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14. ANNEX CHAPTER V: PARALLEL COMPUTING IN PYTHON 

Most of the thesis was possible through the implementation of parallel computing. Although 

the complexity of problems varied in degree, here will be explained how to implement 

parallel computing for embarrassingly parallel workloads. This class of problems includes 

those simple enough to be divided into small tasks that are independent of each other, and 

therefore, do not require distributed shared memory or complex communication between 

tasks, such as molecular simulation software. We parallelized tasks, for instance, Pleione 

(Chapter IV) simulates models and calculates fitness in parallel, while Alcyone (Chapter V) 

simulates models and calculates each sensitivity index in parallel. In a perfect infrastructure, 

the total calculation time would be a fraction inversely dependent on the number of available 

computing cores, or the total time employing single or multiple cores would be equal. 

14.1 MULTIPROCESSING 

The multiprocessing library is part of the python standard library and is a collection of 

functions and methods for parallel computing. The following example with multiprocessing 

library creates a batch of subprocesses and each of them runs in sequence tied to a single 

core. The approach contrast with the threading standard library as the later create threads, 

but they are executed one at a time because of the Global Interpreter Lock, even if one thread 

is executed per core. The GIL is a lock implemented as safety, but make threads no faster 

than serial execution. The following example will return the square of a number in two steps: 

first, create a list of numbers and then map the square function to a pool of processors. The 

result is a list and the code could be generalized, as in Pleione for the execution of external 

software through the subprocess standard library. 

 

import multiprocessing 
 
def sq(x): 
 return x**2 
 
lst = range(0, 1001) # a list of 1001 number from 0 to 1000 
processes = multiprocessing .cpu_count()-1 # count available cores 
 
with multiprocessing.Pool(processes = processes) as pool: 
 data = pool.map(sq, lst) # runs in 0.183s 
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A limit of the former approach is that the map method only accepts one iterable as 

an argument. To employ functions with many arguments effectively, the iterable must be a 

tuple (an immutable list) of lists: 

 

import multiprocessing 
 
def sq(x): 
 return x[0]**x[1] 
 
tuple1 = tuple(range(0, 1001)) 
tuple2 = tuple(range(0, 1001)) 
tuple = zip(tuple1, tuple2) # tuple = ([tuple1[0], tuple2[0]], …) 
 
processes = multiprocessing .cpu_count()-1 # count available cores 
 
with multiprocessing.Pool(processes = processes) as pool: 
 data = pool.map(sq, tuple) # runs in 0.180s 

 

14.2 SBATCH 

In any case, multiprocessing is limited to the physical CPU where python is running. To 

leverage High-Performance Computing infrastructures such as clusters, federations, and 

grids, it is needed a specialized software that works as a scheduler. A scheduler controls the 

use of the resources of those infrastructures by any other software and impersonates the user 

to run timely any submitted job when resources are available. Resources can be CPUs, cores, 

memory, GPUs, among others. In the case of the National Laboratory for High-Performance 

Computing, the scheduler software is SLURM, a common scheduler installed in the most 

powerful supercomputers. As noted, SLURM impersonates the user to execute a certain 

software (in a broad understanding, from single commands to complex scripts) and therefore, 

our simple example requires modification. Here, a helper script will be used to determine 

the square of a number: 

 

import sys 
 
x = sys.args[1]) # sys.args[0] = helper.py 
print(x**2) 
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While the main script will be: 

import re, subprocess 
 
lst = range(0, 1001) 
 
for I in lst: 
 cmd = 'sbatch --wrap="python3 helper.py {:s}"'.format(I) 
 cmd = re.findall(r'(?:[^\s,"]|"+(?:=|\\.|[^"])*"+)+', cmd) 
 out, err = subprocess.Popen(cmd,  

stdout = subprocess.PIPE,  
stderr = subprocess.PIPE).communicate 

 

Although the example is similar to the previously presented, the capability of using 

sbatch is limited to software that writes their results to the standard output or files. In the 

case of Pleione, the simulation software write the results to text files that are read later in the 

execution of the genetic algorithm. In addition, the monitoring of submitted jobs was 

necessary (checking the job ID in the out variable or errors) before submitting the next job. 

The limitation could be overcome with specialized software such as Dask (Rocklin, 2015). 

14.3 DASK 

14.3.1 Single nodes: Dask delayed 

Dask delayed is similar to the approach presented previously for multiprocessing, as in fact, 

it uses the multiprocessing standard library. However, it optionally works inside a predefined 

cluster of workers (an equivalent to the multiprocessing pool). The following example 

implements Dask delayed to compute the square of a list of numbers: 

 

import dask 
 
def sq(x): 
 return x**2 
 
results = [] # empty list 
lst = range(0, 1001) 
for I in lst: 
 y = dask.delayed(sq)(I) # map I to a “delayed” sq function 
 results.append(y) 
 
data = dask.compute(*results) # runs in 0.706s 
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14.3.2 Multiple nodes: Dask futures 

To use multiple nodes as a cluster of workers, first, it is needed a cluster tied to the scheduler 

installed in the system. Again, the choice is SLURM and the example is the square function. 

After a few modifications with respect to Dask delayed, a working example is:  

 

import dask_jobqueue 
 
def sq(x): 
 return x**2 
 
if __name__ == '__main__': # important to create the cluster 
 lst = range(0, 1001) 
 
 cluster = dask_jobqueue.SLURMCluster( 
   queue = os.environ['SLURM_JOB_PARTITION'], 
   cores = 1, walltime = '1:00:00', memory = '1GB', 
   local_directory = os.getenv('TMPDIR', '/tmp')) 
 
 cluster.scale(250) # start the client with 250 workers 
 client = Client(cluster) 

futures = client.map(sq, lst) 
 data = client.gather(futures) # wait until all evaluations are done 
 cluster.scale(0) # stop the cluster 

 

An advantage of Dask delayed with respect to low-level sbatch calls is the ability to gather 

the results of pure python code without an intermediate file. A disadvantage is shown in 

shared systems with many users is that the approach is greedy by creating a cluster of fixed 

size. To explain further, Pleione creates and submits one job per simulation and evaluation, 

and SLURM controls if other user´s jobs gain enough priority to be executed first. In 

contrast, Sterope creates a SLURMCluster and reserves resources in advance, delaying 

execution of other user´s jobs in favor of Sterope execution. 

14.4 OUTLOOK 

Here was presented four simple methods to develop parallel computing workloads. Although 

the examples are simple enough evaluations without shared memory or communication 

between tasks, more complex tasks could be developed from the code exemplified. The user 

should be able to identify the best fit for their needs, with multiprocessing the first choice 

for physically bound calculations (laptops, desktop PCs, and single nodes in a cluster), and 
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Dask delayed as an improved version, but not necessary in most cases. To leverage multiple 

nodes (such as clusters, federations, and grids) a scheduler or a Dask cluster must be used 

for parallel computing of embarrassingly parallel workload. Please note that all examples 

represented costly methods as they create subprocesses before to perform any calculation on 

them, and the user should evaluate first is the overhead (time to create and close a 

subprocess) is enough small compared to the calculation time. 


